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1. Introduction

The concept of fractional calculus, or arbitrary order calculus, is an extension of the standard
calculus, where derivatives and integrals of non-integer order are used (see e.g., [20]). This theory
was originated from a question formulated in an exchange of correspondence between Leibniz and
l’Hopital, where the interpretation of a derivative of order 1/2 was questioned. Therefore, we can say
that the birth of fractional calculus was simultaneous with ordinary calculus, although the first one
only had a great development in the last decades. During this period, many famous mathematicians
devoted some time to the study of fractional calculus, such as Lagrange, Laplace, Lacroix, Fourier,
Abel, Liouville, Riemann, and Grünwald. In the end of the XX century, it was observed that
the use of fractional calculus makes it possible to express natural phenomena more precisely when
compared to ordinary calculus and, therefore, it can be useful when applied to real world systems. For
example, applications in physics [17, 23], chemistry [3, 26], engineering [13, 14, 21], biology [18, 32],
economics [36], and control theory [24, 29, 37, 38], have been found.

There are several definitions for fractional derivatives, although the most common are the Riemann–
Liouville and the Caputo ones. However, due to the high number of different concepts, we find
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several works studying similar problems. One way to overcome this issue is to consider more general
definitions with respect to fractional operators. In this work we intend to combine two types of
existing generalizations, the fractional derivative with respect to another function [4,27] and fractional
derivatives of variable order [16, 30, 31].

One of the areas where fractional calculus has been applied is in the calculus of variations. The
classic problem of the calculus of variations is to find the minimum or maximum value of functionals,
usually in the form

F(u) :=
∫ b

a
L(t, u(t), u′(t)) dt,

possibly subject to some boundary conditions u(a) = Ua, u(b) = Ub for some fixed Ua,Ub ∈ R. In the
fractional calculus of variations, this first order derivative u′(t) is replace by some kind of fractional
derivative Dγu(t). With Riewe’s pioneering work in 1996 [28], where he formulated the problem
of calculus of variations and obtained the respective Euler-Lagrange equation, numerous works have
emerged in this area since then. For example, in [8], the authors considered the isoperimetric problem
dealing with the left and right Riemann-Liouville fractional derivatives. In [12], some variational
problems were formulated, with dependence on a term, and taking its limit, we obtain the total
derivative at the classical level. In the book [22] and in the paper [25], several fractional calculus
of variations problems were studied in a general form, where the kernel of the fractional operators is an
arbitrary function, for the Riemann–Liouville and Caputo fractional derivatives. Again, due to the large
number of definitions for fractional derivatives, we find numerous works in the area of the fractional
calculus of variations for different derivatives, but studying similar problems. The aim of this work
is to unify some previous works, when considering this new generalized fractional derivative. With
this, we generalize some previous works on fractional calculus of variations. In fact, if g(t) = t,
then we obtain the usual variable-order fractional operators and such variational problems have been
studied extensively e.g., [33, 35]. If we fix the order, that is, γn(·, ·) = γ ∈ R+, then the problem was
considered in [5]. In addition, if g(t) = t, then this situation was studied in [1, 10] for the Riemann–
Liouville fractional derivative and in [2, 9, 11] for the Caputo fractional derivative. If g(t) = ln t or
g(t) = tσ (σ > 0), then the respective variational problems were considered in [6,7,15,19]. Thus, with
this paper, we intend to generalize these previous works, and for other choices of the fractional order
γn(·, ·) or the kernel g(·), new results can be obtained.

We start by fixing some notation. For what follows, n is a positive integer, γn : [a, b]2 → (n − 1, n)
is a function, and u, g : [a, b]→ R are two functions with g ∈ Cn[a, b] and g′(t) > 0, for all t ∈ [a, b].

Definition 1. The generalized variable-order left and right Riemann–Liouville fractional integrals of
u, with respect to g and with order γn, are defined as

Iγn
a+u(t) =

∫ t

a

1
Γ(γn(t, s))

g′(s)(g(t) − g(s))γn(t,s)−1u(s) ds,

Iγn
b−u(t) =

∫ b

t

1
Γ(γn(s, t))

g′(s)(g(s) − g(t))γn(s,t)−1u(s) ds,

respectively.

For what concerns the derivatives, two different types are presented.
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Definition 2. The generalized variable-order left and right Riemann–Liouville fractional derivatives of
u, with respect to g and with order γn, are defined as

Dγn
a+u(t) =

(
1

g′(t)
d
dt

)n

In−γn
a+ u(t) =

(
1

g′(t)
d
dt

)n ∫ t

a

g′(s)
Γ(n − γn(t, s))

(g(t) − g(s))n−1−γn(t,s)u(s) ds,

Dγn
b−u(t) =

(
−1

g′(t)
d
dt

)n

In−γn
b− u(t) =

(
−1

g′(t)
d
dt

)n ∫ b

t

g′(s)
Γ(n − γn(s, t))

(g(s) − g(t))n−1−γn(s,t)u(s) ds,

respectively.

Definition 3. The generalized variable-order left and right Caputo fractional derivatives of u, with
respect to g and with order γn, are defined as

CDγn
a+u(t) = In−γn

a+

(
1

g′(t)
d
dt

)n

u(t) =

∫ t

a

g′(s)
Γ(n − γn(t, s))

(g(t) − g(s))n−1−γn(t,s)
(

1
g′(s)

d
ds

)n

u(s) ds,

CDγn
b−u(t) = In−γn

b−

(
−1

g′(t)
d
dt

)n

u(t) =

∫ b

t

g′(s)
Γ(n − γn(s, t))

(g(s) − g(t))n−1−γn(s,t)
(
−1

g′(s)
d
ds

)n

u(s) ds,

respectively.

