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Abstract
Local search algorithms are frequently used to handle complex optimization problems
involving binary decision variables.Oneway of implementing a local search procedure
is by using a mixed-integer programming solver to explore a neighborhood defined
through a constraint that limits the number of binary variableswhose values are allowed
to change in a given iteration. Recognizing that not all variables are equally promising
to change when searching for better neighboring solutions, we propose a weighted
iterated local branching heuristic. This new procedure differs from similar existing
methods since it considers groups of binary variables and associates with each group
a limit on the number of variables that can change. The groups of variables are defined
using weights that indicate the expected contribution of flipping the variables when
trying to identify improving solutions in the current neighborhood. When the mixed-
integer programming solver fails to identify an improving solution in a given iteration,
the proposed heuristic may force the search into new regions of the search space by
utilizing the group of variables that are least promising to flip. The weighted iterated
local branching heuristic is tested on benchmark instances of the optimum satisfiability
problem, and computational results show that the weighted method is superior to an
alternative method without weights.

Keywords Neighborhood search · Mixed-integer programming · Matheuristic ·
Boolean optimization

B Lars Magnus Hvattum
hvattum@himolde.no

1 ISEG-School of Economics and Management, University of Lisbon, Lisbon, Portugal

2 Department of Mathematics, University of Aveiro, Portugal, Portugal

3 Faculty of Logistics, Molde University College, Norway, Norway

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-022-09496-2&domain=pdf
http://orcid.org/0000-0002-3770-5456
http://orcid.org/0000-0002-4672-6099
http://orcid.org/0000-0003-0490-9978
http://orcid.org/0000-0003-0529-5090


330 F. Rodrigues et al.

1 Introduction

For optimization problems that cannot be solved to optimality within a reasonable
time, heuristic search strategies are of key importance to obtain high-quality solutions.
Several types of heuristic strategies have been proposed in the literature (Blum and
Roli 2003; Boussaïd et al. 2013), and one of the most popular is to search for better
solutions by exploring neighborhoods of given reference solutions. A common goal
in the design of local search based metaheuristics (Sörensen and Glover 2015) is
to provide ways to escape from local optima. Examples can be found in simulated
annealing (Kirkpatrick et al. 1983) that uses randomness to allow worsening moves
to escape from local optima, guided local search (Alsheddy et al. 2016) that uses
penalties in the move evaluation function, iterated local search (Stützle and Ruiz
2017) that includes a perturbation step to move away from a local optimum, and tabu
search (Glover and Laguna 1997) that uses memory structures such as tabu lists to
prevent the return to recently visited local optima.

Recently, researchers have to an increasing extent considered variations over this
theme where the exploration of neighborhoods is in part performed by formulating
a mixed-integer programming problem (MIP) which is then solved using available
commercial solvers. This corresponds to an integrative combination of exact and
heuristic algorithms (Raidl and Puchinger 2008), with the local search being themaster
algorithm and the MIP solver being the integrated slave. Common examples of such
matheuristics include local branching (Fischetti and Lodi 2003), relaxation induced
neighborhood search (Danna et al. 2005), proximity search (Fischetti and Monaci
2014), and other methods based on large-neighborhood search frameworks (Rothberg
2007).

When exploring large neighborhoods usingMIP formulations, techniques to reduce
the time spent exploring the neighborhoods are relevant. One such technique involves
fixing variables. In Wang et al. (2011) the authors investigated strategies for fixing
variables in a tabu search for binary quadratic programming problems. When solving
a network design problem, (González et al. 2016) used a variable fixing heuristic to
generate an initial solution and then a local branching strategy to improve the solution.
In Sadykov et al. (2019), heuristic schemes involving different forms of variable fixing
were explored within a branch-and-price algorithm. Reduced costs were applied in
Sarayloo et al. (2021) to guide variable fixing to solve a stochastic network design
problem, while (Dauer and de Athayde Prata 2021) investigated a MIP heuristic with
variable fixing for a vehicle scheduling problem.

Typically, local search based matheuristics do not distinguish between variables
when defining a neighborhood. For example, in local branching, constraints are used
to define the current neighborhood by limiting the number of binary variables that can
flip (i.e., change their value from 0 to 1 or from 1 to 0) relative to the current solution.
However, these local branching constraints do not exploit information about which
variables are more likely to be flipped when moving from the current solution to an
improving neighboring solution. A related method called proximity search uses the
Hamming distance in the objective function to guide the search. However, this function
also does not provide guidance to distinguish between the quality of equally distant
solutions, nor does it incorporate available information regarding the preferred values
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of variables. In a recent paper (Rodrigues et al. 2021) a proximity search heuristic using
different weights for individual variables was successfully applied to three different
combinatorial optimization problems. This provided evidence that it can be useful,
prior to exploring a neighborhood of solutions, to evaluate the possible consequences
of flipping binary variables and weighting the variables accordingly when performing
the neighborhood exploration.

This paper introduces a new matheuristic that controls and guides the search by
introducing individual variable weights when building local branching constraints.
We refer to this method as a weighted iterated local branching (WILB) heuristic, as it
uses ideas from local branching in a frameworkwhere the searchmay continue beyond
a local optimum.

TheWILB focuses on a search thatmodifies the values of binary variables.However,
the WILB is designed with the assumption that not all binary variables are equally
promising to flip when searching for an improving solution. The search defines a
partition of the binary variables into three groups and associates with each group an
independent local branching constraint. This allows the search to reduce one of the
drawbacks of local branching, which consists of tuning the parameter that controls the
number of variables that are allowed to flip. If this parameter is set to a small value,
the neighborhood becomes very small and the search will quickly be trapped in a local
optimum. If the parameter is set to a large value, the resulting problem may become
too hard to solve, and the search may be unable to find an improving solution within
an acceptable time limit. Defining three local branching constraints, we can guide the
search by better controlling the search space using the information available at each
stage.

