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Abstract

Among the most used non-steroidal anti-inflammatdrygs (NSAIDs), ketoprofen
(KTF) assumes an important position. Neverthelgéssgcotoxicological effects are in
non-target organisms poorly characterized, desisitase and frequency of occurrence
in aquatic matrices. Thus, the aim of this studyswa evaluate the possible
toxicological effects of KTF contamination, in twoeshwater specied,emna minor
and Daphnia magna, by measuring biochemical, physiological and papah
parameters. To attain this objective, both spewiese exposed to KTF at the same
concentrations (0, 0.24, 1.2, 6 and 30 pgiLminor plants were exposed during 4 d to
these levels of KTF, and the enzymatic activitytdtzse (CAT), glutathione S-
transferases (GSTs) and carbonic anhydrase (CAg)pmments content (chlorophyll a,
b and total and carotenoids) were analyzed to atalthe toxicity of this drugD.
magna was acutely and chronically exposed to KTF, andyeratic activities (CAT,
GSTs and cyclooxygenase (COX)), the feeding raaesl reproduction traits were
assessed. Ih. minor, KTF provoked alterations in all enzyme activifiég®wever, it
was not capable of causing any alteration in aggnent levels. On the other hand, KTF
also provoked alterations in all enzymatic actestin D. magna, but did not affect
feeding rates and life-history parameters. In aasioh, exposure to KTF, provoked
biochemical alterations in both species. Howetlezse alterations were not reflected
into deleterious effects on physiological and papahal traits ofL. minor and D.

magna.

Capsule: KTF demonstrates species-specific toxicity to ddfé aquatic organisms

affecting biochemical levels but not impairing pioysgical and population levels.

Keywords: Non-steroidal anti-inflammatory drug&emna minor; Daphnia magna;

Photosynthetic pigments; Biochemical markers; Repcton.
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Introduction

Thousands of tons of pharmaceutical substancesised yearly to prevent or treat
illnesses (Kosjek et al., 2005; Lapworth et al.120 Drugs have been recognized as a
large class of chemical contaminants which mayimaig from human and aquaculture
usages, as direct results of excretions of met&solnd residues after metabolism
(Eslami et al., 2015), among other sources. Thegmee and potential effects of these
chemicals has been gaining attention due to threase of their discharges, leading to
an augmented frequency of their detection in therenment (Kosjek et al., 2005;

Rzymski et al., 2017).

Non-steroidal anti-inflammatory drugs (NSAIDs) asnong the most frequently
prescribed drugs in modern medicine (Meek et &102 It was estimated that the
worldwide NSAIDs production is of several kilotoreach year (Cleuvers 2004;
Freches, 2017). These drugs are commonly useckitreatment of symptoms such as
inflammation, pain, and fever (Simon, 2013; Al-Kéel et al., 2017). This usage is due
to their pharmacological activity, that occurs thgh cyclooxygenase (COX) inhibition,
enzyme responsible for the production off prostadilas, which are chemical mediators
involved in inflammatory processes (Hernando et28l06). Beyond its use for the
general purposes that NSAIDS are used for, iK¥dy also be used to treat rheumatoid
arthritis and osteoarthritis, and to relieve mussid joint pain (Praskova et al., 2011).
Among NSAIDs that are nowadays in use for humamageutics, it is possible to
identify ketoprofen (KTF), which is the third masted NSAID; data from the literature
show that, in Croatia, and between 2007 and 20&8numbers of KTF consumption
were just behind values for diclofenac and ibuprofiérnic et al., 2015). In 2015, in
England, a total of about 25,400 prescriptions K3+ were accounted for (PACT

2016), while in 2017 this value reached 147,97thenUSA (ClinCalc, 2020).
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KTF, in humans, is extensively and rapidly metatedi by the liver, mainly via

conjugation with glucuronic acid (Gierse et al.92p and approximately 80% of the
administered dose is excreted in the urine in &d@4- period after the administration
(PraSkova et al., 2011); however, there is no médron about these parameters for
aquatic organisms, which is now critically required the assessment of its putative

toxicological environmental assessment.

NSAIDs are one of the most frequently detected mplaaeutical compounds in the
aquatic environment, and their environmental dstion is widespread (Gentili 2007;
aus der Beek et al., 2016, including KTF. Thesayslrin general, are not efficiently
eliminated in sewage treatment plants, being retk&s surface waters (Martinez-Sena
et al., 2016). Thus, KTF is reported in aquaticiemnment up to 0.3 pug/L and up to
0.87 pg/L in Catalonia (Spain) rivers and effluergspectively (Farré et al., 2001),
around 0.2 pg/L in German municipal sewage treatmlamt (Ternes, 1998), 0.18 pg/L
(Tixier et al, 2003) in Switzerland waste watematreent plant and 5.7 pg/L in effluents
of Canadian sewage treatment plants (Metcalfe .et2@D3), besides that, KTF was

recorded up to 2 pug/L in Finland influents (Lindspvet al., 2005).