We remark that, when g(t) = t, the previous definitions reduce to the classical variable-order
fractional operators.

Lemma 1. Suppose that the fractional order γn is of form γn(t, s) = γn(t), where γn : [a, b]→ (n−1, n)
is a function. Then, for the function u(t) = (g(t) − g(a))β, with β > n − 1,

CDγn
a+u(t) =

Γ(β + 1)
Γ(β − γn(t) + 1)

(g(t) − g(a))β−γn(t).

Proof. First observe that(
1

g′(s)
d
ds

)n

(g(s) − g(a))β =
Γ(β + 1)

Γ(β − n + 1)
(g(s) − g(a))β−n.

Thus,

CDγn
a+u(t) =

∫ t

a

g′(s)Γ(β + 1)
Γ(n − γn(t))Γ(β − n + 1)

(g(t) − g(s))n−1−γn(t)(g(s) − g(a))β−n ds

=

∫ t

a

g′(s)Γ(β + 1)
Γ(n − γn(t))Γ(β − n + 1)

(g(t) − g(a))n−1−γn(t)
(
1 −

g(s) − g(a)
g(t) − g(a)

)n−1−γn(t)

(g(s) − g(a))β−n ds.

With the change of variable τ =
g(s)−g(a)
g(t)−g(a) and recalling the definition of the Beta function B(·, ·), we get

CDγn
a+u(t) =

Γ(β + 1)
Γ(n − γn(t))Γ(β − n + 1)

(g(t) − g(a))β−γn(t)
∫ 1

0
(1 − τ)n−1−γn(t)τβ−n dτ

=
Γ(β + 1)

Γ(n − γn(t))Γ(β − n + 1)
(g(t) − g(a))β−γn(t) · B(n − γn(t), β − n + 1)

=
Γ(β + 1)

Γ(n − γn(t))Γ(β − n + 1)
(g(t) − g(a))β−γn(t) ·

Γ(n − γn(t))Γ(β − n + 1)
Γ(β − γn(t) + 1)

,

proving the desired formula. �
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In an analogous way, we have the following:

Lemma 2. Suppose that the fractional order γn is of form γn(t, s) = γn(s), where γn : [a, b]→ (n−1, n)
is a function. Then, for the function u(t) = (g(b) − g(t))β, with β > n − 1,

CDγn
b−u(t) =

Γ(β + 1)
Γ(β − γn(t) + 1)

(g(b) − g(t))β−γn(t).

The paper is structured as follows: in Section 2 we present the integration by parts formulae,
dealing with the previous presented fractional derivatives. These formulas will be crucial for the rest
of the paper. The main result is given in Section 3, where we prove the fractional Euler–Lagrange
equation, which is an important formula to determine if a given curve is a minimizer or a maximizer of
a functional. Then, we extended this result by considering additional constraints in the formulation of
the problem (Section 4) or in presence of higher order fractional derivatives (Section 5). The Herglotz
problem will be considered in Section 6. We end with a conclusion section.

2. A fractional integration by parts formula

As a first result, we present two integration by parts formulae for the two Caputo fractional
derivatives (left and right). These formulae are important in the follow-up of the work, and will be
used in the proofs of the results to be presented.

Theorem 1. If u, v ∈ Cn[a, b], then the following fractional integration by parts formulae hold:

∫ b

a
u(t) CDγn

a+v(t) dt =

∫ b

a
Dγn

b−

u(t)
g′(t)

· g′(t)v(t) dt +

 n−1∑
k=0

(
−1

g′(t)
d
dt

)k

In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−k−1

v(t)

b

a

and∫ b

a
u(t) CDγn

b−v(t) dt =

∫ b

a
Dγn

a+

u(t)
g′(t)

· g′(t)v(t) dt

+

 n−1∑
k=0

(−1)n+k

(
1

g′(t)
d
dt

)k

In−γn
a+

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−k−1

v(t)

b

a

.

Proof. Changing the order of integration, we obtain the following double integral:∫ b

a
u(t) CDγn

a+v(t) dt =

∫ b

a

∫ t

a

u(t)g′(s)
Γ(n − γn(t, s))

(g(t) − g(s))n−1−γn(t,s) ·

(
1

g′(s)
d
ds

)n

v(s) ds dt

=

∫ b

a

[∫ b

t

u(s)
Γ(n − γn(s, t))

(g(s) − g(t))n−1−γn(s,t) ds
]
·

d
dt

( 1
g′(t)

d
dt

)n−1

v(t)
 dt

=

∫ b

a
In−γn
b−

u(t)
g′(t)

·
d
dt

( 1
g′(t)

d
dt

)n−1

v(t)
 dt.

