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Abstract 

The natural ability to join different materials is one of the main advantages of adhesive joints. 

It is thus important to characterize the fracture resistance of adhesive joints with dissimilar 

materials, as they are increasingly used in relevant industrial applications. There are, however, 

well-known problems in data analysis of such tests, especially where mode partitioning is 

concerned. A beam model is here developed for mixed-mode I-II fracture testing on adhesive 

joints with dissimilar metal adherends. The model predicts quite accurately the strain-energy 

release rate, the mode-mix and the load-point displacements with fully closed-form equations. 

Therefore, it can be the basis of future data reduction schemes for fracture tests. Furthermore, 

it is shown that a wide range of mode-mix combinations can be achieved with simple well-

known tests on dissimilar metal adherend joints. They could thus be an interesting alternative 

to developed mixed-mode I-II tests that require complex test fixtures. 

 

Keywords: B. Metals; C. Fracture mechanics; C. Fracture; Beam model 

 

1. Introduction 

The increasing concerns about resource sustainability and greenhouse gas emissions are a 

major driving force for improved product designs. This often demands combining dissimilar 
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materials in order to benefit from advantageous characteristics of each material. One of the 

most striking examples of the search for energy efficiency can be found in the automotive 

industry, where car bodies combine several aluminium alloys with mild and high strength 

steels [1]. Adhesive bonding offers several advantages in joining dissimilar substrates e.g. 

high strength, sealing and improved corrosion resistance. Its limitations can be currently 

compensated for by employing hybrid joints e.g. adhesive bonding combined with spot-

welding [1]. Nonetheless, the current uncertainties in adhesive joint strength prediction still 

impose conservative design solutions [2], despite the availability of advanced finite element 

analysis (FEA) codes with cohesive zone modelling (CZM). Such models require preliminary 

measurement of fracture properties in coupon tests, which nowadays cover the full range 

mixed-mode I-II loadings using bonded specimens with identical adherends [3]. Furthermore, 

crack propagation is expected to take place within the bondline for adequately prepared 

adherend surfaces. In these circumstances, fracture properties measured for a specific 

adhesive should also apply for joints with dissimilar adherends. Nevertheless, there are good 

reasons for conducting fracture tests on such joints i.e.: 

• increased sensitivity to hygrothermal conditions brought about by the different 

adherend thermal expansion coefficients; 

• possibility of achieving mode-mix combinations with simple specimens, thereby 

avoiding elaborate fixtures developed for specimens with identical adherends [4-6]  

 On the other hand, well-known beam theory based data analysis schemes are available 

for specimens with identical adherends. Specimens with dissimilar adherends are in turn much 

more difficult to analyse. In fact, the analysis has often been conducted within the framework 

of the “bi-material” interface issue, which has been the subject of a vast number of studies 

recently reviewed in [7]. Nonetheless, a comprehensive beam modelling approach was 

developed by Bennati et al. [8,9] for the asymmetric double cantilever beam specimen 
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(ADCB) applied to delamination of composites. Moreover, it was recently shown in [10] that 

such beam theory framework was appropriate for other specimens covering the entire range of 

mixed-mode I-II loadings. In addition, the complexity of the analysis could be considerably 

reduced after considering the physical meaning of the solutions together with the typical 

material properties and specimen geometries [10]. However, the beam models presented in [8-

10] concern delamination of composites and thus do not consider an adhesive layer. Instead, 

tractions are related to separations via cohesive stiffnesses that depend on laminate through-

thickness moduli and characteristic thicknesses calibrated by FEA [8-10]. The scenario is 

different in metal adhesive joints, as the high adherend stiffness means that tractions are 

dictated by bondline deformations. In fact, it has been shown that even common thin 

bondlines influence the specimen compliance and strain-energy release rates of the well-

known double cantilever beam (DCB) [11] and end-notched flexure (ENF) specimens [12]. 

Evidently, such influence increases when more flexible adhesives and/or thicker bondlines are 

employed. 

 Several beam models have already been presented for adhesive joints with dissimilar 

adherends, including the more general Timoshenko beam theory e.g. [13-14] and composite 

adherends [13]. Such models have been applied to lap-joints with adherends under tensile 

loads, providing quite accurate bondline shear and peel stress distributions [13,14]. It is also 

worth mentioning that Alfredsson and Högberg [15] used an Euler-Bernoulli beam model to 

analyse the End-Loaded Split (ELS) specimen with dissimilar adherends. They [15] 

developed solutions for the J-integral and showed the large effect of the bondline on specimen 

compliance and strain-energy release rate. 

 The beam model here developed considers explicitly thin (ha = 0.2 mm) to moderately 

thick (ha = 1 mm) bondlines. Solutions are presented for metal adherends, focussing on 

several combinations of steel and aluminium adherends with different thicknesses h1 and h2. 
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The specimen selected is here named force-loaded double cantilever beam (FLDCB) (Fig. 1). 

It has an a-long crack and a built-in support at the end of the span L. This specimen was 

actually implemented in [5] using a dual-actuator to apply the transverse loads F1 and F2, 

thereby requiring specific testing equipment seldom used. As shown below, the present 

dissimilar adherends beam model (DABM) gives quite accurate predictions of the strain-

energy release rate, mode-mix and load-point displacements for a wide range of mixed-mode 

I-II loadings. 

 

 

Fig. 1. The force-loaded double cantilever beam specimen (FLDCB). 

  

 Finally, this work confirms the great potential of dissimilar metal adhesively bonded 

specimens for attaining a wide range of mode-mix combinations with well-known simple 

tests. This reinforces the usefulness of the analytical framework provided by the DABM. 

 

2. The dissimilar metal adherends beam model (DABM) 

2.1. Fundamental equations and assumptions 

Each adherend is here modelled as a Timoshenko beam. The analysis begins with the 

equilibrium equations of infinitesimal elements of the upper (1) and lower (2) adherends in 

the bonded a ≤ x ≤ L region of the FLDCB specimen (Figs. 1 and 2). The element cross-

sections are subjected to normal forces N, which must be symmetric for horizontal force 

equilibrium, transverse shear forces Vi and bending moments Mi (i = 1, 2). As a result of 
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adhesive deformations, the normal σc and shear τc tractions act on the adherend bonded 

surfaces. It is worth noting that the sign convention here adopted takes as positive the forces, 

moments and tractions depicted in Fig. 2. Letting b designate the specimen width, the 

horizontal force equilibrium equation is 

𝑑𝑁

𝑑𝑥
= 𝑏𝜏𝑐 (1) 

 

 

Fig. 2. Forces, moments and tractions acting on infinitesimal elements of the upper (1) and lower (2) adherends 

of the FLDCB specimen a ≤ x ≤ L region (Fig. 1).  

 

 The remaining equilibrium equations are somewhat sensitive to the assumption that 

tractions are constant across the bondline thickness. This assumption proved to be an adequate 

approximation for bondlines up to ha = 3 mm of ENF specimens with identical metal 

adherends [16]. Since the FLDCB specimens here analysed also involve thicker and much 

stiffer metal adherends than the bondline, this assumption was deemed appropriate for this 

study. In these circumstances, vertical force equilibrium of a part of the specimen from the 

free ends (x = 0) to an a ≤ x ≤ L cross-section imposes that 

𝑉1 + 𝑉2 + 𝑏ℎ𝑎𝜏𝑐 = 𝐹1 + 𝐹2 (2) 

The vertical force equilibrium equations of the adherend elements (Fig. 2) are thus 

Jo
urn

al 
Pre-

pro
of



6 

𝑑𝑉1

𝑑𝑥
= −𝑏𝜎𝑐 −

𝑏ℎ𝑎

2

𝑑𝜏𝑐

𝑑𝑥
 (3) 

𝑑𝑉2

𝑑𝑥
= 𝑏𝜎𝑐 −

𝑏ℎ𝑎

2

𝑑𝜏𝑐

𝑑𝑥
 (4) 

since part of the F1 and F2 applied forces are absorbed by the bondline. Moment equilibrium 

for the i-th adherend is expressed as 

𝑉𝑖 =
𝑑𝑀𝑖

𝑑𝑥
+

𝑏ℎ𝑖𝜏𝑐

2
 (5) 

Eqs. (3)-(5) can be combined in order to obtain 

𝑑2𝑀1

𝑑𝑥2
= −𝑏𝜎𝑐 −

𝑏(ℎ1+ℎ𝑎)

2

𝑑𝜏𝑐

𝑑𝑥
 (6) 

𝑑2𝑀2

𝑑𝑥2 = 𝑏𝜎𝑐 −
𝑏(ℎ2+ℎ𝑎)

2

𝑑𝜏𝑐

𝑑𝑥
 (7) 

which are convenient for subsequent derivations. 