Considering the large number of NSAIDs, in genetiabir environmental fates and
effects are still poorly understood, despite threaay published data that evidence their
persistent nature, and bioaccumulation potentiahquatic organisms (Geng et al.,
2018). This is a pertinent gap in the knowledgehef environmental effects of drugs,
since NSAIDs were designed to be biological activa specific group of organisms
(Kosjek et al., 2005; Ghlichloo and Gerriets, 202@ammalians, for instance, have
both COX isoforms (COX-1 and COX-2, mainly), enzymeesponsible for the
regulation and onset of the inflammatory processecdthann et al., 2008a;

Wongrakpanich et al., 2018). However, one COX isofcat least, is generally present

4
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in invertebrates and lower vertebrates (Rowleylet2®05) and, consequently, these
organisms may also be affected by NSAIDs too. Cquesetly, these pharmaceuticals
may be responsible for a large number of toxicaalgeffects in non-targets organisms,
including macrophyte species (Alkimin et al., 201 9aollusks (Almeida and Nunes,
2019; Piedade et al., 2020), polychaetes (Gomak,&£019) and fish (Nogueira et al.,
2019). Toxicological effects of KTF have been mpdihited to a few studies, that
measured its toxic effects on embryo-larval develept and biochemical alterations,
including the oxidative stress response, assessé&dth larvae and adults of the fish
speciedDanio rerio (Diniz et al., 2015; Rangasamy et al., 2018). Taeffects of KTF
were also determined in the freshwater f&yprinus carpio (Praskova et al., 2013),
also focusing in embryo-larval development. In &ddi KTF toxicity was analyzed in
the microcrustaceaDaphnia magna, and obtained data evidenced its capacity to alter
the swimming behavior and physiological endpoitisat rate, thoracic limb activity,

and mandible movement) in this organism (Bowni&lgt2020)

Besides their pharmacological activity, which osctinrough COX inhibition, some
NSAIDs have the ability to interact with biota, teky affecting other biological
parameters. In humans, NSAIDs are capable of itihgothe carbonic anhydrase (CA)
activity (Knudsen et al., 2004), an enzyme resgmesior carbon dioxide hydration
(Lindskog, 1997). NSAIDs also induce the generatibreactive oxygen species (ROS)
(Galati et al., 2002; Adachi et al., 2007; Ito ket 2016) that can lead to oxidative stress.
The effects of NSAIDs are not limited to the heesaribed toxicity, since they may
also directly compromise the eicosanoids biosyighesn important molecule in
reproductive traits of crustaceans (Heckmann e2808a), and provoke physiological
alterations on macrophyte species (Wrede, 2015)s,Th is possible to assume that

more studies about these effects associated to DESA&kposure, namely KTF, are
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urgently required, in a comprehensive range of misyas. Besides the necessity to
study the effects of KTF on a comprehensive rangéeistinct test organisms, it is
equally necessary to determine its effects on aofdbxicological complimentary
endpoints, from different levels of organizatiomcluding at the biochemical,
physiological and population levels. This will allacreating a body of evidence about
KTF toxicity to aquatic organisms, which is nowaslayiostly inexistent. In addition,
these studies were performed by testing much highecentrations than those found in
the aquatic environment, considering the alreadytimeed studies reporting the
environmental presence and levels of this drug. fdly characterize the
ecotoxicological potential of this drug, it is nesary to determine its toxicity at
environmentally realistic concentrations, in aquairganisms. Thus, the aim of this
study was to evaluate the toxicological effects KafF at realistic environmental
concentrations and worst scenario case scenanidgjoi freshwater species, namely a
macrophyte speciesLémna minor) and a microcrustacearDdphnia magna), by

measuring biochemical, physiological and populatigrarameters.

Material and methods

Chemicals

Ketoprofen (CAS number: 22071-15-4) was purchaseuwh {fSigma-Aldrich (Belgium)
with > 98% of analytical purity; all other chemicals usedhis study (buffers, protein
determinations) had analytical purity and were pased from Sigma Aldrich and Bio-

rad® laboratories.
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Organisms culture and maintenance

All organisms [Lemna minor andDaphnia magna) were cultured and maintained at the
Department of Biology at Aveiro University, as deised by Alkimin et al. (2019b) for

L. minor, and by Daniel et al. (2019) fér. magna.

Exposures of test organisms

All experiments performed in this work involved @ging both species to the same
range of concentrations, based on already repai®ironmental levels (up to 5.7
png/L) (Farré et al., 2001; Metcalfe et al., 2003 dgvist et al., 2005). The nominal
exposure concentrations were: 0, 0.24, 1.2, 6 ahdu@L; the control treatments
involved exposing organisms only to the culture medof each species. The KTF
stock solutions were directly prepared in each ifipemlture medium by dissolving the

pure compound.

