
Universidade de Aveiro
2022

Joel Fernando
Bastos Baptista

Industrial data provider for consumption of
Augmented Reality devices

Fornecedor de dados industriais para consumo por
dispositivos de Realidade Aumentada

Universidade de Aveiro
2022

Joel Fernando
Bastos Baptista

Industrial data provider for consumption of
Augmented Reality devices

Fornecedor de dados industriais para consumo por
dispositivos de Realidade Aumentada

Relatório de Estágio apresentado à Universidade de Aveiro para cumpri-
mento dos requisitos necessários à obtenção do grau de Mestre em Engen-
haria Mecânica, realizada sob orientação cient́ıfica de Professor José Paulo
Santos, Professor Auxiliar, do Departamento de Engenharia Mecânica da
Universidade de Aveiro, e de Professor Paulo Miguel de Jesus Dias, Profes-
sor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro.

Esta dissertação teve o apoio dos projetos UIDB/00481/2020 e UIDP/00481/2020

- Fundação para a Ciência e a Tecnologia; e CENTRO-01-0145 FEDER-022083 -

Programa Operacional Regional do Centro (Centro2020), através do Portugal 2020

e do Fundo Europeu de Desenvolvimento Regional.

O júri / The jury

Presidente / President Prof. Doutor Jorge Augusto Fernandes Ferreira
Professor Associado da Universidade de Aveiro

Vogais / Committee Prof. Doutor Diogo Nuno Pereira Gomes
Professor Auxiliar da Universidade de Aveiro

Prof. Doutor José Paulo Santos
Professor Auxiliar da Universidade de Aveiro (orientador)

Agradecimentos /
Acknowledgements

Um especial agradecimento à minha faḿılia, com especial atenção ao meu
pai e à minha mãe, Jorge e Denise, ao meu irmão Helder, à Rosana e ao
Vilmar, que contribuiram de maneira única para o meu percurso académico
e pessoal.
Agradeço também à Bosch Termotecnologia pela a oportunidade apresen-
tada e à equipa AvP/MFD pela integração, companheirismo e ajuda no
projeto, em especial ao meu supervisor Engenheiro Duarte Almeida.
Agradeço aos meus colegas de curso de Engenharia Mecânica que me acom-
panharam nesta jornada.
Agradeço, por último, à Universidade de Aveiro e aos orientadores, Prof.
José Santos e Prof. Paulo Dias.

Keywords REST API, .NET Framework, Web Service, Industry 4.0, Apache Kafka
Broker, Databases

Abstract In response to the fourth industrial revolution, Bosch TT and the University
of Aveiro (UA) started the Augmanity project, which aims to use innova-
tive technologies such as Augmented Reality, IIoT, 5G, BigData and AI
and Machine Learning, and apply them in the Portuguese business struc-
ture. This internship was inserted in the PPS4 subproject of the Augmanity
project, specifically in the supply of data to be consumed by AR devices.
The AR case studies will affect several areas of the company’s value stream,
from parts production machines to improving the efficiency of final lines,
always with the aim of improving human performance. The complexity of
this task comes from the fact that the necessary information comes from
several different sources: the production line, Nexeed MES and SAP ERP,
and the criterion that the information is accessed in real-time. The pro-
posed system involves the creation of a web service that will provide all
data available in a standardized way to be consumed by AR devices, like
mobile phones, tablets and AR Glasses. For this, the developed system can
access databases, Message Brokers and other web services and has a REST
API architecture, developed in ASP.NET, to be able to transmit the data
to the AR devices. In the end, industrial data provider was implemented
on Bosch’s internal network, managing to supply most of the data required
by AR case studies. The web service underwent load tests to measure the
wait times of the AR devices, obtaining satisfactory results and fulfilling the
requirements of real-time communication.

Palavras-chave REST API, .NET Framework, Serviços Web, Industria 4.0, Apache Kafka
Broker, Bases de Dados

Resumo Em resposta à quarta revolução industrial, a Bosch TT e a Universidade
de Aveiro (UA) iniciaram o projeto Augmanity que visa a utilizar tecnolo-
gias inovadoras como Realidade Aumentada, IIoT, 5G, BigData e AI and
Machine Learning, e aplicá-las na estrutura empresarial portuguesa.
Este estágio inseriu-se no subprojecto PPS4 do projeto Augmanity, mais
propriamente no fornecimento de dados para serem consumidos por dispos-
itivos de RA. Os casos de estudo de RA irão afetar diversas áreas do fluxo de
valor da empresa, desde máquinas de produção de peças, até à melhoria de
eficiência de linhas finais, sempre com o intuito de melhorar a performance
humana. A complexidade desta tarefa advém de a informação necessária
ser proveniente de várias fontes diferentes: a linha de produção, o Nexeed
MES e o SAP ERP, juntamente com o critério da informação ser acedida em
tempo real. O sistema proposto envolve a criação de um serviço web que
fornecerá todos os dados industriais de uma forma normalizada para serem
consumidos pelos dispositivos de Realidade Aumentada, entre estes poderão
ser telemóveis, tablets e AR Glasses. Para isso, o fornecedor de dados in-
dustriais desenvolvido é capaz de aceder a base de dados, Message Brokers
e outros serviços web e possúı uma arquitetura de REST API, desenvolvida
em ASP.NET, para conseguir transmitir os dados para os dispositivos de
Realidade Aumentada.
No final, o sistema foi implementado na rede interna da Bosch, conseguindo
devolver maioria dos dados requeridos pelos casos de estudo de RA. O
serviço web sofreu testes de carga, para medir os tempos de espera dos
dispositivos de RA, obtendo resultados satisfatórios e cumprindo os requer-
imentos de comunicação em tempo real.

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Aim . 2

1.2.1 Use case 1 - Equipment Technical Data 2

1.2.2 Use case 2 - Assisted Production 3

1.2.3 Use case 3 - Final Assembly Line - Real-Time Monitoring 3

1.3 Document Organization . 4

2 State of the Art 5

2.1 Industry 4.0 . 5

2.1.1 Industrial Internet of Things . 5

2.1.2 Cyber-Physical Systems . 6

2.1.3 Industrial Augmented Reality . 7

2.1.4 ERP . 7

2.2 Nexeed MES . 7

2.3 Web Services . 9

2.3.1 Simple Object Access Protocol (SOAP) 9

2.3.2 Representational State Transfer (REST) 10

2.3.3 REST vs SOAP . 11

2.3.4 REST API . 11

2.4 Frameworks . 13

2.4.1 .NET Framework . 13

2.4.2 Flask Framework . 14

2.5 Databases . 14

2.6 Message Broker . 15

2.7 Apache Kafka . 16

3 Proposed Solution 17

3.1 SAP ERP . 18

3.2 Nexeed MES . 18

3.3 Production Line . 18

3.4 REST API . 18

i

4 Implementation 21
4.1 REST API . 22

4.1.1 Models . 23
4.1.2 Program . 23
4.1.3 Startup . 24
4.1.4 SQLiteDataAccess . 25
4.1.5 REST Client . 25
4.1.6 Local Folder . 26
4.1.7 Controllers . 26

4.2 Kafka Broker Consumer . 28
4.2.1 Models . 29
4.2.2 Program . 29
4.2.3 SQLiteDataAccess . 30
4.2.4 Worker . 30

4.3 Nexeed MES Communication Pipeline . 32
4.4 Kafka Message Broker Communication Pipeline 32
4.5 SQL Server Communication Pipeline . 34
4.6 Bosch External Network Communication 35
4.7 Web Service Production Implementation 37

5 Test Solution 39
5.1 Custom Testing . 40
5.2 Load Testing . 42
5.3 Result Analysis . 44

6 Conclusion 45
6.1 Conclusions . 45
6.2 Future Work . 46

References 46

ii

List of Tables

4.1 REST API’s endpoints descriptions . 27

5.1 Endpoint numerical association . 40
5.2 Endpoints test results . 41
5.3 Load test results . 43

iii

.

Intentionally blank page.

List of Figures

1.1 Bosch’s Haulick & Roos RVD200T Stamping Press 2

1.2 Final Assembly Line . 3

2.1 Mapping information between the physical and cyber world [1] 6

2.2 MES in Automation Hierarchy [2] . 7

2.3 Shopfloor Management Modules of Nexeed MES [3] 8

2.4 Nexeed MES Architecture [3] . 10

2.5 Web API generic application [4] . 12

2.6 Model-View-Controller Architecture [5] . 12

2.7 Differences between MVC and HMVC Architectures [5] 13

2.8 Relation between BCL, CLR, CTS and CLS [6] 14

2.9 Generic system implementation with a database [7] 15

2.10 Generic Stream Processing Pipeline [8] . 16

2.11 Apache Kafka architecture [9] . 16

3.1 Proposed Solution architecture . 17

4.1 Implemented System Architecture . 21

4.2 REST API Architecture . 22

4.3 KPIRecord model . 23

4.4 REST API’s Program class . 24

4.5 ConfigureServices() method . 24

4.6 Configure() method . 25

4.7 Controller example . 28

4.8 Kafka Consumer Architecture . 28

4.9 KafkaConsumer ’s Program class . 29

4.10 SQLite database and table creation . 30

4.11 Worker logic activity diagram . 31

4.12 Nexeed MES Communication Pipeline . 32

4.13 Kafka Message Broker Communication Pipeline 33

4.14 Kafka Message Broker Communication Pipeline 33

4.15 Tables’ relation diagram . 35

4.16 KitsController endpoint’s function logic 36

4.17 Bosch’s API communication sequence . 37

5.1 Communication setup for the test . 39

5.2 Postman routine for costum test . 41

5.3 Client’s activity diagram for load testing 42

5.4 Clients receiving messages in load testing 43

v

.