 The adherend behaviour is, to a very large extent, dictated by the beam theory (BT) 

fundamental relation 

𝑀𝑖 = 𝐸𝑖𝐼𝑖
𝑑2𝑣𝑏,𝑖

𝑑𝑥2  (8) 

where Ei is the i-th adherend Young’s modulus, Ii = bhi
3/12 the second moment of area and vb,i 

the vertical bending displacement. Nevertheless, transverse shear is also taken into account in 

the scope of Timoshenko BT. Transverse shear displacements vs,i are thus given by 

𝑑𝑣𝑠,𝑖

𝑑𝑥
= −

𝑉𝑖

𝑓𝑠𝑏ℎ𝑖𝐺𝑖
 (9) 

where Gi is the i-th adherend shear modulus and fs = 5/6 is the transverse shear factor for 

rectangular cross-sections. At this stage, it is worth remarking that Eq. (9) bears a 

simplification identified in [10] for delamination of composites: it was developed from energy 

methods for the parabolic through-thickness transverse shear stress (τs) distribution that exists 

in beams. Such distribution is characterized by a maximum τs = 3Vi/2bhi at the mid-plane and 

τs = 0 at the surfaces. This distribution is appropriate for the pre-cracked region, given the 

small contribution of the bondline for the load-displacement response. However, it does not 
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hold for the bonded a ≤ x ≤ L region under analysis, since τc acts on the bonded surface. 

Nonetheless, as discussed in [10], adopting a more accurate formulation would lead to non-

linear differential equations whose complexity compromises the practical usefulness of beam 

modelling altogether. Moreover, as demonstrated below, the load-displacement and, 

consequently, the strain-energy release rate and mode partitioning are clearly dominated by 

the bending moments. Therefore, Eq. (9) is retained with fs = 5/6.  

 As for the tractions, linear elasticity is assumed for the bondline, as the main goal of this 

work is to provide the basic framework for fracture testing of dissimilar metal adhesively 

bonded specimens. It is also assumed that, owing to the high adherend stiffness, tractions are 

dictated by bondline deformations. As mentioned above, this contrasts with delamination of 

composites, where the elastic traction-separation law involves cohesive stiffnesses that 

depend on laminate through-thickness moduli and on characteristic thicknesses calibrated by 

FEA [10].  Previous work on mode I fracture showed the adequacy of the in-plane restrained 

hypothesis for the bondline [11] i.e. owing to the much higher stiffness of the metal 

adherends, εx ≈ 0 and εy ≈ 0 prevail in the bondline. This allows the normal traction to be 

expressed as 

𝜎𝑐 =
𝐸𝑎𝑠

ℎ𝑎
𝛿𝑛 (10) 

where the uni-axial strain adhesive modulus is obtained from the adhesive Young’s modulus 

Ea and Poisson’s ratio νa as 

𝐸𝑎𝑠 =
𝐸𝑎(1−𝜈𝑎)

1−𝜈𝑎−2𝜈𝑎
2 (11) 

and 

𝛿𝑛 = 𝑣1 − 𝑣2 (12) 

is the normal separation, expressed as function of the vertical beam displacements 

𝑣𝑖 = 𝑣𝑏,𝑖 + 𝑣𝑠,𝑖 (13) 
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of each adherend. The shear traction is, evidently, 

𝜏𝑐 =
𝐺𝑎

ℎ𝑎
𝛿𝑠 (14) 

where Ga is the adhesive shear modulus and δs the shear separation. As seen in [10,16], δs 

depends on the bending cross-section rotations of each adherend, which are dvb,i/dx in the 

geometrically linear regime, and on the uniform cross-section displacements caused by N 

(Fig. 2). Adopting the δs ≥ 0, N ≥ 0 and dvb,i/dx ≤ 0 sign conventions, 

𝛿𝑠(𝑥) − 𝛿𝑠(𝐿) =
ℎ1+ℎ𝑎

2
[

𝑑𝑣𝑏,1

𝑑𝑥
|

𝐿
−

𝑑𝑣𝑏,1

𝑑𝑥
|

𝑥
]

+
ℎ2+ℎ𝑎

2
[

𝑑𝑣𝑏,2

𝑑𝑥
|

𝐿
−

𝑑𝑣𝑏,2

𝑑𝑥
|

𝑥
]

− (
1

𝐸1ℎ1
+

1

𝐸2ℎ2
) ∫

𝑁

𝑏
𝑑𝑥

𝐿

𝑥

 (15) 

It is worth remarking that Eq. (15) differs from the analogous relation adopted in most beam 

models e.g. [12-15] that consider thin bondlines by introducing terms on ha. Such terms result 

from the rotation effect on adhesive shear strains and allowed the accurate modelling of metal 

adhesively bonded ENF specimens with thick bondelines i.e. up to ha = 3.0 mm [16]. 

Although such thick bondlines are not analysed in this work, similar to [16], adopting Eq. (15) 

was expected to result in improved accuracy relative to the common thin bondline hypothesis. 

 Therefore, one should bear in mind that the DABM assumes: 

• the hypotheses inherent to Timoshenko BT, including the approximate treatment of 

transverse shear seen above; 

• that tractions are dictated by bondline deformations, given the high adherend 

stiffness; 

• uniform tractions across the bondline thickness, an approximation that finds support 

in the larger adherend thickness and much higher adherend moduli; 

• adherend linear elastic behaviour, a condition expected to hold for fracture 

specimens; 

• adhesive linear elastic behaviour, which only applies during the initial loading stages;  
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• in-plane restrained adhesive for the normal traction-separation law, owing to the high 

thickness and moduli of the fracture specimen adherends. 

 The penultimate assumption seems clearly the most limiting for practical application of 

the DABM. At this stage, however, there good reasons to adopt such assumption i.e.: 

• The current state-of-the-art in fracture of dissimilar adherend joints, especially where 

mode partitioning is concerned [7]; 

• DABM extension to include adhesive plasticity and damage can be envisaged by 

adopting appropriate mixed-mode traction-separation laws. Nonetheless, this will 

bring about more complex equations and solution procedures; 

• It may be possible to apply the DABM with the effective crack concept [3,11,12,16], 

which takes into account the so-called fracture process zone (FPZ), where adhesive 

plasticity and damage take place. This would mean replacing the crack length a by a 

larger effective crack length to be determined from experimental specimen 

compliance data. However, this approach needs to be assessed in future work. 

 

2.2. Solutions for the tractions 

Solutions for τc(x) and σc(x) can be obtained without having to introduce any condition 

specific of the FLDCB specimen (Fig. 1). In fact, although Eq. (2) was invoked to derive Eqs. 

