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Resumo A divisão de grafos, como descrições abstratas de componentes que interagem
num sistema, é uma das operações fundamentais em grafos, e pode ser feita usando
uma grande variedade de algoritmos. Este trabalho está focado na divisão de um
grafo em duas partes usando métodos de inferência. Um deles é o algoritmo de
Belief Propagation, especialmente conhecido pelo seu curto tempo de execução,
principalmente quando comparado com métodos de Monte Carlo. No entanto,
apesar do seu sucesso na estimativa do limite inferior do custo de partição na
maioria das situações, quando se trata de determinar os nós do grafo que pertencem
a cada grupo de modo a que tal custo ótimo seja obtido, a abordagem rápida da
Belief Propagation tende a falhar. Neste contexto, foi desenvolvido um algoritmo
de partição baseado no algoritmo de Wang-Landau (um método de Monte Carlo),
que apesar de ter um tempo de execução mais longo é frequentemente mais bem
sucedido em solucionar problemas concretos.





Keywords graphs, factor graphs, partitioning, Wang-Landau method, belief propagation al-
gorithm.

Abstract The division of graphs, as abstract descriptions of interacting components of a
system, is one of the fundamental operations made on graphs, and it can be done
using a great variety of algorithms. This work is focused on the division of a graph
into two parts using inference methods. One of them is the Belief Propagation
algorithm, known for its small runtime, specially when compared with Monte Carlo
based methods. However, despite its success on the estimation of the partitioning
cost lower bound in most of the situations, when it comes to determine the graph
nodes that belong to each group so that such an optimal cost is obtained, the
fast Belief Propagation approach tends to fail. In this context, it was developed
a partitioning algorithm based on the Wang-Landau algorithm (a Monte Carlo
method), that despite having a longer runtime is often more successful as a problem
solver.
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CHAPTER 1
Introduction

Many systems of interest, from social sciences to computer vision or statistical physics, may
be decomposed in individual parts linked together by dependencies or constraints. Examples
of this include human societies, as collections of people linked by social interactions, or even
the Internet, as a collection of computers linked by data connections [1].

Such systems can be represented by graphs, which are collections of objects, called
vertices/nodes, joined together by lines, the edges. Even though, a lot of information is usually
lost in the process of reducing a full system to an abstract graph representation, where only
the basics of connection patterns and little else is captured. Still, graphs are powerful means
of representing patterns of connections or interactions between the parts of a system [2].

Dividing a graph into smaller pieces is one of the fundamental algorithmic operations made
on graphs [3]. There are a number of reasons why one might want to divide a network into
clusters, but all come down to two different classes of problems: either graph partitioning
problems or community detection problems, both answering different questions [1].

In graph partitioning, the number and sizes of the non-overlapping groups are fixed
according with a certain objective function. Such problems arise in a variety of circumstances,
particularly in computer science, mathematics, physics, and in the study of networks themselves.
A typical example is the speed up of computational problems by assigning to each processor
a certain task concerning a subset of variables, such that the number of communications,
that is, the number of edges between groups, is minimized. Most often we want to assign an
equal or roughly equal number of variables to each processor so the workload will be balanced
among them [1]. Another example is the design of an electric circuit, where one needs to know
on which board to place the different components to minimize the number of links between
different boards [4].

Community detection differs from graph partitioning in that the number and sizes of the
groups are not specified, being the goal to find the natural divisions of the network. This way,
community detection is used as a tool for the analysis and understanding of network data.
Some examples are the identification of research groups in a university department, where the
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edges represent links between scientists who have coauthored scientific papers; the evaluation
of the nature of social interactions in a school, where the edges represent friendships between
students of different ethnicity’s; the division of a web graph according to related web pages or
the division of a metabolic network in order to indicate its functional units [1].

In this work, we will focus on the graph partitioning problem, which is more deterministic,
and in particular on bipartitioning, as the division of a graph into two parts.
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CHAPTER 2
Graph representations

The interactions between vertices in a graph may happen following different rules, therefore,
to better describe this interactions must be considered different types of edges, either directed
edges or undirected edges [5].

In a directed graphical model, the probability of occurrence of the state xi of a variable i
is dependent on direct causal dependencies between variable i and other system variables, its
parents, Par(i). Such dependencies are expressed by directed edges, each one beginning at a
parent node Par(i) and pointing to a node i.

The Bayesian networks, coined by Judea Pearl in 1985 [6], are directed acyclic graphs that
offer consistent semantics for representing causes and effects. An example of its application in
statistical inference would be the prediction of the disease that provoke certain symptoms,
given the probabilistic relationships between diseases and symptoms.

Meanwhile, undirected graphical models, also called Markov random fields or Markov
networks, can represent any probability distribution over N random variables x = {x1, ... , xN},
just like directed graphs. However, a directed graph more naturally represents conditional
probabilities directly, whereas an undirected graph more naturally represents conditional
independence properties [5].

Although a graph may present only one type of edges, such as a directed graph or an
undirected graph, a greater detail can be obtained considering the possible coexistence of both
types of edges on the same graph, as a mixed graph. Such type of graph has a wide range
of applications, from the modelling problems of engineering to physical science, biological
science, communication technology, computer technology and others [7][8].

All this graphical models can be represented by a different kind of graph representation –
the factor graph. This kind of graph makes use of the concept of “function nodes”, which
captures the dependencies between each set of interacting variables by connecting with edges
(ia) ∈ L the variable nodes belonging to the set I to function nodes belonging to the set
A, which represents the function fa : Xka → R. This way, each variable node i ∈ I has a
set of neighbouring function nodes (∂i ≡ ai

1 , ... , a
i
ki

) and each function node has a set of
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neighbouring I nodes (∂a ≡ ia1 , ... , iaka
) [9].

Therefore, a factor graph (as the one represented in figure 2.1), besides containing N

variable nodes (represented by circles), it also contains F function nodes (represented by
squares). Some variables might have a known preferred value, which is expressed by the
function fi(xi), called ‘evidence’ [10].

Figure 2.1: Abstract example of a factor graph. The degree of a function node (the number of edges
incident to it) is always superior to zero. The variable nodes are represented by circles
and the function nodes represented by squares [9].

There are many systems that can be described by a factor graph representation, the only
requirement is for them to be translated by a global function that factors into a product of
simpler "local" functions, each of them dependent on a subset of variables [9]. The factor graph
is useful in the way that easily allows the application of the belief propagation (BP) algorithm
(also known as the sum-product or replica symmetric algorithm), which is a computational
inference algorithm that computes marginal functions associated with the systems global
function.

In the following sections there is a description of different kinds of systems which can be
modeled by a graphical arrangement of variables, particularly by a factor graph. Graphical
modulation is fundamental so that partitioning methods can be applied to systems.

2.1 Expression Trees

Expression trees are often used in computer science to represent arithmetic expressions
as ordered rooted trees in which internal vertices, that is, vertices with descendants, represent
arithmetic operators, such as addition, multiplication, negation, etc., and leaf vertices, that is,
vertices without descendants, representing variables or constants.

For example, the tree of figure 2.2 represents the expression x(y + z) [11].

Figure 2.2: An expression tree representing x(y + z), read from bottom to top [11].
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Expression trees can be extended so that the leaf vertices represent functions, such as
sums and products, and not just variables or constants. These expression trees combine their
operands in the usual pointwise manner, in which functions are added and multiplied [11].
An example of this is presented in figure 2.3(a), that represents the marginal function g1(x1),
written as

g1(x1) = fA(x1)
[∑

x2

fB(x2)
(∑

x3

fC(x1, x2, x3)
(∑

x4

fD(x3, x4)
)(∑

x5

fE(x3, x5)
))]

= fA(x1)
∑

∼{x1}

fB(x2)fC(x1, x2, x3)

 ∑
∼{x3}

fD(x3, x4)

 ∑
∼{x3}

fE(x3, x5)

 , (2.1)

where the notation ∼ {xi} indicates the variable xi of the domain that is not summed over.
The dashed lines in figure 2.3 represent trivial operations, that is, those with one or no
operand, and that can be omitted as is the case of the summary operators

∑
∼{x} applied to

a function with a single argument × [11].

Figure 2.3: (a) A tree representation for the right-hand side of equation 2.1. (b) The factor graph as
a rooted tree with x1 as root [11].

In a similar way, being the same system marginal function g3(x3) written as

g3(x3) =

 ∑
∼{x3}

fA(x1)fB(x2)fC(x1, x2, x3)

 ∑
∼{x3}

fD(x3, x4)

 ∑
∼{x3}

fE(x3, x5)

 , (2.2)

the corresponding expression tree is obtained as in figure 2.4(a).
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Figure 2.4: (a) A tree representation for the right-hand side of equation 2.2. (b) The factor graph as
a rooted tree with x3 as root [11].

Comparing the factor graphs of figures 2.3(b) and 2.4(b) with the corresponding trees, it
is easy to note their correspondence. Moreover, it’s observed that although the expression
trees of different marginal functions are different, they both translate into the same factor
graph. This is possible because the system global function g(x1, x2, x3, x4, x5), defined as

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5), (2.3)

is translated into a tree like factor graph with no loops [11].

2.2 Behavioral modeling

Behavioral modeling is natural for codes and study’s the system behavior by specifying
which particular configurations of variables, called codewords, are valid [11].

The characteristic (or set membership indicator) function for a behavior B is defined as

χB(x1, ..., xN ) := [(x1, ..., xN ) ∈ B], (2.4)

In many important cases, membership of a particular configuration in a behavior B can be
determined by applying a series of tests (checks), each involving some subset of the variables.
A configuration is deemed valid if and only if it passes all tests [11].

Therefore, the predicate [(x1, ..., xN ) ∈ B] may be written as a logical conjunction of a
series of "simpler" predicates. According to the Iverson’s convention, a predicate [P ], as a
{0, 1}-valued function that indicates the truth of P , can be factored according to

[P1 ∧ P2 ∧ ... ∧ Pn] = [P1][P2]...[Pn], (2.5)

where ∧ denotes the sum in GF(2) [11].
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Thus, if P can be written as a logical conjunction of predicates, then [P ] can be represented
by a factor graph [11].

There are various examples of behavioral models, however in this work we will just present
the case of the Tanner graph, as we will restrict ourselves to factor graphs with just two kinds
of nodes: factor nodes and variable nodes.

2.2.1 Tanner graph

Tanner graphs for linear codes are defined by an |A| ×N parity-check matrix M , which
consists of |A| equations expressed in matrix form over N variables as MxT = 0. The
corresponding characteristic function is given by the logical conjunction of these equations
[11].

