
Universidade de Aveiro
2022

RITA FILIPA
DOS SANTOS
AMANTE

DETEÇÃO DE VEÍCULOS E EDIFÍCIOS EM
IMAGENS AÉREAS OBTIDAS POR DRONE

DETECTION OF VEHICLES AND BUILDINGS IN
DRONE AERIAL IMAGES

Universidade de Aveiro
2022

RITA FILIPA
DOS SANTOS
AMANTE

DETEÇÃO DE VEÍCULOS E EDIFÍCIOS EM
IMAGENS AÉREAS OBTIDAS POR DRONE

DETECTION OF VEHICLES AND BUILDINGS IN
DRONE AERIAL IMAGES

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Doutor António José Ribeiro
Neves, Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e In-
formática da Universidade de Aveiro, e do Doutor José Silvestre Serra da Silva,
Professor Associado com Agregação da Academia Militar.

Dedico este trabalho à minha família por todo o amor e apoio incondicional
ao longo da minha formação pessoal e académica.

o júri / the jury
presidente / president Professor Doutor Joaquim João Estrela Ribeiro Silvestre Madeira

Professor Auxiliar da Universidade de Aveiro

vogais / examiners committee Professora Doutora Catarina Helena Branco Simões Silva
Professora Auxiliar do Departamento de Engenharia Informática da Faculdade de Ciências e Tec-
nologia da Universidade de Coimbra

Professor Doutor António José Ribeiro Neves
Professor Auxiliar da Universidade de Aveiro

agradecimentos /
acknowledgements

A realização desta dissertação não seria possível sem a contribuição de algumas
pessoas, que merecem o meu agradecimento e às quais estarei eternamente grata.
À Universidade de Aveiro e a todos os professores que me acompanharam no meu
percurso académico pela elevada qualidade de ensino oferecido.
Ao orientador Professor António José Ribeiro Neves, pela sua orientação, total
apoio, disponibilidade, pelo saber que transmitiu, pelas sugestões, opiniões e críti-
cas e por todas as palavras de incentivo.
Ao coorientador Professor José Silvestre Serra da Silva, pela sua colaboração, visão
crítica, oportuna e exigente, contribuindo para o enriquecimento de todas as etapas
subjacentes ao trabalho realizado.
À Academia Militar Portuguesa, pela disponibilidade de registos e material para o
desenvolvimento desta dissertação.
Ao investigador Daniel Duarte Canedo, pela sua disponibilidade e total colaboração
no solucionar de dúvidas e problemas que foram surgindo.
Aos meus amigos César Miranda, Anabela Ribeiro e Lisa Correia, pela sua amizade,
apoio, motivação e partilha de ideias nesta etapa da minha vida.
Aos meus avós, por todo o apoio que sempre me prestaram e por todas as boleias
que me deram para ir para a Universidade.
Ao meu namorado, que esteve sempre ao meu lado, pelo companheirismo, com-
preensão, paciência e pelas constantes palavras de confiança.
Ao meu irmão e à minha cunhada, por todos os conselhos preciosos, total dispo-
nibilidade e encorajamento nos momentos cruciais desta jornada, bem como pela
leitura crítica e atenta das versões preliminares desta dissertação, contribuindo para
o seu aperfeiçoamento.
Aos meus pais, um agradecimento especial, tendo consciência que sozinha nada
disto teria sido possível, por serem modelos de coragem, pelo seu apoio incondi-
cional, incentivo, amor e paciência demonstrados e total ajuda na superação dos
obstáculos que foram surgindo ao longo desta caminhada.
A todos, um sincero e profundo obrigado.

Palavras Chave Inteligência Artificial, Aprendizagem de Máquina, Aprendizagem Profunda, Apren-
dizagem por Transferência, Visão Computacional, Deteção de Objetos, UAV

Resumo A necessidade de desenvolver software para a análise de imagem aérea, capturada
por Veículos Aéreos Não Tripulados, tem vindo a aumentar ao longo dos anos de-
vido ao facto de serem cada vez mais utilizadas em diversos cenários do dia-a-dia.
A deteção de objetos, técnica da Visão Computacional, é um dos problemas mais
explorados nesta área e consiste na identificação e localização de objetos em ima-
gens ou vídeos, com o auxílio de tecnologias de Inteligência Artificial.
Pretende-se com esta dissertação analisar o desempenho de algoritmos de Aprendi-
zagem Profunda, para a deteção de veículos e edifícios em imagens aéreas. Foram
escolhidos dois dos principais algoritmos descritos na literatura, Faster R-CNN e
YOLO, este último na terceira e quinta versão, por forma a verificar qual apresenta
melhor desempenho. Para o treino de cada algoritmo e realização de testes foi uti-
lizado um conjunto de dados fornecido pela Academia Militar Portuguesa, o qual
foi anotado e pré-processado.
Os resultados obtidos, no referido conjunto de dados, demonstraram que existe
uma discrepância considerável entre os dois algoritmos, tanto a nível do desem-
penho como do tempo de deteção. O Faster R-CNN apenas se mostrou superior
em relação às duas versões do YOLO no tempo de treino, pois foi o algoritmo que
precisou de menos tempo. Entre as versões do YOLO, a quinta versão foi a que
apresentou melhores resultados.

Keywords Artificial Intelligence, Machine Learning, Deep Learning, Transfer Learning, Com-
puter Vision, Object Detection, UAV

Abstract The need to develop software for aerial image analysis, captured by Unmanned
Aerial Vehicles, has increased over the years because their use has become more
prevalent in different day-to-day scenarios. Object detection, a Computer Vision te-
chnique, is one of the most explored problems in this area and consists of identifying
and locating objects in images or videos, with the help of Artificial Intelligence te-
chnologies.
The aim of this dissertation is to analyze the performance of Deep Learning al-
gorithms for detecting vehicles and buildings in aerial images. Two of the main
algorithms described in literature, Faster R-CNN and YOLO, the latter in the third
and fifth versions, were chosen to verify which one is capable of better performance.
The dataset provided by the Portuguese Military Academy, which was annotated
and pre-processed, was used for the training of each algorithm and the performance
of tests.
The results obtained in the abovementioned dataset demonstrate that there is a
considerable discrepancy between the two algorithms, both in terms of performance
and speed. Faster R-CNN only proved to be superior to the two versions of YOLO
in terms of training speed, as it was the algorithm that required less time for
training. Among the versions of YOLO, the fifth version showed the best results.

Contents

Contents i

List of Figures iii

List of Tables v

Acronyms vii

1 Introduction 1

1.1 Contextualization . 1

1.2 Motivation . 2

1.3 Objectives . 2

1.4 Structure of the document . 3

1.5 Extended Abstract . 3

2 Literature Review 5

2.1 Artificial Intelligence . 5

2.2 Machine Learning . 6

2.3 Deep Learning . 7

2.4 Transfer Learning . 9

2.5 Object detection algorithms . 10

2.5.1 Faster R-CNN algorithm . 10

2.5.2 YOLO algorithm . 11

2.6 Related work . 13

3 Methodology 17

4 Results e Discussion 23

4.1 Resources used . 23

4.2 Dataset . 25

4.3 Inference from pretrained algorithms . 31

i

4.4 Configuration of the training . 34

4.5 Inference from trained algorithms . 35

5 Conclusions 43

5.1 Future work . 44

References 45

Appendix A - Detection results from pretrained algorithms 49

Appendix B - Detection results for Faster R-CNN algorithm 51

Appendix C - Detection results for YOLOv3 algorithm 53

Appendix D - Detection results for YOLOv5l algorithm 55

Appendix E - Extended Abstract 57

ii

List of Figures

2.1 Machine Learning and Deep Learning are subsets of Artificial Intelligence (from [11]). . . 6

2.2 The three requirements needed to “educate” a machine (adapted from [14]). 6

2.3 Comparison of a machine learning approach to categorizing vehicles (left) with deep learning

(right) (from [17]). 8

2.4 Structure of Artificial Neural Networks (from [19]). 8

2.5 Example of a network with many convolutional layers (from [22]). 9

2.6 Comparison of the three Transfer Learning approaches: pretrained network as a classifier

(left), pretrained network as a feature extractor (middle) and fine-tuning (right) (from [25]). 10

3.1 Diagram of the methodology used to detect vehicles and buildings in aerial images. . . . 17

3.2 Example of IoU values: (a) 20% overlap between the 2 boxes; (b) 50% overlap between the

2 boxes; (c) 90% overlap between the 2 boxes (from [49]). 20

4.1 Metadata of an RGB image (left) and an IRG image (right). 25

4.2 Example of an XML file in a PASCAL VOC annotation format. 27

4.3 Percentage of instances of each class in the PMA dataset. 27

4.4 Examples of considered vehicles (complete objects). 28

4.5 Examples of considered vehicles (incomplete objects or with other overlapping objects). . 28

4.6 Examples of vehicles not considered. 28

4.7 Examples of considered buildings (complete objects). 29

4.8 Examples of considered buildings (incomplete objects or with other overlapping objects). 29

4.9 Examples of buildings not considered. 29

4.10 Example of Data Augmentation application: (a) original image; (b) image with brightness;

(c) image with Gaussian blur. 30

4.11 Number of instances of each class per training, validation and testing subsets of the PMA

and PMA-DA datasets. 30

4.12 Detection results of the pretrained algorithms for an RGB image (left) and an IRG image

(right): (a) original annotations; (b) Faster R-CNN; (c) YOLOv3 and (d) YOLOv5l. . . . 33

4.13 Example of an XML file converted into CSV. 34

4.14 Example of an XML file converted yo text. 35

iii

4.15 Faster R-CNN Confusion Matrix for: (a) 14500 steps (PMA); (b) 29000 steps (PMA) and

(c) 43500 steps (PMA-DA). 36

4.16 YOLOv3 Confusion Matrix for: (a) 100 epochs (PMA); (b) 200 epochs (PMA) and (c) 100

epochs (PMA-DA). 37

4.17 YOLOv5l Confusion Matrix for: (a) 100 epochs (PMA); (b) 200 epochs (PMA) and (c)

100 epochs (PMA-DA). 38

4.18 Classification loss graph of the algorithms: (a) Faster R-CNN, (b) YOLOv3 and (c) YOLOv5l. 39

4.19 Localization loss graph of the algorithms: (a) Faster R-CNN, (b) YOLOv3 and (c) YOLOv5l. 40

4.20 Detection results of the trained algorithms, for an RGB image (left) and an IRG image

(right): (a) original annotations; (b) Faster R-CNN; (c) YOLOv3 and (d) YOLOv5l. . . . 42

iv

List of Tables

4.1 Characteristics of the computer used. 23

4.2 Number of images by training, validation and testing subsets of each dataset. 31

4.3 Values of training parameters. 35

4.4 Faster R-CNN algorithm training results. 36

4.5 YOLOv3 algorithm training results. 37

4.6 YOLOv5l algorithm training results. 38

1 Detection results from pretrained algorithms. 49

2 Detection results for Faster R-CNN algorithm. 51

3 Detection results for YOLOv3 algorithm. 53

4 Detection results for YOLOv5l algorithm. 55

v

Acronyms

AI Artificial Intelligence
ANN Artificial Neural Network
AP Average Precision
CNN Convolutional Neural Network
CPU Central Process Unit
CSV Comma-Separated Values
CUDA Compute Unified Device Architecture
CV Computer Vision
DL Deep Learning
FC Fully-Connected
FN False Negative
FP False Positive
FPN Feature Pyramid Networks
Fast R-CNN Fast Region-based Convolutional Neural Network
Faster R-CNN Faster Region-based Convolutional Neural Network
GPU Graphics Processing Unit
HOG Histogram of Oriented Gradients
IoU Intersection over Union
mAP mean Average Precision
ML Machine Learning
MS COCO Microsoft Common Objects in Context
NMS Non-Maximum Suppression
PMA Portuguese Military Academy
PMA-DA Portuguese Military Academy with Data Augmentation
R-CNN Region-based Convolutional Neural Network
ReLu Rectified Linear Unit
R-FCN Region-based Fully Convolutional Network
RFCN-DF R-FCN based on Deformable-ConvNets
RoI Region of Interest
RPN Region Proposal Network
SSD Single Shot Multibox Detector
SVM Support-Vector Machine
TL Transfer Learning
TN True Negative
TP True Positive
UAV Unmanned Aerial Vehicles
VJ Viola Jones
XML Extensible Markup Language
YOLO You Only Look Once

vii

CHAPTER 1
Introduction

This chapter is divided into five subchapters. First, a brief contextualization of the theme
and the main motivations which led to choosing this dissertation are presented. Next, the
objectives of the work are defined, both at a general and specific level and the organization of
the document by chapters is presented with a brief description of the subjects covered in each
one. Finally, reference is made to an extended summary carried out within the scope of this
dissertation.

1.1 Contextualization

Currently, with the advancement of technology, access to aerial images has been simplified
due to the expansion of Unmanned Aerial Vehicles (UAV). Their presence has made large
amounts of aerial visual data accessible and, consequently, object detection algorithms have
been improved.

UAV, as the name implies, are remotely controlled aerial vehicles which enable autonomous
navigation and capture visual data through a high-resolution camera from different locations,
angles and altitudes [1].

The facility with which UAV access hard-to-reach places, in a mobile way, has boosted
their use in different application areas, both in a civil and military context. At the civil level,
they have several benefits in areas such as surveillance, public and private security, disaster
assistance, agriculture and the environment, among others [2]. They are of enormous practical
interest in a military context, especially for the defense sector, as they help to predict enemy
movements and plan preventive measures, saving time and effort [3]. UAV can be used for
reconnaissance of enemy positions, thereby protecting the Military Unit through surveillance
images, enabling the detection of camouflaged soldiers, as well as enabling offensive operations
by carrying small explosives which, in a suicide mission, collide with the target to be destroyed.

Another way of capturing aerial images is through satellites. But although satellites also
provide a panoramic view, they are more expensive and the information they provide cannot

1

be updated. Compared to satellites, UAV are lighter, less expensive and require less human
and technological resources to acquire images [1].

Compared to terrestrial images, the aerial images captured by UAV stand out for covering
a large field of view and presenting high spatial resolution [1]. However, they present several
challenges such as orientation, viewing angles (top view, side view and front view), shadows,
complex backgrounds, lighting, reduction of object scale due to the altitude of the flight and
the possibility of blurred images due to an unstable trajectory [4].

Increasingly, UAV have been applied in the field of Computer Vision (CV). Just as the
human being has the ability to capture and interpret images, CV presents a similar process.
Cameras or sensors capture images, the neural networks receive these images and, through
Artificial Intelligence (AI) algorithms, the information is extracted. In this light, CV can be
portrayed as a process of modeling and identification, extracting information from images
or videos. This is only possible due to the evolution of computers, in terms of processing,
memory and storage capacity, and it can be said that there is a direct correlation between
CV and computers [5].