(3) and (4), the latter apply to any region which is under no additional external load. We begin 

by substituting haτc/Ga of Eq. (14) for δs in Eq. (15) and performing three consecutive 

differentiations. On the resulting equation, the term involving N can be expressed as a 

function of dτc/dx using Eq. (1), while the terms on d4vb,i/dx4 can be written as functions of 

dτc/dx and σc using Eqs. (6)-(8). This provides a useful relation between the tractions  

𝜎𝑐 = 𝑅3
𝑑3𝜏𝑐

𝑑𝑥3
+ 𝑅1

𝑑𝜏𝑐

𝑑𝑥
 (16) 

with the material properties and geometry dependent traction factors 
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𝑅1 =

ℎ1
2+3(ℎ1+ℎ𝑎)2

6𝐸1ℎ1
3 +

ℎ2
2+3(ℎ2+ℎ𝑎)2

6𝐸2ℎ2
3

ℎ2+ℎ𝑎

𝐸2ℎ2
3 −

ℎ1+ℎ𝑎

𝐸1ℎ1
3

 (17) 

𝑅3 =
ℎ𝑎

6𝐺𝑎(
ℎ1+ℎ𝑎

𝐸1ℎ1
3 −

ℎ2+ℎ𝑎

𝐸2ℎ2
3 )

 (18) 

Substitution of Eq. (16) for σc in Eqs. (6) and (7) gives 

𝑑2𝑀𝑖

𝑑𝑥2 = 𝑄𝑖,3
𝑑3𝜏𝑐

𝑑𝑥3 + 𝑄𝑖,1
𝑑𝜏𝑐

𝑑𝑥
 (19) 

where the material properties and geometry dependent parameters are 

𝑄1,3 = −𝑄2,3 = −𝑅3 (20) 

𝑄1,1 = −𝑏 (𝑅1 +
ℎ1+ℎ𝑎

2
) , 𝑄2,1 = 𝑏 (𝑅1 −

ℎ2+ℎ𝑎

2
) (21) 

 Yet, σc is also given by Eq. (10), in which Eqs. (12) and (13) can be used first for 

expressing δn as a function of vb,i and vs,i. Successive differentiation combined with Eqs. (5), 

(8) and (9) leads to 

ℎ𝑎

𝐸𝑎𝑠

𝑑4𝜎𝑐

𝑑𝑥4 =
1

𝐸1𝐼1

𝑑2𝑀1

𝑑𝑥2 −
1

𝐸2𝐼2

𝑑2𝑀2

𝑑𝑥2

+
6

5𝑏ℎ2𝐺2
(

𝑑4𝑀2

𝑑𝑥4 +
𝑏ℎ2

2

𝑑3𝜏𝑐

𝑑𝑥3 )

−
6

5𝑏ℎ1𝐺1
(

𝑑4𝑀1

𝑑𝑥4 +
𝑏ℎ1

2

𝑑3𝜏𝑐

𝑑𝑥3 )

 (22) 

One can now substitute Eq. (16) for σc and Eqs. (19) for the Mi-derivatives in order to arrive at 

the 7th-order linear homogeneous differential equation 

ℎ𝑎

𝐺𝑎

𝑑7𝜏𝑐

𝑑𝑥7
+ 𝐷5

𝑑5𝜏𝑐

𝑑𝑥5
+ 𝐷3

𝑑3𝜏𝑐

𝑑𝑥3
+ 𝐷1

𝑑𝜏𝑐

𝑑𝑥
= 0 (23) 

with coefficients 

𝐷1 = −
12𝐸𝑎𝑠

ℎ𝑎
(

1

𝐸1ℎ1
+

1

𝐸2ℎ2
) (

1

𝐸1ℎ1
3 +

1

𝐸2ℎ2
3)

+
3(ℎ1+ℎ2+2ℎ𝑎)2

𝐸1𝐸2(ℎ1ℎ2)3

 (24) 
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𝐷3 =
6𝐸𝑎𝑠

5ℎ𝑎
(

1

𝐺1ℎ1
+

1

𝐺2ℎ2
) (

4ℎ1+3ℎ𝑎

𝐸1ℎ1
2 +

4ℎ2+3ℎ𝑎

𝐸2ℎ2
2 )

+
12𝐸𝑎𝑠

𝐸1ℎ1
3 (

3(ℎ1+ℎ𝑎)

5𝐺2ℎ2
+

1

𝐺𝑎
)

+
12𝐸𝑎𝑠

𝐸2ℎ2
3 (

3(ℎ2+ℎ𝑎)

5𝐺1ℎ1
+

1

𝐺𝑎
)

 (25) 

𝐷5 = −
ℎ1

2+3(ℎ1+ℎ𝑎)2

𝐸1ℎ1
3 −

ℎ2
2+3(ℎ2+ℎ𝑎)2

𝐸2ℎ2
3

−
6𝐸𝑎𝑠

5𝐺𝑎
(

1

𝐺1ℎ1
+

1

𝐺2ℎ2
)

 (26) 

 The solution of Eq. (23) is established by finding the 7 roots of the characteristic 

polynomial on s 

𝑠 (
ℎ𝑎

𝐺𝑎
𝑠6 + 𝐷5𝑠4 + 𝐷3𝑠2 + 𝐷1) = 0 (27) 

one of which is, evidently, s = 0. The remaining solutions are easily found by converting the 

6th-order polynomial of Eq. (27) into a 3rd-order polynomial on s2. For the combinations of 

metal adherend, adhesive properties and thicknesses here considered, the 6th-order polynomial 

of Eq. (27) has one pair of real roots and two pairs of complex conjugate roots. Therefore, the 

solution of Eq. (23) can be written as 

𝜏𝑐 = 𝜏0 + 𝜏1𝑒−𝜆𝑥 + 𝑒−𝜇𝑥(𝜏2 cos 𝜔𝑥 + 𝜏3 sin 𝜔𝑥)

+𝜏4𝑒𝜆𝑥 + 𝑒𝜇𝑥(𝜏5 cos 𝜔𝑥 + 𝜏6 sin 𝜔𝑥)
 (28) 

where τk are integration constants, λ and μ are elastic exponential traction distribution 

parameters and ω is an elastic sinusoidal traction distribution parameter. The Appendix 

presents closed-form solutions for λ, μ and ω. Finally, substitution of Eq. (28) for τc in Eq. 

(16) provides 

𝜎𝑐 = 𝜎1𝑒−𝜆𝑥 + 𝑒−𝜇𝑥(𝜎2 cos 𝜔𝑥 + 𝜎3 sin 𝜔𝑥)

+𝜎4𝑒𝜆𝑥 + 𝑒𝜇𝑥(𝜎5 cos 𝜔𝑥 + 𝜎6 sin 𝜔𝑥)
 (29) 

with σk being integration constants related to τk.  

 It can be shown that the DABM becomes equal to the beam models of [11,16] for mode 

I and mode II fracture of adhesive joints with identical metal adherends. It is worth reminding 

that this simpler case involves decoupled 3rd-order and 4th-order linear differential equations 
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for τc and σc, respectively, The solution for τc is free from sinusoidal terms, while the one for 

σc only retains sinusoidal terms.  

 

2.3. Physical meaning and simplification of the solutions 

The above solutions for the tractions are expected to apply along the entire bonded a ≤ x ≤ L 

region of FLDCB specimens (Fig. 1). Although beam modelling suppresses the crack-tip 

singularity, it is evident that σc and τc attain peak values at the x = a crack-tip position, and 

then decrease gradually. If the x = L built-in cross-section (Fig. 1) is distant enough from the 

crack-tip, the terms on eλx and eμx should be negligible there i.e.  

𝜏𝑐 ≈ 𝜏0 + 𝜏1𝑒−𝜆𝑥 + 𝑒−𝜇𝑥(𝜏2 cos 𝜔𝑥 + 𝜏3 sin 𝜔𝑥) (30) 

𝜎𝑐 ≈ 𝜎1𝑒−𝜆𝑥 + 𝑒−𝜇𝑥(𝜎2 cos 𝜔𝑥 + 𝜎3 sin 𝜔𝑥) (31) 

in the vicinity of the x = a crack-tip position. 

 Secondly, in a mid-region sufficiently away from both the crack-tip and built-in cross-

sections, the tractions should model the response of an uncracked beam. Accordingly, σc = 0 

and τc = τ0 must be compatible with the through-thickness transverse shear stress distribution 

τs(y). In order to verify such compatibility, a common mechanics of materials analysis of 

bending and transverse shear of the uncracked bonded region was conducted. The through-

thickness distribution of σx normal stresses resulting from bending is assumed to be linear. 

This enables the determination of:  

• the neutral surface vertical position hn (Fig. 1) relative to the specimen lower surface;  

• the uncracked beam bending stiffness.  

