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Abstract

In this paper, we consider the time-fractional telegraph equation of distributed order in higher spatial

dimensions, where the time derivative is in the sense of Hilfer, thus interpolating between the Riemann-

Liouville and the Caputo fractional derivatives. By employing the techniques of the Fourier, Laplace, and

Mellin transforms, we obtain a representation of the solution of the Cauchy problem associated with the

equation in terms of convolutions involving functions that are Laplace integrals of Fox H-functions. Fractional

moments of the first fundamental solution are computed and for the special case of double-order distributed

it is analyzed in detail the asymptotic behavior of the second-order moment, by application of the Tauberian

Theorem. Finally, we exhibit plots of the variance showing its behavior for short and long times, and for

different choices of the parameters along small dimensions.
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1 Introduction

Distributed-order fractional calculus (DOFC) is a branch of fractional calculus important for the modeling of

complex systems. It generalizes the constant fractional operators by integrating the fractional kernel of these

operators over an extended range of orders. The fractional differential operator of distributed order, for orders

not great than 2, is given by

Dα =

∫ u

l

b (α)
dα

dtα
dα, 0 ≤ l < u ≤ 2, b (α) ≥ 0

where dα

dtα
stands for a single-order fractional derivative and b (α) is a non-negative weight function or generalized

function. DOFC takes into account the superposition of orders and is a useful tool for modeling decelerating

anomalous diffusion, ultraslow diffusive processes and strong anomaly (see e.g [11,37]). DOFC models systems

whose behavior stems from the complex interplay and superposition of nonlocal and memory effects occurring
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over a multitude of scales [52]. Over the last two decades, a significant number of papers appeared focusing

on mathematical aspects and real-world applications of fractional partial differential equations with distributed

order, see e.g., [1,2,8,12,22,30,31,34,36,37,44,49,57] for mathematical aspects, [29,43] for applications, and the

review paper [13] about the mathematics of DOFC, including analytical, numerical methods, and the extensive

overview of the recent applications of DOFC to fields like transport processes, and control theory. Moreover,

DOFC was applied also in the study of composite materials [5, 7] and viscoelastic materials having spatially

varying properties [35].

The classical telegraph equation was first derived by Lord Kelvin in the 19th century [58]. It is a hyperbolic

partial differential equation of the form

c2 ∂
2
ttu (x, t) + c1 ∂tu (x, t)− c20 ∂

2
xxu (x, t) + d u (x, t) = q (x, t) , x ∈ R, t > 0.

This equation was proposed by Cattaneo in 1958 (see [10]) to overcome the problem of infinite propagation

velocity in heat transmission. Over the years, this equation and its time-fractional versions appeared in the

study of several phenomena such as transmission lines for all frequencies [24], random walks [3], solar particle

transport [14], oceanic diffusion [45], wave propagation [65], damped small vibrations, anomalous diffusion and

wave-like processes [4, 38, 46, 47], scalar part of the Maxwell equations.

The TFTE with time-fractional derivatives of orders α1 ∈]0, 1] and α2 ∈]1, 2] was studied from the analytical,

numerical, and probabilistic points of view by several authors. In [9], Cascaval et al. discussed the well-posedness

of some initial-boundary value problems for the TFTE as well as the asymptotic behaviour of their solutions.

In [47] the authors studied the neutral case of the TFTE and obtained an explicit Fourier representation of the

fundamental solution (FS) and made a probabilistic interpretation of the FS in terms of stable probability density

functions. Particular attention was given to the case α1 = 1/2 and α2 = 1 due to its connection of the telegraph

process with Brownian motion. Some of these results were generalized by Camargo et al. in [6] for general α1

and α2 and studied later by Boyadjiev and Luchko in [4]. In [54], the authors considered a generalized telegraph

equation with time-fractional derivatives in the Hilfer and Hadamard senses and space-fractional derivatives are

in the sense of Riesz-Feller. Górska et al (see [23]) considered various types of generalized telegraph equations

and determine the conditions under which solutions can be recognized as probability density distributions.

The works [15–18,46,48,64] are examples of works devoted to the study of the TFTE in the multidimensional

case with n space variables, where in some cases the second derivative in space is replaced by the Euclidean

Laplace operator. In [46] the authors solved the multi-dimensional TFTE with multi-term time-fractional

derivatives and proved that its fundamental solution is the law of a stable isotropic multi-dimensional process

time-changed. Ovidio et al [48] constructed compositions of vector processes whose distribution is related to

space-time fractional n-dimensional telegraph equations. We refer also the works of Masoliver and his co-workers

about the TFTE and its connections with random walks (see [39–42]), and the recent survey paper [38] where

is presented a very complete review of the fractional telegraph process. In [16, 18] were employed Fourier,

Laplace and Mellin transform techniques to obtain the first and second FS. Moreover, the application of the

Residue Theorem allows obtaining double series representation for the FS of the TFTE in higher dimensions.

Connections of the TFTE with fractional Clifford analysis and Sturm-Liouville theory were presented in [17]

and [15].

In our recent paper [63] we studied the time-fractional telegraph equation with generalized distributed order

in Rn × R+ finding a representation of the fundamental solution in terms of convolutions involving Fox H-

functions. In this work, we extend our analysis to time-fractional telegraph equations of distributed order

with Hilfer (or composite) time-fractional derivatives. Hilfer’s derivative tD
γ,ν

0+ was defined by Hilfer as a

two-parameter family of fractional derivatives of order γ > 0 and type ν ∈ [0, 1] given by

(
tD

γ,ν

0+ f
)
(t) =

(
I
ν(m−γ)
0+

d

dt

(
I
(1−ν)(m−γ)
0+ f

))
(t) ,

where Iγ0+ denotes the left Riemann-Liouville fractional integral of order γ > 0 (see (1) in Section 2). The Hilfer

fractional derivative allows to interpolate smoothly between the Riemann-Liouville and the Caputo fractional

derivatives (see [26, 28, 29]). These special cases are obtained when ν = 0 and ν = 1, respectively. The type-

parameter produces more stationary states, provides an extra degree of freedom on the initial condition, and

increases the flexibility for the description of complex data. It was first used by Hilfer to describe the dynamics

in glass formers over an extremely large-frequency window [27]. During the last years fractional differential
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equations with composite derivatives were studied by several authors, see e.g., [25,53–56,60–62]. In these works

the equations are considered in R×R+, i.e., one single space variable and one time variable. Here, we consider

the telegraph equation of distributed order with Hilfer time-fractional derivatives in the higher dimensional

case, i.e., Rn × R+.

The paper is organized as follows. In Section 2 we recall some basic facts about fractional derivatives,

integral transforms, and special functions, which are necessary for the development of this work. In Section

3 we formulate the problem of generalized distributed order telegraph equation for general density functions.

Following the ideas presented in [63], we use a combination of Laplace, Fourier, and Mellin transforms to obtain a

representation of the solution of our equation via convolution integrals involving Fox H-functions. The key points

to obtain our main result are the use of the classical Titchmarsh’s Theorem to invert the Laplace transform,

and the use of the Mellin transform to invert the Fourier transform. Some particular cases of our equation

are analyzed by considering specific choices of the parameters of the equation. In Section 4 we compute the

expression of the fractional moments of arbitrary order of the first fundamental solution in the Laplace domain.

For the particular case of single-order derivatives, we invert the Laplace transform of the second-order moment

obtaining an expression in terms of the three-parameter Mittag-Leffler function. For numerical purposes, we

study the corresponding asymptotic behavior of the second-order moment in the time domain for the long and

short time limit, by using the Tauberian Theorem. In the final part of the paper, we present and analyze some

plots of the second-order moment for this particular case. As it will be shown the graphical representations

support the analytical conclusions obtained via the Tauberian Theorem.

2 Preliminaries

Let a, b ∈ R with a < b and α > 0. The left Riemann-Liouville fractional integral Iγ
a+

of order γ > 0 is given by

(see [32])

(
Iγ
a+
f
)
(x) =

1

Γ (γ)

∫ x

a

f (w)

(x− w)
1−γ dw, x > a.

The left Hilfer (or composite) fractional derivative tD
γ,ν

0+ of order γ > 0 and type 0 ≤ ν ≤ 1 is given by

(see [26, 28, 29])

(
tD

γ,ν

0+ f
)
(t) =

(
I
ν(m−γ)
0+

d

dt

(
I
(1−ν)(m−γ)
0+ f

))
(t) , (1)

where m = [γ] + 1 and [γ] means the integer part of γ. We observe that in the case when ν = 0 we recover

the left Riemann-Liouville fractional derivative and in the case when ν = 1 we have the left Caputo fractional

derivative. The previous definitions of fractional integrals and derivatives can be naturally extended to Rn

considering partial fractional integrals and derivatives (see Chapter 5 in [51]).

In this work, some integral transforms are used, namely, the Laplace, the Fourier, and the Mellin transforms.

The Laplace transform of a real-valued function f (t) is defined by (see [32])

L{f (t)} (s) = f̃ (s) =

∫ +∞

0

e−st f (t) dt, Re (s) ∈ C

and when it is applied to (1) leads to (see [25])

L
{
tD

γ,ν

0+ f (t)
}
(s) = sγ f̃ (s)−

m−1∑

j=0

sm−j−ν(m−γ)−1

[
dj

dtj

(
tI

(1−ν)(m−γ)
0+ f

)] (
0+

)
, (2)

where the initial-value terms
[
dk

dtk

(
tI

(1−ν)(m−γ)
0+ f

)]
(0+) are evaluated in the limit t → 0+. Concerning the

inverse Laplace transform of functions involving a branch point, we have the following theorem from Titchmarsh

(see [59]).

Theorem 2.1 Let f̃ (s) be an analytic function which has a branch cut on the real negative semiaxis, which

has the following properties

f̃ (s) = O (1) , |s| → +∞, f̃ (s) = O

(
1

|s|

)
, |s| → 0,
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for any sector |arg (s)| < π − η, where 0 < η < π. Then the inverse Laplace transform of f̃ (s) is given by

f (t) = L−1
{
f̃ (s)

}
(t) = − 1

π

∫ +∞

0

e−rt Im
(
f̃
(
reiπ

))
dr,

where Im (·) denotes the imaginary part.

