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a b s t r a c t

This paper deals with multi-agent systems that, due to using the generalized pro-
portional Caputo fractional derivative, possess memories. The information exchange
between agents does not occur continuously but only at fixed given update times, and
the lower limit of the fractional derivative changes according to the update times. Two
types of multi-agent systems are studied, namely systems without a leader and systems
with a leader. For a generalized proportional Caputo fractional model of multi-agent
linear dynamic systems, sufficient conditions for exponential stability via impulsive
control are obtained. In the case of the presence of a leader in the multi-agent system,
we derive sufficient conditions for the leader-following consensus via impulsive control
based on the leader’s influence. Simulation results are provided to verify the essential
role of the generalized proportional Caputo fractional derivative and impulsive control
in realizing the consensus of multi-agent systems.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Due to the rapid development of embedded systems and communication technology, multi-agent systems have drawn
uch attention from researchers in science and engineering applications. A multi-agent system is a group of usually
utonomous agents that can cooperate with each other in order to accomplish given tasks that a single agent cannot. The
roblem of synchronization of multi-agent systems has attracted considerable attention in the last decades (see, e.g., [1–6]
nd survey papers [7,8]). Broadly speaking, synchronization of networked multi-agents mean that by using communication
etworks and local controllers, the agents should be steered towards a common trajectory. It is obvious that this problem
as meaningful applications in multiple areas, such as formation control of mobile robots, target tracking, spacecraft
ormation flying, and so on [9–11].

It is well known that many natural phenomena in complex environments cannot be accurately explained by us-
ng the framework of integer-order dynamics. One of the possible ways to deal with this problem is by expanding
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the existing integer-order models to fractional-order models, which allow for more realistic modeling having much
higher freedom to fit possible experimental data, as well as allowing the description of memories and hereditary
effects of various materials and processes. In the last thirty years, research concerning applications of fractional-
order dynamics has made profound and significant progress. Examples include the time-fractional damage model for
hyperelastic body (e.g., to mimic the abdominal aortic aneurysm phenomena [12]), fractional-order models of long
memory processes (e.g., the steelmaking process [13]), the fractional-order model of learning [14], fractional-order
models in viscoelasticity [15], and economics [16,17]. In particular, fractional calculus was also introduced into the
modeling of multi-agent systems. To the best of our knowledge, the first paper devoted to this subject was [18]. Until
now, plenty of theoretical results have been obtained. Examples include: studies of coordination algorithms when the
fixed interaction graph is directed [19], studies of distributed formation control problems under a dynamic interac-
tion and with absolute/relative damping [20], studies of consensus problems [21,22] and cluster consensus problems
[23], studies of leader-following consensus problems [24–27], studies of distributed formation control laws with relative
damping and communication delay [28], to name a few. In all aforementioned works, problems were analyzed based
on continuous control. It is obvious that unnecessary communication will lead to a waste of energy. On the other hand,
continuous communication links among agents are hard to achieve and they may also cause communication resource
competition among agents. Therefore, it is reasonable to analyze problems under the assumption that the information
exchange among agents occurs only from time to time, at update times. Notably, an adequate tool for modeling such
problems is so-called impulsive control. This method was applied, e.g., in [29,30] for integer-order systems, [31,32] for
fractional-order systems, and in [33] for randomly occurring update times.

Motivated by this research, we consider multi-agent linear dynamic systems with the generalized proportional Caputo
ractional derivative and an impulsive control protocol. The generalized proportional Caputo fractional derivative was
ntroduced in [34] and subsequently studied in [35–38] as an undeviating generalization of the existing Caputo fractional
erivative. Namely, in this derivative, we have two parameters: α ≥ 0 which is the order of the derivative, and ρ ∈ (0, 1]

which could be called the proportionality parameter. Setting the latter parameter equal to 1, we obtain the Caputo
fractional derivative. In the former case, we are interested in exponential stability. However, in some practical applications,
it is desirable that all the agents track a given trajectory. Therefore, in the latter case, we focus on leader-following
consensus. In this paper, we analyze two types of multi-agent linear dynamic systems with generalized proportional
Caputo fractional derivative and an impulsive control protocol, namely systems without a leader and with a leader.

The rest of this paper is organized in the following manner. Section 2 includes definitions of the generalized
proportional fractional operators, useful lemmas and propositions needed in the sequel. In Section 3, we introduce two
types of multi-agent linear dynamic systems with generalized proportional Caputo fractional derivative and an impulsive
control protocol, namely systems without a leader and systems with a leader. Section 4 contains our main results and is
divided into two parts. In the first part, for a multi-agent system without a leader, sufficient conditions for exponential
stability via impulsive control are obtained. In the second part, we derive an explicit form of a solution to a linear impulsive
system with the generalized proportional Caputo fractional derivative. Then, for a multi-agent system with a leader,
we prove sufficient conditions for the leader-following consensus via impulsive control based on the leader’s influence.
Numerical simulation examples are given to validate the theoretical analysis in Section 5, and the concluding statements
are drawn in Section 6.

2. Preliminaries

We start by recalling definitions of the generalized proportional fractional operators. Let a, b ∈ R with b ≤ ∞ (if
b = ∞, then the interval is half open), and ρ ∈ (0, 1] a fixed parameter.

Definition 2.1 (See [34]). Let u : [a, b] → R and α ≥ 0. The generalized proportional fractional integral of a function u is
defined by

(aIα,ρu) (t) =
1

ραΓ (α)

∫ t

a
e

ρ−1
ρ (t−s)(t − s)α−1u(s)ds, t ∈ (a, b] (2.1)

s long as this integral is well defined.

efinition 2.2 (See [34]). Let u : [a, b] → R and α ∈ (0, 1). The generalized proportional Caputo fractional derivative of a
function u is defined by(C

aD
α,ρu

)
(t) =

(
aI1−α,ρ

(
D1,ρu

))
(t)

=
1

ρ1−αΓ (1 − α)

∫ t

a
e

ρ−1
ρ (t−s) (D1,ρu)(s)

(t − s)α
ds, t ∈ (a, b],

(2.2)

s long as this integral is well defined, where D1,ρu = (1 − ρ)u + ρu′.