An example of a Tanner graph is shown in figure 2.5 for the parity-check matrix

M =


1 1 0 0 1 0
0 1 1 0 0 1
1 0 1 1 0 0

 , (2.6)

also expressed by the characteristic function

χB(x1, x2, ..., x6) = [(x1, x2, ..., x6) ∈ B]

= [x1 ⊕ x2 ⊕ x5 = 0][x2 ⊕ x3 ⊕ x6 = 0][x1 ⊕ x3 ⊕ x4 = 0].
(2.7)

where the symbol ⊕ is used to represent the parity checks [11].

Figure 2.5: A Tanner graph for a binary linear code [11].

From figure 2.5 is easy to see that Tanner graphs work like factor graphs, where the
squared parity check nodes correspond to function nodes that represent the predicates.

2.3 Probabilistic modeling

A joint probability distribution p(x) may also be expressed in terms of a product of
functions (the potentials fa(x∂a) and fi(xi)) divided by a normalization constant Z, the
partition function of equation 2.9, as presented in the equation 2.8 [5][12].

7



p(x) = 1
Z

∏
a∈A

fa(x∂a)
∏
i∈I

fi(xi) (2.8)

Z =
∑

x

p(x) (2.9)

Factor graphs for probability distributions arise in many situations. In the following
sections are described some of them [11].

2.3.1 Coding theory

Coding theory deals with the design of error-correcting codes for the reliable transmission
of information across noisy channels [13]. There are many applications using error correcting
codes. Some of them are on the transmission of images from distant space, on the quality of
sound in CD’s, on telephone lines and on computer networks [14].

Consider the standard coding model in which a codeword x = (x1, ..., xN ) is selected from
a code C of length n and transmitted over a memoryless channel with the corresponding
output sequence y = (y1, ..., yN ) [11].

Assuming that the a priori distribution p(x) is uniform over codewords, we have p(x) =
χC(x)/|C|, where χC(x) is the characteristic function for C and |C| is the number of codewords
in C [11]. If the channel is memoryless, then f(y|x) factors as

f(y|x) =
N∏

i=1
f(yi|xi) (2.10)

and we have the global function

g(x, y) = 1
|C|

χC(x)
N∏

i=1
f(yi|xi) (2.11)

Figure 2.6: Factor graph for a joint APP distribution of codeword symbols [11].

An example of this is shown in figure 2.6, for a characteristic function

8



χC(x1, x2, ..., x6) = [(x1, x2, ..., x6) ∈ C]

= [x1 ⊕ x2 ⊕ x5 = 0][x2 ⊕ x3 ⊕ x6 = 0][x1 ⊕ x3 ⊕ x4 = 0].
(2.12)

It is easy to see that the example of figure 2.6 corresponds to a combination of behavioral
and probabilistic modeling, as we have modeled both the valid behavior, that is, the set of
codewords, and the a posteriori joint probability mass function over the variables, given the
received output of a channel [11].

2.3.2 Markov Random Fields

A Markov random field (MRF) is a graphical model based on an undirected graph in
which each node i corresponds to a random variable xi. The graph is a Markov random field
if the distribution p(x1, ..., xN ) satisfies the property of every variable being independent of
non-neighboring variables in the graph, given the values of its immediate neighbors [11].

Various types of Markov models are used in signal processing and communications. In
statistical physics, if the joint probability density is positive, the joint probability mass function
p(x) is expressed by the product of Gibbs potential functions as

p(x) = 1
Z

∏
q∈Q

fq(xq), (2.13)

being Z a normalizing constant and xq the set of variables that belong to a clique q ∈ Q, that
is, that belong to a group of nodes that are all pairwise neighbors [11].

Markov random field were introduced as the general setting for the Ising model [15], a
highly formalized stochastic model of a ferromagnet. This model consists of a graphical
arrangement of discrete variables, each of them representing a magnetic dipole moment of an
atomic spin [16][17].

On the Ising model, the spin σi of each node i can be in one of two states (+1 or −1) and
interact with its neighbouring spins (that belong to the set ∂i along the edges (i, j)), as it is
assumed that the molecules only exert short-range forces on each other [16]. Therefore, the
Ising model may be viewed as a Markov Random Field with alphabet size 2 [18].

At equilibrium, the system spins σ = (σ1, ..., σN ) take a Boltzmann’s probability distribu-
tion given by

p(σ) = 1
Z
e−βE(σ), (2.14)

for a partition function Z =
∑

σ e
−βE(σ), where β is the reciprocal of the thermodynamic

temperature of the system. The system energy E (the Hamiltonian) is given by

E(σ) = −
∑
(i,j)

σiσj −H
N∑

i=1
σi (2.15)
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where the second sum represents the interaction of each spin with the external magnetic field
H and the first sum the ferromagnetic interaction between each pair of neighbouring spins
(i, j) [19] [9].

The system magnetization m is defined as

m = 1
N

N∑
i=1

σi (2.16)

and the joint probability mass function can be factored into

p(σ) = 1
Z

∏
(i,j)

eβσi(σj+H) (2.17)

= 1
Z

N∏
i=1

eβHσi
∏
(i,j)

eβσiσj (2.18)

2.3.3 Bayesian Networks

Bayesian networks are graphical models for a collection of random variables that are
based on directed acyclic graphs [11]. Representing f(xi, xP ar(i)) the conditional probability
distribution of the state xi, given its parents, the joint probability distribution of a Bayesian
network is given by

p (x) =
N∏

i=1
p
(
xi

∣∣∣xP ar(i)

)
(2.19)

However, if the node i has no parents, the conditional probability p
(
xi

∣∣∣xP ar(i)

)
reduces

to the variable marginal probability

p(xi) =
∑

xP ar(i)

p(xi, xxP ar(i)
), (2.20)

defined in terms of sums over all the possible states of node i ancestors, Par(i) [10].
In figure 2.7 is shown an example of comparison between a Markov random field and a

Bayesian network representation, with the corresponding factor graph representation. From
there we conclude that the existence of directed or undirected edges does not have an impact
on the overall structure of the factor graph, just on the particular definition of its function
nodes.
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Figure 2.7: Graphical representations of the factorization p(v1, v2, v3, v4, v5) =
Z−1fC(v1, v2, v3)fD(v3, v4)fE(v3, v5), view as: (a) a Markov random field, (b) a
Bayesian network or (c) a factor graph [11].
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CHAPTER 3
Inference in graphical models

Sampling a distribution of strongly correlated variables is a central task in many scientific
fields, such as in statistical mechanics, machine learning and statistical analysis [20]. The
large number of configurations that exists in graphs with a high number of nodes makes it
difficult to analytically evaluate the single node marginal probability distributions, since that
requires summing over the entire state space [17]. For this reason, numerical algorithms of
inference in graphical models are used.

The most common methods of doing inference are Monte Carlo based methods and
variational methods, such as belief propagation (BP).

3.1 Monte Carlo methods

The Monte Carlo (MC) method is a probabilistic method that plays a fundamental role in
modern physics and in inference and learning problems of fields like computational biology,
machine learning, and simulated annealing [20]. The basic idea behind its application on Ising
model systems is that, in order to calculate some thermodynamic quantity, it is enough to
randomly sample in a phase space instead of averaging over all states. This means that it’s
not needed to evaluate the partition function because the computed quantity will eventually
converge toward the real thermodynamic quantity, if the sampling is large enough [21] [17].

The Monte Carlo algorithm starts with the generation of a random set of spin configurations
(one random value for each spin of the graph). After that it is randomly chosen a new
configuration in the phase space, that in the case of the Ising model corresponds to propose
a new value for a random spin i and accepting or rejecting the proposal with a certain
probability.

After generating iteratively a sufficiently large number of new random configurations, it
is generated a new configuration, approximately independent of the original one, and whose
distribution moves towards the target distribution (the Boltzmann distribution of the Ising
model), which allows to infer about its properties [17].
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Advantages of the Monte Carlo method include its simplicity of implementation and
theoretical guarantee of convergence [22]. However, it needs long runtimes in order to obtain
high-precision estimates, as there are statistical errors and correlations and local energy
barriers may prevent the efficient sampling of the relevant sets of configurations [20].

3.1.1 Wang-Landau method

The Wang-Landau (WL) method is an efficient Monte Carlo algorithm that, unlike
conventional Monte Carlo methods that directly generate a canonical distribution at a given
temperature, it estimates the density of states W (E,m) and entropy S(E,m) = ln (W (E,m))
via a random walk through the space of configurations [23].

The method bases itself on the fact that the histogram h(E,m) of frequencies of energy
and magnetization is flat, as the stationary probability of the generated spin configurations is
p ∝ exp(−S(E,m)) and ⟨h(E,m)⟩ = p W (E,m) tends to a constant value independent of E
and m[24].

The phrase "flat histogram" means that the simulation histogram h(E,m) for all visited
combinations of energy E and magnetization m is not less than a percentage of the average
histogram ⟨h(E,m)⟩ [23]. This enables us to consider that all values of energy and magnetiza-
tion are visited by the method with almost equal probability. This is an advantage from the
regular Monte Carlo algorithm as the Wang-Landau method is expected to be less affected by
local energy barriers.

Initially, the Wang-Landau method is not a Markov process, as the matrix W (E,m)
is not known, but as the algorithm progresses the W (E,m) matrix slowly converges to a
constant value and the process becomes a Markov process, obeying the microscopic reversibility
condition

pi p(i→j) = pj p(j→i), (3.1)

where p(i→j) is the transition probability between spin configurations [24].
Defining w(E,m) = ln (W (E,m)), initially we have w(E,m) = 0 for all possible states

(E,m). Then, for each new random proposal of phase transition from a state i to a state r,
we accept the proposal as the final j state with probability pA(i→ r), given by

pA(i→ r) = min(1, exp (−∆w)), (3.2)

where ∆w = w(Er,mr)− w(Ei,mi)).
The corresponding value of w(Ej ,mj) is updated to be equal to its previous value plus

f > 0. This update for the visited configurations results on a decrease of the probability of
them being visited again, favouring the visit of the less visited states. From repeating this
procedure a number of times such that all possible (E,m) values have been visited many
times, the matrix h(E,m) becomes what we consider to be flat [24].
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Still, as the transitioning probability depends on the particular history of the simulation
until then, this is not yet a Markov process and the function w(E,m) is not equal to the
microscopic entropy S(E,m) [24]. In order to become a Markov process the values of the
matrix w(E,m) must become constant, and so, the value of f must tend to zero. To achieve
this the value of f diminishes after all possible values of energy have been visited a number
of times. As the simulation progresses, it is possible to estimate the extreme visited values
of energy, Emin and Emax. For that we start by initializing Emin and Emax with the energy
value of the system initial state and then update them as other values of energy are visited.
It’s considered that all the values of energy have been visited when we have gone between the
lastly determined Emin and Emax a number nf of times without updating them. Each time
this happens the value of f is changed to f/2 [24]. The process is repeated a certain large
number of times or until f is so small that can be considered zero.