The horizontal force equilibrium of an uncracked beam element with infinitesimal length dx 

and delimited by: 

• the upper specimen surface;  

• an internal surface of y-coordinate not inside the bondline (Fig. 1);  
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shows that τs(y) is parabolic. In particular, at the adherend bonded surfaces, τs is equal to 

𝜏0 =
3(𝐹1+𝐹2)𝐸1ℎ1[ℎ1+2(𝑦2+ℎ𝑎)]

2𝑏{𝐸2(𝑦2
3+ℎ𝑛

3 )+𝐸1[(𝑦2+ℎ𝑎+ℎ1)3−(𝑦2+ℎ𝑎)3]}
 (32) 

where 

ℎ𝑛 =
𝐸2ℎ2

2+𝐸1ℎ1[2(ℎ2+ℎ𝑎)+ℎ1]

2(𝐸2ℎ2+𝐸1ℎ1)
 (33) 

𝑦2 = ℎ2 − ℎ𝑛 (34) 

is the vertical coordinate of the lower adherend bonded surface (Fig. 1). It is worth 

mentioning that this analysis neglects the contribution of adhesive axial stresses to the 

uncracked beam bending stiffness, hence the absence of terms on Ea in Eqs. (32) and (33). 

This is clearly a realistic assumption for metal adherends, since Ea << E1, E2. 

 Finally, near the x = L built-in cross-section, the terms of Eqs. (28) and (29) on e−λx and 

e−μx should be negligible and the tractions must comply with the clamp conditions. In 

particular, for the ideal built-in end here assumed, σc(L) = 0 and τc(L) = 0. In the scope of 

beam modelling, it seems reasonable to neglect σc altogether in the vicinity of x = L. However, 

τc must decrease from τ0 to 0, and thus we consider 

𝜏𝑐 ≈ 𝜏0 + 𝜏4𝑒𝜆𝑥 (35) 

close to x = L (Fig. 1). This is similar to the τc decrease from the crack-tip to the load-point of 

the ENF specimen [12,16]. Moreover, the ideal built-in end condition τc(L) = 0 provides 

directly 

𝜏4 ≈ −𝜏0𝑒−𝜆𝐿 (36) 

 Besides reducing the number of integration constants to be determined, this simplified 

approach has other important advantages: 

• it enables strain-energy release rate and mode partitioning determination from crack-

tip section forces and moments; 

• it greatly reduces the overall complexity of the problem at hands and the number of 
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calculations to be made; 

• it applies to sufficiently large (L − a) distances (Fig. 1) which should be adopted in 

actual tests in order to accommodate the long FPZ developed by tough adhesives, 

especially under high mode II loadings.  

In fact, previous work [12,16] on ENF specimens bonded with identical metal adherends 

showed that artificially high perceived toughness values may be measured if the FPZ gets too 

close to the load-point position. First of all, the analyses of such situations demand extension 

of the DABM to include bondeline plasticity and softening. Furthermore, the full traction 

solutions expressed by Eqs. (28) and (29) are needed, thereby complicating considerably 

calculations, hence also experimental data reduction. Therefore, this work is restricted to the 

large (L − a) case. 

 Naturally, the question that arises here is how large should (L − a) be for ensuring the 

accuracy of Eqs. (30), (31), (35) and (36). As in common fracture specimens bonded with 

identical adherends [11,12,16], the decrease of τc from τc(a) to τ0: 

• takes place along a much larger distance than the one of τc ≈ τ0 to τc = 0 near x = L;  

• ends-up being dictated by the term on e−λx of Eq. (30). 

Accordingly, one criterion to define the minimum (L − a) can be based on {τ0 + τ1e
−λL} being 

a small tolerance above τ0 e.g. 0.1 %. This criterion is adopted below in Section 3. 

Nevertheless, given the exponential nature of the functions involved and the errors in model 

predictions one may wish to tolerate, other criteria can be used to define minimum (L − a) 

distances. 

 

2.4. Strain-energy release rate components 

In the framework outlined above, one should substitute Eq. (30) for τc in Eq. (19) and perform 

a first integration that, combined with Eq. (5), provides the adherend transverse forces 
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𝑉𝑖 = 𝐶𝑖,3 + (𝑄𝑖,1 +
𝑏ℎ𝑖

2
) 𝜏0 + 𝜏1𝑒−𝜆𝑥 (𝑄𝑖,3𝜆2 + 𝑄𝑖,1 +

𝑏ℎ𝑖

2
)

+𝜏2𝑒−𝜇𝑥 [(𝑄𝑖,3(𝜇2 − 𝜔2) + 𝑄𝑖,1 +
𝑏ℎ𝑖

2
) cos 𝜔𝑥 + 𝑄𝑖,3(2𝜇𝜔) sin 𝜔𝑥]

+𝜏3𝑒−𝜇𝑥 [(𝑄𝑖,3(𝜇2 − 𝜔2) + 𝑄𝑖,1 +
𝑏ℎ𝑖

2
) sin 𝜔𝑥 − 𝑄𝑖,3(2𝜇𝜔) cos 𝜔𝑥]

 (37) 

while a second integration gives the adherend bending moments 

𝑀𝑖 = 𝐶𝑖,2 + (𝑄𝑖,1 + 𝐶𝑖,3)𝜏0𝑥 − 𝜏1𝑒−𝜆𝑥 (𝑄𝑖,3𝜆 +
𝑄𝑖,1

𝜆
)

−𝜏2𝑒−𝜇𝑥 [(𝑄𝑖.3 +
𝑄𝑖,1

𝜇2+𝜔2) 𝜇 cos 𝜔𝑥 + (𝑄𝑖.3 −
𝑄𝑖,1

𝜇2+𝜔2) 𝜔 sin 𝜔𝑥]

−𝜏3𝑒−𝜇𝑥 [(𝑄𝑖.3 +
𝑄𝑖,1

𝜇2+𝜔2) 𝜇 sin 𝜔𝑥 − (𝑄𝑖.3 −
𝑄𝑖,1

𝜇2+𝜔2) 𝜔 cos 𝜔𝑥]

 (38) 

in the vicinity of the crack-tip, Ci,3 and Ci,2 being integration constants. The latter can be 

determined as functions of τk (k = 0-3) by imposing that Eqs. (30), (31), (37) and (38) comply 

with: 

• the kinematics of shear deformation Eq. (15), whose double differentiation combined 

with Eqs. (8) and (14) gives 

ℎ𝑎

𝐺𝑎

𝑑2𝜏𝑐

𝑑𝑥2 +
ℎ1+ℎ𝑎

2𝐸1𝐼1

𝑑𝑀1

𝑑𝑥
+

ℎ2+ℎ𝑎

2𝐸2𝐼2

𝑑𝑀2

𝑑𝑥
− (

1

𝐸1ℎ1
+

1

𝐸2ℎ2
) 𝜏𝑐 = 0 (39) 

• the normal traction as obtained from Eqs. (3) and (4), 

𝜎𝑐 =
1

2𝑏
(

𝑑𝑉2

𝑑𝑥
−

𝑑𝑉1

𝑑𝑥
) (40) 

This results in 

𝐶1,3 =
𝐸1ℎ1

3(ℎ2+ℎ𝑎)

ℎ1+ℎ2+2ℎ𝑎
(

𝑄2,1

𝐸2ℎ2
3 −

𝑄1,1

𝐸1ℎ1
3) 𝜏0 (41) 

𝐶2,3 = −
𝐸2ℎ2

3(ℎ1+ℎ𝑎)

ℎ1+ℎ2+2ℎ𝑎
(

𝑄2,1

𝐸2ℎ2
3 −

𝑄1,1

𝐸1ℎ1
3) 𝜏0 (42) 

𝐶1,2 =
𝐸1𝑏ℎ1

3

6(ℎ1+ℎ2+2ℎ𝑎)
(

1

𝐸1ℎ1
+

1

𝐸2ℎ2
) 𝐶𝑁 (43) 