Todefine the partition, aweight is first associatedwith eachbinary variable by taking
into account three factors. The first factor measures the contribution of the variable
to the objective function value; the second measures the general contribution of the
variable to feasibility; and the third measures the immediate consequences of flipping
the variable on the structure of the current solution. Considering theweights, one group
is formedby the variables deemedmost promising to flip in order to improve the current
solution without changing the structure of the solution significantly, another group is
formed by the variables considered least promising to flip or that change the structure
of the solution significantly, while the remaining variables form a separate group. Each
local branching constraint has a different right-hand side value, defined according to
the expected contribution of the associated group of variables for improving the current
feasible solution and changing the structure of the current solution. Furthermore, the
set of variables that are least promising to flip or change the structure of the solution the
most can also guide the local search to different regions of the search space whenever
the solution obtained by the MIP solver is not better than the incumbent solution.

The new matheuristic is tested on instances of the optimum satisfiability problem
(OptSAT) (Davoine et al. 2003). There are two reasons for this choice. First, several of
the benchmark instances in the literature were generated through a transformation of
instances from other NP-hard problems. Thus, by testing these instances, we indirectly
test the method also on other problems. Second, the OptSAT has a nice structure that
permits a clear interpretation of the three defined weight factors, which allows us to
conduct this research as a proof of concept.
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The contributions of this paper are the following.

1. Propose the weighted iterated local branching heuristic, a new matheuristic that
constructs distinct groups of binary variables and associates an independent local
branching constraint to each of these groups.

2. Use the group of variables that are least promising to flip when searching for better
solutions to also direct the local search into different regions of the search space
after every iteration where the search has failed to identify an improving solution.

3. Present the benefits of using the WILB to find better solutions compared to those
obtained by the unweighted local branching and by a commercial solver with an
imposed time limit through computational experiments on instances of theOptSAT.

The paper is organized as follows. In Sect. 2, we review the concept of local branch-
ing as used iteratively in a local search heuristic and introduce the new WILB. In
Sect. 3, we present the OptSAT used to test the proposed WILB. The computational
experiments are reported in Sect. 4 and the main conclusions are drawn in Sect. 5.

2 Local search procedures

In this sectionwe review a general heuristic based on local branching,whichwe refer to
as local branching heuristic (LBH) and then introduce the proposed weighted iterated
local branching (WILB) heuristic. In the following, x and y denote vectors of decision
variables, whereas x j and y j denote the j th component of the corresponding vector.
Moreover, x̄ denotes the value of the decision variables x in the current iteration of the
procedure.

Consider a general MIP problem of the form

max f (x, y)

s.t . gi (x, y) ≤ 0, i ∈ I ,

x ∈ {0, 1}n,
y ∈ R

p × Z
q , (2.1)

where I is a set of indices, and f , gi , i ∈ I , are real functions defined over Rn+p+q .
Both the LBH and the WILB specifically focus on the binary variables labeled x,
with N = {1, ..., n} being the set of indices of the binary variables x. Although
the computational experiments of this paper consider a problem with only binary
variables, the following discussion is kept general by keeping the possibility of non-
binary variables included in y.

2.1 Local branching heuristic

Different versions of heuristics based on local branching have been used for solv-
ing complex MIP problems, for example in vehicle routing (Hernandez et al. 2019),
network design (Rodríguez-Martín and Salazar-González 2010), and production
scheduling (Samavati et al. 2017). The main idea of such procedures is to repeatedly
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define a neighborhood around the current solution, and then explore this neighbor-
hood to find an improved solution. One way of implementing a LBH is through a local
branching constraint of the form

LB� :=
∑

j∈N | x̄ j=0

x j +
∑

j∈N | x̄ j=1

(1 − x j ) ≤ �. (2.2)

Fischetti and Lodi (2003) proposed this local branching constraint which restricts
the number of binary variables that may change their value relative to an incumbent
solution. That is, the constraint induces a neighborhood of the incumbent solution,
which is defined as the set of solutions that can differ from the incumbent in at most
� of the x-variables. The local branching constraint was originally proposed together
with an inverse constraint

I LB� :=
∑

j∈N | x̄ j=0

x j +
∑

j∈N | x̄ j=1

(1 − x j ) ≥ � + 1. (2.3)

which in combination with constraint (2.2) partitions the solution space and allows a
branching scheme. In terms of identifying primal solutions of high quality, it has been
claimed that this inverse constraint is less effective in practice (Hill and Voß 2018),
and when using the local branching idea heuristically, most authors focus only on
repeatedly applying the LB� constraint. Thus, while successful applications of local
branching using I LB� have also been reported (Hernandez et al. 2019; Rei et al.
2010), in this paper we focus on heuristics where only LB� applies. A LBH using a
local branching constraint is given in Algorithm 1.