For higher values of f the time for visiting all possible values of energy is ∝ N2. Meanwhile,
for smaller values of f , if there are rare states (E,m) that weren’t visited in previous steps,
the algorithm can take a huge amount of time to produce a constant matrix w(E,m), as there
are necessary many visits to this state in order to equal the corresponding value of w(E,m)
with the w values of states previously visited [24].

3.2 Belief Propagation algorithm

Apparently different methods as the forward-backward algorithm, the Viterbi algorithm,
iterative decoding algorithms for Gallager codes and turbocodes, Pearl’s belief propagation
algorithm for Bayesian graphs, the Kalman filter, and the transfer-matrix approach in physics
are all special cases of the Belief propagation algorithm discovered in different scientific
communities.

The Belief Propagation (BP) algorithm is based on ’message passing’ through nodes and
it was originally proposed by Judea Pearl in 1982 [25], who formulated it as an exact inference
algorithm on tree-like graphs, allowing the marginals (single nodes probability distributions)
to be computed much more efficiently than with a naive algorithm [9].

However, on graphs with loops the situation is much less clear [26]. Some researchers have
empirically demonstrated good performance of the BP on graphs with loops when iterating
the messages until convergence. This happens near the Shannon-limit performance of "Turbo
codes" and for some problems in computer vision. On the other hand, for other graphs with
loops, BP may give poor results or fail to converge. The intuition behind the relative success
of the BP algorithm lies in the fact that, although the graph may not be a tree, ’locally’ it
may act like a tree. However, even in such cases, its applications are limited to distributions
in which far apart variables become almost uncorrelated [9].

It must be noticed that, in some situations, the loops can be eliminated by clustering
nodes of like type, that is, all variable nodes or all function nodes, as it is always possible to
cluster nodes of like type without changing the graph global function. This enables the BP
algorithm to compute marginals exactly. However, while a new function domain will result
from the sum of the old functions domains without increasing the complexity of the algorithm,
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a new variable domain, being given by the product of the old variables domains, can imply a
substantial increase on the complexity of the algorithm [11].

3.2.1 Belief Propagation formulation on a factor graph

The seminal work of Yedidia [26] formulated loopy belief propagation in terms of optimizing
the Bethe free-energy. The Bethe free-energy is an approximate Gibbs free-energy functional,
as it considers a mean-field like approximation where the free-energy is written in terms of
local quantities that approximate the partition function of the Ising model to its tree-like
formulation [9]. Such a BP algorithm can only converge to a fixed point that is also a minimum
point of the Bethe approximation to the Gibbs free-energy [10].

The Bethe approximation to the Gibbs free-energy [9] is expressed in terms of pseudo-
marginals (called ‘beliefs’) by

FBP = −
∑
a∈A

∑
x∂a

ba(x∂a) log
[
ba(x∂a)
fa(x∂a)

]
−
∑
i∈I

(1− ki)
∑
xi

b(xi) log(b(xi)), (3.3)

where ki denotes the number of neighbouring function nodes of variable i, while b(xi) and
ba(xa) represent the estimated marginal distributions of a variable node i and of a function
node a, respectively. This quantity’s follow the constraint

∑
xa\i ba(xa) = b(xi).

On a factor graph the BP algorithm acts through two different types of messages: messages
sent by variable nodes to its nearest neighbour function nodes (vi→a), and messages received
by variable nodes from its nearest neighbour function nodes (v̂a→i), always following the
existing edges. These messages take values in the space of probability distributions over the
single variable space X. Therefore, vi→a = {vi→a(xi) : xi ∈ X }, with vi→a(xi) ≥ 0 and∑

xi
vi→a (xi) = 1. The same happens with the v̂a→i messages [9].

To obtain good estimates of the variable’s marginals on a loopy graph it is necessary to
update the messages until its convergence. The BP messages are then computed for each
iterative step t based on specified initial conditions, as described in equations 3.4 and 3.5
(where the symbol ∼= denotes ’equality up to a normalization’ and the symbol \ the set
subtraction) [9][12]:

v̂
(t)
a→i(xi) ∼=


∑

x∂a\i
fa(x∂a)

∏
j∈∂a\i v

(t)
j→a (xj) , if |∂a\i| > 0

fa(xi) , if |∂a\i| = 0
(3.4)

v
(t+1)
i→a (xi) ∼=

fi(xi)
∏

b∈∂i\a v̂
(t)
b→i(xi) , if |∂i\a| > 0

fi(xi) , if |∂i\a| = 0
(3.5)

The message v̂a→i results from the sum of all possible states of the neighbouring variable
nodes of function node a, except for the variable node i. This sum includes the product of all
messages that the function node a receives from those neighbours. However, if i is the only
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neighbouring variable node of function node a, there are no messages to consider and v̂a→i is
only dependent on the action of the function node a.

Meanwhile, the message vi→a results from the evidence of node i multiplied by the product
of all the messages sent from the neighbouring function nodes of variable node i, except for
the function node a. However, if a is the only neighbouring function node of the variable node
i, vi→a is only dependent on the evidence of the variable i.

It’s expected that for t→∞ the messages had already converged to a fixed point. In this
situation the message v(∞)

i→a(xi) will give the marginal distribution of xi on a modified graph
that does not include the function node a. Analogously, the message v̂(∞)

a→i(xi) will coincide
with the marginal distribution of xi in a graph where all function nodes in ∂i, except a, have
been erased.

After the convergence at an iteration step t, it can be estimated the marginal distribution
p(xi) of a variable i as

p(xi) ≈ b(xi) ∼= fi(xi)
∏

a∈∂i

v̂∗
a→i(xi) (3.6)

using all its incoming messages v̂(t)
a→i = v̂∗

a→i (where ‘*’ denotes the BP fixed point). Meanwhile
[12],

ba(xa) ∼= fi(xi)
∏

i∈∂a

v∗
i→a(xi) . (3.7)

The previous BP equations used the potential fi(xi) to include the preferred value of a
variable node i. However, there is another way of fixing a variable value on a factor graph:
adding a new function node, of degree 1 (with one nearest variable node), to the variable
node whose value we want to affect. This way it can be considered an equal potential fi(xi)
for every possible state xi of variable node i. Because of that, given the normalization, it can
be considered that fi(xi) = 1 if the preferred value is not dependent on xi.

The joint distribution of a subgraph R may be approximated by

p (xR) ≈ b (xR) = 1
ZR

∏
a∈FR

ψa (x∂a)
∏

b∈F∂R

v̂∗
b→i(b)(xi(b)) (3.8)

with the condition that all function nodes b adjacent to R are only connected to one of its
variable nodes (denoted by i(b)). ZR denotes the subgraph partition function and FR and VR

refer to the set of function nodes and the set of variable nodes, respectively, that belong to
the subgraph R, in such a way that VR includes all variable nodes adjacent to function nodes
of FR. The set of function nodes that are not in FR but that are adjacent to a variable node
in VR is denoted by F∂R. This is illustrated in figure 3.1 [9].
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Figure 3.1: Representation of a subgraph R where all ∂R function nodes adjacent to it are only
connected to one variable node from VR.

With the knowledge of equation 3.8, the internal energy [9]

U = −
∑

x

p(x)
∑
a∈A

log (fa(x∂a)), (3.9)

as the expected value of the total energy of the system, can be computed in terms of the BP
messages as

U ≈ −
∑
a∈A

1
Za

∑
x∂a

fa(x∂a) log (fa(x∂a))
∏

i∈∂a

v∗
i→a(xi), (3.10)

for

Za =
∑
xa

fa(xa)
∑
i∈∂a

v∗
i→a(xi). (3.11)

Also using equation 3.8 it is possible to express the free-entropy of equation 3.3 [9] in
terms of fixed-point messages as

FBP =
∑
a∈A

Fa +
∑
i∈I

Fi −
∑

(i,a)∈L

Fia (3.12)

for

Fa = log [
∑
x∂a

fa(x∂a)
∏

i∈∂a

v∗
i→a(xi)], (3.13)
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Fi = log [
∑
xi

∏
b∈∂i

v̂∗
b→i(xi)] (3.14)

and

Fia = log [
∑
xi

v∗
i→a(xi)v̂∗

a→i(xi)], (3.15)

where L is the set of neighbouring nodes and functions.
The time complexity of the BP algorithm is O(MT ), where M is the number of edges and

T is the number of iterations required until convergence. If the graph has loops, the number
of iterations will be superior to one [27].

3.2.2 Belief Propagation formulation on a pairwise system

In a system where the interactions between variables happen in pairs, such as it happens
in the Ising model, the function nodes of the corresponding factor graph are either connected
to one or two variable nodes. Such a regularity enables us to ignore the function nodes and
formulate the BP algorithm directly on a simple graph.

In this context the messages of equations 3.4 and 3.5 are reformulated as

v̂
(t)
j→i(xi) ∼=

∑
xj

fij(xi, xj)vj→i(xj) (3.16)

and

v
(t+1)
i→j (xi) ∼= fi(xi)

∏
r∈∂i\j

v̂
(t)
r→i(xi) (3.17)

respectively, which can be reduced to only one kind of message, either

v̂
(t)
i→j(xj) ∼=

∑
xi

fi(xi)fij(xi, xj)
∏

r∈∂i\j

v̂
(t−1)
r→i (xi) (3.18)

or

v
(t)
i→j (xi) ∼= fi(xi)

∏
r∈∂i\j

∑
xr

fir(xi, xr)vr→i(xr). (3.19)

Here the set ∂i refers, not to the group of neighboring function nodes of variable node
i, but to the group of its neighbouring variables, while the function fij(xi, xj) describes the
interaction between the neighbouring variable nodes i and j.