(2.1)
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If we integrate by parts, (2.1) becomes

−

∫ b

a

d
dt
In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−1

v(t) dt +

In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−1

v(t)
b

a

=

∫ b

a

(
−1

g′(t)
d
dt

)
In−γn
b−

u(t)
g′(t)

·
d
dt

( 1
g′(t)

d
dt

)n−2

v(t)
 dt +

In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−1

v(t)
b

a

. (2.2)

Integrating again by parts, (2.2) becomes

−

∫ b

a

d
dt

(
−1

g′(t)
d
dt

)
In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−2

v(t) dt

+

( −1
g′(t)

d
dt

)
In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−2

v(t)
b

a

+

In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−1

v(t)
b

a

=

∫ b

a

(
−1

g′(t)
d
dt

)2

In−γn
b−

u(t)
g′(t)

·
d
dt

( 1
g′(t)

d
dt

)n−3

v(t)
 dt

+

 1∑
k=0

(
−1

g′(t)
d
dt

)k

In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−k−1

v(t)

b

a

. (2.3)

Repeating the procedure, (2.3) is written as∫ b

a

(
−1

g′(t)
d
dt

)n−1

In−γn
b−

u(t)
g′(t)

·
d
dt

v(t) dt +

 n−2∑
k=0

(
−1

g′(t)
d
dt

)k

In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−k−1

v(t)

b

a

,

and performing one last time integration by parts, we get

−

∫ b

a

d
dt

(
−1

g′(t)
d
dt

)n−1

In−γn
b−

u(t)
g′(t)

· v(t) dt +

 n−1∑
k=0

(
−1

g′(t)
d
dt

)k

In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−k−1

v(t)

b

a

=

∫ b

a

(
−1

g′(t)
d
dt

)n

In−γn
b−

u(t)
g′(t)

· g′(t)v(t) dt +

 n−1∑
k=0

(
−1

g′(t)
d
dt

)k

In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−k−1

v(t)

b

a

=

∫ b

a
Dγn

b−

u(t)
g′(t)

· g′(t)v(t) dt +

 n−1∑
k=0

(
−1

g′(t)
d
dt

)k

In−γn
b−

u(t)
g′(t)

·

(
1

g′(t)
d
dt

)n−k−1

v(t)

b

a

,

proving the first formula. The second one is obtained using similar techniques. �

Remark 1. When n = 1, that is, the fractional order takes values in the open interval (0, 1), Theorem 1
reads as ∫ b

a
u(t) CDγn

a+v(t) dt =

∫ b

a
Dγn

b−

u(t)
g′(t)

· g′(t)v(t) dt +

[
I1−γ1
b−

u(t)
g′(t)

· v(t)
]b

a

and ∫ b

a
u(t) CDγn

b−v(t) dt =

∫ b

a
Dγn

a+

u(t)
g′(t)

· g′(t)v(t) dt −
[
I1−γ1
a+

u(t)
g′(t)

· v(t)
]b

a
.
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3. The fractional Euler–Lagrange equation

The purpose of this section is to present the basic problem of the fractional calculus of variations,
involving the fractional derivatives presented in Definition 3. To find the candidates for minimizing or
maximizing a given functional, we will have to solve a fractional differential equation, known as the
Euler–Lagrange equation (see Eq (3.3)).

We will consider the following fractional calculus of variation problem: minimize or maximize the
functional

F(u) :=
∫ b

a
L(t, u(t), CDγ1

a+u(t), CDγ1
b−u(t)) dt, (3.1)

where

1) L : [a, b] × R3 → R is a function of class C1,
2) γ1 : [a, b]2 → (0, 1) is the fractional order,
3) functional F is defined on the set Ω := C1[a, b].

The boundary conditions

u(a) = Ua, u(b) = Ub, Ua,Ub ∈ R, (3.2)

may be imposed on the problem and, for abbreviation, we introduce the operator [·] defined by

[u](t) := (t, u(t), CDγ1
a+u(t), CDγ1

b−u(t)).

Remark 2. When γ1 is a constant function, that is, γ1(t, s) = γ ∈ (0, 1), for all (t, s) ∈ [a, b]2,
functional (3.1) reduces to the one studied in [5]. If g(t) = t, that is, we are in presence of the usual
variable order fractional operators, then the variational problem was already considered in [33–35].

Remark 3. We say that u? ∈ Ω is a local minimizer of F is there exists ε > 0 such that, whenever u ∈ Ω

with ‖u? − u‖ < ε, then F(u?) ≤ F(u). If F(u?) ≥ F(u), then we say that u? is a local maximizer of F.
In such cases, we say that u? is a local extremizer of F.

Theorem 2. Let u? ∈ Ω be a local extremizer of F as in (3.1). If the maps

t 7→ Dγ1
b−


∂L

∂CD
γ1
a+u

[u?](t)

g′(t)

 and t 7→ Dγ1
a+


∂L

∂CD
γ1
b−u

[u?](t)

g′(t)


are continuous on [a, b], then the following fractional Euler–Lagrange equation is satisfied:

∂L
∂u

[u?](t) + g′(t)Dγ1
b−


∂L

∂CD
γ1
a+u

[u?](t)

g′(t)

 + g′(t)Dγ1
a+


∂L

∂CD
γ1
b−u

[u?](t)

g′(t)

 = 0, ∀t ∈ [a, b]. (3.3)

If u(a) my take any value, then the following fractional transversality condition

I1−γ1
b−


∂L

∂CD
γ1
a+u

[u?](t)

g′(t)

 = I1−γ1
a+


∂L

∂CD
γ1
b−u

[u?](t)

g′(t)

 , (3.4)

holds at t = a. If u(b) is arbitrary, then Eq. (3.4) holds at t = b.
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Proof. Defining function f (ε) := F(u?(t) + εδ(t)) in a neighbourhood of zero, then f ′(0) = 0, where
δ ∈ Ω is a perturbing curve. If the boundary conditions (3.2) are imposed on the problem, then δ(a)
and δ(b) must be both zero so that the curve u?(t) + εδ(t) is an admissible variation for the problem.
Computing f ′(0), we get∫ b

a

[
∂L
∂u

[u?](t)δ(t) +
∂L

∂CDγ1
a+u

[u?](t)CDγ1
a+δ(t) +

∂L
∂CDγ1

b−u
[u?](t)CDγ1

b−δ(t)
]

dt = 0.