1.2 Motivation

CV has been playing an important role in digital transformation. Its growth is due to
the increase in data that needs to be stored and analyzed, an arduous and time-consuming
task to be performed by humans. It can be applied to solve various problems, such as image
classification, object detection, object location, among others.

Object detection in aerial images is a recent topic, with a very significant growth outlook,
making its study complex and interesting. Vehicle detection, specifically, can provide several
real-world applications, such as road traffic monitoring, parking management and control,
road accidents, screening for illegal activities, operations to support government agencies
and surveillance of enemy troops. Building detection can be useful for urban planning and
construction, roof monitoring and control of illegal constructions.

Taking all this into consideration, there is an increasing interest in the study of vehicle and
building detection in aerial images obtained by UAV. Two Deep Learning (DL) algorithms, well
known in the literature for object detection, will be studied: Faster Region-based Convolutional
Neural Network (Faster R-CNN), a two-stage algorithm, and You Only Look Once (YOLO),
a one-stage algorithm. Regarding the YOLO algorithm, two of its versions will be studied,
YOLOv3, which is one of the most mentioned algorithms in literature, and YOLOv5l, which
is the most recent version.

1.3 Objectives

The general objective of this dissertation is to study and analyze the performance of
classification algorithms for the detection of vehicles and buildings, using images obtained by
UAV.

To achieve the general objective, some specific objectives were defined, namely:

2

• Research and select pretrained algorithms for the detection of objects in aerial images.
• Annotate the set of images provided by the Portuguese Military Academy.
• Analyze the efficiency of pretrained algorithms in the set of images provided.
• Configure and train the algorithms for the detection of target objects in the set of images

provided.
• Evaluate and compare the performance of implemented algorithms.

1.4 Structure of the document

This thesis is divided into 5 chapters, namely:
• Chapter 1 - Introduction: framework, motivation, description of the established objec-

tives, a brief description of the paper’s organization and reference to the elaboration of
an extended abstract.

• Chapter 2 - Literature Review: survey of theoretical concepts which are key to under-
standing this dissertation and reference to the current state of knowledge, so that a
starting point for the study in question can be established.

• Chapter 3 - Methodology: description of the adopted methodology, using an illustrative
diagram.

• Chapter 4 - Results: presentation of the resources used, dataset description, inference
process of pretrained algorithms, training configuration of each algorithm and inference
process of trained algorithms.

• Chapter 5 - Conclusions: summary of results and references to future work.

1.5 Extended Abstract

The work involved in elaborating this dissertation resulted in the writing of the Extended
Abstract, “Discrimination between vehicles and buildings in military aerial images”, which
was submitted to the Conference of the International Society of Military Sciences, which
will take place from October 10th to 13th, 2022 in Lisbon. This document can be found in
Appendix E - Extended Abstract.

3

CHAPTER 2
Literature Review

This chapter outlines some theoretical concepts fundamental to the understanding of this
dissertation, a brief contextualization of the chosen algorithms and references to work carried
out.

2.1 Artificial Intelligence

In the past, it was unthinkable that machines could perform tasks similar to human
intelligence. Over time, AI has become increasingly present, and has turned into a reality.

The pioneer in AI was Alan Turing, considered to be the “father of AI”. In 1936, Alan
Turing described the fundamental concepts of a computer, which became known as the “Turing
Machine”, which then gave rise to the concept of the “Intelligent Machine”. Turing created a
test to evaluate the intelligence of a computer system compared to that of a human being,
called the “Turing Test” [6].

Due to authors’ different perspectives and sources of inspiration, it becomes difficult to
define the term AI in a simple and effective way. Over time, different definitions have emerged.
In the 1950s, the objective of AI was first defined as the development of machines capable of
behaving intelligently [7]. Subsequently, AI was seen as a discipline whose objective involved
the study and construction of artificial entities with knowledge identical to that of the human
being [8].

It can be said that AI tries to simulate human reasoning, knowledge, behavior and learning
through machines [9]. The advancement of technology has made these intelligent machines
faster and more efficient, making it so that most manual tasks can be replaced by automated
tasks.

Other concepts are related to AI, such as Machine Learning (ML), DL and CV, which are
interconnected, as illustrated in Figure 2.1 [10].

5

Figure 2.1: Machine Learning and Deep Learning are subsets of Artificial Intelligence (from [11]).

2.2 Machine Learning

Gradually, with access to more extensive computing resources and a greater amount of
data, which provide faster and more successful processing to support more complex tasks, ML
has emerged.

In 1997, a more engineering-oriented definition appeared by Tom Mitchell, where he cites
that “A computer program is said to learn from experience E with respect to some task T
and some performance measure P, if its performance on T, as measured by P, improves with
experience E” [12].

It can be said that ML is a subfield of AI which designs and programs algorithms, enabling
machines to learn from data, improve their accuracy and find patterns, without human
intervention. The input data used in these algorithms needs to be preprocessed [13].

For a machine to be able to perform tasks independently, three distinct requirements are
needed (Figure 2.2) [14]:

Figure 2.2: The three requirements needed to “educate” a machine (adapted from [14]).

• Dataset: one of the most important requirements for machine learning is the input
dataset, which, depending on the desired objective, can consist of images, text, videos,
among others. Collecting and processing data is a task which requires extensive resources,
time and effort. In most algorithms, the dataset is divided into three parts [15]:

6

– Training Dataset: data used in the algorithm learning process.
– Validation Dataset: data used to impartially evaluate the algorithm’s perfor-

mance after training, to adjust its hyperparameters.
– Test Dataset: data used to evaluate the algorithm’s performance, after its training

and validation.
• Features: attributes associated with the dataset which make it possible for the machine

to create a correspondence between the input data and the desired response, enabling
the establishment of patterns to optimize learning.

• Algorithm: set of instructions executed in a certain order, responsible for executing
the machine training process.

ML algorithms can be divided into four categories, depending on the amount and type
of supervision they receive during the training process: supervised learning, unsupervised
learning, semi-supervised learning and reinforcement learning [12].

Supervised learning algorithms predict an output from a labeled input, requiring large
amounts of labeled data for model refinement and more accurate results. Each output is
assigned a label, which can be a numeric value or a class [16]. These can be divided into two:
classification algorithms and regression algorithms. The former is used to predict/classify
discrete values, where the output can only assume a set of predefined labels. On the other
hand, the latter is used to predict real number outputs [12].

Contrary to supervised learning, the input data of unsupervised learning algorithms are
not labeled, that is, the desired response is not informed. These algorithms try to identify
patterns among the data, to group them according to the detected similarities [16].

Semi-supervised learning algorithms use labeled and unlabeled data for training, having a
higher amount of unlabeled data, since they are more economical and easier to acquire. The
algorithms first apply unsupervised learning to gather similar data and then, with the labeled
data, apply supervised learning to label the remaining data [16].

Reinforcement learning algorithms involve three components: the agent (entity which
interacts with the environment and makes decisions), the environment (space where the
agent performs these actions) and actions (what the agent is capable of doing). The agent is
responsible for the choices of actions, using trial-and-error tests to maximize the reward or
minimize the risk [9].

2.3 Deep Learning

In recent years, DL has been the focus of study and implementation, contributing to a
significant evolution in ML methods. Its evolution is due to the implementation of algorithms
based on neural networks, which have become more complex, and to the progress of computers.

Just as the human being is able to process information, DL can learn and classify objects
by itself, through the interpretation of data [13].

Compared to ML, DL focuses on creating algorithms which simulate the functioning of
neurons in the human brain. These algorithms are comprised of an interconnected network of

7

nodes [10], which use vast quantities and a variety of data for training, and Artificial Neural
Network (ANN), which enable learning without a manual extraction of features, eliminating
the need for the pre-processing of data necessary in ML [13], as illustrated in Figure 2.3.

Figure 2.3: Comparison of a machine learning approach to categorizing vehicles (left) with deep
learning (right) (from [17]).

The two stages of DL are the training process and the inference process. The first trains
the algorithm so that it learns from the data and labels it. The second consists of evaluating
and labeling new data, using the network trained in the previous process [13].

DL enables the use of several processing computers to improve the performance, as well as
the use of Graphics Processing Unit (GPU) to increase the training speed [10]. These have led
to great improvements in the area of CV, with regard to speech recognition, object detection,
among other applications.

The inspiration for the creation of an ANN came from the 1943 study on the functioning
of biological neurons found in the human brain, by the neurophysiologist Warren McCulloch
and the mathematician Walter Pitts [12].

The structure of an ANN consists of vertically stacked elements to which a layer name is
attributed. An ANN is therefore comprised of an input layer, one or more hidden layers and an
output layer. The input layer receives the input data and transfers it to the next layers. The
hidden (intermediate) layers process the incoming data, applying complex functions designed
to produce the intended result. Finally, the output layer receives the processed data and
produces the final result. In general, the output of the previous layer provides the input for
the next layer. In other words, the following layers use information obtained in the previous
layers, enabling the construction of complex concepts from simpler ones (Figure 2.4)[18].

Figure 2.4: Structure of Artificial Neural Networks (from [19]).

In an ANN, each node, or artificial neuron, receives several signals as input, assigning a
weighting coefficient (“weight”) and an associated limit. If the output layer of any node is
above the limit value, that node is activated, sending data to the next layer, otherwise no data
is sent. In these networks, learning is achieved by adjusting the weighting coefficients [13].

8

Thus, the learning is ‘Deep’ due to the number of hidden layers in the neural network,
which provide part of the learning [6].

In the 1980s, with the study of the visual cortex of the brain, Convolutional Neural
Network (CNN) or ConvNet emerged, used in classification and CV tasks. In his study from
1998, Professor LeCun et al. [12] introduced the LeNet-5 architecture, adding two new building
blocks: convolutional layers and pool layers. After the success of this architecture, others were
developed over the years, such as AlexNet, ZFNet, GoogLeNet, VGGnet and ResNet [20].

The function of a CNN is to reduce images into a format which is easier for processing,
without wasting features. These are composed of several layers of artificial neurons, where the
first layer extracts the basic features and passes them to the next layer which detects more
complex features in a continuous process [20].

A CNN is composed of an input layer, several hidden layers and an output layer (Figure
2.5). The most common layers are: Convolutional layer, Pooling layer, Rectified Linear
Unit (ReLu) and Fully-Connected (FC) layer. The most important building block is the
Convolutional layer, where most of the computation takes place. The ReLu enables faster
and more effective training by activating only those features carried over to the next layer.
The Pooling layer is responsible for reducing the size and number of input parameters. The
FC layer is assigned the classification task based on the features extracted from the previous
layers [21].

Figure 2.5: Example of a network with many convolutional layers (from [22]).

Most object detection algorithms are based on CNN as they have a weight sharing structure
and take advantage of the GPU, an important factor in object recognition [21].

2.4 Transfer Learning

Transfer Learning (TL) is considered a DL technique which transfers the knowledge the
trained neural network acquired to a new related task, without the need to train the new
network from scratch [23].

In TL there are three possible approaches: pretrained network as a classifier, pretrained
network as a feature extractor and fine-tuning (Figure 2.6). The first consists of directly
applying the target task to the pretrained network, without making changes to the network
and without training it, using the pretrained architecture and weights and, on these, making
predictions with the new dataset. The second is to freeze the feature extraction, remove the

9

classifier, add a new classifier and train it from scratch. The third is to freeze some of the
network layers used in feature extraction and train the remaining layers and the network
classifier [24].

Figure 2.6: Comparison of the three Transfer Learning approaches: pretrained network as a classifier
(left), pretrained network as a feature extractor (middle) and fine-tuning (right) (from
[25]).

The advantages outweigh the disadvantages in using TL. Relative to the advantages, it
does not need a large amount of data for training, reduces training time and improves the
performance of neural networks. However, it should only be used when the pretrained task
has similarities with the one to be trained and when the algorithm architectures are similar
[23].

TL is often used to avoid overfitting, which occurs when the algorithm precisely fits the
training data, learning irrelevant information about the data, thus underperforming on the
new dataset [25].

2.5 Object detection algorithms

In the last 20 years, progress has been made in object detection, with two important periods
being highlighted: traditional object detection period (before 2014) and deep learning-based
detection period (after 2014) [26]. During the first period, the features base used in object
detection algorithms was artisanal, where the image features were manually extracted (color,
texture, contours, among others) and then the classifier was trained. The second period can
be divided into two-stage and one-stage.

2.5.1 Faster R-CNN algorithm

The Region-based Convolutional Neural Network (R-CNN), proposed by Ross Girshick et
al., is one of the first approaches used to determine the object in the image, consisting of the
following steps [27]:

10

• Determination of a Set of Hypotheses: through selective research, the list of
hypotheses is defined, which includes 2,000 different regions partially overlapping each
other. Each of these regions is called a Region of Interest (RoI).

• Feature extraction using CNN and its encoding into a vector: each hypothesis
is transferred independently and separately from each other to the CNN input.

• Object classification within each hypothesis: uses the list of classification models to
determine which object is in the region under analysis, through the previously extracted
characteristics.

Since the R-CNN performs excessive calculations on numerous proposals, resulting in a slow
detection speed, the selective search algorithm is not flexible, and training is time-consuming.
The CNN is responsible for extracting the characteristics of all the RoI created [28].

Later, to overcome some shortcomings of the R-CNN, the Fast Region-based Convolutional
Neural Network (Fast R-CNN) algorithm, proposed by Ross Girshick, appeared, where, unlike
the R-CNN, the image is provided in its entirety to the CNN to create a feature map. This
algorithm presents a RoI Pooling layer which, through a selective search parallel network
and based on the obtained feature map, creates the RoI and assigns features to each region
[28]. However, Fast R-CNN has several limitations such as a high calculation time and a
complicated and time-consuming approach [29]. Then came the Faster R-CNN, proposed by
Shaoqing Ren et al., to overcome the limitations of the previous algorithms. The latter’s main
contribution was the introduction of the Region Proposal Network (RPN) [26].

In Faster R-CNN, the input image is provided in its entirety to the CNN, which learns and
identifies the RoI, combined with a parallel network, called the RPN [30]. The Faster R-CNN
detection process follows several steps. Firstly, it extracts a feature map from images; secondly,
it generates hypotheses from the feature map, determining the approximate coordinates;
thirdly, it compares the hypothesis coordinates with the feature map, using RoI and, finally,
it classifies the hypotheses, updating the coordinates [27].

2.5.2 YOLO algorithm

You Only Look Once (YOLO), as its name implies, looks at the image as a whole, only
once, differentiating it from previous models, based on the use of RoI in the classification of
images.

Redmon et al. [31] developed the extremely fast and accurate unified model for object
detection called YOLO, where a single neural network pre-determines limiting boxes and
class probabilities directly from complete images, ideal for applications which rely on fast and
effective object detection. They concluded that the model contains more localization errors,
but predicts fewer false positives, learning very general representations of objects.

All YOLO architectures can be divided into three components [32]:

• Backbone: corresponds to a CNN responsible for extracting feature maps from an
image.

• Neck: mixes and matches the characteristics created in the backbone to capture
information to be used in the next step.