Algorithm 1 Local Branching Heuristic

1: Let (x0, y0) be an initial feasible solution and �0 a given parameter
2: set (x̄, ȳ) := (x0, y0), f Best := f (x0,y0), and � := �0
3: repeat
4: set f Previous := f (x̄,ȳ)
5: start with the pure MIP model and add the local branching constraint LB�

6: run the MIP solver to obtain a new solution (x̄, ȳ)
7: if f (x̄, ȳ) > f Best then
8: set f Best := f (x̄, ȳ)
9: end if
10: if f (x̄, ȳ) > f Previous then
11: � := �0
12: go to Step 3
13: else
14: increase � and go to Step 3
15: end if
16: until a given stopping criterion is reached

The LBH procedure starts from an initial feasible solution for the problem and
requires the initialization of the parameter � used in the LB� constraint. Here, the
initial solution is obtained by executing a MIP solver for a limited amount of time.
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At each iteration (Steps 3–16), a local branching constraint LB� is added to the
model (Step 5) which is then given to a MIP solver that is run until a termination
criterion is reached (Step 6), and a new incumbent (feasible) solution is obtained. If
the objective function value of the obtained solution is better than the current best value,
the best solution is updated (Step 8). When the objective function value of the new
incumbent solution is no better than the objective function value of the solution found
in the previous iteration, the value of � increases (leading to a larger neighborhood).
Otherwise, the value of � is not changed. The algorithm repeats the process (Steps 3–
16) until it reaches a pre-defined stopping criterion (Step 16).

Different descriptions of LBH procedures using local branching constraints can be
found in the literature regarding how to perform the irregular iterations which occurs
when no improvement is found within the current neighborhood (Step 14) (Faria et al.
2019). In this paper we follow a very simple strategy for such iterations that consists
of increasing the value of �. We made this choice to keep the presentation of the
algorithms easier and to better understand the benefits of introducing weights in the
WILB.

2.2 Weighted iterated local branching heuristic

The WILB takes into consideration that changing the value of some variables or
groups of variables is more promising when searching for better solutions than it is
for other variables. It also considers the impact of changing the value of a variable
on the structure of the solution. In the LBH described in the previous subsection, the
local branching constraint limits the total number of variables that can be flipped, and
at most � variables can flip simultaneously. Using such a constraint, no distinction
is made between variables or groups of variables and each variable has the same
restriction on being flipped. However, if we can isolate groups of binary variables that
are more likely to be flipped when searching for better solutions, this can be exploited
to improve the search as an intensification scheme. Isolating groups of variables that
by flipping their value may have a large impact in the change of the structure of the
current solution, on the other hand, can be exploited as a diversification scheme.

2.2.1 Variable groups and neighborhood definition

We consider three groups of binary variables, defined through weights associated with
each variable. When going from the current solution to a better solution in the current
neighborhood, each variable is evaluated based on how likely it is that the variable will
be flipped to reach the best neighboring solution, and then this evaluation is used to
classify variables into three groups. The first group of variables (G1) is composed of
variables that are considered most likely to be flipped when moving to an improving
solution within the neighborhood of the current solution. The second group (G2) is
composed of variables that are not strongly suspected to either be more or less likely to
change in the current iteration of the search, whereas the third group (G3) is composed
of variables that by changing their value the objective functionvalue of the next solution
will likely worsen or the structure of the solution will change significantly. These three
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groups form a partition of the set of variables, N = G1
⋃

G2
⋃

G3, and are defined
at each iteration of theWILB.We associate an independent local branching constraint
to each group. We expect that the variables in the group G1 are more promising to
change when searching for better solutions than the variables in groups G2 and G3.
Therefore, we establish that the maximum number of variables that are allowed to flip
their value in this group is greater than in the other two groups. Each local branching
constraint has a different right hand side parameter according to the expected impact
of the corresponding group in the search for better solutions.

The local branching constraints associated with each group are as follows:

LB�
G1

:=
∑

j∈G1 | x̄ j=0

x j +
∑

j∈G1 | x̄ j=1

(1 − x j ) ≤ δ1�,

LB�
G2

:=
∑

j∈G2 | x̄ j=0

x j +
∑

j∈G2 | x̄ j=1

(1 − x j ) ≤ δ2�,

LB�
G3

:=
∑

j∈G3 | x̄ j=0

x j +
∑

j∈G3 | x̄ j=1

(1 − x j ) ≤ δ3�.

where δ1 ≥ δ2 ≥ δ3 are parameters that allow to control the neighborhood of the cur-
rent solution by providing different flexibility for the change of the values within each
group of variables. When δ1+δ2+δ3 > 1, the three constraints lead to neighborhoods
that allow more binary variables to change in any given iteration than allowed by the
corresponding local branching constraint (2.2) for a given value of �. However, the
neighborhoods may still be smaller than the corresponding neighborhoods implied by
local branching constraint (2.2), since the combinations of variables that change are
more restricted. That is, the size of the neighborhood is being controlled since some
combinations of non-promising variables defined by constraint (2.2) are no longer
allowed. This highlights the benefit of the introduced variable groups: the solution is
allowed to changemore in each iteration, even when the neighborhood is not increased
in size.

We expect that the variables in groupG3 are the ones leading to the biggest changes
in the structure of the obtained solutions when their value flips. Hence, such a group of
variables can also be used to explore different regions of the search space and thereby
to escape from local optima. To guarantee this, we can force one variable in group G3
to change by using the following constraint:

LBG3 :=
∑

j∈G3 | x̄ j=0

xi +
∑

j∈G3 | x̄ j=1

(1 − x j ) = 1.