Integrating by parts (Theorem 1), we prove that

∫ b

a

∂L
∂u

[u?](t) + g′(t)Dγ1
b−


∂L

∂CD
γ1
a+u

[u?](t)

g′(t)

 + g′(t)Dγ1
a+


∂L

∂CD
γ1
b−u

[u?](t)

g′(t)


 δ(t) dt

+

δ(t)
I1−γ1

b−


∂L

∂CD
γ1
a+u

[u?](t)

g′(t)

 − I1−γ1
a+


∂L

∂CD
γ1
b−u

[u?](t)

g′(t)





b

a

= 0. (3.5)

If, in the set of admissible functions, the boundary conditions (3.2) are imposed, then δ(a) = 0 = δ(b)
and so ∫ b

a

∂L
∂u

[u?](t) + g′(t)Dγ1
b−


∂L

∂CD
γ1
a+u

[u?](t)

g′(t)

 + g′(t)Dγ1
a+


∂L

∂CD
γ1
b−u

[u?](t)

g′(t)


 δ(t) dt = 0,

and since δ may take any value in (a, b), we conclude that

∂L
∂u

[u?](t) + g′(t)Dγ1
b−


∂L

∂CD
γ1
a+u

[u?](t)

g′(t)

 + g′(t)Dγ1
a+


∂L

∂CD
γ1
b−u

[u?](t)

g′(t)

 = 0,

for all t ∈ [a, b], proving (3.3). Otherwise, δ is also arbitrary at t = a and t = b. Replacing (3.3)
into (3.5), we have δ(t)

I1−γ1
b−


∂L

∂CD
γ1
a+u

[u?](t)

g′(t)

 − I1−γ1
a+


∂L

∂CD
γ1
b−u

[u?](t)

g′(t)





b

a

= 0,

and depending if u(a) or u(b) is arbitrary, we deduce the two transversality conditions (3.4). �

For example, consider γ1 : [0, 1]1 → (0, 1) given by γ1(t, s) = t2+1
4 , and g(t) = ln(t + 1). Observe

that, by Lemma 1,
CDγ1

0+
ln2(t + 1) =

2

Γ
(

11−t2
4

) ln
7−t2

4 (t + 1).

Let

F(u) =

∫ 1

0

(
u(t) − ln2(t + 1)

)2
+

CDγ1
0+

u(t) −
2

Γ
(

11−t2
4

) ln
7−t2

4 (t + 1)


2

dt.

It is easy to verify that the function u?(t) = ln2(t+1), t ∈ [0, 1], is a solution of the fractional differential
equations given in Theorem 2.
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Remark 4. If the fractional order is constant γ1(·, ·) = γ1 ∈ (0, 1) and the kernel is g(t) = t, that is,
the generalized variable-order Caputo fractional derivatives are the usual Caputo fractional derivatives,
then formulae (3.3)–(3.4) reduce to the ones proved e.g., [9].

Observe that, although the functional only depends on the Caputo fractional derivative, the Euler–
Lagrange equation (3.3) also involves the Riemann–Liouville fractional derivative. So, this equation
deals with four types of fractional derivatives: the left and right Caputo fractional derivatives, and the
left and right Riemann–Liouville fractional derivatives. Therefore, in many situations, it is not possible
to determine the exact solution of this equation and numerical methods are usually used to determine
an approximation of the solution. Such fractional differential equations are useful to check if a given
function may or not be a solution of the variational problem. In some particular situations, using some
properties of the fractional operators, we may solve the Euler–Lagrange equation and thus produce the
optimal solutions. When such a situation is not possible, then using appropriate numerical methods (for
example, discretize the equation and then solve a finite dimensional system), an approximation of the
solution is obtained. Then, using some sufficient conditions of optimality (e.g., convexity assumptions)
we can prove that the obtained solution is indeed a minimizer or maximizer of the functional.

4. Variational problems under additional constraints

Suppose now that, in the formulation of the variational problem, an integral constraint is imposed
on the set of admissible functions (what is called in the literature as an isoperimetric problem). For
simplicity of the computations, we will assume from now on that the boundary conditions (3.2)
are imposed when formulating the problem (if not, transversality conditions similar to Eq (3.4) are
derived). The fractional isoperimetric problem is formulated in the following way: minimize or
maximize functional F (as in (3.1)), subject to the boundary conditions (3.2) and to the integral
constraint

G(u) :=
∫ b

a
M(t, u(t), CDγ1

a+u(t), CDγ1
b−u(t)) dt = Υ, (4.1)

where M : [a, b] × R3 → R is a C1 function and Υ ∈ R a fixed number.

Theorem 3. Let u? ∈ Ω be a local extremizer of F as in (3.1), subject to (3.2) and (4.1). Assume that
the maps

t 7→ Dγ1
b−


∂L

∂CD
γ1
a+u

[u?](t)

g′(t)

 , t 7→ Dγ1
a+


∂L

∂CD
γ1
b−u

[u?](t)

g′(t)

 ,
t 7→ Dγ1

b−


∂M

∂CD
γ1
a+u

[u?](t)

g′(t)

 , and t 7→ Dγ1
a+


∂M

∂CD
γ1
b−u

[u?](t)

g′(t)


are all continuous on [a, b]. Then, there exists (λ0, λ) ∈ R2 \ {(0, 0)} such that, if we define function
H : [a, b] × R3 → R as H := λ0L + λM, the following fractional differential equation

∂H
∂u

[u?](t) + g′(t)Dγ1
b−


∂H

∂CD
γ1
a+u

[u?](t)

g′(t)

 + g′(t)Dγ1
a+


∂H

∂CD
γ1
b−u

[u?](t)

g′(t)

 = 0, ∀t ∈ [a, b], (4.2)

is satisfied.
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Proof. First, suppose that u? satisfies the Euler–Lagrange equation with respect to functional G, that
is,

∂M
∂u

[u?](t) + g′(t)Dγ1
b−


∂M

∂CD
γ1
a+u

[u?](t)

g′(t)

 + g′(t)Dγ1
a+


∂M

∂CD
γ1
b−u

[u?](t)

g′(t)

 = 0, ∀t ∈ [a, b].

