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Obesity is increasing worldwide in prepubertal children, reducing the age of onset of associated comorbidities, including type 2
diabetes. Sulfur-containing amino acids, methionine, cysteine, and their derivatives play important roles in the transmethylation
and transsulfuration pathways. Dysregulation of these pathways leads to alterations in the cellular methylation patterns and an
imbalanced redox state. Therefore, we tested the hypothesis that one-carbon metabolism is already dysregulated in prepubertal
children with obesity. Peripheral blood was collected from 64 children, and the plasma metabolites from transmethylation and
transsulfuration pathways were quantified by HPLC. The cohort was stratified by BMI z-scores and HOMA-IR indices into
healthy lean (HL), healthy obese (HO), and unhealthy obese (UHO). Fasting insulin levels were higher in the HO group
compared to the HL, while the UHO had the highest. All groups presented normal fasting glycemia. Furthermore, high-density
lipoprotein (HDL) was lower while triglycerides and lactate levels were higher in the UHO compared to HO subjects. S-
adenosylhomocysteine (SAH) and total homocysteine levels were increased in the HO group compared to HL. Additionally,
glutathione metabolism was also altered. Free cystine and oxidized glutathione (GSSG) were increased in the HO as compared
to HL subjects. Importantly, the adipocyte secretory function was already compromised at this young age. Elevated circulating
leptin and decreased adiponectin levels were observed in the UHO as compared to the HO subjects. Some of these alterations
were concomitant with alterations in the DNA methylation patterns in the obese group, independent of the impaired insulin
levels. In conclusion, our study informs on novel and important metabolic alterations in the transmethylation and the
transsulfuration pathways in the early stages of obesity. Moreover, the altered secretory function of the adipocyte very early in
life may be relevant in identifying early metabolic markers of disease that may inform on the increased risk for specific future
comorbidities in this population.
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1. Introduction

Obesity is a rapidly growing epidemic that is contributing
to the significant increase in metabolic diseases worldwide.
It is characterized by excess adipose tissue expansion and is
associated with low-grade inflammation and metabolic dys-
function [1]. The continuous release of proinflammatory
cytokines [1] and adipokines (e.g., leptin) by dysregulated
adipose tissue may contribute to the obesity-associated
inflammation [2]. It is thought that chronic low-grade
inflammation induces chronic oxidative stress, and that
both contribute to the obesity-related insulin resistance
(IR) and type 2 diabetes (T2D) development [3]. Due to
the drastic increase in early childhood obesity, the journey
to T2D development is starting earlier in life. This in turn
increases the risk for other severe health complications over
the lifespan, such as hypertension, cardiovascular diseases
(CVD), retinopathy, and neuropathy, that appear to
increase as the age of T2D onset decreases [4–6]. Further,
there are several important differences in the pathophysiol-
ogy of obesity-associated comorbidities in adults compared
to children, including early β-cell decline and time to T2D
treatment failure, as well as the lack of appropriate pharma-
cological medications approved for earlier ages, and longer
duration of the disease [7–10].

Early alterations in the redox and methylation status that
are associated with obesity may play a significant role in the
early onset of metabolic disturbances in children with obe-
sity. The thiol group plays an important role in biological sys-
tems [11]. It appears in the sulfur-containing amino acids
methionine and cysteine, and their derivatives, such as gluta-
thione (GSH) and other low molecular weight intermediates
in the transmethylation and transsulfuration pathways
[11, 12], also known as aminothiols. Thiols are responsible
for scavenging reactive oxygen species (ROS) and maintain-
ing redox homeostasis [13]. In particular, cysteine is primar-
ily responsible for maintaining the redox state in plasma [14],
while GSH maintains intracellular redox homeostasis, acting
directly or indirectly through enzymatic activity [13]. Recent
studies postulate dysfunction in the redox homeostasis in
obese children [15, 16]. Lechuga-Sancho et al. [15] have iden-
tified an altered oxidative status in erythrocytes from obesity-
associated insulin resistant children, even before those
changes occurred in plasma. Besides, Zalewska et al. [16]
reported alterations in the saliva redox status followed by
higher oxidative damage in obese when compared to over-
weight children.

Transmethylation and transsulfuration intermediates
are also critically important for methylation of DNA,
proteins, and lipids [14] with methionine-derived S-
adenosylmethionine (SAM), being the primary methyl
group donor [17]. Imbalance in the transmethylation and
transsulfuration pathways is linked with obesity-related
inflammation [18]. It has also been shown that high levels
of circulating homocysteine, resulting from the S-
adenosylhomocysteine (SAH) degradation, are linked to
an increased oxidation status in circulation [19]. Moreover,
the hyperhomocysteinemia resulting from the imbalance of
transsulfuration and transmethylation metabolites has been

linked to further risk of obesity-associated CVD, such as
atherosclerosis [18, 19]. Interestingly, a study conducted
in mice suggested that high levels of SAH in the circulation
could be involved with alterations at the epigenetic levels by
inhibiting the DNA methyltransferase enzymes. The same
study also indicated a possible relation between high levels
of SAH and endothelial dysfunction [20].

One-carbon metabolism pathways, including those
described above, have been implicated in important meta-
bolic processes that include redox defenses and epigenetic
alterations, which are both altered in obesity [11]. However,
it is not known how soon this can happen in life and whether
these pathways, if becoming altered in prepubertal children
with obesity, can facilitate the early onset of obesity-related
comorbidities.

Therefore, the present study is mainly aimed at testing
the hypothesis that one-carbon metabolism perturbation is
already present in the early stages of obesity development,
in prepubertal children. Therefore, transsulfuration and
transmethylation metabolite levels were quantified and
related with their systemic oxidative stress, genomic methyl-
ation status, and inflammatory marker levels in children of
normal weight or with overweight/obesity.

2. Material and Methods

2.1. Study Cohort. A group of 64 prepubertal children (5-9
years old, Tables 1 and 2 from Results) were recruited after
approval of the study by the Institutional Review Board
(IRB) (protocol number 206164) at the University of Arkan-
sas for Medical Science and following the guidelines of Dec-
laration of Helsinki (1964). This clinical study was
registered at ClinicalTrials.gov (NCT03323294). The inclu-
sion criteria were age 5-9 years at the date of the visit (i.e.,
5-<10 years), and the exclusion criteria were the presence
of known chronic illnesses/disorders that might affect study
outcome measures, such as type 1 diabetes mellitus, neuro-
logic, developmental, endocrine, hepatic, autoimmune, car-
diac, and renal disorders; use of any medication could affect
study outcomes, e.g., antipsychotics, thyroid hormone
replacement therapy, inhalation/oral steroids, insulin, ana-
bolic drugs and stimulants, or being classified as underweight
based on the CDC growth charts (http://www.cdc.gov/
growthcharts).