With this new messages we can formulate the marginal probabilities as
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p(xi) ≈ b(xi) ∼= fi(xi)
∏

j∈∂i

v̂∗
j→i(xi) , (3.20)

or alternatively, as

p(xi) ≈ b(xi) ∼= fi(xi)
∏

j∈∂i

∑
xj

fij(xi, xj)v∗
j→i(xj). (3.21)

For pairwise models, the free-entropy [9] [4] of equation 3.12 is written in terms of the
messages v∗

j→i as

FBP =
∑
i∈I

Fi −
∑

(i,j)∈D

Fij (3.22)

for

Fi = log [
∑
xi

fi(xi)
∏

j∈∂i

(
∑
xj

fij(xi, xj)v∗
j→i(xj))] (3.23)

and

Fij = log [
∑

xi,xj

vi→j(xi)fij(xi, xj)v∗
j→i(xj)], (3.24)

where D is the set of neighbouring variable nodes.
In the case of the Ising model, from equation 2.17 we have that fij(xi, xj) = eβσiσj and

fi(xi) = eβHσi . If H = 0, defining the relation

v
(t)
i→j(σi) ∼= exp (βσih

(t)
i→j) (3.25)

it is possible to parameterize the messages vi→j by their log-likelihood ratio hi→j , also called
a ’local magnetic field’ which, following the physics convention, was rescaled by a factor
1/(2β). From equation 2.14 we have that the relation 3.25 can be interpreted as an ‘effective’
Boltzmann distribution for the spin σi and with an energy function −σih

(t)
i→j [9].

The BP update equations are written in terms of the local magnetic fields hi→j [9] as

h
(t+1)
i→j =

∑
k∈∂i\j

1
β

[tanh (β) tanh (βh(t)
k→i)], (3.26)

After the convergence of the messages we obtain the cavity fields {h∗
i→j} from which we

can compute the local marginals
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p(xi) ≈ b(xi) ∼= exp (βσi

∑
k∈∂i

1
β

[tanh (β) tanh (βh∗
k→i)]). (3.27)

The free-entropy of equation 3.22 can also be express in terms of the cavity fields {h∗
i→j}

as

FBP =
∑

(ij)∈D

log cosh (β)−
∑

(ij)∈D

log (1 + tanh (β) tanh (βhi→j) tanh (βh∗
j→i))

+
∑
i∈I

log [
∏

j∈∂i

(1 + tanh (β) tanh (βh∗
j→i)) +

∏
j∈∂i

(1− tanh (β) tanh (βh∗
j→i))].

(3.28)
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CHAPTER 4
Partitioning algorithms

The most common objective function in graph partitioning consists on the minimization
of the number of edges between groups, given by the cut size as

R =
∑
(i,j)

(1− δ(si, sj)), (4.1)

where δ(si, sj) is the Kronecker delta

δ(si, sj) =

1 if si = sj

0 if si ̸= sj

(4.2)

and si denotes the identification number of the group that includes the variable node i.
In this context, the simplest graph partitioning problem is the graph bisection our

bipartitioning problem, as the division of a graph into just two parts. An exhaustive search
of the optimal partition, that is, of the division with the smallest cut size, within the
approximately 2N+1

√
N

possible divisions, would turn out to be prohibitively costly. It would be
only feasible to values of N up to about N = 30, as the time required to look through all the
possible divisions would go up roughly exponentially with the size of the graph [1].

Because of this, other algorithms are used to solve the partitioning problem. Although
they might fail to find the very best division of a system they may still find a pretty good
one, and for many practical purposes that might be good enough [1].

Note that the cut size objective function does not take into account the different relevance
of the relations between different variables. This way, the only relevant information for the
graphical representation of a system is the existence or not of a connection (edge) between
each pair of variable nodes, and therefore, there is no need to represent factor nodes.

In the following sections some clustering algorithms will be presented to solve bipartitioning
problems.
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4.1 Belief propagation partitioning

The graph partitioning problem can be solved by finding the ground state of the ferromag-
netic Ising model at a fixed magnetization m (given by equation 2.16), as this is equivalent to
dividing the graph into a group of spins +1 with size n+ = N(1 +m)/2 and a group of spins
−1 with size n− = N(1−m)/2. If the objective is to divide the graph into balanced groups
the desired magnetization is zero [4].

The minimization of the cut size at a given magnetization is done by considering a cost
function

b = R

N
. (4.3)

At H = 0, we have that the a cut size R(m) is dependent on the magnetization value, as
it is related with the system energy E(m) by

R(m) = E(m) +M

2 , (4.4)

where M is the number of edges.
If it is found the system configuration with the minimum value of energy (E(m) = −M), at

the zero temperature, then b(m) = 0. This means that a minimization of the cost corresponds
to the minimization of the energy, and therefore, finding the ground state of the system.
However, the energy at a fixed magnetization is not necessarily a convex function and finding
the ground state energy can be challenging. A method of doing this is introducing a uniform
external magnetic field H (possibly non-zero) and adjusting its value after every update of the
BP messages, so that the spins orientations evolve in the direction of the desired magnetization
value (md) [4].

Using the Legendre transformation e(h) = e(m)−Hm [4] it is possible to relate the ground
energy density e(m) = E(m)/N at H = 0 with the ground energy density e(H) at any given
external magnetic field H, so that, having M = Nα/2, we obtain the cut size R(H) by

R(H) = N
e(H) +Hm+ α/2

2 . (4.5)

From equation 3.21 and 2.16, we have that the system magnetization m can be computed
from the BP messages on a pairwise system by

m ≈ 1
N

∑
i

∑
σi

σib(σi) = 1
N

∑
i

∑
σi
σie

βHσi
∏

k∈∂i(
∑

σk
eβσiσkv∗

k→i(σk))∑
σi
eβHσi

∏
k∈∂i(

∑
σk
eβσiσkv∗

k→i(σk)) . (4.6)

Like it was done in the previous section for the pairwise system, using the relation

e2βhi→j ≡ vi→j(+1)
vi→j(−1) , (4.7)
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that describes the messages vi→j in terms of a ’local magnetic field’ hi→j , it is possible to
deduce the iterative equation

h
(t)
i→j = H +

∑
k∈∂i\j

[max(1 + h
(t−1)
k→i , 0)−max(h(t−1)

k→i , 1)] (4.8)

from equation 4.6 at the zero temperature limit (β →∞) [4].
Note that the iterative equation 4.8 is equivalent to the replica symmetric equation 3.26 and

that its term in the sum is −1 for hk→i ≤ −1, +1 for hk→i ≥ 1, and hk→i for −1 < hk→i < 1
[4].

The BP total cavity field for node i is calculated by

h
(t)
i =

∑
k∈∂i

[max(1 + h
(t)
k→i, 0)−max(h(t)

k→i, 1)]. (4.9)

The computation of hi with equation 4.9 results from the summation over the messages
that are incident in node i, being that if hk→i < −1 the message is reduced to −1 and if
hk→i > 1 the message is reduced to 1.

The solution of the zero temperature cavity equations described gives m = 1 for H > 0
or m = −1 for H < 0, with all spins either positive or negative, respectively. In order to
compute the ground-state energy for |md| < 1, starting from an arbitrary value the external
field H must be adapted after every iteration of the algorithm equations so that

md = (n(t)
+ − n

(t)
− )/N, (4.10)

where n(t)
+ and n(t)

− are the number of positive and negative spins, respectively, obtained after
each iteration t. The value n+ is determined by the number of sites where H +hi > 0 and the
value n− by the number of sites where H+hi < 0. For the sites with H+hi = 0 its attributed
another spin category where the spin value can be either −1 or +1. The number of such spins
is represented by n0 and for any graph partition we have n+ − n− − n0 ≤ m ≤ n+ − n− + n0

[4].
Satisfying the equation 4.10 equality is equivalent to attributing to H the symmetric value

of the total cavity field which separates the first nd
− = N(1−md)/2 smallest values of h(t)

i

from the other nd
+ = N(1 +md)/2 biggest values [4].

At each iteration the messages may be updated by

h
(t)
i→j = memory × h(t−1)

i→j + (1−memory)× h(t)
i→j (4.11)

considering a parameter of memory which prevents the messages from oscillating [4]. The
algorithm terminates when the messages have converged or when it is achieved the maximum
number of iterations.
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Finally, in order to compute the partition cost we may either use the knowledge of the
obtained system configuration (based on the values of H and hi after the convergence of the
algorithm) and obtain a partition cost bBP or compute the Bethe estimate of the ground-state
energy and from there compute the partition cost bBP

E using the cut size given by equation
4.5.

From equation 3.10 it is obtain the Bethe estimate of the ground-state energy, given by

E(H, {hi→j}) =
∑

i

Ei −
∑
(i,j)

Eij , (4.12)

for

Ei = H + αi + 2
∑
k∈i

max (0, hk→i)− 2 max [H +
∑
k∈i

max(1 + hk→i, 0),
∑
k∈i

max (hk→i, 1)]

(4.13)

and

Eij = 1 + 2 max (0, hi→j) + 2 max (0, hj→i)− 2 max (1 + hi→j + hj→i, 1, hj→i, hi→j), (4.14)

where αi is the degree of node i.
Note, however, that the BP estimate of the energy is only a lower bound on the true

asymptotic energy. Therefore, while bBP corresponds to the partition cost of the actual
partition determined by the algorithm after convergence, bBP

E corresponds to the partition cost
that the algorithm predicts it would be the optimal, despite not having necessarily determined
the partition that provides such a cost.

The pseudo-code of our formulation for the described algorithm may be find in section
7 under the name Algorithm 1. There is a problem with this algorithm, however. The
magnetization value m∗ of the determined partition may not correspond to the desired value
md, either because the equations had not converged or because it was not found the actual
ground-state energy of the system [4].

To get around this problem it is used a decimation technique which consists on repeating
the previous algorithm and fixing spin values until the number of fixed spins to +1 or −1
agrees with the desired magnetization. For that, each time, after the convergence of the
messages, a vertex i is chosen such that hi is the highest (or lowest if at an even repetition
number) and all outgoing messages from this node are fixed to +∞ (or −∞ for an even
repetition number), and therefore, the spin i is fixed to +1 (or −1 at an even repetition
number). The running time of this decimation solver is O(N2) [4].

Although such an algorithm can be applied on its own to perform graph partitioning,
it is not expected that it will be competitive with the highly tuned implementations of the
multi-level methods, that can be applied to graphs of one hundred million of nodes or even
more [4] [28]. Even though, as the multi-level methods consist of grouping variable nodes into
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super-nodes, super-nodes into bigger super-nodes and so on until the size of the system is
small enough to solve the partitioning problem exactly, the belief propagation can be used
as a component of this method by estimating the probability for which two nodes can be
grouped in the same super-node [4].

4.2 Wang-Landau partitioning

Exploring the idea that the graph partitioning problem can be solved by finding the
ground state of the ferromagnetic Ising model with a fixed magnetization, a new approach
was developed in this work that uses not a Belief Propagation approach for inference but a
Monte Carlo approach, in particular, the Wang-Landau method.