𝐶2,2 =
𝐸2𝑏ℎ2

3

6(ℎ1+ℎ2+2ℎ𝑎)
(

1

𝐸1ℎ1
+

1

𝐸2ℎ2
) 𝐶𝑁 (44) 

where 
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𝐶𝑁 = 𝜏0𝑎 −
𝜏1

𝜆
𝑒−𝜆𝑎 −

𝜏2𝑒−𝜇𝑎

𝜇2+𝜔2
(𝜇 cos 𝜔𝑎 − 𝜔 sin 𝜔𝑎)

−
𝜏3𝑒−𝜇𝑎

𝜇2+𝜔2
(𝜇 sin 𝜔𝑎 + 𝜔 cos 𝜔𝑎)

 (45) 

 At this stage, it is interesting to invoke the condition regarding adherend crack-tip 

section transverse shear forces (Fig. 1), 

𝑉1(𝑎) + 𝑉2(𝑎) = 𝐹1 + 𝐹2 (46) 

In fact, using Eq. (37) to compute Vi(a) one obtains τ0 identical to Eq. (32), thereby 

confirming that the DABM is compatible with the through-thickness τs distribution of the 

uncracked beam. The remaining τ1, τ2 and τ3 integration constants can be determined from 

𝑉1(𝑎) = 𝐹1 or 𝑉2(𝑎) = 𝐹2 (47) 

𝑀1(𝑎) = 𝐹1𝑎, 𝑀2(𝑎) = 𝐹2𝑎 (48) 

using Eq. (38) to calculate Mi(a). The normal traction integration constants of Eq. (31) are 

then easily calculated from Eqs. (16)-(18) and (30). 

𝜎1 = −𝜏1(𝑅3𝜆1
3 + 𝑅1𝜆1) (49) 

𝜎2 = −𝜏2𝜇[𝑅3(𝜇2 − 3𝜔2) + 𝑅1] + 𝜏3𝜔[𝑅3(3𝜇2 − 𝜔2) + 𝑅1] (50) 

𝜎3 = −𝜏2𝜔[𝑅3(3𝜇2 − 𝜔2) + 𝑅1] − 𝜏3𝜇[𝑅3(𝜇2 − 3𝜔2) + 𝑅1] (51) 

 Finally, one can compute successively: 

• the crack-tip tractions τc(a) and σc(a) from Eqs. (30) and (31), respectively; 

• the δn(a) and δs(a) separations from Eqs. (10) and (14), respectively; 

• the mode I and mode II strain-energy release rates; since gradual damage in a 

cohesive zone is not considered here, the sharp tractions decrease to null values of 

virtual infinitesimal propagation means that GI = σc(a)δn(a)/2 and GII = τc(a)δs(a)/2, 

which Eqs. (10) and (14) allow be expressed as: 

𝐺I =
ℎ𝑎𝜎𝑐

2(𝑎)

2𝐸𝑎𝑠
, 𝐺II =

ℎ𝑎𝜏𝑐
2(𝑎)

2𝐺𝑎
 (52) 

It is worth remarking that the solutions obtained in this section for GI and GII: 
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• Only require fully closed-form calculations i.e. no numerical procedures are needed. 

Nevertheless, no attempt was made to develop shortened expressions, as the entire 

process is easily handled in common spreadsheet software; 

• Although the FLDCB specimen (Fig. 1) was adopted as reference for the present 

analysis, Eqs. (30), (31) and (52) apply to any other fracture specimen whose loads 

and supports are sufficiently distant from the crack-tip. It is only a matter of using the 

appropriate crack-tip transverse shear and bending moments to determine the τk (k = 

0-3) and σk (k = 1-3) integration constants. 

 

2.5. Load-displacement responses 

In order to derive the load-displacement response of the FLDCB specimen (Fig. 1), it is 

convenient to combine Eqs. (30), (35) and (36) into a more general solution 

𝜏𝑐 = 𝜏0 + 𝜏1𝑒−𝜆𝑥 + 𝑒−𝜇𝑥(𝜏2 cos 𝜔𝑥 + 𝜏3 sin 𝜔𝑥) − 𝜏0𝑒𝜆(𝑥−𝐿) (53) 

This implies adding the exponential term that becomes relevant near the clamp to Eqs. (37) 

and (38), which become 

𝑉𝑖 = 𝐶𝑖,3 + (𝑄𝑖,1 +
𝑏ℎ𝑖

2
) 𝜏0 + (𝜏1𝑒−𝜆𝑥 − 𝜏0𝑒𝜆(𝑥−𝐿)) (𝑄𝑖,3𝜆2 + 𝑄𝑖,1 +

𝑏ℎ𝑖

2
)

+𝜏2𝑒−𝜇𝑥 [(𝑄𝑖,3(𝜇2 − 𝜔2) + 𝑄𝑖,1 +
𝑏ℎ𝑖

2
) cos 𝜔𝑥 + 𝑄𝑖,3(2𝜇𝜔) sin 𝜔𝑥]

+𝜏3𝑒−𝜇𝑥 [(𝑄𝑖,3(𝜇2 − 𝜔2) + 𝑄𝑖,1 +
𝑏ℎ𝑖

2
) sin 𝜔𝑥 − 𝑄𝑖,3(2𝜇𝜔) cos 𝜔𝑥]

 (54) 

𝑀𝑖 = 𝐶𝑖,2 + (𝑄𝑖,1 + 𝐶𝑖,3)𝜏0𝑥 − (𝜏1𝑒−𝜆𝑥 + 𝜏0𝑒𝜆(𝑥−𝐿)) (𝑄𝑖,3𝜆 +
𝑄𝑖,1

𝜆
)

−𝜏2𝑒−𝜇𝑥 [(𝑄𝑖.3 +
𝑄𝑖,1

𝜇2+𝜔2) 𝜇 cos 𝜔𝑥 + (𝑄𝑖.3 −
𝑄𝑖,1

𝜇2+𝜔2) 𝜔 sin 𝜔𝑥]

−𝜏3𝑒−𝜇𝑥 [(𝑄𝑖.3 +
𝑄𝑖,1

𝜇2+𝜔2) 𝜇 sin 𝜔𝑥 − (𝑄𝑖.3 −
𝑄𝑖,1

𝜇2+𝜔2) 𝜔 cos 𝜔𝑥]

 (55) 

 The substitution of Eq. (55) for Mi in Eq. (8) yields upon successive integration 
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𝐸𝑖𝐼𝑖
𝑑𝑣𝑏,𝑖

𝑑𝑥
= (𝜏1𝑒−𝜆𝑥 − 𝜏0𝑒𝜆(𝑥−𝐿)) (𝑄𝑖,3 +

𝑄𝑖,1

𝜆2
)

+𝜏2𝑒−𝜇𝑥 [(𝑄𝑖,3 + 𝑄𝑖,1
𝜇2−𝜔2

(𝜇2+𝜔2)2) cos 𝜔𝑥 −
2𝑄𝑖,1𝜇𝜔

(𝜇2+𝜔2)2 sin 𝜔𝑥]

+𝜏3𝑒−𝜇𝑥 [(𝑄𝑖,3 + 𝑄𝑖,1
𝜇2−𝜔2

(𝜇2+𝜔2)2
) sin 𝜔𝑥 +

2𝑄𝑖,1𝜇𝜔

(𝜇2+𝜔2)2
cos 𝜔𝑥]

+𝜏0 (𝑄𝑖,3 + 𝑄𝑖,1
𝑥2

2
) + 𝐶𝑖,3

𝑥2

2
+ 𝐶𝑖,2𝑥 + 𝐶𝑖,1

 (56) 

𝐸𝑖𝐼𝑖𝑣𝑏,𝑖 = −(𝜏1𝑒−𝜆𝑥 + 𝜏0𝑒𝜆(𝑥−𝐿)) (
𝑄𝑖,3

𝜆
+

𝑄𝑖,1

𝜆3
)

−
𝜏2𝑒−𝜇𝑥

𝜇2+𝜔2 [(𝑄𝑖,3 + 𝑄𝑖,1
𝜇2−3𝜔2

(𝜇2+𝜔2)2) 𝜇 cos 𝜔𝑥 − (𝑄𝑖,3 + 𝑄𝑖,1
3𝜇2−𝜔2

(𝜇2+𝜔2)2) 𝜔 sin 𝜔𝑥]

