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palavras-chave Fórmula de integração fracionária estocástica por partes, equação fracionária
estocástica de Euler-Lagrange, modelo estocástico da COVID-19 com tempo
de atraso, controlo ótimo, reação-difusão, condições de otimalidade
necessárias e suficientes, generalizações do teorema de Taylor.

Resumo Duas tendências matemáticas são visadas nesta tese de doutoramento. A
primeira está relacionada ao estabelecimento de certos resultados teóricos
dentro da teoria do cálculo das variações, por um lado uma fórmula de
integração fracionária estocástica por partes e uma equação fracionária
estocástica de Euler-Lagrange são obtidas, por outro lado, são estudados uma
generalização do teorema de Taylor fracionário ponderado e a equação de
Euler-Lagrange com um núcleo não singular. A segunda vertente visa o
enriquecimento da literatura com várias aplicações matemáticas em diferentes
campos, com a ideia de fornecer soluções adequadas a problemas sociais
complexos, nomeadamente os originados com o surto da pandemia da
COVID-19, para além da descrição de algumas soluções adequadas tanto em
biomatemática como em bioeconomia.





keywords Stochastic fractional integration by parts formula, Stochastic fractional Euler-
Lagrange equation, stochastic time delayed COVID-19 model, optimal control,
reaction-diffusion, necessary and sufficient optimality conditions, extended
Taylor's theorem.

abstract Two mathematical tendencies are targeted in this doctoral thesis, the first is
related to the establishment of certain theoretical results within the theory of the
calculus of variations, on one hand, a stochastic fractional integration by parts
formula and a stochastic fractional Euler-Lagrange equation are obtained, on
the other hand, weighted generalized fractional Taylor's theorem and Euler
Lagrange equation with non-singular kernel sense are studied. The second
trend was aimed at enriching the literature with several mathematical
applications in different fields, with the idea of providing various appropriate
solutions to complex social problems, namely those constructed with the
outbreak of the COVID-19 pandemic, in addition, the description of some
adequate solutions in both bio-mathematics and bio-economics.
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Introduction

The subject of my research areas varies between different concerns, starting by an accom-
modate contribution within the calculus of variations theory related to the generalization of
what is called Euler-Lagrange equation to the Stochastic Fractional counterpart, for which
the second chapter is devoted.

We shall at first give a simple overview in language of the theory of calculus of variations
as invented by Euler and Lagrange, as well as an amount of the history of its invention, which
is most interesting to solve a wide range of the optimization problems and how it was useful
in the mathematics, physics and related areas up to the present day.

As it is known, Euler and Lagrange are the founders of the calculus of variations. A
simple and magnificent idea that revolutionized the manner of solving numerous problems of
optimization and having an enormous action on how partial derivative equations are handled
touching all sorts of domains of application. The calculus of variations reflects the basis of
the mechanics known as Lagrangian, without which modern physics could not exist.
Now, we are looking at how Lagrange was led to his result in these problems, discussing the
simplest components and principles of his discovery, and lastly, mentioning the repercussions
they have had up to the present time.

The history of the calculus of variations and Lagrange’s contribution to it is well docu-
mented. A good point of departure is the work of Catherine Goldstein [113]. The reader
can also consult [58] for a more advanced epistemological analysis, as well as [31] regarding
biographical elements.

In 1754, at the earlier age of eighteen, Lagrange read the article “Une méthode pour
trouver des lignes courbes jouissant de propriétés de maximum ou de minimum”[54] by the
great Euler. Inspired by this study, he investigated his first original mathematical result, and
dared to communicate it via letter to Euler, already at the time a leading figure in science.
His letter remained unanswered. Lagrange, however, was so ambitious, and continued to think
about Euler’s article. In 1755 he wrote a second letter to Euler in which he explained the novel
method that he had developed, that is, his proper manner for dealing with the problem studied
by Euler. The latter method would be named by Euler himself in one of his letters:“calculus
of variations ”. This time, Euler responded to Lagrange, in terms of praise: (Your solution
to the isoperimetric problem leaves nothing to be desired, and I rejoice that this subject, of
which I was almost the only one who dealt with it since the first attempts, has been taken by
you to the highest degree of perfection. The importance of the matter has led me to outline,
with the aid of your light, an analytical solution to which I will give no publicity until you
yourself have published the whole of your research, so that I do not take away any part of the
glory that is due to you.)
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This letter was enough of a recommendation to secure Lagrange a position as a teacher at
the Royal School of Artillery in Turin. The beginning of the young Lagrange was a period of
great activity. In 1758 he co-founded what would become the Academy of Sciences in Turin.
He published at that time numerous articles in the Miscellanea Taurinensia, the first one of
which, in 1762, was entitled “Essai dúne nouvelle méthode pour déterminer les maxima et les
minima des formules intégrales indéfinies”[121]. It is this article that interests us the most
because it already contains the foundations of the calculus of variations and the methods of
multipliers called “Lagrange multipliers”, ideas that would both be developed over the course
of his career. However, Lagrange had a broad mathematical range and also wrote other articles
at that time on different topics, including the vibrating string and differential equations.
In general, the history of science traces the genesis of the calculus of variations to the problem
that Newton posed in 1685: find the shape of a solid of revolution offering the least resistance
(in the direction of its axis) to a fluid. Newton himself proposed a purely geometric solution of
it; for some very recent developments on this problem the reader can consult [37]. The second
problem that genuinely enthralled the mathematicians, and which was the true birth of the
calculus of variations, is that of the brachistochrone (Greek: brachis = short, brachiston =
the shortest, chrone = time). This was a challenge (with the promise of a prize!) launched
in 1699 by Johann Bernoulli1: find among all of the curves connecting two points A and B
the one along which a particle falling from A and gliding under the effect of gravity arrives
at B in the shortest time. It is thus asking us to determine, among all possible shapes of the
ski slopes (for example) connecting points A and B, which one will permit the fastest run
(ideally, without friction). The greatest mathematicians of the day, that is Johann Bernoulli,
his brother Jacob, Newton, then Leibniz, Euler and finally Lagrange, attacked the problem
and gave solutions to it.

In [54], Euler is the first to propose a systematic treatment of this kind of problem: instead
of concerning himself only with the problem of the brachistochrone, he seeks a method to find
a curve that minimises or maximises any quantity expressed by an integral, and to derive the
equation that must be satisfied by the minima. That equation, which has become known as
the Euler–Lagrange equation, takes for example the form (in the notation of physics):

d

dt

(
dL

q̇

)
− dL

dq
= 0

The Euler-Lagrange equation started with the latter deterministic form, passed by the
stochastic one, extended to the fractional counterpart, and generalized to our stochastic frac-
tional Euler–Lagrange equation contribution (Zine et al.) see [165].
A theory of stochastic calculus of variations is presented which generalizes the ordinary calcu-
lus of variations to stochastic processes. Generalizations of the Euler equation and Noether’s
theorem are obtained and several conservation laws are discussed. An application to Nelson’s
probabilistic framework of quantum mechanics is also given. [152]

An Euler–Lagrange equation for this problem has been derived first in (Riewe, 1996, 1997),
see also (Agrawal, 2002). A generalization of the problem to include fractional integrals, the
transversality conditions and many other aspects can be found in the literature of recent years.
See (Almeida and Torres, 2010; Atanacković, Konjik and Pilipović, 2008; Malinowska and Tor-
res, 2012) and references therein. Indirect methods for fractional variational problems have a
vast background in the literature and can be considered a well-studied subject: see (Agrawal,
2002; Almeida, Pooseh and Torres, 2012; Atanacković, Konjik and Pilipović, 2008; Frederico
and Torres, 2010; Jelicic and Petrovacki, 2009; Klimek, 2001; Odzijewicz, Malinowska and
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Torres, 2012b; Riewe, 1997) and references therein that study different variants of the prob-
lem and discuss a range of possibilities in the presence of fractional terms, Euler–Lagrange
equations and boundary conditions. With respect to results on fractional variational calcu-
lus via Caputo operators, we refer the reader to (Agrawal, 2007b; Almeida, Malinowska and
Torres, 2012; Almeida and Torres, 2011; Frederico and Torres, 2010; Malinowska and Torres,
2010e; Mozyrska and Torres, 2010; Odzijewicz, Malinowska and Torres, 2012a) and references
therein. At a recent time, Zine et al [165] have introduced a stochastic fractional calculus.
As an application, we have presented a stochastic fractional calculus of variations, in which
a stochastic fractional Euler–Lagrange equation is obtained, extending those available in the
literature for the classical, fractional, and stochastic calculus of variations. To illustrate our
main theoretical result, we have discussed two examples: one derived from quantum mechan-
ics, the second validated by an adequate numerical simulation.
We move now, in the next chapters, towards the presentation of some detailed separately de-
terministic, stochastic and fractional works related to the dynamical systems studies switching
between the biomathematics field and the economic framework, in addition, some fractional
theoretical results are performed.

Some special works [88, 162] are provided with the appearance of COVID-19 pandemic
so as to outline the mathematical point of view towards this phenomenon, intending to help
sanitary authorities to adopt the right decisions reaching the requested desires.

The third chapter contains firstly, our first deterministic version of the studied pandemic
COVID-19 model with delays in Morocco. As known, the arrival of the COVID-19 pandemic
at 2019 which posed a great threat to public health and economy worldwide pushed us to
think about publishing some collaboratively works to fight against its spread. Unfortunately,
there is yet no effective drug for this disease at this moment. For this, several countries have
adopted multiple preventive interventions to avoid the spread of COVID-19. Here, we propose,
firstly, a delayed mathematical model to predict the epidemiological trend of COVID-19 in
Morocco. Parameter estimation and sensitivity analysis of the proposed model are rigorously
studied. Moreover, numerical simulations are presented in order to test the effectiveness of
the preventive measures and strategies that were imposed by the Moroccan authorities and
also help policy makers and public health administration to develop such strategies.
And secondly, an adequate contribution linked to the extension of the SICA model to the
mathematical spatiotemporal epidemic SICA model with optimal control strategy, in which
we have modeled the spatial behavior by adding a diffusion term with the Laplace operator
for which we have devoted one section to justify and interpret, mathematically and physically,
its use in this context. The aim objective is to prove Existence and Uniqueness of the global
positive spatiotemporal solution of the system, using semi-group theory and ordinary differen-
tial equations. An appropriate constructive sequential method is proposed to find the optimal
control pair that minimizes the number of infected individuals and the corresponding cost.
We construct further, an explicit necessary optimality condition. This work is concluded by
some numerical simulations supporting our main results.

Extending our last deterministic pandemic COVID-19 model with several delays in Mo-
rocco to the stochastic ones with and without confinement as summarized in the sequel and
presented in the fourth chapter.
The first case of COVID-19 in Morocco was reported on 2 March 2020, and the number of
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reported cases has increased day by day. We construct secondly, another work in which we
extend the well-known SIR compartmental model to deterministic and stochastic time-delayed
models in order to predict the epidemiological trend of COVID-19 in Morocco and to assess the
potential role of multiple preventive measures and strategies imposed by Moroccan authorities.
The main features of the work include the well-posedness of the models and conditions under
which the COVID-19 may become extinct or persist in the population. Parameter values have
been estimated from real data and numerical simulations are presented for forecasting the
COVID-19 spreading as well as verification of theoretical results.