Definitions 2.1 and 2.2 can be generalized componentwisely for u ∈ C([a, b],Rn).
2
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Remark 2.3. If ρ = 1, then the generalized proportional Caputo fractional derivative is reduced to the classical Caputo
fractional derivative.

Now we cite some important results involving generalized proportional fractional operators, which are useful for our
further computations.

Lemma 2.4 (See [34, Theorem 5.3]). For ρ ∈ (0, 1] and α ∈ (0, 1), we have(
aIα,ρ

(C
aD

α,ρu
))

(t) = u(t) − u(a)e
ρ−1
ρ (t−a)

. (2.3)

emma 2.5 (See [34, Proposition 3.7]). For ρ ∈ (0, 1], α ∈ (0, 1), and β > 0, we have

(aIα,ρu) (t) =
Γ (β)

ραΓ (β + α)
(t − a)αu(t), where u(t) = e

ρ−1
ρ t (t − a)β−1. (2.4)

emark 2.6. Note that, if ρ ∈ (0, 1), then the generalized proportional Caputo fractional derivative of a constant is not
ero.

emma 2.7 (See [34, Remark 3.2]). For ρ ∈ (0, 1] and α ∈ (0, 1), we have(C
aD

α,ρu
)
(t) = 0, where u(t) = e

ρ−1
ρ (t−a)

, t > a. (2.5)

We will use the explicit form of the solution to the initial value problem for the scalar linear generalized proportional
Caputo fractional differential equation, which is given in [34, Example 5.7] (with necessary slight corrections).

Lemma 2.8. A solution to the scalar linear generalized proportional Caputo fractional initial value problem(C
aD

α,ρu
)
(t) = λu(t), u(a) = u0, α ∈ (0, 1), ρ ∈ (0, 1],

is given by

u(t) = u0e
ρ−1
ρ (t−a)Eα

(
λ

(
t − a

ρ

)α)
,

where Eα is the Mittag-Leffler function of one parameter.

For a vector x ∈ Rn, we denote by ∥x∥ its Euclidean norm. Let AT be the transpose of a matrix A. For a matrix
A = {aij}ni,j=1 ∈ Rn×n, we use the spectral norm

∥A∥2 =
√

max
1≤i≤n

λi,

where λi are the eigenvalues of ATA. Then we have

∥A∥2 ≤

n∑
i=1

n∑
j=1

a2ij,
eA2 ≤ e∥A∥2 , ∥Ax∥ ≤ ∥A∥2 ∥x∥ .

Definition 2.9 (See [39]). Let A be an arbitrary square matrix. The Mittag-Leffler matrix function with one parameter α is
defined as

Eα(Az) =

∞∑
k=0

Akzk

Γ (kα + 1)
, α > 0.

Let us recall some properties of the Mittag-Leffler function.

roposition 2.10 (See [40, Theorem 1.2]). For every α ∈ (0, 1), t ↦→
et
α

− Eα(tα) is completely monotonic.

orollary 2.11. Let α ∈ (0, 1). Then

(i) 0 < et
α

− Eα(tα) ≤
1
α

− 1, t ≥ 0;
(ii) α ≤ 1 − αe−t ( 1

α
− 1) ≤ αe−tEα(tα), t ≥ 0;

(iii) limt→0

(
et
α

− Eα(tα)
)

= 0, t ≥ 0;

(iv) E (tα) < et , t ≥ 0.
α α

3
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Proposition 2.12. For a matrix A ∈ Rn×n and α ∈ (0, 1), we have the inequality

∥Eα(A)∥2 ≤ Eα (∥A∥2) .

Example 2.13. Let

A =

[
2 −3

−1 1

]
.

Using the codes provided by Roberto Garrappa [41], we obtain

E0.8(A) =

[
68.7603 −88.6273

−29.5424 39.2179

]
.

Since the maximum eigenvalue of ATA is 0.5(15 +
√
221), it follows that

∥A∥2 =

√
0.5

(
15 +

√
221

)
.

Thus,

∥E0.8(A)∥2 =
√
14993.2 = 122.447 < 281.754 = E0.8(∥A∥2) = 281.754.

The following lemma is used to derive our main results.

Lemma 2.14. A solution to the initial value problem for the system of linear generalized proportional Caputo fractional
differential equations(C

aD
α,ρU

)
(t) = AU(t), U(a) = U0, α ∈ (0, 1), ρ ∈ (0, 1], (2.6)

where U0 ∈ Rn and A is an n × n dimensional matrix, is given by

U(t) = e
ρ−1
ρ (t−a)Eα

(
A
(
t − a

ρ

)α)
U0,

here Eα is the one-parametric Mittag-Leffler function.

roof. We use the Picard iterative process to derive the series solution to (2.6). Applying the operator aIα,ρ to both sides
f the equation

(
C
aD

α,ρU
)
(t) = AU(t) and using the initial condition, by Lemma 2.4, we obtain

U(t) = U0e
ρ−1
ρ (t−a)

+ A (aIα,ρU) (t).

Define Φ0 : [a, ∞) → Rn by Φ0(t) = U(a)e
ρ−1
ρ (t−a). For k ∈ N, by the recurrence formula, we calculate the kth approximate

olution Φk : [a, ∞) → Rn:

Φk(t) = U0e
ρ−1
ρ (t−a)

+ A (aIα,ρΦk−1) (t).