The convolution of two integrable functions f and g with support in [0,+∞) is defined by

(f ∗t g) (t) =

∫ t

0

f (t− w) g (w) dw, t ∈ R
+ (3)

and the Convolution Theorem for the Laplace transform is given by

L{(f ∗t g) (t)} (s) = L{f} (s) L{g} (s) . (4)

The n-dimensional Fourier transform of a real-valued integrable function f in Rn is defined by (see [32])

F {f (x)} (κ) = f̂ (κ) =

∫

Rn

eiκ·x f (x) dx, κ ∈ R
n,

while the corresponding inverse Fourier transform is given formally by

f (x) = F−1
{
f̂ (κ)

}
(x) =

1

(2π)
n

∫

Rn

e−ix·κ f̂ (κ) dκ, x ∈ R
n. (5)

The convolution operator of two functions in Rn is defined by the integral

(f ∗x g) (x) =

∫

Rn

f (x− z) g (z) dz, x ∈ R
n (6)

and the Convolution Theorem for the Fourier transform is given by

F {(f ∗x g) (x)} (κ) = F {f} (κ) F {g} (κ) . (7)

For the n-dimensional Laplace operator ∆x =
∑n

i=1
∂2

∂x2
i

we have (see formula (1.3.32) in [32])

F {∆xf (x)} (κ) = −|κ|2F {f (x)} (κ) . (8)

Another integral transform that we use in this work is the Mellin transform. For f locally integrable on ]0,+∞[

it is defined by (see [32])

M{f (w)} (s) = f∗ (s) =

∫ +∞

0

ws−1 f (w) dw, s ∈ C, (9)

and the inverse Mellin transform is given by

f (w) = M−1 {f∗ (s)} (w) =
1

2πi

∫ γ+i∞

γ−i∞
w−s f (s) ds, w > 0, γ = Re (s) . (10)

The condition for the existence of (9) is that −p < γ < −q (called the fundamental strip), where p, q, are the

order of f at the origin and ∞, respectively. The integration in (10) is performed along the imaginary axis and

the result does not depend on the choice of γ inside the fundamental strip. For more information about this

transform and its properties, see e.g., [32]. The Mellin convolution between two functions is defined by

(f ∗M g) (x) =

∫ +∞

0

f
(x
u

)
g (u)

du

u
, (11)

and satisfies the Mellin Convolution Theorem (see formula (1.4.40) in [32])

M{f ∗M g} (s) = M{f} (s) M{g} (s) .

The following relation holds (see (1.4.30) in [32])

M
{
f

(
1

x

)}
(s) = M{f} (−s) . (12)

4



The solution of the time-fractional telegraph equation of distributed order obtained in this work involves

the Fox H-function Hm,n
p,q , which is defined, via a Mellin-Barnes type integral, by (see [33])

Hm,n
p,q


 z

(a1, α1) , . . . , (ap, αp)

(b1, β1) , . . . , (bq, βq)


 =

1

2πi

∫

C

∏m
j=1 Γ (bj + βjs)

∏n
i=1 Γ (1− ai − αis)∏p

i=n+1 Γ (ai + αis)
∏q
j=m+1 Γ (1− bj − βjs)

z−s ds, (13)

where ai, bj ∈ C, and αi, βj ∈ R+, for i = 1, . . . , p and j = 1, . . . , q, and C is a suitable contour in the complex

plane separating the poles of the two factors in the numerator (see [33]). The expression of the second-order

moment in Section 4.1 is presented in terms of the three parameter Mittag-Leffler function Eβ3

β1,β2
(z) (see [21]),

which is defined, in terms of power series, by

Eγα,β (z) =

∞∑

k=0

(γ)k z
k

k! Γ (αk + β)
, z ∈ C, α, β, γ ∈ R, α > 0, (14)

where (γ)k is the Pochhammer symbol.

Throughout the paper, we assume that all the involved functions are Laplace and Fourier transformable.

3 Generalized time-fractional telegraph equation of distributed or-

der

In this work we consider the following generalized time-fractional telegraph equation of distributed order

∫ 1

0

∫ 2

1

b2 (β, ν) t∂
β,ν

0+ u (x, t) dβ dν + a

∫ 1

0

∫ 1

0

b1 (α, µ) t∂
α,µ

0+ u (x, t) dα dµ

− c2 ∆xu (x, t) + d2 u (x, t) = q (x, t) , (15)

for given weight functions b2 (β, ν) > 0 and b1 (α, µ) > 0, satisfying

∫ 1

0

∫ 2

1

b2 (β, ν) dβ dν = C2,

∫ 1

0

∫ 1

0

b1 (α, µ) dα dµ = C1, (16)

and subject to the following initial and boundary conditions

(
tI

(1−µ)(1−α)
0+ u

) (
x, 0+

)
= f (x) ,

(
tI

(1−ν)(2−β)
0+ u

) (
x, 0+

)
= g1 (x) (17)

[
∂

∂t

(
tI

(1−ν)(2−β)
0+ u

)] (
x, 0+

)
= g2 (x) , lim

|x|→+∞
u (x, t) = 0, (18)

where (x, t) ∈ Rn × R+, ∆x is the classical Laplace operator in Rn, the partial time-fractional derivatives of

order β ∈ ]1, 2] and α ∈ ]0, 1], and types µ, ν ∈ [0, 1] are in the Hilfer sense and given by (1), a ∈ R
+
0 , c ∈ R\{0},

d ∈ R, and C1, C2 ∈ R
+. The positive constants C1 and C2 can be taken as 1 if we assume the normalization

condition for the integrals (16). Moreover, q belongs to L1 (R
n × I), and f, g1, g2 ∈ L1 (R

n). We look for

solutions u (x, t) of our problem in the space C2 (Rn)× C2 (0,+∞) with possible exception at x = 0.

3.1 Solution in the Fourier-Laplace Domain

In order to analytically determine the solution of (15)-(16) in the space-time domain we start applying the

Fourier and Laplace transforms to (15) and solve the equation in the Fourier-Laplace domain. After that, there

are two alternative strategies related to the order in carrying out the inversions of the Fourier and Laplace

transforms are performed (see [37]):

(S1) invert the Fourier transform, yielding ũ (x, s), and then invert the Laplace transform of the result.

(S2) invert the Laplace transform, yielding û (κ, t), and then invert the Fourier transform of the result.
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In this work, we consider the strategy (S2) where the inversion of the Laplace transform is performed via

the classical Titchmarsh’s Theorem, and the inversion of the Fourier transform is performed via the Mellin

transform.

we start by applying in (15) the Laplace transform with respect to the variable t ∈ R+ and the n-dimensional

Fourier transform with respect to the variable x ∈ Rn. Taking into account relations (2) and (8), and the initial

conditions in (17)-(18), we obtain

̂̃u (κ, s)
∫ 1

0

∫ 2

1

b2 (β, ν) s
β dβ dν − ĝ1 (κ)

∫ 1

0

∫ 2

1

b2 (β, ν) s
1−ν(2−β) dβ dν

− ĝ2 (κ)

∫ 1

0

∫ 2

1

b2 (β, ν) s
−ν(2−β) dβ dν + a ̂̃u (κ, s)

∫ 1

0

∫ 1

0

b1 (α, µ) s
α dα dµ

− a f̂ (κ)

∫ 1

0

∫ 1

0

b1 (α, µ) s
−µ(1−α) dα dµ+ c2 |κ|2 ̂̃u (κ, s) + d2 ̂̃u (κ, s) = ̂̃q (κ, s) ,

which is equivalent to

̂̃u (κ, s) = f̂ (κ) B∗
1 (s)

B2 (s) + B1 (s) + |κ|2 +
ĝ1 (κ)

(
B∗

2 (s)− d2

c2

)

s−1 (B2 (s) +B1 (s) + |κ|2)

+
ĝ2 (κ)

(
B∗

2 (s)− d2

c2

)

B2 (s) +B1 (s) + |κ|2 +
̂̃q (κ, s)

c2 (B2 (s) +B1 (s) + |κ|2) , (19)

where f̂ and ĝi are the Fourier transforms of the functions f and gi, respectively, and

B2 (s) =
1

c2

(∫ 1

0

∫ 2

1

b2 (β, ν) s
β dβ dν + d2

)
, B1 (s) =

a

c2

∫ 1

0

∫ 1

0

b1 (α, µ) s
α dα dµ, (20)

B∗
2 (s) =

1

c2

(∫ 1

0

∫ 2

1

b2 (β, ν) s
−ν(2−β) dβ dν + d2

)
, B∗

1 (s) =
a

c2

∫ 1

0

∫ 1

0

b1 (α, µ) s
−µ(1−α) dα dµ. (21)

Remark 3.1 When µ = ν = 1, i.e., the telegraph equation has only Caputo fractional derivatives, we have the

following relations between (20) and (21)

B∗
1 (s) = s−1B1 (s) and B∗

2 (s)−
d2

c2
= s−2

(
B2 (s)−

d2

c2

)
.

The previous relations combined with the fact that (17) and (18) reduce to

u (x, 0) = f (x) , u (x, 0) = g1 (x) ,
∂u

∂t
(x, 0) = g2 (x) ,

i.e., f = g1 when ν = µ = 1, allow us to reduce the expression (19) to the correspondent one obtained in [63].

3.2 Solution in the space-time domain

In this section we perform the inversion of the Laplace and Fourier transforms in order to obtain our solution

in the space-time domain. Let us consider the following auxiliary functions in the Laplace domain

̂̃u1 (κ, s) =
B∗

1 (s)

B2 (s) +B1 (s) + |κ|2 , (22)

̂̃u2 (κ, s) =
B∗

2 (s)

sp (B2 (s) +B1 (s) + |κ|2) , (23)

̂̃u3 (κ, s) =
1

sp (B2 (s) +B1 (s) + |κ|2) , (24)
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with p = 0 or p = −1. To further proceed we make the following additional assumption:

(H1): The functions ̂̃uj
(
κ, reiπ

)
, j = 1, 2, 3 are in the conditions of Theorem 2.1. (25)

Assumption (H1) holds for the particular cases we consider later on. Applying Theorem 2.1, we have

ûj (κ, t) = − 1

π

∫ +∞

0

e−rt Im
(
̂̃uj

(
κ, reiπ

))
dr, j = 1, 2, 3. (26)

To evaluate the imaginary parts of the functions ̂̃uj
(
κ, reiπ

)
, j = 1, 2, 3, along the ray s = reiπ , with r > 0, we

consider the following polar decompositions

Bl
(
reiπ

)
= ρl (cos (γlπ) + i sin (γlπ)) =⇒





ρl =
∣∣Bl

(
reiπ

)∣∣

γl =
1

π
arg

(
Bl

(
reiπ

)) , l = 1, 2 (27)

B∗
l

(
reiπ

)
= ρ∗l (cos (γ

∗
l π) + i sin (γ∗l π)) =⇒





ρ∗l =
∣∣B∗

l

(
reiπ

)∣∣

γ∗l =
1

π
arg

(
B∗
l

(
reiπ

)) , l = 1, 2. (28)

After straightforward calculations, we obtain the following expressions

Im
{
̂̃u1

(
κ, reiπ

)}
= K1 (|κ| , r) =

ρ∗1

[(
A+ |κ|2

)
sin (γ∗1π)−B cos (γ∗1π)

]

[(
A+ |κ|2

)2

+B2

] , (29)

Im
{
̂̃u2

(
κ, reiπ

)}
= K2 (p, |κ| , r) =

ρ∗2

[(
A+ |κ|2

)
sin (γ∗2π)−B cos (γ∗2π)

]

(−r)p
[(
A+ |κ|2

)2

+B2

] , (30)

Im
{
̂̃u3

(
κ, reiπ

)}
= K3 (p, |κ| , r) =

−B

(−r)p
[(
A+ |κ|2

)2

+B2

] , (31)

where

A = ρ2 cos (γ2π) + ρ1 cos (γ1π) and B = ρ2 sin (γ2π) + ρ1 sin (γ1π) . (32)

Remark 3.2 Taking into account Remark 3.1, when µ = ν = 1 we have, by straightforward calculations, the

following relations




ρ∗2 = r−2 ρ2

γ∗2 = γ2

and




ρ∗1 = r−1 ρ1

γ∗1 = 1+ γ1

.