2.2.2 Overall structure

The general description of the WILB procedure is given in Algorithm 2.
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Algorithm 2Weighted Iterated Local Branching

1: Let (x0, y0) be an initial feasible solution and �0, δ1, δ2, and δ3 be given parameters
2: set (x̄, ȳ) := (x0, y0), f Best := f (x0,y0), � := �0, and irreg_i ter := f alse
3: repeat
4: set f Previous := f (x̄,ȳ)
5: compute the weight for each variable x j , j ∈ N
6: divide variables x into groups G1, G2, and G3 according to their weights
7: start with the pure MIP model and add the local branching constraints LB�

G1
, LB�

G2
and LB�

G3
8: if irreg_i ter then
9: add constraint LBG3 to the model (optional)
10: end if
11: run the MIP solver to obtain a new solution (x̄, ȳ)
12: if f (x̄, ȳ) > f Best then
13: set f Best := f (x̄, ȳ)
14: end if
15: if f (x̄, ȳ) > f Previous then
16: irreg_i ter := f alse
17: � := �0
18: go to Step 3
19: else
20: irreg_i ter := true
21: increase � and go to Step 3
22: end if
23: until a given stopping criterion is met

The structure of the WILB presented in Algorithm 2 is similar to the structure
of the LBH in Algorithm 1. The WILB has two additional steps (Steps 5 and 6) to
form the partition of variables. In Step 5 we compute the weight for each binary
variable x j , i ∈ N . The computation depends on the problem being solved. In Step 6,
the variables are divided into three groups according to their calculated weights. We
associate variables with lower weights with group G1, while variables with higher
weights are associated with group G3. All the remaining variables are included in
group G2. After grouping all the variables, a local branching constraint for each group
is added to the model (Step 7). There is also an irregular iteration, performed at the
optional step (Step 9) of adding the local branching constraint LBG3 to the model.
This helps to direct the search towards a new region of the search space.

2.2.3 Determination of weights and constitution of groups

We now introduce different ways of computing weights for the binary variables x
and explain how to form the three groups of such variables. Consider an incumbent
feasible solution (x̄, ȳ) for the general MIP problem (2.1). We first define weights for
each binary variable x, such that lower weights are associated with variables that we
believe are more likely to flip when moving from the current solution to an improving
solution in the current neighborhood. To derive weights, we consider three different
factors described as follows.

The first factor (F1) is based on the objective function coefficient of each variable.
Since it is more beneficial to set variables to one if their objective function coefficients
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are higher, the weight of variable x j , j ∈ N , for this factor is defined as follows:

w
F1
j = x̄ j + (−1)x̄ j

(
CMAX − c j

CMAX − CMI N

)
,

where CMAX and CMI N are the values of the highest and lowest objective function
coefficients among all variables and x̄ j is the current value of variable x j in the

incumbent solution. Weights w
F1
j are therefore in the range [0, 1] for all j ∈ N . In an

incumbent solution, the binary variables we believe are more likely to be flipped are
either the ones having a current value of one and a small objective function coefficient
or the ones having a current value of zero and a high objective function coefficient.
Both cases lead to a small weight wF1

j for the associated variable.
The second factor (F2) is related to the signals of the coefficients of each variable

in the functional constraints in which it appears. In problem (2.1), any functional
constraint gi (x, y) ≤ 0 for i ∈ I is linear, and therefore it has the form

∑n
j=1 ai j x j +

∑p+q
j=1 bi j y j ≤ 0, with ai j , bi j ∈ R. By taking x j = 1 if ai j < 0 and x j = 0 if

ai j > 0, the left-hand side value of constraint i decreases and therefore such constraint
becomes easier to satisfy for the value of the remaining variables. This can be seen as
a smooth relaxation of constraint i with respect to the variable x j . Let us denote by S+

j

(respectively S−
j ) the number of constraints inwhich variable x j appearswith a positive

(respectively negative) coefficient. A variable with a high difference Dj := S+
j − S−

j
more often appears with positive coefficients in the functional constraints than with
negative coefficients. This means that the number of constraints smoothly relaxed
when such a variable is fixed to zero is larger than the number of constraints smoothly
relaxed when it is fixed to one. Hence, for such a variable, taking the value zero
is beneficial when searching for new feasible solutions, as this ensures that a large
number of constraints are smoothly relaxed. The weight of variable x j , j ∈ N , for
this factor is therefore defined as follows:

w
F2
j = (1 − x̄ j ) + (−1)(1−x̄ j )

(
DMAX − Dj

DMAX − DMI N

)
,

where DMAX := max
j∈N {Dj } and DMI N := min

j∈N{Dj }. The weight wF2
j takes values in

the interval [0, 1] for all j ∈ N . Again, small weights are associated with the variables
that are considered promising to flip in order to discover an improved solution. Such
variables are the ones having either x̄ j = 0 and a small value of Dj or x̄ j = 1 and a
high value of Dj .

The third factor (F3) is the number of constraints that would be violated if a sin-
gle variable is flipped in the current solution while keeping the current value of the
remaining variables fixed. The variables that have the lowest number of constraints
that become violated are more promising to change in the pursuit of an improved
neighboring solution, while those with large number of constraints becoming violated
will force a larger change in the structure of the next solution in case their value is
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flipped. Hence, the weight of variable x j , j ∈ N , for this factor is defined as follows:

w
F3
j = 1 −

(
V MAX − Vj

V MAX − V MI N

)

where V MAX := max
j∈N {Vj }, V MI N := min

j∈N{Vj } and Vj is the number of constraints

that are violated when variable x j changes its value in the incumbent solution and the

remaining variables keep their value fixed. The weights w
F3
j also vary between 0 and

1.
The three factors previously defined are general for any MIP problem with binary

variables. For defining a unique weight for each variable, the three factors can either
be used separately or in combination. Since the weights associated to the three factors
are normalized, vary in the same interval [0, 1], and smaller values are related with
variables that are promising to change without changing the structure of the solution
significantly, a combination of these factor-weights can easily be employed by simply
adding the factor-weights. Combining these three factor-weights when considering
a general MIP problem has several advantages. First, the three factor-weights are
based on different features of the problem, which allows to determine a more holistic
ranking of the variables. Second, the combination of factor-weights helps to better
distinguish between promising and non-promising variables, especially when some
of the factor-weights do not lead to large weight variations when applied separately.
While the three factor-weights presented are general for any MIP problem, different
factor-weights can be derived for specific MIP problems by taking into account their
structural characteristics.