Anthropometric variables were collected for all study
participants and sex (male/female), age (years), weight (kg),
height (cm), and waist circumference (cm) were included
(Tables 1 and 2). For data analyses, children with an age ≥ 9
years and 6 months, but <10 years, were considered 10 years
old (Tables 1 and 2). The weight was measured using a cali-
brated Avery Berkel, HL122 Series Platform Scale (Dynamic
Scales, Terre Haute, IN, USA) wearing minimal clothing,
while height was obtained using a stadiometer (Novel
Products, Rockton, IL, USA). The waist circumference was
measured as reported previously [21].

Body mass index (BMI) was calculated from body
mass and height as kg/m2 and adjusted for age and sex
according to the Centers for Diseases Control and Preven-
tion (http://www.cdc.gov/growthcharts). The participants
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were considered overweight or obese if their age- and sex-
adjusted BMI was above the 85th percentile (i.e., BMI z −
score ðBMIzÞ > 1:04). Although during the stratification
present in Statistical Analysis, all the participants with over-
weight and obesity were included in obese groups. Clinical
outcomes such as systolic and diastolic blood pressure
(mmHg), as well as heart rate (bpm), were also measured
using a digital sphygmomanometer (Tables 1 and 2). The
measurement was performed on an arm rested at heart level,
and the cuff was placed two fingers above the brachial artery.
These measurements were performed at the Pediatric Clini-
cal Research Unit from Arkansas Children’s Hospital using
a GE Carescape V100 Dinamap vital sign monitor following
the standard procedures for this unit. The instrument is cal-
ibrated for children.

Fat-free mass, fat mass, and total body water were also
measured using the Tanita Body Composition Analyzer
(Model TBF-300A; Tanita Corporation of America, Inc.,
Arlington Heights, IL, USA).

2.2. Blood Collection and Processing. Fasting venous blood
samples were collected in EDTA tubes to isolate peripheral
blood mononuclear cells (PBMCs), as previously described
[21]. Plasma samples were collected after whole blood centri-
fugation (1,500 × g for 30min at 4°C). Thereafter, samples
were stored up to 1-2 years at -80°C, until the study was con-

cluded, so that all samples could be measured together to
reduce batch effects. Then, the plasma volume was replaced
with wash buffer consisting of Ca2+/Mg2+-free PBS supple-
mented with 2mM EDTA and 0.1% BSA (Sigma Aldrich,
St. Louis, MO). To perform the gradient separation,
Histopaque-1077 (Sigma Aldrich) was used. The diluted
blood was layered on histopaque and centrifuged at 400 × g
for 30min at room temperature. The white cloudy layer of
PBMCs was collected and washed two times with ~20ml of
room temperature wash buffer. PBMCs were counted using
a hemocytometer (Bright-Line; Hausser Scientific, Horsham,
PA), and 2-5 million PBMCs were pelleted, snap frozen on
dry ice, and stored up to two years at -80°C, until the study
was concluded [21].

2.3. Biochemical Measures. Fasting insulin concentration was
measured in plasma using the Mesoscale Discovery Platform
(MSD Multi-Array Assay System, Gaithersburg, MD, USA)
according to the manufacturer’s protocol. Fasting plasma
glucose was measured using YSI 2900 biochemistry analyzer
(YSI Life Sciences, Yellow Springs, OH, USA). The lipid pro-
file was quantified in plasma using a RX Daytona clinical
analyzer accordingly to the manufacturer’s instructions
(Randox Laboratories-IS Limited, Kearneysville, WV,
USA)—nonesterified fatty acids (NEFA: mmol/L), glycerol
(μmol/L), high-density lipoprotein (HDL: mmol/L), low-

Table 1: Physiologic and biochemical characteristics of healthy prepubertal children stratified per BMIz.

Characteristics n HL n HO p value

Sex: male/female 20 14/6 28 15/13

Age (years) 20 7.0 (6.0–8.0) 28 7.0 (6.0–8.3) ns

BMIz 20 0:078 ± 0:663 28 1:846 ± 0:557 <0.01
WC (cm) 20 55.0 (51.4-56.6) 28 61.5 (56.8-75.1) <0.01
Systolic BP (mmHg) 20 99:7 ± 9:71 28 106:71 ± 10:39 0.047

Diastolic BP (mmHg) 20 58:7 ± 9:30 28 62:29 ± 7:65 ns

Heart rate (bpm) 20 78 ± 12 28 79 ± 11 ns

Fat mass (kg) 20 3.9 (3.3-5.2) 28 9.4 (6.5-14.4) <0.01
Free-fat mass (kg) 20 19.0 (18.1-21.7) 28 23.3 (20.3-26.0) <0.01
Total body water (kg) 20 13.9 (13.3-15.9) 28 17.1 (14.8-19.0) <0.01
Insulin (μU/mL) 20 3:65 ± 1:55 28 5 <0.01
Glucose (mmol/L) 20 4.91 (4.75-5.12) 27 5.03 (4.60-5.35) ns

HOMA-IR 20 0.79 (0.54-0.92) 27 1.21 (1.00-1.49) <0.01
HOMA-β 20 50.17 (30.65-66.85) 27 72.05 (44.40-128.60) 0.015

HDL cholesterol (mmol/L) 20 1:47 ± 0:31 27 1:40 ± 0:29 ns

LDL cholesterol (mmol/L) 20 2:16 ± 0:61 27 2:35 ± 0:76 ns

Triglycerides (mmol/L) 20 0.52 (0.41-0.65) 27 0.53 (0.37-0.82) ns

Total cholesterol (mmol/L) 20 3:73 ± 0:68 27 3:89 ± 0:81 ns

NEFA (mmol/L) 20 0.10 (0.06-0.16) 27 0.08 (0.04-0.13) ns

Glycerol (μmol/L) 20 77.27 (64.19-130.24) 27 82.77 (68.20-92.10) ns

Lactate (mmol/L) 20 2:07 ± 0:57 27 2:03 ± 0:47 ns

HL: healthy lean; HO: healthy obese; BMIz: BMI z-score; WC: waist circumference; BP: blood pressure; BMR: basal metabolic rate; HOMA-IR: homeostatic
model assessment of insulin resistance; HOMA-β: homeostatic model assessment of β-cell function; LDL: low-density lipoprotein; HDL: high-density
lipoprotein; NEFA: nonesterified fatty acids; ns: nonsignificant; p value <0.05 was considered significant.
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density lipoprotein (LDL: mmol/L), and triglycerides (TGs:
mmol/L). Additionally, plasma lactate (mmol/L) and CRP
were measured using the same methodology.