Then, from the recurrence formula, by using Lemma 2.5 with β = 1, α + 1, 2α + 1 . . . , and

Eα(Atα) = I +
Atα

Γ (α + 1)
+

A2t2α

Γ (2α + 1)
+

A3t3α

Γ (kα + 1)
+ . . . ,

e obtain

Φ1(t) = U0e
ρ−1
ρ (t−a)

+ A (aIα,ρΦ0) (t)

= U0e
ρ−1
ρ (t−a)

+ AU0e
ρ−1
ρ (t−a)(t − a)α

1
ραΓ (1 + α)

= e
ρ−1
ρ (t−a)

(
I +

A(t − a)α

ραΓ (1 + α)

)
U0,

Φ2(t) = U0e
ρ−1
ρ (t−a)

+ A (aIα,ρΦ1) (t)

= e
ρ−1
ρ (t−a)

(
I +

A(t − a)α

ραΓ (1 + α)
+

A2(t − a)2α

ρ2αΓ (1 + 2α)

)
U0,

Φ3(t) = U0e
ρ−1
ρ (t−a)

+ A (aIα,ρΦ2) (t)

= e
ρ−1
ρ (t−a)

(
I +

A(t − a)α

ραΓ (1 + α)
+

A2(t − a)2α

ρ2αΓ (1 + 2α)
+

A3(t − a)3α

ρ3αΓ (1 + 3α)

)
U0.
4
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Taking the limit as k → ∞ for Φk(t) (componentwise), we derive the series expression for a solution

U(t) = e
ρ−1
ρ (t−a)

∞∑
k=0

Ak(t − a)kα

ρkαΓ (1 + kα)
U0 = e

ρ−1
ρ (t−a)Eα

(
A
(
t − a

ρ

)α)
U0,

ompleting the proof. □

emark 2.15. For the particular case ρ = 1, the result of Lemma 2.14 reduces to the one for systems of Caputo fractional
ifferential equations [42].

. Statement of the problem

Let t0 be a given fixed initial time (usually t0 ≥ 0), and the sequence of points {ξk}k∈N0 be such that t0 = ξ0 < ξk < ξk+1,
∈ N, with limk→∞ ξk = ∞. In the literature, there are several different interpretations of solutions of the system of

ractional differential equations with impulses (see, for example, [43,44]). Here, in our model, we consider the changeable
ower limit of the generalized proportional Caputo fractional derivative at any updated time ξk, k ∈ N. From now on,

x(ξk + 0) = lim
t→ξk+0

x(t), x(ξk − 0) = lim
t→ξk−0

x(t), k ∈ N.

3.1. Multi-agent system without a leader

We consider the multi-agent system that consists of N ∈ N \ {1} agents. Each agent has its own scalar variable xi,
i = 1, 2, . . . ,N , and it has its own initial condition xi(t0) = x0i . Naturally, agents exchange information among them. Since
continuous communication links among agents are hard to achieve in practice, we analyze the case where the information
exchange among agents occurs only at update times, i.e., the controller updates of each agent occur at times ξk. The agent
i will suddenly update its state variable according to the state variables of itself and its neighbors at the instants ξk. Thus,
the control input is called an impulsive control protocol. For any i = 1, 2, . . . ,N and k ∈ N, we consider the set

Ni(ξk) = {j = 1, 2, . . . ,N : j ̸= i and the state variable xj(t) is available to agent i at time t = ξk}.

Remark 3.1. The set Ni(ξk) consists of the numbers of all agents which could influence the agent i at the update time ξk.

Thus, the control input of agent i at the time ξk, k ∈ N, based on the information it receives from its neighboring
agents, is designed by

ui(ξk) =

∑
j∈Ni(ξk)

ai,j,k
(
xi(ξk) − xj(ξk)

)
, k ∈ N, (3.1)

where the weights ai,j,k ∈ R are entries of the weighted connectivity matrix

Ak =

⎡⎢⎣ 0 a1,2,k a1,3,k . . . a1,N,k
a2,1,k 0 a2,3,k . . . a2,N,k
. . . . . . . . . . . . . . .

aN,1,k aN,2,k aN,3,k . . . 0

⎤⎥⎦
and ai,j,k = 0 iff j ̸∈ Ni(ξk). Between two update times ξk and ξk+1, any agent i has information only about its own state.
More precisely, the dynamics of agent i is described by(C

ξk
Dα,ρxi

)
(t) = bixi(t), t ∈ (ξk, ξk+1],

where bi ∈ R, i = 1, 2, . . . ,N .

Remark 3.2. We do not assume the weights ai,j,k and coefficients bi to be positive.

At each time ξk, agent i updates its state variable according to the impulsive control protocol defined by (3.1), i.e.,

xi(ξk + 0) = ui(ξk), i = 1, 2, . . . ,N, k ∈ N.

The model described above can be written as a system of differential equations with impulses at times ξk and generalized
proportional Caputo fractional derivatives(C

ξk
Dα,ρxi

)
(t) = bixi(t), i = 1, 2, . . . ,N, t ∈ (ξk, ξk+1], k ∈ N0,

xi(ξk + 0) =

∑
j∈Ni(ξk)

ai,j,k(xi(ξk) − xj(ξk)), k ∈ N,

xi(t0) = x0i , i = 1, 2, . . . ,N.