The COVID-19 pandemic evolves in many countries to a second stage, characterized by the
need for the liberation of the economy and relaxation of the human psychological effects. To
this end, numerous countries decided to implement adequate deconfinement strategies. After
the first extension of the established confinement, Morocco moves to the deconfinement stage
on May 20, 2020. The relevant question concerns the impact on the COVID-19 spreading by
considering an additional degree of realism related to stochastic noises due to the effective-
ness level of the adapted measures. In this section, we propose thirdly, a delayed stochastic
mathematical model to predict the epidemiological trend of COVID-19 in Morocco after the
deconfinement. To ensure the well-posedness of the model, we prove the existence and unique-
ness of a positive solution. Based on the large number theorem for martingales, we discuss
the extinction of the disease under an appropriate threshold parameter. Moreover, numerical
simulations are performed in order to test the efficiency of the deconfinement strategies chosen
by the Moroccan authorities to help the policy makers and public health administration to
make suitable decisions in the near future.

It is not convenient to adopt the assumption of the precise parameters since models are
usually exposed to the natural fluctuations, which leads us to the consideration of the near-
optimal control with imprecise parameters
We present some theoretical studies based on the stochastic SICA model (Silva and Torres),
on which we have applied an adequate optimal control for minimizing or quasi-minimizing the
cost regarded functional, and for which we have established different inequalities related to
the solutions in question and the boundedness of the appropriate adjoint functions in order to
prove necessary and sufficient conditions for near- optimal control with imprecise parameters.
Moreover we also build a numerical simulation to validate the foregoing result.

The stochastic epidemic system governed by the Brownian motion process as a unique
source of perturbation is not forever relevant, therefore, it is with great interest to examine
models driven by both brownian motion and jump Lévy noise in order to take into account
continuous and discontinuous components in the model.
To deal this, we have proposed and studied, in the same chapter, a shifted SICA epidemic
model, extending that due to Silva and Torres (2017) to the stochastic setting driven by both
Brownian motion processes and jump Lévy noise. Lévy noise perturbations are usually ignored
by existing works of mathematical modelling in epidemiology, but its incorporation into the
SICA epidemic model is worth to be considered because of the presence of strong fluctuations
in HIV/AIDS dynamics, often leading to the emergence of a number of discontinuities in the
processes under investigation. Our work was organised as follows: (i) we began by presenting
our model, by clearly justifying its used form, namely the component related to the Lévy
noise; (ii) we proved existence and uniqueness of a global positive solution by constructing
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a suitable stopping time; (iii) under some assumptions, we showed extinction of HIV/AIDS;
(iv) we obtained sufficient conditions assuring persistence of HIV/AIDS; (v) we illustrated our
mathematical results through numerical simulations.
Because of the most impotant role played by the economic side worldwide, we have thought
about translating different working mathematical tools from the biomathematics field to the
economic framework.
We have also proposed and studied a stochastic capital-labour model with logistic growth
function. First, we have shown that the model has a unique positive global solution. Then,
using the Lyapunov analysis method, we have obtained conditions for the extinction of the
total labour force. Furthermore, we have also proven sufficient conditions for their persistence
in the mean. Finally, we have illustrated our theoretical results through numerical simulations.

The fact that the attraction and the mathematical interest of doing research on the elabo-
ration of a new theoretical works within the fractional derivative with non singular kernel leads
me devoting the remainder time before the completion of my thesis report to move towards
establishing certain papers presenting in the fifth chapter.

For this, an appropriate study, in the fifth chapter, presents new estimates for fractional
derivatives without singular kernels defined by some specific functions. Based on some ob-
tained inequalities, we give a useful method to establish the global stability of steady states
for fractional-order systems and generalize some works existing in the literature. Finally, we
apply our results to prove the global stability of a fractional-order SEIR model with a general
incidence rate.

To enrich the fractional calculus theory which is nowadays widely addressed in different
scientific areas in order to describe accurately real world problems with effect memory, one of
our works is focused on the discovering of some classical extended formula, namely, the gen-
eralized Taylor’s theorem related to the generalized weighted fractional derivative with non
singular kernel is investigated using some demonstrated lemmas.
As an application, some corollaries are obtained as well as the generalized mean value theorem
is carried out.

Integration by parts formulas plays a crucial role in mathematical analysis, e.g., during
the proof of necessary optimality conditions in the calculus of variations and optimal control.
Motivated by this fact, we construct a new right-weighted generalized fractional derivative
in Riemann–Liouville sense with its associated integral. We rewrite these operators equiva-
lently in effective series, obtaining some interesting properties relating the left and the right
fractional operators. These achievements permit us to prove different versions of an ade-
quate integration by parts formula. With the new general formula, we obtain an appropriate
weighted Euler–Lagrange equation for dynamic optimization. We end with an application in
the quantum mechanics framework.

I would like to mention that the last declared works are separately governed by the de-
terministic, stochastic, fractional, and stochastic fractional approaches, as detailed below,
accompanied by some needed mathematical prerequisites.
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Chapter 1

Stochastic fractional approach:
Mathematical prerequisites and
original results

The original work of this chapter is published at [165].

1.1 Mathematical prerequisites

1.1.1 Integration by parts formula

Integration by parts formulas play a fundamental role in the calculus of variations and
optimal control.

Theorem 1.1 (Fractional formulas of integration by parts). Let α > 0, p, q ≥ 1, and 1
p + 1

q ≤
1 + α (p 6= 1 and q 6= 1 in the case where 1

p + 1
q = 1 + α).

(i) If Xt ∈ Lp(a, b) and Yt ∈ Lq(a, b) for every t ∈ [a, b], then∫ b

a
Xt(aI

α
t )Ytdt =

∫ b

a
Yt(tI

α
b Xt)dt.

(ii) If Yt ∈ tI
α
b (Lp) and Xt ∈ aI

α
t (Lq) for every t ∈ [a, b], then∫ b

a
Xt(aD

α
t Yt)dt =

∫ b

a
Yt(tD

α
bXt)dt.

(iii) For the Caputo fractional derivatives, one has∫ b

a
Xt(

C
aD

α
t Yt)dt =

∫ b

a
Yt(tD

α
bXt)dt+ [tI

1−α
b Xt) · Yt)]ba

and ∫ b

a
(Xt)(

C
t D

α
b Yt)dt =

∫ b

a
(Yt)(aD

α
t Xt)dt− [(aI

1−α
t Xt) · Yt]ba

for α ∈ (0, 1).
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1.1.2 Fractional Euler-Lagrange equation

Many generalizations of the classical calculus of variations and optimal control have been
made, in order to extend the theory to the field of fractional variational and fractional optimal
control. A simple fractional variational problem consists in finding a function x that minimizes
the functional

J [x] =

∫ b

a
L(t, x(t),aD

α
t x(t))dt

where aD
α
t is the left Riemann − Liouville fractional derivative. Typically, some boundary

conditions are prescribed as x(a) = xa and/or x(b) = xb.
Classical techniques have been adopted to solve such problems. The Euler–Lagrange equation
for a Lagrangian of the form

J [x] =

∫ b

a
L(t, x(t),aD

α
t x(t),tD

α
b x(t))dt

has been derived in [4, 2002]. Many variants of necessary conditions of optimality have been
studied. A generalization of the problem to include fractional integrals, i.e.,

J [x] =

∫ b

a
L(t, x(t),a I

1−α
t x(t),aD

α
t x(t))dt,

the transversality conditions of fractional variational problems and many other aspects can be
found in the literature of recent years. See (Almeida and Torres, 2009a, 2010; Atanackovic,
Konjik and Pilipovic, 2008; Riewe, 1996, 1997) and references therein. Furthermore, it has
been shown that a variational problem with fractional derivatives can be reduced to a classical
problem using an approximation of the Riemann–Liouville fractional derivatives in terms of
a finite sum, where only derivatives of integer order are present (Atanackovic, Konjik and
Pilipovic, 2008).

Theorem 1.2 ([4]). Let J be a functional of the form

J [x] =

∫ b

a
L(t, x(t),aD

α
t x(t))dt

defined on the set of functions x which have continuous left and right Riemann–Liouville
derivatives of order α ∈ [a, b], and satisfy the boundary conditions x(a) = xa and x(b) = xb.
A necessary condition for J to have an extremum for a function x is that x satisfy the following
Euler–Lagrange equation:

∂L

∂x
+t D

α
b

[
∂L

∂aDα
t x

]
= 0.

1.2 A Stochastic Fractional Calculus with Applications to Vari-
ational Principles

1.2.1 Introduction

A stochastic calculus of variations, which generalizes the ordinary calculus of variations
to stochastic processes, was introduced in 1981 by Yasue, generalizing the Euler–Lagrange
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equation and giving interesting applications to quantum mechanics [95]. Recently, stochastic
variational differential equations have been analyzed for modeling infectious diseases [59, 49],
and stochastic processes have shown to be increasingly important in optimization [110].

In 1996, fifteen years after Yasue’s pioneer work [95], the theory of the calculus of variations
evolved in order to include fractional operators and better describe non-conservative systems
in mechanics [6]. The subject is currently under strong development [13]. We refer the
interested reader to the introductory book [6] and to [15, 20, 21] for numerical aspects on
solving fractional Euler–Lagrange equations. For applications of fractional-order models and
variational principles in epidemics, biology, and medicine, see [9, 21, 117, 155] and references
therein. Given the importance of both stochastic and fractional calculi of variations, it seems
natural to join the two subjects. That is the main goal of our current work, i.e., to introduce
a stochastic-fractional calculus of variations. For that, we start our work by introducing new
definitions: left and right stochastic fractional derivatives and integrals of Riemann–Liouville
and Caputo types for stochastic processes of second order, as a deterministic function resulting
from the intuitive action of the expectation, on which we can compute its fractional derivative
several times to obtain additional results that generalize analogous classical relations. Our
definitions differ from those already available in the literature by the fact that they are applied
on second order stochastic processes, whereas known definitions, for example, those in [19, 53,
52, 63], are defined only for mean square continuous second order stochastic process, which
is a short family of operators. Moreover, available results in the literature have not used the
expectation, which we claim to be more natural, easier to handle and estimate, when applied
to fractional derivatives by different methods of approximation, like those developed and cited
in [15]. More than different, our definitions are well posed and lead to numerous results
generalizing those in the literature, like integration by parts and Euler–Lagrange variational
equations. The section is organized as follows. we introduce, first, the new stochastic fractional
operators. Their fundamental properties are given in the second part. In particular, we prove
stochastic fractional formulas of integration by parts. We consider then, the basic problem
of the stochastic fractional calculus of variations and obtain the stochastic Riemann–Liouville
and Caputo fractional Euler–Lagrange equations theorems. the last step gives two illustrative
examples.