−
𝜏3𝑒−𝜇𝑥

𝜇2+𝜔2 [(𝑄𝑖,3 + 𝑄𝑖,1
𝜇2−3𝜔2

(𝜇2+𝜔2)2) 𝜇 sin 𝜔𝑥 + (𝑄𝑖,3 + 𝑄𝑖,1
3𝜇2−𝜔2

(𝜇2+𝜔2)2) 𝜔 cos 𝜔𝑥]

+𝜏0 (𝑄𝑖,3𝑥 + 𝑄𝑖,1
𝑥3

6
) + 𝐶𝑖,3

𝑥3

6
+ 𝐶𝑖,2

𝑥2

2
+ 𝐶𝑖,1𝑥 + 𝐶𝑖,0

 (57) 

giving rise to the Ci,1 and Ci,0 additional integration constants. The latter are easily obtained 

from the ideal clamp boundary conditions (Fig. 1) 

𝐸𝑖𝐼𝑖
𝑑𝑣𝑏,𝑖

𝑑𝑥
|

𝑥=𝐿
= 0, 𝑣𝑏,𝑖(𝐿) = 0 (58) 

by recovering the advantages of the specimen being sufficiently long to make terms on e−λL 

and e−μL negligible, and thus 

𝐶𝑖,1 = 𝜏0𝑄𝑖,1 (
1

𝜆2 −
𝐿2

2
) − 𝐶𝑖,3

𝐿2

2
− 𝐶𝑖,2𝐿 (59) 

𝐶𝑖,0 = 𝜏0 [(𝑄𝑖,3 +
𝑄𝑖,1

𝜆2 ) (
1

𝜆
− 𝐿) + 𝑄𝑖,1

𝐿3

3
] + 𝐶𝑖,3

𝐿3

3
+ 𝐶𝑖,2

𝐿2

2
 (60) 

 The substitution of Eq. (54) for Vi in Eq. (9) and subsequent integration provides the 

transverse shear displacements 

5𝐺𝑖𝑏ℎ𝑖

6
𝑣𝑠,𝑖 = (𝜏1𝑒−𝜆𝑥 + 𝜏0𝑒𝜆(𝑥−𝐿)) [𝑄𝑖,3𝜆 + (𝑄𝑖,1 +

𝑏ℎ𝑖

2
)

1

𝜆
]

+𝜏2𝑒−𝜇𝑥 [(𝑄𝑖,3 +
2𝑄𝑖,1+𝑏ℎ𝑖

2(𝜇2+𝜔2)
) 𝜇 cos 𝜔𝑥 + (𝑄𝑖,3 −

2𝑄𝑖,1+𝑏ℎ𝑖

2(𝜇2+𝜔2)
) 𝜔 sin 𝜔𝑥]

+𝜏3𝑒−𝜇𝑥 [(𝑄𝑖,3 +
2𝑄𝑖,1+𝑏ℎ𝑖

2(𝜇2+𝜔2)
) 𝜇 sin 𝜔𝑥 − (𝑄𝑖,3 −

2𝑄𝑖,1+𝑏ℎ𝑖

2(𝜇2+𝜔2)
) 𝜔 cos 𝜔𝑥]

−𝜏0𝑥 (𝑄𝑖,1 +
𝑏ℎ𝑖

2
) − 𝐶𝑖,3𝑥 − 𝐶𝑖,2 + 𝐶𝑖,4

 (61) 

where the ideal clamp condition vs,i(L) = 0 with the negligible terms e−λL and e−μL enables the 

determination of the integration constants 

𝐶𝑖,4 = −𝜏0 [𝑄𝑖,3𝜆 + (𝑄𝑖,1 +
𝑏ℎ1

2
) (

1

𝜆
− 𝐿)] + 𝐶𝑖,3𝐿 + 𝐶𝑖,2 (62) 
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 In the end, the load-displacement response is obtained by calculating successively: 

• the adherend crack-tip cross-section bending rotations dvb,i/dx|x = a, bending 

displacements vb,i(a) and transverse shear displacements vs,i(a) from Eqs. (56), (57) 

and (61), respectively; 

• the adherend load-point bending and transverse shear displacements by adding the 

contribution of the uncracked region i.e. 

𝑣𝑏,𝑖(0) = 𝑣𝑏,𝑖(𝑎) − 𝑎
𝑑𝑣𝑏,𝑖

𝑑𝑥
|

𝑥=𝑎
+

𝐹𝑖𝑎3

3𝐸𝑖𝐼𝑖
 (63) 

𝑣𝑠,𝑖(0) = 𝑣𝑠,𝑖(𝑎) +
6𝐹𝑖𝑎

5𝐺𝑖𝑏ℎ𝑖
 (64) 

 whose calculations benefit from the negligible terms on eλ(a − L) and lead at last to 

vi(0) = vb,i(0) + vs,i(0). 

 

3. Materials and methods 

As mentioned in Section 1, the scope of this paper are adhesive joints between dissimilar steel 

and aluminium adherends. The Young’s moduli here adopted were 200 GPa for steel and 70 

GPa for aluminium, while the Poisson’s ratio was 0.3. Ea = 2 GPa and νa = 0.35 typical of 

structural adhesives were assumed. The bondline thicknesses (Fig. 1) considered were the thin 

ha = 0.2 mm and the moderately thick ha = 1.0 mm. 

 As for specimen geometry, the high toughness of many structural adhesives and the 

need to avoid premature adherend yielding are known to demand relatively thick metal 

adherends [3,12,16]. One of the goals of this work was to evaluate the DABM for different 

adherend thicknesses. Therefore, hi = 5-20 mm were employed, leading to h2/h1 = 1-4. In 

addition, the approximations in the treatment of transverse shear discussed in Section 2.1 

warranted DABM evaluation for relatively small a/h2 ratios, which increase the contribution 

of transverse shear to specimen behaviour. Accordingly, low a/h2 = 6 to high a/h2 = 12 were 
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used in order to assess the effects of errors brought about by the aforementioned transverse 

shear modelling approximations. Given the adherend thicknesses adopted, this resulted in 

crack lengths a = 60-160 mm and in a/h1 = 6-32.  

 Finally, the simplified solutions proposed in Section 2.3 rest on the hypothesis that the 

crack-tip is sufficiently distant from the built-in end (Fig. 1). Having selected the adherend 

materials, h1, h2 and a, the criterion discussed in Section 2.3 demands choosing a minimum L 

so that 

𝜏0 + 𝜏1𝑒−𝜆𝐿 ≈ 1.001𝜏0  ⇔  𝐿 ≈
1

𝜆
ln (

103⋅𝜏1

𝜏0
) (65) 

However, in order to facilitate the comparison and interpretation of results, L was determined 

approximately for the critical case, and its value was kept for specimens with identical h1, h2 

and ha. As expected from previous work on mode II fracture of ENF specimens [12,16], the 

critical case was the one of steel adherends, which promote lower λ. For the same reason, 

thicker bondlines also require longer specimens. Table 1 summarizes the set of specimen 

geometries analysed in this paper. 

 

Table 1. Specimen geometries adopted. 

h1 (mm) h2 (mm) a (mm) ha (mm) L (mm) 

10 10 60-100 0.2 200 

   1.0 270 

5 10 60-100 0.2 200 

   1.0 270 

5 20 120-160 0.2 270 

   1.0 370 

 

 

 The DABM predictions were compared to FEA performed with the Abaqus® code. The 

two-dimensional (2D) models were constructed with 8-node solid quadratic reduced 

integration elements. Owing to the beam-like geometry, plane stress was assumed for the 
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adherends. The bondline was in turn modelled with plane strain elements, given the strong 

constraints imposed by the stiff adherends. These modelling conditions find support in 

previous studies on mode I and mode II fracture of adhesively bonded metals [11,12,16]. 