11

• Head: with the information received from the previous step, it predicts the limiting
boxes and the respective classes.

YOLO uses a fully convolutional neural network which performs the object recognition
and localization step at the same time and returns the limiting box position and its class
directly in the output layer [33]. Initially, YOLO resizes the input image to a specific size,
which is then sent to the CNN system, and finally, the network prediction results are processed
to detect the target [34].

The first version has 24 convolutional networks and 2 fully connected layers. It has some
limitations. For example, it does not detect low resolution objects; it does not provide more
than one limiting box for a given region; it does not detect some objects or their details; it
does not incorporate tests with multiple resolutions; it is not flexible and has difficulty in
locating [29].

The second version, YOLOv2 or YOLO9000, proposed by Joseph Redmon and Ali Farhadi,
can be run in a variety of image sizes, to balance speed and accuracy [35]. It uses Darknet-19
as a backbone for resource extraction and has 19 convolutional layers and 5 max-pooling
layers, having removed all fully convolutional layers from the previous version [29].

The third version, YOLOv3, proposed by Joseph Redmon and Ali Farhadi, uses Darknet-53
as backbone for resource extraction and has 53 convolutional layers and 23 residual layers.
The novelty of its architecture is that it does not contain a pooling layer and uses three-scale
feature maps to predict the position of the object, which is an advantage over previous versions,
regarding the detection of small objects. It divides the feature map into grids, each being
used to predict limiting boxes and detect the categories of objects [33]. YOLOv3 has two
main problems: label rewriting and the imbalance between limiting boxes. The first is due to
the detector not using rewritten limiting boxes for the training process. The second happens
when the centers of two limiting boxes are present in the same cell, and one can be replaced
by the other [34].

The fourth version, YOLOv4, proposed by Alexey Bochkovskiy et al., uses CSPDarknet53
as a backbone for resource extraction, to improve the algorithm’s speed and accuracy [36].

The latest version, YOLOv5, presented by the company, Ultralytics, was developed from
the open-source PyTorch library and is considered the lightest version of the YOLO algorithms.
It uses CSPDarknet53 as a backbone and its structure replaced the first three layers of the
YOLOv3 algorithm, reducing Compute Unified Device Architecture (CUDA) memory needed
and increasing direct propagation and backpropagation [37].

YOLOv5 can be divided into five different models, trained with the Microsoft Common
Objects in Context (MS COCO) dataset [38]:

• YOLOv5n (nano): the smallest, suitable for mobile solutions.
• YOLOv5s (small): best suited for inference execution on the Central Process Unit (CPU).
• YOLOv5m (medium): medium-sized, ideal for vast quantities of training data.
• YOLOv5l (large): relatively large in size, used for the detection of small objects.
• YOLOv5x (extra-large): the largest of all, with better accuracy, but slower.

12

These differ from each other in depth and size, yielding different values of accuracy and
performance [38].

2.6 Related work

After a survey and selection of articles, the ones which fall within the scope of the work
developed in this dissertation are summarized below.

Wang et al. [39] built a new dataset with 600 images for vehicle detection, using images
obtained by Drone and improved the Faster R-CNN algorithm. They found that, when
using Faster R-CNN with VGG16, some problems with the objects were detected, such as
low resolutions, uncertain directions and background complexity, causing missed and false
detections. So, to solve these problems, they selected the best ResNet algorithm to replace
the VGG16 and used the Feature Pyramid Networks (FPN) to combine low-level features
with high-level ones. They concluded that the improved Faster R-CNN can be used to detect
vehicles in aerial images, with an accuracy of 96.83%. Compared to the original Faster R-CNN,
they were able to obtain better results by 3.86%.

The research by Xu et al. [40] reveals that the Faster R-CNN algorithm is effective
regarding changes in lighting and in-plane rotation, with the detection speed not being
sensitive to the detection load, which is almost constant. The Faster R-CNN algorithm was
analyzed for vehicle detection from low altitude UAV images captured at signaled intersections,
compared with the other algorithms, Viola Jones (VJ) Detector and Histogram of Oriented
Gradients (HOG) + Support-Vector Machine (SVM). From the analysis of the results, they
recorded that the Faster R-CNN obtained Completeness (96.40%) and Correctness (98.43%)
with real-time detection speed (2.10 f/s).

In the study by Zheng et al. [41], for the detection and identification of buildings from
images obtained by UAV, the Faster R-CNN algorithm was implemented on different hardware
platforms. The algorithm reached an accuracy of 93.2% with an average processing time of 74
ms in image recognition, concluding that this DL algorithm is viable for the task in question,
presenting high efficiency. Another noteworthy aspect was the variation in detection time
depending on the hardware platforms used. These authors also mention that the accuracy
rate of the algorithm can be improved if the training dataset is broader.

The authors Ammar et al. [1] evaluated the performance of three algorithms for vehicle
detection using aerial images: Faster R-CNN, YOLOv3 and YOLOv4. The Faster R-CNN
algorithm was implemented with two different feature extractors, Inception v2 and ResNet50.
They analyzed two datasets with different characteristics such as UAV altitude, camera
resolution and object size: Stanford and PSU, where the first is comprised of more data
and larger objects. They concluded that the performance of the algorithms depends on the
characteristics of the dataset and the representativeness of the training images. Faster R-CNN
implemented with Inception v2 was faster than with ResNet50, although they had similar
accuracy levels. Faster R-CNN presented better average precision, but a slower inference
speed than (YOLO)v4, in the Stanford dataset. YOLOv4 showed better accuracy and faster

13

inference speed than Faster R-CNN in the PSU dataset. Concerning YOLOv3 and YOLOv4,
their prediction difference was insignificant.

According to Zhang et al. [42], there is still some difficulty in detecting objects in UAV
images with good performance due to certain factors, such as: altitude (high altitudes produce
low resolution images, making objects small and confusing), varied object orientations and
reduced amount of labeled aerial imagery data. Starting from this base, the authors created a
dataset of high-resolution UAV images, which they called MOHR, containing 10,631 anno-
tated images with five classes of objects, displayed with three cameras. Six object detection
algorithms were applied to this dataset, based on DL, namely Single Shot Multibox Detec-
tor (SSD), Region-based Fully Convolutional Network (R-FCN), Faster R-CNN, YOLOv2,
YOLOv3 and R-FCN based on Deformable-ConvNets (RFCN-DF). They concluded that the
R-FCN solves the problem of position sensitivity relative to the Faster R-CNN, as well as
improves the average detection accuracy; RFCN-DF is more effective in detecting objects with
irregular contours; two-stage detectors produce a relatively higher average accuracy compared
to one-stage ones, which can be attributed to the generation of region proposals.

Dikbayir et al. [43] developed an application for vehicle detection in aerial images to
increase the performance of the YOLO algorithm. These authors state that the performance
of one-stage algorithms, such as YOLO, decreases as the object size decreases, giving more
importance to speed than to performance. When comparing Faster R-CNN and YOLO,
they observed that Faster R-CNN has better performance but slower detection speed. They
implemented Faster R-CNN to increase the performance of YOLOv3, taking advantage of the
best characteristics of both algorithms, accuracy and speed. They used the Munich dataset
which contains high-resolution aerial images above 100 meters. The dataset was labeled
and adapted to the Faster R-CNN algorithm which, after training, was used in the YOLO
algorithm. They concluded that this implementation increased the performance of the YOLO
algorithm by 3.2%.

Xu et al. [44] compared the performance of YOLOv3 with YOLOv4 and the parameteri-
zation of YOLO-based models for the detection of small objects in the AU-AIR dataset. They
concluded that YOLOv4 is slightly more efficient in detecting smaller objects and reduces the
cost of hardware training. However, they questioned whether YOLOv4 would be the most
suitable in terms of detection accuracy and speed for small objects.

Yin et al. [45] improved the Faster R-CNN model, in terms of feature extraction, to obtain
better detection accuracy, using feature fusion at various scales, combining the residual module
and the pool layer. As the input image is processed by several layers and the receptive field
increases, some information is lost, which makes it difficult to locate the boundaries of small
objects, affecting detection accuracy. By utilizing the fusion of low-level structural features
and high-level semantic features, small objects can have more information and improve the
results. They concluded that the average precision increased by 1.06%.

Saetchnikov et al. [27] conducted a comparative study on the efficiency of different
deep neural networks for the detection of objects in satellite and aerial images. They used
R-CNN, Fast R-CNN, Faster R-CNN, SSD and YOLOv3, for three datasets. In the “Stanford

14

Campus” dataset, they concluded that YOLOv3 achieved better average accuracy (87.12%)
and faster analysis (26.82 fps) compared to the R-CNN, Fast R-CNN, Faster R-CNN and SSD
algorithms. Even with other datasets, “Dota v1.5” and “xView 2018 Detection”, YOLOv3
continues to show advantages over the other algorithms, despite a slight decrease in accuracy.
In addition to accuracy, YOLOv3 excelled in processing speed for real-time object detection
by UAV.

Nepal et al. [37] analyzed object detection algorithms to spot safe landing spots in case
the UAV suffer an in-flight failure. They compared the accuracy and speed of the YOLOv3,
YOLOv4 and YOLOv5l algorithms using the DOTA dataset. They concluded that the three
algorithms satisfy the requirements for object detection in real time. However, YOLOv5l
stood out due to its greater precision.

Several approaches and methodologies have been developed to solve object detection
problems, which have become more viable with the use of algorithms based on DL. Most of
the studies related to object detection in aerial images focus on two and one-stage detectors,
mainly Faster R-CNN and YOLO, respectively. Although satisfactory results for object
detection in aerial images have already been obtained using these algorithms, this task
continues to be an expanding line of research, in which even better results are expected by
establishing the best relationship between the average precision and detection speed.

15

CHAPTER 3
Methodology

This chapter describes the methodology implemented to meet the established objectives.

Several steps were taken to obtain the final results, which are illustrated in Figure 3.1.

Figure 3.1: Diagram of the methodology used to detect vehicles and buildings in aerial images.

After defining the general and specific objectives described in section 1.3, a literature
review was prepared which presented the specific theoretical foundations to understand the
present dissertation, as well as a brief survey of the current state of knowledge on the subject.
The choice of “deep learning based detection period” algorithms was also included in this first
step. These were chosen because traditional methods are slow and inefficient compared to the
more recent methods based on CNNs. Of these, a two-stage (Faster R-CNN) and a one-stage
(YOLO) algorithm were chosen. Regarding YOLO, two versions were used, YOLOv3 and
YOLOv5l.

17

The next step was based on the preparation of data provided by the Portuguese Military
Academy. It started by selecting the images which demonstrated the conditions to be used.
These were renamed, annotated and resized. Subsequently, two datasets were created, with
and without data augmentation, called Portuguese Military Academy (PMA) and Portuguese
Military Academy with Data Augmentation (PMA-DA), respectively. Finally, both datasets
were divided into three subsets: training, validation and testing.

The third step included the inference process of the pretrained algorithms, using the
pretrained network as a classifier approach of TL. Having a pretrained algorithm, whose
authors claim can recognize a given object, an untrained input image was inserted and the
detections predicted by the algorithm were analyzed. The performance of the algorithms
was assessed qualitatively, based on the observation of the predictions obtained for a new
image, and quantitatively, where the detection times were analyzed. The algorithms were
then trained because they were not sufficiently capable of detecting target objects.

In the fourth step, the input data were processed, some training parameters were configured
and the algorithms were trained. The following were the adjusted training parameters:

• batch size: number of training examples used in an iteration, which depends on the
amount of memory available; the larger the batch size the more memory is needed.

• epcohs: number of complete passes through the training dataset, set between 1 and
infinity (∞), one epoch corresponding to one cycle of the complete training dataset.

• steps: integer that determines how many training steps the algorithm will perform
• learning rate: decimal number, between 0.0 and 1.0, that controls how fast the network

updates its weights throughout the training.
• Intersection over Union (IoU) limit: decimal number, between 0.0 and 1.0, which

quantifies the overlap between the true and predicted limiting box. If the overlap result
is greater than or equal to the threshold, the detection is considered correct, otherwise,
the detection is considered incorrect.

• confidence limit: decimal number, between 0.0 and 1.0, which can be interpreted as
a confidence percentage. If the confidence value of the prediction is lower than the
established limit, the algorithm does not return this prediction.

The Faster R-CNN algorithms are configured with the step parameter, while YOLO is
configured with the epoch parameter. Therefore, it was necessary to calculate the number of
steps relative to the number of epochs, following the equation 3.1:

steps = number of epochs × number of training examples
batch size (3.1)

Each algorithm was trained with the PMA dataset and the PMA-DA dataset, according
to a pretrained network as a feature extractor approach of TL.

18

The last step included the inference process of the trained algorithms, to make predictions
about the PMA and PMA-DA, test subsets, verifying whether the algorithm was well trained
for the objective in question. The algorithms were evaluated according to a qualitative and a
quantitative approach. The first, as mentioned in the third step, corresponds to the direct
observation of the detection results and the second corresponds to the interpretation of the
results obtained after training the algorithms. In the quantitative assessment, four aspects
were taken into consideration: the training time, the results obtained by the evaluation metrics,
the interpretation of the classification and localization loss graphs and the detection time.

To compare the algorithms, metrics had to be obtained to assess their quality. Among the
various existing metrics, the following were used to evaluate the algorithms: IoU, Precision,
Recall and mean Average Precision (mAP). Precision and Recall were evaluated for just a
single 50% IoU value for each class, named P@0.5 and R@0.5, respectively. The mAP was
evaluated for a single value of 50% IoU, named by mAP@0.5.

The metrics are created from a confusion matrix, which is obtained by comparing the real
class and the predictive class, defining the set of True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN) [46]. These concepts can be described as follows
[43]:

• TP: examples classified as positive in the original data and correctly predicted as
positive by the algorithm.

• TN: examples classified as negative in the original data and correctly predicted as
negative by the algorithm.

• FP: examples classified as negative in the original data and incorrectly predicted as
positive by the algorithm.

• FN: examples classified as positive in the original data and incorrectly predicted as
negative by the algorithm.

Intersection over Union

The Intersection over Union (IoU) metric is necessary for the determination of TP or
FP, quantifying the similarity between the real and predicted limiting box, to verify if the
predicted detection is valid. According to the equation, 3.2, IoU is the ratio between the
intersection area and the union area between the actual and predicted limiting boxes [47].

IoU = Area of overlap
Area of union (3.2)

The IoU value is normalized, ranging from 0.0 to 1.0. The closer the value is to 1, the
closer the limiting boxes are (actual and predicted). That is, if a score is 0.0 there is no
overlap between the limiting boxes, whereas if a score is 1.0, it means that there is a total
overlap of the limiting boxes, which is the ideal situation [48] (Figure 3.2).

19

Figure 3.2: Example of IoU values: (a) 20% overlap between the 2 boxes; (b) 50% overlap between
the 2 boxes; (c) 90% overlap between the 2 boxes (from [49]).