Then, the theorem is proved considering (λ0, λ) = (0, 1). If not, we prove (4.2) using variational
arguments. First, we prove that there exists an infinite family of variations of u? of form t 7→ u?(t) +

ε1δ1(t) + ε2δ2(t) satisfying the integral constraint. For that, define f (ε1, ε2) := F(u?(t) + ε1δ1(t) + ε2δ2(t))
and g(ε1, ε2) := G(u?(t) + ε1δ1(t) + ε2δ2(t)) − Υ, where δ1, δ2 ∈ Ω and δi(a) = 0 = δi(b), i = 1, 2.
Applying the same tecniques as the ones used in the proof of Theorem 2, we get that

∂g
∂ε2

(0, 0) =

∫ b

a

∂M
∂u

[u?](t) + g′(t)Dγ1
b−


∂M

∂CD
γ1
a+u

[u?](t)

g′(t)

 + g′(t)Dγ1
a+


∂M

∂CD
γ1
b−u

[u?](t)

g′(t)


 δ2(t) dt,

and since u? does not satisfies the Euler–Lagrange equation for functional G, we conclude that there
exists a variation curve δ2 such that ∂g

∂ε2
(0, 0) , 0. If we apply the Implicit Function Theorem, we

conclude that there is a family of variations of u? that satisfy the integral restriction. Also, we obtain
that ∇g(0, 0) , (0, 0) and (0, 0) is a solution of the problem: minimize of maximize f such that g ≡ 0.
We can apply the Lagrange multiplier rule to conclude that there exists λ ∈ R with ∇( f + λg)(0, 0) =

(0, 0). If we solve the equation
∂( f + λg)

∂ε1
(0, 0) = 0,

we get∫ b

a

∂(L + λM)
∂u

[u?](t) + g′(t)Dγ1
b−


∂(L+λM)
∂CD

γ1
a+u

[u?](t)

g′(t)

 + g′(t)Dγ1
a+


∂(L+λM)
∂CD

γ1
b−u

[u?](t)

g′(t)


 δ1(t) dt = 0,

and so Eq (4.2) is deduced. �

In our next problem we add a holonomic constraint, that is, an equation that involves the spatial
coordinates of the system and time as well. It is described in the following way. Let ΩH := C1[a, b] ×
C1[a, b]. The goal is to minimize or maximize the functional

FH(u1, u2) :=
∫ b

a
LH(t, u1(t), u2(t), CDγ1

a+u1(t), CDγ1
a+u2(t), CDγ1

b−u1(t), CDγ1
b−u2(t)) dt, (4.3)

where LH : [a, b] × R6 → R is a function of class C1, subject to the boundary conditions

u1(a) = Ua1, u2(a) = Ua2, u1(b) = Ub1, u2(b) = Ub2, Ua1,Ua2,Ub1,Ub2 ∈ R, (4.4)

and to the holonomic constrain

G(t, u1(t), u2(t)) = 0, t ∈ [a, b], (4.5)

where G : [a, b] × R2 → R is a function of class C1 For abbreviation,

u = (u1, u2), [u]G(t) := (t, u(t)) and [u]H(t) := (t, u(t), CDγ1
a+u(t), CDγ1

b−u(t)).
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Theorem 4. Let u? ∈ ΩH be a local extremizer of functional FH given by (4.3), subject to the
conditions (4.4)–(4.5). If the maps

t 7→ Dγ1
b−


∂LH

∂CD
γ1
a+ui

[u?]H(t)

g′(t)

 and t 7→ Dγ1
a+


∂LH

∂CD
γ1
b−u2

[u?]H(t)

g′(t)


are continuous on [a, b], for i = 1, 2, and if

∂G

∂u2
[u]G(t) , 0, ∀t ∈ [a, b],

then there exists a continuous function λ : [a, b]→ R such that

∂LH

∂ui
[u?]H(t) + g′(t)Dγ1

b−


∂LH

∂CD
γ1
a+ui

[u?]H(t)

g′(t)

 + g′(t)Dγ1
a+


∂LH

∂CD
γ1
b−ui

[u?]H(t)

g′(t)


+ λ(t)

∂G

∂ui
[u]G(t) = 0, ∀t ∈ [a, b], i = 1, 2. (4.6)

Proof. Condition (4.6) is obviously meet for i = 2, if we define

λ(t) := −

∂LH
∂u2

[u?]H(t) + g′(t)Dγ1
b−

 ∂LH
∂CD

γ1
a+u2

[u?]H(t)

g′(t)

 + g′(t)Dγ1
a+

 ∂LH
∂CD

γ1
b−u2

[u?]H(t)

g′(t)


∂G
∂u2

[u]G(t)
.