Preliminary mesh refinement studies showed that each adherend could be modelled by 4 (h1 = 

5 mm) to 8 (h2 = 20 mm) layers of elements, while 2 (ha = 0.2 mm) or 4 (ha = 1.0 mm) layers 

of elements were appropriate for the bondline. The maximum element length was 1 mm, but 

in the crack-tip vicinity the length was reduced to 0.1 mm so that accurate GI and GII could be 

computed by the virtual crack closure technique (VCCT).   

 Regarding the results presented below, the F1 and F2 loads (Fig. 1) imposed to both 

DABM and FEA never brought about geometric non-linearity. Moreover, the load 

combinations aimed at achieving GII/G ≈ 5, 20, 50, 80 and 95 %, as obtained from the 

DABM, G being the total strain-energy release rate (GI + GII). No attempt was made to obtain 

the F2/F1 ratios leading to pure modes I and II. For the sake of conciseness, the load-point 

displacements sum 

𝛥 = |𝑣1(0)| + |𝑣2(0)| (66) 

was used for comparing DABM and FEA results. Finally, in order to show the relevance of 

crack-tip flexibility, which gives rise to the well-known crack length corrections of corrected 

beam theory [17], DABM predictions for G were compared to those of BT prediction [18] 

𝐺𝐵𝑇 =
1

2𝑏
{

𝑀1
2(𝑎)

𝐸1𝐼1
+

𝑀2
2(𝑎)

𝐸2𝐼2
−

[𝑀1(𝑎)+𝑀2(𝑎)]2

𝛩
} (67) 

where Mi are given by Eqs. (48), 

𝛩 =
𝑏

3
{𝐸2(𝑦2

3 + ℎ𝑛
3) + 𝐸1[(𝑦2 + ℎ𝑎 + ℎ1)3 − (𝑦2 + ℎ𝑎)3]} (68) 

is the bending stiffness of the uncracked region (Fig. 1) and hn and y2 are computed from Eqs. 

(33) and (34), respectively. 
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4. Results and discussion 

The following remarks are needed on the results presented below: 

• Mode-mix results for the larger a = 100 and 160 mm crack lengths (Table 1) are not 

presented, because they are quasi-identical to the ones obtained for a = 60 and 120 

mm, respectively. This shows that GI and GII are, to a very large extent, dictated by 

the crack-tip bending moments Mi(a); 

• Accordingly, transverse shear plays a minor role, despite the relatively small a/h2 

considered. This means that the approximations inherent to the treatment of 

transverse shear discussed in Section 2.1 end-up having a marginal effect; 

• For the sake of clarity and conciseness, results for the thicker ha = 1.0 mm bondline 

are only depicted when they differ significantly from ha = 0.2 mm cases. 

 Figs. 3 and 4 present the GII/G mode-mix ratios for various combinations of adherend 

materials, bondline thicknesses and specimen geometries (see Fig. 1 and Table 1). It can be 

seen that: 

• even when adherends are made of identical metals, their elastic properties have a 

non-negligible effect on the mode-mix via the λ, μ and ω traction distribution 

parameters; 

• the ha-effect on GII/G tends to be more pronounced for high mode I loadings and for 

larger adherend flexural stiffness mismatch i.e. higher E2I2/E1I1 ratio; this can be 

explained by the larger crack-tip section relative displacements in mode I dominated 

set-ups; 

• the interval of F2/F1 ratios needed to achieve the GII/G ≈ 5-95 % range becomes 

wider for higher E2I2/E1I1; again, this reflects the dominance of bending moments on 

the behaviour of beam-like specimens;  

• there is clearly very good agreement between DABM and FEA results. 
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Fig. 3. Mode II ratio in FLDCB specimens (Fig. 1, Table 1) with a = 60 mm, ha = 0.2 and 1.0 mm. Sketches 

embedded in the plots depict the adherend materials (aluminium in light grey, steel in dark grey) and thicknesses. 
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Fig. 4. Mode II ratio in FLDCB specimens (Fig. 1, Table 1) with a = 120 mm, ha = 0.2 and 1.0 mm. Sketches 

embedded in the plots depict the adherend materials (aluminium in light grey, steel in dark grey) and thicknesses. 

 

 As seen in a recent review [7], mode-mix predictions have been a major challenge in 

adhesive joints with dissimilar adherends. The present results show that the DABM is very 

accurate when metal adherends are involved. 

 The very good performance of the DABM is confirmed by the accurate predictions for 

normalized G (Fig. 5) and load-point displacements sum Δ (Fig. 6). The errors defined as 

differences relative to FEA results are usually larger for the thicker ha = 1.0 mm bondline, but 

always under 2%. Therefore, the DABM provides a complete analysis framework for the 

fracture of dissimilar metal joints. Its ability to model quite accurately crack-tip flexibility 

effects is of particular importance for adhesive joints. This is clearly demonstrated in Fig. 7, 

which shows that DABM G predictions can be much higher than BT Eq. (67), especially for 
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thicker bondlines and mode II dominated setups. 

 

 

Fig. 5. Errors in G predictions of DABM for various specimens analysed (see text, Fig. 1 and Table 1) with the 

(GII/G, ha) combinations marked. Sketches represent aluminium and steel adherends in light and dark grey, 

respectively. 

 

 

Fig. 6. Errors in the load-point displacements sum Δ predictions of DABM for various specimens analysed (see 

text, Fig. 1 and Table 1) with the (GII/G, ha) combinations marked. Sketches represent aluminium and steel 

adherends in light and dark grey, respectively. 
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Fig. 7. G predictions of DABM relative to beam theory (BT) for various specimens analysed (see text, Fig. 1 and 

Table 1) with the (GII/G, ha) combinations marked. Sketches represent aluminium and steel adherends in light 

and dark grey, respectively. 

 

 In actual fracture tests, one may always apply the compliance calibration method to 

derive the total strain-energy release rate G. Nevertheless, BT based approaches such as the 

DABM provide useful benchmarks for experimental compliance values. Moreover, in the case 

of specimens with identical adherends, beam models yield accurate mode I and mode II 

fracture toughness values when using the effective crack concept [3,11,12,16]. As discussed 

above, the DABM also lends itself to this approach, but its real adequacy requires future 

investigation. 

 

5. Interest and potential of dissimilar metal adherend fracture specimens 

The above results show that the DABM provides a suitable framework for analysing the 

fracture of dissimilar metal adhesive joints. The availability of accurate and easy-to-apply 

data reduction schemes is indeed an important requirement for fracture specimens. However, 

the interest in testing dissimilar metal adhesive joints can be questioned considering that: 

• in adequately prepared joints, fracture should be cohesive within the adhesive layer 
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and thus, in principle, give rise to toughness values that are adherend-independent; 

one condition for this argument to hold is that adherends are always stiff enough to 

constrain the bondline into the uni-axial strain state here assumed; 

• the entire range of mixed-mode I-II combinations can nowadays be achieved with 

fracture tests on specimens with identical metal adherends [3]. 

 In fact, fracture toughness values measured with dissimilar adherend specimens may be 

more affected by residual stresses that develop upon cooling from adhesive cure temperature. 

This is due to the mismatch of adherend elastic properties, thicknesses and thermal of 

expansion coefficients. Tsokanas et al. [19] modelled the effects of residual stresses on G and 

on mode partitioning in terms of additional crack-tip section forces and moments. They [19] 

concluded that residual stresses may have a significant effect on moment-loaded double 

cantilever beam specimens with titanium and composite adherends. Although some of the 

effects of residual stresses can be accounted for through beam modelling, the role of bondline 

axial σx stresses cannot. The same applies to CZM with FEA, since only out-of-plane stresses 

and the corresponding I-II-III fracture modes are taken into account. Moreover, other well-

known difficulties in determining residual stresses in polymers and polymer matrix 

composites are also relevant i.e. temperature-dependent properties and visco-elasticity at high 

temperatures. Therefore, one of the motivations for testing dissimilar adherend joints is 

precisely to assess the effects of residual stresses by taking as reference toughness values 

measured with identical adherend specimens. 