By comparing this result with a certain defined limit (also between 0.0 and 1.0), a correct
or incorrect detection can be classified. If the IoU result is greater than or equal to the
stipulated limit, the detection is considered correct; otherwise, the detection is considered
incorrect [47].

Furthermore, if there are several limiting boxes for the same detected object, only the one
with the highest overlap rate will be considered as positive detection, while the rest are not
considered. This is called Non-Maximum Suppression (NMS) [50].

Precision

The Precision metric, as the name implies, refers to the accuracy of the algorithm being
used to determine how many of the positively detected objects are positive. In other words,
it evaluates the detection of true positives. This metric is defined by the ratio between the
number of positive objects classified correctly and the total number of objects classified
as positive (correctly or incorrectly), according to the equation 3.3. Thus, the higher the
Precision value, the greater the number of positive objects detected correctly (maximizing the
true positives) and the lower the number of positive objects detected incorrectly (minimizing
the false positives) [43].

Precision = TP

TP + FP
== TP

All detections (3.3)

Recall

The Recall or Sensitivity metric complements the Precision metric, analyzing the amount
of object identification the algorithm obtained. That is, it is used to determine how many
objects should have been positively predicted. This metric is defined by the ratio between
the number of correctly classified positive objects and the total number of positive objects
(equation 3.3). Thus, the higher the Recall value, the greater the number of positive objects
detected (desired) [43].

Recall(R) = TP

TP + FN
= TP

All ground truth (3.4)

20

Mean Average Precision

The Average Precision (AP) metric evaluates the number of detections made and how
many of those detections were correct, according to the actual number of existing objects.
This metric is defined by the ratio between Precision and Recall (equation 3.5), calculated for
each class [47]. Thus, the higher the AP value, the better the algorithm’s performance [20].

AP = Precision

Recall
= TP + FP

TP + FN
(3.5)

Once the AP has been calculated for each class, the average of these values for the entire
algorithm can be determined by calculating the Mean Average Precision (mAP) metric.
This corresponds to the sum of all the AP values over all classes, with the APi variable
corresponding to the AP in class i and N the total number of classes evaluated (equation 3.6)
[47].

mAP = 1
N

N∑
i=1

APi (3.6)

Regarding the classification and localization loss graphs of each algorithm, these were
obtained through TensorBoard, a TensorFlow tool which enables the visualization of statistical
information of a neural network.

21

CHAPTER 4
Results e Discussion

The experimental stage is presented in this chapter, referring to the resources used, the dataset,
the inference process of the pretrained algorithms, the training configuration of each algorithm
and the inference of the trained algorithms.

4.1 Resources used

To carry out the experimental stage of this dissertation, several aspects had to be taken
into consideration, such as the operating system, hardware, programming language, libraries
and source codes used.

The execution environment was carried out on the Windows 11 operating system, on the
author’s personal computer, with the characteristics shown in Table 4.1.

CPU Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz
RAM memory 16.0 GB
GPU NVIDIA GeForce GTX 1060
Dedicated GPU memory 6.0 GB
Shared GPU memory 7.9 GB
GPU memory 13.9 GB

Table 4.1: Characteristics of the computer used.

To make the training process significantly faster for the algorithms, they were configured
supporting the GPU. However, of the algorithms used, only Faster R-CNN worked with the
GPU; YOLOv3 and YOLOv5l failed to recognize it. Algorithms need to be run in the same
environment to compare them. Thus, the possibility of using the GPU was discarded, and
they were executed with the CPU, knowing that the training time is longer.

Python, version 3.9, was used as the programming language. It is a high-level, dynamic,
interpreted, modular, cross-platform and object-oriented language. This language is widely
applied in areas of data analysis, research, algorithm development and AI. The following were
used from the existing Python libraries:

23

• Numpy: provides functionalities for vectors and matrices, basic numerical operations,
linear algebra operations, Fourier transform functions, random number features, among
others, in order to work with large datasets efficiently.

• Matplotlib: provides functions for data visualizations, e.g., graphs and histograms,
with the ability to customize the layout of each visualization and even enabling their
exportation to various possible file formats.

• Scikit-learn: presents simple and efficient tools for predictive data analysis.
• Pandas: makes it possible to manipulate and analyze data, providing tools for reading

and writing data between in-memory data structures and different formats, such as
Comma-Separated Values (CSV) and text files, among others.

• ElementTree: includes tools for analyzing, creating and modifying Extensible Markup
Language (XML) files.

• Time: enables the handling of time-related tasks.
• Shutil: offers various high-level operations of files and directories, e.g., file attributes,

copying and removing directories, among others.
• Glob: used to find all file paths which correspond to a specific pattern.
• Os: enables interaction with the operating system’s command line and works with the

environment, processes, users, files and directories.
• Argparse: includes tools for constructing command-line arguments and option processors,

facilitating the writing of command-line interfaces and generating help, usage, and error
messages when the program receives invalid arguments.

• OpenCV-Python: designed to solve CV, ML and image processing problems.
• PyTorch: used to develop and train algorithms based on neural networks.
• Tensorflow: used to develop and train neural networks to detect and recognize patterns

and correlations between data.

For the implementation of the algorithms, two different source codes were used, both aimed
at the easy and efficient development, training and implementation of ML algorithms. As
for the implementation of the Faster R-CNN algorithm, the TensorFlow 2 Object Detection
API was used, an open-source structure based on TensorFlow. And as for the implementation
of the YOLO algorithm, for both version 3 and version 5, the open source developed by
Ultralytics was used. Of the five models previously presented for YOLOv5, the YOLOv5l
model was used, ideal for detecting smaller objects.

The chosen algorithms were pretrained on the MS COCO dataset, which is a set of
annotated images created by Microsoft to obtain the state of the art of object recognition
algorithms. This dataset contains about 90 categories of objects easily recognizable by a child,
such as a person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, dog, bird, chair,
cake, tv, among many others [51].

24

4.2 Dataset

The set of images used in this dissertation was provided by the Portuguese Military
Academy, consisting of two sets of images obtained by UAV, with 146 RGB images and 227
IRG images, for a total of 373 images. An RGB image (short for Red, Green, Blue) is based
on an additive color system consisting of three primary colors, red, green and blue. An IRG
image is an RGB system, where red prevails, giving the images a reddish appearance.

There being no further knowledge about the set of images, additional information was
obtained about each type of image using its metadata (information on image creation), using
an implemented Python script. From the information obtained through the metadata, as
illustrated in Figure 4.1, the following stands out:

• Images were taken in January 2013; the RGBs were captured by a Canon IXUS 220HS
camera and the IRGs by a Canon PowerShot ELPH 300HS camera.

• All images were saved in the Joint Photographic Experts Group (JPEG) format, with a
size of 3000x4000, which corresponds to 3000 pixels per inch of height and 4000 pixels
per inch of width, understood as the amount of information the image contains per unit
of length, ppi (pixels per inch).

• Both types of images were captured at an image display resolution of 180.0, with an
“upper left” orientation of the camera relative to the scene when the image was captured.

Figure 4.1: Metadata of an RGB image (left) and an IRG image (right).

To create a more effective dataset, the two sets of RGB and IRG images were joined,
resulting in the PMA Dataset.

To ensure coherence, precision and quality in the final results, the dataset had to be
prepared and organized, as its quality can directly influence the result of the algorithms. This
process was divided into several steps: data selection, renaming, annotating, resizing, data
augmentation and division of the dataset (train, validation and test).

Data selection

Of the 373 images provided, 10 images were discarded, since they were excessively unfocused
and did not provide a clear idea of the contours of the objects, and thereby, did not meet the

25

conditions for their treatment. Thus, the set of images used consisted of 363 images.

Renaming the dataset

The name originally assigned to each image had the format “IMG_XXXX.JPG”, where
“XXXX” corresponds to the number assigned to the image, for example, “IMG_0135.JPG”.

To work with a more composite dataset, the two sets of images, RGB and IRG, were joined
into one, as previously mentioned. However, as there were RGB images with the same name
as the IRG images, a Python script was implemented which renamed the images according to
their “IMG_XXXX_YYY.jpg” format, where “XXXX” corresponds to the number assigned
to the image and “YYY” to the image type, for example, “IMG_0135_RGB.jpg”.

Annotation of the dataset

Image annotation consists of identifying, selecting and classifying a specific object in an
image. This task needs to be performed with the utmost care and precision for the algorithm
to recognize the objects accurately.

The PMA dataset had to be annotated for the desired classes, since the pretrained
algorithms with the MS COCO dataset do not contain annotated aerial images, or any class
corresponding to a building.

The tool LabelImg, written in Python, was used for the annotation of the images. It uses
Qt (cross-platform framework) for its graphical interface and is executed locally. A directory,
with the images to be annotated and a text file with the names of all the necessary classes
written in it, had to be created to use the tool. Annotations were saved as XML files in
PASCAL VOC format.

The XML file was generated for each annotated image, as shown in Figure 4.2. This file
contains the values of the four coordinates of the limiting box, identified as xmin, ymin, xmax,
and ymax, where the coordinate pair (xmin, ymin) corresponds to the upper left corner and
the pair (xmax, ymax) corresponds to the lower right corner of the limiting box. As the
original images have a resolution of 3000x4000, the minimum values for these coordinates vary
between 0 and 4000 for x and between 0 and 3000 for y.

The XML file can contain zero or more annotated objects in an image, creating a new
<object> element for a new object. The example in Figure 4.2 below illustrates the annotation
of a dataset image which contains two annotated objects.

26

Figure 4.2: Example of an XML file in a PASCAL VOC annotation format.

In the scope of this dissertation, as the objective is the detection of vehicles and buildings
in aerial images, only two classes of objects were created: vehicle and building. Figure 4.3
illustrates the number of object instances of each class, a total of 11945 instances, more
specifically, 9500 (79.53%) of vehicles and 2445 (20.47%) of buildings.

Figure 4.3: Percentage of instances of each class in the PMA dataset.

27

− Vehicle annotation

According to the Highway Code, a vehicle is comprised of a propulsion engine, equipped
with at least four wheels, with a tare weight greater than 550 kg, whose maximum speed
is, by construction, greater than 25 km/h, and which is intended to travel on public roads,
without the use of rails [52].

Examples of vehicles in this category are passenger vehicles (vehicles with a capacity not
exceeding 9 seats, including the driver’s, used for the transport of people), light goods vehicles
(vehicles with a capacity not exceeding 9 seats, including the driver’s, used for the transport
of cargo), heavy passenger vehicles (vehicles with a capacity of more than 9 seats, including
the driver’s, used for the transport of passengers) and, finally, heavy goods vehicles (vehicles
with a gross weight of more than 3500 kg, used for the transport of cargo).

In the images from the PMA dataset, all vehicles which could be easily detected with
the naked eye, which did not raise any doubts, were considered vehicles, having taken into
consideration the complete objects (Figure 4.4) and those in which the intended object could
be identified, even with overlapping or incomplete objects (Figure 4.5). All those causing
doubt were not considered (Figure 4.6).

Figure 4.4: Examples of considered vehicles (complete objects).

Figure 4.5: Examples of considered vehicles (incomplete objects or with other overlapping objects).

Figure 4.6: Examples of vehicles not considered.

− Building annotation

In an aerial view, the detection of a building involves the detection of a roof/covering.
Currently, there are several types of building roofs, such as ceramic tiles, glass tiles, photovoltaic
tiles, metal tiles, PCV tiles, among others.

In the images from the PMA dataset, all objects that, following the same criteria of
selection of vehicles, with the naked eye, were easily recognized as a building were considered

28

a building. Again, in the building annotations, complete objects were taken into consideration
(Figure 4.7), as well as those in which the intended object could be identified, even with
overlapping or incomplete objects (Figure 4.8). All those causing doubt were not considered
(Figure 4.9).

Figure 4.7: Examples of considered buildings (complete objects).

Figure 4.8: Examples of considered buildings (incomplete objects or with other overlapping objects).

Figure 4.9: Examples of buildings not considered.

Resizing the dataset

The images from the PMA dataset have a size of 3000x4000, as said before. The input
image resolutions were reduced to allow for a larger batch size and to deal with computational
limitations.

To standardize the input data set for the implemented algorithms, the PMA was resized
to 640x640, in pixels per inch. The only difference in terms of annotations can be seen in the
minimum and maximum range of the x and y coordinates, which both then vary between 0
and 640.

A Python script was implemented which enabled the local resizing of both the images and
the respective XML annotations. This script recursively traversed the input directory, resized
the image, changed the xycoordinates of each object in the XML file and saved the new files
in the output directory path, making it possible to save the images with the limiting boxes
drawn.

Data augmentation

Data augmentation methods were applied to the original dataset, which resulted in an
increase in the data amount.

The transformations applied to each image of the PMA dataset were brightness and
Gaussian blur, as illustrated in Figure 4.10. The purpose of applying these transformations to

29

the images was to simulate different flight conditions, different times of day (brightness effect)
and flight instability when capturing the image (blur effect).

(a) (b) (c)

Figure 4.10: Example of Data Augmentation application: (a) original image; (b) image with bright-
ness; (c) image with Gaussian blur.

The application of data augmentation resulted in a new dataset, named Portuguese
Military Academy with Data Augmentation (PMA-DA), which is three times larger than the
PMA dataset (original image, image transformed with the application of brightness and image
transformed with the application of Gaussian blur). The new images were named according to
the “IMG_XXXX_YYY_Z.jpg” format, where “XXXX” corresponds to the number assigned
to the image, “YYY” to the image type, and “Z” to the name of the transformation applied
to the image, for example, “IMG_0135_RGB_brightness. jpg”.

Division of the dataset

The datasets, PMA and PMA-DA, were divided into three subsets: training, validation
and testing. Figure 4.11 illustrates the number of instances of each class per subset, for both
datasets.

Figure 4.11: Number of instances of each class per training, validation and testing subsets of the
PMA and PMA-DA datasets.

30

The division was executed with the aid of an implemented Python script, so that the
training subset was the largest. Specifically, 80% of the images of the dataset were used for
training, 10% were used for validation and the remaining 10% were used for testing. The
script, in addition to dividing the dataset, also enabled the redirection of the new subsets to
their respective directories (training, validation and testing). Table 4.2 presents the concrete
division of images carried out for each data set.

Dataset Train (80%) Validation (10%) Test (10%)
PMA 290 36 37

PMA-DA 870 108 111

Table 4.2: Number of images by training, validation and testing subsets of each dataset.

4.3 Inference from pretrained algorithms

To obtain conclusions about the inference of algorithms pretrained with the MS COCO
dataset, a Python script was developed and executed for each algorithm, which enabled going
through all the images of the PMA test subset and return information about each prediction.
The script, given an input image and the algorithm to be analyzed, loads its pretrained
weights and its architecture, detects the target objects present and returns the image with
the final result of the predictions, with limiting boxes, classes and confidence percentages for
the original image.

Initially, tests were performed to verify that the script was working correctly, using
pretrained algorithms and images from the MS COCO dataset. Then, all images from the
PMA test subset were used.