Applying the inverse Laplace transform to (19) and taking into account (26), (29), (30), and (31), we obtain

û (κ, t) = − f̂ (κ)
π

∫ +∞

0

e−rtK1 (|κ| , r) dr

− ĝ1 (κ)

π

∫ +∞

0

e−rt
[
K2 (−1, |κ| , r) − d2

c2
K3 (−1, |κ| , r)

]
dr

− ĝ2 (κ)

π

∫ +∞

0

e−rt
[
K2 (0, |κ| , r)−

d2

c2
K3 (0, |κ| , r)

]
dr

− q̂ (κ, t)

πc2
∗t

∫ +∞

0

e−rtK3 (0, |κ| , r) dr, (33)

7



where ∗t is given by (3) and in the last term me made use of (4). For the inversion of the Fourier transform,

taking into account (5) and (7), we obtain

u (x, t) = −f (x) ∗x F−1

{
1

π

∫ +∞

0

e−rtK1 (|κ| , r) dr
}
(x, t)

− g1 (x) ∗x F−1

{
1

π

∫ +∞

0

e−rt
[
K2 (−1, |κ| , r) − d2

c2
K3 (−1, |κ| , r)

]
dr

}
(x, t)

− g2 (x) ∗x F−1

{
1

π

∫ +∞

0

e−rt
[
K2 (0, |κ| , r)−

d2

c2
K3 (0, |κ| , r)

]
dr

}
(x, t)

− q (x, t) ∗t ∗xF−1

{
1

πc2

∫ +∞

0

e−rtK3 (0, |κ| , r) dr
}
(x) . (34)

Using the following formula presented in [51] for the inverse Fourier transform of L1-functions

1

(2π)
n

∫

Rn

e−ix·κ ϕ (|κ|) dκ =
|x|1−

n
2

(2π)
n
2

∫ +∞

0

ϕ (w) w
n
2 Jn

2
−1 (|x|w) dw, (35)

and since we are dealing with radial functions in κ, (34) can be rewritten as

u (x, t)

= − 1

π
f (x) ∗x

[
|x|1−

n
2

(2π)
n
2

∫ +∞

0

∫ +∞

0

e−rtK1 (w, r) dr w
n
2 Jn

2
−1 (|x|w) dw

]

− 1

π
g1 (x) ∗x

[
|x|1−

n
2

(2π)
n
2

∫ +∞

0

∫ +∞

0

e−rt
[
K2 (−1, w, r)− d2

c2
K3 (−1, w, r)

]
dr w

n
2 Jn

2 −1 (|x|w) dw
]

− 1

π
g2 (x) ∗x

[
|x|1−

n
2

(2π)
n
2

∫ +∞

0

∫ +∞

0

e−rt
[
K2 (0, w, r) −

d2

c2
K3 (0, w, r)

]
dr w

n
2 Jn

2
−1 (|x|w) dw

]

− 1

πc2
q (x, t) ∗t ∗x

[
|x|1−

n
2

(2π)
n
2

∫ +∞

0

∫ +∞

0

e−rtK3 (0, w, r) dr w
n
2 Jn

2 −1 (|x|w) dw
]

= − 1

π
f (x) ∗x

[∫ +∞

0

e−rt
|x|1−

n
2

(2π)
n
2

∫ +∞

0

K1 (w, r) w
n
2 Jn

2
−1 (|x|w) dw

︸ ︷︷ ︸
I1

dr

]

− 1

π
g1 (x) ∗x

[∫ +∞

0

e−rt
|x|1−

n
2

(2π)
n
2

∫ +∞

0

[
K2 (−1, w, r)− d2

c2
K3 (−1, w, r)

]
w

n
2 Jn

2 −1 (|x|w) dw
︸ ︷︷ ︸

I2

dr

]

− 1

π
g2 (x) ∗x

[∫ +∞

0

e−rt
|x|1−

n
2

(2π)
n
2

∫ +∞

0

[
K2 (0, w, r) −

d2

c2
K3 (0, w, r)

]
w

n
2 Jn

2
−1 (|x|w) dw

︸ ︷︷ ︸
I3

dr

]

− 1

πc2
q (x, t) ∗t ∗x

[∫ +∞

0

e−rt
|x|1−

n
2

(2π)
n
2

∫ +∞

0

K3 (0, w, r) w
n
2 Jn

2 −1 (|x|w) dw
︸ ︷︷ ︸

I4

dr

]
. (36)
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To compute explicitly I1, I2, I3, and I4 in (36) we are going to use the Mellin transform. First, we rewrite

these integrals as a Mellin convolution (11). In fact, considering the following auxiliary functions

g1 (w) = K1 (w, r) , g2 (w) = K2 (−1, w, r)− d2

c2
K3 (−1, w, r) ,

g3 (w) = K2 (0, w, r)−
d2

c2
K3 (0, w, r) , g4 (w) = K3 (0, w, r) ,

f (w) =
1

(2π)
n
2 |x|n w n

2 +1
Jn

2
−1

(
1

w

)
,

we have for i = 1, 2, 3, 4

Ii = (gi ∗M f)

(
1

|x|

)

=

∫ +∞

0

gi (w) f

(
1

|x|w

)
dw

w

=

∫ +∞

0

gi (w)
w

n
2 +1 |x|

n
2 +1

(2π)
n
2 |x|n

Jn
2 −1 (|x|w)

dw

w

=
|x|1−

n
2

(2π)
n
2

∫ +∞

0

gi (w) w
n
2 Jn

2 −1 (|x|w) dw. (37)

From the relations (12) and (11), we have for i = 1, 2, 3, 4

M{Ii} (s) = M
{
(gi ∗M f)

(
1

|x|

)}
(s) = M{gi} (−s) M{f} (−s)

which is equivalent to

M{Ii} (−s) = M{gi} (s) M{f} (s) , i = 1, 2, 3, 4. (38)

Now, we compute the Mellin transforms that appear in (38). The Mellin transform of the function f was already

calculated in [63] (see formula (43)):

M{f} (s) =
1

π
n−1
2 |x|n 2n−1

Γ (n− s)

Γ
(
n+1−s

2

)
Γ
(
s
2

) . (39)

To compute the Mellin transform of the function g1, we take into account (9), (29), and (32), obtaining

M{g1} (s) =
∫ +∞

0

ws−1K1 (w, r) dw

=

∫ +∞

0

ws−1 ρ
∗
1

[(
A+ w2

)
sin (γ∗1π)−B cos (γ∗1π)

]

(A+ w2)
2
+B2

dw

= ρ∗1 sin (γ∗1π)

∫ +∞

0

ws+1

(A+ w2)
2
+B2

dw

+ ρ∗1 [A sin (γ∗1π)−B cos (γ∗1π)]

∫ +∞

0

ws−1

(A+ w2)
2
+B2

dw. (40)

Considering the change of variables w2 = z in (40) we obtain

M{g1} (s) = ρ∗1 sin (γ∗1π)

∫ +∞

0

z
s
2

z2 + 2Az +A2 +B2
dz

︸ ︷︷ ︸
I5

+ ρ∗1 [A sin (γ∗1π)−B cos (γ∗1π)]

∫ +∞

0

z
s
2−1

z2 + 2Az +A2 +B2
dz

︸ ︷︷ ︸
I6

. (41)
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Integrals I5 and I6 were already calculated in [63] (see formulas (49) and (50)). Therefore, we have that

I5 = − π

sin (ψ)

Γ
(
1 + s

2

)
Γ
(
1−

(
1 + s

2

))

Γ
(
sψ
2π

)
Γ
(
1− sψ

2π

) (
A2 +B2

) s
4− 1

2 (42)

and

I6 = − π

sin (ψ)

Γ
(
s
2

)
Γ
(
1− s

2

)

Γ
(
ψ
π

(
s
2 − 1

))
Γ
(
1− ψ

π

(
s
2 − 1

))
(
A2 +B2

) s
4−1

, (43)

where

ψ = arccos

(
A√

A2 +B2

)
. (44)

Hence, from (42) and (43) we conclude that (41) takes the form

M{g1} (s) =
−πρ∗1 sin (γ∗1π)

2 sin (ψ)

Γ
(
1 + s

2

)
Γ
(
1−

(
1 + s

2

))

Γ
(
sψ
2π

)
Γ
(
1− sψ

2π

) (
A2 +B2

) s
4− 1

2

− πρ∗1 [A sin (γ∗1π)−B cos (γ∗1π)]

2 sin (ψ)

Γ
(
s
2

)
Γ
(
1− s

2

)

Γ
(
ψ
π

(
s
2 − 1

))
Γ
(
1− ψ

π

(
s
2 − 1

))
(
A2 +B2

) s
4−1

. (45)

Now, we calculate the Mellin transform of g2. Taking into account (9), (30), (31), (32), and (44) we get

M{g2} (s)

=

∫ +∞

0

ws−1K2 (−1, w, r) dw − d2

c2

∫ +∞

0

ws−1K3 (−1, w, r) dw

=

∫ +∞

0

ws−1 ρ
∗
2

[(
A+ w2

)
sin (γ∗2π)−B cos (γ∗2π)

]

(−r)−1
[
(A+ w2)2 +B2

] dw − d2

c2

∫ +∞

0

ws−1 −B
(−r)−1

[
(A+ w2)2 +B2

] dw (46)

= −rρ∗2 sin (γ∗2π)
∫ +∞

0

ws+1

(A+ w2)2 +B2
dw − rρ∗2 [A sin (γ∗2π)−B cos (γ∗2π)]

∫ +∞

0

ws−1

(A+ w2)2 +B2
dw

− rd2B

c2

∫ +∞

0

ws−1

(A+ w2)
2
+B2

dw

= −rρ∗2 sin (γ∗2π)
∫ +∞

0

ws+1

(A+ w2)
2
+B2

dw

− rρ∗2 c
2 [A sin (γ∗2π)−B cos (γ∗2π)] + rd2B

c2

∫ +∞

0

ws−1

(A+ w2)2 +B2
dw. (47)

Considering the change of variables w2 = z in (47), we obtain

M{g2} (s) = −rρ
∗
2 sin (γ

∗
2π)

2

∫ +∞

0

z
s
2

z2 + 2Az +A2 +B2
dz

− rρ∗2 c
2 [A sin (γ∗2π)−B cos (γ∗2π)] + rd2B

2c2

∫ +∞

0

z
s
2−1

z2 + 2Az +A2 +B2
dz. (48)

The two integrals in (48) correspond to I5 and I6. Hence, from (42) and (43) we arrive to

M{g2} (s) =
πr ρ∗2 sin (γ

∗
2π)

2 sin (ψ)

Γ
(
1 + s

2

)
Γ
(
1−

(
1 + s

2

))

Γ
(
sψ
2π

)
Γ
(
1− sψ

2π

) (
A2 +B2

) s
4− 1

2

+
πr

[
ρ∗2 c

2 [A sin (γ∗2π)−B cos (γ∗2π)] + d2B
]

2c2 sin (ψ)

Γ
(
s
2

)
Γ
(
1− s

2

)

Γ
(
ψ
π

(
s
2 − 1

))
Γ
(
1− ψ

π

(
s
2 − 1

))
(
A2 +B2

) s
4−1

.