The advantage of this method from a regular Monte Carlo algorithm is that it enables the
exploration of all possible configurations of the system without being trapped in a local energy
minimum, as the best configuration for the partitioning problem may not correspond to a
locally good solution of a local energy minimum. Ideally, the minimum value of energy would
be found so the partitioning cost bW L, computed from the determined system configuration,
could be zero.

Given a certain desired value of magnetization md and a random system configuration
with that value of magnetization, there are two possible ways of proposing a configuration
update. One is proposing an interchange of spins between a random pair of opposite spin
values, so the magnetization is conserved. Another is proposing the flip of a random spin with
the condition that the magnetization value of the system does not go beyond a threshold of
dm. This way we can either be fixating a magnetization m = md or enabling the variation
of the magnetization value in the interval [md − dm,md + dm]. The advantage of this last
approach is that it may help the algorithm to find paths to new clusters of states.

The two approaches can be used alternately in the configuration proposal (update) part
of the algorithm. After all the nMC Monte Carlo steps were computed, the algorithm outputs
the system configuration with the lowest energy among all the explored configurations with a
magnetization that agrees with the desired one.

The pseudo-code used for the Wang-Landau partitioning algorithm can be seen in section
7 under the name Algorithm 2.

4.3 Extremal optimization for graph partitioning

The extremal optimization (EO) method is modelled after the Bak-Sneppen mechanism,
introduced to describe the dynamics of co-evolving species, and is based on the dynamics of
non-equilibrium processes, in particular, those who exhibit self-organized criticality (where
better solutions emerge dynamically without the need for parameter tuning) [29].

In graph bipartitioning, the EO method considers each node i of the graph as an individual
variable with its own “fitness” parameter λi = si/(si + di), where si is the number of edges
connecting i to other nodes of the same partition and di is the number of edges connecting i
to nodes of the opposite partition. For isolated nodes we have λi = 1 [29].
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Note that node i has a degree of αi = si + di, while the overall mean degree of a graph is
given by α =

∑
i αi/N and the cut size of a configuration by R =

∑
i di/2 [29].

At all times, an ordered list of the nodes fitness is maintained in the form of a permutation
of its labels as λΠ(1) ≤ λΠ(2) ≤ ... ≤ λΠ(N), where i = Π(n) is the label of the nth ranked
node in the list [29].

In order to do a local search in the configuration space it is defined the “neighborhood” of
configurations for which each configuration of the space can be updated to over the course
of tmax update steps. Such neighbourhood is obtained by the exchange of any two nodes
between the partitions of the current configuration [29].

The algorithm was found to wield better results when the exchange is done between node
i1 = Π(n1) and node i2 = Π(n2), given the integers n1, n2 ∈ [1, N ] drawn from the probability
distribution P (n) ∝ n−τ , for τ = 1.4. Note that the drawing of n2 is done until i1 and i2 don
not belong to the same partition [29] [30].

After each update the fitness rank list is also updated by reevaluating the fitness of the
nodes i1 and i2 and of all the nodes they are connected to. Using a ‘heap’, the computational
cost of such an operation is O(α lnN).

Note that, unlike in a greedy algorithm, that moves towards the configurations that yield
an improvement from the last ones, in the EO method all moves are accepted, even if they are
worst, as the selection follows a scale-free power-law distribution. The best solution (with the
smallest cut size) is then determine from all the tmax explored configurations, for tmax linear
with the system size [29]. The partitioning cost bEO is computed from the smallest cut size.

The EO method for graph bipartitioning yields state-of-the-art solutions, even for systems
of N > 105 variables. In particular, for large graphs of low connectivity, it has been shown
to be faster than genetic algorithms and more accurate than simulated annealing, which are
other two widely applied methods [29].
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CHAPTER 5
Bipartition analysis

5.1 Erdos-Rényi random graphs

The simplest characteristic of a node in a graph is its degree α. Properties like the degree
distribution of a graph can have huge effects on the behaviour of systems. Therefore, one of
the best ways to understand the graphs behaviour is to build mathematical models of the
systems of interest [1].

To generate a random graph with a mean degree α we can use the Erdos-Rényi model,
where all possible graphs with N nodes and M edges have equal probability of realization
[31]. This is equivalent to choose, with uniform probability, M of the N(N − 1)/2 possible
edges between the N nodes, generating a graph with a mean number of nearest neighbours
given by α = 2M/N .

The Gilbert model is also a model of generation of random graphs. In this model, between
each pair of nodes an edge is present with a fixed probability p, and the mean total number
of edges is fixed to < M >= pN(N − 1)/2 [31].

For graphs with a high number of nodes, the Gilbert model with p = α/(N−1) is equivalent
to the Erdos-Rényi model. This happens because, in the Gilbert model, the fluctuations of M
go to zero as N grows (< M >→M).

5.1.1 Random graphs bipartitioning

A prominent feature of the Erdos-Rényi model is the presence of a giant component, as
the biggest connected component of the graph for α > 1.

For Erdos-Rényi random graphs with N →∞ vertices and mean degree α, the size of the
largest component is gN at the limit of large N, being g the fraction of nodes on the giant
component, which satisfies g = 1− exp (−αg) [4].

In order to divide the graph into two parts of sizes n+ = N(1+m)/2 and n− = N(1−m)/2
such that the partitioning cost is zero, all the giant component nodes must present the same
spin value. If n+ ≥ n−, the condition g ≤ n+/N has to be verified, and therefore, the size of
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the giant component must be at maximum (1 +m)/2. That is possible for average degree
α ≤ αS where [4]

αS = − 2
1 +m

ln 1−m
2 . (5.1)

As for α > αS , the minimal bipartition will not have a cost of zero as there are edges in
the giant component that still need to be cut in order to obtain the minimal bipartition. The
value αS is hence named the ’satisfiability threshold’ for graph partitioning on Erdos-Rényi
random graphs [4].

An Erdos-Rényi random graph of average degree α < 1 basically looks like a collection of
small disconnected trees, what makes possible to split the graph into small components with
the same spin values, so the cost of the partition is zero for all magnetization values. In this
situation the BP partitioning algorithm is expected to converge to a fixed point with H = 0
[4].

For 1 < α < αS , the giant component has all spins either positive or negative and the rest
of the graph can be split into two properly sized groups with the same spin values and zero
partitioning cost, as the small components are numerous. In this situation the BP partitioning
algorithm is expected to present local fields with the same sign inside each component [4].

After the satisfiability threshold (α > αS) the giant component is bigger than the number
of nodes that are in the larger of the two groups, so there will be necessarily neighbouring
nodes with opposite spin values on the giant component, which will be split into two groups.
All the other components of the graph will present the spin value that was less present in the
giant component and they will not contribute to the partitioning cost. In this situation the
BP partitioning algorithm is expected to present positive and negative local fields in the giant
component and a nonzero external field [4].

5.1.2 Improving the Wang-Landau partitioning method on random graphs

Based on these observations, a way of solving the partitioning problem would be, firstly,
to identify all the components of the graph and determine the group G of nodes of the giant
component. Only then, if α > αS , would be applied the partitioning algorithm only to the
giant component. Otherwise, for other values of α, a way of determining the nodes spin values
outside the giant component would be to progressively assign to all the nodes of the next
non-solved largest component the spin value that in greater number waits to be assigned to
the graph. This procedure yield the correct result because, as it is already known, for α < αS

it exists a system configuration with cost zero where all the nodes of the same component
have the same spin.

This logic was applied to the Wang-Landau partitioning method proposed in this work.
Therefore, when the desired valued of magnetization implied that n+ or n− would be greater
than the giant component size NG, the partitioning cost was simply attributed to zero.

Meanwhile, if n+ and n− are less than NG, the number of positive spins in the giant
component is nG

+ = NG − n+ if n+ > n−, or nG
+ = n+ otherwise, while the number of
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negative spins is nG
− = NG − nG

+. In this context, there is also a desired local magnetization
of mG = nG

+ − nG
− on the giant component. It is with this magnetization value that we apply

the Wang-Landau partitioning algorithm to a subgraph made only with the giant component.
From the ground state energy EG computed from such a subgraph, being E = EG + ES

(where ES = −MS = MG −M is the known ground state energy of the set S of all small
components), from equation 4.4 we get the partition cost of the original graph by

bW L = EG +MG

2N . (5.2)

5.2 Regular random graphs

A particular case of random graphs is the situation of regular graphs, where every node
presents the same fixed degree. This is the hardest case for graph bipartitioning, as the graphs
look locally alike from every point and no apparent structure can be explored to decide if two
nodes should be in the same group or not [4].

In such situations, the graph only presents one big component and the lower the magneti-
zation value |md| the greater the number of edges that have to be cut, and so, the greater the
partitioning cost. Only for |md| = 1 we have a zero cost. For this reason, it is not possible
to improve the Wang-Landau performance as described before. It is necessary to run the
algorithm for any given value of magnetization in order to infer about the best partitioning
cost.
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CHAPTER 6
Numerical results

6.1 Results on Erdos-Rényi random graphs

Firstly, in order to validate the results obtained with our Algorithm 1 we compared them
with the ones presented in [4] for the BP partitioning with no decimation on Erdos-Rényi
random graphs. We will refer with the suffix art to every results taken from Ref. [4].

Algorithm 1 was run with the parameters memory = 0.7, nIterMax = 10000 and
eps = 0.00001, being that it was found that it work the best when first applied to the higher
magnetization values of the range of interest. As we will comment further in this section, at
higher values of magnetization it takes less iterations to the BP algorithm to converge. Then,
for the next highest value of magnetization, we can skip the messages random initialization
and instead preserve the ones that had already been converged in the previous simulation,
facilitating the new convergence process.

Computing the BP energy estimated cost (bBP
E ) for different values of magnetization on

graphs of size N = 100000 and mean degree α = 1.44 and 1.60, we observed in figure 6.1 a
good accordance with the bBP art

E values when averaging over 8 random graph samples. It must
be noticed, however, that different random graphs present different optimal partition costs,
and so, the particular set of graph samples influence the values of partitioning cost observed.
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Figure 6.1: On the left, the partition cost bBP
E was obtained from Algorithm 1 by averaging over 8

samples of random graphs with size N = 100000 and a particular mean degree (either
α = 1.44 or α = 1.60). The bBP art

E values were taken from Ref. [4] for the same N .
The number of samples used in Ref. [4] is not clear. On the right it is represented the
standard deviation on the set of 8 samples for the partitioning costs obtained for each
magnetization value.