Intentionally blank page.

Chapter 1

Introduction

1.1 Background and Motivation

The revolutionary step of Industry 4.0 heavily digitalized the production process. A
direct consequence of this digitalization is the generation of large amounts of information
related to the physical system, producing four challenges: data acquisition, transmission,
processing, and visualization.

Augmented Reality (AR) is a new technology explored to answer the data visual-
ization problem. AR is the concept of adding virtual components to an environment.
Its display options are Hand-Held Displays (HHD), like smartphones, Spatial Displays
like digital projectors, or Head-Mounted Displays, like smart glasses. Although AR
technology is relatively new to the industrial world, it is expected to grow significantly
alongside Virtual Reality in maintenance, decision-making, and training [10]. To explore
this growing potential, Bosch TT proposed three AR use cases. These use cases belong
to the Augmanity project, where Bosch TT and the University of Aveiro started explor-
ing innovative technologies. The study cases are related to the PPS4 – Artificial Vision
and Augmented Reality.

• Use case 1 - Equipment Technical Data: Display real-time data associated
with the equipment being analyzed in AR to help the maintenance department.

• Use case 2 - Assisted Production: Helps the operator by showing which parts
are necessary for assembling different kits. This will reduce training costs and
significantly decrease this sector’s mistakes.

• Use case 3 - Final Assembly Line - Real-Time Monitoring: A production
line with 10 to 20 stations needs to allow users with AR equipment to consume the
information relative to the station in the visual field. This will help the managers
of the production line to make a faster analysis of every significant data of the
production process.

The problem facing Bosch’s use cases is relative to information transfer. Almost
every case study requires real-time data from some part of the company, which imposes
a barrier that needs to be crossed for implementing AR solutions.

1

2 1.Introduction

1.2 Aim

This project aims to create a uniformised industrial data provider for AR devices. This
data transfer will be accomplished by a system that retrieves information throughout
the Plant and possesses a Web API module that allows web communication between the
system and the AR devices. The solution needs to be capable of responding to the use
cases’ requirements in terms of data and real-time criteria. The use cases’ requirements
are described in the following subsections.

1.2.1 Use case 1 - Equipment Technical Data

This case study aims to aid the maintenance personnel in the stamping press Haulick
& Roos RVD200T, shown in figure 1.1. This press possesses 25 sensors, retrieving data
about temperature, electric tension, motor speed, oil pressure, and tool displacement
and vibration. The idea is to provide the sensor information, technical drawings of the
equipment, recorded maintenance, and troubleshooting guides to facilitate the mainte-
nance process of the machine. The challenge in this use case is the disparity of the data
provided. The system must be capable of acquiring information from the production
line, SAP ERP, and local folders that store the videos and documents.

Figure 1.1: Bosch’s Haulick & Roos RVD200T Stamping Press

J.F.B. Baptista Master Degree

1.Introduction 3

1.2.2 Use case 2 - Assisted Production

This case study aims to enhance line S854 by implementing AR devices to aid the
workers. This line focuses on producing kits composed of parts and materials sold
alongside the boilers and water heaters. In this case, SAP ERP possesses all the relevant
information.

1.2.3 Use case 3 - Final Assembly Line - Real-Time Monitoring

This case study has the goal of helping the line manager of final assembly lines 7 and
10. An example of final assembly lines is shown in figure 1.2. The lines have, as inputs,
all the manufactured parts necessary for the boilers and water heaters. Then, each
station performs processes of assembly or testing until the product is packed and ready
for shipping. The manager’s task is to track KPIs, like OEE, FPY, Productivity, and
cycle times, to make quick adjustments to the line and ensure the overall success of the
current shift. The idea is to facilitate this task by displaying this information using AR
devices. In this case, the Neexed MES calculates and stores the KPIs of the mentioned
lines and the respective stations.

Figure 1.2: Final Assembly Line

J.F.B. Baptista Master Degree

4 1.Introduction

1.3 Document Organization

The present document is divided into five topics in the following order:

• State of the Art - A review of theoretical concepts used in the realisation of
the project. These concepts are Industry 4.0, Web Services, Frameworks, Message
Brokers, and Nexeed MES.

• Proposed Solution - Presents the conceptual architecture of the communication
system and how it aims to fulfil all the requirements imposed by the PPS4 use
cases.

• Implementation - Presents the practical architecture of the communication sys-
tem and how it was implemented inside Bosch’s environment.

• Test Solution - Methods used to evaluate the implemented system alongside
analysing the results.

• Conclusion - Conclusion about the implemented system and suggestions for future
projects.

J.F.B. Baptista Master Degree

Chapter 2

State of the Art

2.1 Industry 4.0

Industry 4.0 can simply be put as the transformation from machine dominant manufac-
turing to digital manufacturing [11]. In more complex terms, Industry 4.0 is defined as
the advanced digitalization of factories using Internet technologies and future-oriented
technologies. This paradigm shift introduces the production process to modular and ef-
ficient manufacturing systems and scenarios where the products control their production
process [12].

Several design principles and technology trends can be identified in Industry 4.0.
These design principles focus primarily on [13] horizontal and vertical integration, de-
centralization, interoperability, modularity, product and service individualization and
real-time capability.

These principles usually are implemented using new technologies. There are a wide
variety of technologies being used throughout the industrial world, with the following
being the most prominent [13]:

• Augmented and virtual reality

• Industrial internet of things

• Automation and industrial robotics

• Cyber-physical systems

• Cybersecurity

• Cloud and data computing

2.1.1 Industrial Internet of Things

Industrial Internet of Things (IIoT) is using the Internet of Things (IoT) technologies for
manufacturing purposes. More concretely, IIoT is a system that consists of networked
smart objects, cyber-physical assets, associated generic information technologies, and
optional cloud or edge computing platforms. This combination enables real-time, in-
telligent, and autonomous access, collection, analysis, communications, and exchange
of process, product, or service information in the industrial environment to maximize

5

6 2.State of the Art

production value. This value is an example of improving product or service delivery,
increasing productivity, lowering labour costs, lowering energy usage, and shortening
the build-to-order cycle [14].

This concept creates another notion called Industrial Internet. The primary necessity
to create this concept was to differentiate it from the consumer/social internet and their
value creation cores. Industrial Internet has two main focuses. The first is connecting
the machine sensors and actuators to the local processors and internet, and the other is
connecting different industrial networks [13].

2.1.2 Cyber-Physical Systems

Cyber-Physical System (CPS) is a concept associated with Smart Manufacturing. A
CPS integrates communication and control between the cyber and the physical world
in real-time while enhancing the transparency in the process [15] [1]. Figure 2.1 shows
the information transactions in CPS. A Cyber-Physical Production System is a CPS
designed to aid the production process and usually involves communication between the
sensors and actuators and the decision-making software [16].

Figure 2.1: Mapping information between the physical and cyber world [1]

J.F.B. Baptista Master Degree

2.State of the Art 7

2.1.3 Industrial Augmented Reality

Industrial Augmented Reality (IAR) uses Augmented Reality (AR) technologies to sup-
port or enhance the industrial process. The concept of AR is applied to every envi-
ronment where virtual components have been added or replaced by a physical compo-
nent [10].

IAR is expected to change the way operators perform their daily tasks by equipping
them with interfaces that provide information generated from the production process or
Decision Support Systems (DSS). The IAR concept is being used to assist workers in
maintenance, remote assistance, decision making and training [17].

2.1.4 ERP

ERP (Enterprise Resource Planning) systems are the business’s backbone, allowing them
to manage all organizational resources and transactions through a single system. ERP
systems are standardized, off-the-shelf software solutions based on industry best practices
[18]. Contrasting with MES, ERP systems tend to have a more long-term aspect in their
decision-making, controlling a wide range of operations, such as logistics, transportation
management, finance, material use, shipping, customer relationship management, and
human resources.

2.2 Nexeed MES

Production and maintenance techniques underwent a significant change during the fourth
industrial revolution. One of these changes was the implementation of Manufacturing
Execution Systems (MES). These systems enhance large companies’ productivity, qual-
ity, and agility, specifically those that seek to establish trade networks worldwide [19].
These systems achieve this by monitoring production and controlling the company’s
tasks [20], making data available in real-time, thus helping decision-making. MES is
also helpful by being a link between ERP systems and the shopfloor [21]. The integra-
tion of MES in the automation hierarchy is shown in figure 2.2

Figure 2.2: MES in Automation Hierarchy [2]

The ANSI/ISA-95 norm attributes twelve functions every MES should aim to achieve.
These required functions are [3]:

J.F.B. Baptista Master Degree

8 2.State of the Art

• Resource Allocation and Control

• Dispatching production

• Data collection and acquisition

• Quality operations management

• Process management

• Production tracking

• Performance analysis

• Operations and detailed scheduling

• Document control

• Labour management

• Maintenance operations management

• Movement, storage, and tracking of materials

Nexeed MES is a system implemented in Bosch that aims to fulfil all the MES
requirements. This system is modular, with each module fulfilling a specific role. Figure
2.3 shows the Nexeed MES modules [22].