(3.2)

We refer to model (3.2) as a generalized proportional Caputo fractional model of multi-agent linear dynamic system via
impulsive control protocol.
5
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3.2. Multi-agent system with a leader

We consider the multi-agent system with fixed topology that consists of N agents and a leader with state variables
xi(t), i = 1, 2, . . . ,N and x0(t) at time t , respectively. The agents and the leader exchange information among themselves
and there is an impulsive control protocol. Between two update times ξk and ξk+1, the dynamics of any agent i is based
only on interaction between itself and other agents; the leader has no interactions with other agents. More precisely, the
dynamics is described by(C

ξk
Dα,ρxi

)
(t) =

N∑
j=1

ℓi,j(xi(t) − xj(t)), t ∈ (ξk, ξk+1],(C
ξk
Dα,ρx0

)
(t) = 0, t ∈ (ξk, ξk+1], k ∈ N0,

where the weights ℓi,j ≥ 0 are such that ℓi,j = 0 iff the agent j does not influence agent i. At each update time ξk, the leader
interacts with some of the agents instantaneously, i.e., the agent i updates its state variable according to the impulsive
control protocol, and the state of the leader is continuous, namely

xi(ξk + 0) = xi(ξk) + ui(ξk), i = 1, 2, . . . ,N, k ∈ N,

where the control input of agent i at the time ξk, k ∈ N, based on the interaction between the agent and the leader, is
designed by

ui(ξk) = µi,k(xi(ξk) − x0(ξk)), k ∈ N.

The model described above can be written as a system of differential equations with impulses at times ξk and generalized
proportional Caputo fractional derivatives(C

ξk
Dα,ρxi

)
(t) =

N∑
j=1

ℓi,j(xi(t) − xj(t)), t ∈ (ξk, ξk+1],(C
ξk
Dα,ρx0

)
(t) = 0, t ∈ (ξk, ξk+1], k ∈ N0,

xi(ξk + 0) = xi(ξk) + µi,k(xi(ξk) − x0(ξk)), i = 1, 2, . . . ,N,

x0(ξk + 0) = x0(ξk), k ∈ N,

xi(t0) = x0i , i = 1, 2, . . . ,N, x0(t0) = x00.

(3.3)

Remark 3.3. From Lemma 2.7 with a = ξk, it follows that the state of the leader is

x0(t) = x0(ξk + 0)e
ρ−1
ρ (t−ξk) = x0(ξk)e

ρ−1
ρ (t−ξk) on (ξk, ξk+1], k ∈ N0.

Inductively, from the impulsive condition x0(ξk + 0) = x0(ξk), we get that the leader has the state x0(t) = x00e
ρ−1
ρ (t−ξ0) for

t ≥ t0.

Denote zi(t) = xi(t) − x0(t) = xi(t) − x00e
ρ−1
ρ (t−ξ0), i = 1, 2, . . . ,N . Then, problem (3.3) can be written in the form of a

generalized proportional Caputo fractional differential equation with impulses(C
ξk
Dα,ρzi

)
(t) =

N∑
j=1

ℓi,j(zi(t) − zj(t)), t ∈ (ξk, ξk+1], k ∈ N0,

zi(ξk + 0) = (1 + µi,k)zi(ξk), i = 1, 2, . . . ,N, k ∈ N,

zi(t0) = x0i − x00, i = 1, 2, . . . ,N.

(3.4)

Equivalently, (3.4) can be written in matrix form(C
ξk
Dα,ρZ

)
(t) = LZ(t), t ∈ (ξk, ξk+1], k ∈ N0,

Z(ξk + 0) = PkZ(ξk), k ∈ N,

Z(t0) = Z0,
(3.5)

where Pk = diag(1 + µ1,k, 1 + µ2,k, . . . , 1 + µN,k),

L =

⎡⎢⎢⎢⎢⎢⎣
∑N

j=2 ℓi,j −ℓ1,2 −ℓ1,3 . . . −ℓ1,N

−ℓ2,1
∑N

j=1,j̸=2 ℓ2,j −ℓ2,3 . . . −ℓ2,N

−ℓ3,1 −ℓ3,2
∑N

j=1,j̸=3 ℓ3,j . . . −ℓ3,N
. . . . . . . . . . . . . . .

−ℓN,1 −ℓN,1 −ℓN,3 . . .
∑N−1

j=1 ℓN,j

⎤⎥⎥⎥⎥⎥⎦ ,

and Z = (x0 − x0, x0 − x0, . . . , x0 − x0).
0 1 0 2 0 N 0

6
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4. Main results

This section presents our main results. In particular, we prove sufficient conditions for exponential stability in the case
f a multi-agent system without a leader (Section 4.1) and sufficient conditions for the leader following consensus in a
ulti-agent system with a leader (Section 4.2).

.1. Multi-agent system without a leader

efinition 4.1. We say that the generalized proportional Caputo fractional model of multi-agent linear dynamic systems
ia impulsive control protocol (3.2) is exponentially stable if there exist positive numbers λ,M such that, for any x0 ∈ RN ,
he inequality ∥x(t)∥ ≤ Me−λ(t−t0)∥x0∥ holds for all t ≥ t0.

Remark 4.2. The exponential stability of the generalized proportional Caputo fractional model of multi-agent linear
dynamic systems via impulsive control protocol (3.2) implies asymptotic stability, i.e., limt→∞ ∥x(t)∥ = 0.

Before moving on, we need the following result.

Lemma 4.3. Let α ∈ (0, 1), ρ ∈ (0, 1], b ∈ R, and η2 > η1 ≥ 0. Then,

e
ρ−1
ρ (η2−η1)Eα

(
b
(

η2 − η1

ρ

)α)
<

e(ρ+
α√

|b|−1)
η2−η1

ρ

α
.

roof. For b ≤ 0, we have

e
ρ−1
ρ (η2−η1)Eα

(
b
(

η2 − η1

ρ

)α)
≤ e

ρ−1
ρ (η2−η1) ≤ e

ρ−1+ α√
|b|

ρ (η2−η1) <
e

ρ−1+ α√
|b|

ρ (η2−η1)

α
.

or b > 0, we have

Eα

(
b
(

η2 − η1

ρ

)α)
= Eα

([
α
√
b
η2 − η1

ρ

]α)
.