Macrophytes —Lemna minor

Plants of the macrophyte speciesninor were exposed in a 6-well plate, filled with 10
mL of medium and/or stock solution per well. Thettestarted with macrophytes
covering around 20% of the surface of each wellh\&D replicates per condition. The
test had 96 h of duration, a period that was chasamsidering the assumptions
described by Alkimin et al. (2019b). This studyaddished that 96h is a duration long
enough to cause measurable alterationd.emna species after being exposed to
xenobiotics, including to some pharmaceutical drugExposures were conducted

according to OECD (2006) under controlled condgio(temperature 281 °C;
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continuous light exposure; light intensity, ~84 pnphotons rif s%) in a climate

chamber (Binder). After the exposure peribémna fronds from each treatment were
collected, and this biomass was divided and plaoe&ppendorfs microtubes, and
stored at -80 °C for the analyzes - quantificabbpigments (chlorophyll a, b and total
and carotenoids) and determination of biochemicatlpeints (catalase, CAT,;

glutathione-S-transferases, GSTs; and carboniccaabg, CA, activities).

Microcrustacean —Daphnia magna

Three different experiments were performed vilthmagna. In the first one, juveniles
(5 d old) were exposed to KTF during 48 h in 300 ghdss flasks filled with 200 mL of
KTF or medium solution. For each concentrationeplicates with 12 organisms each
were adopted. This experiment was repeated the@eh) one for obtaining biological
samples to quantify a specific enzyme (biochemitarkers). At the end of the
exposure periods, animals were collected with atiglgipette to Eppendorf microtubes
and stored at -80 °C for ulterior analysis (deteation of CAT, GSTs, and COX
activities). Feeding rate experiments were condlgte test-chambers consisted of
50mL glass flasks filled with test solution, wheredi5 d old daphnids were positioned
(five replicates per treatment). Briefly, this tesas used to measure the filtration
capacity on algal cellsRéphidocelis subcapitata) by test organisms, when exposed to
the drug. The animals were exposed for 24 h, irddrk, to all experimental conditions,
with 5x1F cells/mL of the algaeR. subcapitata in the test-chambers. Afterwards,
animals were transferred to a new test-chambeh (gl#an media), also in the dark, for
4 h, with the same algae density (post-exposur®gerto evaluate the recovery from
exposure to toxicants. Blank controls (media withdaphnids) were included in the

experimental design in both cases. At the end oh geeriod, the algae cell densities

8
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were spectrophotometrically measured (Thermo S@iemdultiskan (Scanlt Software
2.4.4)) at 440 nm. Finally, the feeding rate wakudated converting the obtained
values to proportional algae consumption (%) redatio control. Finally, a chronic
reproduction test was conducted, based on the Ogiid®line 211 (OECD 2012) with
the exposure period modified according to Ribeitcale (2011) and Alkimin et al.
(2020). The test duration was approximately 16 dagd/or the third brood. The
experiment was performed in 50 mL glass flasks, &ddeplicates with < 24 h old
neonates were used for each concentration. Medasinhwas totally renewed every
other day, and the animals were maintained in #@@es culture conditions. The
parameters day of first brood, number of neonatas first brood, and total number of

neonates were the evaluated endpoints.

Quantification of physiological and biochemical paameters

Pigments analysis (chlorophylls and carotenoids)

Total, a, and b chlorophylls (TChl; Chl a; Chl Bjd carotenoids (Car) amounts were
determined spectrophotometrically, according to riethod described by Hiscox and
Israelstam (1979). Pigments were extracted fromptieeiously exposed fronds &f
minor (about 10 mg per replicate - fresh weight, FW)1i& mL of dimethyl sulphoxide
(DMSO). The extract was placed in water at 65 °@ngu30 min and allowed to cool in
the dark and at room temperature. The obtainedrsafats were used to quantify the
amounts of chlorophylls (a, b, and total), and t=roids levels, by spectrophotometry,
by measuring the absorbance of the extracts, ateagths of 470, 645, 646, and 663.
The calculation of the pigments followed the equadi proposed by Arnon (1949) and

demonstrated by Hiscox and Israelstam (1979) tesuitable if the extraction was



10

219 undertaken with DMSO, to calculate the amounts bf (&, b, and total), and by
220 Lichtenthaler (1987) to quantify the Car amount. dddition, two ratios were

221 determined: [Chl a] / [Chl b]; and [TChl] / [Car].