After calculating a weight for each binary variable, three groups of variables are
created: G1, consisting of the most promising variables to change; G2 with the vari-
ables that do not have a strong inclination towards or against being flipped; and G3,
containing those variables whose change will probably lead to an increase of cost or
promote a large change in the structure of the solution. By construction, the variables
are more promising to change the lower their weight. Hence, we include in group G1
the variables with smallest weights, include in group G3 the variables with highest
weights, and include in group G2 the remaining variables.

The number of variables to include in each group can be determined by a fixed
percentage, defined a priori, of the total number of binary variables. Therefore, we
consider that each of the three groups has a fixed percentage of variables, which is
α1%, (100 − α1 − α2)%, and α2%, respectively. To achieve good performances in
terms of the computational time, the percentage of variables in group G1 should be
small, since the constraint LB�

G1 has the highest right-hand side value given our choice
of δ1 ≥ δ2 ≥ δ3. Furthermore, since group G3 is the one where a lower number of
variables is allowed to change, the number of variables in this group should also be
small to reduce the chances of being trapped in a local optimum.
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3 The optimum satisfiability problem

We test the performance of the proposedWILB procedure on the OptSAT. Informally,
this problem can be characterized as a satisfiability problem with an added objective
function consisting of a weighted sum of the truth values of the variables. When
this objective function is maximized, the problem was originally called the Boolean
optimization problem (Davoine et al. 2003), while the variant where the objective
function is minimized is also known as the minimum-cost satisfiability problem (Li
2004).

The OptSAT subsumes several well-known and NP-hard binary optimization prob-
lems, such as weighted versions of set covering, graph stability, set partitioning, and
maximum satisfiability problems. For some of these problems, a conversion to Opt-
SAT requires the introduction of additional variables (Li 2004). As an example, in
(partial) maximum satisfiability (Li and Manyà 2009), a slack variable must be added
for each soft clause (Hvattum et al. 2006). The OptSAT can be formulated as follows:

max
∑

i∈N
c j x j

s.t . g(x1, . . . , xn) = True,

x j ∈ {0, 1}, j ∈ N ,

where g(x1, . . . , xn) = C1 ∧ . . . ∧ Cm = True is a Boolean equation written in
conjunctive normal form. Each clause Ci , i = 1, ...,m is a disjunction of some non-
negated variables and some negated variables. Denoting by Ai and Bi , respectively, the
sets of indices of negated and non-negated variables in the clauseCi , such a clause can

be written as Ci =
(∨

j∈Ai
¬x j

)
∨

(∨
j∈Bi x j

)
. The OptSAT problem can therefore

be written as a mixed integer programming problem as follows (Hvattum et al. 2004):

max
∑

j∈N
c j x j

s.t .
∑

j∈Bi
x j +

∑

j∈Ai

(1 − x j ) ≥ 1, i = 1, ...,m

x j ∈ {0, 1}, j ∈ N (3.1)

This is the formulation of the OptSAT problem that we use in our computational
experiments.

4 Computational results

This section describes the computational experiments carried out to compare the per-
formance of the proposed WILB against a non-weighted LBH. The LBH corresponds
to the Algorithm 1, while the WILB corresponds to Algorithm 2. All tests were run
using a computer with an Intel Core i7-4750HQ 2.00 GHz processor and 8 GB of
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RAM, and were conducted using the Xpress-Optimizer 8.6.0 solver with the default
options.

We perform ourmain experiments on a subset of OptSAT instances used in Davoine
et al. (2003). The full set is composed of 63 classes of instances, however, we only
consider a subset K of 13 of those classes: K = {27, 29, 31, 38, 40, 49, 52, 53, 54, 59,
61, 62, 63}. The classes in K are those that are the most difficult to solve for MIP
solvers (Hvattum et al. 2012). The first six classes (27, 29, 31, 38, 40, and 49) consist
of randomly generated instances, classes 52, 53, and 54 are formed by instances from
the graph stability problem, and the remaining classes (59, 61, 62, and 63) correspond
to instances from the set covering problem. Thus, while theWILB is only tested on the
OptSAT, the structure of the instances solved are also representative for graph stability
and set covering instances.

From each class we consider five instances. A training set is used to tune the value of
several parameters. It is composed of 13 instances, corresponding to the first instance
of each class (with label num0). A test set is used for comparison of the proposed
WILB against the classic LBH, consisting of the remaining 52 instances (last four
instances of each class (num1 to num4). To obtain the initial solutions used in both
LBH and WILB, we run the MIP model with no local branching constraints for 20
seconds.

In an additional experiment, we use larger test instances presented in da Silva et al.
(2020). There are six classes of instances, K ′ = {64, 65, . . . , 69}, with the number
of binary variables varying between 500 and 3000, and the number of constraints
(clauses) varying between 2500 and 15000. These instances form a secondary test set,
with instances that are different in structure compared to the instances in the training
set.

4.1 Calibration tests

In this section, we present all the preliminary tests performed on the training set of 13
instances to tune the value of several parameters.We start by calibrating the parameters
of the classic LBH (that are common to the WILB) and then the specific parameters
of the WILB.

4.1.1 Calibration tests for the LBH

TheLBHhas four parameters: the value�0 to define the local branching constraint, the
increment on the� usedwhen irregular iterations are performed (Step 14 ofAlgorithm
1), the stopping criterion used when solving each subproblem, and the global stopping
criterion.