Fasting insulin (μU/mL) and glucose concentrations
(mmol/L) were used to calculate HOMA-IR and HOMA-β
using the following equations:

HOMA − IR = fGlucose mmol/Lð Þ × fInsulin μU/mLð Þ
22:5 ,

HOMA − β = fInsulin μU/mLð Þ × 20
fGlucose mmol/Lð Þ − 3:5 :

ð1Þ

HOMA-IR was used to determine the insulin sensitivity
status for each participant. When HOMA − IR ≥ 2, the par-
ticipant was considered insulin resistant [22–24].

2.4. Sample Preparation for Aminothiol Analysis. Plasma was
prepared for analysis as previously described by Melnyk et al.
[25] in order to determine free reduced and oxidized or total
reduced aminothiols. Briefly, to assess the total concentration
of aminothiols, 50μL of a solution containing 1.43M of
sodium borohydride, 66mM sodium hydroxide, 1.5μM
EDTA, and 10μL n-amyl alcohol was added to 200μL of
plasma and incubated for 30min at 40°C. Thereafter, the pro-
teins were precipitated by incubation for 10min with cold

10% meta-phosphoric acid, the samples were centrifuged
for 15min at 14,000 RPM, and 20μL of supernatant was
measured by HPLC. To assess the free and oxidized ami-
nothiol concentration, an equal volume of 10% meta-
phosphoric acid was added to the plasma samples and treated
as previously described [25].

2.5. Aminothiols and Oxidative Damage Marker
Identification. Total and free aminothiols were separated
using a Shimadzu HPLC with a Shimadzu pump model 580
on a 5μm, 4:6 × 150mm i.d. reverse-phase C18 column
(MCM, Inc., Tokyo, Japan) with the thermostat at 25°C. An
isocratic mobile phase composed of 50mM sodium phos-
phate, 1.0mM of reagent OSA, and 2% acetonitrile (v/v) at
pH2.7 was used. The detection of all compounds was carried
out using a Coulochem II EC detector, model 5200A (ESA,
Inc.). The identification was carried out using external
standards for each compound: methionine, homocysteine,
cysteine, cystine, cysteinylglycine, reduced and oxidized glu-
tathione, gamma-glutamylcysteine, 3-nitro-tyrosine, and 3-
chloro-tyrosine, as previously described [25].

The percentage of oxidized GSH was obtained using the
following equation [14]:

%oxidizedGSH = 2GSSG
free GSH + 2GSSG × 100: ð2Þ

Table 2: Physiologic and biochemical characteristics of prepubertal children with obesity stratified per HOMA-IR.

Characteristics n HO n UHO p value

Sex: male/female 28 15/13 16 7/9

Age: years 28 7.0 (6.0–8.3) 16 8.0 (7.0–9.0) ns

BMIz 28 1:85 ± 0:56 16 2:45 ± 0:55 <0.01
WC (cm) 28 65:6 ± 12:1 16 77:5 ± 12:3 ns

Systolic BP (mmHg) 28 106:7 ± 10:4 16 113:5 ± 9:1 0.035

Diastolic BP (mmHg) 28 62:3 ± 7:7 16 64:75 ± 8:4 ns

Heart rate (bpm) 28 79 ± 11 16 83 ± 10 ns

Fat mass (kg) 28 9.4 (6.5-14.4) 16 19.3 (16.8-23.9) <0.01
Fat-free mass (kg) 28 23.3 (20.3–26.0) 16 29.2 (26.4-31.8) <0.01
Total body water (kg) 28 17.0 (14.8-19.0) 16 21.4 (19.3-23.3) <0.01
Insulin (μU/mL) 28 5.75 (4.56-7.10) 16 15.19 (10.33-25.20) <0.01
Glucose (mmol/L) 27 4:94 ± 0:52 16 5:28 ± 0:79 ns

HOMA-IR 27 1.21 (1.00-1.49) 16 3.00 (2.24-6.24) <0.01
HOMA-β 27 72.05 (44.40-128.60) 16 200.74 (143.46-300.65) <0.01
HDL cholesterol (mmol/L) 27 1.33 (1.18-1.59) 14 1.19 (1.05-1.24) 0.010

LDL cholesterol (mmol/L) 27 2.27 (2.01-2.97) 14 3.03 (2.16-3.25) ns

Triglycerides (mmol/L) 27 0.53 (0.37-0.82) 14 0.75 (0.65-1.20) 0.041

Total cholesterol (mmol/L) 27 3.81 (3.47-4.51) 14 4.37 (3.47-4.58) ns

NEFA (mmol/L) 27 0.08 (0.03-0.13) 16 0.09 (0.07-0.11) ns

Glycerol (μmol/L) 27 82.77 (68.20-92.10) 14 91.12 (73.80-111.00) ns

Lactate (mmol/L) 27 2:03 ± 0:47 14 2:62 ± 0:60 <0.01
HO: healthy obese; UHO: unhealthy obese; BMIz: BMI z-score; WC: waist circumference; BP: blood pressure; BMR: basal metabolic rate; HOMA-IR:
homeostatic model assessment of insulin resistance; HOMA-β: homeostatic model assessment of β-cell function; LDL: low-density lipoprotein; HDL: high-
density lipoprotein; NEFA: nonesterified fatty acids; ns: nonsignificant; p value <0.05 was considered significant.
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2.6. Plasma Adipokines and Cytokine Quantification. A
plasma adipokine and cytokine kit was used to measure lep-
tin, IL-1β, IL-6, IL-8, MCP-1, and TNF-α by multiplexing
using a Milliplex® Map Human Adipokine Panel (Milli-
pore®, MA, USA). Adiponectin was also measured using a
human Adiponectin ELISA (Millipore®, MA, USA). All pro-
cedures were performed according to the manufacturer’s
instructions.

2.7. DNAMethylation Profile.DNAmethylation was assessed
in the isolated PBMCs. The Puregene Blood Kit (Gentra
Systems, Inc., Minneapolis, MN, USA) was used to extract
the DNA, and it was further bisulfite-converted and purified
using an EZ DNA Methylation-Gold kit (Zymo Research,
Irvine, CA, USA) according to the manufacturer’s protocol
[26]. After bisulfite-conversion, the methylation was deter-
mined using the Infinium MethylationEPIC bead chip from
Illumina®. The acquired data was followed by a quality con-
trol analysis of samples and probes, followed by further nor-
malization using the Bioconductor packages minfi v1.34.0
and watermelon version 1.32.0 [27, 28] in R version 4.0.2
[29, 30]. In order to reduce the bias within-array, the data
was normalized combining Noob+BMIQ (β-mixture quan-
tile normalization) in order to improve signal intensities
[27, 31]. After normalization, the data was filtered and
probes that failed (p value >0.01) were removed. All probes
mapped to the X and Y chromosomes were also removed
to avoid sex chromosome bias. Finally, cross-reactive probes
[32] and probes including known SNPs were also removed,
according to Illumina recommendations, before final statisti-
cal analysis [33].