222

223 Tissue homogenization — biochemical markers

224  For CAT and GSTs determinations, samples were rategeivith mortar and pestle. (
225 minor) or sonicatedd. magna — Branson sonicator, model 250) in ice-cold phasph
226  buffer (50 mM, pH 7.0, with 0.1% Triton X-100). Hadhhomogenate sample was
227  composed by ~ eight fronds bf minor, or 12 individuals oD. magna, and 1.2 mL
228 phosphate buffer. Homogenized samples were cegédfiat 15,000 g at 4°C for 10
229  min. For carbonic anhydrase activity (CA) deterrmtior® samples ot. minor were
230 macerated in 1 mL ice-cold Tris-sulfate 25 mM (pH)#&vith 25 mM of sodium sulfate.
231  Homogenized samples were centrifuged at 10,0004¢@tfor 40 min. Cyclooxygenase
232 determination . magna) was performed using 0.8 mL of 0.1 M Tris-HCI lkarfi(pH
233 7.8) with 1 mM EDTA to sonicate animals, followeg b cycle of centrifugation at
234 10,000 g at 4 °C for 15 min. After the centrifugatprocess, supernatants were divided
235 into aliquots, which were used for the differenzynatic determinations, as described

236  below.

237

238 Catalase activity determination

239  Catalase activity was determined in a 96-well nptaie, by the procedure described by
240  Aebi (1984), based on the degradation rate of tistsate HO,, monitored at 240m
241 for 5min. The results were expressed by considering @hat unit of CAT activity

242  equals the number of moles 0§®) degraded per minute, per milligram of protein.

10
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Glutathione-S-transferases activity determination

The procedure to determine GSTs activity monitaiesl increment of absorbance at
340 nm of a thioether resulting from the catalysfsthe substrate 1-chloro-2,4-
dinitrobenzene (CDNB) with glutathione by GSTsdascribed by Habig et al. (1974),
adapted to a 96 well microplate. Results were esga@ as millimoles of thioether

produced per minute, per milligram of protein.

Carbonic anhydrase activity determination

To determine CA activity, the method by Verpoottale (1967) was adapted to 96-well
microplates. This methodology is based on the Hydi®of the substrate p-nitrophenol
acetate (pNPAc), catalyzed by CA. This reaction wesh monitored for 5 min at a
wavelength of 400 nm. One unit of CA is definedttaes amount of enzyme needed to
hydrolyze one pmol of pNPAc per minute, and thedagre expressed in U/milligram

of protein.

Cyclooxygenase activity determination

This method is based on the ability of cyclooxyg@&OX) to convert arachidonic
acid into a hydroperoxy endoperoxide (Prostagla@i2n PGG2). This is reduced in the
presence of N, N, N', N'-tetramethyl-p-phenylensdiee (TMPD) to its alcohol

(Prostaglandin H2; PGH2); then, the oxidation of HIMwas monitored during 5 min at

590 nm (Petrovic and Murray, 2010).

11
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Protein determination

Protein quantification was performed at 586 using the Bradford method (Bradford
1976), adapted to microplate, with bovipglobulin as standard (1mg/ml), in order to
express enzymatic activities per mg of protein hid ainalyzed samples. Finally, all
spectrophotometric readings were performed in aaplate reader Thermo Scientific

Multiskan (Scanlt Software 2.4.4).

Statistical analysis

Data for all parameters were tested for homogenraity normality, and a one-way
analysis of variance (ANOVA) was performed, follalwby a post-hoc Dunnett's test
(or the equivalent non-parametric test, accordmghe data). Statistical analysis was

performed with SigmaPlot v.14.0. The adopted |lef¥alignificance was 0.05.

Results

The lowest concentration (0.24 pg/L) of KTF provoke decrease in GSTs activity in
L. minor; on the contrary, this enzyme’s activity was iased in plants exposed to all
other concentrations (1.2, 6, and 30 pg/ly dg= 57.177, p <0.001; Figure 1A). With
the exception of the highest concentration (30 Wgf0F increased CAT activity (f,

32) = 23.157, p<0.001; Figure 1B). KTF caused a deerazf CA activity in plants
exposed to levels of 0.24 and 1.2 pg/Li{ke = 10.055, p<0.001; Figure 1C) and no

effect was observed in plants exposed to the tvghdst concentrations (6, and 30

Hg/L).

12
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Photosynthetic pigments (Chl a, b and TChl) meakurd.. minor did not suffer any

alteration after KTF exposure 4Fa7)= 0.922, p = 0.460; k 47y= 1.426, p = 0.242 and
Fa, 47y = 1.003, p = 0.416, respectively). No alterationsre also detected for Car
content (kz, 47y = 1.139, p = 0.351,) or for both determined rafiGhl a/b — Hgr =

4.255, p = 0.373; TChl/Car ~F47)= 2.022, p = 0.108) (Figure 2A — F).

In D. magna, KTF caused an increase in CAT activitys(l=31.597; p<0.001) in a
concentration related manner (Figure 3A); GSTwagtalso presented an increase, but
only statistically different in organisms exposedcbncentrations of 1.2 and 6 pg/L
(Fa,2275.048; p=0.007)(Figure 3B). On the other hand, C&aXvity was reduced after
KTF exposure (R 1s74.695; p=0.013) for organisms exposed to all teste

concentrations, in a dose-response manner (Figtiye 3

Ketoprofen did not affecD. magna feeding rates during exposurea(fay= 3.515; p =

0.025 ) or during recovery period{bs= 1.636 p=0.0204; Figure 4).