(49)
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For the calculation of the Mellin transform of g3 we use (9), (30), (31),(32), and (44) to get

M{g3} (s)

=

∫ +∞

0

ws−1K2 (0, w, r) dw − d2

c2

∫ +∞

0

ws−1K3 (0, w, r) dw

=

∫ +∞

0

ws−1 ρ
∗
2

[(
A+ w2

)
sin (γ∗2π)−B cos (γ∗2π)

]

(−r)0
[
(A+ w2)

2
+B2

] dw − d2

c2

∫ +∞

0

ws−1 −B
(−r)0

[
(A+ w2)

2
+B2

] dw. (50)

Expression (50) is very similar to (46) with a difference in the power of −r. However, this exponent does not

affect any of the performed calculations in obtaining (49). Then we get

M{g3} (s) =
−π ρ∗2 sin (γ∗2π)

2 sin (ψ)

Γ
(
1 + s

2

)
Γ
(
1−

(
1 + s

2

))

Γ
(
sψ
2π

)
Γ
(
1− sψ

2π

) (
A2 +B2

) s
4− 1

2

− π
[
ρ∗2 c

2 [A sin (γ∗2π)−B cos (γ∗2π)] + d2B
]

2c2 sin (ψ)

Γ
(
s
2

)
Γ
(
1− s

2

)

Γ
(
ψ
π

(
s
2 − 1

))
Γ
(
1− ψ

π

(
s
2 − 1

))
(
A2 +B2

) s
4
−1
.

(51)

Finally, we calculate the Mellin transform of g4. Taking into account (9), (31), (32), and (44) we get

M{g4} (s) =

∫ +∞

0

ws−1K3 (0, w, r) dw = −B
∫ +∞

0

ws−1

(A+ w2)
2
+B2

dw. (52)

Considering the change of variables w2 = z in (52), we obtain

M{g4} (s) = −B
2

∫ +∞

0

z
s
2−1

z2 + 2Az +A2 +B2
dz. (53)

The integral in (53) corresponds to the integral I6. Hence, from (43) we arrive to

M{g4} (s) =
Bπ

2 sin (ψ)

Γ
(
s
2

)
Γ
(
1− s

2

)

Γ
(
ψ
π

(
s
2 − 1

))
Γ
(
1− ψ

π

(
s
2 − 1

))
(
A2 +B2

) s
4−1

. (54)

Now, using the inverse Mellin transform (10) applied to (38), we obtain the representation of the integrals I1,

I2, I3, and I4 in terms of Mellin-Barnes integrals and, consequently, as Fox H-functions. For the integral I1,

taking into account (10), (32), (45), and (39), we obtain

I1 =
−ρ∗1 sin (γ∗1π)

(
A2 +B2

)− 1
2

π
n−3
2 (2 |x|)n sin (ψ)

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1 + s

2

)
Γ (n− s) Γ

(
− s

2

)

Γ
(
s
2

)
Γ
(
ψs
2π

)
Γ
(
n+1
2 − s

2

)
Γ
(
1− ψs

2π

)



(
A2 +B2

)− 1
4

|x|




−s

ds

− ρ∗1 [A sin (γ∗1π) −B cos (γ∗1π)]
(
A2 +B2

)−1

π
n−3
2 (2 |x|)n sin (ψ)

× 1

2πi

∫ γ+i∞

γ−i∞

Γ (n− s) Γ
(
1− s

2

)

Γ
(
−ψ
π
+ ψs

2π

)
Γ
(
n+1
2 − s

2

)
Γ
(
1 + ψ

π
− ψs

2π

)



(
A2 +B2

)− 1
4

|x|




−s

ds

which is equivalent, by (13), to the following expression in terms of Fox H-functions

I1 =
−ρ∗1 sin (γ∗1π)

(
A2 +B2

)− 1
2

π
n−3
2 (2 |x|)n sin (ψ)

H1,2
4,3




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
1,

1

2

)
,

(
0,

1

2

)
,

(
0,

ψ

2π

)

(
1,

1

2

)
,

(
1− n

2
,
1

2

)
,

(
0,

ψ

2π

)




− ρ∗1 [A sin (γ∗1π)−B cos (γ∗1π)]
(
A2 +B2

)−1

π
n−3
2 (2 |x|)n sin (ψ)

H0,2
3,2




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
0,

1

2

)
,

(
−ψ
π
,
ψ

2π

)

(
1− n

2
,
1

2

)
,

(
−ψ
π
,
ψ

2π

)


 .

(55)
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For the integral I2, taking into account (10), (32), (49), and (39), we obtain

I2 =
rρ∗2 sin (γ∗2π)

(
A2 +B2

)− 1
2

π
n−3
2 (2 |x|)n sin (ψ)

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1 + s

2

)
Γ (n− s) Γ

(
− s

2

)

Γ
(
s
2

)
Γ
(
ψs
2π

)
Γ
(
n+1
2 − s

2

)
Γ
(
1− ψs

2π

)



(
A2 +B2

)− 1
4

|x|




−s

ds

+
r
[
ρ∗2 c

2 (A sin (γ∗2π)−B cos (γ∗2π)) +Bd2
] (
A2 +B2

)−1

c2 π
n−3
2 (2 |x|)n sin (ψ)

× 1

2πi

∫ γ+i∞

γ−i∞

Γ (n− s) Γ
(
1− s

2

)

Γ
(
−ψ
π
+ ψs

2π

)
Γ
(
n+1
2 − s

2

)
Γ
(
1 + ψ

π
− ψs

2π

)



(
A2 +B2

)− 1
4

|x|




−s

ds

which is equivalent, by (13), to the following expression in terms of Fox H-functions

I2 =
rρ∗2 sin (γ∗2π)

(
A2 +B2

)− 1
2

π
n−3
2 (2 |x|)n sin (ψ)

H1,2
4,3




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
1,

1

2

)
,

(
0,

1

2

)
,

(
0,

ψ

2π

)

(
1,

1

2

)
,

(
1− n

2
,
1

2

)
,

(
0,

ψ

2π

)




+
r
[
ρ∗2 c

2 (A sin (γ∗2π)−B cos (γ∗2π)) +Bd2
] (
A2 +B2

)−1

c2 π
n−3
2 (2 |x|)n sin (ψ)

×H0,2
3,2




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
0,

1

2

)
,

(
−ψ
π
,
ψ

2π

)

(
1− n

2
,
1

2

)
,

(
−ψ
π
,
ψ

2π

)


 . (56)

Due to the similarities between g2 and g3 (and consequently between I2 and I3) we have that

I3 =
−ρ∗2 sin (γ∗2π)

(
A2 +B2

)− 1
2

π
n−3
2 (2 |x|)n sin (ψ)

H1,2
4,3




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
1,

1

2

)
,

(
0,

1

2

)
,

(
0,

ψ

2π

)

(
1,

1

2

)
,

(
1− n

2
,
1

2

)
,

(
0,

ψ

2π

)




−
[
ρ∗2 c

2 (A sin (γ∗2π)−B cos (γ∗2π)) +Bd2
] (
A2 +B2

)−1

c2 π
n−3
2 (2 |x|)n sin (ψ)

×H0,2
3,2




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
0,

1

2

)
,

(
−ψ
π
,
ψ

2π

)

(
1− n

2
,
1

2

)
,

(
−ψ
π
,
ψ

2π

)


 . (57)

Finally, for the integral I4, taking into account (10), (32), (54), and (39), we obtain

I4 =
B
(
A2 +B2

)−1

π
n−3
2 (2 |x|)n sin (ψ)

1

2πi

∫ γ+i∞

γ−i∞

Γ (n− s) Γ
(
1− s

2

)

Γ
(
−ψ
π
+ ψs

2π

)
Γ
(
n+1
2 − s

2

)
Γ
(
1 + ψ

π
− ψs

2π

)



(
A2 +B2

)− 1
4

|x|




−s

ds

which is equivalent, by (13), to the following expression in terms of Fox H-functions

I4 =
B
(
A2 +B2

)−1

π
n−3
2 (2 |x|)n sin (ψ)

H0,2
3,2




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
0,

1

2

)
,

(
−ψ
π
,
ψ

2π

)

(
1− n

2
,
1

2

)
,

(
−ψ
π
,
ψ

2π

)


 . (58)

From (55), (56), (57), and (58) we conclude that the representation (36) of the solution u (x, t) of (15)-(16)

corresponds to the sum of convolution integrals involving Fox H-functions.

In the next subsection we summarize our calculations in the main result of the paper.
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3.3 Main result and corollary

Taking into account (36), (55), (56), (57), and (58) we obtain our main result.

Theorem 3.3 The solution of the time-fractional telegraph equation of distributed order (15) subject to the

conditions (17)-(16) and the additional assumption (25) is given, in terms of convolution integrals, by

u (x, t) =

∫

Rn

f (z) G1 (x− z, t) dz +

∫

Rn

g1 (z) G2 (x− z, t) dz

+

∫

Rn

g2 (z) G3 (x− z, t) dz +

∫

Rn

∫ t

0

q (z, w) G4 (x− z, t− w) dw dz, (59)

where the functions G1, G2, G3, and G4 are given by

G1 (x, t) =
1

π
n−1
2 (2 |x|)n

∫ +∞

0

ρ∗1
(
A2 +B2

)− 1
2 e−rt

sin (ψ)

×


sin (γ∗1π) H



(
A2 +B2

)− 1
4

|x|


+ [A sin (γ∗1π)−B cos (γ∗1π)]

(
A2 +B2

)− 1
2 H∗



(
A2 +B2

)− 1
4

|x|




 dr,

G2 (x, t) =
−1

π
n−1
2 (2 |x|)n

∫ +∞

0

r
(
A2 +B2

)− 1
2 e−rt

sin (ψ)


ρ∗2 sin (γ∗2π) H



(
A2 +B2

)− 1
4

|x|




+
1

c2
[
ρ∗2 c

2 (A sin (γ∗2π)−B cos (γ∗2π)) +Bd2
] (
A2 +B2

)− 1
2 H∗



(
A2 + B2

)− 1
4

|x|




 dr,

G3 (x, t) =
1

π
n−1
2 (2 |x|)n

∫ +∞

0

(
A2 +B2

)− 1
2 e−rt

sin (ψ)


ρ∗2 sin (γ∗2π) H



(
A2 +B2

)− 1
4

|x|




+
1

c2
[
ρ∗2 c

2 (A sin (γ∗2π)−B cos (γ∗2π)) +Bd2
] (
A2 +B2

)− 1
2 H∗



(
A2 + B2

)− 1
4

|x|




 dr,

G4 (x, t) =
−1

c2 π
n−1
2 (2 |x|)n

∫ +∞

0

B
(
A2 +B2

)−1
e−rt

sin (ψ)
H∗



(
A2 +B2

)− 1
4

|x|


 dr,

where ρ∗1, γ
∗
1 , ρ

∗
2, and γ∗2 , A and B, and ψ are given, respectively, by (28), (32), and (44). Moreover, the

functions H and H∗ are expressed in terms of the following Fox H-functions

H



(
A2 +B2

)− 1
4

|x|


 = H1,2

4,3




(
A2 + B2

)− 1
4

|x|

(1− n, 1) ,

(
1,

1

2

)
,

(
0,

1

2

)
,

(
0,

ψ

2π

)

(
1,

1

2

)
,

(
1− n

2
,
1

2

)
,

(
0,

ψ

2π

)


 ,

H∗



(
A2 +B2

)− 1
4

|x|


 = H0,2

3,2




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
0,

1

2

)
,

(
−ψ
π
,
ψ

2π

)

(
1− n

2
,
1

2

)
,

(
−ψ
π
,
ψ

2π

)


 .