1.2.2 The Stochastic Fractional Operators

Let (Ω, F, P ) be a probabilistic space, where Ω is a nonempty set, F is a σ-algebra of
subsets of Ω, and P is a probability measure defined on Ω. A mapping X from an open time
interval I into the Hilbert space H = L2(Ω, P ) is a stochastic process of second order in R. We
introduce the stochastic fractional operators by composing the classical fractional operators
with the expectation E. In what follows, the classical fractional operators are denoted using
standard notations [118]: aDα

t and tD
α
b denote the left and right Riemann–Liouville fractional

derivatives of order α; aIαt and tI
α
b the left and right Riemann–Liouville fractional integrals of

order α; while the left and right Caputo fractional derivatives of order α are denoted by C
aD

α
t

and C
t D

α
b , respectively. The new stochastic operators add to the standard notations an ’s’ for

“stochastic”.

Definition 1.3 (Stochastic fractional operators). Let X be a stochastic process on [a, b] ⊂ I,
α > 0, n = [α] + 1, such that E(X(t)) ∈ ACn([a, b] → R) with AC the class of absolutely
continuous functions. Then,
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(D1) the left stochastic Riemann–Liouville fractional derivative of order α is given by

s
aD

α
t X(t) = aD

α
t [E(Xt)]

=
1

Γ(n− α)

(
d

dt

)n ∫ t

a
(t− τ)n−1−αE(Xτ )dτ, t > a;

(D2) the right stochastic Riemann–Liouville fractional derivative of order α by

s
tD

α
bX(t) = tD

α
b [E(Xt)]

=
1

Γ(n− α)

(
−d
dt

)n ∫ b

t
(τ − t)n−1−αE(Xτ )dτ, t < b;

(D3) the left stochastic Riemann–Liouville fractional integral of order α by

s
aI
α
t X(t) = aI

α
t [E(Xt)]

=
1

Γ(α)

∫ t

a
(t− τ)α−1E(Xτ )dτ, t > a;

(D4) the right stochastic Riemann–Liouville fractional integral of order α by

s
tI
α
bX(t) = tI

α
b [E(Xt)]

=
1

Γ(α)

∫ b

t
(τ − t)α−1E(Xτ )dτ, t < b;

(D5) the left stochastic Caputo fractional derivative of order α by

sC
a Dα

t X(t) = C
aD

α
t [E(Xt)]

=
1

Γ(n− α)

∫ t

a
(t− τ)n−1−αE(X(τ))(n)dτ ; t > a.

(D6) and the right stochastic Caputo fractional derivative of order α by

sC
t Dα

bX(t) = C
t D

α
b [E(Xt)]

=
(−1)n

Γ(n− α)

∫ b

t
(τ − t)n−1−αE(X(τ))(n)dτ, t < b.

Remark 1.4. The stochastic processes X(t) used along the manuscript can be of any type
satisfying the announced conditions of existence of the novel stochastic fractional operators.
For example, we can consider Levy processes as a particular case, provided one considers some
intervals where E(X(t)) is sufficiently smooth [60].

As we shall prove in the following sections, the new stochastic fractional operators just
introduced provide a rich calculus with interesting applications.
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1.2.3 Associated Properties

Several properties of the classical fractional operators, like boundedness or linearity, also
hold true for their stochastic counterparts.

Proposition 1.5. If t→ E(Xt) ∈ L1([a, b]), then s
aI
α
t (Xt) is bounded.

Proof. The property follows easily from definition (D3):

|saIαt (Xt)| =
∣∣∣∣ 1

Γ(α)

∫ t

a
(t− τ)α−1E(Xτ )dτ

∣∣∣∣ ≤ k ‖E(Xt)‖1 ,

which shows the intended conclusion.

Proposition 1.6. The left and right stochastic Riemann–Liouville and Caputo fractional op-
erators given in Definition 1.3 are linear operators.

Proof. Let c and d be real numbers and assume that saDα
t Xt and s

aD
α
t Yt exist. It is easy to see

that saDα
t (c ·Xt + d · Yt) also exists. From Definition 1.3 and by linearity of the expectation

and the linearity of the classical/deterministic fractional derivative operator, we have
s
aD

α
t (c ·Xt + d · Yt) = aD

α
t E(c ·Xt + d · Yt)

= c · aDα
t E(Xt) + d · aDα

t E(Yt)

= c · saDα
t (Xt) + d · saDα

t (Yt).

The linearity of the other stochastic fractional operators is obtained in a similar manner.

Our next proposition involves both stochastic and deterministic operators. Let O ∈{
D, I, CD

}
. Recall that if saO

β
t is a left stochastic fractional operator of order β, then aO

β
t is

the corresponding left classical/deterministic fractional operator of order β; similarly for right
operators.

Note that the proofs of Propositions 1.7 and 1.8 and Lemma 1.9 are not hard to prove
in the sense that they are based on well-known results available for deterministic fractional
derivatives (observe that E(X(t)) is deterministic).

Proposition 1.7. Assume that saI
β
tXt, stI

β
bXt, saIαt Xt, aDα

t [saI
α
t Xt],

aI
α
t

[
s
aI
β
tXt

]
and tI

α
b

[
s
tI
β
bXt

]
exist. The following relations hold:

aI
α
t

[
s
aI
β
tXt

]
= s

aI
α+β
t Xt,

tI
α
b

[
s
tI
β
bXt

]
= s

tI
α+β
b Xt,

aD
α
t [saI

α
t Xt] = E(Xt).

Proof. Using Definition 1.3 and well-known properties of the deterministic Riemann–Liouville
fractional operators [14], one has

aI
α
t

[
s
aI
β
tXt

]
= aI

α
t

[
aI
β
t E(Xt)

]
= aI

α+β
t E(Xt)

= s
aI
α+β
t Xt.

The second and third equalities are easily proved in a similar manner.
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Proposition 1.8. Let α > 0. If E(Xt) ∈ L∞(a, b), then

C
aD

α
t [saI

α
t Xt] = E(Xt)

and
C
t D

α
b [stI

α
bXt] = E(Xt).

Proof. Using Definition 1.3 and well-known properties of the deterministic Caputo fractional
operators [14], we have

C
aD

α
t [saI

α
t Xt] = C

aD
α
t [aI

α
t E(Xt)]

= E(Xt).

The second formula is shown with the same argument.

1.2.4 Integration by parts formula

Formulas of integration by parts play a fundamental role in the calculus of variations and
optimal control [18, 106]. Here we make use of Lemma 1.9 to prove our stochastic fractional
Euler–Lagrange necessary optimality condition.

Lemma 1.9 (Stochastic fractional formulas of integration by parts). Let α > 0, p, q ≥ 1, and
1
p + 1

q ≤ 1 + α (p 6= 1 and q 6= 1 in the case where 1
p + 1

q = 1 + α).

(i) If E(Xt) ∈ Lp(a, b) and E(Yt) ∈ Lq(a, b) for every t ∈ [a, b], then

E

(∫ b

a
(Xt)

s
aI
α
t Ytdt

)
= E

(∫ b

a
(Yt)

s
tI
α
bXtdt

)
.

(ii) If E(Yt) ∈ tI
α
b (Lp) and E(Xt) ∈ aI

α
t (Lq) for every t ∈ [a, b], then

E

(∫ b

a
(Xt)(

s
aD

α
t Yt)dt

)
= E

(∫ b

a
(Yt)(

s
tD

α
bXt)dt

)
.

(iii) For the stochastic Caputo fractional derivatives, one has

E

[∫ b

a
(Xt)(

sC
a Dα

t Yt)dt

]
= E

[∫ b

a
(Yt)(

s
tD

α
bXt)dt

]
+ E

[
(stI

1−α
b Xt) · Yt

]b
a

and

E

[∫ b

a
(Xt)(

sC
t Dα

b Yt)dt

]
= E

[∫ b

a
(Yt)(

s
aD

α
t Xt)dt

]
− E

[
(saI

1−α
t Xt) · Yt

]b
a

for α ∈ (0, 1).
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Proof. (i) We have

E

(∫ b

a
(Xt)

s
aI
α
t Ytdt

)
=

∫ b

a
E ((Xt)

s
aI
α
t Yt) dt (by Fubini–Tonelli’s theorem)

=

∫ b

a
E ((Xt)aI

α
t E(Yt)) dt (by (D3))

=

∫ b

a
E((Xt))aI

α
t E(Yt)dt (the expectation is deterministic)

=

∫ b

a
tI
α
bE(Xt) · E(Yt)dt (by fractional integration by parts)

= E

(∫ b

a

s
tI
α
b (Xt)(Yt)dt

)
(by Fubini–Tonelli’s theorem).

(ii) With similar arguments as in item (i), we have

E

(∫ b

a
(Xt)

s
aD

α
t Ytdt

)
=

∫ b

a
E ((Xt)

s
aD

α
t Yt) dt

=

∫ b

a
E ((Xt)aD

α
t E(Yt)) dt (by (D1))

=

∫ b

a
E((Xt))aD

α
t E(Yt)dt

=

∫ b

a
tD

α
bE(Xt) · E(Yt)dt

= E

(∫ b

a

s
tD

α
b (Xt)(Yt)dt

)
.

(iii) By using Caputo’s fractional integration by parts formula we obtain that

E

[∫ b

a
(Xt)(

sC
a Dα

t Yt)dt

]
=

∫ b

a
E [(Xt)] (CaD

α
t E [(Yt)])dt

=

∫ b

a
(tD

α
bE [(Xt)] · E [(Yt)])dt+

[
(tI

1−α
b E(Xt) · E(Yt)

]b
a

=

∫ b

a
(stD

α
b (Xt) · E [(Yt)])dt+

[
(tI

1−α
b E(Xt) · E(Yt)

]b
a

= E

[∫ b

a
(stD

α
b (Xt) · (Yt))dt

]
+ E

[
(tI

1−α
b E(Xt) · (Yt)

]b
a
.

The first equality of (iii) is proved. By using a similar argument and applying the inte-
gration by parts formula associated with the right Caputo fractional derivative [14], we easily
get the second equality of (iii).

1.2.5 Stochastic Fractional Euler–Lagrange Equations

Let us denote by C1(I → H) the set of second order stochastic processes X such that the
left and right stochastic Riemann–Liouville fractional derivatives of X exist, endowed with
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the norm
‖X‖ = sup

t∈I
(‖X(t)‖H+ | saDα

t X(t) | + | stDα
bX(t) |) ,

where ‖ · ‖H is the norm of H. Let L ∈ C1(I ×H × R × R → R) and consider the following
minimization problem:

J [X] = E

(∫ b

a
L (t,X(t), saD

α
t X(t), stD

α
bX(t)) dt

)
−→ min (1.1)

subject to the boundary conditions

E(X(a)) = Xa, E(X(b)) = Xb, (1.2)

where X verifies the above conditions and L is a smooth function. Taking into account the
method used in [15] for the fractional setting, and according to stochastic fractional integration
by parts given by our Lemma 1.9, we obtain the following necessary optimality condition for
the fundamental problem (1.1)–(1.2) of the stochastic fractional calculus of variations.

Theorem 1.10 (The stochastic Riemann–Liouville fractional Euler–Lagrange equation). If
J ∈ C1(H × R × R → R) and X ∈ C1(I → H) is an F -adapted stochastic process on [a, b]
with E(X(t)) ∈ AC([a, b]) that is a minimizer of (1.1) subject to the fixed end points (1.2),
then X satisfies the following stochastic fractional Euler–Lagrange equation:

∂L

∂X
+ s
tD

α
b

[
∂L

∂saD
α
t

]
+ s
aD

α
t

[
∂L

∂stD
α
b

]
= 0.