Ketoprofen did not affect reproductive endpoint®inmagna, which included day of
first brood (Hgr =4.091; p=0.394; Figure 5A), number of neonatesnfriirst brood
(H4g=2.803; p=0.591; Figure 5B), and total number obrades (@, 4470.938;

p=0.452; Figure 5C).

Discussion
Lemna minor

NSAIDs, including diclofenac and paracetamol, apable to induce ROS production
in L. minor, as already demonstrated by Kummerova et al. (20IBis is highly

important in our context, considering that reactiogygen species (ROS), and

13
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particularly hydrogen peroxide ¢(B,), are generated during the normal plant
metabolism and are involved in a diversity of sigma cascades and reactions
necessary for the physiological regulation of dseeaspects, such as plant growth
(Cheeseman, 2007). Exposure to anthropogenic xaies) such as the referred drugs,
may enhance this production, leading to toxic é¢ffen plants. A similar finding was
made clear in this study, since CAT activity wasr@ased following KTF exposure.
Increased CAT activity must be understood as theamon of enzymatic detoxification
mechanisms that to minimize cellular levels of sagele radicals (§) and BO,. This

is the main role of antioxidant enzymes such as @33diram and Tyagi, 2004). It is
thus possible to hypothesize that low levels of Kiiére causative of the triggering of
an antioxidant response. Conversely, the activitg AT measured in plants exposed to
the highest KTF concentration was closely simitarthie control values; this can be
assumed as a possible plant resilience mechanisog macrophytes are known for
their ability to recover along time (Wang, 1990)hem kept in a contaminated
environment by different contaminants, such as metqaramillo et al.,, 2019) and
pharmaceutical drugs (Alkimin et al., 2019a). Themmalization of CAT means that
plants were able to activate alternative detoxiitcaand antioxidant mechanisms, such
as ascorbate peroxidase and superoxide dismutastbea two enzymes very important
for the antioxidant defense system of plants (EiiftR002). For example, the different
affinities of ascorbate peroxidase (APX; um rangei CAT (mm range) for D,
indicated that they belong to different classesR@iS-scavenging enzymes, namely,
H.O, (Mittler, 2002) This means that the fine modulation of ROS sigmalimight
occurs through APX, whereas CAT might be respoadit the removal of excess ROS

during stress (Mittler, 2002).
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The alterations of CAT activity may be linked te@tbbserved changes in GSTs activity.
Plants exposed to the lowest concentration of Kaé d& decrease in GSTs activity. It is
possible to suggest that the overproduction of RQEKTF exposure (signaled by the
enhancement of CAT activity) may have caused didachages in cellular molecules.
This a common feature of ROS, and their damagirigpragnay include deleterious
alterations of DNA, lipids, and proteins; this ofteauses a decrease in enzymatic
activity by denaturation (Schieber and Chandel,4205n effect that may be held
accountable for the here-observed decrease of G&iMsty. On the other hand, plants
exposed to the other tested concentrations werabt&apof increasing their GSTs
activity. This pattern is indicative of distinct fe€ts, related to the increase of
biotransformation capacity of the organism to copihn the excess of this xenobiotic.
Since, this isoenzyme group is part of phase Ialm@tc mechanisms that is responsible
for the detoxification of exogenous compounds; agajing glutathione (GSH) with
compounds containing an electrophilic center to ifgdtie substrate into a more water
soluble, less toxic complex (Habig et al., 1974#).atdition, GSTs had also a role in
resisting pro-oxidative effects, being useful irhancing plant survival on toxic sites
(Cummins et al., 2011). This effect occurs sincd &8ontribute for the efficacy of the
antioxidant defense system, which does not dire@lgte to their role in xenobiotic

detoxification (Moons, 2005).

Macrophytes (such ak. minor) are primary producers in the aquatic environment,
consequently being at the basis of the food webreshwater systems; thus, adverse
effects that may occur in these plants can alsetel@usly affect the entire aquatic
food web. So, if thé.. minor antioxidant stress system was not able to effitjerduce
the adverse effect of xenobiotics upon exposuretetous effects might occur in this

species, from cell death to other unpredictablesequences (Demidchik, 2015; Xie et
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al., 2019). Despite the general absence of dataplént organisms, it is possible to
consider the assumptions made by Monaghan et @D9§2 when referring that life
history tradeloffs in animals are likely to be associated to akice stress and to the
antioxidant response, which occur at the most foreddal metabolic activities of living
organisms. Such traits are likely to impact notyathle individual, but to escalate at
higher levels of organization, with unforeseen ouates. So, changes in plants Lof

minor may indeed correspond to alterations at the etasyievel.