The case i = 1 is proven in the following way. The variation curve of u? is given by u?(t) + εδ(t),
where δ ∈ ΩH and δ(a) = δ(b) = (0, 0). Since any variation must be admissible for the problem,
condition (4.5) must be verified for this curve and so the equation

∂G

∂u1
[u]G(t)δ1(t) = −

∂G

∂u2
[u]G(t)δ2(t), ∀t ∈ [a, b]

must hold. Also, if we define fH(ε) := FH(u?(t) + εδ(t)), then f ′H(0) = 0 and so∫ b

a

[
∂LH

∂u1
[u?]H(t)δ1(t) +

∂LH

∂CDγ1
a+u1

[u?]H(t)CDγ1
a+δ1(t) +

∂LH

∂CDγ1
b−u1

[u?]H(t)CDγ1
b−δ1(t)

+
∂LH

∂u2
[u?]H(t)δ2(t) +

∂LH

∂CDγ1
a+u2

[u?]H(t)CDγ1
a+δ2(t) +

∂LH

∂CDγ1
b−u2

[u?]H(t)CDγ1
b−δ2(t)

]
dt = 0.

Applying Theorem 1, and since δ(a) = δ(b) = (0, 0), we obtain

∫ b

a

∂LH

∂u1
[u?]H(t) + g′(t)Dγ1

b−


∂LH

∂CD
γ1
a+u1

[u?]H(t)

g′(t)

 + g′(t)Dγ1
a+


∂LH

∂CD
γ1
b−u1

[u?]H(t)

g′(t)


 δ1(t)

+

∂LH

∂u2
[u?]H(t) + g′(t)Dγ1

b−


∂LH

∂CD
γ1
a+u2

[u?]H(t)

g′(t)

 + g′(t)Dγ1
a+


∂LH

∂CD
γ1
b−u2

[u?]H(t)

g′(t)


 δ2(t) dt = 0.
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Observing that∂LH

∂u2
[u?]H(t) + g′(t)Dγ1

b−


∂LH

∂CD
γ1
a+u2

[u?]H(t)

g′(t)

 + g′(t)Dγ1
a+


∂LH

∂CD
γ1
b−u2

[u?]H(t)

g′(t)


 δ2(t)

= −λ(t)
∂G

∂u2
[u]G(t)δ2(t) = λ(t)

∂G

∂u1
[u]G(t)δ1(t),

we conclude that

∫ b

a

[
∂LH

∂u1
[u?]H(t) + g′(t)Dγ1

b−


∂LH

∂CD
γ1
a+u1

[u?]H(t)

g′(t)

 + g′(t)Dγ1
a+


∂LH

∂CD
γ1
b−u1

[u?]H(t)

g′(t)


+ λ(t)

∂G

∂u1
[u]G(t)

]
δ1(t) dt = 0,

proving the case i = 1 in Eq (4.6). �

5. The higher-order problem

In this section we address the higher-order variational problem, by considering a sequence of
functions γi : [a, b]2 → (i − 1, i), with i = 1, . . . , n (n ∈ N), and the functional, defined on the
space Ωn := Cn[a, b], given by

Fn(u) :=
∫ b

a
Ln(t, u(t), CDγ1

a+u(t), . . . , CDγn
a+u(t), CDγ1

b−u(t), . . . , CDγn
b−u(t)) dt, (5.1)

where Ln : [a, b] × R2n+1 → R is a function of class C1. Define

[u]n(t) := (t, u(t), CDγ1
a+u(t), . . . , CDγn

a+u(t), CDγ1
b−u(t), . . . , CDγn

b−u(t)).

The necessary condition that every extremizer of this problem must satisfy is given in the next result.

Theorem 5. If u? ∈ Ωn is a local minimizer or maximizer of Fn (5.1), subject to the boundary
conditions

u(i)(a) = Uai , u(i)(b) = Ubi , Uai ,Ubi ∈ R, i = 0, . . . , n − 1,

and if, for i = 1, . . . , n, the maps

t 7→ Dγi
b−


∂Ln

∂CD
γi
a+u

[u?]n(t)

g′(t)

 and t 7→ Dγi
a+


∂Ln

∂D
γi
b−u

[u?]n(t)

g′(t)


are continuous on [a, b], then

∂Ln

∂u
[u?]n(t) +

n∑
i=1

g′(t)Dγi
b−


∂Ln

∂CD
γi
a+u

[u?]n(t)

g′(t)

 + g′(t)Dγi
a+


∂Ln

∂D
γi
b−u

[u?]n(t)

g′(t)


 = 0, ∀t ∈ [a, b]. (5.2)
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Proof. A variation of the optimal curve will be given by u?(t) + εδ(t), where δ ∈ Ωn and δ(i)(a) =

δ(i)(b) = 0, for each i = 0, . . . , n− 1, so that the variation curve satisfies the boundary conditions. Since
its first variation must vanish, we obtain∫ b

a

∂Ln

∂u
[u?]n(t)δ(t) +

n∑
i=1

[
∂Ln

∂CDγi
a+u

[u?]n(t)CDγi
a+δ(t) +

∂Ln

∂CDγi
b−u

[u?]n(t)CDγi
b−δ(t)

] dt = 0.

Integrating by parts,∫ b

a

∂Ln

∂u
[u?]n(t) +

n∑
i=1

g′(t)Dγi
b−


∂Ln

∂CD
γi
a+u

[u?]n(t)

g′(t)

 + g′(t)Dγi
a+


∂Ln

∂D
γi
b−u

[u?]n(t)

g′(t)



 δ(t) dt = 0. (5.3)

From Eq (5.3), the desired result (5.2) follows. �

Remark 5. Observe that, if n = 1, Theorem 5 reduces to Theorem 2. Also, additional constraints like
the ones presented in Section 5 could be added and similar results as those ones are derived.