Since the images, used both for training and for validation and testing, are images of
aerial views which may contain a considerable number of small objects, the resulting image
may be difficult to read for a detailed analysis. Therefore, to enable a more accurate analysis,
another Python script was implemented which, given an image of the test subset, returns the
total number of predictions the algorithm should detect for each class, the total number of
predictions it detected, the time of detection and the confidence percentage for each detected
object, recording the information in a text file.

The inference results of the pretrained algorithms can be found in a Table 1 in Appendix A
- Detection results from pretrained algorithms. For each image of the test subset, the number
of vehicles (VT) and buildings (BT) the algorithm should detect was noted. All images were
analyzed using the three algorithms, where the detection time in milliseconds (T), the number
of vehicles (V) and the number of buildings detected (B) were recorded and the following was
observed:

• None of the algorithms are prepared to recognize a building, which is to be expected,
since they were trained with the MS COCO dataset, which does not contain any category
of buildings.

• Algorithms should be able to detect vehicles, as the MS COCO dataset has been trained
to detect categories integrated in the vehicle definition (e.g., trucks and vehicles).

31

However, the performance of the algorithms was quite low, possibly because the dataset
images are not aerial. Comparing the algorithms, YOLOv3 and YOLOv5l stand out
compared to the Faster R-CNN algorithm because it managed to detect some vehicles.

• The YOLOv5l algorithm has a lower detection time, approximately 1.66 seconds; there-
fore, it is the fastest algorithm. On the other hand, Faster R-CNN and YOLOv3 have
a similar detection time of approximately 2 seconds, although YOLOv3 is slightly faster
than Faster R-CNN.

As an example of detection result visualization, two images belonging to the PMA test
subset were randomly chosen, one RGB (left) and another IRG (right) images, illustrated in
Figure 4.12.

By visualizing the images in Figure 4.12, it was found that the algorithms detected few
objects. Faster R-CNN and YOLOv3 exhibit multiple False Positives (FP) compared to
YOLOv5l. Faster R-CNN was only able to detect a single vehicle, exhibiting a vast number of
False Negatives (FN). YOLOv3 was able to detect several vehicles, as was YOLOv5l. Another
observation is related to the size of the objects. The smaller the object is, the worse the
performance of the algorithms, as can be seen in the images on the right, where the vehicles
are smaller compared to the images on the left.

After having made these observations, it was concluded that the Faster R-CNN, YOLOv3
and YOLOv5l algorithms, pretrained with the MS COCO dataset, are not prepared for the
PMA dataset.

32

(a)

(b)

(c)

(d)
Figure 4.12: Detection results of the pretrained algorithms for an RGB image (left) and an IRG image

(right): (a) original annotations; (b) Faster R-CNN; (c) YOLOv3 and (d) YOLOv5l.

33

4.4 Configuration of the training

The training of any algorithm involves processing the input data, setting the training
parameters and, finally, training the algorithm itself.

Because the structure of the input data differs for each algorithm, it was necessary to
process the PMA and PMA-DA datasets.

The Faster R-CNN algorithm, implemented with the TensorFlow 2 Object Detection API,
receives two TFRecord files as input data, one corresponding to the training data and the
other to the validation data, which store the data as a sequence of binary strings. Creating
TFRecord files involves two steps: converting XML files into CSV files and converting CSV
files into TFRecord files.

The XML annotations needed to be converted into three CSV files, corresponding to
the training, validation and test, with the aid of an implemented Python script. For each
annotation, a new line was added to the CSV file, with the format [filename, width, height,
class, xmin, ymin, xmax, ymax], as shown in Figure 4.13. The filename field, as the name
implies, corresponds to the name of the file, more precisely, the name of the image with the
extension jpg. The width and height fields correspond to the image’s size. The class field
corresponds to the object’s class. The remaining fields correspond to the coordinates (xmin,
ymin) of the upper left corner and the coordinates (xmax, ymax) of the lower right corner of
the limiting box.

Figure 4.13: Example of an XML file converted into CSV.

After obtaining the three CSV files, these were converted into TFRecord files, with the
help of an existing Python script from the TensorFlow 2 Object Detection API.

The YOLOv3 and YOLOv5l algorithms receive the same input data structure, so this step
is similar for both. To obtain the input format accepted by the algorithms, the XML files were
converted into text files with the following format: [classID xCenter yCenter width height],
as illustrated in Figure 4.14. The classID field corresponds to the class index. The fields,

34

xCenter and yCenter, correspond to the coordinates of the center of the limiting box. The
width and height fields correspond to the width and height of the limiting box, respectively.
Both the coordinates and the limiting box width and height are normalized.

Figure 4.14: Example of an XML file converted yo text.

Then the training parameters were configured for each algorithm. The batch size, learning
rate, IoU limit and confidence limit parameters were defined as constants, corresponding to
the values indicated in Table 4.3.

Parameters Value
Batch size 2
Learning rate 0.013
IoU limit 0.5
Confidence limit 0.3

Table 4.3: Values of training parameters.

The epochs parameter used in the YOLO algorithms was set to two values, 100 and
200, for the PMA dataset and 100 epochs for the PMA-DA dataset. For the Faster R-CNN
algorithm, a relationship had to be established between the number of epochs and the number
of steps, so that the number of steps corresponded to 100 and 200 epochs.

In the PMA-DA dataset, the algorithms could only be trained for 100 epochs, since the
training time was too long for 200 epochs (1 epoch ≈ 1h), becoming excessive for the computer
and causing overheating.

4.5 Inference from trained algorithms

The Faster R-CNN algorithm was trained for 14500 and 29000 steps, equivalent to 100
and 200 epochs, respectively, with the PMA dataset. The algorithm was also trained for 43500
steps, equivalent to 100 epochs with the increase in the dataset for the PMA-DA dataset.
The results obtained are recorded in Table 4.4.

The analysis of Table 4.4 revealed that the Faster R-CNN training time was fast for any
number of steps. In both classes, vehicles and buildings, the Precision value was high (above
91%) and the Recall value was low (less than 50%), which indicates that most objects were
correctly detected, but with detection losses. It was also noted that the Recall in the building

35

class was slightly lower than in the vehicle class. Comparing the results of 14500 steps PMA
and 43500 steps PMA-DA, it was observed that without data augmentation the algorithm
obtained a superior performance. The algorithm showed better results for 14500 steps with
the PMA dataset, with a mAP equal to 58.1%.

PMA Dataset PMA-DA Dataset
14500 steps 29000 steps 43500 steps

training time (hours) 8 16 25
mAP (all) 58.1% 56.2% 52.5%
Precision (vehicle) 91.9% 93.7% 94.8%
Recall 50.4% 47.9% 58.2%
Precision (building) 98.9% 97.7% 97.2%
Recall 47.0% 44.5% 50.1%

Table 4.4: Faster R-CNN algorithm training results.

Comparing the confusion matrices generated by the algorithm (Figure 4.15), it was found
that the training of 14500 steps with the PMA dataset had the lowest detection confusion
in the building class, no detection confusion in the vehicle class and the lowest percentage
of false negatives for the building class. The training of 29000 steps with the PMA dataset
had the highest detection confusion in both classes, the highest percentage of false positives
and the lowest percentage of true positives. Although the training of 43500 steps with the
PMA-DA dataset achieved the best percentage of true positives and false positives, it had a
high percentage of false negatives and detection confusion in the building class.

(a) (b) (c)

Figure 4.15: Faster R-CNN Confusion Matrix for: (a) 14500 steps (PMA); (b) 29000 steps (PMA)
and (c) 43500 steps (PMA-DA).

The results of training the YOLOv3 algorithm, for 100 and 200 epochs with the PMA
dataset and for 100 epochs with the PMA-DA dataset, were recorded in Table 4.5.

The results recorded in Table 4.5 revealed that the algorithm training time was slow for
any epoch value. Precision and Recall values, for both classes, were high, above 91% and
76%, respectively, which indicates most objects were correctly detected. As for Recall in
the building class, it was slightly lower than in the vehicle class. It was noted that training
the algorithm with the PMA-DA dataset, compared to the PMA dataset, for 100 epochs

36

presented worse performance. The best results of the YOLOv3 algorithm were achieved in
the training of 200 epochs, with a mAP equal to 92.2%.

PMA Dataset PMA-DA Dataset
100 epochs 200 epochs 100 epochs

training time (hours) 30 60 127
mAP (all) 91.4% 92.2% 88.7%
Precision (vehicle) 94.1% 93.2% 91.9%
Recall 91.1% 92.3% 88.9%
Precision (building) 93.7% 94.5% 97.1%
Recall 82.3% 85.4% 76.0%

Table 4.5: YOLOv3 algorithm training results.

Analyzing the confusion matrices generated by the algorithm (Figure 4.16) revealed that
the training results of 100 epochs with the PMA dataset were similar to those of 200 epochs,
differing in the percentage of true positives in the building class, which was lower, in the
increase in the percentage of false negatives and in the increase in detection confusion in the
building class. The training of 200 epochs with the PMA dataset was the one that achieved
the best percentage of true positives, no detection confusion and the lowest percentage of
false negatives in the building class. The training of 100 epochs with the PMA-DA dataset
demonstrated the lowest percentage of true positives, the highest detection confusion in
the building class, the highest percentage of false negatives in both classes and the highest
percentage of false positives in the vehicle class.

(a) (b) (c)

Figure 4.16: YOLOv3 Confusion Matrix for: (a) 100 epochs (PMA); (b) 200 epochs (PMA) and (c)
100 epochs (PMA-DA).

Relative to the YOLOv5l algorithm, it was also trained for 100 and 200 epochs with the
PMA dataset and for 100 epochs with the PMA-DA dataset, with the results recorded in
Table 4.6.

Through Table 4.6, it was observed that the algorithm training time was relatively fast for
any epoch value. In both classes, the Precision and Recall values were high, above 92% and
above 81%, respectively, which means that most objects were correctly detected. The Recall
value in the building class was slightly lower than in the vehicle class. When comparing the
training performance of 100 epochs for the PMA and PMA-DA datasets, it was noticed that

37

the algorithm performed better without data augmentation. The best mAP value obtained
by the algorithm was 93.3% for the training of 100 epochs with the PMA dataset.

PMA Dataset PMA-DA Dataset
100 epochs 200 epochs 100 epochs

training time (hours) 24 48 73
mAP (all) 93.3% 91.8% 91.4%
Precision (vehicle) 95.4% 92.8% 93.4%
Recall 90.8% 91.6% 91.4%
Precision (building) 96.0% 97.2% 96.4%
Recall 85.4% 91.5% 81.6%

Table 4.6: YOLOv5l algorithm training results.

Observing the YOLOv5l confusion matrices (Figure 4.17), it was determined that the
results of the training of 100 epochs with the PMA dataset achieved the highest percentage
of true positives in the building class, the lowest percentage of false positives in the vehicle
class, the lowest percentage of false negatives in the building class, the highest percentage
of false positives in the building class and the highest detection confusion in the building
class. The training of 200 epochs with the PMA dataset showed the highest percentage of
true positives in the vehicle class. However, it obtained the lowest percentage of true positives
in the building class and the lowest percentage of false negatives in the vehicle class. Training
of 100 epochs with the PMA-DA dataset showed similarities to the training of 100 epochs
with the PMA dataset in terms of the percentage of true positives and false negatives in the
vehicle class. It also showed similarities to the training of 200 epochs with the PMA dataset
regarding the percentage of false positives in both classes, the percentage of false negatives in
the building class and the detection confusion which was null in both classes.

(a) (b) (c)

Figure 4.17: YOLOv5l Confusion Matrix for: (a) 100 epochs (PMA); (b) 200 epochs (PMA) and (c)
100 epochs (PMA-DA).

Figure 4.18 presents the classification loss graphs for each algorithm. In general, at
the beginning of training, it was found that classification loss was quite high, followed by
an abrupt decrease, which tends to occur gradually, with a tendency of approaching zero
classification losses as the number of steps/epochs increases. Regarding the behavior of the
Faster R-CNN algorithm, it was observed that there was significant oscillation, which led

38

to a greater loss of performance relative to the other algorithms. Unlike YOLO algorithms,
Faster R-CNN showed a higher classification loss for dataset growth. The YOLO algorithms
achieved a much lower classification loss than the Faster R-CNN algorithm.

(a)

(b)

(c)

Figure 4.18: Classification loss graph of the algorithms: (a) Faster R-CNN, (b) YOLOv3 and (c)
YOLOv5l.

39

Figure 4.19 presents the localization loss graphs for each algorithm. The localization loss
behavior of algorithms is similar to classification loss. However, it was found that there was
more localization loss than classification loss for all algorithms.

(a)

(b)

(c)

Figure 4.19: Localization loss graph of the algorithms: (a) Faster R-CNN, (b) YOLOv3 and (c)
YOLOv5l.

40

Like the inference step of the pretrained algorithms, a Python script was implemented,
which went through all the test subset images and returned information about each prediction.
This script, when inserting an input image, loads the trained weights, detects the target
objects present and returns the image with the final result of the predictions, with limiting
boxes, classes and confidence percentages on the original image.

As for the detection results, these were recorded in Tables 2, 3 and 4 found in Appendix B
- Detection results for Faster R-CNN algorithm, Appendix C - Detection results for YOLOv3
algorithm and Appendix D - Detection results for YOLOv5l algorithm, corresponding to
the Faster R-CNN, YOLOv3 and YOLOv5l algorithms, respectively. For each image of the
test subset, the number of vehicles (VT) and buildings (BT) the algorithm should detect, the
detection time in milliseconds (T), the number of vehicles (V) and the number of buildings
(B) detected were noted. The main observation of these records refers to the detection time,
which varies from 1450 to 2291 milliseconds for the Faster R-CNN algorithm, from 999 to 1592
milliseconds for the YOLOv3 algorithm and from 716 to 1439 milliseconds for the YOLOv5l
algorithm. It was also found that the detection time is not affected by the number of objects
in an image, nor with the number of steps/epochs.

Figure 4.20 illustrates the detection results of two images, RGB on the left and IRG on
the right for each algorithm. To visualize the results without overlapping the classes assigned
to each limiting box, vehicles were identified in blue and buildings in yellow. Through a
direct observation of the images, relative to the Faster R-CNN, the presence of several false
negatives and the existence of limiting boxes with a localization deficit were obvious. For
example, some boxes did not include the object in its entirety. The YOLOv3 algorithm
presented better detections compared to Faster R-CNN, being able to detect practically all
target objects. However, it still had some problems with false positives and negatives. As for
the YOLOv5l algorithm, it presented the best detection results, mainly due to the reduction
of false negatives. It should be noted that the problem of the object size, which occurred in
the inference stage of the pretrained algorithms, was overcome after the algorithm training
process, being then able to detect the smallest objects.

41

(a)

(b)

(c)

(d)
Figure 4.20: Detection results of the trained algorithms, for an RGB image (left) and an IRG image

(right): (a) original annotations; (b) Faster R-CNN; (c) YOLOv3 and (d) YOLOv5l.