2.8. Statistical Analysis. The original statistical power for the
present study was computed with a total of 110 children
based on a one-factor ANOVA, 80% power and α = 0:05
were assumed, and a minimum detectable Cohen’s f effect
size of 0.33 was used. To test the differences between HL
and HO and between HO and UHO, a t-test was performed
when data fulfilled all the assumptions—the normal distribu-
tion was tested by the Shapiro-Wilk test, and the variance
homogeneity was tested by the Levene’s test. Otherwise, a
Wilcoxon signed-rank test was performed. Results are
presented as mean ± standard deviation ðsdÞ and median
(Q1–Q3) according to the respective test. The correlation
between continuous variables was assessed using the Spear-
man’s Rank-Order correlation, and the coefficient (rho) is
shown for each correlation. A p value <0.05 was considered
statistically significant. These tests were performed using
the R version 4.0.2 [29, 30].

For statistical analysis of methylation results, differen-
tially methylated positions (DMPs) were tested among
groups using limma v3.44.3 [34] R package, after converting
β values into M values. Covariates such as sex, age, and race
were adjusted to the linear model. The p values were adjusted
by the Benjamini-Hochberg method (false discovery rate
[FDR]) [35]. DMPs were considered significative for FDR
< 0:1. Gene set enrichment analyses were performed using
the webtool STRING database v11.0b [36], for Gene Ontol-
ogy (GO), KEGG (Kyoto Encyclopedia of Genes and

Genomes), and Reactome pathways. Significant results were
defined as FDR < 0:05.

3. Results

3.1. Physiologic and Biochemical Characterization of Study
Population. The physiologic and biochemical characteristics
of the study population were stratified according to the BMIz
and HOMA-IR, as shown in Tables 1 and 2, respectively. The
HO showed a significantly higher BMIz (p < 0:01) and waist
circumference (p < 0:01), as compared with the HL subjects.
In addition, the HO displayed a significantly higher fat-free
mass (p < 0:01) and fat mass (p < 0:01) compared with HL.
Interestingly, the HO showed significantly elevated plasma
insulin levels (p < 0:01) when compared with the HL, despite
normal fasting glucose levels and a HOMA − IR < 2. The HL
presented a better β-cell insulin secretory function (HOMA-
β) compared to the HO group (Table 1). Although obesity is
normally characterized by dyslipidemia, this was not
observed in the HO group, as their lipid profile was similar
to that of HL. The systolic blood pressure was elevated in
the HO as compared to HL subjects (p = 0:047).

Differences between the HO and UHO groups are pre-
sented in Table 2. The data indicate that UHO participants
had higher BMIz as compared to the HO. Their higher BMIz
was caused by a significant higher fat mass, as well as fat-free
mass, that was accompanied by a significantly higher total
body water in UHO compared to the HO. Insulin was signif-
icantly higher in the UHO group, in comparison to the HO
group. This was also accompanied by a significant insulin
secretory dysfunction, as represented by the HOMA-β index
(p = 0:0145). Interestingly, these metabolic defects are already
present in this prepubertal cohort of obese children, even in
the presence of normal fasting plasma glycemia. The fasting
glucose levels are similar among all the groups. While there
were no differences in plasma cholesterol levels in the HL vs.
HO, the UHO presented dyslipidemia which was character-
ized by a decrease in HDL cholesterol (p = 0:01) and signifi-
cant increase in triglycerides levels (p = 0:041). The LDL
cholesterol levels were slightly increased in the UHO com-
pared to the HO participants, but the difference did not reach
statistical significance (p = 0:34) in the UHO vs. HO partici-
pants. In spite of the young age of this cohort of UHO subjects,
they already presented significantly elevated systolic blood
pressure, as compared to the HO. Furthermore, the plasma
lactate concentration was also significantly higher in the
UHO compared to the HO. The lactate concentration was
fairly well correlated with high levels of plasma insulin (Spear-
man’s correlation, rho = 0:42, p value <0.01) and with
HOMA-IR (Spearman’s correlation, rho = 0:44, p value
≤0.01) (Supplementary Table 1B).

3.2. Transmethylation Metabolites. Transmethylation metab-
olites, such as methionine, SAH, SAM, adenosine, and
homocysteine were quantified in the three groups of partici-
pants (Table 3). Of the evaluated metabolites, SAH levels
were significantly increased in the HO group compared with
the HL subjects. Interestingly, similar results were also
observed for homocysteine levels. However, there was no
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difference in the SAM/SAH ratio. This ratio is frequently
used to predict the methylation capacity of the cells. When
UHO were compared with HO, no significant differences
were found between groups.

3.3. Transsulfuration Metabolites. In parallel to the measure-
ments of plasma transmethylation metabolites, Table 4
shows the levels of plasma metabolites related with the redox
state as well as the transsulfuration pathway. When compar-
ing the HL with the HO prepubertal children, several metab-
olites were significantly altered. The HO children exhibited
increased levels of total cysteine (tCysteine; free circulating
+protein-bound), while free cysteine (fCysteine) was not dif-
ferent as compared to the HL. Similarly, increased levels of
cystine were observed. The cysteine oxidation ratio (fCystei-
ne/cystine) is an important redox buffer responsible for
maintaining the plasma redox state. However, the ratio was
not different between groups. The homocysteine levels
described above play an important role in the transsulfura-
tion pathway, since it acts as an intermediary metabolite
between both the transmethylation and the transsulfuration
pathways. In fact, homocysteine is the main source of cyste-
ine that is used to synthetize glutathione (GSH). Total

reduced GSH (tGSH) and free reduced GSH (fGSH) were
also measured but showed no significant differences between
groups. On the other hand, the oxidized glutathione (GSSG)
was significantly elevated in the HO compared with the HL
subjects. The evaluation of tGSH/GSSG and fGSH/GSSG
ratios showed a significant reduction in the antioxidant
capacity and consequently an increase in oxidative stress in
plasma of the HO children. The percentage of oxidized
GSH was also higher in HO subjects compared to HL. Addi-
tionally, the levels of cysteinylglycine in HO group were also
significantly higher, when compared with the HL.