Carbonic anhydrase is a zinc-containing enzyme dattlyzes the rapid conversion of
CO, over water in a proton and bicarbonate ion (HCO reversible
hydration/dehydration reaction) (Coleman, 2000;ufleco-Almanza et al., 2012). In
plants, CA is important in many physiological fupnats that involve carboxylation or
decarboxylation reactions (Moroney et al., 2001)inmreasing C@ concentrations in
the chloroplast to increase the carboxylation mitethe ribulose 1,5-disphosphate
carboxylase (RuBisCO) enzyme. This chemical reactis responsible for the
incorporation of CQ into carbohydrates during photosynthesis; howeiteand can
only use C coming from Cf instead of C from carbonic acid or bicarbonate
(Escudero-Almanza et al., 2012). In addition, CAocaklctively participates in the
inorganic carbon transportation into actively plsgtthesizing cells or away from
actively respiring cells (Henry 1996). Few studiegorted the effects of pharmaceutical
drugs in CA enzymatic activity of macrophytes. Roeg data have shown that
acetazolamide (diuretic drug) and salicylic aci&&MD), had the capacity to decrease
CA activity, also in a macrophyte species, namklygibba (unpublished data).
However, the here obtained data showed a decrda€A aactivity only in plants
exposed to the lowest concentrations of KTF (0.2d &2 ug/L), which may indicate

hormesis. In general, a hormesis effect representaptive response of organisms to
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environmental or self-imposed challenges througiclwkhey improve its functionality
and/or tolerance to more aggressive challengesalf@zde and Mattson, 2017). Such
challenging conditions, in this case, correspondhi® higher concentrations of the
tested pharmaceutical. The exposed plants showée tesilient, by decreasing their
CA activity. Hormesis effects were also observe@AT activity, which only increased

in plants exposed to the lowest concentrations.

Generally, higher plants have three groups of pigsmecarotenoids, chlorophylls, and
phycobilins; the most important pigments involvadphotosynthesis are chlorophyills,
which are prone to be targets for toxic alteratio@hanges of the qualitative
composition or of quantitative content of pigmengse physiologically important
characteristics that indicate the general healttdition of plants, informing also on the
function of photosynthetic apparatus, including th@aptive responses after being
subjected to stressful situations (Belous et 811,8). Levels of the main photosynthetic
pigments here analyzed (Chl a, b and total) did sudfer any alteration after KTF
exposure; in addition, the ratio between levelstdbrophylls a and b were not altered.
This ratio is a calculation that characterizesghetosynthetic apparatus operation, by
indicating the potential photochemical activity lehves. The absence of effects may
lead us to conclude that KTF does not compromisentirmal photochemical potential
in L. minor, despite pervious indications that, in general, SAIDs may exert this
effect. As far as we know, no data are availableceming this parameter, for
macrophyte species after being exposed to KTF. Meweas mentioned, NSAIDs are
capable to cause alterations in chlorophyll contenplants. For example, diclofenac
(100 pg/L; 314.3 nM) and paracetamol (100 pg/L;.661M) were capable to decrease
the contents of photosynthetic pigments lin minor after 7 days of exposure

(Kummerova et al., 2016). Diclofenac (1 mg/L; 3.Mjrwas also responsible for the
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decrease of Chl a and b content in chico®ycljorium intybus), after 22 days of
exposure (Podio et al., 2020). Thus, we can hypatbe that environmental
concentrations of KTF are safe lt@mna species in relation to this specific endpoint,
being KTF a less toxic pharmaceutical drug amoregNBAID class to this genera. We
may also suggest that the here studied periodpisexe was not long enough to trigger
alterations in this endpoint after KTF exposureisTit an important set of results, since,
to the best of our knowledge, this is the firstampbout KTF toxicity evaluation in

Lemna species.

Carotenoids are well known free-radical scavengasn) playing an important role in
photoprotection of photosynthetic apparatus (Sgtaal., 2013). KTF-exposed plants
did not show changes in Car, in terms of their @mee, quantity, and proportion (in
comparison with chlorophylls, assessed by the oetation of TChil/Car ratio). The
ratio of TChl to Car is more informative that themple measurement of pigment levels,
because it indicates the degree of adaptationamitplto light and to adverse conditions.
In this case, after the evaluation of the obtaireslilts, it is possible to suggest that the
here tested KTF concentrations were not capablecaose alterations of this
physiological parameter, showing an adaptive capaxfi plants when challenged by
this adverse condition. This assumption can befamiad since, even after being
exposed to other NSAIDs, plants were capable tptadahis source of chemical stress,
and were not prone to suffer alterations in the €mtent, along the entire duration of
the exposure (Alkimin et al., 2019a). This set efults concerning the levels of
pigments demonstrates that minor was physiologically adapted to KTF, and no
deleterious effects were caused by KTF in termghef pigments levels of exposed

organisms.
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Finally, the observed biochemical effects were mswident enough to sustain the
occurrence of physiological alterations. Despite dlecurrence of biochemical changes
caused by KTF exposure, these were not followed dejeterious changes in
photosynthetic pigments (Chl a, b, total and Canus, it is possible to assume that the
antioxidant and biotransformation systemd.ominor were efficient enough to protect

these plants from other injuries.