 Regarding the determination of the whole mixed-mode I-II fracture envelope, the tests 

that allow several mode-mix combinations on specimens with identical adherends demand 

elaborate fixtures [3-6]. Moreover, long specimens are needed to accommodate the large FPZ 

that tough adhesives develop, especially under mode II dominated loadings. In fact, it has 

been shown that FPZ getting near support and load points can lead to artificially high 
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perceived mode II fracture toughness values [12,16]. Therefore, another possible advantage of 

dissimilar adherend specimens could be to provide a considerable range of mixed-mode I-II 

combinations with simple test fixtures. The simplest mixed-mode tests currently available are 

[3] the ADCB, the fixed-ratio mixed mode (FRMM) and the single-leg bending (SLB). 

Actually, both the ADCB and FRMM tests can be seen as particular cases of the FLDCB (Fig. 

1) here adopted: F2 = −F1 in the former and there is no need for the built-in end, while F2 = 0 

for the latter test. Evidently, in practice, the SLB specimen will be longer, but, on the other 

hand, uncertainties in clamp rigidity are avoided. Anyway, the DABM showed that G and the 

mode-mix are dictated by the Mi(a) crack-tip section bending moments. Therefore, where 

these two major test characteristics are concerned, the SLB and FRMM are on identical 

grounds.  

 Accordingly, the following analysis aimed at evaluating the potential of those simple 

tests for: 

• covering a wide range of mixed-mode combinations; 

• allowing the measurement of high Gc values typical of tough adhesives without metal 

adherend yielding. 

The maximum crack-tip section adherend bending stress 

𝜎𝑏,𝑖 =
6𝐹𝑖𝑎

𝑏ℎ𝑖
2  (69) 

was limited to 1300 MPa for steel adherends, a value well within the reach of high strength 

steels, and to 400 MPa for aluminium adherends, which does imply selecting more specific 

high-strength grades. Table 2 presents several FRMM or SLB specimen adherends and 

geometries that are quite interesting, as they cover a wide GII/G = 16-78 % range and allow 

measurements on adhesives with quite high Gc. Two crack lengths differing by 40 mm were 

considered to show that the mode-mix remains nearly constant throughout such a significant 

crack propagation length.  
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Table 2. FRMM specimen (consider F2 = 0 in Fig. 1) adherends and dimensions deemed of interest for 

characterising the mixed-mode I-II fracture envelope. Gmax corresponds to reaching the maximum σb,i = 1300 

MPa for steel adherends and 400 MPa for aluminium adherends. 

E1 (GPa) h1 (mm) E2 (GPa) h2 (mm) a (mm) ha (mm) Gmax (kJ/m2) GII/G (%) 

200 5 70 20 120 – 160 0.2 7.5 – 7.4 21.2 – 21.3 

     1.0 7.8 – 7.6 18.5 – 18.4 

70 15 200 15 90 – 130 0.2 6.3 – 5.9 44.6 – 45.3 

     1.0 6.9 – 6.4 42.1 – 42.0 

70 20 200 5 120 – 160 0.2 5.9 – 5.7 70.5 – 70.6 

     1.0 6.9 – 6.5 75.9 – 75.8 

200 5 200 20 120 – 160 0.2 7.6 – 7.4 21.2 – 21.4 

     1.0 7.8 – 7.6 16.4 – 16.4 

200 15 200 13 90 – 130 0.2 22.6 – 21.1 45.3 – 45.5 

     1.0 26.5 – 23.8 50.8 – 50.1 

200 20 200 5 120 – 160 0.2 16.8 – 16.1 70.1 – 70.2 

     1.0 21.2 – 19.5 77.8 – 77.6 

 

 

 In addition to the above specimens, it is also worth considering the quasi-pure mode I 

condition (GII/G = 0.6-0.7%) that can be attained with an ADCB test on steel/aluminium 

specimens having (Fig. 1) h1 = 5 mm, h2 = 10 mm, a = 60-100 mm. Such specimens allow the 

measurement of high Gc = 10.6 and Gc = 11.0 kJ/m2 for ha = 0.2 mm and ha = 1.0 mm, 

respectively, for the aforementioned limit σb,i. Evidently, in practice, other issues need to be 

considered when selecting the specimen geometry i.e. accommodate a large FPZ and the 

possibility of large displacements. Nonetheless, the high potential of dissimilar metal 

adherend specimens is quite clear. 
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6. Conclusions 

A beam model was here developed for mixed-mode I-II fracture testing adhesive joints with 

dissimilar metal adherends. The model proved to predict quite accurately the strain-energy 

release rate, mode-mix and load-point displacements of several specimens with: 

• aluminium/aluminium, steel/steel and aluminium/steel adherends; 

• thicker-to-thin adherend thickness ratios from 1 to 4; 

• bondline thicknesses from 0.2 to 1.0 mm; 

• loadings generating mode II ratios from 5 to 95 %. 

 The results obtained show that the strain-energy release rate and mode-mix are clearly 

dominated by the crack-tip section bending moments. This ensures that the approximations 

involved in dealing with transverse shear do not affect significantly the accuracy of model 

predictions. 

 In spite of somewhat lengthy developments and expressions, the present model is 

entirely closed-form i.e. it does not require any numerical iterative calculations. Furthermore, 

calculations could be further alleviated by: 

• grasping the physical meaning of the traction solution parameters; 

• selecting specimens whose uncracked part is long enough to avoid interaction 

between crack-tip and support (or load-point) local traction fields. 

This greatly facilitates planning of experiments, including specimen adherend materials and 

geometry selection, as well as subsequent experimental data reduction. 

 Finally, a preliminary study showed the enormous potential of dissimilar metal bonded 

specimens for attaining a wide range of mode-mix combinations with well-known simple 

tests. Dissimilar metal bonded specimens could therefore be an interesting alternative to the 

mixed-mode tests on common specimens with identical adherends that demand elaborate 

fixtures. 
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Appendix 

As seen in Section 2.2, the solution of Eq. (23) demands finding the roots of the 3rd-order 

polynomial equation  

ℎ𝑎

𝐺𝑎
𝑡3 + 𝐷5𝑡2 + 𝐷3𝑡 + 𝐷1 = 0 (A1) 

where t = s2 defined in Eq. (27) and the D1-D5 coefficients are given by Eqs. (24)-(26). The 

procedures for finding the roots of Eq. (A1) can be found in [20]. First, the discriminant 

𝛥𝑑 = 18
𝐺𝑎

ℎ𝑎
𝐷5𝐷3𝐷1 − 4𝐷5

3𝐷1 + 𝐷5
2𝐷3

2 − 4
𝐺𝑎

ℎ𝑎
𝐷3

3 − 27
𝐺𝑎

2

ℎ𝑎
2 𝐷1

2 (A2) 

dictates the types of roots. For the combinations of metal adherends, adhesive properties and 

thicknesses here considered, Δd < 0 and thus Eq. (A1) has one real root and two complex 

conjugate roots. This means that the 6th-order polynomial has two real symmetric roots and 

two pairs of complex conjugate roots, here designated as ±λ and ±(μ ± iω), where i2 = −1. The 

roots can be obtained from 

𝜆 = √
−𝐺𝑎

3ℎ𝑎
(𝐷5 + 𝑅 +

𝛥0

𝑅
) (A3) 

𝜇 = √
𝐺𝑎

12ℎ𝑎
(√𝑆2 + 3 (

𝛥0

𝑅
− 𝑅)

2

+ 𝑆) (A4) 

𝜔 = √
𝐺𝑎

12ℎ𝑎
(√𝑆2 + 3 (

𝛥0

𝑅
− 𝑅)

2

− 𝑆) (A5) 

where 

𝑆 =
𝛥0

𝑅
+ 𝑅 − 2𝐷5 (A6) 

𝑅 = √𝛥1+√𝛥1
2−4𝛥0

3

2

3

 (A7) 

𝛥0 = 𝐷5
2 − 3

ℎ𝑎

𝐺𝑎
𝐷3 (A8) 

𝛥1 = 2𝐷5
3 − 9

ℎ𝑎

𝐺𝑎
𝐷5𝐷3 + 27

ℎ𝑎
2

𝐺𝑎
2 𝐷1 (A9) 
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