Biomarkers of nitrosative stress, 3-chloro-tyrosine and 3-
nitro-tyrosine, showed no significant differences between
groups.

3.4. Inflammation Patterns. Oxidative stress is normally
accompanied by an increase in the systemic inflammatory
status. Therefore, we measured inflammatory cytokines as
well as the inflammatory marker, C-reactive protein (CRP)
in the plasma (Table 5). While CRP was elevated in HO as
compared with the HL, no significant alterations were
observed for inflammatory cytokines except for the unex-
pected finding of reduced TNF alpha levels in UHO as

Table 4: Circulating transsulfuration and oxidative damage metabolites in prepubertal children stratified per BMIz and HOMA-IR.

Metabolites HL (n = 20) HO (n = 28) p value∗ UHO (n = 16) p value∗∗

Total cysteine (μmol/L) 183.80 (165.43-195.58) 199.75 (178.20-214.20) 0.020 195.60 (184.80-207.13) ns

Free cysteine (nmol/L) 19:23 ± 2:50 20:75 ± 3:09 ns 20:86 ± 2:73 ns

Cystine (nmol/L) 18.45 (17.35-19.50) 20.30 (19.28-21.83) 0.005 20.15 (17.55-21.43) ns

Free cysteine/cystine 1:04 ± 0:11 1:04 ± 0:10 ns 1:05 ± 0:13 ns

Total ?-glutamylcysteine (μmol/L) 1:65 ± 0:22 1:67 ± 0:25 ns 1:71 ± 0:17 ns

Total reduced GSH (μmol/L) 5:63 ± 1:04 5:70 ± 1:08 ns 5:60 ± 0:71 ns

Free reduced GSH (μmol/L) 1.75 (1.57-1.92) 1.77 (1.60-1.87) ns 1.79 (1.61-1.84) ns

GSSG (μmol/L) 0.17 (0.15-0.20) 0.21 (0.17-0.26) 0.014 0.19 (0.17-0.23) ns

Total reduced GSH/GSSG 32:81 ± 11:12 26:72 ± 8:66 0.038 30:15 ± 10:00 ns

Free reduced GSH/GSSG 10:00 ± 2:73 8:28 ± 2:43 0.026 9:36 ± 2:68 ns

Cysteinylglycine (μmol/L) 31:73 ± 6:52 38:67 ± 7:99 0.003 38:68 ± 6:69 ns

Oxidized GSH (%) 16.17 (14.56–18.93) 19.05 (17.07–21.42) 0.021 17.40 (15.66–21.14) ns

3-Chloro-tyrosine (nmol/L) 42:35 ± 7:34 46:44 ± 10:19 ns 44:88 ± 9:10 ns

3-Nitro-tyrosine (nmol/L) 30:38 ± 8:63 33:24 ± 7:77 ns 33:46 ± 5:50 ns

HL: healthy lean; HO: healthy obese; UHO: unhealthy obese; GSH: reduced glutathione; GSSG: glutathione dissulfide; ∗HL-HO comparison; ∗∗HO-UHO
comparison; ns: nonsignificant; p value <0.05 was considered significant.

Table 3: Plasma transmethylation metabolite concentrations in prepubertal children stratified per BMIz and HOMA-IR.

Metabolites HL (n = 20) HO (n = 28) p value∗ UHO (n = 16) p value∗∗

Methionine (μmol/L) 19:22 ± 3:14 20:70 ± 3:53 ns 19:81 ± 3:44 ns

SAH (nmol/L) 19.32 (17.13-20.94) 23.34 (18.42-25.31) 0.027 21.76 (20.41-26.56) ns

SAM (nmol/L) 45:24 ± 7:69 49:65 ± 8:00 ns 49:83 ± 9:75 ns

SAM/SAH ratio 2:35 ± 0:47 2:29 ± 0:53 ns 2:16 ± 0:53 ns

Adenosine (μmol/L) 0:16 ± 0:06 0:19 ± 0:06 ns 0:19 ± 0:06 ns

Total homocysteine (μmol/L) 5.06 (4.68-5.62) 6.23 (5.33-7.18) <0.01 6.36 (5.46-6.86) ns

HL: healthy lean; HO: healthy obese; UHO: unhealthy obese; SAM: S-adenosylmethyonine; SAH: S-adenosylhomocysteine; ∗LH-HO comparison; ∗∗HO-UHO
comparison; ns: nonsignificant; p value <0.05 was considered significant.

6 Oxidative Medicine and Cellular Longevity



CBS

DHF

Folate

5-CH3-THF

5,10-CH2-THF

Hcy SAH

Met SAM

M S

SAHH

DNMTs

R

CH3-R

Cysta

CyS

GSH
GPX

H2O2H2O

SOD

Adenosine

O2-·

MTHFR

DHFR

MAT

GSSG

THF

Ser

ATP

DHFR

Methyltransferases
PEMT

MTRR

SHMT

CySS
Oxidation

Cys-Gly

𝛾GT

DP

Highlights
Alterations in one-carbon metabolism during childhood obesity;
High levels of SAH in metabolic healthy obese;

Biomarkers for identification of high risk to develop CVD and T2D;

Figure 1: One-carbon metabolism perturbations during childhood obesity. Yellow squares represent the enzymes that have altered DNA
methylation pattern; pink squares represent increased metabolites found associated to obesity; bold symbols represent enzymes; DHFR:
dihydrofolate reductase; DHF: dihydrofolate; THF: tetrahydrofolate; Met: methionine; MAT: S-adenosylmethionine synthetase; SAM: S-
adenosylmethionine; SAH: S-adenosylhomocysteine; SAHH: SAH hydrolase; Hcy: homocysteine; MS: methionine synthase; MTRR:
methionine synthase reductase; Ser: serine; Cysta: cystationine; CyS: cysteine; CySS: cystine; GSH: glutathione; γGT: γ-glutamyl
transpeptidase; Cys-Gly: cysteinylglycine; DP: dipeptidase; GPX: glutathione peroxidase; GSSG: oxidized glutathione; SOD: superoxide
dismutase.

Table 5: Markers of inflammation and adipocyte function in prepubertal children stratified per BMIz and HOMA-IR.