Figure 2.3: Shopfloor Management Modules of Nexeed MES [3]

• Administration – It creates the user accounts and manages their roles and per-
missions.

• Line Controller – It encapsulates the vMDT, which manages the processing order
of the parts.

• Machine Interface – It connects the Nexeed MES modules with the production
lines’ machines.

J.F.B. Baptista Master Degree

2.State of the Art 9

• Reporting – It generates various reports for the OIS.NET portal.

• Adon – It allows machine operators to view important production indicators in
real-time.

• PDA/MDA – It generates helpful information regarding the production, like Key
Performance Indicators (KPI), to be consulted in real-time.

• Shiftbook – It exposes information about the work shifts, production planning
and shift stops.

• Quality Management and Traceability – It presents data regarding traceabil-
ity and quality of the production process through the production lines.

• Data Exchange – It transfers data between modules.

• Version Control – Keeps the machines’ software updated.

• Setup Control – It allows editing production recipes.

• Material Control – It introduces traceability of the materials through the pro-
duction stream.

• Tool Control – It controls the usage of the tools and implements predictive
maintenance.

• Maintenance Management – It aims to optimize the maintenance process, al-
lowing the technicians to do the maximum operations possible remotely.

The Nexeed MES has three independent servers: Application Server, Database
Server, and Web Server. The first server is responsible for the data collection and
processing of the shop floor and contains the previously mentioned modules. The second
server is the database that stores all the production data and is accessible to the other
two servers. Lastly, the Web Server is an interface to the user and can be used in the
browser in the OIS.NET portal. Figure 2.4 illustrate the systems architecture.

2.3 Web Services

A web service is a way of transferring information between devices in a network. Many
models implement this communication, but modern technology uses SOAP or REST [23].
This service usually does not provide a user GUI and has the primary function of data
exchange between programs. These applications do not need to be compatible with the
language or platform [24].

2.3.1 Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) uses HTTP and XML to communicate between
nodes. There are three main types of SOAP nodes: senders, receivers, and intermedi-
aries. The SOAP sender generates and transmits the message, while the receiver can
receive and process it. The third node has the two previous functionalities and serves
to redirect the message, so it arrives at the last SOAP receiver node [24]. The message

J.F.B. Baptista Master Degree

10 2.State of the Art

Figure 2.4: Nexeed MES Architecture [3]

structure of SOAP is an envelope with two fields: header and body. The header has
information relative to the application’s data types and authentications. For this rea-
son, the header field may be optional. However, the mandatory body field contains the
information that must reach the client application [24] [25].

2.3.2 Representational State Transfer (REST)

REST stands for Representational State Transfer, an architectural style for distributed
hypermedia systems. Roy Fielding was the first to propose this architectural style in his
PhD dissertation, imposing some constraints on web communication. These constraints
belong to six different categories [26] [4] [27]:

1. Client-server

2. Uniform Interface

3. Layered system

4. Cache

5. Stateless

6. Code-on-demand

The communication is Client-server based, separating the consumer and producer of
the information, allowing them to have independent implementations.

The Uniform Interface has four constraints to allow all users to communicate without
breaking the system.

J.F.B. Baptista Master Degree

2.State of the Art 11

1. Identification of resources: The web resources need to be uniquely by a Uniform
Resource Identifier (URI).

2. Manipulation of resources through representations: Clients control how the re-
sources representation, allowing data consumption from different types of pro-
grams.

3. Self-descriptive messages: Clients can send a message with a resource’s desired
state, and the server can respond with a message with the resource’s current state.
The self-descriptive message usually sends metadata with additional details regard-
ing the resource state, the representation format and size, and the message itself.
An HTTP message provides headers to organize the various types of metadata into
uniform fields.

4. Hypermedia as the engine of application state (HATEOS): A resource’s state rep-
resentation includes links to related resources.

The layered system constraints allow the existence of proxies and gateways as in-
termediaries transparently to the server and client. These usually are used to enforce
security, response caching, and load balancing.

The cache constraint instructs a web server to declare the cacheability of each re-
sponse’s data, improving the communication performance by responding to a new request
with saved responses. This met can help reduce client-perceived latency, increase overall
availability and reliability, and control a web server’s load.

The web server does not require to store the state of the client applications, which
means that the client applications must include all the relevant information in each
interaction with the server.

2.3.3 REST vs SOAP

Overall, there are some critical differences between communication technologies. Firstly,
REST is more lightweight and requires less bandwidth than SOAP. Additionally, the
REST’s message type is not defined, allowing it to be JSON or plain text. In addition,
SOAP needs to send messages with XML, making it less versatile. These differences make
REST a more friendly option to implement in wireless communications [23]. Finally,
REST leads to more scalable, safe, effective, and reliable solutions, and for these reasons,
it has become a great alternative to SOAP [28].

2.3.4 REST API

REST API is a concept born by joining two existing concepts. First, there is the concept
of REST, explained in subsection 2.3.2. Then, there is the API concept. An Application
Programming Interface (API) is a middleware that maps services’ functions and data
sets for easy and controlled access to client applications. When an API serves as an
interface to a web service, it becomes a web API, and if it obeys the REST architecture,
it is called a REST API. Typically, these REST APIs communicate via HTTP protocol
and can implement layers of security to the service that is being exposed [4].

J.F.B. Baptista Master Degree

12 2.State of the Art

Figure 2.5: Web API generic application [4]

The definition of REST API does not propose an implementation architecture, and
it only has the limitations of the REST constraints and API functions. However, the
Model-View-Controller (MVC) architecture is usually the choice for interface applica-
tions [29]. Figure 2.6 shows this design pattern that separates the application into three
main modules: Model, View and Controller [5].

• Model – The Model represents the data structures used by the other two modules.

• View – The View controls how a user will consume the data.

• Controller – The controller receives the user’s commands and transforms them into
actions for the other two models.

Figure 2.6: Model-View-Controller Architecture [5]

This concept lacks scalability, but with slight modifications, it changes into a Hierarchical-
Model-View-Controller (HMVC). HMVC architecture can be summarized into interac-
tive MVC sub-structures, mainly with the Controllers communicating with each other,
as shown in figure 2.7.

J.F.B. Baptista Master Degree

2.State of the Art 13

Figure 2.7: Differences between MVC and HMVC Architectures [5]

2.4 Frameworks

A Framework is a collection of reusable and standard components that produce an
architecture with a specific behaviour [30]. These frameworks aim to create new projects
that inherit the Framework’s low-level functionalities, allowing the developer to add new
high-level functionalities to solve the new problem. There are many advantages to using
existing frameworks in the developing environment. Firstly, it allows the creation of a
viable solution much faster because a portion of the project’s code is already developed
and tested. Secondly, uniformly structuring a project can lead to better coding practices.
Lastly, Frameworks allow for improving the solution performance and quality without
additional effort for the programmer [31].

Many open-source frameworks are available, with many software architectures and
design patterns implemented in their templates. Typically, if the objective is to produce
software with similar behaviour to existing solutions, the chances are that there is a
Framework that provides a template for it. In developing web services, some of the
existing Frameworks that provide solutions are .NET Framework and Flask Framework.

2.4.1 .NET Framework

The .NET Framework was initially released by Microsoft in 2002 and received constant
improvement and support throughout the years, becoming a standard and valuable tool
for software development [6]. Initially, the .NET Framework consisted of the common
language runtime (CLR) and the Framework Class Library (FCL) [32]. The CLR’s
objective is to manage, load and locate .NET objects and manage low-level tasks like
memory management, threads coordination, hosting and security. Incapsulated in CLR,
there are the Common Type System (CTS) and the Common Language Specification
(CLS). The CTS specifies the data types and programming constructs supported by the
CLR and how they interact. Lastly, the CLS defines common types and programming
constructs of .NET. The FCL, also known as Base Class Library (BCL), provides func-
tions that the project’s classes can inherit [33] [6]. Figure 2.8 shows the relation between
BCL, CLR, CTS and CLS.

J.F.B. Baptista Master Degree

14 2.State of the Art

Figure 2.8: Relation between BCL, CLR, CTS and CLS [6]

The .NET Framework allows doing different projects, like Web Services, Web Forms
and Windows Forms. For this project, the exciting project type is the Web Service. This
Framework has a template called web api that implements a Web Service with web api
functionalities and an MVC pattern. This template supports different language types,
including C#.

2.4.2 Flask Framework

Framework Flask is a Python-based web framework. Flask is a library with the primary
purpose of creating web applications. The objective of this Framework is to be lighter
and depend less on external libraries [34]. Because of its simplicity, Flask is considered
a microframework with few functionalities. However, it is possible to add new libraries
to Flask to attribute new features needed for the designed web service.

Flask is composed of two libraries: Werkzeug and Jinja2. The first library deals with
web communication by assuring the routing and Web Server Gateway Interface and
adding debugging options. The second module is a template engine, which can produce
desired output formats like HTML to create user interfaces [35].

2.5 Databases

A database’s primary function is to allow one or more applications to store and retrieve
information conveniently and efficiently. Usually, databases are used to manage large
amounts of data, so they need to be carefully designed to respond to the user’s require-
ments without losing efficiency [7]. Typically, a database is used in vertical architecture,
as shown in figure 2.9.