We set the increment to �0/2, and for the parameter �0 we test the values 5, 10,
15, and 20. As remarked by Fischetti and Lodi (2003), values of �0 in range [10,
20] proved effective in most cases. Furthermore, the value of �0 increases when no
improved solutions are found, making it less useful to test even larger values of �0
than 20.
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Table 1 Results for all
combinations of the LBH
parameters

TL=30 TL=60 TL=120

�0 Avg. NBS Avg. NBS Avg. NBS

5 108,715 2 108,754 4 108,770 4

10 108,685 2 108,777 9 108,755 7

15 108,690 2 108,724 3 108,727 5

20 108,718 5 108,724 7 108,759 6

The termination criterion used when solving each subproblem and the global stop-
ping criterion are both defined through a time limit. The global stopping criterion is
600 seconds (10 minutes), and we tested the values 30, 60, and 120 seconds (corre-
sponding to short, medium and large computational times) for the time limit (TL) used
for solving each subproblem. The solution of a subproblem is also halted in the case
that a proven optimal solution for the given neighborhood is obtained. Table 1 shows
the results for each combination of �0 and TL. The columns Avg. report the average
objective function value of the obtained solutions, while the columns NBS display the
number of best solutions found by each combination of parameters, out of a total of
13 instances.

Table 1 shows that the best (highest) average objective function value is associated
with the solutions obtained using the combination �0 = 10 and TL=60s. This combi-
nation also leads to the highest number of best feasible solutions found. These results
indicate the superiority of this combination of parameters. Thus, in what follows we
use �0 = 10 and TL=60s.

4.1.2 Calibration tests for the WILB

Once the parameters for LBH had been determined, the parameters for WILB were
tuned. All parameters that are in common for both methods were kept at the values
found when tuning LBH (�0 = 10, increment = �0/2, TL = 60s, and global time
limit = 600s), and only the parameters specific to WILB were considered next. This
includes: the values of δ1, δ2, and δ3, the percentages α1 and α2, and the best way of
combining weight factors.

Taking into account the definition and interpretation of the groups G1,G2 and
G3, as well as the need of relating both WILB and LBH, setting δ2 = 1 in the
local branching constraint LB�

G2
is a natural choice. By construction, LB�

G2
is the

local branching constraint involving the largest number of binary variables. The local
branching constraints LB�

G1
and LB�

G3
are associated with the variables that are,

respectively, more promising and less promising to flip within the neighborhood.
Hence, δ1 > δ2 > δ3, and therefore, we use δ1 = 2, δ2 = 1 and δ3 = 1/2 for
constraints LB�

G1
, LB�

G2
, and LB�

G3
, respectively.

In the WILB we also have to choose the best way of combining weight factors
and the percentages of variables (defined by parameters α1 and α2) to include in each
one of the three groups: G1, G2, and G3. The factor-weights were defined in Section
2.2.3. Regarding the second factor-weight, for the OptSAT problem the number of
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Table 2 Results for all combinations of the WILB parameters

w
F1
j w

F2
j w

F3
j

(α1, α2) Avg. NBS Avg. NBS Avg. NBS

(10,10) 108,710 2 108,766 3 108,772 4

(10,20) 108,718 0 108,741 2 108,747 2

(20,10) 108,674 2 108,754 3 108,786 4

(20,20) 108,653 0 108,744 2 108,744 3

w
F1
j + w

F2
j w

F1
j + w

F3
j w

F2
j + w

F3
j

(α1, α2) Avg. NBS Avg. NBS Avg. NBS

(10,10) 108,798 4 108,811 4 108,754 3

(10,20) 108,778 4 108,781 4 108,754 3

(20,10) 108,795 4 108,911 4 108,754 3

(20,20) 108,787 4 108,786 4 108,754 3

w
F1
j + w

F2
j + w

F3
j

(α1, α2) Avg. NBS

(10,10) 108,818 3

(10,20) 108,886 3

(20,10) 108,947 5

(20,20) 108,937 4

constraints in which a given binary variable x j appears with a positive (resp. negative)
coefficient is exactly the cardinality of the set A j (resp. Bj ), that is, S

+
j := |A j |

and S−
j := |Bj |. We consider seven different ways of defining weights based on the

different combinations of the three factors: F1, F2, and F3. For the parameters (α1,α2),
we consider four different combinations of values. In these calibration experiments,
we do not use the optional step, Step 9, of Algorithm 2. The obtained results are
summarized in Table 2.

The results in Table 2 show that the variations between the combinations tested are
not large. However, since the highest number of best solutions was found by using
the weights w j = w

F1
j + w

F2
j + w

F3
j and (α1, α2) = (20%, 10%) this becomes the

combination used to test theWILB. This combination also leads to the highest average
objective function value of the solutions.

4.2 Main results

We now present the main results to assess the performance of the proposed WILB.
First, we introduce some performancemetrics and thenwe compare theWILB (defined
by Algorithm 2) against the LBH (defined by Algorithm 1). After that, we compare the
WILB against solving the problem directly using the Xpress solver with an imposed
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time limit, and finally we compare the WILB against reference values of the literature
obtained with CPLEX.

For comparing performances, we use two metrics that are independently computed
for each class of instances. For each instance h ∈ {1, 2, 3, 4} in class k ∈ K , denote
by zLBH

hk and zW I LB
hk the objective function values of the solutions obtained by LBH

and WILB, respectively. The first metric (da Silva et al. 2020) is defined as

M1
k = 100

4

4∑

h=1

zW I LB
hk

zLBHhk

, k ∈ K .

Values of this metric greater than 100, indicate a better average performance of the
WILB comparing to the LBH. The second metric (Rodrigues et al. 2021) provides a
global perspective on the number of best solutions found by theWILBcomparing to the
LBH. To calculate this value, we start by computing for each instance h ∈ {1, 2, 3, 4}
in class k ∈ K the value

shk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1, if zW I LB
hk < zLBH

hk ,

0, if zW I LB
hk = zLBH

hk ,

1, if zW I LB
hk > zLBH

hk .