Remark 3.4 If we consider

f (x) = δ (x) =

n∏

i=1

δ (xi) , g (x) = q (x, t) = 0, a = c = 1, d =
√
λ

with λ ∈ R
+ in (15)-(16), then the solution u (x, t) given by (59) corresponds to the eigenfunctions of the gener-

alized time-fractional telegraph equation of distributed order in Rn×R+. Moreover, if additionally b2 (β, ν) = 0

(resp. b1 (α, µ) = 0) we obtain the representation of the generalized eigenfunctions of the time-fractional diffu-

sion (resp. wave) equation of distributed order in Rn × R+.
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Putting a = 0 in Theorem 3.3, we have the following simplifications

B1 (s) = B∗
1 (s) = 0, A = ρ cos (γπ) , B = ρ sin (γπ) , A2 +B2 = ρ2, ψ = γπ,

which give the following result.

Corollary 3.5 The solution of the generalized time-fractional wave equation of distributed order in Rn × R+

∫ 1

0

∫ 2

1

b2 (β, ν) t∂
β,ν

0+ u (x, t) dβ dν − c2 ∆xu (x, t) + d2 u (x, t) = q (x, t)

for a given density function b2 (β, ν), subject to the following initial and boundary conditions

(
tI

(1−ν)(2−β)
0+ u

) (
x, 0+

)
= g1 (x) ,

[
∂

∂t

(
tI

(1−ν)(2−β)
0+ u

)] (
x, 0+

)
= g2 (x) , lim

|x|→+∞
u (x, t) = 0,

is given, in terms of convolution integrals, by

u (x, t) =

∫

Rn

g1 (z) G2 (x− z, t) dz +

∫

Rn

g2 (z) G3 (x− z, t) dz +

∫

Rn

∫ t

0

q (z, w) G4 (x− z, t− w) dw dz,

where the functions G2, G3, and G4 are given by

G2 (x, t) =
−1

π
n−1
2 (2 |x|)n

∫ +∞

0

re−rt

ρ sin (γπ)

[
ρ∗ sin (γ∗π)H

(
1

|x| √ρ

)
+
d2

c2
sin (γπ) H∗

(
1

|x| √ρ

)]
dr,

G3 (x, t) =
1

π
n−1
2 (2 |x|)n

∫ +∞

0

e−rt

ρ sin (γπ)

[
ρ∗ sin (γ∗π)H

(
1

|x| √ρ

)
+
d2

c2
sin (γπ) H∗

(
1

|x| √ρ

)]
dr,

G4 (x, t) =
−1

c2 π
n−1
2 (2 |x|)n

∫ +∞

0

e−rt

ρ
H∗

(
1

|x| √ρ

)
dr

with ρ and γ, ρ∗ and γ∗ given by (27) and (28), respectively, and the functions H and H∗ are expressed in

terms of the following Fox H-functions

H
(

1

|x| √ρ

)
= H0,2

3,2




1

|x| √ρ

(1− n, 1) ,

(
1,

1

2

)
,
(
0,
γ

2

)

(
1− n

2
,
1

2

)
,
(
0,
γ

2

)


 ,

H∗
(

1

|x| √ρ

)
= H0,2

3,2




1

|x| √ρ

(1− n, 1) ,

(
0,

1

2

)
,
(
−γ, γ

2

)

(
1− n

2
,
1

2

)
,
(
−γ, γ

2

)


 .

Remark 3.6 If we consider ν = µ = 1 in Theorem 3.3 (i.e., the telegraph equation has only Caputo fractional

derivatives) we obtain the main result in [63]. For that we need to take into account Remarks 3.1 and 3.2 and

to combine the first two integrals in (59) into a unique integral. Hence, the solution u (x, t) is given by

u (x, t) =

∫

Rn

f (z) (G1 (x− z, t) +G2 (x− z, t)) dz

+

∫

Rn

g2 (z) G3 (x− z, t) dz +

∫

Rn

∫ t

0

q (z, w) G4 (x− z, t− w) dw dz, (60)
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where for ν = µ = 1

G1 (x, t) +G2 (x, t)

=
−1

π
n−1
2 (2 |x|)n

∫ +∞

0

(
A2 +B2

)− 1
2 e−rt

r sin (ψ)



[ρ1 sin (γ1π) + ρ2 sin (γ2π)] H



(
A2 +B2

)− 1
4

|x|




+ [Aρ1 sin (γ1π)−B ρ1 cos (γ1π) +Aρ2 sin (γ2π)−B ρ2 cos (γ2π)]
(
A2 +B2

)− 1
2 H∗



(
A2 +B2

)− 1
4

|x|




+
d2B

c2
(
A2 +B2

)− 1
2 H∗



(
A2 +B2

)− 1
4

|x|





 dr. (61)

By (32) we have that

Aρ1 sin (γ1π)−B ρ1 cos (γ1π) +Aρ2 sin (γ2π)−B ρ2 cos (γ2π)

= A [ρ1 sin (γ1π) + ρ2 sin (γ2π)]−B [ρ1 cos (γ1π) + ρ2 cos (γ2π)]

= AB −BA = 0,

and, hence, (61) simplifies to

G1 (x, t) +G2 (x, t)

=
−1

π
n−1
2 (2 |x|)n

∫ +∞

0

B
(
A2 +B2

)− 1
2 e−rt

r sin (ψ)


H



(
A2 +B2

)− 1
4

|x|


 +

d2

c2
(
A2 +B2

)− 1
2 H∗



(
A2 +B2

)− 1
4

|x|




 dr

which corresponds to the function G1 presented in the main result of [63]. Moreover, in (60)

G3 (x, t) =
1

π
n−1
2 (2 |x|)n

∫ +∞

0

(
A2 +B2

)− 1
2 e−rt

r2 sin (ψ)


ρ2 sin (γ2π) H



(
A2 +B2

)− 1
4

|x|




+
1

c2
[
ρ2 c

2 (A sin (γ2π)−B cos (γ2π)) +Bd2
] (
A2 +B2

)− 1
2 H∗



(
A2 +B2

)− 1
4

|x|




 dr,

G4 (x, t) =
1

c2 π
n−1
2 (2 |x|)n

∫ +∞

0

B
(
A2 +B2

)−1
e−rt

sin (ψ)
H∗



(
A2 +B2

)− 1
4

|x|


 dr

which correspond, respectively, to the functions G2 and G3 that appear in the main result of [63]. Therefore, we

can claim that there is consistency in our results.

Remark 3.7 The telegraph equations studied in [16, 18] are particular cases of the equation studied in this

paper, for the choices ν = µ = 1, b2 (β, ν) = δ (β − β1) , b1 (α, µ) = δ (α− α1), with 1 < β1 ≤ 2 and 0 < α1 ≤ 1

d = 0, and q (x, t) = 0.

The numerical implementation of (59) is possible, however, depends substantially on the study of the asymptotic

behaviour of G1, G2, G3, and G4 through the study of the asymptotic behaviour of the associated Fox H-

functions. We would like to remark also that (59) is a very general solution, but for particular cases of the

dimension, of the fractional parameters, and/or of the density functions, it is possible to get simpler expressions.

4 Fractional Moments

In this section we obtain the expression for some fractional moments of the first fundamental solution G1 of

the time-fractional telegraph equation of distributed order (15) with d = q (x, t) = 0, and subject to the initial
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and boundary conditions

f (x) = g1 (x) = δ (x) =

n∏

j=1

δ (xj) and g2 (x) = 0. (62)

Then G1 is given by G1 (x, t) = G1 (x, t) +G2 (x, t), where G1 and G2 are given in Theorem 3.3.

It is well known that the Mellin transform (9) can be interpreted as the fractional moment of order s− 1 of

the function f (see [19]). Therefore, we can calculate the fractional moments Mα,µ;β,ν
n;,γ of arbitrary order γ > 0

of G̃1, where G̃1 denotes the Laplace transform of G1. Denoting by s the variable in the Laplace domain and

by r the radial quantity |x|, we have, from the definition of the Mellin transform, that

M̃α,µ;β,ν
n;,γ (s) =

∫ +∞

0

rγ G̃1 (r, s) dr =

∫ +∞

0

rγ−n+1−1 rnG̃1 (r, s) dr = M
{
rn G̃1 (r, s)

}
(γ − n+ 1) . (63)

From (19), we have that

G1 (r, t) = L−1

{
F−1

{
̂̃u1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣
p=−1

− d2

c2
̂̃u3 (κ, s)

∣∣∣
p=−1

}
(r, s)

}
(r, t)

which is equivalent to

G̃1 (r, s) = L{G1 (r, t)} (r, s) = F−1

{
̂̃u1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣
p=−1

− d2

c2
̂̃u3 (κ, s)

∣∣∣
p=−1

}
(r, s) .

To calculate the inverse Fourier transform we are going to use the Mellin transform, similarly as it was done in

Section 3. Taking into account (35), we have that

F−1

{
̂̃u1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣
p=−1

− d2

c2
̂̃u3 (κ, s)

∣∣∣
p=−1

}
(r, s)

=
r1−

n
2

(2π)
n
2

∫ +∞

0

[
̂̃u1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣
p=−1

− d2

c2
̂̃u3 (κ, s)

∣∣∣
p=−1

]
w

n
2 Jn

2
−1 (|x| w) dw (64)

= (g5 ∗M f)

(
1

r

)
,

where ∗M denotes the Mellin convolution given by (11) at the point 1
r
with

g5 (w) = ̂̃u1 (κ, s) + ̂̃u2 (κ, s)
∣∣∣
p=−1

− d2

c2
̂̃u3 (κ, s)

∣∣∣
p=−1

and

f (w) =
1

(2π)
n
2 |x|n w n

2 +1
Jn

2 −1

(
1

w

)
.