Proof. We have

J [X] = E

(∫ b

a
L(t,X(t), saD

α
t X(t), stD

α
bX(t)dt

)
.

Assume that X∗ is the optimal solution of problem (1.1)–(1.2). Set

X = X∗ + εη,

where η is an F -adapted stochastic process on [a, b] in C1(I → H). By linearity of the
stochastic fractional derivatives (Proposition 1.6), we get

s
aD

α
t X = s

aD
α
t X
∗ + ε (saD

α
t η)

and
s
tD

α
bX = s

tD
α
bX
∗ + ε (stD

α
b η) .

Consider now the following function:

j(ε) = E

(∫ b

a
L (t,X∗ + εη, saD

α
t X
∗ + ε (saD

α
t η) , stD

α
bX
∗ + ε (stD

α
b η)) dt

)
.

We deduce, by the chain rule, that

d

dt
j(ε) |ε=0= E

(∫ b

a
(∂2L · η + ∂3L · saDα

t η + ∂4L · stDα
b η)dt

)
= 0,
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where ∂iL denotes the partial derivative of the Lagrangian L with respect to its ith argument.
Using Lemma 1.9 of stochastic fractional integration by parts, we obtain

E

(∫ b

a
(∂2L · η + s

tD
α
b (∂3L) · η + s

aD
α
t (∂4L) · η) dt

)
= 0.

We claim that if Y is a stochastic process with continuous paths of second order such that

E

[∫ b

a
Y (t) · η(t)dt

]
= 0

for any stochastic process with continuous paths η, then

Y = 0 almost surely (a.s.).

Indeed, suppose that Y (s) > 0 a.s. for a certain s ∈ (a, b). By continuity, Y (t) > c > 0 a.s.
in a neighborhood of s, a < s − r < s < s + r < b, r > 0. Consider the process η such that
η(t) = 0 a.s. on [a, s − r] ∪ [s + r, b] and η(t) > 0 a.s. on (s − r, s + r), and η(t) = 1 a.s. on(
s− r

2
, s+

r

2

)
. Then,

∫ b
a Y (t) · η(t)dt ≥ rc > 0 a.s. Consequently, E

[∫ b
a Y (t) · η(t)dt

]
> 0,

which completes the proof of our claim. Taking into account this result, and the fact that η
is an arbitrary process, we deduce the desired stochastic fractional Euler–Lagrange equation:

∂2L+ s
tD

α
b [∂3L] + s

aD
α
t [∂4L] = 0.

The proof is complete.

By adopting the same method as in the proof of Theorem 1.10 and using our result of
integration by parts for stochastic Caputo fractional derivatives, i.e., item (iii) of Lemma 1.9,
we obtain the appropriate stochastic Caputo fractional Euler–Lagrange necessary optimality
condition.

Theorem 1.11 (The stochastic Caputo fractional Euler–Lagrange equation). If J ∈ C1(H ×
R×R→ R) and X ∈ C1(I → H) is an F -adapted stochastic process on [a, b] with E(X(t)) ∈
AC([a, b]) that is a minimizer of

J [X] = E

(∫ b

a
L
(
t,X(t), sCa Dα

t X(t), sCt Dα
bX(t)

)
dt

)
subject to the fixed end points E(X(a)) = Xa and E(X(b)) = Xb, then X satisfies the following
stochastic fractional Euler–Lagrange equation:

∂L

∂X
+ sC
t Dα

b

[
∂L

∂sCa Dα
t

]
+ sC
a Dα

t

[
∂L

∂sCt Dα
b

]
= 0.

Remark 1.12. Note that the conclusions of Theorems 1.10 and 1.11 are not contradictory:
one conclusion is valid for Riemann–Liouville derivative problems, while the other holds true
for Caputo-type problems. The conclusions are proved in a similar manner by remarking
that the additional quantity with parentheses, in the integration by parts theorem linked to the
Caputo approach, vanishes under the condition that X and X∗ verify the same initial and
final conditions. Note also that the assumptions of Theorems 1.10 and 1.11 are necessary
for the existence of left and right stochastic Riemann–Liouville/Caputo fractional derivative
operators.
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Our Theorems 1.10 and 1.11 give an extension of the Euler–Lagrange equations of the
classical calculus of variations [140], stochastic calculus of variations [152], and fractional
calculus of variations [4]. The best way to illustrate a new theory is by choosing simple
examples. We give two illustrative examples of the stochastic Riemann–Liouville fractional
Euler–Lagrange equation: the first one inspired from quantum mechanics; the second chosen
to allow a simple numerical solution to the obtained stochastic Riemann–Liouville fractional
Euler–Lagrange equation.

1.2.6 Generalization and application in quantum mechanics

Let us consider the stochastic fractional variational problem (1.1)–(1.2) with

L (t,X(t), saD
α
t X(t), stD

α
bX(t)) =

1

2

(
1

2
m | saDα

t X(t) |2 +
1

2
m | stDα

bX(t) |2
)
− V (X(t)),

where X is a stochastic process of second order with E(X(t)) ∈ AC([a, b]) and V maps
C ′(I → H) to R. Note that

1

2

(
1

2
m | saDα

t X(t) |2 +
1

2
m | stDα

bX(t) |2
)

can be viewed as a generalized kinetic energy in the quantum mechanics framework. By
applying our Theorem 1.10 to the current variational problem, we get

1

2
m [saD

α
t (stD

α
bX(t)) + s

tD
α
b (saD

α
t X(t))] = gradV (X(t)), (1.3)

where gradV is the gradient of V , which in this case means the derivative of the potential
energy of the system. We observe that if α tends to zero and X is a deterministic function,
then relation (1.3) becomes what is known in the physics literature as Newton’s dynamical
law: mẌ(t) = gradV (X(t)).

The calculus of variations can assist us both analytically and numerically. Now we give a
numerical example, carried out with the help of the MATLAB computing environment [51].

1.2.7 Example with fractional computational method

Let α := 0.25, a := 0.01, b := 0.99, Xa := 1.00, and Xb := 1.00. Consider the following
variational problem (1.1)–(1.2):

J [X] =

∫ b

a

s
aD

α
t X(t)× s

tD
α
bX(t) dt −→ min,

E(X(a)) = Xa, E(X(b)) = Xb,

whereX ∈ C1(I → H) with E(X(t)) ∈ AC and s
aD

α
· X and s

·D
α
bX denote, respectively, the left

and the right stochastic fractional Riemann–Liouville derivatives of order α. Resorting again
to Theorem 1.10, we obtain the following stochastic fractional Euler–Lagrange differential
equation:

s
aD

2α
t X(t) + s

tD
2α
b X(t) = 0.
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Figure 1.1: Expectation of the extremizer to the stochastic fractional
problem of the calculus of variations related to the current example.

Following [15], we observe that saDα
t X(t) and s

tD
α
bX(t) can be approximated as follows:

s
aD

α
t X(t) = aD

α
t E(X(t)) '

N∑
k=0

(−1)(k−1)α(E(X(t)))(k)

k!(k − α)Γ(1− α)
(t− a)(k−α)

and
s
tD

α
bX(t) = tD

α
bE(X(t)) '

N∑
k=0

−α(E(X(t)))(k)

k!(k − α)Γ(1− α)
(b− t)(k−α).

Choosing N = 1, we get the curve for E(X(t)) as shown in Figure 1.1.

One can increase the value of N under the condition one adds a sufficient number of initial
values related to some degrees of derivatives of E(X(t)). This particular question is similar
to the standard fractional calculus and we refer the interested reader to the book [15].
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Chapter 2

Deterministic approach:
Mathematical prerequisites and
original results

2.1 Mathematical prerequisites

2.1.1 The next generation matrix method

Consider a heterogeneous population whose individuals are distinguishable by age, be-
haviour, spatial position and/or stage of disease, but can be grouped into n homogeneous
compartments. A general epidemic model for such a population is developed in this section.
Let x = (x1; ...;xn)′, with each xi, be the number of individuals in each compartment. For
clarity we sort the compartments so that the first m compartments correspond to infected
individuals. The distinction between infected and uninfected compartments must be deter-
mined from the epidemiological interpretation of the model and cannot be deduced from the
structure of the equations alone, as we shall discuss below. It is plausible that more than one
interpretation is possible for some models.
The basic reproduction number can not be determined from the structure of the mathemati-
cal model alone, but depends on the definition of infected and uninfected compartments. We
define Xs to be the set of all disease free states, that is,

Xs = {x ≥ 0|xi = 0, i = 1, . . . ,m} .

In order to compute the basic reproduction number R0, it is important to distinguish new
infections from all other changes in population. Let Fi(x) be the rate of appearance of new
infections in compartment i,V+

i (x) be the rate of transfer of individuals into compartment i
by all other means, and V−i (x) be the rate of transfer of individuals out of compartment i.
It is assumed that each function is continuously differentiable at least twice in each variable.
The disease transmission model consists of nonnegative initial conditions together with the
following system of equations:

ẋi = fi(x) = Fi(x)− Vi(x) (2.1)

where Vi(x) = V+
i (x) − V−i (x) and the functions satisfy assumptions (A1)–(A5) described

below. Since each function represents a directed transfer of individuals, they are all non-
negative. Thus,
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(A1) if x ≥ 0 then Fi(x),V+
i (x),V−i (x) ≥ 0 for i = 1, 2, ..., n.

(A2) if xi = 0 then V−i (x) = 0, in particular, if x ∈ Xs then V−i (x) = 0, for i = 1, 2...,m.
(A3) Fi = 0 if i > m.
(A4) if x ∈ Xs then Fi = 0 and V+

i (x) = 0 for i = 1, ...,m.
(A5) If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts.
The conditions listed above allow us to partition the matrix Df(x0) as shown by the following
lemma.

Lemma 2.1. If x0 is a Disease Free Equilibrium (DFE) of (2.1) and fi(x) satisfies (A1)−(A5),
then the derivatives DF(x0) and DV(x0) are partitioned as

DF(x0) =

(
F 0
0 0

)

DV(x0) =

(
V 0
J3 J4

)
where F and V are the m×m matrices defined by

F =

[
∂Fi
∂xj

(x0)

]
; V =

[
∂Vi
∂xj

(x0)

]
for i ≥ 1, j ≤ m. Further, F is non-negative, V is a non-singular M -matrix and all eigenval-
ues of J4 have positive real part.

The basic reproduction number, denoted R0, is “the expected number of secondary cases
produced, in a completely susceptible population, by a typical infective individual”. If R0 < 1,
then on average an infected individual produces less than one new infected individual over the
course of its infectious period, and the infection cannot grow. Conversely, if R0 > 1, then each
infected individual produces, on average, more than one new infection, and the disease can
invade the population. For the case of a single infected compartment, R0 is simply the product
of the infection rate and the mean duration of the infection. However, for more complicated
models with several infected compartments this simple heuristic definition of R0 is insufficient.
A more general basic reproduction number can be defined as the number of new infections
produced by a typical infective individual in a population at a DFE.
Following Diekmann et al.[48], we call FV −1 the next generation matrix for the model and
set

R0 = ρ(FV −1) (2.2)

where ρ(A) denotes the spectral radius of a matrix A.