Daphnia magna

The genuDaphnia is considered as a dominant herbivorous in th@lané&ton group,
and animals from this genus play an important noleemperate freshwater ecosystems
as primary consumers (Smirnov, 2013). Thus, the@éding activity is an important
aspect in their ecology, being necessarily assessedstressful situation, including
exposure to contamination by pharmaceutical drigghis work, it was possible to
observe that KTF, in the tested concentrations ndidalter feeding; animals subjected
to the recovery period evidenced a similar respoasd no substantial effects were
ascertained in these organisms. However, other BSAkuch as diclofenac, are
capable of reducindp. magna feeding rate (Nkoom et al.,, 2019) in concentration
between 5 and 100 pg/L. However, it is necessangider that Nkoom et al. (2019)
experiment was conducted with neonates <24 h aid, @ur work involved only
juveniles (5 d old), which can be more tolerant §Hig and Kaine, 2007). Feeding rate
can affect a large number of life-history traitattimay have context-dependent effects
on fitness (Garbutt and Little, 2014), being pwely associated with the reproduction.
Indeed, KTF did not affect the studied life-histdrgits. Data for another crustacean
species, namelZeriodaphnia dubia, showed the absence of effects after exposure to

KTF at concentrations up to 100 pg/L, with a deseda the offspring per female, when
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animals were exposed to 1 mg/L (Mennillo et al120 This level is nevertheless much
higher than the here tested concentrations, amdvedi above the amounts detected in
the environment, as already cited. These data @mnerent, since th®. magna 48h
ECso, is higher than 100 mg/L of KTF (Bostrom and Bargl, 2015), a value

approximately 3300 times higher than the leveltetes this study.

Despite not causing alterations in the feeding Wenaand in life-history traits, KTF
was able to trigger thD. magna antioxidant system, increasing the CAT activity of
exposed animals. This occurred most likely as semgit to cope with the putatively
higher levels of generated ROS. Among NSAIDs, K5 Ibeen shown to be more
toxic than other drugs from this class to themagna antioxidant system, generating
changes in the antioxidant mechanisms in concémtrats low as 0.24 pg/L of KTF
(943.8 pM). Daniel et al. (2019) reported an inseeaf CAT activity in animals
exposed to 2.56 mg/L (16.9 uM) of paracetamol, &ven a concentration of 50 pg/L

(242.4 nM) of ibuprofen was not able to triggesthystem (Wang et al., 2016).

KTF seems also to have activated the biotransfoomasystem inD. magna, by
increasing the activity of GSTs, a response thauwed for animals exposed to the
intermediate concentrations (1.2 and 6 pg/L). PhHsenzymes are crucial in
eliminating NSAIDs, but the interaction between GSnd KTF is poorly understood
for aquatic organisms. In other animals, such asmals, KTF can be eliminated in its
free forms: conjugated via glucuronic acid, or gdrbxyl (OH) metabolite, with or
without conjugation (Alkatheeri et al., 1999). Howge, the metabolic pathway of
conjugation seems also to occur in aquatic orgasisim fact, KTF triggered the
biotransformation system, increasing the GSTs #gtivn a fish PLHC-1 cell line
(Mennillo et al., 2017). Thus, it is possible topbyhesize that KTF can be excreted

following conjugation with glutathione (via GSTs)ddor with glucuronic acid, prior to
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be delivered to phase Il detoxification systemadtdition, the lowest (0.24 pg/L) and
the highest (30 pg/L) concentrations did not carsealteration of GST activity. Thus,
hermetic effect can be interpreted as follows: @t Iconcentrations hydroxylation
processes were effective enough to detoxify themhaeeutical, turning the phase I
biotransformation system of glutathione conjugatioedundant (Bartha, 2012).
However, in animals exposed to higher concentrafiamore complex metabolic
pathways should be activated by the drug (Bartbd2pleading to no alteration in the
GSTs activity. On the other hand, as already maatlpROS have the capacity to cause
molecular damage and this effect can be linked deaease in enzymatic activity by
denaturation (Schieber and Chandel, 2014) and qoesdly, may be responsible for
the decrease of GSTs activity in the higher comaéinn, attaining values near those of

the control treatment.