Denoting by I7 the integral in (64), we have, by relations (12) and (11), that

M{I7} (s) = M
{
(g5 ∗M f)

(
1

r

)}
(s) = M{g5} (−s) M{f} (−s)

which is equivalent to

M{I7} (−s) = M{g5} (s) M{f} (s) . (65)

From (39) we have that

M{f} (s) =
1

π
n−1
2 |x|n 2n−1

Γ (n− s)

Γ
(
n+1−s

2

)
Γ
(
s
2

) . (66)

Now, we calculate the Mellin transform of the function g5. Taking into account (9), and (22) with p = 0, (23)

and (24) with p = −1, we get

M{g5} (s) =
∫ +∞

0

ws−1

[
̂̃u1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣
p=−1

− d2

c2
̂̃u3 (κ, s)

∣∣∣
p=−1

]
dw

=
[
B∗

1 (s) +
s

c2
[
c2B∗

2 (s)− d2
]] ∫ +∞

0

ws−1

B2 (s) +B1 (s) + w2
dw.
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The integral in the previous expression was already calculated in [63] (see formula (84)). Therefore, we have

that

M{g5} (s) =
[
B∗

1 (s) +
s

c2
[
c2B∗

2 (s)− d2
]]
π

Γ (1− s) Γ (s)

Γ
(
1+s
2

)
Γ
(
1−s
2

) (B2 (s) +B1 (s))
s
2−1

. (67)

From (66), (67), (65), and (63) we conclude that

M
{
rn F−1

{
̂̃u1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣
p=−1

− d2

c2
̂̃u3 (κ, s)

∣∣∣
p=−1

}
(r, s)

}
(γ − n+ 1, s)

=
[
B∗

1 (s) +
s

c2
[
c2B∗

2 (s)− d2
]] (B2 (s) +B1 (s))

− s
2−1

π
n−3
2 2n−1

Γ (n+ s) Γ (1 + s) Γ (−s)
Γ
(
n+1+s

2

)
Γ
(
− s

2

)
Γ
(
1−s
2

)
Γ
(
1+s
2

)
∣∣∣∣∣
s=γ−n+1

. (68)

By the duplication formula of the Gamma function Γ (2z) = 22z−1
√
π

Γ (z) Γ
(
z + 1

2

)
, we have the following equal-

ities for the Gamma functions that appear in (68)

Γ (n+ s)

Γ
(
1
2 + n+s

2

) =
2n+s−1

√
π

Γ

(
n+ s

2

)
, (69)

Γ (1 + s)

Γ
(
1+s
2

) =
2s√
π
Γ
(
1 +

s

2

)
, (70)

Γ (−s)
Γ
(
1
2 − s

2

) =
2−s−1

√
π

Γ
(
−s
2

)
. (71)

Taking into account (69), (70), and (71), expression (68) simplifies to

M
{
rn F−1

{
̂̃u1 (κ, s) + ̂̃u2 (κ, s)

∣∣∣
p=−1

− d2

c2
̂̃u3 (κ, s)

∣∣∣
p=−1

}
(r, s)

}
(γ − n+ 1, s)

=
[
B∗

1 (s) +
s

c2
[
B∗

2 (s)− d2
]] (B2 (s) +B1 (s))

− s
2−1

π
n
2

2s−1 Γ

(
n+ s

2

)
Γ
(
1 +

s

2

) ∣∣∣∣∣
s=γ−n+1

and, consequently, the fractional moments of arbitrary order γ in the Laplace domain are given by

M̃α,µ;β,ν
n;γ (s) =

[
B∗

1 (s) +
s

c2
[
c2B∗

2 (s)− d2
]] (B2 (s) +B1 (s))

−γ+n−3
2

π
n
2

2γ−n Γ

(
γ + 1

2

)
Γ

(
3 + γ − n

2

)
. (72)

If we restrict (72) to the time-fractional telegraph equation of distributed order with Caputo fractional deriva-

tives, i.e., if we consider µ = ν = 1 (which implies that B∗
1 (s) = s−1B1 (s) and B

∗
2 (s)− d2

c2
= s−2

[
B2 (s)− d2

c2

]

by Remark 3.1), then (72) becomes equal to

M̃α,1;β,1
n;γ (s) =

c2B1 (s) + c2B2 (s)− d2

π
n
2 c2 s

(B2 (s) +B1 (s))
−γ+n−3

2 2γ−n Γ

(
γ + 1

2

)
Γ

(
3 + γ − n

2

)
,

which coincides with the correspondent expression deduced in [63]. Let us now analyse expression (72) for some

special cases:

• When γ = n − 2k − 3, with n > 2k + 3 and k ∈ N0, the correspondent moments in the Laplace domain

become infinite.

• When γ = 1 (mean value), we have

M̃
α,µ;β,ν
n;1 (s) =

[
B∗

1 (s) +
s

c2
[
c2B∗

2 (s)− d2
]] (B2 (s) +B1 (s))

n
2 −2

π
n
2

21−n Γ
(
2− n

2

)
, (73)

which becomes infinite when n = 4 + 2k, with k ∈ N0.

• When γ = 2 (variance), we have

M̃
α,µ;β,ν
n;2 (s) =

[
B∗

1 (s) +
s

c2
[
c2B∗

2 (s)− d2
]] (B2 (s) +B1 (s))

n−5
2

π
n+1
2

23−n Γ

(
5− n

2

)
, (74)

which becomes infinite when n = 5 + 2k, with k ∈ N0.
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4.1 Tauberian analysis for the second-order moment (variance)

When the fundamental solution is a positive function, it is possible to classify the diffusion process by analysing

the correspondent second-order moment, also called the mean squared displacement of a particle. This is

obtained by comparison with the variance in the normal diffusion process. In this subsection we consider the

particular case of double-order distributed fractional derivatives, and we analyze the second-order moment for

short and long-time. We separate our analysis between the diffusion and the wave cases. The following Laplace

inversion formulas will be needed in the sequel:

• Formula (2.1.1.1) in [50]

L−1

{
1

sν

}
(t) =

tν−1

Γ (ν)
, ν > 0. (75)

• Formula (5.1.26) in [21]

L−1

{
sαγ−β

(sα − λ)γ

}
(t) = tβ−1Eγα,β (λt

α) , Re (α) ,Re (β) > 0, λ ∈ C, (76)

where Eγα,β is the three parameter Mittag-Leffler function given by (14).

4.1.1 Two composite time-fractional derivatives in the diffusion case

Here we consider b2 (β, ν) = 0, which implies that B2 (s) = B∗
2 (s) = 0. In this case, the second-order moment

in the Laplace domain becomes

M̃
α,µ;−,−
n;2 (s) = M̃

α,µ
n;2 (s) =

21−n Γ
(
5−n
2

)

π
n−1
2

B∗
1 (s) (B1 (s))

n−5
2 , n 6= 5 + 2k, k ∈ N0. (77)

Further, we assume

b1 (α, µ) = k1 δ (α− α1) δ (µ− µ1) + k2 δ (α− α2) δ (µ− µ2) (78)

with 0 < α1 < α2 ≤ 1, 0 ≤ µ1, µ2 ≤ 1, µ2 < µ1
1−α1

1−α2
, k1, k2 > 0, and k1 + k2 = 1. For this b1 (α, µ) we get

B1 (s) =
ak1
c2

sα1 +
ak2
c2

sα2 and B∗
1 (s) =

ak1
c2

s−µ1(1−α1) +
ak2
c2

s−µ2(1−α2). (79)

Considering (79) in (77) we get

M̃
(α1,α2),(µ1,µ2)
n;2 (s) =

21−n a
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

(
k1 s

−µ1(1−α1) + k2 s
−µ2(1−α2)

)
(k1 s

α1 + k2 s
α2)

n−5
2 . (80)

To invert the Laplace transform of M̃
(α1,α2),(µ1,µ2)
n;2 we first rearrange the expression (80):

M̃
(α1,α2),(µ1,µ2)
n;2 (s) =

21−n (a k2)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

k1
k2

s
(α2−α1)(5−n)

2 +
α2(n−5)

2 −µ1(1−α1)

(
sα2−α1 −

(
−k1
k2

)) 5−n
2

+
21−n (a k2)

n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

s
(α2−α1)(5−n)

2 +
α2(n−5)

2 −µ2(1−α2)

(
sα2−α1 −

(
−k1
k2

)) 5−n
2

. (81)

Taking into account (76) with

α = α2 − α1, γ =
5− n

2
, λ = −k1

k2
,

β =
α2 (5− n)

2
+ µ1 (1− α1) (1st term), β =

α2 (5− n)

2
+ µ2 (1− α2) (2nd term),
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we get from (81) that

M
(α1,α2),(µ1,µ2)
n;2 (t) =

21−n (a k2)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

k1
k2
t
α2(5−n)

2 +µ1(1−α1)−1E
5−n
2

α2−α1,
α2(5−n)

2 +µ1(1−α1)

(
−k1
k2
tα2−α1

)

+
21−n (a k2)

n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

t
α2(5−n)

2 +µ2(1−α2)−1E
5−n
2

α2−α1,
α2(5−n)

2 +µ2(1−α2)

(
−k1
k2
tα2−α1

)
.

(82)

Remark 4.1 For n = 1, the expression (82) reduces to the expression (28) in [53] with suitable identification

of the parameters, which indicates consistency in our results.

The graphical representation of M
(α1,α2),(µ1,µ2)
n;2 as a function of t using (82) is not an easy procedure due

to the presence of the three parameter Mittag-Leffler function Eγα,β . The numerical implementation of this

special function is possible for some range of the parameter α (see [20]), which do not include all the cases

studied in this work. Therefore, we will make an asymptotic analysis of (80) using the Tauberian analysis.

Since s−µ2(1−α2)+µ1(1−α1) → 0 and sα2−α1 → 0 as s → 0 then, we get the following asymptotic behaviour of

M̃
(α1,α2),(µ1,µ2)
n;2 (s) as s → 0 :

M̃
(α1,α2),(µ1,µ2)
n;2 (s) =

21−n a
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

(
k1 s

−µ1(1−α1) + k2 s
−µ2(1−α2)

)
(k1 s

α1 + k2 s
α2)

n−5
2

∼ 21−n (a k1)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

s−µ1(1−α1)+
α1(n−5)

2 . (83)

Concerning the symbol ∼ in the previous and subsequent expressions, we say that f and g are asymptotically

equivalent as w → ∞ (resp. as w → 0), i.e., f ∼ g, if and only if limw→∞
f(w)
g(w) = 1 (resp. limw→0

f(w)
g(w) = 1).

Using (75) to invert the Laplace transform in (83), we obtain the asymptotic behavior of M
(α1,α2),(µ1,µ2)
n;2 for

t→ +∞, with 0 ≤ µ1 ≤ 1 and n and α1 according to the following cases:

M
(α1,α2),(µ1,µ2)
n;2 (t) ∼





21−n (a k1)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

tµ1+
α1(5−n−2µ1)

2 −1

Γ
(
µ1 +

α1(5−n−2µ1)
2

) , α1 < α2, n = 1, 2, 3, 4

21−n (a k1)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

tµ1+
α1(5−n−2µ1)

2 −1

Γ
(
µ1 +

α1(5−n−2µ1)
2

) , α1 <
2µ1

2µ1 + n− 5
∧ α1 < α2, n = 6, 8, . . .

.

(84)

To classify the type of diffusion process we need to compare M
(α1,α2),(µ1,µ2)
n;2 with the moment of the normal

diffusion process which is given by

M
(1,1),(µ1,µ2)
n;2 =

21−n(ak1)
n−3
2

π
n−1
2 cn−3

t
3−n
2 . (85)

According with the dimension n we have the following cases:

• n = 1, 2, 3: M
(α1,α2),(µ1,µ2)
n;2 (t) /M

(1,1),(µ1,µ2)
n;2 (t) → 0, as t→ +∞, for all 0 ≤ µ1 < 1, and all admissible α1

and n, which corresponds to a subdiffusion process in the long time. In the limit case, µ1 = 1 (Caputo case),

for n = 1, 2 we still have a subdiffusion process while for n = 3 holdsM
(α1,α2),(µ1,µ2)
3;2 (t) /M

(1,1),(µ1,µ2)
3;2 (t) →

k > 0, as t→ +∞, thus the process coincides with the normal diffusion in the long time;

• n = 4: The classification of the type of diffusion depends on the type µ1.