42

CHAPTER 5
Conclusions

The main conclusions of the work and some possible suggestions for future work are presented
in this chapter.

Human beings have long been developing technologies to facilitate and assist everyday
tasks. There has currently been a great interest in the area of aerial image processing, mainly
in object detection tasks, which is useful for several applications, such as in surveillance,
security and military areas.

The purpose of object detection algorithms is to learn to predict annotations similar
to real ones, both in terms of the object class and the size of the limiting boxes. In this
dissertation, object detection algorithms were implemented, specifically, Faster R-CNN, a
two-stage detector and YOLOv3 and YOLOv5l, one-stage detectors.

The adopted methodology was based on several steps. These included understanding the
problem, with the defining of objectives, a brief literature review and choice of algorithms;
data preparation, with image selection, renaming, annotation, resizing, data augmentation
and division of the PMA and PMA-DA datasets; the inference of pretrained algorithms with
the MS COCO dataset, according to the TL pretrained network as a classifier approach,
where predictions and performance evaluations of the algorithms were made in terms of
detection time; the training of the algorithms according to the pretrained network as a feature
extractor approach of TL, where it was necessary to process the input data and configure the
training parameters; and, finally, the inference of the trained algorithms, where predictions
and evaluations of the performance of the algorithms were also carried out, in terms of training
time, evaluation metrics, loss of classification and location and detection time.

Based on the results obtained in the inference stage of the trained algorithms, it was found
that the data augmentation technique did not produce improvements in the quality of the
algorithms, possibly because there are new added difficulties and the algorithms would need
more training time to learn; the number of object instances in an image and the number
of epochs or steps did not influence the detection time; the building class showed a higher

43

Precision than the vehicle class, indicating that the algorithms are more accurate in detecting
larger objects; the building class showed a lower Recall than the vehicle class, probably because
there are fewer instances of this class in the PMA and PMA-DA data sets; relative to training
time, the Faster R-CNN algorithm took the least time, followed by YOLOv5l and, finally,
YOLOv3; the Faster R-CNN algorithm was the least accurate and had the longest detection
time, its training time being its only advantage; the YOLOv3 algorithm, despite presenting a
relatively fast detection time and a performance exceeding that of Faster R-CNN, could not
surpass YOLOv5l; the YOLOv5l algorithm was the one which achieved the best results, with
the best mAP of 93.3%, the highest percentage of Precision and Recall, as well as standing
out for having a faster detection time.

Thus, it was concluded that the one-stage detector, YOLOv5l, presented the best perfor-
mance, proving to be efficient for the detection of vehicles and buildings in aerial images.

5.1 Future work

In terms of future work, it would be advantageous to train, analyze and evaluate YOLOv5,
to improve the performance of the algorithm which presented better results in this dissertation,
using the following approaches:

• Expand the dataset, with images from other environments and locations, to improve
the accuracy and generalization of the algorithm.

• Train the YOLOv5 algorithm on the YOLOv5m model, which is suitable for large
amounts of training data.

• Adjust the hyperparameters, finding the best value for each one, to gradually improve
the algorithm’s performance.

44

References

[1] A. Ammar, A. Koubaa, M. Ahmed, A. Saad, and B. Benjdira, “Vehicle detection from aerial images
using deep learning: A comparative study,” Electronics, vol. 10, no. 7, 2021, issn: 2079-9292. doi:
10.3390/electronics10070820. [Online]. Available: https://www.mdpi.com/2079-9292/10/7/820.

[2] S. Srivastava, S. Narayan, and S. Mittal, “A survey of deep learning techniques for vehicle detection
from uav images,” Journal of Systems Architecture, vol. 117, p. 102 152, 2021, issn: 1383-7621. doi:
https://doi.org/10.1016/j.sysarc.2021.102152. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1383762121001107.

[3] F. Kamran, M. Shahzad, and F. Shafait, “Automated military vehicle detection from low-altitude aerial
images,” in 2018 Digital Image Computing: Techniques and Applications (DICTA), 2018, pp. 1–8. doi:
10.1109/DICTA.2018.8615865.

[4] X. Xie and G. Lu, “A research of object detection on uavs aerial images,” in 2021 2nd International
Conference on Big Data Artificial Intelligence Software Engineering (ICBASE), 2021, pp. 342–345. doi:
10.1109/ICBASE53849.2021.00070.

[5] S. J. Prince, Computer Vision: Models, Learning, and Inference. Cambridge University Press, Aug. 2012,
p. 2, isbn: 9781107011793.

[6] T. Taulli, “Artificial intelligence basics: A non-technical introduction,” in Apress, Aug. 2019, ch. 1,4,
isbn: 9781484250280.

[7] W. Ertel, Introduction to Artificial Intelligence, 2nd ed. Springer, 2017, p. 1, isbn: 9783319584867. doi:
10.1007/978-3-319-58487-4.

[8] E. Costa and A. Simões, Inteligência Artificial: Fundamentos e Aplicações, 3rd ed. FCA, Mar. 2011,
p. 3, isbn: 9789727223404.

[9] P. Ongsulee, “Artificial intelligence, machine learning and deep learning,” in 2017 15th International
Conference on ICT and Knowledge Engineering (ICT KE), 2017, pp. 1–6. doi: 10.1109/ICTKE.2017.
8259629.

[10] T. Markiewicz and J. Zheng, “Getting started with artificial intelligence,” in 2nd ed. O’Reilly Media,
Inc., Oct. 2020, ch. 1, isbn: 9781492083436.

[11] What is ai? [Online]. Available: https://www.resquared.com/blog/what-is-ai.

[12] A. Géron, “Hands-on machine learning with scikit-learn, keras, and tensorflow,” in 2nd ed. O’Reilly
Media, Inc., Sep. 2019, ch. 1,10,14, isbn: 9781492032649.

[13] M. Dol and A. Geetha, “A learning transition from machine learning to deep learning: A survey,” in
2021 International Conference on Emerging Techniques in Computational Intelligence (ICETCI), 2021,
pp. 89–94. doi: 10.1109/ICETCI51973.2021.9574066.

[14] Artificial intelligence vs. machine learning vs. deep learning: Essentials, Last accessed 21 May 2022,
Apr. 2020. [Online]. Available: https://serokell.io/blog/ai-ml-dl-difference.

[15] About train, validation and test sets in machine learning, Last accessed 21 May 2022, Dec. 2017. [Online].
Available: https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7.

[16] M. Mohammed, M. B. Khan, and E. M. Bashier, “Machine learning: Algorithms and applications,” in
CRC Press, Aug. 2016, ch. 1, isbn: 9781315354415.

45

https://doi.org/10.3390/electronics10070820
https://www.mdpi.com/2079-9292/10/7/820
https://doi.org/https://doi.org/10.1016/j.sysarc.2021.102152
https://www.sciencedirect.com/science/article/pii/S1383762121001107
https://www.sciencedirect.com/science/article/pii/S1383762121001107
https://doi.org/10.1109/DICTA.2018.8615865
https://doi.org/10.1109/ICBASE53849.2021.00070
https://doi.org/10.1007/978-3-319-58487-4
https://doi.org/10.1109/ICTKE.2017.8259629
https://doi.org/10.1109/ICTKE.2017.8259629
https://www.resquared.com/blog/what-is-ai
https://doi.org/10.1109/ICETCI51973.2021.9574066
https://serokell.io/blog/ai-ml-dl-difference
https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7

[17] What is deep learning? [Online]. Available: https://www.mathworks.com/discovery/deep-learning.
html.

[18] F. Chollet, Deep Learning with Python. Manning Publications Co., 2018, p. 8, isbn: 9781617294433.

[19] R. Um and X. Zeng, “A review of deep learning research,” 4, vol. 13, Apr. 2019. doi: 10.3837/tiis.
2019.04.001. [Online]. Available: https://doi.org/10.3837/tiis.2019.04.001.

[20] A. Bouguettaya, H. Zarzour, A. Kechida, and A. M. Taberkit, “Vehicle detection from uav imagery
with deep learning: A review,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–21,
2021. doi: 10.1109/TNNLS.2021.3080276.

[21] H. Eriş and U. Çevik, “Implementation of target tracking methods on images taken from unmanned
aerial vehicles,” in 2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics
(SAMI), 2019, pp. 311–316. doi: 10.1109/SAMI.2019.8782768.

[22] What is a convolutional neural network? [Online]. Available: https://www.mathworks.com/discovery/
convolutional-neural-network-matlab.html.

[23] M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in Deep Learning. Springer, 2020, vol. 57,
p. 51, isbn: 9789811367939. [Online]. Available: https://doi.org/10.1007/978-981-13-6794-6.

[24] M. Elgendy, “Deep learning for vision systems,” in Manning Publications, Nov. 2020, ch. 6.

[25] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: An overview and
application in radiology,” Insights into Imaging, vol. 9, pp. 611–629, Aug. 2018. doi: 10.1007/s13244-
018-0639-9. [Online]. Available: https://doi.org/10.1007/s13244-018-0639-9.

[26] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,” CoRR, vol. abs/1905.05055,
2019. arXiv: 1905.05055. [Online]. Available: http://arxiv.org/abs/1905.05055.

[27] I. V. Saetchnikov, E. A. Tcherniavskaia, and V. V. Skakun, “Object detection for unmanned aerial
vehicle camera via convolutional neural networks,” IEEE Journal on Miniaturization for Air and Space
Systems, vol. 2, no. 2, pp. 98–103, 2021. doi: 10.1109/JMASS.2020.3040976.

[28] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015. arXiv: 1504.08083. [Online]. Available:
http://arxiv.org/abs/1504.08083.

[29] A. K. Shetty, I. Saha, R. M. Sanghvi, S. A. Save, and Y. J. Patel, “A review: Object detection
models,” in 2021 6th International Conference for Convergence in Technology (I2CT), 2021, pp. 1–8.
doi: 10.1109/I2CT51068.2021.9417895.

[30] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection with
region proposal networks,” CoRR, vol. abs/1506.01497, 2015. arXiv: 1506.01497. [Online]. Available:
http://arxiv.org/abs/1506.01497.

[31] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” CoRR, vol. abs/1506.02640, 2015. arXiv: 1506.02640. [Online]. Available: http:
//arxiv.org/abs/1506.02640.

[32] A. Ismail, M. Mehri, A. Sahbani, and N. ESSOUKRI BEN AMARA, “Performance benchmarking of
yolo architectures for vehicle license plate detection from real-time videos captured by a mobile robot,”
Jan. 2021, pp. 661–668. doi: 10.5220/0010349106610668.

[33] F. Lin, X. Zheng, and Q. Wu, “Small object detection in aerial view based on improved yolov3 neural
network,” in 2020 IEEE International Conference on Advances in Electrical Engineering and Computer
Applications(AEECA), 2020, pp. 522–525. doi: 10.1109/AEECA49918.2020.9213538.

[34] W. Ding and L. Zhang, “Building detection in remote sensing image based on improved yolov5,” in 2021
17th International Conference on Computational Intelligence and Security (CIS), 2021, pp. 133–136.
doi: 10.1109/CIS54983.2021.00036.

[35] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR, vol. abs/1612.08242, 2016.
arXiv: 1612.08242. [Online]. Available: http://arxiv.org/abs/1612.08242.

46

https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/discovery/deep-learning.html
https://doi.org/10.3837/tiis.2019.04.001
https://doi.org/10.3837/tiis.2019.04.001
https://doi.org/10.3837/tiis.2019.04.001
https://doi.org/10.1109/TNNLS.2021.3080276
https://doi.org/10.1109/SAMI.2019.8782768
https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://doi.org/10.1007/978-981-13-6794-6
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://arxiv.org/abs/1905.05055
http://arxiv.org/abs/1905.05055
https://doi.org/10.1109/JMASS.2020.3040976
https://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
https://doi.org/10.1109/I2CT51068.2021.9417895
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://doi.org/10.5220/0010349106610668
https://doi.org/10.1109/AEECA49918.2020.9213538
https://doi.org/10.1109/CIS54983.2021.00036
https://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242

[36] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,”
CoRR, vol. abs/2004.10934, 2020. arXiv: 2004.10934. [Online]. Available: https://arxiv.org/abs/
2004.10934.

[37] U. Nepal and H. Eslamiat, “Comparing yolov3, yolov4 and yolov5 for autonomous landing spot detection
in faulty uavs,” Sensors, vol. 22, no. 2, 2022, issn: 1424-8220. doi: 10.3390/s22020464. [Online].
Available: https://www.mdpi.com/1424-8220/22/2/464.

[38] Custom object detection training using yolov5, Last accessed 21 May 2022, Apr. 2022. [Online]. Available:
https://learnopencv.com/custom-object-detection-training-using-yolov5/#What-is-YOLOv5.

[39] L. Wang, J. Liao, and C. Xu, “Vehicle detection based on drone images with the improved faster
r-cnn,” pp. 466–471, Feb. 2019. doi: https://doi.org/10.1145/3318299.3318383. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/3318299.3318383.

[40] Y. Xu, G. Yu, Y. Wang, X. Wu, and Y. Ma, “Car detection from low-altitude uav imagery with the faster
r-cnn,” Journal of Advanced Transportation, vol. 2017, 2017, issn: 0197-6729. doi: https://doi.org/10.
1155/2017/2823617. [Online]. Available: https://www.hindawi.com/journals/jat/2017/2823617/.

[41] L. Zheng, P. Ai, and Y. Wu, “Building recognition of uav remote sensing images by deep learning,” in
IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 1185–
1188. doi: 10.1109/IGARSS39084.2020.9323322.

[42] H. Zhang, M. Sun, Y. Ji, S. Xu, and W. Cao, “Learning-based object detection in high resolution uav
images: An empirical study,” in 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN), vol. 1, 2019, pp. 886–889. doi: 10.1109/INDIN41052.2019.8972320.

[43] H. S. DIKBAYIR and H. Ïbrahim BÜLBÜL, “Deep learning based vehicle detection from aerial images,”
in 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), 2020,
pp. 956–960. doi: 10.1109/ICMLA51294.2020.00155.

[44] H. Xu, Y. Cao, Q. Lu, and Q. Yang, “Performance comparison of small object detection algorithms of uav
based aerial images,” in 2020 19th International Symposium on Distributed Computing and Applications
for Business Engineering and Science (DCABES), 2020, pp. 16–19. doi: 10.1109/DCABES50732.2020.
00014.

[45] X. Yin, Y. Yang, H. Xu, W. Li, and J. Deng, “Enhanced faster-rcnn algorithm for object detection in
aerial images,” in 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence
Conference (ITAIC), vol. 9, 2020, pp. 2355–2358. doi: 10.1109/ITAIC49862.2020.9339038.

[46] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy, f-score and roc: A family of discriminant
measures for performance evaluation,” in AI 2006: Advances in Artificial Intelligence, A. Sattar and B.-h.
Kang, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1015–1021, isbn: 978-3-540-49788-2.