J.F.B. Baptista Master Degree

2.State of the Art 15

Figure 2.9: Generic system implementation with a database [7]

A database is mainly a collection of tables. A table represents the information that
needs to be stored, with each table representing a different object or concept. A table
has columns and rows. Each row is a record or an entry in the table, and each column
is a property or attribute of the object being modelled by the table [36].

However, databases needed software to manage them, so database management sys-
tems (DBMS) were created. These systems are responsible for implementing the be-
haviours that allow applications to access the databases.

2.6 Message Broker

A Message Broker (MB) is a concept created to solve a problem of distributed system
and establish communication between multiple isolated processes. The Message Broker,
also known as a messaging queue, is usually used in Streaming Processing Engines (SPE)
with the goal of real-time processing data to solve existing problems. A MB is helpful
when there is more than one source of data and if these sources do not output persistent
data [8]. Figure 2.10 shows an example of a data streaming system that implements a
message broker.

Figure2.10 shows that the architecture possesses various sources, with different mes-
sage types, sending data to the message broker. The message broker uniformizes the data
stream and allows one consumer to read the data in a controlled manner. In addition, a
message broker should allow multiple consumers to consume the data stream [8].

J.F.B. Baptista Master Degree

16 2.State of the Art

Figure 2.10: Generic Stream Processing Pipeline [8]

2.7 Apache Kafka

Apache Kafka is a framework that allows system integration, granting it capability of
integrating Messaging Broker systems. These systems allow seamless integration of in-
formation pipelines from producers to consumers, keeping them separate through the
process. Kafka supports data transfers of millions of messages per second. It is com-
patible with multiple clients from different platforms, like Java, .NET, PHP, Ruby, and
Python, making it a viable system for big data real-time solutions [37].

Kafka is a commit log service that is distributed, partitioned, and replicated. The
system achieves this by maintaining feeds of messages that are called topics. In these
topics, producers can publish messages, and consumers can read them. Each broker
can have multiple topics, and each implementation can have multiple brokers, creating
a broker cluster. Lastly, topics are divided into partitions, ordered, immutable message
sequences [9]. Figure 2.11 presents a generic architecture of an Apache Kafka Broker
implementation.

Figure 2.11: Apache Kafka architecture [9]

J.F.B. Baptista Master Degree

Chapter 3

Proposed Solution

As mentioned in the Introduction Chapter, the project’s goal is to create a web service
that gathers information from the plant to satisfy the objectives of the Augmented Real-
ity implementations. The proposed solution in figure 3.1 aims to fulfil the requirements
of the three AR use cases. The idea is to implement a web service with REST API
architecture that communicates with several of Bosch’s programs and exposes the in-
formation to the AR devices wirelessly, using a server-client communication type. Each
data source serves a purpose for at least one use case.

Figure 3.1: Proposed Solution architecture

17

18 3.Proposed Solution

3.1 SAP ERP

SAP ERP, as a resource management system, possesses a lot of crucial company infor-
mation. This system is essential for use case 1 – Equipment Technical Data because
it stores information about the maintenance records and the tools of the Haulick &
RVD200T Press. SAP ERP also manages the work orders and materials lists of the kits
of line S854, which is present in use case 2 – Assisted Production. The work orders are
Kanban cards that identify the quantities of kits for production and the kit’s materials
and location.

3.2 Nexeed MES

The system needs to be able to communicate with Nexeed MES for use case 3 – Final
Assembly Line – Real-Time Monitoring. This use case requires making accessible the
KPIs of lines 7 and 10 for their stations. The Nexeed MES system takes input data from
the production lines and manages them. It also calculates Key Performance Indicators
(KPI), which can be accessible by third-party software. The KPIs necessary are Overall
Equipment Efficiency (OEE), First Pass Yield (FPY), Productivity, and the number of
parts processed (partCount). These are the most common KPIs analyzed by the line
manager to administrate changes to the current shift.

3.3 Production Line

The system needs to provide data about the sensors implemented in the stamping press
in use case 1 – Technical Equipment Data. Alongside this, the primary requirement is
for the data to be in real-time, so the proposed solution aims to retrieve data directly
from the production line. The web service must also get information from lines 7 and
10 to calculate the cycle times of the stations to fulfil the requirements of use case 3.

The real-time data consumption is done by listening to topics on a messaging broker
implemented in Bosch. This messaging broker possesses topics that represent every
digitalized line in the company. Some services stay listening for XML telegrams sent from
the production line. These services map the telegram’s contents to a JSON message with
similar fields and publish the result to the respective topic. These topics are available
to third-party software to consume.

3.4 REST API

The main module of the web service is a REST API, which will function as a web service.
The reasons to use a REST API as a tool to send data to other software are listed below.

Firstly, the REST architecture standardizes communication by implementing the
protocols already used by the World Wide Web. This factor is crucial as this system
needs to be consumed by Augmanity project collaborators, who will be outside the Bosch
Termotechnology network. However, if it were not for this restriction, having a system
prepared to communicate over an internet network meets the goals of Industry 4.0, which
is standard for companies today.

J.F.B. Baptista Master Degree

3.Proposed Solution 19

Secondly, as the REST API is an interface, the way the customer interacts with
the plant’s information is entirely controlled, adding a certain level of security. This
imposition means that the client can only obtain the data it is supposed to consume,
as it does not have direct access to databases or local folders hosted on the company’s
internal servers.

Finally, the modular architecture of the REST API allows for expanding the system
in the future without compromising its previous functions. As the REST API controllers
work independently, creating, changing, or removing a controller does not affect the sys-
tem’s proper functioning. This property allows for the system’s continuous development
so that one day it will stop being a service for the consumption of Augmented Reality
devices and becomes a web service of the company, capable of providing any data present
on the plant premises.

J.F.B. Baptista Master Degree

.

Intentionally blank page.

Chapter 4

Implementation

The implemented system aimed to fulfil all the requirements imposed in the Introduc-
tion. Figure 4.1 presents the implemented web service’s architecture, a more practical
approach to the proposed solution architecture in figure 3.1.

Figure 4.1: Implemented System Architecture

Figure 4.1 needs to be analyzed from right to left. On the right side of the architec-
ture, three data sources can be seen: SQL server, Nexeed MES, and Production Line.
These three data sources create three pipelines that the system will handle.

Firstly, there is the Production Line pipeline. In Bosch, there is already established
DirectDataLink, a system to redirect the XML messages from the Production Line to
Nexeed MES. However, this system duplicates the information and sends it to an Apache
Kafka Broker. This Message Broker is consumed by the KafkaConsumer module of the
system, which saves a small amount of data for the REST API module access whenever
necessary.

21

22 4.Implementation

Secondly, there is the Nexeed MES pipeline. In Bosch, there are APIs for Nexeed
MES that mimic the stored procedures inside the Nexeed MES database. The system’s
REST API module requests these APIs whenever it is needed.

Thirdly, it was implemented an SQL Server database to account for the lack of
connection to the SAP ERP system. The system’s REST API module can connect
directly with the SQL Server database and retrieve stored data.

Lastly, these three pipelines are handled by the system’s REST API module and
can be consumed by clients inside or outside Bosch’s internal network. If the HTTP
requests come from outside Bosch, the responses must pass through an additional layer
of software, the Bosch API Manager. This software is responsible for exposing web APIs
to the external network and implements additional security layers.

4.1 REST API

The REST API uses a WebApi template from Microsoft .NET 5.0 Framework. This
template is a preconfigured C# project that implements a REST API with the MVC
architecture. For this implementation, the module View of the MVC architecture is not
necessary because the AR devices handle data visualization. For this reason, only the
models and controllers were necessary. This template also brings a Startup and Program
class to configure and initiate the web service.

The REST API also possesses RestClient and SQLiteDataAcess modules. These C#
classes serve to consume information from different source types. Figure 4.2 shows the
REST API’s architecture.

Figure 4.2: REST API Architecture

J.F.B. Baptista Master Degree

4.Implementation 23

4.1.1 Models

Models represent tangible objects or notions, capable of having states and parameters
that describe them. In this case, models are C# classes the program uses to create
objects in the programming logic. An example of a model is the KPIRecord, shown in
figure 4.3, which is necessary for use case 4.

Figure 4.3: KPIRecord model

There are three types of models in this implementation. First, there are the models
that mimic database tables. Their objective is to retrieve data from those tables so each
model’s property matches a table’s column. The program creates an instance of the
model and fills the properties with a single table row data. The second type is a model
created to present information to the client, with properties that aim to fulfill the use
case requirements in the information displayed. The last type is models used for internal
processing that neither serve to retrieve nor show information.

4.1.2 Program

The Program class, in figure 4.4, belongs to the .NET Framework WebAPI template.
This class’s purpose is to initiate the REST API. Program has a method named Cre-
ateHostBuilder() that calls the function CreateDefaultBuilder(). This new function cre-
ates a new instance of Microsoft.Extensions.Hosting.HostBuilder class with settings pre-
configured and loaded from appsettings.json. Chained to CreateDefaultBuilder(), it is
executed the function ConfigureWebHostDefaults that executes the Startup class. This
Startup class allows customizing the API further.