◮ For 0 ≤ µ1 < 1/2 holds M
(α1,α2),(µ1,µ2)
4;2 (t) /M

(1,1),(µ1,µ2)
4;2 (t) → 0, as t→ +∞, thus corresponding to

a subdiffusion process in the long time;

◮ For µ1 = 1/2 holds M
(α1,α2),(µ1,µ2)
4;2 (t) /M

(1,1),(µ1,µ2)
4;2 (t) → k > 0, as t → +∞, thus the process

coincides with the normal diffusion in the long time;
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◮ For 1/2 < µ1 ≤ 1 holds M
(α1,α2),(µ1,µ2)
4;2 (t) /M

(1,1),(µ1,µ2)
4;2 (t) → +∞, as t→ +∞, thus corresponding

to a superdiffusion process in the long time.

• n = 6 + 2k: The moment M
(α1,α2),(µ1,µ2)
n;2 (t) is positive when n = 8 + 4k and negative when n = 6 + 4k,

k ∈ Z+. This is due to the change of sign of the gamma function in the numerator. In the second case, a

probabilistic interpretation is no longer possible.

Finally, we note a different behaviour of the monotonicity of the second-order moment along the dimensions,

depending on the values assumed by the several parameters in the expression. When n = 1, 2, 3, 4, if we assume

that c > 0, then the following conclusions about M
(α1,α2),(µ1,µ2)
n;2 for large values of t can be drawn:

• n = 1: M
(α1,α2),(µ1,µ2)
n;2 is an increasing function when 1−µ1

2−µ1
< α1 ≤ 1, is constant when α1 = 1−µ1

2−µ1
, and

is a decreasing function when 0 < α1 <
1−µ1

2−µ1
≤ 0.5, with 0 ≤ µ1 ≤ 1.

• n = 2: M
(α1,α2),(µ1,µ2)
n;2 is an increasing function when 2−2µ1

3−2µ1
< α1 ≤ 1, is constant when α1 = 2−2µ1

3−2µ1
, and

is a decreasing function when 0 < α1 <
2−2µ1

3−2µ1
≤ 2

3 , with 0 ≤ µ1 ≤ 1.

• n = 3: M
(α1,α2),(µ1,µ2)
n;2 is a decreasing function when 0 < α1 < 1 and 0 ≤ µ1 < 1, and is constant when

α1 = 1 or 0 ≤ α1 ≤ 1 and µ1 = 1.

• n = 4: M
(α1,α2),(µ1,µ2)
n;2 is a decreasing function for all 0 < α1 ≤ 1 and 0 ≤ µ1 < 1, and is constant when

α1 = 0 and µ1 = 1.

Now, we study the asymptotic behaviour of M
(α1,α2),(µ1,µ2)
n;2 for small values of t. From (80) we have the

following asymptotic behaviour when s → +∞ :

M̃
(α1,α2),(µ1,µ2)
n;2 (s) =

21−n a
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

(
k1 s

−µ1(1−α1) + k2 s
−µ2(1−α2)

)
(k2 s

α1 + k2 s
α2)

n−5
2

∼ 21−n (a k2)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

s−µ2(1−α2)+
α2(n−5)

2 . (86)

Using (75) to invert the Laplace transform in (86), we obtain the asymptotic behavior of M
(α1,α2),(µ1,µ2)
n;2 for

t→ 0+, with 0 ≤ µ2 ≤ 1 and n and α2 according to the following cases:

M
(α1,α2),(µ1,µ2)
n;2 (t) ∼





21−n (a k2)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

tµ2+
α2(5−n−2µ2)

2 −1

Γ
(
µ2 +

α2(5−n−2µ2)
2

) , α2 > α1, n = 1, 2, 3, 4

21−n (a k2)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

tµ2+
α2(5−n−2µ2)

2 −1

Γ
(
µ2 +

α2(5−n−2µ2)
2

) , α2 <
2µ2

2µ2 + n− 5
∧ α2 > α1, n = 6, 8, . . .

.

(87)

Comparing M
(α1,α2),(µ1,µ2)
n;2 with M

(1,1),(µ1,µ2)
n;2 when t→ 0+, we have the following conclusions:

• n = 1, 2, 3: M
(α1,α2),(µ1,µ2)
n;2 (t) /M

(1,1),(µ1,µ2)
n;2 (t) → +∞, as t → 0+, for all 0 ≤ µ1 < 1, and all

admissible α1 and n, which corresponds to a superdiffusion process in the short time. In the limit

case, µ1 = 1 (Caputo case), for n = 1, 2 we still have a superdiffusion process while for n = 3 holds

M
(α1,α2),(µ1,µ2)
3;2 (t) /M

(1,1),(µ1,µ2)
3;2 (t) → k > 0, as t → +∞, thus the process coincides with the normal

diffusion in the short time;

• n = 4: The classification of the type of diffusion depends on the parameter µ1.

◮ For 0 ≤ µ1 < 1/2 holds M
(α1,α2),(µ1,µ2)
4;2 (t) /M

(1,1),(µ1,µ2)
4;2 (t) → +∞, as t → 0+, thus corresponding

to a superdiffusion process in the short time;

◮ For µ1 = 1/2 holds M
(α1,α2),(µ1,µ2)
4;2 (t) /M

(1,1),(µ1,µ2)
4;2 (t) → k > 0, as t → 0+, thus the process

coincides with the normal diffusion in the short time;

◮ For 1/2 < µ1 ≤ 1 holds M
(α1,α2),(µ1,µ2)
4;2 (t) /M

(1,1),(µ1,µ2)
4;2 (t) → 0, as t → 0+, thus corresponding to

a subdiffusion process in the short time.

• n = 6+ 2k: As happen in the long time case the moment is not always positive, and hence also here it is

not possible to perform a probabilistic interpretation for all the values of n.
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4.1.2 Two composite time-fractional derivatives in the wave case

Here we consider b1 (α, µ) = 0. Hence, B1 (s) = B∗
1 (s) = 0 and the second-order moment in the Laplace

domain becomes

M
−,−;β,ν
n;2 (s) = M

β,ν
n;2 (s) =

21−n Γ
(
5−n
2

)

π
n−1
2

sB∗
2 (s) (B2 (s))

n−5
2 , n 6= 5+ 2k, k ∈ N0. (88)

Let us now assume that

b2 (β, ν) = k1 δ (β − β1) δ (ν − ν1) + k2 δ (β − β2) δ (ν − ν2) ,

with 1 < β1 < β2 ≤ 2, 0 ≤ ν1, ν2 ≤ 1, ν2 < ν1
2−β1

2−β2
, k1, k2 > 0, and k1 + k2 = 1. For this b2 (β, ν) we get

B2 (s) =
k1
c2

sβ1 +
k2
c2

sβ2 and B∗
2 (s) =

k1
c2

s−ν1(2−β1) +
k2
c2

s−ν2(2−β2). (89)

Considering (89) in (88) we get

M̃
(β1,β2),(ν1,ν2)
n;2 (s) =

21−n Γ
(
5−n
2

)

π
n−1
2 cn−3

s
(
k1 s

−ν1(2−β1) + k2 s
−ν2(2−β2)

) (
k1 s

β1 + k2 s
β2
)n−5

2 . (90)

Inverting the Laplace transform of M̃
(β1,β2),(ν1,ν2)
n;2 (s) following the same steps of the deduction of (82) we get

M
(β1,β2),(ν1,ν2)
n;2 (t) =

21−n k
n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

k1
k2
t
β2(5−n)

2 +ν1(2−β1)−2E
5−n
2

β2−β1,
β2(5−n)

2 +ν1(2−β1)−1

(
−k1
k2
tβ2−β1

)

+
21−n k

n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

t
β2(5−n)

2 +ν2(2−β2)−2E
5−n
2

β2−β1,
β2(5−n)

2 +ν2(2−β2)−1

(
−k1
k2
tβ2−β1

)
.

(91)

First, we study the asymptotic behaviour of M
(β1,β2),(ν1,ν2)
n;2 for large values of t. From (80) we have the following

asymptotic behaviour when s → 0 :

M̃
(β1,β2),(ν1,ν2)
n;2 (s) =

21−n Γ
(
5−n
2

)

π
n−1
2 cn−3

s
(
k1 s

−ν1(2−β1) + k2 s
−ν2(2−β2)

) (
k1 s

β1 + k2 s
β2
)n−5

2

∼ 21−n k
n−3
2

1 Γ
(
5−n
2

)

π
n−1
2 cn−3

s1−ν1(2−β1)+
β1(n−5)

2 . (92)

Using (75) to invert the Laplace transform in (92), which is only possible for n ≤ 4, we obtain the asymptotic

behavior of M
(β1,β2),(ν1,ν2)
n;2 for t→ +∞, with β1, ν1, and n according to the following cases:

M
(β1,β2),(ν1,ν2)
n;2 (t) ∼





21−n k
n−3
2

1 Γ
(
5−n
2

)

π
n−1
2 cn−3

t2ν1+
β1(5−n−2ν1)

2 −2

Γ
(
2ν1 +

β1(5−n−2ν1)
2 − 1

) , β1 < β2, 0 ≤ ν1 ≤ 1, n = 1, 2, 3

21−n k
n−3
2

1 Γ
(
5−n
2

)

π
n−1
2 cn−3

t2ν1+
β1(5−n−2ν1)

2 −2

Γ
(
2ν1 +

β1(5−n−2ν1)
2 − 1

) , β1 < β2,
1
2 < ν1 ≤ 1, n = 4

.

(93)

To classify the type of diffusion-wave process we need to compare M
(β1,β2),(ν1,ν2)
n;2 with the normal diffusion

process. The situation here depends on the dimension and we have the following cases:

• n = 1: M
(β1,β2),(ν1,ν2)
1;2 (t) /M

(1,1),(µ1,µ2)
1;2 (t) → +∞, as t → +∞, for 1 < 3−2ν1

2−ν1 < β1 < 2 and 0 ≤ ν1 ≤ 1,

which corresponds to a superdiffusion process in the long time and M
(β1,β2),(ν1,ν2)
1;2 (t) /M

(1,1),(µ1,µ2)
1;2 → 0,

as t → +∞, for 1 < β1 <
3−2ν1
2−ν1 < 2 and 0 ≤ ν1 ≤ 1, which corresponds to a subdiffusion process in the

long time. In the special case β1 = 3−2ν1
2−ν1 the process coincides with the normal diffusion in the long time.

• n = 2: M
(β1,β2),(ν1,ν2)
n;2 (t) /M

(1,1),(µ1,µ2)
2;2 (t) → +∞, as t → +∞, for 1 < 5−4ν1

3−2ν1
< β1 < 2 and 0 ≤ ν1 ≤ 1,

which corresponds to a superdiffusion process in the long time andM
(β1,β2),(ν1,ν2)
n;2 (t) /M

(1,1),(µ1,µ2)
2;2 (t) → 0,

as t → +∞, for 1 < β1 <
5−4ν1
3−2ν1

< 2 and 0 ≤ ν1 ≤ 1, which corresponds to a subdiffusion process in the

long time. In the special case β1 = 5−4ν1
3−2ν1

the process coincides with the normal diffusion in the long time.
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• n = 3: M
(β1,β2),(ν1,ν2)
3;2 (t) /M

(1,1),(µ1,µ2)
3;2 (t) → 0, as t → +∞, for all 1 < β1 ≤ 2 and 0 ≤ ν1 < 1, thus

corresponding to a subdiffusion process. For ν1 = 1 the process coincides with the normal diffusion case.