Thus, by Corollary 2.11 point (iv), it follows that

e
ρ−1
ρ (η2−η1)Eα

(
b
(

η2 − η1

ρ

)α)
<

e
(
ρ+

α√b−1
)

η2−η1
ρ

α

holds, completing the proof. □

heorem 4.4. Let α ∈ (0, 1) and ρ ∈ (0, 1). If B = maxi=1,2,...,N |bi| < (1 − ρ)α and there exists a positive number K ≤ α

such that⏐⏐⏐⏐⏐⏐
N∑
j=1

ai,j,k

⏐⏐⏐⏐⏐⏐+
N∑
j=1

|ai,j,k| < K ,

then the generalized proportional Caputo fractional model of multi-agent linear dynamic systems via impulsive control protocol
(3.2) is exponentially stable.

Proof. Let t ∈ (ξ0, ξ1]. According to Lemma 2.8 with a = ξ0, u0 = x0i , and λ = bi, the solution to (3.2) is given by

xi(t) = x0i e
ρ−1
ρ (t−ξ0)Eα

(
bi

(
t − ξ0

ρ

)α)
, t ∈ (ξ0, ξ1].

Hence

|xi(t)| ≤ |x0i |e
ρ−1
ρ (t−ξ0)Eα

(
bi

(
t − ξ0

ρ

)α)
, t ∈ (ξ0, ξ1].

Applying Lemma 4.3 with η2 = ξ1, η1 = ξ0 and b = bi, we obtain

|xi(ξ1)| ≤|x0i |e
ρ−1
ρ (ξ1−ξ0)Eα

(
bi

(
ξ1 − ξ0

ρ

)α)

≤|x0|
e
(
ρ+

α
√

|bi|−1
)

ξ1−ξ0
ρ

, i = 1, 2, . . . ,N.

(4.1)
i α

7
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Let t ∈ (ξ1, ξ2]. Again, according to Lemma 2.8 with a = ξ1, u0 = xi(ξ1 + 0), and λ = bi, the solution to (3.2) is given by

xi(t) = xi(ξ1 + 0)e
ρ−1
ρ (t−ξ1)Eα

(
bi

(
t − ξ1

ρ

)α)
, t ∈ (ξ1, ξ2], i = 1, 2, . . . ,N.

An application of Lemma 4.3 enables us to write

|xi(t)| =|xi(ξ1 + 0)|e
ρ−1
ρ (t−ξ1)Eα

(
bi

(
t − ξ1

ρ

)α)

≤|xi(ξ1 + 0)|
e
(
ρ+

α
√

|bi|−1
)
t−ξ1

ρ

α
, t ∈ (ξ1, ξ2].

(4.2)

n account of (4.1), at the update time ξ1, we have

|xi(ξ1 + 0)| = |ui(ξ1)| =

⏐⏐⏐⏐⏐⏐xi(ξ1)
N∑
j=1

ai,j,1 −

N∑
j=1,j̸=i

ai,j,1xj(ξ1)

⏐⏐⏐⏐⏐⏐
≤ |x0i |

e
(
ρ+

α
√

|bi|−1
)

ξ1−ξ0
ρ

α

⏐⏐⏐⏐⏐⏐
N∑
j=1

ai,j,1

⏐⏐⏐⏐⏐⏐+
N∑
j=1

|ai,j,1| |x0j |
e
(
ρ+ α

√
|bj|−1

)
ξ1−ξ0

ρ

α

≤ ∥x0∥
e(ρ+

α√B−1) ξ1−ξ0
ρ

α

⎛⎝⏐⏐⏐⏐⏐⏐
N∑
j=1

ai,j,1

⏐⏐⏐⏐⏐⏐+
N∑
j=1

|ai,j,1|

⎞⎠ ≤
x0 K

α
e
(
ρ+

α√B−1
)

ξ1−ξ0
ρ .

(4.3)

sing (4.3) in (4.2) implies

|xi(t)| ≤
x0 K

α2 e
(
ρ+

α√B−1
)
t−ξ0

ρ

or any t ∈ (ξ1, ξ2] and all i = 1, 2, . . . ,N . By induction with respect to intervals, we obtain

|xi(t)| ≤
x0 K k

αk e
ρ−1+ α√B

ρ (t−ξk−1) e
ρ−1+ α

√
|bi |

ρ (t−ξk)

α
≤
x0 K k

αk+1 e
ρ−1+ α√B

ρ (t−ξ0)

or any t ∈ (ξk, ξk+1], k ∈ N0, and all i = 1, 2 . . . ,N . Therefore, the solution to system (3.2) is exponentially stable with
=

1
α
and λ =

1−ρ−
α√B

ρ
> 0. □

Remark 4.5. It is worth pointing out that the above approach does not allow obtaining of sufficient conditions for
exponential stability of (3.2) in the case of Caputo derivative.

4.2. Multi-agent system with a leader

We begin with deriving an explicit form of a solution to linear impulsive system (3.5).

emma 4.6. The exact solution to system (3.5) is

Y (t) =e
ρ−1
ρ (t−t0)Eα

(
L
(
t − ξk

ρ

)α)(k−1∏
i=0

(
Pk−iEα

(
L
(

ξk−i − ξk−i−1

ρ

)α)))
Z0, t ∈ (ξk, ξk+1], k ∈ N0. (4.4)

roof. The proof follows by induction. Let t ∈ [t0, ξ1]. By Lemma 2.14 with a = t0, A = L, U0 = Z0, we obtain

Z(t) = e
ρ−1
ρ (t−t0)Eα

(
L
(
t − t0

ρ

)α)
Z0.