In this class, it is also necessary to configure the logging options. Loggings are
essential because they are convenient for debugging the application once running in the
background. It is possible to check the loggings in the Windows application Event Viewer
under pps4-webapi.

J.F.B. Baptista Master Degree

24 4.Implementation

Figure 4.4: REST API’s Program class

4.1.3 Startup

The Startup class belongs to the .NET Framework WebAPI template, and it has the
purpose of loading configurations in the application’s launch. This class has two methods:
ConfigureServices() and Configure().

The ConfigureServices() method, figure 4.5, serves to add new services to the appli-
cation. In this case, it imports DbContexts to open database connections and Singletons
to add a path to a local folder. This method already possesses the AddControllers()
function and AddSwaggerGen(), necessary to initiate the application. The first function
maps the project, finds all classes labeled ”Controllers”, and initiates them as services.
The second generates swagger-generated services, which will create documents contain-
ing the metadata of the HTTP messages.

Figure 4.5: ConfigureServices() method

The Configure() method, figure 4.6, serves to add WebAPI-specific properties to the
application. The first function, UseDeveloperExeceptionPage(), catches System.Exception
instances and generates HTML error responses, and for this reason, it is completely op-

J.F.B. Baptista Master Degree

4.Implementation 25

tional. UseSwagger() and UseSwaggerUI() are necessary to use browser interface and
are optional for REST client consumption. The first function creates a swagger.json
file with all the relevant information about the system. The second function allows the
system to create HTML files with a swagger template to show the application’s con-
trollers and endpoints. The fourth function, UseHttpsRedirection(), adds a middleware
to redirect HTTP requests to HTTPS, which is optional. The UseRouting() function
defines a point in the middleware pipeline to make routing decisions and associate the
endpoints to their respective HttpContexts. The last object contains all the information
about each HTTP request relative to the HTTP protocol. The UseAuthoriztion() al-
lows the system to use authorization verifications present in the HTTP protocol. The
last function, UseEndpoints(), uses the endpoints found in the controllers and creates a
middleware to execute the endpoint relative to the current request.

Figure 4.6: Configure() method

4.1.4 SQLiteDataAccess

This class aims to access the SQLite database managed by the KafkaConsumer program.
This class defines the connection string to the database and possesses two methods:
OpenConnection() and CloseConnection(). These methods open and close the connec-
tion to the database in a safer form because they verify its state beforehand. This class
has only the con property, which other classes use to execute SQL statements in the
database.

4.1.5 REST Client

This class aims to create and send HTTP requests and retrieve the HTTP response. This
class has four properties: endPoint, httpMethod, user, and password. If another project’s
class needs to get information from another application via HTTP, it creates a RestClient

J.F.B. Baptista Master Degree

26 4.Implementation

object and fills its properties. The endPoint should have the requested object’s URI. The
httpMethod defaults to the GET verb, but it can change to POST if needed. The user
and password are optional, and they are only necessary if requesting applications that
use authorization protocols. These credentials assume that the authorization method is
Basic Auth.

4.1.6 Local Folder

The Local Folder is a directory located on the REST API server. This directory’s
purpose is to store the files necessary to use case 2 – Equipment Technical Data. The
information about the machines and tools is very sensitive to Bosch, so it was impossible
to connect REST API to the location of the machines and tools’ stored data. The local
folder compromises practicality because every file that needs to be exposed to the clients
requires to be manually duplicated to the local folder. However, it is a viable solution
facing the restrictions imposed.

4.1.7 Controllers

A controller is a procedural concept, and it is comparable to executable functions with
parameters and returns values. In this case, a controller is a C# class decorated with an
ApiController attribute that inherits methods from the ControllerBase class, as shown
in figure 4.7. The primary route to access the controller’s endpoints is ”api/” plus the
controller’s name. A controller’s endpoint is a public method decorated with an HTTP
attribute inside the controller class. Figure 4.7 shows an endpoint decorated with a
GET verb, adding to the main route ”/AllMaterials”. To request this endpoint, the
client adds ”api/kits/AllMaterials” at the end of the URL. In this example, the code
inside the method will execute and respond accordingly with a 200 OK or 404 Not found
message.

Usually, the controllers manipulate instances of models. In this example, the variable
context has the configuration to output a list of instances of the KitMaterial model
type. The Ok() function inherited from the ControllerBase class maps the KitMaterial
properties and creates a JSON message with the same fields. In the case of List, this
message is an array of JSON structures.

The REST API possesses six controllers and eighteen endpoints. Table 4.1 ex-
poses the controllers and their respective endpoints with a brief description. The end-
points’ complete URIs become https://av-tef01-emea-com/PPS4/api/{endpoint}, with
{endpoint} being substituted with the first column of Table 4.1.

J.F.B. Baptista Master Degree

4.Implementation 27

endpoint description

Files/download/{id} Uploads a file from the Local Folder to the client when given
the file’s id.

Files/hierarchy
Sends a JSON message containing the files in the Local
Folder and their id.

Kits/Reserva/{nReserva}
Sends a JSON message containing data about the work order
and the kits when given the {nReserva} which is the work
order identification number.

Kits/Reserva/Last
Sends a JSON message containing data about the work or-
der and kits of the last work order saved in the SQL server
database.

Kits/AllMaterials
Sends a JSON message with the information of all the kits
and materials stored in the SQL server database.

Kits/{idMaterial} Sends a JSON message with the .information of kit or ma-
terial when give the identification number.

kpi/cycle-times
Sends a JSON message with the information of the cycle
times of final assembly lines’ stations.

kpi/cycle-
times/stations

Sends a JSON message informing which station’s informa-
tion is available.

kpi
Sends a JSON with the KPIs of a station for a time between
two dates.

kpi/current-shift
Sends a JSON message with the KPIs of the current shift of
a given station.

MaintenanceRecords
Sends a JSON message with all the maintenance records
instances saved in the SQL server database.

MaintenanceRecords/
{id}

Sends a JSON message with the maintenance record saved
in the SQL Server database with the given id.

MaintenanceRecords/
GetNewest/ {NewestX}

Sends a JSON message with the newest {NewestX} mainte-
nance records instances saved in the SQL server database

MaintenanceRecords/
GetNewestFromDate/
{fromDateString}

Sends a JSON message with the maintenance records in-
stances from {fromDateString} up to the current time.

MaintenanceRecords/
GetOldest/{OldestX}

Sends a JSON message with the oldest {OldestX} mainte-
nance record saved in the SQL server database.

MaintenanceRecords/
GetDateRange/
{StartDateString}/
{EndDateString}

Sends a JSON message with the maintenance records in-
stances from {StartDateString} up to {EndDateString}.

bottlenecks/actual
Sends a JSON message informing which station is the bot-
tleneck in each line.

PressSensorSamples/
last-
samples/{SamplesN}

Sends a JSON message with {SamplesN} instances of the
press sensors’ values stored in the SQLite database.

Table 4.1: REST API’s endpoints descriptions

J.F.B. Baptista Master Degree

28 4.Implementation

Figure 4.7: Controller example

4.2 Kafka Broker Consumer

The Kafka Broker Consumer uses a Worker template from Microsoft .NET 5.0 Frame-
work. The Worker template creates a generic service that allows the implementation of
programming logic to run in the background of a machine. Figure 4.8 shows the Kafka
Consumer architecture.

Figure 4.8: Kafka Consumer Architecture

J.F.B. Baptista Master Degree

4.Implementation 29

4.2.1 Models

These models are similar to those described in subsection 4.1.1 in the REST API de-
scription. The models are C# classes with properties that try to emulate real-life objects
or concepts. In this case, the models mimic the SQLite tables because the Kafka Con-
sumer’s only purpose is to store data coming from the Kafka Message Broker.

4.2.2 Program

The Program class, in figure 4.9, belongs to the .NET Framework Worker template.
The purpose of this class is to initiate the Worker service. The Main() method calls the
CreateHostBuilder() that creates an IHostBuilder instance with some pre-configured fea-
tures. The addition of the UseWindowsService() function is necessary to use the Worker
service application in the Windows Service software. This function belongs to the nugget
package Microsoft.Extensions.Hosting.WindowsServices. Then, the configuration of the
loggings with the ConfigureLogging() function and the service’s configuration in Con-
figureService(). The last function adds the Worker class to the IHostBuilder instance,
which will execute when the builder initiates.

Figure 4.9: KafkaConsumer ’s Program class

J.F.B. Baptista Master Degree

30 4.Implementation

4.2.3 SQLiteDataAccess

The SQLiteDataAccess is a C# class that manages the connection to the SQLite database.
The program checks if an SQLite database exists in the application’s location. If there
is no database, the program creates it and adds the necessary tables automatically.
This class constructor executes every time the program creates a new SQLiteDataAccess
instance. Figure 4.10 shows an example of the database and table creation.

Figure 4.10: SQLite database and table creation

This class has two methods: OpenConnection() and CloseConnection(). The meth-
ods’ purpose is to open and close the connection to the database safely, as they check
the connection’s state before applying any action.

4.2.4 Worker

The Worker class contains the code running in the background as a service, and figure
4.11 shows its behavior with an activity diagram.