Theorem 2.2. Consider the disease transmission model given by (2.1) with f(x) satisfying
conditions (A1) − (A5). If x0 is a DFE of the model, then x0 is locally asymptotically stable
if R0 < 1, but unstable if R0 > 1, where R0 is defined by (2.2).

2.1.2 Least square procedure to estimate infection rate

Let y(t), t = 0, 1, . . . , 45 be the number of daily reported cases. We perform the following
least− square− based procedure with Poisson noise to estimate the infection rate β.
Description of the procedure.
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(P1) Fix β > 0 and calculate the numerical value of Y (t), t = 0, 1, ..., 45.
(P2) Calculate Ỹ (t) = Y (t) +

√
Y (t)e(t) = Y (t) + (Poissonnoise), t = 0, 1, ..., 45, where

e(t), t = 0, 1, ..., 45 denote random variables from a normal distribution with mean zero and
variance 1.
(P3) Calculate J(β) =

∑45
t=0

[
y(t)− Ỹ (t)

]2
.

(P4) Run (P1)− (P3) for 0.2 ≤ β ≤ 0.4 and find β∗ such that J(β∗) = min0.2≤β≤0.4J(β).
(P5) Repeat (P1)− (P4) 10000 times and obtain the distribution of β∗.
(P6) Approximate the distribution of β∗ by a normal distribution and obtain a 95% confidence
interval.

2.1.3 Existence and uniqueness’s theorem within semi-group theory

Consider the initial value problem:{
∂y

∂t
= Ay(t) + g(t, y(t)), t ∈ [0, T ]

y(0) = y0

(2.3)

where A is a linear operator defined on a Banach spaceX, with the domain D(A) and g :
[0, T ]×X → X is a given function. If X is a Hilbert space endowed with the scalar product
(., .), then the linear operator A is called dissipative if (Ay, y) ≥ 0, (y ∈ D(A)).

Theorem 2.3. X be a real Banach space, A : D(A) ⊆ X −→ X be the infinitesimal generator
of a C0 − semigroup of linear contractions S(t), t ≥ 0 on X, and g : [0, T ] × X → X be
a measurable function in t and Lipschitz continuous in x ∈ X, uniformly with respect to
t ∈ [0, T ].
(i) If y0 ∈ X, then problem (2.3) admits a unique mild solution, i.e.a function y ∈ C([0, T ];X)
which verifies the equality

y(t) = S(t)y0 +

∫ t

0
S(t− s)g(s, y(s))ds, t ∈ [0, T ].

(ii) If X is a Hilbert space,A is self − adjoint and dissipative on X and y0 ∈ D(A), then the
mild solution is in fact a strong solution and

y ∈W 1,2 ([0, T ];X) ∩ L2 (0;T ;D(A)) .

2.2 Modeling the spread of COVID-19 pandemic in Morocco

The original results of this section are published in [162].

2.2.1 Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease that appeared in China at
the end of 2019. It is caused by a new type of virus belonging to the coronaviruses family and
recently named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [109]. On
March 11, 2020, COVID-19 was reclassified as a pandemic by the World Health Organization
(WHO). The disease spreads rapidly from country to country, causing enormous economic
damage and many deaths worldwide. The first case of COVID-19 in Morocco was confirmed
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on March 2, 2020 in city of Casablanca. It involved a Moroccan expatriate residing in Italy
and who came from Italy on February 27, 2020. As of April 17, 2020, the confirmed cases
reached 2564 and the number of recoveries reached 281 with a total number of 135 deaths
[107].

Moroccan authorities have implemented multiple preventive measures and strategies to
control the spread of disease, such as the closing of borders, suspension of schools and univer-
sities, closing coffee shops, the shut-down of all mosques in the country, etc. Further, Morocco
has declared a state of health emergency during the period from March 20 to April 20, 2020,
to avoid the spread of COVID-19. During this period, movement during the day should be
limited to work, shopping, medical care, purchasing medicine, medical supplies, and emer-
gency situations only. In addition, and from April 6, 2020, the wearing of a mask became
compulsory for all persons authorized to move.

Mathematical modeling of COVID-19 transmission has attracted the attention of many
scientists. Tang et al. [135] used a Susceptible–Exposed–Infectious–Recovered (SEIR) com-
partmental model to estimate the basic reproduction number of COVID-19 transmission based
on data obtained for the confirmed cases of the disease in mainland China. Wu et al. [150]
provided an estimate of the size of the epidemic in Wuhan on the basis of the number of
cases exported from Wuhan to cities outside mainland China by using a SEIR model. In [79],
Kuniya applied the SEIR compartmental model for the prediction of the epidemic peak for
COVID-19 in Japan by using the real-time data from January 15 to February 29, 2020. Fanelli
and Piazza [55] analyzed and forecasted COVID-19 spreading in China, Italy and France by
using a simple Susceptible–Infected–Recovered–Death (SIRD) model. The authors of [102]
present a mathematical model and study the dynamics of COVID-19 that emerged recently
in Wuhan, China. For a fractional (non-integer order) model see [74].

In the models cited above, the transmission of the disease was assumed to be instantaneous
and therefore they are formulated by ordinary differential equations (ODEs), without time de-
lays. In this study, we propose a mathematical model governed by delay differential equations
(DDEs) to predict the epidemiological trend of COVID-19 in Morocco and taking into account
multiple preventive measures and strategies implemented by Moroccan authorities, related to
the confinement period between March 2 and June 20, 2020, in order to control the spread
of disease. To do this, the formulation of the model is obtained, further, the parameters es-
timation and sensitivity analysis are handled, in addition, a forecast of COVID-19 spreading
in Morocco is presented in the next part of study, We end lastly our work by an adequate
discussion of the results.

2.2.2 Formulation of the model

Around the world, all the countries that are attacked by the COVID-19 have imposed
several strategies, with different degrees, to fight against it, namely the reduction of some
rights by adopting the quarantine method in order to prevent contacts between vulnerable
and infected individuals, closing the geographical borders of the countries, and enforcing the
capacity of the sanitary system. Similarly, the Kingdom of Morocco quickly followed all of the
previous strategies when the pandemic was in its early stages.

Remark 2.4. The terms “susceptibility” and “vulnerability” are often used interchangeably for
populations with disproportionate health burdens [28]. The distinction between vulnerability
and susceptibility marks the difference between being intact but fragile–vulnerable and being
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Figure 2.1: Schematic diagram of our extended model.

injured and predisposed to compound additional harm–susceptible [78]. Here, we refer to “the
potential to contract the COVID-19” as vulnerability, to emphasize the environmental nature
of the disease.

After the first reported positive case in Morocco, March 2, 2020, the closing of schools and
universities is done at March 16, 2020; the state of health emergency (containment) is imposed
to contain the outbreak from March 20, 2020; and the closure of the borders is performed at
March 24, 2020. Additionally, the face mask is obligatory used in the general population at
April 6, 2020. Based on these preventive measures and strategies, we model the dynamics of
the transmission of COVID-19 in Morocco by extending the classical SIR model. Precisely,
the population is divided into eight classes, denoted by V , Is, Ia, Fb, Fg, Fc, R and D, where
V represents the vulnerable sub-population, which is not infected and has not been infected
before, but is susceptible to develop the disease if exposed to the virus; Is is the symptomatic
infected sub-population, which has not yet been treated, it transmits the disease, and outside
of proper support it can progress to spontaneous recovery or death; Ia is the asymptomatic
infected sub-population who is infected but does not transmit the disease, it is not known by
the health system and progresses spontaneously to recovery; Fb, Fg and Fc are the patients
diagnosed, supported by the Moroccan health system and under quarantine, and subdivided
into three categories: benign, severe, and critical forms, respectively. Finally, R and D are
the recovered and died classes. The schematic diagram of our extended model is illustrated in
Figure 2.1. Therefore, the extended model can be governed by the following system of DDEs:
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

dV (t)

dt
= −β(1− u)V (t)Is(t),

dIs(t)

dt
= βε(1− u)V (t− τ1)Is(t− τ1)− (µs + ηs + α(γb + γg + γc)) Is(t),

dIa(t)

dt
= β(1− ε)(1− u)V (t− τ1)Is(t− τ1)− ηaIa(t),

dFb(t)

dt
= αγbIs(t− τ2)−

(
µb + rb

)
Fb(t),

dFg(t)

dt
= αγgIs(t− τ2)−

(
µg + rg

)
Fg(t),

dFc(t)

dt
= αγcIs(t− τ2)−

(
µc + rc

)
Fc(t),

dR(t)

dt
= ηaIa(t) + ηsIs(t) + rbFb(t) + rgFg(t) + rcFc(t),

dD(t)

dt
= µsIs(t) + µbFb(t) + µgFg(t) + µcFc(t),

(2.4)

where u represents the level of control strategies on the vulnerable population. We adopt
the bilinear incidence rate to describe the infection of the disease and use parameter β to
denote the transmission rate. It is reasonable to assume that the infected individuals are
subdivided into individuals with symptoms and others without symptoms, for which we employ
the parameter ε to denote the proportion for the symptomatic individuals and 1 − ε for the
asymptomatic ones. The parameter α measures the efficiency of public health administration
for hospitalization. Diagnosed symptomatic infected population moves to the three forms:
benign, severe and critical, by the rates γb, γg and γc, respectively. The mean recovery period
of these forms are denoted by 1/rb, 1/rg and 1/rc, respectively. The later forms die also
with the rates µb, µg and µc, respectively. Symptomatic infected population, which is not
diagnosed, moves to the recovery compartment with a rate ηs or dies with a rate µs. On
the other hand, asymptomatic infected population moves to the recovery compartment with a
rate ηa. The times delay τ1 and τ2 denote the incubation period and the period time needed
before hospitalization, respectively.

For biological reasons, we assume that the initial conditions of system (2.4) satisfy:

V (θ) = φ1(θ) ≥ 0, Is(θ) = φ2(θ) ≥ 0, Ia(θ) = φ3(θ) ≥ 0,
Fb(θ) = φ4(θ) ≥ 0, Fg(θ) = φ5(θ) ≥ 0, Fc(θ) = φ6(θ) ≥ 0,
R(θ) = φ7(θ) ≥ 0, D(θ) = φ8(θ) ≥ 0, θ ∈ [−τ, 0],

where τ = max{τ1, τ2}. Let C = C([−τ, 0],R8) be the Banach space of continuous func-
tions from the interval [−τ, 0] into R8, equipped with the uniform topology. It follows from
the theory of functional differential equations [64] that system (2.4) with initial conditions
(φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8) ∈ C has a unique solution.

On the other hand, the basic reproduction number is an important threshold parameter
that determines the spread of infection when the disease is introduced into the population [48].
This number is defined as the expected number of secondary cases produced, in a completely
susceptible population, by a typical infective individual. By using the next generation matrix
approach [141], the basic reproduction number R0 of system (2.4) is given by

R0 = ρ(FV −1) =
βε(1− u)

ηs + µs + α(γb + γg + γc)
, (2.5)

24



where ρ is the spectral radius of the next generation matrix FV −1 with

F =

(
βε(1− u) 0

0 0

)
and V =

(
ηs + µs + α(γb + γg + γc) 0

0 ηa

)
.