HL HO
p value∗

UHO
p value∗∗

n n n

CRP (mg/L) 20 0.15 (0.15-0.19) 27 0.80 (0.35-2.28) <0.01 14 1.16 (0.41-2.87) ns

IL-6 (pg/mL) 19 13.73 (5.32-49.58) 28 8.31 (3.45-37.77) ns 16 8.95 (2.13-13.08) ns

IL-8 (pg/mL) 18 4.88 (4.09-13.75) 22 5.55 (4.22-10.40) ns 9 3.39 (3.08-7.60) ns

MCP1 (pg/mL) 19 127:78 ± 36:691 28 125:614 ± 41:909 ns 16 115:94 ± 39:06 ns

TNF alpha (pg/mL) 19 6.49 (5.43-7.91) 28 6.12 (4.32-7.67) ns 16 3.86 (2.40-5.18) 0.015

IL-1beta (pg/mL) 16 0.90 (0.54-1.40) 23 0.76 (0.57-2.19) ns 12 0.57 (0.57-0.80) ns

Leptin (ng/mL) 19 88.77 (51.30-104.25) 28 662.30 (187.46-1620.67) <0.01 16
1439.34

(951.73-1647.30)
0.036

Adiponectin (ng/mL) 20
13928.27

(11255.19-17488.51)
27

13917.50
(10686.40-18460.15)

ns 16
7800.46

(7091.7-9684.40)
<0.01

Leptin/adiponectin 19 0.006 (0.003-0.008) 27 0.057 (0.012-0.114) <0.01 16 0.165 (0.121-0.249) <0.01
HL: healthy lean; HO: healthy obese; UHO: unhealthy obese; CRP: C-reactive protein; IL: interleukin; MCP-1: monocyte chemoattractant protein 1; ∗HL-HO
comparison; ∗∗HO-UHO comparison; ns: nonsignificant; p value <0.05 was considered significant.
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compared to HO subjects. Also, presented in Table 5 are the
circulating levels of leptin and adiponectin, which are impor-
tant cytokines secreted by adipose tissue. Adiponectin was
reduced in the UHO as compared to the HO subjects while
leptin levels and the leptin/adiponectin ratio were signifi-
cantly elevated in the UHO as compared to the HO as well
as in HO when compared to the HL groups. Increased levels
of CRP were correlated with the leptin levels (Spearman’s
correlation, rho = 0:69, p < 0:01) (Supplementary Table 1A).

3.5. DNA Methylation Pattern. Since the transmethylation
and transsulfuration pathways have a complementary loop
as shown in Figure 1, and to further support our described
findings of metabolic perturbations with possible effect at
the DNA methylation mechanism, we analyzed the DNA
methylation profile in PBMCs from a subset of the partici-
pants (N = 14HL, N = 16HO, and N = 11UHO). Since no
significant differences were observed between the HO and
the UHO groups, both groups were merged (OverallObese)
to achieve higher statistical power. Therefore, the HL
(n = 14) were compared with the OverallObese subjects
(n = 27) adjusting the model for HOMA-IR, thus enabling
us to better isolate the effect of obesity.

From the cytosine-phosphate-guanines (CpGs) analyzed,
4677 were differentially methylated between the two groups
(FDR < 0:1) (Supplementary Table 2). Furthermore, 35% of

the significant DMPs presented a reduction in the
methylation status (hypomethylation) in the OverallObese
group, while 65% of the DMPs were hypermethylated in
the same group. Moreover, 24 DMPs were selected from
the list of 4677 DMPs based on their association with genes
that are directly or indirectly related with one-carbon
metabolism and consequently associated with oxidative
stress and/or methylation processes [37–39], as explained
before (Table 6).

Some of these DMPs are associated with genes involved
in the expression of important enzymes, such as methionine
synthase reductase (MTRR gene), methylenetetrahydrofolate
dehydrogenase (MTHFD1 gene), methylenetrahydrofolate
reductase (MTHFR gene), and glycine-N-methyltransferase
(GNMT gene). These enzymes are key in one-carbon metab-
olism and are responsible for methionine regeneration
through the homocysteine conversion and the transmethyla-
tion pathway [40]. From these important results, it is possible
to predict a downregulation in these enzymes since their
genes are hypermethylated (positive β value or fold change
in Table 6). The alteration in the methylation status of these
enzymes could indeed explain the observed increase in SAH
and homocysteine plasma levels observed in the HO
(Table 3). Moreover, the methylation results also showed
alteration in the regulation of genes involved in oxidative
stress, which include glutathione peroxidase 1 and 7 (GPX1

Table 6: Differentially methylated positions in healthy lean (HL) and OverallObese prepubertal children that are related with genes involved
in one-carbon metabolism.

DMP Chr Position Genes Δβ Log2 fold change p value∗

cg14819132 17 17495032 PEMT 0.011 0.553 0.050

cg00214165 5 7869652 MTRR; FASTKD3 0.026 0.617 0.056

cg02956320 2 169643050 NOSTRIN -0.073 -0.137 0.056

cg05065230 3 49395807 GPX1 0.012 0.651 0.063

cg06293195 22 36878654 TXN2 -0.078 -0.146 0.064

cg19948014 21 33032656 SOD1 0.007 0.552 0.070

cg22473973 10 133794911 BNIP3 0.012 0.437 0.073

cg19014302 19 18303893 MPV17L2 0.017 1.148 0.076

cg07941301 6 42928277 GNMT 0.015 0.740 0.078

cg01495361 20 31369590 DNMT3B -0.055 -0.089 0.079

cg27619163 17 7982806 ALOX12B 0.044 1.474 0.083

cg05065765 3 38206519 OXSR1 0.016 0.632 0.084

cg04550070 11 73694480 UCP2 0.011 0.565 0.085

cg26978822 16 56622779 MT3 -0.019 -0.029 0.084

cg03452047 1 53067911 GPX7 0.012 0.391 0.087

cg26748435 14 64854866 MTHFD1 0.022 0.600 0.088

cg04372675 8 107283146 OXR1 0.019 0.510 0.094

cg06858294 17 7983203 ALOX12B 0.030 0.834 0.093

cg19642128 8 26240703 BNIP3L 0.031 1.068 0.094

cg13722539 11 64085131 PRDX5; TRMT112 0.006 0.406 0.094

cg10216074 2 25467197 DNMT3A 0.015 0.025 0.097

cg22545535 17 17495014 PEMT 0.024 0.941 0.096

cg08869383 1 11865661 MTHFR; CLCN6 0.010 0.464 0.098

cg09692733 19 10249298 DNMT1 0.006 0.009 0.096

DMP: differentially methylated position; Chr: chromosome; ∗adjusted p value using false discovery rate (FDR).