[47] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A survey on performance metrics for object-detection
algorithms,” in 2020 International Conference on Systems, Signals and Image Processing (IWSSIP),
2020, pp. 237–242. doi: 10.1109/IWSSIP48289.2020.9145130.

[48] F. Ajmera, S. Meshram, S. Nemade, and V. Gaikwad, “Survey on object detection in aerial imagery,” in
2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile
Networks (ICICV), 2021, pp. 1050–1055. doi: 10.1109/ICICV50876.2021.9388517.

[49] Evaluating object detection models using mean average precision (map). [Online]. Available: https:
//blog.paperspace.com/mean-average-precision/.

[50] S. Razakarivony and F. Jurie, “Vehicle detection in aerial imagery : A small target detection benchmark,”
Journal of Visual Communication and Image Representation, vol. 34, pp. 187–203, 2016, issn: 1047-
3203. doi: https://doi.org/10.1016/j.jvcir.2015.11.002. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1047320315002187.

[51] T. Lin, M. Maire, S. J. Belongie, et al., “Microsoft COCO: common objects in context,” CoRR,
vol. abs/1405.0312, 2014. arXiv: 1405.0312. [Online]. Available: http://arxiv.org/abs/1405.0312.

[52] V. Monteiro, O Código da Estrada, 60th ed. Edições Segurança Rodoviária, pp. 285, 286, isbn:
9789895469321.

47

https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.3390/s22020464
https://www.mdpi.com/1424-8220/22/2/464
https://learnopencv.com/custom-object-detection-training-using-yolov5/#What-is-YOLOv5
https://doi.org/https://doi.org/10.1145/3318299.3318383
https://dl.acm.org/doi/abs/10.1145/3318299.3318383
https://doi.org/https://doi.org/10.1155/2017/2823617
https://doi.org/https://doi.org/10.1155/2017/2823617
https://www.hindawi.com/journals/jat/2017/2823617/
https://doi.org/10.1109/IGARSS39084.2020.9323322
https://doi.org/10.1109/INDIN41052.2019.8972320
https://doi.org/10.1109/ICMLA51294.2020.00155
https://doi.org/10.1109/DCABES50732.2020.00014
https://doi.org/10.1109/DCABES50732.2020.00014
https://doi.org/10.1109/ITAIC49862.2020.9339038
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.1109/ICICV50876.2021.9388517
https://blog.paperspace.com/mean-average-precision/
https://blog.paperspace.com/mean-average-precision/
https://doi.org/https://doi.org/10.1016/j.jvcir.2015.11.002
https://www.sciencedirect.com/science/article/pii/S1047320315002187
https://www.sciencedirect.com/science/article/pii/S1047320315002187
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312

Appendix A - Detection results from pretrained algorithms

Theoretical
Detections Faster R-CNN YOLOv3 YOLOv5l

Image VT BT T V B T V B T V B
IMG_0003_RGB.jpg 56 11 8773.0 1 0 2046.0 9 0 1552.0 7 0
IMG_0015_IRG.jpg 0 2 1905.0 0 0 2083.0 0 0 1613.6 0 0
IMG_0017_RGB.jpg 1 4 1897.0 0 0 1891.0 0 0 1838.0 0 0
IMG_0025_IRG.jpg 0 0 1887.0 0 0 2011.0 0 0 1623.0 0 0
IMG_0025_RGB.jpg 0 2 1848.0 0 0 2420.0 0 0 1598.0 0 0
IMG_0030_IRG.jpg 0 0 1799.0 0 0 1905.0 0 0 1559.0 0 0
IMG_0030_RGB.jpg 0 0 1755.0 0 0 1862.0 0 0 1604.5 0 0
IMG_0031_IRG.jpg 0 0 1747.0 0 0 1904.0 0 0 1601.5 0 0
IMG_0038_RGB.jpg 54 26 1758.0 1 0 1878.0 13 0 1901.0 8 0
IMG_0039_IRG.jpg 30 8 1906.0 0 0 2059.0 0 0 1664.0 0 0
IMG_0041_IRG.jpg 136 25 1860.0 0 0 1954.0 0 0 1596.5 0 0
IMG_0049_RGB.jpg 0 1 1963.0 0 0 1864.0 0 0 1618.0 0 0
IMG_0050_IRG.jpg 2 6 1963.0 0 0 1864.0 0 0 1618.0 0 0
IMG_0053_RGB.jpg 16 4 1872.0 0 0 1867.0 0 0 1602.0 0 0
IMG_0057_IRG.jpg 70 2 1744.0 0 0 1914.0 0 0 1873.0 0 0
IMG_0057_RGB.jpg 4 3 1787.0 1 0 2145.0 0 0 1716.0 0 0
IMG_0060_IRG.jpg 0 0 1780.0 0 0 1923.0 0 0 1589.0 0 0
IMG_0062_RGB.jpg 0 0 1836.0 0 0 1862.0 0 0 1586.0 0 0
IMG_0066_IRG.jpg 14 3 1794.0 0 0 1902.0 0 0 1590.0 0 0
IMG_0077_IRG.jpg 0 3 1737.0 0 0 1834.0 0 0 1672.0 0 0
IMG_0079_RGB.jpg 6 2 1772.0 0 0 2060.0 0 0 1778.0 0 0
IMG_0084_RGB.jpg 4 3 1697.0 0 0 2131.0 4 0 1758.0 4 0
IMG_0089_RGB.jpg 42 3 1862.0 0 0 1906.0 0 0 1580.0 0 0
IMG_0094_IRG.jpg 6 5 1802.0 0 0 1922.0 0 0 1611.0 0 0
IMG_0100_IRG.jpg 0 0 1792.0 0 1 2173.0 0 0 1601.0 0 0
IMG_0108_RGB.jpg 0 0 1787.0 0 0 2101.0 0 0 1661.0 0 0
IMG_0120_IRG.jpg 101 48 1951.0 0 0 2393.0 1 0 1762.0 18 0
IMG_0120_RGB.jpg 0 6 2007.0 0 0 2803.0 0 0 1888.0 0 0
IMG_0124_IRG.jpg 8 7 1862.0 0 0 1916.0 0 0 1580.0 0 0
IMG_0131_IRG.jpg 53 8 1752.0 0 0 2016.0 0 0 1545.0 0 0
IMG_0131_RGB.jpg 25 3 1733.0 0 0 1861.0 0 0 1594.0 0 0
IMG_0133_IRG.jpg 46 2 1789.0 0 0 2017.0 0 0 1656.0 0 0
IMG_0164_IRG.jpg 12 4 1784.0 0 0 2029.0 0 0 1721.0 0 0
IMG_0190_IRG.jpg 25 5 1788.0 0 0 1836.0 0 0 1824.0 0 0
IMG_0199_IRG.jpg 103 17 1932.0 0 0 1857.0 0 0 1621.0 0 0
IMG_0211_IRG.jpg 22 8 1860.0 0 0 1860.0 0 0 1586.0 0 0
IMG_0215_IRG.jpg 53 3 1874.0 0 0 1914.0 0 0 1579.0 0 0

Table 1: Detection results from pretrained algorithms.

49

Appendix B - Detection results for Faster R-CNN algorithm

Theoretical
Detections

PMA Dataset PMA-DA Dataset
14500 steps 29000 steps 14500 steps

Image VT BT T V B T V B T V B
IMG_0003_RGB.jpg 56 11 4379.0 40 10 5788.6 41 9 4122.5 41 9
IMG_0015_IRG.jpg 0 2 1790.0 0 2 2266.0 0 2 1804.0 0 2
IMG_0017_RGB.jpg 1 4 1908.0 1 5 2173.0 0 4 1466.0 0 4
IMG_0025_IRG.jpg 0 0 1775.0 0 0 2022.0 0 0 1463.0 0 0
IMG_0025_RGB.jpg 0 2 1691.0 0 2 2066.0 0 2 1460.1 0 2
IMG_0030_IRG.jpg 0 0 1825.0 0 0 1973.0 0 0 1455.0 0 0
IMG_0030_RGB.jpg 0 0 1766.0 0 0 1967.0 0 0 1461.0 0 0
IMG_0031_IRG.jpg 0 0 1708.0 0 0 2237.0 0 0 1508.0 0 0
IMG_0038_RGB.jpg 54 26 1800.0 28 22 2291.0 27 23 1733.0 27 23
IMG_0039_IRG.jpg 30 8 1950.0 11 5 1815.0 12 4 1583.0 7 2
IMG_0041_IRG.jpg 136 25 1900.0 47 3 1821.0 47 3 1972.0 48 2
IMG_0049_RGB.jpg 0 1 1945.0 0 1 1895.0 0 1 1940.0 0 1
IMG_0050_IRG.jpg 2 6 1854.0 1 6 1789.0 0 6 1842.0 0 5
IMG_0053_RGB.jpg 16 4 1968.0 15 4 1814.0 15 4 1634.0 15 4
IMG_0057_IRG.jpg 70 2 1833.0 39 2 1722.0 34 2 1605.0 29 3
IMG_0057_RGB.jpg 4 3 1988.0 3 3 1748.0 5 2 1570.0 4 2
IMG_0060_IRG.jpg 0 0 1967.0 0 0 1699.0 0 0 1637.0 0 0
IMG_0062_RGB.jpg 0 0 1987.5 0 0 1748.0 0 0 1858.5 0 0
IMG_0066_IRG.jpg 14 3 1982.0 6 1 1750.0 4 2 1849.0 6 0
IMG_0077_IRG.jpg 0 3 1926.5 0 3 1737.0 0 3 1682.0 0 3
IMG_0079_RGB.jpg 6 2 1922.0 6 3 1698.0 5 3 1713.0 3 2
IMG_0084_RGB.jpg 4 3 1818.0 3 4 1834.0 3 4 1959.5 5 5
IMG_0089_RGB.jpg 42 3 1758.0 36 4 1732.0 36 3 1694.0 42 2
IMG_0094_IRG.jpg 6 5 1782.0 3 5 1740.0 4 4 1805.0 3 5
IMG_0100_IRG.jpg 0 0 1761.0 0 0 1734.0 0 0 1758.0 0 0
IMG_0108_RGB.jpg 0 0 1786.0 0 0 1739.0 0 0 1900.0 0 0
IMG_0120_IRG.jpg 101 48 1852.0 47 3 1911.0 48 2 1607.0 48 2
IMG_0120_RGB.jpg 0 6 1767.0 0 6 1852.0 0 6 1627.0 0 6
IMG_0124_IRG.jpg 8 7 1716.0 7 6 1851.0 7 5 1581.0 3 5
IMG_0131_IRG.jpg 53 8 1772.0 28 8 1764.0 37 9 1638.0 22 8
IMG_0131_RGB.jpg 25 3 1930.0 15 3 1691.0 12 3 1576.0 11 3
IMG_0133_IRG.jpg 46 2 1813.0 36 2 1799.0 32 2 1610.0 27 2
IMG_0164_IRG.jpg 12 4 1788.0 9 4 1728.0 7 4 1935.0 5 4
IMG_0190_IRG.jpg 25 5 1881.0 13 5 1733.0 11 5 1930.0 8 4
IMG_0199_IRG.jpg 103 17 1841.0 45 5 1730.0 45 5 1674.0 41 5
IMG_0211_IRG.jpg 22 8 1833.0 16 8 1732.0 17 8 1776.0 13 8
IMG_0215_IRG.jpg 53 3 1859.0 24 4 1701.0 34 2 1618.0 34 3

Table 2: Detection results for Faster R-CNN algorithm.

51

Appendix C - Detection results for YOLOv3 algorithm

Theoretical
Detections

PMA Dataset PMA-DA Dataset
100 epochs 200 epochs 100 epochs

Image VT BT T V B T V B T V B
IMG_0003_RGB.jpg 56 11 1027.0 57 11 1080.0 57 11 1052.0 62 11
IMG_0015_IRG.jpg 0 2 1069.0 1 2 1023.0 0 2 1058.0 0 2
IMG_0017_RGB.jpg 1 4 1015.0 1 5 999.0 1 4 1084.0 4 5
IMG_0025_IRG.jpg 0 0 1046.0 0 0 1079.0 0 0 1008.0 0 0
IMG_0025_RGB.jpg 0 2 1039.0 0 2 1004.0 0 2 1016.0 0 2
IMG_0030_IRG.jpg 0 0 1013.0 0 0 1121.0 0 0 1365.0 0 0
IMG_0030_RGB.jpg 0 0 1062.0 0 0 1128.0 0 0 1137.0 0 0
IMG_0031_IRG.jpg 0 0 1050.0 0 0 1137.0 0 0 1317.0 0 0
IMG_0038_RGB.jpg 54 26 1175.0 56 27 1057.0 53 27 1089.0 53 27
IMG_0039_IRG.jpg 30 8 1158.0 29 6 1126.0 30 5 1667.0 24 5
IMG_0041_IRG.jpg 136 25 1133.0 139 23 1125.0 147 23 1583.0 141 23
IMG_0049_RGB.jpg 0 1 1154.0 0 1 1114.0 0 1 1420.1 0 1
IMG_0050_IRG.jpg 2 6 1230.0 4 6 1080.0 3 6 1129.0 3 6
IMG_0053_RGB.jpg 16 4 1126.0 20 4 1064.0 19 4 1304.0 19 4
IMG_0057_IRG.jpg 70 2 1178.0 84 2 1124.0 82 2 1127.1 81 2
IMG_0057_RGB.jpg 4 3 1083.0 5 2 1075.0 6 3 1320.0 4 3
IMG_0060_IRG.jpg 0 0 1168.0 1 0 1227.0 0 0 1327.0 1 0
IMG_0062_RGB.jpg 0 0 1134.0 0 0 1074.0 0 0 1339.0 0 0
IMG_0066_IRG.jpg 14 3 1161.0 16 0 1014.0 21 0 1368.0 19 0
IMG_0077_IRG.jpg 0 3 1119.0 0 3 1035.0 0 3 1454.0 0 3
IMG_0079_RGB.jpg 6 2 1121.0 6 4 1085.0 6 4 1261.0 6 2
IMG_0084_RGB.jpg 4 3 1119.0 5 5 1061.0 4 6 1327.0 4 7
IMG_0089_RGB.jpg 42 3 1102.0 45 4 1111.0 49 4 1111.0 45 4
IMG_0094_IRG.jpg 6 5 1198.0 7 5 1096.0 7 5 1172.0 6 5
IMG_0100_IRG.jpg 0 0 1051.0 0 1 1166.0 0 1 1441.0 0 1
IMG_0108_RGB.jpg 0 0 1063.0 0 0 1036.0 0 0 1326.0 0 0
IMG_0120_IRG.jpg 101 48 1034.0 108 50 1085.0 108 47 1355.0 109 47
IMG_0120_RGB.jpg 0 6 1061.0 1 6 1099.0 0 6 1243.0 0 6
IMG_0124_IRG.jpg 8 7 1070.0 11 7 1126.0 11 7 1176.0 10 7
IMG_0131_IRG.jpg 53 8 1141.0 61 9 1098.0 61 9 1201.0 6 8
IMG_0131_RGB.jpg 25 3 1257.0 21 4 1085.0 24 4 1351.0 25 3
IMG_0133_IRG.jpg 46 2 1259.0 48 2 1097.0 52 2 1441.0 56 2
IMG_0164_IRG.jpg 12 4 1157.0 11 4 1050.0 15 4 1252.0 12 4
IMG_0190_IRG.jpg 25 5 1264.0 23 5 1082.0 25 6 1281.0 25 5
IMG_0199_IRG.jpg 103 17 1094.0 113 17 1063.0 115 17 1228.0 117 17
IMG_0211_IRG.jpg 22 8 1124.0 24 9 1087.0 30 9 1592.0 25 8
IMG_0215_IRG.jpg 53 3 1094.0 57 5 1136.0 61 4 1162.0 59 4

Table 3: Detection results for YOLOv3 algorithm.