In the application’s initiation, the class loads the initial variables in its constructor.
The values of the variables are hardcoded because they do not need to change. These
properties areHOST, TOPIC 8220, TOPIC 7, TOPIC 10 and CONSUMER GROUP ID.
Then, the program configures the Worker using the properties and subscribes to the top-
ics TOPIC 8220, TOPIC 7, and TOPIC 10, which correspond to Line8220, Line7, and
Line10. After the subscription, the program enters a while loop and stays listening to
incoming messages. In this listening state, the program checks if there are new messages
on any topic.

J.F.B. Baptista Master Degree

4.Implementation 31

Figure 4.11: Worker logic activity diagram

If there is a new message, and it comes from topic Line8220, it decodes the JSON
and searches for the press sensor values, mapping them to a PressSensorSample instance.
Then, it saves the data in the PressSensorValues table. While the program saves the new
information, it deletes old information, never to have more than three hundred entries
stored. The database keeps only small storage because this implementation’s purpose is
to be real-time, and three hundred entries translate to roughly five minutes of data.

If the new message does not come from topic Line8220, it must come from Line7
or Line10. These two topics output JSON messages with similar formats, so the same
functions are used to decode and store the data. TheWorker class stores the information
in the CycleTimes table. The requirement for this implementation is to display only the
cycle time data relative to the current working shift. For that reason, the program
deletes any entries relative to previous shifts.

J.F.B. Baptista Master Degree

32 4.Implementation

4.3 Nexeed MES Communication Pipeline

In Bosch, the Nexeed MES possesses some APIs to retrieve data from the Oracle Server.
The MES database has stored procedures used by the other MES servers and third-party
software to access data. This implementation uses the PDA/MDA’s API, specifically
the endpoints that call the stored procedures PC01 and OE01. These stored procedures
return part counts and KPI, which are necessary to use case 3 – Final Assembly Line.
Figure 4.12 shows this communication pipeline.

Figure 4.12: Nexeed MES Communication Pipeline

This communication occurs in the KPIsController class in the REST API applica-
tion. The controller creates a RestClient instance and uses it to send HTTP requests
containing the two endpoints mentioned before. Then, the controller filters the informa-
tion received and maps the relevant data to a KPIRecord instance.

Consuming an API instead of connecting directly to a database is safer. In pro-
duction, many new applications need to connect to the production database. The idea
is to have a protective middleware that does not allow third-party software to connect
directly to applications that the production environment needs to function.

4.4 Kafka Message Broker Communication Pipeline

The web service acquires information from the shop floor using the Kafka Message Bro-
ker. Figure 4.14 shows the communication stream between the SQLite Database and
the AR devices and figure 4.13 shows the architecture of the comunication that provides
information to the SQLite database.

DirectDataLink (DLL) is an interface with the primary function of establishing com-
munication between the shop floor’s machines and Nexeed MES. This middleware is a
Windows Services that receives data in OpCon XML protocol, .dat files, and OpcUA and
redirects it to other applications. This system also sends the information to an Apache

J.F.B. Baptista Master Degree

4.Implementation 33

Figure 4.13: Kafka Message Broker Communication Pipeline

Figure 4.14: Kafka Message Broker Communication Pipeline

J.F.B. Baptista Master Degree

34 4.Implementation

Kafka Message Broker as part of another communication stream. The implemented sys-
tem uses this data stream to obtain information about the shopfloor. The Kafka Message
Broker cannot publish messages to topics in XML format, so it maps the information
to JSON messages with similar fields. These topics are available to applications to con-
sume, and almost every line has one topic. The web service’s KafkaConsumer is one of
the applications that consume data from the Kafka Message Broker. Subsection 4.2.4
explains that the program reads relevant topics and stores the messages in a local SQLite
database. This database is always accessible to the REST API module. Two controllers
use the data stored in the SQLite database: KPIsController and PressSensorSample-
sController. Both controllers have a similar behavior when it is requested information
from the Kafka Consumer:

1. The program creates a SQLiteDataAccess instance, described in subsection 4.2.3,
and opens a connection to the database.

2. It reads information from the CycleTimes or the PressSensorValues table, respec-
tively.

3. It maps the information to a KPIRecord or PressSensorSample instance and sends
an HTTP response to the client.

4.5 SQL Server Communication Pipeline

This communication pipeline consists of an SQL Server database that the REST API
module can access. This implementation serves to emulate data from SAP ERP because,
due to some restrictions, it was impossible to establish a connection between the web
service to the SAP ERP database in time. The solution was to create a database with
tables capable of storing the information necessary for use case 2 – Equipment Technical
Data and use case 3 – Assisted Production. The data stored in the database is infor-
mation about the assembling kits and the Haulick & Roos RVD200T press maintenance
records. Three separate tables store the information about the kits: OrdemTrabalho,
Material, and RelacaoMateriais. Figure 4.15 show the tables’ relation diagram. The
RelacaoMateriais does not have a direct relation between the other two tables, but it
has an indirect relation with the values stored in the BOM field in the table Material.

The separation of the kits’ storage was due to its complexity. A kit, also considered
a material, possesses other materials in its contents. The kit’s bill of materials (BOM)
lists the kit’s materials. A kit can have another kit as its material, creating a nesting
of kits that can have indefinite layers. For this reason, all available materials and kits
storage are in the Material table. The relation between kits and their materials is stored
in the RelacaoMaterials table. This table mainly informs about the materials’ quantities
inside the kit. Finally, the OrdemTrabalho table stores data relative to the workers’ work
orders during the shifts.

The controller that uses this pipeline is the KitsController. The endpoint api/Kits/
Reserva/{nReserva} returns information about a kit having as input the identification
number of a work order. The executed code’s logic is shown in figure 4.16.

Firstly, the function reads the OrdemTrabalho table with the work order identification
number and gets the kit’s identification number and the number of kits that must be
processed. Then, the function searches for information about the kit in the Material

J.F.B. Baptista Master Degree

4.Implementation 35

Figure 4.15: Tables’ relation diagram

table and gets the kit’s BOM. After that, using the kit’s BOM searches for information
about the kit’s materials. This step checks if one of the new materials is also a kit. The
next step is reading the quantities of the materials in the RelacaoMaterials table. Then,
if a new kit exits in the kit’s materials, the program repeats the last three steps for the
new kit. When no more new kits exit, the function sends the information in an HTTP
response.

4.6 Bosch External Network Communication

In the developing stages of Augmented Reality software, Bosch works with other entities
that do not have access to Bosch’s internal network. For this reason, it is necessary to
expose the REST API’s functionalities to outside networks. Bosch API Manager is a
program implemented in Bosch’s network that exposes Web APIs to different networks.
There are three network layers in the company, which will be mentioned by Layer one
(L1), Layer two (L2) and Layer three (L3).

The web service’s server belongs to the L3 network, and only the L1 has a connection
to external networks. For this reason, the REST API needs to be mapped by the three
Bosch API Managers before reaching an external client. Figure 4.17 demonstrates this
communication sequence implemented.

The first step was mapping the REST API to L3 ’s Bosch API Manager (BAM). The
BAM mimics a REST API and its endpoints. After that, the application can redirect
HTTP requests to the selected backend API and redirects the HTTP response to the
next layer. The selected backend API is web service’s REST API in the BCN case. In
the API’s frontend occurs the implementation of HTTP security protocols. The security
protocol is the API key, which is easy to use but less safe. Whoever, this protocol will

J.F.B. Baptista Master Degree

36 4.Implementation

Figure 4.16: KitsController endpoint’s function logic

only be used in internal Bosch communications.

The second step was mapping the L3 ’s BAM to the L2 ’s BAM. The process is
similar to the first step, and the L2 ’s BAM maps the endpoints from the previous API
and then establishes a security protocol. The security protocol is the API key because
the communication is in Bosch’s internal network.

J.F.B. Baptista Master Degree

4.Implementation 37

Figure 4.17: Bosch’s API communication sequence

The final step was mapping the L2 ’s BAM to the L1 ’s BAM. The backend maps the
endpoints from L2 ’s API. In the frontend, the security protocol implemented is HTTP
basic authentication. This security protocol is safer than the previously implemented,
and it is the recommendation for outside networks.

4.7 Web Service Production Implementation

The Web Service’s location is the av-tef01 server, a server used by the AvP/MFD team.
The system is composed of two modules which are essentially background services. For
this reason, other applications must manage the services.

The first application is the Window’s Internet Information Services (IIS) Manager.
This software aims to handle services that communicate via HTTP in a server-client
architecture. This application configures the SSL certification, hostname, and site name.
The IIS Manager stays listening to HTTP requests with the services URL and redirects
them to the REST API. After that, the software also handles the HTTP responses
provided by the REST API, adding the necessary metadata.

The second application is the Window’s Services application. This software is more
generic than the previously presented and allows the execution of any program with a
background service architecture. The Services application manages the Kafka Consumer
module.

The twoWeb Service’s modules are programmed to log any relative information about
behaviors and errors of the applications. Logging is crucial to background services, as
they usually do not have any other output. If a program does not log any information
about its current state, it can be challenging to understand problems that might happen
in the future. The logs provided by the programs are present in the Window Application
Event Viewer.

J.F.B. Baptista Master Degree

.

Intentionally blank page.

Chapter 5

Test Solution

This chapter aims to explain the solution’s validation. Testing the solution helps to
justify the methods used or to understand what could be improved. The tests focused
on the REST API because it is the project’s main module and the component that
interacts with the user.