8 Oxidative Medicine and Cellular Longevity



Tetrahydrofolate interconversion
Sulfur compound metabolic process
Sulfur amino acid catabolic process

S-adenosylmethionine metabolic process
S-adenosylhomocyteine metabolic process

Response to superoxide
Response to reactive oxygen species

Response to oxidative stress
Response to hypoxia

Oxidation-reduction process
G

O
 - 

Bi
ol

og
ic

al
 p

ro
ce

ss
es

Methylation
Methionine metabolic process

Homocysteine metabolic process
Homeostatic process

Glutathione metabolic process
Folic acid metabolic process

DNA methylation
Cysteine matabolic process

C-5 methylation of cytosine
1.0 1.5 2.0 2.5

Strength

FDR

0.005

0.010

Observed gene
2
13

(a)

G
O

 - 
M

ol
ec

ul
ar

 fu
nc

tio
n

Transferase acticity
S-adenosylmethionine-dependent methyltransferase activity

Peroxidase activity
Oxidoreductase activity, acting on the CH-NH group of donors, NAD or NADP as acceptor

Oxidoreductase activity
NADP binding

N-methyltransferase activity
Modified amino acid binding

Methyltransferase activity
Glutathione peroxidase activity

Flavin adenine dinucleotide binding

Cysteine-type endopeptidase inhibitor activity involved in apoptotic process
DNA (cytosine-5-)-methyltransferase activity

Copper ion binding
Catalytic activity

Antioxidant activity
1.00.5 1.5 2.0 2.5 3.0

Strength

Observed gene
2
18

FDR

0.01

0.02

0.03

0.04

(b)

Figure 2: Continued.

9Oxidative Medicine and Cellular Longevity



and GPX7), oxidation resistance 1 (OXR1), and superoxide
dismutase 1 (SOD1). All these genes were hypermethylated
in the OverallObese group, suggesting epigenetic-mediated
downregulation. Interestingly, the enzymes responsible for
DNA methylation, i.e., DNA methyltransferases (transcribed
by the gene DNMT1), seem to be downregulated in the Over-
allObese group as well.

In order to disclose the biological meaning of these results,
gene enrichment analysis was performed for the 24 DMP set,
using the STRING database [36]. Importantly, the enrichment
analysis showed 207 significant biological processes (Supple-
mentary Table 3). Furthermore, 19 of them are terms
involved in aminothiol metabolism, such as “response to
oxidative stress,” “methylation,” “S-adenosylhomocysteine
metabolic process,” and “homocysteine metabolic process”
(Figure 2(a)). In addition, 16 molecular functions, including
SAM-dependent methyltransferase and peroxidase activity
and 10 cellular components, including mitochondrial
components, appear to be affected through the methylation
pattern (Figures 2(b) and 2(c)). Interestingly, mitochondria
seem to be of the most affected cellular component
(Figure 2(c)). The KEGG pathway analysis, shown in
Figure 3(a), indicates alterations in cysteine, methionine,
and glutathione metabolism, as well as “one-carbon pool by
folate.” The Reactome pathway enrichment corroborates
previous findings by showing alterations in metabolism and
their association to epigenetic regulation (Figure 3(b)).

4. Discussion

Overnutrition and poor-quality diets are triggering a severe
increase in obesity worldwide, with resulting metabolic disor-

ders starting early in life, in particular during childhood [41].
Our results show that obesity has already caused profound
changes in several aspects of metabolism in a cohort of pre-
pubertal children, particularly in the one-carbonmetabolism,
of particular importance in the folate, transmethylation, and
transsulfuration pathways. These studies, evaluating early
childhood obesity, can inform on the potential origin of the
related comorbidities that start plaguing many, already in
young adulthood. We first chose to stratify children with
obesity into two groups, the healthy and unhealthy obese,
in order to understand the main differences between both
conditions, where the unhealthy obese already presented
insulin resistance. Our main criteria for this stratification
were based on the HOMA − IR ≥ 2, although different phe-
notypes could be used to characterize and differentiate the
metabolic state of this population, as reviewed by Phillips
[41], who described various valid ways to characterize and
distinguish between metabolically healthy and metabolically
unhealthy obese children [41]. This separation between obese
groups may give some important insights into adulthood
comorbidities linked to obesity [41], and our analyses have
revealed essential differences in several metabolic processes
already emerging in this pediatric cohort. All pediatric sub-
jects in this study presented normoglycemia, while the state
of insulin resistance driven by the high circulating insulin
concentrations observed in the UHO group likely reflects
an attempt to maintain their euglycemia [42]. This is in
agreement with other studies indicating that the insulin-
resistant state could be present years before any alteration
in circulating glucose are detected [43, 44]. Chronic periods
of insulin resistance, even in the absence of elevated fasting
glucose, may be an important contributing factor to the early
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blood pressure alterations also observed in our cohort [45,
46]. The increase in insulin production is reflected by the
increased HOMA-β observed in the obese unhealthy sub-
jects, reflecting increased β-cell activity. Similar to insulin,
lactate levels were also elevated in the insulin-resistant obese

group. This phenomenon has already been observed by
Hosking et al. [47] in children with insulin resistance, indi-
cating a positive correlation between insulin resistance and
lactate levels during childhood and adolescence, even after
controlling for BMIz as covariate BMIz. Furthermore,
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Figure 3: Pathway enrichment analysis for genes related to the selected 24 DMPs. (a) KEGG pathways; (b) Reactome pathways;
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Berhane et al. [48] have shown that plasma lactate was
increased in adults during a hyperinsulinemic euglycemic
clamp, a method that mimics the hyperinsulinemic state.
Besides, they also indicated that high levels of lactate were
present even before the insulin resistance was clinically
detected [48]. Our data show that children as young as 5 to
10 years of age already show significantly elevated levels of
lactate in the circulation, when comparing the HO to the
UHO subjects. Moreover, there was a positive correlation
between insulin and lactate levels as previously demonstrated
[47]. Obesity-related insulin resistance has been involved in
the development of other metabolic conditions, including
CVD [49, 50] and lipid dysregulation [51, 52]. The insulin-
resistant UHO subjects also presented lipid dysregulation
and increased systolic blood pressure, risk factors for CVD.
Furthermore, chronic low-grade inflammation and increased
oxidative stress are characteristics of obesity [15]. The quan-
tification of thiol molecules during prepubertal obesity and
insulin resistance has not been well described. Some of these
molecules are intermediaries of one-carbon metabolism and
are important for the maintenance of redox homeostasis
and the methylation capacity of cells by acting on transsul-
furation and transmethylation pathways. Our data clearly
show important differences in the transmethylation pathway,
especially when comparing the HL and HO subjects. The HO
showed higher levels of SAH and total homocysteine, simi-
larity to the previously reported findings by Kumar et al.
[53]. These molecules have already been implicated in the
development of atherosclerosis and CVD [20, 54]. Similar
alterations have been identified in diabetic patients with renal
dysfunction, and the homocysteine levels were also positively
correlated with insulin levels [40]. In addition, Chiang et al.
[40] have observed the effect of insulin (1μM) in HepG2 cell
lines and showed that mRNA expression of different
enzymes related with one-carbon metabolism, such as
MTRR, was reduced during the treatment with insulin. In
agreement, the HO subjects in the present study had higher
fasting insulin levels that are accompanied with high levels
of homocysteine in plasma, compared to their lean counter-
parts. Importantly, DNA methylation analysis, from PBMCs
isolated from the prepubertal children with obesity, showed
hypermethylation of different CpGs that are localized in the
vicinity of important metabolic genes, including PEMT,
MTRR, and MTHFR, suggesting that an epigenetic effect
could be the cause for this downregulation. Gene Ontology
enrichment analysis also showed alteration in different key
biological processes, molecular functions, and cellular com-
ponents related with one-carbon metabolism, as shown in
Figure 2. Even though the SAM/SAH ratio was not altered
in our cohort, there were already alterations in the methyla-
tion profile of PBMCs in the obese subjects. Yi et al. [55] cor-
related high levels of homocysteine and SAH with a decrease
in DNA methylation of lymphocytes. High SAH levels are
also described as inhibitors of methyltransferase processes
[20]. Furthermore, alterations in the transsulfuration path-
way were also identified, in particular when comparing the
HL with the HO subjects. This pathway is important in the
redox state maintenance, since it is responsible for the syn-
thesis of molecules, such as cysteine and GSH, that act as