Therefore,

Z(ξ1 − 0) = e
ρ−1
ρ (ξ1−t0)Eα

(
L
(

ξ1 − t0
ρ

)α)
Z0.
8
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Let t ∈ (ξ1, ξ2]. Applying Lemma 2.14 with a = ξ1, A = L, U0 = Z(ξ1 + 0) gives

Z(t) =e
ρ−1
ρ (t−ξ1)Eα

(
L
(
t − ξ1

ρ

)α)
Z(ξ1 + 0)

=e
ρ−1
ρ (t−t0)Eα

(
L
(
t − ξ1

ρ

)α)
P1Eα

(
L
(

ξ1 − t0
ρ

)α)
Z0.

or t ∈ (ξ2, ξ3], we use Lemma 2.14 with a = ξ2, A = L, U0 = Z(ξ2 + 0) and get

Z(t)

= e
ρ−1
ρ (t−t0)Eα

(
L
(
t − ξ2

ρ

)α)
P2Eα

(
L
(

ξ2 − ξ1

ρ

)α)
P1Eα

(
L
(

ξ1 − t0
ρ

)α)
Z0.

epeated application of Lemma 2.14 yields (4.4). □

efinition 4.7. We say that for the generalized proportional Caputo fractional model of multi-agent linear dynamic
ystems via impulsive control protocol, (3.3) achieves the leader following consensus if limt→∞ |xi(t) − x0(t)| = 0 for all
= 1, 2, . . . ,N .

emark 4.8. The important point to note here is that the leader following consensus in the generalized proportional
aputo fractional model of multi-agent linear dynamic systems via impulsive control protocol (3.3) is equivalent to the
symptotic stability of the system of generalized proportional Caputo type fractional differential equations with impulses
3.4).

heorem 4.9. Let α ∈ (0, 1) and ρ ∈ (0, 1). If there exist numbers q, β > 0 such that the inequalities

max
1≤i≤n

|1 + µi,k|Eα

(
∥L∥2

(
β

ρ

)α)
≤ q < 1 and 0 < ξk+1 − ξk ≤ β < ∞, k ∈ N0,

old, then the generalized proportional Caputo fractional model of multi-agent linear dynamic systems via impulsive control
rotocol (3.3) achieves the leader following consensus.

roof. Let us denote by Z the solution to (3.4) (or equivalently, to (3.5)). Since

PT
k Pk = diag((1 + µ1,k)2, (1 + µ2,k)2, . . . , (1 + µN,k)2),

e have λi = (1 + µi,k)2 and

∥Pk∥2 =

√
max
1≤i≤n

(1 + µi,k)2 = max
1≤i≤n

|1 + µi,k|.

ence,PkEα

(
L
(

ξk − ξk−1

ρ

)α)
2

≤ max
i

|1 + µi,k|Eα

(
∥L∥2

(
β

ρ

)α)
≤ q < 1.

Applying Lemma 4.6 and Proposition 2.12, we obtain

∥Z(t)∥ ≤e
ρ−1
ρ (t−t0)

Eα

(
L
(
t − ξk

ρ

)α)
2

(
k−1∏
i=0

(Pk−iEα

(
L
(

ξk−i − ξk−i−1

ρ

)α)
2

))
∥Z0∥

≤e
ρ−1
ρ (t−t0)Eα

(
∥L∥2

(
t − ξk

ρ

)α)
∥Z0∥

≤e
ρ−1
ρ (t−t0)Eα

(
∥L∥2

(
β

ρ

)α)
∥Z0∥ ,

for t ∈ (ξk, ξk+1] and all k ∈ N0. Therefore, the generalized proportional Caputo type fractional differential equation with
impulses (3.4) is exponentially stable with

M = Eα

(
∥L∥2

(
β

ρ

)α)
and λ =

1 − ρ

ρ
> 0,

and this, by Remark 4.8, is the desired conclusion. □

5. Applications

In this section, numerical examples are presented to verify the effectiveness of the proposed impulsive control protocol
for generalized proportional Caputo fractional multi-agent linear dynamical systems.
9
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Example 5.1. Let us consider a generalized proportional Caputo fractional model of multi-agent linear dynamic system
via impulsive control (see (3.2)) with

N = 5, t0 = ξ0 = 0, ξk+1 = ξk + 1, k ∈ N0, α = 0.65,

i.e., (C
ξk
D0.65,ρx1

)
(t) = 0.86x1(t),

(C
ξk
D0.65,ρx2

)
(t) = 0.78x2(t),(C

ξk
D0.65,ρx3

)
(t) = −0.1x3(t),

(C
ξk
D0.65,ρx4

)
(t) = −0.65x4(t),(C

ξk
D0.65,ρx5

)
(t) = 0.85x5(t), t ∈ (ξk, ξk+1], k ∈ N0,

x1(ξk + 0) = − 0.01 (x1(ξk) − x2(ξk)) + 0.04 (x1(ξk) − x3(ξk))
− 0.08 (x1(ξk) − x4(ξk)) + 0.25 (x1(ξk) − x5(ξk)) ,

x2(ξk + 0) = − 0.01 (x1(ξk) − x2(ξk)) + 0.2 (x2(ξk) − x3(ξk))
+ 0.09 (x2(ξk) − x4(ξk)) − 0.08 (x2(ξk) − x5(ξk)) ,

x3(ξk + 0) =0.09 (x3(ξk) − x1(ξk)) − 0.08 (x3(ξk) − x2(ξk))
− 0.23 (x3(ξk) − x4(ξk)) − 0.01 (x3(ξk) − x5(ξk)) ,

x4(ξk + 0) = − 0.01 (x4(ξk) − x1(ξk)) + 0.09 (x4(ξk) − x2(ξk))
− 0.08 − (x4(ξk) − x3(ξk)) + 0.23 (x4(ξk) − x5(ξk)) ,

x5(ξk + 0) =0.2 (x5(ξk) − x1(ξk)) − 0.04 (x5(ξk) − x2(ξk))
+ 0.08 (x5(ξk) − x3(ξk)) − 0.09 (x5(ξk) − x4(ξk)) , k ∈ N,

xi(0) = 1, i = 1, 2, 3, 4, 5.