Then, the value of the metric for each class is defined as

M2
k = 1

4

4∑

h=1

shk .

The valueM2
k of thismetric varies between−4 and 4.WhenM2

k = 4, thismetric shows
an absolutely better performance of the WILB, meaning that the solutions obtained
for the four instances of class k are all better than the ones obtained by the LBH.

Now we present the values of both metrics for all the classes of instances tested.
Recall that the LBH has the following settings: �0 = 10; the irregular iterations are
performed by redefining � := � + �0/2; the global total time limit is 600 seconds;
and the time limit for solving eachMIPmodel is 60 seconds. TheWILB uses the same
value of� as theLBH, and themaximumnumber of variables allowed toflip their value
in each group G1, G2, and G3 is 2�,�, and�/2, respectively. Moreover, the weights
are determined according to the formula w j = w

F1
j +w

F2
j +w

F3
j and the percentages

of variable in groups G1, G2, and G3 are 20%, 70%, and 10%, respectively. The
comparison between this WILB version against the standard LBH using the metrics
described before is displayed in Table 3. We also consider a version of WILB that
performs the optional Step 9 of Algorithm 2, which we refer to as WILBLB . This
optional step is not performed in the simple WILB version.

Furthermore, Table 3 also shows results for two additional versions of the WILB:
WILBL andWILBLB

L . In these versions, smaller right hand side coefficients are defined
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Table 3 Comparison between the WILB versions and the classic LBH

WILB WILBLB WILBL WILBLB
L

Class k M1
k M2

k M1
k M2

k M1
k M2

k M1
k M2

k

27 99.98 −1 100.00 1 99.99 −1 100.01 1

29 100.01 0 100.03 1 100.03 1 100.05 2

31 100.11 2 100.13 4 100.09 4 100.07 4

38 99.99 1 100.01 2 100.00 2 100.01 0

40 100.06 1 100.07 3 100.06 3 100.06 3

49 100.07 4 100.02 2 100.10 4 100.09 3

52 100.02 1 100.26 2 100.02 1 100.38 2

53 100.53 2 100.53 2 100.39 2 100.76 2

54 102.15 4 102.15 4 101.58 2 101.58 2

59 99.98 −1 100.00 0 100.00 0 100.00 0

61 100.03 4 100.00 2 100.00 0 100.03 0

62 100.02 1 100.00 1 100.01 2 100.02 3

63 100.10 4 100.10 4 100.11 4 100.11 4

Average 100.23 1.7 100.25 2.2 100.18 1.8 100.24 2.0

for constraints LB�
G1
, LB�

G2
, and LB�

G3
, using respectively δ1 = 1, δ2 = 0.5, and

δ3 = 0.25.
From Table 3, we observe the superiority of the WILB against the LBH since for

most of the classes the values M1
k are greater than 100. Generally, the values of M2

k
are positive, which reinforces this conclusion. Another conclusion that can be drawn
from Table 3 is that the use of the local branching constraint LB in the irregular itera-
tions, corresponding to the optional Step 9 of Algorithm 2 used in versions WILBLB

and WILBLB
L , substantially improves the performance of the WILB. The best global

average values are associated with the version WILBLB . There are some classes of
instances where M2

k = 4, indicating that the WILB version used was able to obtain
better solutions than the ones obtained by the LBH for all the instances of that class.
Finally, both WILB and WILBL obtained a worse solution than the one obtained by
LBH in only 7 of the 52 instances tested, while the WILBLB and WILBLB

L versions
obtained worse solutions for only 4 of the instances.

The average improvement between the four WILB variants and the LBH is around
0.2% and this improvement is significant since the optimality gaps of the obtained
solutions are, in general, very low. Except for the classes 52, 53, and 54 (where the
average optimality gap is about 12%, 25%, and 36%) in all the remaining instances,
the optimality gaps are lower than 3% and the average optimality gap in all those
instances is about 1.7%. To compute the optimality gaps, we solved the simple model
with Xpress for 600 seconds to obtain an upper bound for each instance.

To better understand the behaviour of the WILB, Table 4 reports the rounded aver-
age number of subproblems (NS) solved with the imposed time limit, the rounded
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percentage of such problems solved to optimality (%opt), and the average optimality
gap associated with all subproblems solved (in percentage).

The obtained results show that three of the fourWILB versions tested allow solving
a larger number of subproblems (as well as to obtain a larger percentage of such
subproblems solved to optimality) than the classic LBH. We can also see that the
average gaps obtained by WILBL and WILBLB

L (where smaller neighbourhoods are
defined) are lower than the ones obtained by the classic LBH. Hence, the results
of both Tables 3 and 4 allow to conclude that the WILB is efficient when defining
neighbourhoods of incumbent solutions.

We also perform experiments to compare the solutions obtained by WILB against
the solutions obtained by solving the OptSAT problem directly using the solver Xpress
with a time limit of 600+20=620 seconds. We use the same metrics defined before,
replacing zLBH

hk by zXpresshk , where zXpresshk is the objective function value obtained by
Xpress for instance h in class k. The obtained results are displayed in Table 5.

The obtained results reveal the superiority of theWILB against Xpress since all the
values of M1

k are greater than 100 and the values of M2
k are all positive and are almost

always equal to 4 for all the classes of instances.
Finally, for the sake of backward compatibility, we compare the WILB against

reference values obtained by CPLEX as reported in Davoine et al. (2003). We use
the same metrics defined before, replacing zLBHhk by zCPLEX

hk , where zCPLEX
hk is the

reference value reported in Davoine et al. (2003) for instance h in class k. The obtained
results are displayed in Table 6.