• n = 4: M
(β1,β2),(ν1,ν2)
4;2 (t) /M

(1,1),(µ1,µ2)
4;2 (t) → 0, as t → +∞, for all 1 < β1 ≤ 2 and 1/2 < ν1 ≤ 1, thus

corresponding to a subdiffusion process.

Finally, we study the asymptotic behaviour of M
(β1,β2),(ν1,ν2)
n;2 for small values of t knowing the asymptotic

behaviour of (90) when s → +∞. From (90), as s → +∞, we have

M̃
(β1,β2),(ν1,ν2)
n;2 (s) =

21−n Γ
(
5−n
2

)

π
n−1
2 cn−3

s
(
k2 s

−ν1(2−β1) + k2 s
−ν2(2−β2)

) (
k1 s

β1 + k2 s
β2
)n−5

2

∼ 21−n k
n−3
2

1 Γ
(
5−n
2

)

π
n−1
2 cn−3

s1−ν2(2−β2)+
β2(n−5)

2 . (94)

Using (75) to invert the Laplace transform in (94), which is only possible for n ≤ 4, we obtain the asymptotic

behavior of M
(β1,β2),(ν1,ν2)
n;2 for t→ 0+, with β2, ν2, and n according to the following cases:

M
(β1,β2),(ν1,ν2)
n;2 (t) ∼





21−n k
n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

t2ν2+
β2(5−n−2ν2)

2 −2

Γ
(
2ν2 +

β2(5−n−2ν2)
2 − 1

) , β2 > β1, 0 ≤ ν2 ≤ 1, n = 1, 2, 3

21−n k
n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

t2ν2+
β2(5−n−2ν2)

2 −2

Γ
(
2ν2 +

β2(5−n−2ν2)
2 − 1

) , β2 > β1,
1
2 < ν2 ≤ 1, n = 4

.

(95)

The analysis of (95) is similar to the one performed for (93). Regarding the classification of the diffusion-wave

process the following conclusions can be taken:

• n = 1: M
(β1,β2),(ν1,ν2)
1;2 (t) /M

(1,1),(µ1,µ2)
1;2 (t) → 0, as t→ 0+, for 1 < 3−2ν1

2−ν1 < β2 < 2 and 0 ≤ ν2 ≤ 1, while

M
(β1,β2),(ν1,ν2)
n;2 (t) /M

(1,1),(µ1,µ2)
1;2 (t) → +∞, as t → 0+, for 1 < β2 <

3−2ν1
2−ν1 < 2 and 0 ≤ ν2 ≤ 1. Hence, in

the short time, the process is subdiffusive in the first case and is superdiffusive in the second case. In the

special case β1 = 3−2ν1
2−ν1 the process coincides with the normal diffusion in the short time.

• n = 2: M
(β1,β2),(ν1,ν2)
2;2 (t) /M

(1,1),(µ1,µ2)
2;2 (t) → 0, as t→ 0+, for 1 < 5−4ν1

3−2ν1
< β2 < 2 and 0 ≤ ν2 ≤ 1, which

corresponds to a subdiffusion process in the short time, and M
(β1,β2),(ν1,ν2)
2;2 (t) /M

(1,1),(µ1,µ2)
2;2 (t) → +∞,

as t → 0+, for 1 < β2 <
5−4ν1
3−2ν1

< 2 and 0 ≤ ν2 ≤ 1, thus corresponding to a superdiffusion process in the

short time. In the special case β1 = 5−4ν1
3−2ν1

the process coincides with the normal diffusion in the short

time.

• n = 3: M
(β1,β2),(ν1,ν2)
3;2 (t) /M

(1,1),(µ1,µ2)
3;2 (t) → +∞, as t → 0+, for all 1 < β2 ≤ 2 and 0 ≤ ν2 < 1, thus

corresponding to a superdiffusion process. For ν2 = 1 the process coincides with the normal diffusion case.

• n = 4: M
(β1,β2),(ν1,ν2)
4;2 (t) /M

(1,1),(µ1,µ2)
4;2 (t) → +∞, as t → 0+, for all 1 < β2 ≤ 2 and 1/2 < ν2 ≤ 1, thus

corresponding to a superdiffusion process in the short time.

Remark 4.2 If we consider the Caputo case in Sections 4.1.1 and 4.1.2, our analysis of the diffusion-wave

process for the double-order case improve the results presented in [63]. Moreover, considering single order

derivatives and the one-dimensional case, it was proved in [64] that the fundamental solution corresponds to a

probability density function only when the fractional derivatives are in the Caputo sense.

4.1.3 Graphical representations of the second-order moment for the long time

In this section we present and analyse the plots of the asymptotic behaviour ofM
(α1,α2),(µ1,µ2)
n;2 (t), when t→ +∞,

for some of the cases studied previously separating the diffusion and the wave cases. The plots were generated

using Mathematica software and the commands available in it.

The diffusion case: In the following figures, we show the graphical representation of (84) for n = 1, 2, 3, 4,

α1 = 0.25, 0.50, 0.75, and different values µ1, using a logarithmic scale in the axes when needed.
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Figure 1: Plots of the asymptotic behaviour of M
(α1,α2),(µ1,µ2)
1;2 (t) when t→ +∞ for α1 = 0.25, 0.50, 0.75 (from

left).
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Figure 2: Plots of the asymptotic behaviour of M
(α1,α2),(µ1,µ2)
n;2 (t) when t → +∞ for n = 2 and α1 = 0.25,

n = 3 and α1 = 0.50, n = 4 and α1 = 0.75 (from left).

Looking at the plots we see that the classification of the diffusion process in each dimension agrees with the

analysis of (84) performed previously. The plots show an interpolation between the extreme cases µ1 = 0 and

µ1 = 1, which correspond to the Riemann-Liouville (RL) and Caputo cases, respectively. The extreme cases

have different behaviour, e.g., the slope of the variance is different and in the dimension, n = 3 the variance is

constant in the Caputo case. In contrast, in the RL case, the variance decreases for large values of t. Moreover,

for α1 = 0.25 we can observe a different behaviour of the diffusion in dimensions n = 1 and n = 2 : in the RL

case the variance decreases for large values of t while in the Caputo case the variance increases.

The wave case: In the following figures, we show the graphical representation of (93) for n = 1, 2, 3, 4,

β1 = 1.25, 1.50, 1.75 and different values ν1.
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Figure 3: Plots of the asymptotic behaviour of M
(β1,β2),(ν1,ν2)
1;2 (t) when t → +∞ for β1 = 1.25, 1.50, 1.75 (from

left).
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Figure 4: Plots of the asymptotic behaviour of M
(β1,β2),(ν1,ν2)
n;2 (t) when t→ +∞ for n = 2 and β1 = 1.25, n = 3

and β1 = 1.50, n = 4 and β1 = 1.75 (from left).

For each dimension and different values of the fractional parameters, the process classification agrees with

the analysis of (93). The range of the plots increases with the increase of β1 and ν1. Again it is interesting

to observe the different behaviour of the variance for the extreme cases ν1 = 0 (RL case) and ν1 = 1 (Caputo

case) for the dimension n = 3. Also the slope of the variance is different in the other dimensions.

4.1.4 Graphical representations of the second-order moment for the short time

In this section we present and analyse the graphical representation of the asymptotic behaviour ofM
(α1,α2),(µ1,µ2)
n;2 (t),

when t → 0+, for some of the cases studied previously separating the diffusion and the wave cases. The plots

were generated using Mathematica software and the commands available in it.

The diffusion case: In the following figures, we show the graphical representation of (87) for n = 1, 2, 3, 4,

α2 = 0.25, 0.50, 0.75, and different values µ2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

t

M
1
;2

(α
1
,α
2
);
(
μ
1
,μ
2
) (
t)

μ2 = 1.00

μ2 = 0.75

μ2 = 0.50

μ2 = 0.25

μ2 = 0.00

N. Diff.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t

M
1
;2

(α
1
,α
2
);
(
μ
1
,μ
2
) (
t)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t

M
1
;2

(α
1
,α
2
);
(
μ
1
,μ
2
) (
t)

Figure 5: Plots of the asymptotic behaviour of M
(α1,α2),(µ1,µ2)
1;2 (t) when t → 0+ for α2 = 0.25, 0.50, 0.75 (from

left).
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Figure 6: Plots of the asymptotic behaviour of M
(α1,α2),(µ1,µ2)
n;2 (t) when t→ 0+ for n = 2 and α2 = 0.25, n = 3

and α2 = 0.50, n = 4 and α2 = 0.75 (from left).

Looking at the plots we see that the range of the plots decreases with the increase of α2 and µ2. The type

of process is in accordance with the conclusion made in the analysis of (87). Again, we can observe a different

behaviour of the variance for small values of t in the extreme cases ν2 = 0 and ν2 = 1, corresponding to the RL

and Caputo cases, respectively. For α1 = 0.25 and the dimensions n = 1 and n = 2 the variance decreases in

the RL case and increases in the Caputo case, for small values of t. In the case ν2 = 1 the plots coincide with

the correspondent ones obtained in [63].
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The wave case: In the following figures, we have the graphical representation of (95) for n = 1, 2, 3, 4,

β2 = 1.25, 1.50, 1.75, and different values ν2 and n.
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Figure 7: Plots of the asymptotic behaviour of M
(α1,α2),(µ1,µ2)
1;2 (t) when t → 0+ for β2 = 1.25, 1.50, 1.75 (from

left).
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Figure 8: Plots of the asymptotic behaviour of M
(α1,α2),(µ1,µ2)
n;2 (t) when t→ 0+ for n = 2 and β2 = 1.25, n = 3

and β2 = 0.50, n = 4 and β2 = 0.75 (from left).

Looking at the plots we see that the conclusions are similar to those already exposed. The behaviour of the

functions is in accordance with the conclusions made in the analysis of (95). When ν2 = 1 the plots coincide

with those presented in [63].

5 Conclusions

The results presented here generalize those obtained in [63] by the introduction of the Hilfer derivative, that

allows a smooth interpolation between the Riemann-Liouvile and the Caputo fractional derivatives. The solution

of the Cauchy problem associated with the telegraph equation was expressed as convolutions with functions that

are expressed by Laplace integrals involving Fox H-functions. For particular cases of the equation the solution

can be simplified and we showed that we can recover known results presented in the literature, which reveals

consistency of our results. The classification of the diffusion-wave process depends, not only on the spatial

dimension, but also on the order and type of the derivatives. This is very different from previous works on the

literature since in most cases the telegraph equation is studied only for Caputo or Riemann-Liouville fractional

derivatives. It would be interesting to consider other types of density functions in addition to those considered

in this article, but the calculations would become cumbersome.
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[22] R. Gorenflo, Yu. Luchko, and M. Stojanović, Fundamental solution of a distributed order time-fractional

diffusion-wave equation as probability density, Fract. Calc. Appl. Anal. 16(2) (2013), 297–316.
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