(5.1)

Observe that the weighted connectivity matrix is the same at any updated times, and it is given by

A =

⎡⎢⎢⎢⎣
0 0.01 −0.04 0.08 −0.25

0.01 0 −0.2 −0.09 0.08
−0.09 0.08 0 −0.23 0.01
0.01 −0.09 0.08 0 −0.23
−0.2 0.04 −0.08 0.09 0

⎤⎥⎥⎥⎦ .

First, we analyze the case when ρ = 0.2. Then,

B = 0.86 < (1 − 0.2)0.65 ≈ 0.864985

and ⏐⏐⏐⏐⏐⏐
5∑

j=1

a1,j,k

⏐⏐⏐⏐⏐⏐+
5∑

j=1

|a1,j,k| = 0.2 + 0.38 = 0.58 ≤ 0.65,

⏐⏐⏐⏐⏐⏐
5∑

j=1

a2,j,k

⏐⏐⏐⏐⏐⏐+
5∑

j=1

|a2,j,k| = 0.2 + 0.38 = 0.58 < 0.65,

⏐⏐⏐⏐⏐⏐
5∑

j=1

a3,j,k

⏐⏐⏐⏐⏐⏐+
5∑

j=1

|a3,j,k| = 0.23 + 0.41 = 0.64 < 0.65,

⏐⏐⏐⏐⏐⏐
5∑

j=1

a4,j,k

⏐⏐⏐⏐⏐⏐+
5∑

j=1

|a4,j,k| = 0.23 + 0.41 = 0.64 < 0.65,

⏐⏐⏐⏐⏐⏐
5∑

j=1

a5,j,k

⏐⏐⏐⏐⏐⏐+
5∑

j=1

|a5,j,k| = 0.15 + 0.41 = 0.56 < 0.65.

Therefore, the conditions of Theorem 4.4 are satisfied, and the considered generalized proportional Caputo fractional
model of multi-agent linear dynamic systems via impulsive control protocol is exponentially stable with

λ =
1 − 0.2 −

0.65√0.85
0.2

≈ 0.106109.

The graphs of |xi(t)| are drawn in Fig. 5.1. It can be seen they are bounded above by
√
5

0.65 e
−0.106109t . In the second case, we

put ρ = 0.9. Then the condition

B = 0.85 < (1 − 0.9)0.65 ≈ 0.223872
10
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Fig. 5.1. State variables |xi(t)|, i = 1, 2, 3, 4, 5, of multi-agent system (5.1) with ρ = 0.2.

Fig. 5.2. State variables |xi(t)|, i = 1, 2, 3, 4, 5, of multi-agent system (5.1) with ρ = 0.9.

is not satisfied. From Fig. 5.2, we can see that the system is not exponentially stable.

Example 5.2. Let us consider a generalized proportional Caputo fractional model of multi-agent linear dynamic system
without impulsive control protocol with

N = 5, t0 = 0, α = 0.65, ρ = 0.9,

i.e., (C
ξk
D0.65,0.2x1

)
(t) = 0.86x1(t),

(C
ξk
D0.65,0.2x2

)
(t) = 0.78x2(t),(C

ξk
D0.65,0.2x3

)
(t) = −0.1x3(t),

(C
ξk
D0.65,0.2x4

)
(t) = −0.65x4(t),(C

ξk
D0.65,0.2x5

)
(t) = 0.85x5(t), xi(0) = 1, i = 1, 2, 3, 4, 5.

(5.2)

By Lemma 2.8, the solution of (5.2) is given by

xi(t) = x0i e
0.2−1
0.2 tE0.3

(
bi

(
t

0.2

)0.3
)

= x0i e
−4tE0.3(bi(5t)0.3), i = 1, 2, 3, 4, 5,

where b1 = 0.86, b2 = 0.78, b3 = −0.1, b4 = −0.65, b5 = 0.85. The graphs of |xi(t)|, i = 1, 2, 3, 4, 5, are shown in
Fig. 5.3. It can be seen that all components of the solution approach zero.

Example 5.3. In order to show the importance of the type of derivative appearing in the model, we consider system
(5.1), in which the generalized proportional derivatives are replaced by the integer-order ones, i.e., the first-order ordinary
derivative is applied in the model instead of a fractional one. The graphs of all components |xi(t)|, i = 1, 2, 3, 4, 5, of the
corresponding solution are shown in Fig. 5.4.
11
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Fig. 5.3. State variables |xi(t)|, i = 1, 2, 3, 4, 5, of multi-agent system (5.2) without impulse control protocol.

Fig. 5.4. State variables |xi(t)|, i = 1, 2, 3, 4, 5, of multi-agent system with ordinary derivatives without impulsive control protocol.

Remark 5.4. From Figs. 5.1-5.4, we may conclude that the type of the applied derivative definitely has an influence on the
behavior of the studied multi-agent system. What follows is the necessity of the application of various types of derivatives
in models.

Example 5.5. Let us consider the following multi-agent system with a leader(C
ξk
D0.8,0.6x1

)
(t) = 0.9(x1(t) − x2(t)),(C

ξk
D0.8,0.6x2

)
(t) = 0.1(x2(t) − x1(t)) + 0.1(x2(t) − x3(t)),(C

ξk
D0.8,0.6x3

)
(t) = 0.5(x3(t) − x2(t)) + 0.3(x3(t) − x4(t)),(C

ξk
D0.8,0.6x4

)
(t) = 0.1(x4(t) − x3(t)),(C

ξk
D0.8,0.6x0

)
(t) = 0, t ∈ (ξk, ξk+1], k ∈ N,

x1(ξk + 0) = x1(ξk) − 0.7(x1(ξk) − x0(ξk)),
x2(ξk + 0) = x2(ξk) − 1.3(x2(ξk) − x0(ξk)),
x3(ξk + 0) = x3(ξk) − 0.7(x3(ξk) − x0(ξk)),
x4(ξk + 0) = x4(ξk) − 1.3(x4(ξk) − x0(ξk)), k ∈ N,

xi(0) = x0i , i = 0, 1, 2, 3, 4.