6. The Herglotz variational problem

The Herglotz variational problem is an extension of the previous problems. Instead of finding the
extremals for the functional (3.1), we are interested in finding a pair (u?, z?) for which function z(·)
attains its maximum or minimum value, where functions u and z are related by the ODE{

z′(t) = Lz(t, u(t), CDγ1
a+u(t), CDγ1

b−u(t), z(t)), t ∈ [a, b],
z(a) = Za, u(a) = Ua, u(b) = Ub, Za,Ua,Ub ∈ R,

(6.1)

where Lz : [a, b] × R4 → R is a function of class C1, u ∈ Ω and z ∈ C1[a, b]. This problem formulation
is an extension of the one presented in Section 3. In fact, if Lz does not depend on z, then integrating
both sides of Eq (6.1), we get that

z(b) = Za +

∫ b

a
Lz(t, u(t), CDγ1

a+u(t), CDγ1
b−u(t)) dt.

Let
[u, z](t) := (t, u(t), CDγ1

a+u(t), CDγ1
b−u(t), z(t)).

Theorem 6. Let (u?, z?) ∈ Ω ×C1[a, b] be a solution of problem (6.1). Define function λ : [a, b]→ R
as

λ(t) = exp
(
−

∫ t

a

∂Lz

∂z
[u?, z?](τ) dτ

)
.

If the maps

t 7→ Dγ1
b−

λ(t)

∂Lz

∂CD
γ1
a+u

[u?, z?](t)

g′(t)

 and t 7→ Dγ1
a+

λ(t)

∂Lz

∂CD
γ1
b−u

[u?, z?](t)

g′(t)


are continuous on [a, b], then for all t ∈ [a, b],

λ(t)
∂Lz

∂u
[u?, z?](t) + g′(t)Dγ1

b−

λ(t)

∂Lz

∂CD
γ1
a+u

[u?, z?](t)

g′(t)

 + g′(t)Dγ1
a+

λ(t)

∂Lz

∂CD
γ1
b−u

[u?, z?](t)

g′(t)

 = 0.
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Proof. We begin by remarking that function z not only depends on time t, but also on the state function
u and so we will write z(t, u) instead of z(t) when we need to emphasize this dependence. A variation
of the curve u will be still denoted by u?(t) + εδ(t) (δ ∈ Ω with δ(a) = δ(b) = 0) and the associate
variation curve of z is given by

Z(t) =
dz?

dε
(t, u?(t) + εδ(t))

∣∣∣∣
ε=0
.

The first derivative of Z is then given by

Z′(t) =
d
dt

d
dε

z?(t, u?(t) + εδ(t))
∣∣∣∣
ε=0

=
d
dε

d
dt

z?(t, u?(t) + εδ(t))
∣∣∣∣
ε=0

=
d
dε

Lz(t, u?(t) + εδ(t), CDγ1
a+(u?(t) + εδ(t)), CDγ1

b−(u
?(t) + εδ(t)), z?(t, u?(t) + εδ(t)))

=
∂Lz

∂u
[u?, z?](t)δ(t) +

∂Lz

∂CDγ1
a+u

[u?, z?](t)CDγ1
a+δ(t) +

∂Lz

∂CDγ1
b−u

[u?, z?](t)CDγ1
b−δ(t) +

∂Lz

∂z
Z(t).

Solving this ODE, we prove that

Z(b)λ(b) − Z(a)λ(a)

=

∫ b

a
λ(t)

[
∂Lz

∂u
[u?, z?](t)δ(t) +

∂Lz

∂CDγ1
a+u

[u?, z?](t)CDγ1
a+δ(t) +

∂Lz

∂CDγ1
b−u

[u?, z?](t)CDγ1
b−δ(t)

]
dt.

Using the fractional integration by parts formulae, and since Z(a) = 0 (z(a) is fixed) and Z(b) = 0 (z(b)
attains its extremum), we get that

∫ b

a

[
λ(t)

∂Lz

∂u
[u?, z?](t) + g′(t)Dγ1

b−

λ(t)

∂Lz

∂CD
γ1
a+u

[u?, z?](t)

g′(t)


+ g′(t)Dγ1

a+

λ(t)

∂Lz

∂CD
γ1
b−u

[u?, z?](t)

g′(t)


]
δ(t) dt = 0.

By the arbitrariness of function δ, we obtain the desired formula. �

The previous theorem can be generalized for functions of several independent variables. We
denote them by t ∈ [a, b] (time coordinate) and s = (s1, . . . , sn) ∈ S (spatial coordinates), where
S =

∏n
i=1[ai, bi] with −∞ < ai < bi < ∞, for all i ∈ {1, . . . , n}. Also, we denote

CDγ1
+ u(t) = (CDγ1

a+u(t), CDγ1
a1+u(t), . . . , CDγ1

an+u(t))

and
CDγ1
− u(t) = (CDγ1

b−u(t), CDγ1
b1−

u(t), . . . , CDγ1
bn−

u(t)),

where CDγ1
a+u and CDγ1

b−u are to be understood as the left and right partial fractional derivatives of u with
respect to variable t, respectively, and for i = 1, . . . , n, CDγ1

ai+
u and CDγ1

bi−
u are to be understood as the

left and right partial fractional derivatives of u with respect to variable si, respectively.
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The new problem is formulated in the following way: find a pair (u?, z?) for which z?(b) is
maximum or minimum value, where u and z are related by the system


z′(t) =

∫
S

Lz2(t, s, u(t, s), CDγ1
+ u(t, s), CDγ1

− u(t, s), z(t)) ds, t ∈ [a, b],

z(a) = Za, u(t, s) is fixed whenever t ∈ {a, b} or s ∈ {ai, bi}, i ∈ {1, . . . , n}, Za ∈ R,

(6.2)

where Lz2 : [a, b]×R3n+5 → R is a function of class C1, u ∈ Ωz, z ∈ C1[a, b], with Ωz := C1([a, b]× S ).
Let

[u, z]2(t, s) := (t, s, u(t, s), CDγ1
+ u(t, s), CDγ1

− u(t, s), z(t)).