There are many ways to test web services by measuring their security, performance,
reusability, efficiency, reliability, interoperability, and maintainability [38] [39]. However,
the guiding requirement throughout the project was the real-time data exposition, and
for this reason, the performance of the system was the focus of the testing section.

The performance of a system is related to the quality and time needed to complete
a request. There were two methods for this testing: endpoint and load testing. These
tests were performed by simulating web consumers inside the internal Bosch network,
which the requests were sent by the computer, passed through routers and reached the
web service, as is shown in figure 5.1. For safety reasons, the information about the
internal Bosch network and the specifications of the devices cannot be provided.

Figure 5.1: Communication setup for the test

For each test, it will be presented the average time, in milliseconds, between request
and response and a confidence interval CI of expected times with a confidence level of
95%, ti a time sample, µ the mean of the measured times, and σ the standard deviation.
These values will be shown for each endpoint of the REST API. Table 5.1 presents the
number associated with each endpoint to save space in the following tables. The values
in the next sections were obtained using equations 5.1 and 5.2.

σ =

√∑N
i=1(ti − µ)2

(5.1)

CI = 1, 96.
σ√
N

(5.2)

39

40 5.Test Solution

Number Endpoint

1 Files/download/id

2 Files/hierarchy

3 Kits/Reserva/nReserva

4 Kits/Reserva/Last

5 Kits/AllMaterials

6 Kits/idMaterials

7 kpi/cycle-times

8 kpi/cycle-times/stations

9 kpi

10 kpi/current-shift

11 MaintenanceRecords

12 MaintenanceRecords/id

13 MaintenanceRecords/GetNewest/NewestX

14 MaintenanceRecords/GetNewestFromDatefromDateString

15 MaintenanceRecords/GetOldest/OldestX

16 MaintenanceRecords/GetDateRange/StartDateString/EndDateString

17 bottlenecks/actual

18 PressSensorSamples/last-samples/SamplesN

Table 5.1: Endpoint numerical association

5.1 Custom Testing

Endpoint testing is the custom testing scenario to measure ideal response times to com-
pare to the load testing. Each endpoint is requested individually in this test, and the
web service deals with one request at a time. The program Postman allowed to carry
this testing type. This program is an API platform to use and consume APIs. This ap-
plication allows the creation of a routine, figure 5.2, that calls the endpoints sequentially,
saves the result and times, and then allows the export of it in JSON format.

After obtaining the result, a C# program read the JSON and calculated the values
mentioned previously. Table 5.2 shows the calculated values.

Table 5.2 shows that the Postman requested one hundred times each endpoint. Every
endpoint possessed a response time under 40 ms on average and under 50 ms maximum
time with a confidence level of 95%, except for endpoint 1. The reason for that is the
message size. This endpoint deals with files that tend to be more prominent in size

J.F.B. Baptista Master Degree

5.Test Solution 41

than the JSON messages from the other endpoints. However, file downloading was not
requested to be real-time, and downloading a file under 3 seconds is still practical in a
production context.

Figure 5.2: Postman routine for costum test

endpoint µ (ms) CI (ms) Maximum time (ms) N

1 2269 392 2661 100

2 12 1,6 13,6 100

3 14 1,4 15,4 100

4 14 1,1 15,1 100

5 11 1,1 12,1 100

6 11 1,6 12,6 100

7 12 1,3 13,3 100

8 13 1,7 14,7 100

9 24 1,4 25,4 100

10 40 1,7 41,7 100

11 15 0,8 15,8 100

12 12 0,8 12,8 100

13 14 1,6 15,6 100

14 10 0,6 10,6 100

15 14 1,6 15,6 100

16 12 0.9 12.9 100

17 9 0,7 9,7 100

18 27 6,1 33,1 100

Table 5.2: Endpoints test results

J.F.B. Baptista Master Degree

42 5.Test Solution

5.2 Load Testing

Load testing aims to measure the performance of a web service with the same demand as
the production state. This simulation is under the assumption that the three use cases
are consuming the REST API simultaneously. For use case 1 – Equipment Technical
Data, usually only one maintenance technician will use an AR device at a time. For
use case 2 – Assisted Production, all workers of section S854 would use the AR device,
usually four people. Lastly, only one line manager in lines 7 or 10 will use an AR
device for use case 3 – Final Assembly Line. The expectation is to have six AR devices
consuming the REST API simultaneously. Twelve clients were simulated in the load
test to ensure the system’s functionality, double the number of devices expected in the
working environment.

Figure 5.3: Client’s activity diagram for load testing

An AR device simulation used a C# program. Figure 5.3 shows the program’s
activity diagram. This application configuration was to request a random endpoint and
measure the time necessary to get a response. After receiving a response, the program
waited one second before requesting another random endpoint.

The testing involved launching twelve different instances of the same client program
explained previously. The testing took one hour and produced the following results in
Table 5.3. This table exposes the client’s results that obtained the maximum waiting
time for each endpoint.

J.F.B. Baptista Master Degree

5.Test Solution 43

endpoint µ (ms) CI (ms) Maximum N

1 8167 1543 9710 140

2 57 11 68 149

3 54 9,8 53,8 145

4 64 13,3 77,3 155

5 54 11,5 65,1 118

6 52 9,9 61,9 123

7 57 8,8 65,8 118

8 56 9,4 65,4 134

9 109 20,7 129,7 95

10 96 11,5 107,5 100

11 94 25,8 119,8 126

12 56 8,7 64,7 126

13 83 20,9 103,9 136

14 56 10,7 66,7 128

15 89 26,3 115,3 122

16 60 15,4 75,4 145

17 50 10,3 60,3 136

18 145 35,6 180,6 141

Table 5.3: Load test results

Figure 5.4: Clients receiving messages in load testing

J.F.B. Baptista Master Degree

44 5.Test Solution

5.3 Result Analysis

REST API is ideal for single-user real-time data transfer, as all real-time data had a
delay under 50 ms. For the load testing, the delay values increased as expected. This
testing had a very conservative approach, doubling the amount of expected users and
simulating that each user would make a request each second, which is an higher frequency
of request than normal. Despite that, the maximum delay expected is under 200ms for
every endpoint besides the download file endpoint. For this implementation, and because
it is a wireless connection, guaranteeing a 200ms maximum delay is enough to fulfil the
real-time requirement.

The endpoint 1 needs to be analyzed separately. As the tests showed, the maximum
time delay in downloading a document is 10 seconds. However, it depends on the size of
the file. The file with the most considerable size used in the testing had 50 megabytes,
but the expectation is that files with sizes in the order of gigabytes would take much
longer to send. However, this endpoint does not require real-time data.

In conclusion, the test validated the implemented architecture for the endpoints
that retrieved JSON messages with low data sizes and showed no significant difference
between consuming information from an SQL server database, Kafka Messaging Broker
or an SQLite database. However, this system may not be ideal for large file transfers.

J.F.B. Baptista Master Degree

Chapter 6

Conclusion

6.1 Conclusions

Throughout the development of this project, it was possible to experiment and under-
stand different software and technologies to achieve the goal of real-time communication
in an industrial context. It was not an easy task to create a system that uniformizes
data transfer from all over the plant and delivers it steadily and reliably; however, some
technologies and concepts facilitated the implementation.

Firstly, this project exposes the usefulness of Frameworks. In this system, both mod-
ules of the REST API and the Kafka Consumer used templates from .NET Framework,
and this project would not have been completed in such a short time if it was not for
this Framework. These templates helped implement the applications’ necessary base
behaviours, so the project’s focus remained on the use case requirements.

Secondly, using SQLite database as internal storage for industrial software is a
method that does not appear very often in documentation; however, it revealed itself to
be a good solution for small data storage.

Thirdly, this project shows a different way of using Web APIs. Typically, a Web API
serves as an interface of another web server application, mapping its functions and data
sets. However, in this implementation, the REST API fulfils the web server’s role and
maps the information throughout Bosch’s software with favourable results.

In the case of the use cases, not every condition was fulfilled. The most crucial
requirement that was not fulfilled was the SAP ERP connection. This connection enabled
retrieval of information for use case 2 – Assisted Production, which corresponded to
the kits for S854, and use case 1 - Equipment Technical Data, which corresponded
to the maintenance records of the Haulick & Roos RVD200T. The connection was not
established because of the restriction of direct connection to the software, and because of
the time the project occurred, there was no safe way to connect to SAP ERP indirectly.
However, a SQL server database with tables containing fake data was implemented,
which serves as a proof-of-concept to the specific endpoints that retrieved the SAP ERP
data. On the other side, it was found a way to retrieve the information from Nexeed MES
and the Shopfloor to the communication system to fulfil the rest of the requirements.
These requirements belonged to use case 2, which needed real-time sensor data of the
stamping press, and case 3 - Final Assembly Line - Real-Time Monitoring, which needed
the KPIs and cycle times of the lines 7 and 10.

The implementation aspect that needs to be handled with care is the ”Files/download

45

46 6.Conclusion

/{id}” endpoint. This endpoint is very dependent on the file size when the message size
of the other endpoints is fixed. The scientific documentation did not recommend using
REST API for file transferring. However, in the testing section of the project, it was
concluded that the time delay for the file downloading was acceptable for the context.
Nevertheless, the uncertainty of future file sizes can generate difficulties.