Eicosanoids are oxygenated metabolites of araclidesid (AA) with different

functions. Their biosynthesis may occur accordioglifferent pathways, such as the
cytochrome P450 epoxygenase pathway (epoxyeicesaiti acids), lipoxygenage
(LOX) pathway (leukotrienes and lipoxins), and ogotygenase (COX) pathway
(prostanoids: thromboxane and prostaglandins) [8taB006). As mentioned, COX or
PGH, synthase is an enzymatic form producing prostatytesn and it is conserved in
crustaceans, such as daphnids (Kyoto Encyclopddiaeaes and Genomes, KEGG).
Prostaglandins are signaling molecules with crudiadportance in crustacean
reproduction and immune system (Smirnov, 2017). NIBAcan interfere/inhibit

prostaglandins biosynthesis, since NSAIDs are caithge inhibitors of some of the

involved enzymatic forms, by competing with AA, whiis the physiological substrate
of COX; NSAIDs thereby affects eicosanoids biosgsth and their physiological

functions (Charlier and Michaux, 2003). Heckmannd ano-workers (2008a)
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demonstrated the existence of a COX pathwayinmagna, which appears to be
simpler than the COX pathway observed in mammaisaddition, another study
indicated that ibuprofen, also a NSAID, is capalflaffecting the sequential processes
of oogenesis and embryogenesis in daphnids, byrupiing the COX metabolic
pathway of eicosanoids (Heckmann et al., 2008b).aBiyng this way, this drug is
responsible for a dose-dependent decreage magna reproduction (Han et al., 2010;
Heckmann et al.,, 2007) and also affects reprodadtoanother crustacean species,
namely Moina macrocopa (Han et al., 2010). The NSAID effect in COX wasal
observed in this study, since KTF exposure cleddgreased COX activity in a dose-
response manner, as already mentioned before.réfudt was interpreted as a proxy
for the mode of action of these pharmaceutical db@gng a NSAIDs, its acute effects
resulted in the inhibition of COX, even at the lowalbeit realistic here tested
concentrations, which were indisputably enoughitger this mechanism iD. magna.
However, reproductive effects were not observedinmagna after KTF exposure,
which means that NSAIDs affect crustacean repradinct higher concentrations (in
the mg/L order) as observed by Han et al. (201d) ldackmann et al. (2007). These
assumptions reinforce the notion that deleterio®ANs effects in the eicosanoids
biosynthesis pathway may be important for the répection of crustaceans. However,
the alterations that were observed in this studystitute a warning for the possible

long-term effects of KTF in a worst environmentate scenario.

Conclusions

In conclusion, both species responded to low, sealievels of KTF. However, the
toxic effects of KTF were only limited to biocheralparameters, without extrapolating

to physiological and population modifications. Hweg changes of the biochemical
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parameters were clearly different between bothispgbeing.. minor more susceptible
to low KTF concentrations, hypothesizing the resitie capacity and hormetic effects;
while D. magna, in general, presented a dose response patters.cbmparison is
highly interesting and allows us to assume that Kd¥icity is eminently species-
specific. Finally, the results here obtained artear indication about the possibility of
KTF in causing toxicological effects in the aquabiganisms, even when organisms
were exposed to realistic conditions simulating #Hieeady described scenarios of

contamination in the wild.
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Figure 3 — Effects of ketoprofen iB. magna after acute exposure (48h). A) catalase activity B)
glutathione S-transferases activity, and C) cycjgmxnase activity. Bars and errors bars are Meaik + S
(N=5). * stands for statistical differences itat@®n to control following ANOVA and Dunnett's tie

equivalent non-parametric test.

39



40

140

I Exposure
120 - [ Post-exposure
=
100 - = - = M
&3
o 80 -
£
® 60
(O]
iy
40
20 1
0 T T T T T
0 0.24 1.2 6 30
851 KTF concentrations (ug/L)

852 Figure 4 — Effects of ketoprofen . magna feeding behavior, after exposure and after recoyeogt-
853 exposure). Bars and errors bars are Mean + SE5)N=

854
855

40



41

16
14
12
10

g
a 81
6 —
4 -
2 -
0 T T T T T
Control 0.24 1.2 6 30
KTF concentrations (ug/L)
B
354
30 4
2 254
£
2 204
)
< 15
o
8 10
z
5 -
0 T T T T T
Control 0.24 1.2 6 30
KTF concentrations (ug/L)
80 c
5 60
o T T
S
>
c
0 40 -
&
c
g
Z 20
0 T T T T T
Control 0.24 1.2 6 30
856 KTF concentrations (ug/L)

857 Figure 5 — Ketoprofen effects in reproductive pagtars inDaphnia magna. A) day of the first brood, B)
858 number of neonates from the first brood and C)l toimber of neonates (three broods). Bars andsrror
859 bars are Mean + SE (N= 10).

860

41



v

v

v

Highlights
Ketoprofen (KTF) acts different on Lemna minor and on Daphnia magna;
Effects of KTF were limited only to biochemical effects on both species,
L. minor effects of low KTF concentrations suggest resilience and hormetic
effects;

D. magna, in general, presented a dose response pattern to KTF exposure.
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