Moreover, it is verified an agreement between the value of magnetization md = mS at
which, from equation 5.1, we have αS(mS = 0.082847) ≈ 1.44 and αS(mS = 0.28415) ≈ 1.60,
and the magnetization value where, in figure 6.1, the evolution of the partition cost changes
from an almost constant behaviour near the zero cost to a gradual increase, as for md < mS(α)
there is a connected component, the giant component, that starts including both spin values.

From all these observations we conclude that the results obtained with the developed
implementation of Algorithm 1 are in agreement with the results of Ref. [4].

From the set of 8 random graphs generated, it is shown in figure 6.1 the standard deviation
of the bBP

E values. This quantities, σcost, tend to diminish as the partition cost increases for
smaller values of magnetization. Therefore, the results obtained with the BP algorithm at
md = 0, that is, for the balanced bipartitioning, are the most accurate ones.

After validating our BP results of Algorithm 1 we were able to compare them with the
ones obtained with the WL partitioning of Algorithm 2 (run for dm = 2, intm = 2 and
nMC = 107). This time, as the WL partitioning tends to be slower than the BP partitioning,
we reduced the size of the random graphs to N = 10000, while increasing the number of
samples to 100. We also computed the BP actual cost (bBP ) values, for the same N , in order
to compare them with the WL actual cost (bW L) values.

From figure 6.2 it is observed that bW L is higher than bBP
E for md < mS(α). For

md > mS(α), most of the generated graphs presented a giant component size smaller than
either n+ or n−, as it was expected from equation 5.1, so the bW L costs were simply attributed
to zero. Because of this, we have limited ourselves to compare the WL and BP results for
md < mS(α).
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Figure 6.2: On the left column are the results obtained when averaging over 100 samples of random
graphs with size N = 10000 and mean degree α = 1.44 (for the upper row) or α = 1.60
(for the lower row). The partitioning costs bBP

E and bBP were computed using Algorithm
1 and the partitioning costs bW L using Algorithm 2. Were also included the bBP

E results
obtained averaging over 8 samples of random graphs with size N = 100000 and the
respective mean degree α. On the right column it is represented the standard deviation
from the 100 samples partition costs obtained at each magnetization value. Note that
the cost values were only represented for md < (mS = 0.082847) if α = 1.44 or for
md < (mS = 0.28415) if α = 1.60, according to equation 5.1.

When comparing the WL results with the partition cost of the actual partition found by
the BP algorithm at this magnetization range, we observe that bW L tends to be similar or
lower than bBP , for every magnetization value. This observations make us conclude that,
as defended in the article [4], the bBP

E results work as a lower bound to the true optimal
partitioning costs, as they are lower than bBP and bW L.

Being that the WL algorithm presents a lower or similar standard deviation than the BP
algorithm, and therefore, more stable results across different samples, we conclude that the
WL actual costs are in general better than the BP actual costs of Algorithm 1. This was
expected as Algorithm 1 is not guaranteed to provide a solution with a magnetization that
agrees with the desired one, while the WL partitioning of Algorithm 2 only gives solutions
that agree with the desired magnetization.

Moreover, it was expected that, for higher magnetization values, the existence of small
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components should make the determined best costs to vary close to the zero value, while for
smaller magnetization values the different ways of partitioning the giant component should
provide very different partitioning costs. For different α values, the standard deviation values
of the WL actual costs are more consistently agreeing with this behaviour than the standard
deviation values of the BP actual costs, as in figure 6.2 these last ones are higher for higher
magnetizations if α = 1.44.

From figure 6.2 it is also observed a slight size variation of bBP
E for N = 100000 and

N = 10000, which is an increase or a decrease depending on the value of α considered.
Anyway, the magnetization at which the partition costs changes from being almost constant
to a non-zero value its preserved, what agrees with its formulation on equation 5.1, where it
is not dependent on the system size.

In figure 6.3 it is possible to observe, at md = 0, the variation of the costs for different
mean degrees α.

Figure 6.3: α dependence of the partition cost at md = 0 (for α = 1.00, 1.20, 1.44, 1.60, 1.80, 2.00, 2.20
and 2.4). The bBP

E and bW L values were obtained averaging over 100 samples, while the
bBP art

E were obtained from Ref. [4] averaging over 2 samples. The bEO values were also
obtained from Ref. [4].

While over the α range the bBP
E values remain roughly the same for different system sizes,

the bW L values tend to be bigger for bigger systems. Also, we see at α = 1.00 and 1.20 that
the bBP

E costs computed for md = 0 start in values near zero and increase for α ≥ 1.44. This
is in accordance with equation 5.1, as 1.20 < (αS(m = 0) = 1.3863), and therefore, we expect
a partition cost of zero for this mean degrees, not just for md = 0 but for all magnetization
values. Such an observation is done in figure 6.4 for 3 different magnetization values.
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Figure 6.4: α dependence of the partition cost (for α = 1.00, 1.20, 1.44, 1.60, 1.80, 2.00, 2.20 and 2.4).
The bBP

E , bBP and bW L values were obtained averaging over 100 samples of N = 10000
graphs at different magnetization values (md = 0.0, 0.2016 and 0.36). On the right is
represented the mean number of iterations done by Algorithm 1 for a maxim number of
10000 iterations.

However, it must be noticed that the bBP values do not confirm the expected behaviour
for α < (αS(m = 0) = 1.3863), where the BP algorithm fails to give the optimal partitions. In
any case, we cannot point out this problem as a convergence problem as from figure 6.4 it is
observed that the mean degree αC , at which the BP equations stop converging (known as the
glass transition), is always superior to αS(m = 0) = 1.3863 for every value of magnetization
md [4].

In fact, from the results of figure 6.4 it was verified that for md = 0.0 we have αC ≈ 1.8
and that for higher values of magnetization this value grows. In other words, for the same
mean degree α the number of iterations decreases at higher magnetization values, so even if
α ≥ 1.80 the BP partitioning may still converge for higher magnetization values. Moreover,
for a given value of magnetization, the α value at which the partitioning costs start increasing
matches the α value at which the number of iterations also increases from an almost constant
number.

Another observation from both figure 6.3 and 6.4 is that bBP
E , given by the BP algorithm,

is a lower bond of the exact result [4], and so, it remains similar or lower than the results
obtained by the EO and WL algorithms. For graphs with the same size N = 20000, the WL
results tend to be close to the EO results, although higher (specially for smaller α values),
and smaller than the bBP values. From this we conclude about the better quality of the WL
partitions on random graphs in comparison with the BP partitions.

However, do the WL results remain better than the BP results when applying decimation
to the BP partitioning? From the results of figure 6.5 we see that, for two different random
graphs, the BP with decimation actual cost (bBP dec) values vary around the WL results, being
slightly better in some cases and slightly worst in others. What distinguish the two results,
besides the more regular evolution of the WL costs over the magnetization spectrum, is the
fact that the WL partitioning is the only algorithm that ensures the agreement between the
actual magnetization of the determined partition and the desired magnetization. On the BP
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decimation algorithm the certainty about this agreement increases as the number of spins that
were fixed increases for smaller values of magnetization. At md = 0 all the spins have been
fixed, while at higher values of md just a few spins had been fixed. Because of this, the BP
decimation ran starting not at the highest values of magnetization but at md = 0, followed by
progressively higher md values.

Figure 6.5: In each row are presented the results obtained for one different random graph with size
N = 2000 and mean degree α = 1.44 or α = 1.60. The bBPdec values were obtained
applying the decimation technique to Algorithm 1. Note that the bW L values were only
represented if greater than zero. In the right column is presented the number of iterations
done by Algorithm 1, for a maxim number of 10000 iterations.
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It must also be noticed that the WL partitioning can be much faster than the BP
decimation. In fact, the bW L values computed in figure 6.5 were obtained at least 26 times
faster than the bBPdec values. This is understandable as in order to obtain the BP decimation
results it takes 2n− repetitions of Algorithm 1 if n− < n+ or 2n+ − 1 repetitions otherwise.

Moreover, for the first two graphs presented in figure 6.5, we once again verify the lower
bond characteristic of the bBP

E values, even when the algorithm has reached the maximum
number of iterations without converging (as seen for the graph in the middle row of figure 6.5).
However, for some other graphs (as for the last one presented in figure 6.5), the lower bond
characteristic of the bBP

E values was not verified, probably because of the lack of convergence
to the desired magnetization value. It is possible that the same problem has been responsible
for negative values of bBP

E computed for some other graphs that were not presented in figure
6.5. In any case, this topic still requires further study.

All these observations bring up the limitations of the BP partitioning with no decimation,
particularly when we are interested in using it as a problem solver on a particular graph.

6.2 Results on regular random graphs

Some results of the BP partitioning with decimation were presented in [4], but only for
random regular graphs. Therefore, in order to validate our implementation of this algorithm
we proceed by applying it to several random regular graphs.

In figure 6.6 it is possible to observe the similarity of results between our implementation
and the Ref. [4] results, being our bBPdec results similar or slightly smaller than the bBP art

dec

values.

Figure 6.6: On the left it is represented the partitioning cost at md = 0, for different values of N
(N = 100, 200, 500, 1000 and 2000), averaged over random regular graphs with α = 3.
The bBP art

dec and bEO values were obtained from Ref. [4], the last ones using the 1-Replica
symmetry breaking algorithm, which like the BP partitioning, provides energy estimated
partitioning costs. On the middle of the figure is represented the mean number of
iterations done by Algorithm 1, for a maximum number of 10000 iterations. On the right
the standard deviation is presented for the set of samples for the partition costs obtain
for each system size.

Overall, for N ≥ 500, both the bBPdec , bBP art
dec , bW L and bEO values are very close, being

the WL and EO results particularly similar for N ≤ 1000, where they are actually the smallest
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actual partitioning costs.
We see that all algorithms present smaller standard deviation for higher values of N , being

the WL partitioning the one with the smaller standard deviation over all the N values. Even
though, the standard deviation of the bBPdec values approaches the standard deviation of the
bW L for bigger systems.

Evaluating the efficiency of the BP partitioning with no decimation on regular graphs
we observe that, although still being bBP

E a lower bound for bW L, bEO and bBP art
dec , the

corresponding bBP values are much higher than all the other results presented.
Moreover, for 100 samples of α = 3, the possibility of occurring convergence problems

increases for higher values of N , as the number of iterations approaches the maximum. The
same observation is done in figure 6.7 for N = 2000, being that the effects of the lack of
convergence seem to worsen for higher degrees α.