Theorem 7. Let (u?, z?) ∈ Ωz ×C1[a, b] be a solution of (6.2). Let

λ(t) = exp
(
−

∫ t

a

∫
S

∂Lz2

∂z
[u?, z?]2(τ, s) ds dτ

)
.

If the maps

(t, s) 7→ Dγ1
b−

λ(t)

∂Lz2

∂CD
γ1
a+u

[u?, z?]2(t, s)

g′(t)

 , (t, s) 7→ Dγ1
a+

λ(t)

∂Lz2

∂CD
γ1
b−u

[u?, z?]2(t, s)

g′(t)

 ,

(t, s) 7→ Dγ1
bi−

λ(t)

∂Lz2

∂CD
γ1
ai+

u
[u?, z?]2(t, s)

g′(si)

 , and (t, s) 7→ Dγ1
ai+

λ(t)

∂Lz2

∂CD
γ1
bi−

u
[u?, z?]2(t, s)

g′(si)


are continuous on [a, b] × S , then for all (t, s) ∈ [a, b] × S ,

λ(t)
∂Lz2

∂u
[u?, z?]2(t, s) + g′(t)Dγ1

b−

λ(t)

∂Lz2

∂CD
γ1
a+u

[u?, z?]2(t, s)

g′(t)

 + g′(t)Dγ1
a+

λ(t)

∂Lz2

∂CD
γ1
b−u

[u?, z?]2(t, s)

g′(t)


+

n∑
i=1

g′(si)D
γ1
bi−

λ(t)

∂Lz2

∂CD
γ1
ai+

u
[u?, z?]2(t, s)

g′(si)

 + g′(si)D
γ1
ai+

λ(t)

∂Lz2

∂CD
γ1
bi−

u
[u?, z?]2(t, s)

g′(si)


 = 0.

Proof. The variation of (u?, z?) is given by (u?(t, s) + εδ(t, s),Z(t)), where δ ∈ Ωz with δ(t, s) = 0 if
t ∈ {a, b} or s ∈ {ai, bi}, and

Z(t) =
dz?

dε
(t, u?(t, s) + εδ(t, s))

∣∣∣∣
ε=0
.
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Then,

Z′(t) =
d
dε

∫
S

Lz2(t, u?(t, s) + εδ(t, s), CDγ1
+ (u?(t, s) + εδ(t, s)), CDγ1

− (u?(t, s) + εδ(t, s)),

z?(t, u?(t, s) + εδ(t, s))) ds

=

∫
S

[
∂Lz2

∂u
[u?, z?]2(t, s)δ(t, s) +

∂Lz2

∂z
Z(t)

+
∂Lz2

∂CDγ1
a+u

[u?, z?]2(t, s)CDγ1
a+δ(t, s) +

∂Lz2

∂CDγ1
b−u

[u?, z?]2(t, s)CDγ1
b−δ(t, s)

+

n∑
i=1

[
∂Lz2

∂CDγ1
ai+

u
[u?, z?]2(t, s)CDγ1

ai+
δ(t, s) +

∂Lz2

∂CDγ1
bi−

u
[u?, z?]2(t, s)CDγ1

bi−
δ(t, s)

]]
ds.

Solving this ODE, and using fractional integration by parts, we arrive at

∫ b

a

∫
S
λ(t)

∂Lz2

∂u
[u?, z?]2(t, s)

+ g′(t)Dγ1
b−

(
λ(t)

∂Lz2

∂CD
γ1
a+u

[u?, z?]2(t, s)

g′(t)

)
+ g′(t)Dγ1

a+

(
λ(t)

∂Lz2

∂CD
γ1
b−u

[u?, z?]2(t, s)

g′(t)

)

+

n∑
i=1

[
g′(si)D

γ1
bi−

(
λ(t)

∂Lz2

∂CD
γ1
ai+

u
[u?, z?]2(t, s)

g′(si)

)
+ g′(si)D

γ1
ai+

(
λ(t)

∂Lz2

∂CD
γ1
bi−

u
[u?, z?]2(t, s)

g′(si)

)]
× δ(t, s)ds dt = 0,

proving the desired formula by the arbitrariness of function δ(·, ·). �

7. Conclusions

In this paper we investigated several fundamental problems of the calculus of variations, involving a
fractional derivative of variable order, and with the kernel depending on an arbitrary function g. More
specifically, the functional to minimize or maximize depends on time, the state function, and the left
and right Caputo fractional derivatives. We have considered the fixed and free endpoint problems, as
well as with additional constraints. Then the problem was generalized, first by considering fractional
derivatives of any order and then the generalized Herglotz problem. Since our fractional derivative
depends on an arbitrary kernel g(·) and the fractional order is not constant, we obtain numerous works
already known in the fractional calculus of variations as particular cases of ours. Also, new ones can
be produced by the arbitrariness of those functions. We believe that this is a path of research to be
followed, to avoid the multiplication of works dealing with similar problems.

A question that deserves study is how to solve the fractional differential equations presented in this
work. As is recognized, in most cases there is no method for analytically solving these equations and so
numerical methods are used to find approximations to the optimal solution. For this type of fractional
derivative, there is still no numerical method developed and this topic will be studied in a future work.
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