2.2.3 Parameter estimation and sensitivity analysis

Based on the daily published Moroccan data [96], we estimate the values of some param-
eters of the model. The proportion of asymptomatic forms can vary from 20.6% of infected
population to 39.9% [97]. Then, ε ∈ [0.61, 0.794]. The progression rates γb, γg and γc from
symptomatic infected individuals to the three forms are assumed to be 80% of diagnosed cases
for benign form, 15% of diagnosed cases for severe form, and 5% of diagnosed cases for critical
form, respectively [148]. The true mortality of COVID-19 will take some time to be fully
understood. The data we have so far indicate that the crude mortality ratio (the number of
reported deaths divided by the reported cases) is between 3 and 4% [148]. As the Moroccan
health system is not overloaded at the moment, it is assumed that deaths mainly come from
critical cases with a percentage of 40% for an average period of 13.5 days [148]. Since the mor-
tality rate of symptomatic individuals differs from country to country [55], we assume that 1%
of symptomatic individuals die for an average period of 21 days, whereas the recovery rate for
asymptomatic cases is 100% and is the same for severe and benign forms if a proper medical
care is taken with an average period of 21 days. We employ a least-square procedure with
Poisson noise as in [79] to estimate the transmission rate. The incubation period is estimated
to be 5.5 days [26] while the time needed before hospitalization is estimated to be 7.5 days
[73, 144]. The estimation of the above parameters is given in the table 2.2.

Sensitivity analysis is commonly used to determine the robustness of model predictions to
some parameter values. It is used to discover parameters that have a high impact on R0 and
should be targeted by intervention strategies. The main objective of this section is to examine
the sensitivity of the basic reproduction number R0 with respect to model parameters by the
so-called sensitivity index. The normalized forward sensitivity index of a variable ν, that
depends differentially on a parameter ρ, is defined as

Υν
ρ :=

∂ν

∂ρ
× ρ

ν
.

According to the above definition, we derive the normalized forward sensitivity index of
R0 with respect to β, ε, ηs, µs, γb, γg, γc, and α, which is summarized in Table 2.2.

As we observe in Table 2.2, the most sensitive parameters, which have a higher impact on
R0, are β and ε, since ΥR0

β and ΥR0
ε are independent of any parameter of system (2.4) with

ΥR0
β = ΥR0

ε = +1. In addition, the parameter α has a middle negative impact on R0, while
R0 is slightly impacted by the rest of the parameters.

2.2.4 Prevision of COVID-19 in Morocco

In this section, we present the forecasts of COVID-19 in Morocco relating with different
preventive measures and strategies implemented by Moroccan authorities on the confinement
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Table 2.1: Parameter values for our model (2.4).

Parameter Value Source
β 0.4517 (95%CI, 0.4484− 0.455) Estimated
u 0− 1 Varied
ε 0.794 [97]
γb 0.8 [148]
γg 0.15 [148]
γc 0.05 [148]
α 0.06 Assumed
ηa 1/21 Calculated
ηs 0.8/21 Calculated
µs 0.01/21 Calculated
µb 0 Assumed
µg 0 Assumed
µc 0.4/13.5 Calculated
rb 1/13.5 Calculated
rg 1/13.5 Calculated
rc 0.6/13.5 Calculated
τ1 5.5 [26]
τ2 7.5 [73, 144]

period between March 2 and June 20, 2020. Then the parameter u can be defined as follows:

u =


u1, on (March 2,March 10];
u2, on (March 10,March 20];
u3, on (March 20,April 6];
u4, after April 6,

where ui ∈ (0, 1], i = 1, 2, 3, 4, measures the effectiveness of applying the multiple preventive
interventions imposed by Moroccan authorities presented in Table 2.3.

To make a better illustration of the different strategies, we test the four decisions made at
the government level in Figure 2.2.

We see in Figure 2.2 the evolution of the number of diagnosed infected positive individuals
with different sets of measures: low, middle, high, and strict interventions. Up to April 15,
the curves corresponding to the first three sets of measures increase exponentially, while the
curve corresponding to the fourth set of measures has lost its initial exponential character and
tends to flatten over time. In addition, the last daily reported cases in Morocco from March
2 to April 17, confirm the biological tendency of our model. Thus, our model is efficient to
describe the spread of COVID-19 in Morocco. However, we note that some clinical data is a
little far from the values of the model due to certain foci that appeared in some large areas
or at the level of certain industrial areas.

Next, we give the graphical results related to delays parameters to prove their biological
importance.
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Table 2.2: The normalized forward sensitivity index of R0.

Parameters Sensitivity index of R0 Value

β ΥR0
β = +1 +1

ε ΥR0
ε = +1 +1

ηs ΥR0
ηs = − ηs

ηs + µs + (γb + γg + γc)α
-0.3864

µs ΥR0
µs = − µs

ηs + µs + (γb + γg + γc)α
-0.0048

γb ΥR0
γb

= − αγb
ηs + µs + (γb + γg + γc)α

-0.487

γg ΥR0
γg = − αγg

ηs + µs + (γb + γg + γc)α
-0.0913

γc ΥR0
γc = − αγc

ηs + µs + (γb + γg + γc)α
-0.0304

α ΥR0
α = − α(γb + γg + γc)

ηs + µs + (γb + γg + γc)α
-0.687

Table 2.3: Summary of non-pharmaceutical interventions considered.

Policies Control values
Without any intervention measures u = 0, after March 2
First set of measures u = 0.2, after March 2
Second set of measures u = 0.2, on (March 2,March 10]

u = 0.3, after March 10
Third set of measures u = 0.2, on (March 2,March 10],

u = 0.3, on (March 10,March 16]
u = 0.4, after March 16

Fourth set of measures u = 0.2, on (March 2,March 10],
u = 0.3, on (March 10,March 16]
u = 0.4, on (March 16,April 6]
u = 0.8, after April 6,
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Figure 2.2: Comparison of the non-pharmaceutical interventions considered and the daily
reported cases of COVID-19 in Morocco from March 2 to April 17, 2020.
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Figure 2.3: Effect of delays on the diagnosed confirmed cases.

We observe in Figure 2.3 a highly impact of delays on the number of diagnosed positive cases,
thereby the plot of model (2.4) without delays (τ1 = τ2 = 0) is very far from the clinical data.

2.2.5 Peak prediction

Now, we indicate the predicted relative impact of the model and especially the diagnosed
infective individuals with and without interventions applied progressively in Morocco.

Before finding the first positive infected case in Morocco, the authorities have begun with
a suspension of international air lines to and from China, and installed health control check-
points at the borders but without any interventions into the Moroccan population. For this,
we simulate model (2.4) in the case u = 0, which is illustrated by Figures 2.4 and 2.5.

We remark from Figure 2.4 that the estimated epidemic peak is t∗ = 142 (95%CI, 141 −
143), that is, starting from March 2, 2020 (t = 0), the estimated epidemic peak is July 21,
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Figure 2.4: Time variation of the diagnosed infective individuals without any intervention on
the Moroccan population with different values of β (95%CI, 0.4484− 0.455).
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Figure 2.5: Time variation of the model with β = 0.4517 and R0 = 3.6385.

2020 (t = 142).

In the absence of any government intervention, the disease persists strongly and almost all of
the vulnerable population will be reached by the infection (Figure 2.5).

After the first imported positive infected case, Moroccan authorities began to establish
some preventive interventions between the 2 and the 10th of March, namely isolation of posi-
tive cases, contact tracing, hygiene measures, prevention measures in workplaces, and ban of
mass gathering events. For this reason, we have selected in this period u = 0.2. From March
10 up to March 20, 2020, additional preventive measures were established: gradual suspension
of all international sea, ground, and air lines (including with Spain, Italia, Algeria, France,
Germany, Netherlands, Belgium, and Portugal), closure of coffees, restaurants, cinemas, the-
aters, party rooms, clubs, sport centers, hammams, game rooms and sport fields, closure of
mosques, schools and universities, disinfection of public transportation means, reduction of
the carrying capacity of taxis, buses and tramways, movement/travel restrictions, and con-
tainment measures of the general population. These measures correspond to the choice of the
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Figure 2.6: Time variation of the diagnosed infective individuals with hight level respect of
measures for different values of β (95%CI, 0.4484− 0.455).

Days
0 100 200 300

V
u

ln
er

ab
le

×107

1.4108

1.411

1.4112

Days
0 100 200 300

S
ev

er
e 

fo
rm

s

0

10

20

30
Peak: 29.2090  (t*=57)

Days
0 100 200 300

D
ea

th

0

20

40

Days
0 100 200 300

C
ri

ti
ca

l f
o

rm
s

0

5

10
Peak: 9.7363  (t*=57)

Figure 2.7: Time variation of the model with β = 0.4517 and R0 = 2.9108 (March 2–10),
R0 = 2.5469 (March 10–20), R0 = 2.1831 (March 20–April 6), R0 = 0.7277 (from April 6,
2020).

control u = 0.3. From March 20 up to April 6, the Moroccan authority declared a state of
emergency with a complete lockdown, night-time curfew, movement restrictions 24/24, ban of
human movements between cities, suspension of railway lines, streets disinfection, and exten-
sive cleaning and disinfection of port and airport facilities. For this, we assume that u = 0.4.
From April 6, the authority decided compulsory wearing of masks in public spaces, which
implies a significant positive influence on the above interventions and an increase of their
efficiency level. In this case, we assume that u = 0.8. Tacking into account all these policies,
we present the following Figures 2.6 and 2.7.

We remark from Figure 2.6 that the estimated epidemic peak is t∗ = 57 (95%CI, 56 − 57),
that is, starting from March 2 (t = 0), the estimated epidemic peak is April 28, 2020 (t = 57).
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Figure 2.8: Evolution of the symptomatic individuals with different effectiveness degrees.

From Figure 2.7, we see that all the measures taken into this second strategy have a significant
impact on the number of new positive diagnosed cases per day. Compared to Figure 2.5, the
time required to reach the peak is reduced by 85 days, avoiding globally an interesting number
of new infections and new deaths. Furthermore, the computed basic reproduction number R0

is less than 1, which means the extinction of the disease if the measures cited above are strictly
implemented.

2.2.6 Intervention effectiveness

Here, on one hand, we compare the impact of different degrees of effectiveness on the evo-
lution of the number of positive infected diagnosed individuals, symptomatic individuals, and
deaths (see Figures 2.8 and 2.9). In addition, we present the cumulative cases in Figure 2.10
and we summarize it in Table 2.4. We remark that the effectiveness of the policies plays an
important role to reduce, or not, the human damage and ensure the eradication of the illness.
However, mitigation measures must be strictly respected to maintain a good level of control
over the spread of the virus.