important ROS scavengers [14]. Interestingly, increased
insulin levels have been shown to disrupt the redox homeo-
stasis and consequently alter the defense mechanisms against
excess ROS production [56]. Elshorbagy et al. [57] indicated
that alterations in plasma total cysteine are associated with an
increase in BMI, in adults. Similarly, we also observed higher
levels of total cysteine in the HO subjects compared to their
lean counterparts. On the other hand, the levels of fCysteine
remain unchanged between groups even in the presence of
higher levels of cystine, especially in the obese groups. Fur-
thermore, the fCysteine/cystine ratio is an important plasma
marker that defines an imbalance in redox homeostasis [58].
However, no differences were identified in that ratio between
groups in our cohort, although the levels of GSSG were
increased in the obese groups. Similar results were postulated
by Choromańska et al. [59] who reported high levels of GSSG
in plasma of obese adults with hypertension. While the fCys-
teine/cystine ratio was not altered, we observed significant
alterations in the GSH/GSSG ratio in the HO group, with
an increase in the percentage of GSH oxidation compared
to HL. Few studies of this kind have been performed in pre-
pubertal children with obesity; however, it is known that in
adults, insulin resistance and dyslipidemia have a significant
impact on oxidative stress [3, 60]. In line with the alterations
detected in the redox homeostasis, increased plasma inflam-
mation was also observed, in the children with obesity, in
particular CRP and leptin levels. Pedersen et al. [61] demon-
strated that hyperinsulinemia during obesity induced the
expression of inflammation-associated genes. Importantly,
the role leptin plays in inflammatory exacerbation has been
reviewed [2]. Interestingly, high levels of homocysteine have
also previously been implicated with inflammation [62].

These metabolic alterations are key factors for future
development of obesity-related comorbidities, particularly
in people with insulin resistance, and have been described,
particularly in adults, as important predictive markers of
CVD, including atherosclerosis [20, 54, 63]. Additionally,
our data show significant differences in adipocyte secretion
of adipokines. While leptin levels were increased in both
obese groups, adiponectin levels were decreased in the
UHO group. Our results are in agreement with other studies
indicating low adiponectin levels, as a marker of adipocyte
secretory dysfunction, together with elevated leptin secretion
[64, 65]. Our data indicate an evident alteration in adipocyte
secretory patterns, especially in the obese- and insulin-
resistant subjects. Landgraf et al. [66] corroborate the pres-
ence of adipose tissue dysfunction during childhood obesity,
making the correlation between adipocyte expansion and
inflammation. Interestingly, the high leptin and low adipo-
nectin levels together with the increased plasma lactate are
early important markers that differentiate obese subjects with
insulin resistance from their metabolic healthy counterpart.
Our results show a deregulated adipocyte secretory function,
even under normoglycemia in prepubertal children with
obesity.

Moreover, our data also show significant changes in the
methylation patterns of PBMCs. Circulating cells have been
considered important surrogate markers for different type
of diseases, since they are in contact with the continuous
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changing circulating molecules from surrounding tissues.
Therefore, small metabolic changes that may occur in the
body will induce key modifications in the biology of these
cells [67]. In agreement, our results reflect the impact of obe-
sity on the epigenetic patterns of PBMC DNA. In particular,
we noticed alterations of the methylation degree in the vicin-
ity of genes that are involved in one-carbonmetabolism, such
as the transmethylation and transsulfuration pathways. Pre-
vious studies have shown alterations in methylation patterns
associated with obesity and obesity-related insulin resistance
[68–70]. The lack of significant differences in these metabolic
pathways and in the DNAmethylation results when compar-
ing the HO and the UHO subjects might likely be due to the
low study power when we split the obese subjects into two
different groups. Our study is limited by relatively small sam-
ple sizes as we were unable to fully reach our recruitment
goals. Unfortunately, we do not have the DNA methylation
data for the entire cohort. In future studies, we would like
to increase the N in each group and invite the subjects back
two years later for a follow-up visit.

Finally, the physiological and biochemical characteristics
of the young prepubertal children show that among the obese
subjects, there are indeed a group of HO that are still meta-
bolically healthy as the HL, while the UHO already presented
metabolic dysfunction, even under normoglycemia. This
suggests that the adult obesity phenotype is starting to set
in at an early age, raising important questions about the
reversibility of this condition and the future health of these
subjects.

In conclusion, our study showed the presence of deep
alteration in one-carbon metabolism and related pathways
in children with obesity (Figure 1), as young as 5-9 years of
age. These alterations are mainly driven by obesity and ele-
vated insulin levels. Most importantly, even the metabolic
healthy obese subjects show increased levels of important
metabolic markers, such as SAH, that is related with develop-
ing future comorbidities. This may reflect an important tran-
sition phase between different stages of obesity and insulin
resistance. Specific markers that could identify this transition
would be extremely important in identifying populations
early at high risk of developing CVD and T2D. The data pre-
sented provide insight on important metabolic changes that
occur in obesity early in life (summarized in Figure 1).
Importantly, the metabolic healthy obese children seem to
have some compensatory mechanisms to maintain impor-
tant features unchanged, including the lipid profile and glu-
cose levels. Also, some important alterations are already
established at the epigenetic level, although some of these
alterations could still be reversed by possible changing life-
style habits [39].
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