In summary, this project was developed to respond to the Augmanity use cases
requests, which were to retrieve data from different points of the company in real-time.
Most of the requirements were fulfilled, and those not fully implemented have endpoints
for future implementation.

6.2 Future Work

Systems like the one developed in this project are never finished because they can con-
stantly be improved. The first improvement step is implementing the SAP ERP connec-
tion when it becomes available in Bosch’s environment. Although this implementation
is halfway done, some challenges should arise regarding the data consumption because
some assumptions could not be accurate when creating the proof-of-concept endpoints,
like the assumption of the models structure of the stored data. The next step would be
finishing the bottleneck controller that depends on projects regarding the PPS2 - Big
Data and Predictive Analytics for i4.0. After that is accomplished, all the primary use
case requirements will be fulfilled. However, this system exists solely to respond to the
use case needs, which are still in development, which means new requirements could ap-
pear. If new requirements appear, the communication system should suffer alterations,
and for that reason, it is far from being complete.

Another proposition for future work is to allow the REST API to transcend the
Augmanity use case requirements and become a service to be used for every third-party
software in the company. Because of the system’s modular architecture, new controllers
can be added, and old ones can be edited without interfering with each other. This means
that, in theory, the system could fully map every information source of the company.
This implementation would eliminate the dozens of small data pipelines and substitute
them with the central pipeline passing through this system. This change would not be
trivial, and some improvements should be made in terms of hardware and software to
handle the rising number of clients. For example, some first steps could be implementing
an HMVC pattern and optimizing the system’s cache.

In conclusion, the future works can be divided into two categories. First is the short-
term work, which refers to fulfilling the new requirements that the Augmanity use cases
should create. Second, it is a long-term work of turning the system into the interface of
every software in the company.

J.F.B. Baptista Master Degree

References

[1] F. Tao, Q. Qi, L. Wang, and A. Y. Nee, “Digital twins and cyber–physical sys-
tems toward smart manufacturing and industry 4.0: Correlation and comparison,”
Engineering, vol. 5, pp. 653–661, 8 2019.

[2] D. Santos, “Mes digital twin,” Master’s thesis, Universidade de Aveiro, 2021.

[3] M. Lopes, “Building an industry 4.0 platform: The implementation of opcon mes
at avp,” Master’s thesis, Universidade de Coimbra, 2017.

[4] M. Massé, REST API Design Rulebook, vol. 1. O’Reilly Media, 2011.

[5] M. Ma, J. Yang, P. Wang, W. Liu, and J. Zhang, “Light-weight and scalable
hierarchical-mvc architecture for cloud web applications,” pp. 40–45, Institute of
Electrical and Electronics Engineers Inc., 6 2019.

[6] A. W. Troelsen and P. Japikse, C# 6.0 and the .NET 4.6 framework, vol. 1. Apress,
2015.

[7] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database system concepts. McGraw-
Hill Education, 7 ed., 2020.

[8] M. H. Javed, X. Lu, and D. K. Panda, “Cutting the tail: Designing high performance
message brokers to reduce tail latencies in stream processing,” vol. 2018-September,
pp. 223–233, Institute of Electrical and Electronics Engineers Inc., 10 2018.

[9] K. M. M. THEIN, “Apache kafka: Next generation distributed messaging system,”
2014.

[10] P. Fite-Georgel, “Is there a reality in industrial augmented reality?,” pp. 201–210,
2011.

[11] E. Oztemel and S. Gursev, “Literature review of industry 4.0 and related technolo-
gies,” 1 2020.

[12] H. Lasi, P. Fettke, H. G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”
Business and Information Systems Engineering, vol. 6, pp. 239–242, 8 2014.

[13] M. Ghobakhloo, “Industry 4.0, digitization, and opportunities for sustainability,”
Journal of Cleaner Production, vol. 252, p. 119869, 2020.

[14] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial internet of
things (iiot): An analysis framework,” Computers in Industry, vol. 101, pp. 1–12,
10 2018.

47

48 REFERENCES

[15] T. H. Uhlemann, C. Lehmann, and R. Steinhilper, “The digital twin: Realizing the
cyber-physical production system for industry 4.0,” vol. 61, pp. 335–340, Elsevier
B.V., 2017.

[16] F. Biesinger, D. Meike, B. Kraß, and M. Weyrich, “A digital twin for production
planning based on cyber-physical systems: A case study for a cyber-physical system-
based creation of a digital twin,” vol. 79, pp. 355–360, Elsevier B.V., 2019.

[17] P. Fraga-Lamas, T. M. Fernández-Caramés, Óscar Blanco-Novoa, and M. A. Vilar-
Montesinos, “A review on industrial augmented reality systems for the industry 4.0
shipyard,” 2 2018.

[18] K. B. Osnes, J. R. Olsen, P. Vassilakopoulou, and E. Hustad, “Erp systems in
multinational enterprises: A literature review of post-implementation challenges,”
vol. 138, pp. 541–548, Elsevier B.V., 2018.

[19] S. Mantravadi and C. Møller, “An overview of next-generation manufacturing ex-
ecution systems: How important is mes for industry 4.0?,” vol. 30, pp. 588–595,
Elsevier B.V., 2019.

[20] R. Rosen, G. V. Wichert, G. Lo, and K. D. Bettenhausen, “About the importance of
autonomy and digital twins for the future of manufacturing,” vol. 28, pp. 567–572,
5 2015.

[21] A. Bratukhin and T. Sauter, “Functional analysis of manufacturing execution sys-
tem distribution,” IEEE Transactions on Industrial Informatics, vol. 7, pp. 740–749,
11 2011.

[22] A. Pereira, “Development of software to connect cncs to nexeed mes,” Master’s
thesis, Universidade de Aveiro, 2020.

[23] F. Halili and E. Ramadani, “Web services: A comparison of soap and rest services,”
Modern Applied Science, vol. 12, p. 175, 2 2018.

[24] S. H. Toman, “Review of web service technologies: Rest over soap,” Journal of
Al-Qadisiyah for Computer Science and Mathematics, vol. 12, pp. 18–30, 2020.

[25] M. Botto-Tobar, M. Z. Vizuete, P. Torres-Carrión, S. M. León, G. P. Vásquez, and
B. Duralovic, Applied Technologies, vol. 1. Springer International Publishing, 2019.

[26] R. T. Fielding, Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, 2000.

[27] L. Li and W. Chou, “Design and describe rest api without violating rest: A petri
net based approach,” pp. 508–515, 2011.

[28] X. Chen, Z. Ji, Y. Fan, and Y. Zhan, “Restful api architecture based on laravel
framework,” vol. 910, Institute of Physics Publishing, 11 2017.

[29] J. Deacon, “Model-view-controller (mvc) architecture,” tech. rep., Computer Sys-
tems Development, Consulting & Training, 2009.

J.F.B. Baptista Master Degree

REFERENCES 49

[30] O. A. Ragnarsson, “Importance of design patterns and frameworks for software
development,” 2007.

[31] N. M. Edwin, “Software frameworks, architectural and design patterns,” Journal of
Software Engineering and Applications, vol. 07, pp. 670–678, 2014.

[32] J. Richter, Applied Microsoft.NET framework programming. Microsoft Press, 2002.

[33] T. L. Thai and H. Q. Lam, .NET framework essentials. O’Reilly, 2001.

[34] A. Zainudin and A. A. Yunant, “Design an mvc model using python for flask frame-
work development,” 2019.

[35] K. Relan, Building REST APIs with Flask. Apress, 2019.

[36] T. Teorey, S. Lightstone, T. Nadeau, and H. V. Jagadish, Database Modeling and
Design. Morgan Kaufmann Publishers, 5 ed., 2011.

[37] N. Garg, Apache Kafka : set up Apache Kafka clusters and develop custom message
producers and consumers using practical, hands-on examples. Packt Publishing,
2013.

[38] J. Yu, “Exploration on web testing of website,” vol. 1176, Institute of Physics
Publishing, 3 2019.

[39] I. Ghani, W. M. N. Wan-Kadir, and A. Mustafa, “Web service testing techniques:
A systematic literature review,” 2019.

J.F.B. Baptista Master Degree

	Introduction
	Background and Motivation
	Aim
	Use case 1 - Equipment Technical Data
	Use case 2 - Assisted Production
	Use case 3 - Final Assembly Line - Real-Time Monitoring

	Document Organization

	State of the Art
	Industry 4.0
	Industrial Internet of Things
	Cyber-Physical Systems
	Industrial Augmented Reality
	ERP

	Nexeed MES
	Web Services
	Simple Object Access Protocol (SOAP)
	Representational State Transfer (REST)
	REST vs SOAP
	REST API

	Frameworks
	.NET Framework
	Flask Framework

	Databases
	Message Broker
	Apache Kafka

	Proposed Solution
	SAP ERP
	Nexeed MES
	Production Line
	REST API

	Implementation
	REST API
	Models
	Program
	Startup
	SQLiteDataAccess
	REST Client
	Local Folder
	Controllers

	Kafka Broker Consumer
	Models
	Program
	SQLiteDataAccess
	Worker

	Nexeed MES Communication Pipeline
	Kafka Message Broker Communication Pipeline
	SQL Server Communication Pipeline
	Bosch External Network Communication
	Web Service Production Implementation

	Test Solution
	Custom Testing
	Load Testing
	Result Analysis

	Conclusion
	Conclusions
	Future Work

	References