For comparison, results from the 1-Replica symmetry breaking (1-RSB) method from Ref.
[4] were also shown in figure 6.6, providing a more accurate cost lower bound than the BP
partitioning. Still, given that the BP and 1-RSB results are relatively close to each other
for α = 3, solving the BP partitioning may be preferable to solve the often complex 1-RSB
equations.
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Figure 6.7: On the left column it is represented the dependence of the partitioning cost over the
magnetization range, resulting from the average over 10 random regular graphs with size
N = 2000. The bBP art

dec and the b1−RSB
E values were obtained from Ref. [4], the last ones

using the 1-Replica symmetry breaking algorithm for N = 30000. On the middle column
it is represented the mean number of iterations done by Algorithm 1, for a maximum
number of 10000 iterations. On the left column it is presented the standard deviation of
the 10 samples for the partition costs obtain for each magnetization value. For α = 5
the cost results of the BP partitioning with no decimation were not represented as they
diverge to much from the other results (probably because of convergence problems),
lacking proper meaning.

In figure 6.7, once again, we confirm for α = 3 the agreement between our bBPdec values and
the bBP art

dec values of Ref. [4], which are very close to the WL results over all the magnetization
range considered. Note that in Ref. [4], for α = 4 and 5, only results of bBP art

dec and b1−RSB
E

for md = 0 were presented, and they agree with our bBP dec and bW L values computed for the
full range of md values.

As expected, the partitioning costs computed with any of the algorithms for md < 1 are
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non-zero, and with the exception of the BP decimation, in which there is a fixation of spins,
all the algorithms tend to present smaller standard deviations for bigger magnetization values.
This is understandable as there are more different ways of performing a balanced partitioning
over a regular graph than a partitioning where one of the groups is small and the other large.
However, note that if we were dealing with larger regular graphs it would be expected that
the division of different large samples at the same magnetization would yield approximately
the same partitioning cost.

We also observe that the WL partitioning is the algorithm that provides the smaller σcost

values, and therefore, it provides the most stable results across different samples. Moreover,
the WL results computed for figure 6.7 were obtained at least 29 times faster than the results
of the BP partitioning with decimation.

In figure 6.7, for α = 3 and 4, we observe that the partition costs bBP are never smaller
than either the WL or the BP decimation partitioning costs and that, once again, the lower
bound characteristic of the bBP

E values is verified. However, while for α = 3 the BP lower
bound is very close to the 1-RSB lower bound, for α = 4 the BP lower bound at md = 0 is
lower and more distant from the 1-RSB’s. When it comes to α = 5 the bBP

E values were found
to be much higher than all the other algorithms partitioning costs, probably because of the
worsening of the convergence problems.

Also, from α = 3 to α = 4, there is an increase of the σcost values for bBP
E and bBP , and

for α = 5 this values are even higher. Given this, for α = 5 the BP partitioning only gives
meaningful results if computed with a decimation technique.

From table 6.1, at all degrees α considered we have confirmed the lower bound characteristic
of the 1-RSB costs, which are lower than the WL and BP decimation actual costs. Also,
while for α = 3 the WL results are higher than the BP decimation results, for α ≥ 4 the
WL results are actually slightly lower. So, while we can agree with the observation that the
optimal partitioning costs must be found somewhere between the b1−RSB

E and bBP dec values,
as it is stated in Ref. [4], we can be more concrete and say that for α ≥ 4 the exact optimal
partitioning costs must be found somewhere between the b1−RSB

E and bW L values. In any case,
the difference between the WL and BP decimation results for a balanced partitioning is less
than 0.002 for any of the degrees considered.

α b1−RSB
E bW L bBP art

dec bBP dec

3 0.113 846 0.1209 0.1180(3) 0.1185
4 0.263 527 0.2701 0.272(1) 0.2722
5 0.412 398 0.4206 0.422(2) 0.4248

Table 6.1: Partition cost values at md = 0 for random regular graphs with different degrees α. The
bBP art

dec , bBP dec and bW L values were obtained from a set of 10 graphs of size N = 2000,
while the b1−RSB

E solutions were obtained from Ref. [4] using the 1-Replica symmetry
breaking algorithm for N = 30000. The bBP art

dec were also obtained from Ref. [4].
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CHAPTER 7
Conclusion

In this thesis some of the Belief Propagation algorithms proposed in Ref. [4] were
implemented. Furthermore, the Monte Carlo algorithm of Wang-Landau was adapted to
simulate the Ising model on random graphs and applied, for the first time, to the problem of
graph bipartitioning.

The results obtained in both cases were found to be in good agreement with those reported
in Ref. [4]. Particularly, when averaging over a set of Erdos-Rényi random graphs, was verified
the expected cost lower bound characteristic of the bBP

E results, which were lower than the
bBP , bW L and the known bEO actual costs. However, when considering a particular graph
or even when averaging over random regular graphs of α = 5, there were some situations
where the bBP

E costs did not represent a cost lower bound, probably because of the lack of
convergence to the desired magnetization.

In fact, while in many cases the BP algorithm can be used to estimate a lower bound
to the ground state energy, and therefore, the lower possible partitioning cost bBP

E , it is not
as successful in determining the graph partition with either that ground state energy or the
desired magnetization. The BP actual partitioning costs bBP tend to be considerably higher
than the optimal bBP

E estimated cost. To obtain reasonable actual costs it is necessary to
apply a decimation technique to the BP algorithm, as proposed in Ref. [4].

From the similarity between the bW L and bBP dec results for arbitrary asymmetric partition
sizes (not considered in Ref. [4] for α = 4 and 5), and of them with the known bEO results
(which were often still slightly lower), was possible to conclude about the reasonable quality
of the BP decimation and WL results. Actually, it was already stated in Ref. [4] that the
exact optimal partitioning cost was expected to be found somewhere between the b1−RSB

E

and the bBP dec cost values. From this work it was found that on random regular graphs
with α = 4 or 5 we have bW L ≲ bBP dec , so we can more precisely say that the exact optimal
partitioning cost can be found somewhere between b1−RSB

E and bW L. However, for α = 3 we
have bW L ≳ bBP dec and it remains to be studied the behaviour for other α values. In fact,
higher degree graphs are still a big challenge to bipartitioning algorithms.
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While the WL algorithm presented a longer runtime when compared with the BP algorithm
with no decimation, when compared with the BP decimation approach it was actually faster.
From this we conclude that the WL partitioning algorithm can be a good alternative to the
BP partitioning, specially in bipartitioning finding, where the goal is to quickly determine the
nodes that belong to each of the groups without compromising the quality of the solution.
However, it must be notice that the WL results presented in this work for Erdos-Rényi
random graphs were obtained considering only the giant component, thanks to theoretical
considerations.

In this work was explored the performance of the WL and BP partitioning algorithms on
bipartitioning problems, but it remains to further explore its performance on k-partitioning
problems, where the graphs are divided into k groups of fixed size. One simple way of doing
this would be to repeatedly apply the algorithms to the found groups until a total of k groups
are found. However, there are reasons to believe that it would be possible to adapt the
algorithms so the k groups could be found simultaneously.

44



References

[1] M. E. J. Newman, Networks: an introduction. Oxford; New York: Oxford University Press, 2010, isbn:
9780199206650 0199206651.

[2] N. Deo, Graph Theory with Applications to Engineering and Computer Science. London: Prentice Hall,
1974.

[3] A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, “Recent advances in graph partitioning,”
2015. arXiv: 1311.3144 [cs.DS].

[4] P. Šulc and L. Zdeborová, “Belief propagation for graph partitioning,” Journal of Physics A: Mathematical
and Theoretical, vol. 43, no. 28, p. 285 003, Jun. 2010, issn: 1751-8121.

[5] “Undirected graphical models,” 2014. [Online]. Available: https://ocw.mit.edu/courses/electrical-
engineering- and- computer- science/6- 438- algorithms- for- inference- fall- 2014/lecture-
notes/MIT6_438F14_Lec3.pdf.

[6] J. Pearl, “Bayesian networks: A model of self-activated memory for evidential reasoning,” in Proc. of
Cognitive Science Society (CSS-7), 1985.

[7] J. Gu and A. Mohammed, “Mixed graph representation and mixed graph isomorphism,” Nov. 2017.

[8] “Discrete mathematics for computer scientists mathematicians (2nd ed.),” The Florida State University
Department of Mathematics and Computer Science, J. L. Mott, A. Kandel, and T. P. Baker, Eds., 1986.

[9] M. Mezard and A. Montanari, “Information, physics, and computation,” Foundations of Physics -
FOUND PHYS, vol. 26, pp. 291–320, Feb. 2009. doi: 10.1093/acprof:oso/9780198570837.001.0001.

[10] J. Yedidia, W. Freeman, and Y. Weiss, “Understanding belief propagation and its generalizations,” in
Exploring Artificial Intelligence in the New Millennium, G. Lakemeyer and B. Nebel, Eds., Morgan
Kaufmann Publishers, Jan. 2003, ch. 8, pp. 239–236, isbn: 1-55860-811-7. [Online]. Available: https:
//www.merl.com/publications/TR2001-22.

[11] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE
Transactions on Information Theory, vol. 47, no. 2, pp. 498–519, 2001. doi: 10.1109/18.910572.

[12] M. Welling and Y. W. Teh, “Linear response algorithms for approximate inference in graphical models,”
Neural Comput., vol. 16, no. 1, pp. 197–221, 2004. [Online]. Available: http://dblp.uni-trier.de/db/
journals/neco/neco16.html#WellingT04.

[13] Wolfram. “Coding theory.” (), [Online]. Available: https://mathworld.wolfram.com/CodingTheory.
html.

[14] N. Aydin. “Introduction to coding theory and cryptography.” (), [Online]. Available: https://www2.
kenyon.edu/Depts/Math/Aydin/Teach/Sp05/392/Intro.pdf.

[15] R. Kindermann and L. Snell, Markov random fields and their applications. American Mathematical
Society, 1980, vol. 1, isbn: 978-0-8218-5001-5. doi: http://dx.doi.org/10.1090/conm/001.

[16] S. G. Brush, “History of the lenz-ising model,” Rev. Mod. Phys., vol. 39, no. 4, pp. 883–893, Oct. 1967.
doi: 10.1103/RevModPhys.39.883.

[17] J. Taylor, “The ising model,” [Online]. Available: https://math.la.asu.edu/~jtaylor/teaching/
Spring2016/STP421/lectures/Ising.pdf.