53

Appendix D - Detection results for YOLOv5l algorithm

Theoretical
Detections

PMA Dataset PMA-DA Dataset
100 epochs 200 epochs 100 epochs

Image VT BT T V B T V B T V B
IMG_0003_RGB.jpg 56 11 1306.0 56 11 1166.1 58 11 832.0 60 11
IMG_0015_IRG.jpg 0 2 1305.1 0 3 1186.0 0 2 886.0 0 2
IMG_0017_RGB.jpg 1 4 1245.0 1 5 1107.0 1 4 813.0 1 5
IMG_0025_IRG.jpg 0 0 853.0 0 0 1224.0 0 0 846.0 0 0
IMG_0025_RGB.jpg 0 2 931.0 0 2 1167.0 0 2 826.5 0 2
IMG_0030_IRG.jpg 0 0 1022.0 0 0 784.0 0 0 831.0 0 0
IMG_0030_RGB.jpg 0 0 894.0 0 0 791.0 0 0 833.6 0 0
IMG_0031_IRG.jpg 0 0 999.0 0 0 800.0 0 0 848.0 0 0
IMG_0038_RGB.jpg 54 26 1411.0 52 26 791.0 54 27 818.0 52 28
IMG_0039_IRG.jpg 30 8 924.0 34 4 759.1 25 4 803.0 29 4
IMG_0041_IRG.jpg 136 25 844.0 142 23 782.0 150 24 832.0 149 23
IMG_0049_RGB.jpg 0 1 870.0 0 1 813.0 0 1 882.0 0 1
IMG_0050_IRG.jpg 2 6 899.0 0 6 716.0 3 7 1016.0 2 6
IMG_0053_RGB.jpg 16 4 872.0 20 4 808.0 19 3 1051.0 20 4
IMG_0057_IRG.jpg 70 2 830.0 73 3 823.0 75 3 912.0 80 3
IMG_0057_RGB.jpg 4 3 827.0 5 3 8333.0 5 2 940.0 5 3
IMG_0060_IRG.jpg 0 0 948.0 2 0 821.0 1 0 920.0 1 0
IMG_0062_RGB.jpg 0 0 1172.0 0 0 805.0 0 0 1001.1 0 0
IMG_0066_IRG.jpg 14 3 1439.9 15 2 889.0 17 1 980.0 17 0
IMG_0077_IRG.jpg 0 3 1040.0 0 3 816.3 0 3 1093.0 0 3
IMG_0079_RGB.jpg 6 2 1044.0 6 3 957.0 6 3 1083.1 6 4
IMG_0084_RGB.jpg 4 3 1263.9 5 5 1022.0 5 6 1365.0 4 5
IMG_0089_RGB.jpg 42 3 1396.8 49 4 1022.0 48 4 1150.0 47 3
IMG_0094_IRG.jpg 6 5 1050.0 6 6 784.0 7 5 1212.0 7 5
IMG_0100_IRG.jpg 0 0 1105.0 0 1 820.0 0 1 1173.0 0 1
IMG_0108_RGB.jpg 0 0 1402.0 0 0 979.0 0 0 1044.0 0 0
IMG_0120_IRG.jpg 101 48 1211.0 105 46 1071.9 105 49 1103.0 113 45
IMG_0120_RGB.jpg 0 6 1044.0 0 6 898.0 0 6 920.0 0 6
IMG_0124_IRG.jpg 8 7 1128.0 8 7 966.0 7 7 1177.0 5 7
IMG_0131_IRG.jpg 53 8 1166.0 57 9 868.0 64 8 1082.0 66 8
IMG_0131_RGB.jpg 25 3 1052.0 22 4 869.0 21 4 1023.5 22 3
IMG_0133_IRG.jpg 46 2 1068.0 54 2 897.0 60 2 1033.0 65 2
IMG_0164_IRG.jpg 12 4 1062.0 11 4 1011.0 11 4 1021.0 12 4
IMG_0190_IRG.jpg 25 5 1108.0 24 7 887.0 25 7 1012.0 25 6
IMG_0199_IRG.jpg 103 17 1042.0 112 17 1046.0 121 17 1038.0 116 17
IMG_0211_IRG.jpg 22 8 1118.0 23 9 880.0 22 8 999.1 19 8
IMG_0215_IRG.jpg 53 3 1046.0 60 4 839.0 56 4 1048.1 61 4

Table 4: Detection results for YOLOv5l algorithm.

55

Appendix E - Extended Abstract

The Extended Abstract, “Discrimination between vehicles and buildings in military aerial
images”, written for the Conference of the International Society of Military Sciences, is
presented on the following pages.

57

International Society of Military Sciences ISMS 2022 Conference Lisbon, 10-13 October 2022

Discrimination between vehicles and buildings in military aerial images

Rita Amante (1), José Silvestre Silva (2) and António Neves (3)

(1) DETI – Dep. of Electronics, Telecommunications and Informatics, University of Aveiro, Portugal, rita.amante@ua.pt

(2) Portuguese Military Academy & CINAMIL & LIBPhys-UC, jose.silva@academiamilitar.pt
(3) DETI & IEETA, University of Aveiro, Portugal, an@ua.pt

ABSTRACT

The advancement of technology has facilitated the detection of objects in aerial images, a task which must be

performed quickly and accurately. This work analyzed the performance of object detection algorithms, Faster R-

CNN, YOLOv3 and YOLOv5l, for the detection of vehicles and buildings in aerial images obtained by UAV. The

results showed that YOLOv5l had the best performance and the fastest detection time.

KEYWORDS

Deep Learning; Object Detection; Transfer Learning; UAV.

INTRODUCTION

The expansion of Unmanned Aerial Vehicles (UAV), remotely controlled aerial vehicles, made it possible to

access hard-to-reach places and vast amounts of data, as well as enabled the improvement of object detection

algorithms, a growing topic of great interest and applicability, in both civil and military contexts. UAVs capture

images which can be used in traffic monitoring, road accidents, operations supporting government agencies,

predicting enemy movements, locating areas occupied by enemy troops, disaster assistance, detecting illegal

activities, planning offensive operations, among others.

In recent years, several studies have been carried out on the detection of objects in aerial images. Saetchnikov et

al. (2021) showed that the You Only Look Once (YOLO) version 3 algorithm had better average accuracy and a

faster detection time than the Region-based Convolutional Neural Network (R-CNN) algorithms, Fast R-CNN and

Faster R-CNN. Nepal et al. (2022) revealed that the YOLOv3, YOLOv4 and YOLOv5l algorithms are efficient

for the detection of objects in real time, highlighting the YOLOv5l for its accuracy.

This gave emphasis to the development of algorithms for the detection of vehicles and buildings in aerial images,

namely in military scenario. It is a pertinent task which can be useful for several applications in the real world.

Two object detection algorithms based on Deep Learning were studied, Faster R-CNN, a two-stage detector, and

YOLO, a one-stage detector. The latter was implemented in the YOLOv3 and YOLOv5l versions.

METHODOLOGY

The adopted methodology started with the choice of Faster R-CNN, YOLOv3 and YOLOv5l algorithms. Then,

the data were prepared. A set of 363 images was selected and renamed, resulting in the Portuguese Military

Academy (PMA) dataset. All target objects were annotated with limiting boxes and respective classes (vehicle or

building), using the LabelImg tool, and the annotations were saved in Extensible Markup Language (XML) files,

in PASCAL VOC format. A total of 11945 instances, 9500 vehicles and 2445 buildings, were registered. The

images were resized to 640640 (pixels per inch), to which brightness and Gaussian blur transformations were

applied, resulting in the Portuguese Military Academy with Data Augmentation (PMA-DA) dataset. Both sets

were divided into three parts: training (80%), validation (10%) and testing (10%).

The following step consisted of inferring the pretrained algorithms using the Transfer Learning (TL) pretrained

network as a classifier approach, to carry out qualitative (direct observation of detection results) and quantitative

(observation of the detection times) evaluations. The TensorFlow 2 Object Detection API was used for Faster

R-CNN and the open-source code developed by Ultralytics was used for YOLO, both pretrained with the Microsoft

Common Objects in Context (MS COCO) dataset (Lin et al., 2015).

Subsequently, the input data were processed, converting the XML files into TFRecord for Faster R-CNN and into

text files for the YOLO algorithms. The training parameters of batch size, learning rate, Intersection Over Union

(IoU) limit and confidence limit were configured with values of 2, 0.013, 0.5 and 0.3, respectively. The YOLOv3

and YOLOv5l were trained for 100 and 200 epochs with the PMA dataset and for 100 epochs with the PMA-DA

dataset. The Faster R-CNN was trained for 14500 and 29000 steps with the PMA dataset, the equivalent to 100

and 200 epochs, respectively, and for 43500 steps with the PMA-DA dataset, the equivalent of 100 epochs with

the augmented data. The training of the algorithms followed the pretrained network as a feature extractor approach

of TL.

The last step consisted of the inference of the trained algorithms, where a qualitative and quantitative evaluation

(interpretation of metrics and detection time) of the performance of the trained algorithms was carried out.

International Society of Military Sciences ISMS 2022 Conference Lisbon, 10-13 October 2022

RESULTS AND DISCUSSION

In the inference of the pretrained Faster R-CNN, YOLOv3 and YOLOv5l algorithms, it was confirmed that the

building class was not detected, possibly because this class does not belong to the categories of the MS COCO

dataset, and the performance of the algorithms in the detection of vehicles was low, probably because the pretrained

algorithms did not learn to detect objects in aerial images.

Table 1 shows the results of each algorithm after training. It shows that Faster R-CNN has the lowest mean Average

Precision (mAP) because, although it shows high Precision, Recall is low, which indicates that most objects were

detected correctly, but the number of false negatives was high. And the YOLO algorithms have a higher mAP

since both Precision and Recall are high, which indicates that most objects were detected correctly, decreasing the

number of false positives and false negatives.

Table 1 – Results of the trained algorithms: Faster R-CNN, YOLOv3 and YOLOv5l.

 FASTER R-CNN YOLOv3 YOLOv5l

 PMA PMA-DA PMA PMA-DA PMA PMA-DA

 14500 steps 29000 steps 43500 steps 100 epochs 200 epochs 100 epochs 100 epochs 200 epochs 100 epochs

Training time (hours) 8 16 25 30 60 127 24 48 73

mAP (All) 58.1% 56.2% 52.5% 91.4% 92.2% 88.7% 93.3% 91.8% 91.4%

Precision (Vehicle) 91.9% 93.7% 94.8% 94.1% 93.2% 91.9% 95.4% 92.8% 93.4%

Recall (Vehicle) 50.4% 47.9% 58.2% 91.1% 92.3% 88.9% 90.8% 91.6% 91.4%

Precision (Building) 98.9% 97.7% 97.2% 93.7% 94.5% 97.1% 96.0% 97.2% 96.4%

Recall (Building) 47.0% 44.5% 50.1% 82.3% 85.4% 76.0% 85.4% 91.5% 81.6%

Detection time
(milliseconds)

1914 1954 1758 1118 1088 1273 1079 911 985

Figure 1 illustrates the YOLOv5l algorithm detection results for two images from the PMA dataset, where the blue

color corresponds to vehicles and the yellow to buildings. The YOLOv5l was capable of detecting all vehicles and

buildings. However, there were still some false positives.

Figure 1 – YOLOv5l algorithm detection results for two images from the PMA dataset, captured in area UEO of Portuguese Army.

CONCLUSION

The performance of the algorithms show that the Precision for the building class was higher than that of the vehicle

class, which indicates that the algorithms recognise larger objects more effectively; the Recall of the building class

was lower than that of the vehicle class, due to the smaller number of instances of this class in the datasets; the

number of steps or epochs did not influence detection time; training with data augmentation did not improve the

performance of the algorithms, probably because there was an increase in new difficulties, requiring more training

time for the algorithms to learn; Faster R-CNN needed less training time, but took longer to detect objects and had

the worst performance; YOLOv3 had the slowest training time and YOLOv5l achieved the best performance, with

a mAP of 93.3%, fast training time and the best detection time. It was concluded that YOLOv5l was the most

efficient for detecting vehicles and buildings in aerial images and useful for real-time applications, which is in line

with the two studies mentioned.

In terms of future work, two approaches can be applied to the YOLOv5l algorithm: the expansion of the dataset

with images from other locations and environments, and the adjustment of hyperparameters.

ACKNOWLEDGEMENTS

This research was supported by the Military Academy Research Center (CINAMIL), the Center for Research and

Development of the IUM (CIDIUM). The images were made available by the Portuguese Military Academy.

REFERENCES

Lin, T., Marie, M., Belongie, S.J., Bourdev, L. D., Girshick, R. B., Hays, J., … Zitnick, C. L. (2015, Feb).

Microsoft COCO: Common Objects in Context. doi: 10.48550/ARXIV.1405.0312v.

Nepal, U. & Eslamiat, H. (2022, Jan). Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing

Spot Detection in Faulty UAVs. Sensors 22(2). doi: 10.3390/s22020464.

Saetchnikov, I. V., Tcherniavskaia, E. A. & Skakun, V. V. (2021, Jun). Object Detection for Unmanned Aerial

Vehicle Camera via Convolutional Neural Networks. IEEE Journal on Miniaturization for Air and Space

Systems, 2(2). doi: 10.1109/JMASS.2020.3040976.

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Contextualization
	Motivation
	Objectives
	Structure of the document
	Extended Abstract

	Literature Review
	Artificial Intelligence
	Machine Learning
	Deep Learning
	Transfer Learning
	Object detection algorithms
	Faster R-CNN algorithm
	YOLO algorithm

	Related work

	Methodology
	Results e Discussion
	Resources used
	Dataset
	Inference from pretrained algorithms
	Configuration of the training
	Inference from trained algorithms

	Conclusions
	Future work

	References
	Appendix A - Detection results from pretrained algorithms
	Appendix B - Detection results for Faster R-CNN algorithm
	Appendix C - Detection results for YOLOv3 algorithm
	Appendix D - Detection results for YOLOv5l algorithm
	Appendix E - Extended Abstract