On the other hand, we are carrying out a statistical study on a national scale and we note
that the trend at the beginning was exponential and will undergo a break due to the multiple
interventions of the government, which is globally a good sign (see Figure 2.11), whereas it
is needful to pay attention at the evolution of the curves in the different regions in Morocco.
Since the clinical data of COVID-19 was not available on a daily basis at the start of the
spread of the epidemic in Morocco, we proceeded with a choice of unit of three days. We also
remark that almost all the regions have a homogeneous tendency with the national one, except
Tangier–Tetouan–Al Hoceima (TTA), Oriental, Marrakech–Safi (MS), and Casablanca–Settat
(CS), which show a mitigation of the epidemic that does not seem very stable (see Figures 2.12
and 2.13).
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Figure 2.9: Evolution of the positive infected diagnosed individuals and deaths with different
effectiveness degrees.
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Figure 2.10: Cumulative diagnosed cases, severe forms, critical forms, and deaths, with differ-
ent effectiveness degrees.

Table 2.4: Cumulative diagnosed cases, severe forms, critical forms, and deaths, after 150 days
of the start of the pandemic in Morocco.

Effectiveness 75% 80% 85%

Diagnosed 42834 29116 21432

Severe forms 6419 4361 3209

Critical forms 2139 1453 1069

Deaths 1500 993 661
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Figure 2.11: Trends in the number of new COVID-19 reported cases per three days in Morocco,
compared to the cumulative number of COVID-19 reported cases with correlation coefficient
R2 = 0.9897.

Figure 2.12: Trends in the number of new COVID-19 reported cases per three days in Morocco,
by regions, compared to the cumulative number of COVID-19 reported cases (CS: Casablanca–
Settat; FM: Fes–Meknes; MS: Marrakech–Safi; RSK: Rabat–Sale–Kenitra).
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Figure 2.13: Trends in the number of new COVID-19 reported cases per three days in Morocco,
by regions, compared to the cumulative number of COVID-19 reported cases (BMK: Beni
Mellal–Khenifra; DT: Daraa–Tafilalet; SM: Souss–Massa; TTA: Tetouan–Tangier–Assillah).

2.3 Mathematical Analysis, Forecasting and Optimal Control
of HIV-AIDS Spatiotemporal Transmission with a Reaction
Diffusion SICA Model

This article is published in [161]

2.3.1 Introduction

The human immunodeficiency virus (HIV) is a serious disease causing death to humans
worldwide, it is one of the most infectious and deadly infectious factors in the terrestrial globe.
The deterministic SICA model was firstly introduced as a sub-model of a TB-HIV/AIDS co-
infection model and published in 2015, (see [124]). After, it was extended to fractional (see
[127]) and stochastic systems of differential equations (see [49]) and adjusted to the HIV/AIDS
epidemic situation in Morocco.

One of the fundamental purposes of SICA models is to illustrate that an adequate mathe-
matical model can help to specify some of the essential epidemiological factors leading to the
spread of the AIDS disease .
The susceptible population is nourished by the recruitment of individuals into the population
assumed, at a rate λ. All individuals is exposed to the natural death, at a constant rate
µ. Susceptible individuals S receive HIV infection from an effective contact with individual

infected carrying HIV, at the rate
β

N(t, x)
(I(t, x) + ηCC(t, x) + ηAA(t, x)) .

It is well known that reaction-diffusion equations are commonly used to model a variety
of physical and biological phenomena. These equations describe how the concentration or
density distributed in space varies under the influence of two processes: local interactions of
species, and diffusion which causes the spread of species in space. Recently, reaction-diffusion
equations have been used by many authors in epidemiology as well as virology, (see in instance
[145])

We consider an optimal control to curb the mortality and reduce the number of the infected
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people in order to recuperate the normal course of life and suppress some of the psychological
constraints. We proceed by defining and characterizing an optimal control which minimizes
both, the number of infected people and the cost of treatment. Existence and uniqueness
of positive solution for the system is proved. We also prove existence of the desired optimal
control by means of the characterization of the infimum of the objective functional and we give
an explicite necessary optimality condition in terms of state function and adjoint function. To
illustrate the effectiveness of our theoretical results, we also presented some numerical simula-
tions for several scenarios. The obtained results represent a good framework for interventions
and strategies to fight against the transmission of the AIDS epidemic.

2.3.2 Physical interpretation of the Laplacian

The Laplacian in two dimensions is expressed by:

∇2 =
∂2

∂x2
+

∂2

∂y2
.

Suppose that at a point O, taken as the origin of the system of axises Oxy, the field f
takes the value f0. Consider an elementary square with side a, whose edges are parallel to the
coordinate axises and whose center merges with the origin O. The average value of f in this
elementary cube, in other words, the mean value of “f ”in the neighborhood of the point O,
is given by the expression

f =
1

a2

∫
C
f(x, y) dxdy,

where the two integrations each relate to the rectangle C = [−a
2 ,

a
2 ]2. At an arbitrary point

P (x, y) in the neighborhood of O(0, 0), we develop f in Taylor-Maclaurin series. Thus,

f(x, y) = f0 +
(
∂f
∂x

)
0
x+

(
∂f
∂y

)
0
y

+1
2

[(
∂2f
∂x2

)
0
x2 +

(
∂2f
∂y2

)
0
y2
]

+
(
∂2f
∂x∂y

)
0
xy + o(x2 + y2).

On the one hand, the odd functions in this expression provide, by integration from −a
2 to

a
2 , a zero contribution to f . For example,∫

C
x dxdy =

((
a
2

)2
2
−
(−a

2

)2
2

)(
a

2
− −a

2

)
= 0.

On the other hand, the even functions each provide a contribution of a
4

12 . For example,∫
C
x2 dxdy =

((
a
2

)3
3
−
(−a

2

)3
3

)(
a

2
− −a

2

)
=
a4

12
.

Using Fubini-Tonnelli’s theorem, we get∫
C
xy dxdy = 0.

We deduce that
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f ≈ f0 +
a4

24

(
∂2f

∂x2
+
∂2f

∂y2

)
0

and

f ≈ f0 +
a4

24

(
∇2f

)
0
.

As the point O has been chosen arbitrarily, we can assimilate it to the current point P and
drop the index 0. We therefore obtain the following expression, the interpretation of which is
immediate:

∇2f ≈ 24

a4

(
f − f

)
,

that is, the quantity ∇2f is approximately proportional to the difference f − f . The
constant of proportionality is worth 24

a4
in Cartesian axises. In other words, the quantity ∇2f

is a measure of the difference between the value of f at any point P and the mean value f in
the neighborhood of point P.

Remark 2.5. The Laplacian of a function can also be interpreted as the local mean curvature
of the function, which is easily visualized for a function f with only one variable. We can
easily verify that the reasoning proposed here for the Laplacian applies to a function f and to
its second derivative. The second derivative (or curvature) represents the local deviation of the
mean from the value at the point considered.

2.4 The spatiotemporal mathematical SICA model

In [125], Silva and Torres proposed the following epidemic SICA model:



dS(t)

dt
= Λ− β (I(t) + ηC · C(t) + ηA ·A(t)) · S(t)− µS(t),

dI(t)

dt
= β (I(t) + ηC · C (t) + ηA ·A(t)) · S(t)− ξ3I(t) + γA(t) + ωC(t),

dC(t)

dt
= φI(t)− ξ2C (t) ,

dA(t)

dt
= ρI(t)− ξ1A (t) ,

The limitation of the temporal dynamic systems to give a good description of the spread
of the virus in the space is obvious. To bridge this gap, we suggest the use of the Laplacian
operator, so the previous interpretation is illustrated in the following extended deterministic
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epidemic SICA model:



∂S(t, x)

∂t
= dS∆S(t, x) + Λ− β (I(t, x) + ηC · C(t, x) + ηA ·A(t, x)) · S(t, x)− µS(t, x)

+ u(t, x)I(t, x),

∂I(t, x)

∂t
= dI∆I(t, x) + β (I(t, x) + ηC · C(t, x) + ηA ·A(t, x)) · S(t, x)

− ξ3I(t, x) + γA(t, x) + ωC(t, x)− u(t, x)I(t, x),

∂C(t, x)

∂t
= dC∆C(t, x) + φI(t, x)− ξ2C(t, x),

∂A(t, x)

∂t
= dA∆A(t, x) + ρI(t, x)− ξ1A(t, x),

(2.6)
subject to the homogeneous Neumann boundary conditions

∂S

∂n
=
∂I

∂n
=
∂C

∂n
=
∂A

∂n
= 0

and initial conditions S(0, x) = S0, I(0, x) = I0, C(0, x) = C0 and A(0, x) = A0, where ∆ is
the Laplacian in the two-dimensional space (t, x) and u : [0;T ] × Ω −→ [0; 1[ is a considered
control which permits to diminish the number of the infected individuals and to increase that
of susceptible ones by devoting some special treatment to the most affected persons. The
description of the parameters of model (2.6) is summarized in Table 2.5.

Table 2.5: Description of the parameters of the SICA model

Symbol Description
Λ Recruitment rate
µ Natural death rate
β HIV transmission rate
ηC Modification parameter
ηA Modification parameter
φ HIV treatment rate for I individuals
ρ Default treatment rate for I individuals
γ AIDS treatment rate
ω Default treatment rate for C individuals
d AIDS induced death rate
dS Diffusion of susceptible individuals
dI Diffusion of infected individuals with no AIDS symptoms
dC Diffusion of chronic individuals
dA Diffusion of infected individuals with AIDS symptoms

In this stage, we have provided the current spatiotemporal SICA epidemic model.
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2.5 Existence and uniqueness of a strong nonnegative solution

In order to prove existence and uniqueness of a strong solution to system (2.6), we define

some tools. Consider the Hilbert spaces H(Ω) = (L2(Ω))4, H1(Ω) = {u ∈ L2(Ω) :
∂u

∂x
∈

L2(Ω) and
∂u

∂y
∈ L2(Ω)} and H2(Ω) = {u ∈ H1(Ω) :

∂2u

∂x2
,
∂2u

∂y2
,
∂2u

∂x∂y
,
∂2u

∂y∂x
∈ L2(Ω)}

Let L2(0, T ;H2(Ω)) be the space of all strongly measurable functions v : [0, T ] 7−→ H2(Ω)
such that

T∫
0

‖v(t, x)‖H2(Ω) dt <∞

and L∞(0, T ;H1(Ω)) be the set of all functions v : [0, T ] 7−→ H1(Ω) verifying

sup
t∈[0,T ]

(‖v(t, x)‖H1(Ω)) <∞.

The norm in L∞(0, T ;H1(Ω)) is defined by

‖v‖L∞(0,T ;H1(Ω)) := inf
{
c ∈ R+ : ‖v(t, x)‖H1(Ω) < c

}
.

Our model is equivalent to

∂z(t, x)

dt
= Az(t, x) + g(t, z(t, x)), z(0, x) = z0, (2.7)

where z = (z1, z2, z3, z4) = (S, I, C,A) and g = (g1, g2, g3, g4) is defined by
g1 = −β(z2 + ηCz3 + ηAz1)z1 − µz1 + Λ + uz2,

g2 = β(z2 + ηCz3 + ηAz1)z1 − ξ3z2 + γz4 + ωz3 − uz2,

g3 = Φz2 − ξ2z3,

g4 = ρz2 − ξ1z4.