As shown in Table 6, all the solutions obtained by WILB are better than the ones
obtained by CPLEX and the average improvement is about 4.81%.

4.3 Results for large size instances

In this section, we test the performance of the WILB against the LBH by using a set
of large size instances of the OptSAT problem: classes labeled from 64 to 69. We did
not perform any calibration tests on these instances, and therefore, the configuration
of both WILB and LBH is exactly the same as before. We also use the same two
metrics and the obtained results are reported in Table 7. The obtained results show
that the proposed WILB outperforms the classic LBH also when large size instances
are considered.

5 Conclusion

This paper introduces a new local-search based matheuristic referred to as weighted
iterated local branching (WILB). The WILB is designed under the assumption that
to improve a given feasible solution not all binary variables are equally likely to be
flipped in a given iteration. The method consists of defining different groups of binary
variables and creating an independent local branching constraint for each of them.
Each local branching constraint has a different right-hand side value, defined according
to the expected contribution of the associated variables for improving the incumbent
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Table 5 Comparison between the WILB variants and the Xpress solver

WILB WILBLB WILBL WILBLB
L

Class k M1
k M2

k M1
k M2

k M1
k M2

k M1
k M2

k

27 100.25 4 100.27 4 100.27 4 100.29 4

29 100.29 3 100.31 3 100.31 4 100.33 4

31 100.84 4 100.86 4 100.82 4 100.80 4

38 100.15 4 100.18 4 100.16 4 100.17 4

40 101.02 4 101.02 4 101.02 4 101.02 4

49 100.76 4 100.72 4 100.79 4 100.79 4

52 102.33 4 102.59 4 102.33 4 102.71 4

53 107.94 4 107.94 4 107.80 4 108.19 4

54 111.65 4 111.65 4 111.04 4 111.04 4

59 100.52 4 100.55 4 100.55 4 100.55 4

61 100.66 4 100.63 4 100.62 4 100.66 4

62 100.02 2 100.01 0 100.01 2 100.02 4

63 101.25 4 101.25 4 101.25 4 101.26 4

Average 102.13 3.8 102.15 3.6 102.07 3.8 102.14 4.0

Table 6 Comparison between the WILB variants and the CPLEX solver

WILB WILBLB WILBL WILBLB
L

Class k M1
k M2

k M1
k M2

k M1
k M2

k M1
k M2

k

27 110.01 4 110.03 4 110.03 4 110.05 4

29 101.40 4 101.40 4 101.40 4 101.42 4

31 101.34 4 101.36 4 101.32 4 101.30 4

38 100.88 4 100.91 4 100.89 4 100.90 4

40 101.59 4 101.60 4 101.59 4 101.59 4

49 101.47 4 101.43 4 101.50 4 101.50 4

52 109.67 4 109.93 4 109.67 4 110.07 4

53 111.87 4 111.87 4 111.72 4 112.12 4

54 112.43 4 112.43 4 111.81 4 111.81 4

59 107.98 4 108.01 4 108.01 4 108.01 4

61 101.48 4 101.46 4 101.45 4 101.49 4

62 101.11 4 101.09 4 101.09 4 101.11 4

63 101.30 4 101.30 4 101.30 4 101.31 4

Average 104.81 4.0 104.83 4.0 104.75 4.0 104.82 4.0
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Table 7 Comparison between the WILB variants and LBH for large size instances

WILB WILBLB WILBL WILBLB
L

Class k M1
k M2

k M1
k M2

k M1
k M2

k M1
k M2

k

64 100.45 2 100.49 2 100.28 2 100.54 2

65 100.95 2 101.32 4 101.07 4 101.07 4

66 101.34 4 101.34 4 100.46 4 100.46 4

67 101.59 4 101.58 4 100.43 4 100.41 4

68 101.22 4 101.26 4 100.22 2 100.27 2

69 101.55 4 101.58 4 100.70 4 100.71 4

Average 101.18 3.3 101.26 3.7 100.53 3.3 100.58 3.3

solution. The construction of the groups considers weights computed for each variable
using three factors. In the WILB, the set of variables that are less promising to flip can
also be used to direct the local search into different regions of the search space every
time the obtained solution is not better than the previous one.

Computational experiments carried out on benchmark instances of the optimum
satisfiability problem (OptSAT) show a clear advantage of using this WILB procedure
compared to an unweighted local branching heuristic (LBH). The experiments also
show the benefits of using the non-promising variables to perform irregular iterations
and escape from local optima. In the main test, the WILB obtained better results than
the standard LBH for around 61% of the instances and worse results for around 9%
of the instances. The solutions obtained by both procedures are identical for approx-
imately 30% of the instances. It also becomes clear from the computational results
that the proposed WILB completely outperforms the approach of solving the problem
directly by using Xpress with a time limit. Indeed, the WILB gets around 97% better
solutions than Xpress, 1% of equal solutions, and 2% of worse solutions. Furthermore,
in an additional experiment using larger test instances, WILB is better than LBH on
almost all of the instances.

The new WILB was tested only on a single problem class, the OptSAT. However,
the variety of instances used is large, ranging from set covering instances and graph
stability instances to randomly generated instances. Thus, given the dominance of the
WILB compared to an unweighted version, it seems clear that theWILB is a promising
approach to solving hard optimization problems having many binary variables.

The thirdweight factor in theWILBconsiders the number of constraints that become
violated if flipping a given variable. In OptSAT all the left-hand-side coefficients are
−1, 0, or 1. However, for more general problems, the coefficients may have a wider
range of values. In that case, it may be better for the third weight factor to consider
the amount by which constraints are violated, rather than just the number of violated
constraints. Future research is needed to examine this issue, which may require that
constraints are normalized before evaluating the importance of given variables.
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