45

https://arxiv.org/abs/1311.3144
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-438-algorithms-for-inference-fall-2014/lecture-notes/MIT6_438F14_Lec3.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-438-algorithms-for-inference-fall-2014/lecture-notes/MIT6_438F14_Lec3.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-438-algorithms-for-inference-fall-2014/lecture-notes/MIT6_438F14_Lec3.pdf
https://doi.org/10.1093/acprof:oso/9780198570837.001.0001
https://www.merl.com/publications/TR2001-22
https://www.merl.com/publications/TR2001-22
https://doi.org/10.1109/18.910572
http://dblp.uni-trier.de/db/journals/neco/neco16.html#WellingT04
http://dblp.uni-trier.de/db/journals/neco/neco16.html#WellingT04
https://mathworld.wolfram.com/CodingTheory.html
https://mathworld.wolfram.com/CodingTheory.html
https://www2.kenyon.edu/Depts/Math/Aydin/Teach/Sp05/392/Intro.pdf
https://www2.kenyon.edu/Depts/Math/Aydin/Teach/Sp05/392/Intro.pdf
https://doi.org/http://dx.doi.org/10.1090/conm/001
https://doi.org/10.1103/RevModPhys.39.883
https://math.la.asu.edu/~jtaylor/teaching/Spring2016/STP421/lectures/Ising.pdf
https://math.la.asu.edu/~jtaylor/teaching/Spring2016/STP421/lectures/Ising.pdf


[18] H. Zhang, G. Kamath, J. Kulkarni, and Z. S. Wu, “Privately learning markov random fields,” 2020.
arXiv: 2002.09463 [cs.DS].

[19] P. Eastman, “Introduction to statistical mechanics,” Reviews of Modern Physics, [Online]. Available:
https://web.stanford.edu/~peastman/statmech/index.html.

[20] A. Decelle and F. Krzakala, “Belief-propagation-guided monte-carlo sampling,” Physical Review B,
vol. 89, no. 21, Jun. 2014. doi: 10.1103/physrevb.89.214421. [Online]. Available: https://doi.org/
10.1103%2Fphysrevb.89.214421.

[21] N. Offeddu, M. Thielmann, and M. Ollikainen, “Computational statistical physics lecture notes,” ETH
Zurich, [Online]. Available: https://ethz.ch/content/dam/ethz/special-interest/baug/ifb/ifb-
dam/homepage-IfB/Education/msc_courses/msc_computational-statphys/documents/dipse.pdf.

[22] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “An introduction to variational methods for
graphical models,” Machine Learning, vol. 37, pp. 183–233, Jan. 1999. doi: 10.1023/A:1007665907178.

[23] F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density
of states,” Physical Review Letters, vol. 86, no. 10, pp. 2050–2053, Mar. 2001, issn: 1079-7114. doi: 10.
1103/physrevlett.86.2050. [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.86.2050.

[24] J. Lopes, “Métodos de monte carlo para sistemas com desordem e interacção de longo alcance,” Phd
Thesis, Universidade do Porto, Jun. 2006, pp. 73–76.

[25] J. Pearl, “Reverend bayes on inference engines: A distributed hierarchical approach,” in Proceedings
AAAI Natinal Conference on AI, Pittsburgh, PA, 1982, pp. 133–136.

[26] A. Lipowski, A. L. Ferreira, D. Lipowska, and K. Gontarek, “Phase transitions in ising models on
directed networks,” Phys. Rev. E, vol. 92, p. 052 811, 5 Nov. 2015.

[27] S. Jo, J. Yoo, and U. Kang, “Fast and scalable distributed loopy belief propagation on real-world
graphs,” WSDM ’18: Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining, pp. 297–305, Feb. 2018. doi: 10.1145/3159652.3159722.

[28] X. Li, Y. Pang, C. Zhao, Y. Liu, and Q. Dong, “A new multi-level algorithm for balanced partition
problem on large scale directed graphs,” Advances in Aeronautics, vol. 3, no. 1, 23, p. 23, Dec. 2021.
doi: 10.1186/s42774-021-00074-x.

[29] S. Boettcher and A. Percus, “Extremal optimization for graph partitioning,” CoRR, vol. cond-
mat/0104214, Jul. 2001. doi: 10.1103/PhysRevE.64.026114.

[30] S. Boettcher, “Extremal optimization of graph partitioning at the percolation threshold,” Journal of
Physics A: Mathematical and General, vol. 32, no. 28, pp. 5201–5211, Jan. 1999. doi: 10.1088/0305-
4470/32/28/302.

[31] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, “Critical phenomena in complex networks,”
Reviews of Modern Physics, vol. 80, no. 4, pp. 1275–1335, Oct. 2008. doi: 10.1103/revmodphys.80.1275.
[Online]. Available: https://doi.org/10.1103%2Frevmodphys.80.1275.

46

https://arxiv.org/abs/2002.09463
https://web.stanford.edu/~peastman/statmech/index.html
https://doi.org/10.1103/physrevb.89.214421
https://doi.org/10.1103%2Fphysrevb.89.214421
https://doi.org/10.1103%2Fphysrevb.89.214421
https://ethz.ch/content/dam/ethz/special-interest/baug/ifb/ifb-dam/homepage-IfB/Education/msc_courses/msc_computational-statphys/documents/dipse.pdf
https://ethz.ch/content/dam/ethz/special-interest/baug/ifb/ifb-dam/homepage-IfB/Education/msc_courses/msc_computational-statphys/documents/dipse.pdf
https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1103/physrevlett.86.2050
https://doi.org/10.1103/physrevlett.86.2050
http://dx.doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1145/3159652.3159722
https://doi.org/10.1186/s42774-021-00074-x
https://doi.org/10.1103/PhysRevE.64.026114
https://doi.org/10.1088/0305-4470/32/28/302
https://doi.org/10.1088/0305-4470/32/28/302
https://doi.org/10.1103/revmodphys.80.1275
https://doi.org/10.1103%2Frevmodphys.80.1275


Appendix

47



Algorithm 1 Belief Propagation partitioning algorithm for a given graph and desired value
of magnetization md.

1: Define the parameter memory, the maximum number of iterations nIterMax and the
minimum value of convergence eps,

2: Randomly initialize the external magnetic field H and the messages {h0
i→j},

3: nIter ← 0, conv ← 1.0,
4: while ((nIter < nIterMax) and (conv > eps)) do
5: nIter ← nIter + 1, conv ← 0,
6: {h1

i→j} ← 0 ,
7: for i = 1 to N do
8: convergence← 0.0,
9: From the messages h0

i→j compute hi,
10: for j = ∂i do
11: From h0

i→j and the updated hi compute the message h1
i→j ,

12: convergence← convergence+ |h1
i→j − h0

i→j |,
13: h1

i→j ← memory × h0
i→j + (1−memory)× h1

i→j ,
14: end for
15: if αi > 0 then
16: convergence← convergence/αi,
17: end if
18: conv ← conv + convergence,
19: end for
20: conv ← conv/N ,
21: sort(hi),
22: H ← −hi[N(1−md)/2],
23: {h0

i→j} ← {h1
i→j},

24: end while
25: Compute hi,
26: partition← 0
27: n+ ← 0, n− ← 0, n0 ← 0,
28: for i = 1 to N do
29: if ((H + hi) > 0) then
30: partition[i]← 1,
31: n+ ← n+ + 1
32: else if ((H + hi) < 0) then
33: partition[i]← −1,
34: n− ← n− + 1
35: else
36: n0 ← n0 + 1
37: end if
38: end for
39: m← (n+ − n−)/N
40: Compute the partitioning cost bBP from the spin values register in partition,
41: Compute the Bethe estimate of the ground-state energy E for the found configuration

with magnetization m,
42: Compute the partitioning cost bBP

E from the energy value computed,
return partition, bBP (md) and bBP

E (md).
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Algorithm 2 Wang-Landau partitioning algorithm for a given graph and desired value of
magnetization md.

1: Define dm, intm and nMC ,
2: nmax

f ← 0.0
3: Compute the number of edges nedges,
4: mi ← md,
5: Under the name partition registers the nodes of the initial random configuration with the
n+ positive spin values and the n− spin values that agree with mi.

6: Compute the energy Ei of the initial configuration.
7: f ← 1.0,
8: w ← 0,
9: w(Ei,m

d)← f ,
10: Emin ← Ei, Emax ← Ei, E0 ← Emin,
11: iff ← 1,
12: Run the Wang-Landau algorithm using the function of Algorithm 3 and update the values

partition, n+, n−, mi, w, Ei, Emin, Emax and E0,
13: iff ← 0,
14: Rerun the function of Algorithm 3 and update the values partition, n+, n−, mi, w, Ei,

Emin, Emax and E0,
15: From the configuration partition compute the partition cost bW L.

return partition and bW L(md).

49



Algorithm 3 Wang-Landau function
1: function wanglandau(intm, dm, nMC , nedges, partition, n+, n−,mi, n

max
f , f, w,Ei, Emin, Emax, E0, iff)

2: h← 0, nf ← 0, if lag ← 1,
3: for step = 1 to nMC do
4: for is = 1 to N do
5: if (step % intm == 0 or (n+ == 0 or n+ == N)) then
6: Randomly choose a spin i to flip and compute Er and mr,
7: else
8: Randomly choose a pair of spins to interchange and compute Er and mr,
9: end if

10: if (|mr −md| ≤ dm then
11: Compute the probability pA(i→ r) of accepting the new configuration,
12: Generate a random number rn between 0 and 1,
13: if (rn ≤ pA(i→ r)) then
14: Update n+, n−, Emin and Emax according to the proposed configuration,
15: Reset the counter nf to zero if the values of Emin or Emax had change,
16: mi ← mr, Ei ← Er

17: end if
18: if (mi == md) and (Ei ≤ E0) then
19: E0 ← Ei

20: The system configuration is saved under the name partition,
21: end if
22: end if
23: if (iff == 1) then
24: if (f < 1.0−8) then
25: Stop the function.
26: else
27: w(Ei,mi)← w(Ei,mi) + f ,
28: if (if lag == 1 and Ei == Emax) then
29: nf ← nf + 1, if lag ← −1,
30: end if
31: if (if lag == −1 and energia == emin) then
32: nf ← nf + 1, if lag ← 1,
33: end if
34: if (nf == nmax

f ) then
35: f ← f/2.0, nf ← 0,
36: end if
37: end if
38: end if
39: end for
40: h(Ei,mi)← h(Ei,mi) + 1,
41: end for
42: h(Ei,mi)← h(Ei,mi)/nMC ,

return partition, n+, n−, mi, w, Ei, Emin, Emax and E0.
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