(5.3)

System (5.3) is of type (3.3) with N = 4 agents, t0 = ξ0 = 0, ξk+1 = ξk + 0.5, k ∈ N, ρ = 0.6, and α = 0.8. In this case,
we have β = 0.5, Pk = diag(0.3, −0.3, 0.3, −0.3), and

L =

⎡⎢⎣ 0.9 −0.9 0 0
−0.1 0.2 −0.1 0
0 −0.5 0.8 −0.3

⎤⎥⎦ .
0 0 −0.1 0.1
12
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H

Fig. 5.5. Errors of state-tracking |xi(t) − x0(t)|, i = 1, 2, 3, 4, for the solution to (5.3).

Fig. 5.6. Errors of state-tracking
⏐⏐⏐xi(t) − e−

2
3 t
⏐⏐⏐, i = 1, 2, 3, 4, for the solution to (5.4).

ence x0(t) = e
0.6−1
0.6 t , ∥L∥2 = 1.0466, and

0.3E0.8

(
1.0466

(
0.5
0.6

)0.8
)

= 0.873455 = q < 1.

According to Theorem 4.9 for the generalized proportional Caputo fractional model of multi-agent linear dynamic systems
via impulsive control protocol, (5.3) achieves a leader following consensus, i.e.,

lim
t→∞

|xi(t) − x0(t)| = lim
t→∞

|xi(t) − e−
2
3 t | = 0,

for i = 1, 2, 3, 4 (see Fig. 5.5). Now, let us consider the case without the impulsive interaction of the leader, i.e., the system
without impulsive control protocol(C

ξk
D0.8,0.6x1

)
(t) = 0.9(x1(t) − x2(t)),(C

ξk
D0.8,0.6x2

)
(t) = 0.1(x2(t) − x1(t)) + 0.1(x2(t) − x3(t)),(C

ξk
D0.8,0.6x3

)
(t) = 0.5(x3(t) − x2(t)) + 0.3(x3(t) − x4(t)),(C

ξk
D0.8,0.6x4

)
(t) = 0.1(x4(t) − x3(t)),

xi(0) = x0i , i = 1, 2, 3, 4.

(5.4)

The explicit solution to (5.4) may be found by Lemma 2.14. As shown in Fig. 5.6, errors of state-tracking
⏐⏐⏐xi(t) − e−

2
3 t
⏐⏐⏐,

i = 1, 2, 3, 4, are not bounded. It follows that even the impulsive interaction of the leader can cause consensus.
13
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E
s

A

Fig. 5.7. Errors of state-tracking |xi(t) − 1|, i = 1, 2, 3, 4, for the solution to (5.5).

Fig. 5.8. Graph of |xi(t)|, i = 1, 2, 3, 4, for the solution to (5.6).

xample 5.6. Finally, similarly to Example 5.3, we analyze the model (5.4) with ordinary derivatives. In this case, the
tate of the leader is x0(t) = x0, t ≥ 0. Therefore, for x0 = 1, the model is

x′

1(t) = 0.9(x1(t) − x2(t)),
x′

2(t) = 0.1(x2(t) − x1(t)) + 0.1(x2(t) − x3(t)),
x′

3(t) = 0.5(x3(t) − x2(t)) + 0.3(x3(t) − x4(t)),
x′

4(t) = 0.1(x4(t) − x3(t)), t ∈ (ξk, ξk+1], k ∈ N,

x1(ξk + 0) = x1(ξk) − 0.7(x1(ξk) − 1),
x2(ξk + 0) = x2(ξk) − 1.3(x2(ξk) − 1),
x3(ξk + 0) = x3(ξk) − 0.7(x3(ξk) − 1),
x4(ξk + 0) = x4(ξk) − 1.3(x4(ξk) − 1), k ∈ N,

xi(0) = x0i , i = 1, 2, 3, 4.

(5.5)

s shown in Fig. 5.7, errors of state-tracking |xi(t) − 1|, i = 1, 2, 3, 4, are bounded. It follows that we may expect the
leader-following consensus. However, without the impulsive interaction of the leader, the multi-agent system

x′

1(t) = 0.9(x1(t) − x2(t)),
x′

2(t) = 0.1(x2(t) − x1(t)) + 0.1(x2(t) − x3(t)),
x′

3(t) = 0.5(x3(t) − x2(t)) + 0.3(x3(t) − x4(t)),
x′

4(t) = 0.1(x4(t) − x3(t)), t > 0,

xi(t0) = x0i , i = 1, 2, 3, 4,

(5.6)

similarly to the fractional-order system, does not achieve consensus (see Fig. 5.8).
14
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6. Conclusions

In this paper, we have studied multi-agent systems with the generalized proportional Caputo fractional derivative.
he information exchange between agents occurred only at fixed initially given update times, and the lower limit of the
ractional derivative was changing according to the update times. We have obtained an explicit form of the solution to
he system of linear generalized proportional Caputo fractional differential equations (see Lemma 2.14) as well as for
he solutions to the system of linear generalized proportional Caputo fractional differential equations with impulses (see
emma 4.6). Both results could be useful for various studies of qualitative properties of solutions to the corresponding
inear systems as well as nonlinear systems. Two types of multi-agent systems have been considered, namely without and
ith a leader. For a generalized proportional Caputo fractional model of multi-agent linear dynamic system, sufficient
onditions for exponential stability via impulsive control were obtained. In the case of the presence of a leader in the
ulti-agent system, we derived sufficient conditions for the leader following consensus via impulsive control based on

he leader’s influence. Simulation results have verified the essential role of the generalized proportional Caputo fractional
erivative and impulsive control in realizing the consensus of multi-agent systems.
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