For all i ∈ {1, 2, 3, 4},

∂zi
∂t

= di∆zi + gi(z(t, x)), zi(0, x) = z0i .

Let A denote the linear operator defined from D(A) ⊂ H(Ω) to H(Ω) by

Az = (dS4z1, dI4z2, dC4z3, dA4z4)

with

z ∈ D(A) =

{
z = (z1, z2, z3, z4) ∈

(
H2(Ω)

)4
:
∂z1

∂n
=
∂z2

∂n
=
∂z3

∂n
=
∂z4

∂n
= 0 on ∂Ω

}
and Uad be the admissible control set defined by

Uad =
{
u ∈ L2(Q), 0 ≤ u ≤ 1 a.e. on Q

}
(2.8)

with Q = [0, T ]× Ω and Ω is a bounded domain in R2 with smooth boundary ∂Ω
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Theorem 2.6. [1] Let Ω be a bounded domain from R2 with a boundary of class C2+α, α > 0.
For nonnegative parameters of the spatiotemporal SICA model (2.6), u ∈ Uad, z0 ∈ D(A) and
z0
i ≥ 0 on Ω, i = 1, 2, 3, 4, the system (2.6) has a unique (global) strong nonnegative solution
z ∈W 1,2([0, T ];H(Ω)) such that

z1, z2, z3, z4 ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L∞(Q).

Additionally, there exists C > 0, independent of u and of the corresponding solution z,
such that for all t ∈ [0, T ] and all i ∈ {1, 2, 3, 4} one has∥∥∥∥∂zi∂t

∥∥∥∥
L2(Q)

+ ‖zi‖L2(0,T,H2(Ω)) + ‖zi‖H1(Ω) + ‖zi‖H∞(Q) ≤ C.

Proof. Because the Laplacian operator ∆ is dissipating, self-adjoint, and generates a C0− semi-
group of contractions on H(Ω), it is clear that function g = (g1, g2, g3, g4) becomes Lipschitz
continuous in z = (z1, z2, z3, z4) uniformly with respect to t ∈ [0, T ]. Therefore, the problem
admits a unique strong solution z. Let us now show that for all i ∈ {1, 2, 3, 4}, zi ∈ L∞(Q).
Indeed, set k = max

{
‖gi‖L∞(Q), ‖z0

i ‖L∞(Ω) : i ∈ {1, 2, 3, 4}
}
and let

Ui(t, x) = zi(t, x)− kt− ‖z0
i ‖L∞(Ω).

Then, 
∂Ui(t, x)

∂t
= di∆Ui(t, x) + gi(t, z(t, x))− k, t ∈ [0, T ],

Ui(0, x, y) = z0
i − ‖z0

i ‖L∞(Ω).

Let i ∈ {1, 2, 3, 4}. There exists an infinitesimal semigroup Γ(t) associated to the operator
di∆ such that

Ui(t, x) = Γ(t)
(
z0
i − ‖z0

i ‖L∞(Ω)

)
+

∫ t

0
Γ(t− s) (gi(z(s))− k) ds.

We deduce that Ui(t, x) ≤ 0 and so zi ≤ kt+ ‖z0
i ‖L∞(Ω).

Consider Vi(t, x) = zi(t, x) + kt+ ‖z0
i ‖L∞(Ω). Upon differentiation, we get

∂Vi(t, x)

∂t
= di∆Vi(t, x) + gi(t, z(t, x)) + k, t ∈ [0, T ],

Vi(0, x, y) = z0
i + ‖z0

i ‖L∞(Ω).

The strong solution of the above equation is

Vi(t, x) = Γ(t)
(
z0
i + ‖z0

i ‖L∞(Ω)

)
+

∫ t

0
Γ(t− s) (gi(z(s)) + k) ds.

Then, Vi(t, x) ≥ 0 and so zi ≥ −kt − ‖z0
i ‖L∞(Ω). Consequently, |zi(t, x, )| ≤ kt + ‖z0

i ‖L∞(Ω),
which implies that zi ∈ L∞(Q).

Now, we proceed by proving that zi ∈ L∞
(
0, T ;H1(Ω)

)
for all i ∈ {1, 2, 3, 4}. Indeed, let

i ∈ {1, 2, 3, 4}. From equality

∂zi(t, x)

∂t
− di∆zi(t, x) = gi(t, z(t, x)) (t, x) ∈ [0, T ]× Ω
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we obtain that∫ t

0

∫
Ω

(
∂zi(s, x)

∂s
− di∆zi(s, x)

)2

dxds =

∫ t

0

∫
Ω

(gi(s, z(s, x)))2 dxds.

From Green’s formula, we get∫ t

0

∫
Ω

(
∂zi
∂s

)2

dxds+ d2
i

∫ t

0

∫
Ω

(∆zi)
2 dxds = 2di

∫ t

0

∫
Ω

∂zi
∂s
×∆zidxds

+

∫ t

0

∫
Ω

(gi(s, zi))
2 dxds = di

∫
Ω

(zi)
2 dx− di

∫
Ω

(
z0
i

)2
dx.

Since gi ∈ L2(Q), z0
i ∈ L2(Q) and zi, z0

i ∈ L∞(Q), we obtain that zi ∈ L∞
(
0;T ;H1(Ω))

)
.

Finally, using the same arguments as for the Field–Noyes equations in [130, Example 4],
we deduce that the solution (z1, z2, z3, z4) is nonnegative. Consider the set

Σ = {(z1, z2, z3, z4) : 0 ≤ zi ≤ C for i ∈ {1; 2; 3; 4}}

and the convex functions Gi defined on Σ by Gi(z1, z2, z3, z4) = −zi. One can see that

∇(G1) · g|z1=0 =∇(−z1) · g|z1=0 = −Λ− uz2 ≤ 0,

∇(G2) · g|z2=0 =∇(−z2) · g|z2=0 = −βηCz3z1 − βηAz4z1 − γz4 − ωz3 ≤ 0,

∇(G3) · g|z3=0 =∇(−z3) · g|z3=0 = −φz1 − v1z4 ≤ 0,

∇(G4) · g|z4=0 =∇(−z4) · g|z4=0 = −ρz2 ≤ 0.

According to [130, Theorem 14.14], the region Σ is positively invariant.

In this achievement, we have employed a semi-group theory to demonstrate existence and
uniqueness of the global nonnegative solution of the considered system.

2.6 Existence of an optimal control

To motivate the interest on optimal control, we begin by showing some numerical simu-
lations of our spatiotemporal SICA model (2.6). Let us consider the following values for the
parameters [125], the parameter dS is assumed:
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Table 2.6: Parameters values and units

Parameter Value Unit

µ
1

74.02
day−1

Λ 2.19µ day
β 0.755 (people/km2)−1 × day−1

ηC 1.5 day−1

ηA 0.2 day−1

φ 1 day−1

ρ 0.1 day−1

γ 0.33 day−1

ω 0.09 day−1

dS 0.9 km2/day
dI 0.1 km2/day
dC 0.1 km2/day
dA 0.1 km2/day
ξ1 γ + µ day−1

ξ2 ω + µ day−1

ξ3 ρ+ φ+ µ day−1

Then, the dynamics without control, that is, with u ≡ 0 in (2.6), is given in Figure 2.14.
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Figure 2.14: The behavior of the solution of the system (2.6) without control.

In contrast, dynamics in the presence of a control are given in Figures 2.15 and 2.16.
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Figure 2.15: The behavior of the solution of the system (2.6) with the control u ≡ 0.5.

Figure 2.16: The behavior of the solution of the system (2.6) with the control u ≡ 0.8.
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We conclude that the evolution of the system related with the absence of control differs
totally to those related with the controls. Indeed, Figure 2.14 shows that in absence of the
control the density of the infected individuals increases while in the presence of a control
(Figures 2.15 and 2.16) it clearly decreases. The question of how to choose the control along
time, in an optimal way, is therefore a natural one. Motivated by [126], our aim is to min-
imize the sum of the density of infected individuals and the cost of the treatment program.
Mathematically, the problem we consider here is to minimize the objective functional

J(S, I, C,A, u) =

∫
Ω

∫ T

0
aI(t, x)dtdx+

b

2
|| u(t, x) ||2L2([0,T ]) (2.9)

subject to the control system (2.6) and where the admissible control set Uad is defined as in
(2.8).

Theorem 2.7. Under the conditions of Theorem 2.6, our optimal control problem admits a
solution (z∗, u∗).

Proof. The proof is divided into three steps:

Step 1: The existence of a minimizing sequence (zn, un):
The infimum of the objective function on the set of admissible controls is ensured by

the positivity of J Assume that J∗ = infu∈Uad
J(z, u). Let {un} ⊂ Uad be a minimizing

sequence such that lim
n→+∞

J(zn, un) = J∗, where (zn1 , z
n
2 , z

n
3 , z

n
4 ) is the solution of the system

corresponding to the control un. Subsequently,
∂zn1
∂t = dS∆zn1 + Λ− β (zn2 + ηC · zn3 + ηA · zn4 ) zn1 + u(t, x) · zn2 − µzn1 ,
∂zn2
∂t = dI∆z

n
2 + β (zn2 + ηCz ·n3 +ηA · zn4 ) zn1 − ξ3z

n
2 + γzn4 + ωzn3 − u(t, x) · zn2 ,

∂zn3
∂t = dC∆zn3 + φzn2 − ξ2z

n
3 ,

∂zn4
∂t = dA∆zn4 + ρzn2 − ξ1z

n
4 ,

(2.10)

where
∂zn1
∂n

=
∂zn2
∂n

=
∂zn3
∂n

=
∂zn4
∂n

= 0 on Q. Let i ∈ {1, 2, 3, 4}.

Step 2: The convergence of the minimizing sequence (zn, un) to (z∗, u∗):

Note that zni (t, x) is compact in L2(Ω) from the fact that H1(Ω) is compactly embed-
ded in L2(Ω). In order to apply the Ascoli–Arzela theorem, we need to demonstrate that
{zni (t, x), n ≥ 1} is equicontinuous in C([0, T ], L2(Ω)). This is indeed true: because of the

boundedness of
∂zni
∂t

in L2(Q), there exists a positive constant k such that∣∣∣∣∫
Ω

(zni )2(t, x)dx−
∫

Ω
(zni )2(s, x)dx

∣∣∣∣ ≤ k | t− s |
for all s, t ∈ [0, T ]. Hence, zni is compact in C([0, T ], L2(Ω)) and there exists a subsequence
of {zni }, denoted also {zni }, converging uniformly to z∗i in L2(Ω) with respect to t. Since ∆zni
is bounded in L2(Q), there exists a subsequence, denoted again ∆zni , converging weakly in
L2(Q). For every distribution ϕ,∫

Q
ϕ∆zni =

∫
Q
zni ∆ϕ→

∫
Q
z∗i ∆ϕ =

∫
Q
ϕ∆z∗i .
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Thus, ∆zni ⇀ ∆z∗i in L2(Q). By the same argument,
∂zni
∂t

⇀
∂z∗i
∂t and zni ⇀ z∗i in L2(0, T ;H2(Ω)) and zni ⇀ z∗i in L∞(0, T ;H1(Ω)). From zn1 z

n
2 =

(zn1 − z∗1)zn2 + zn1 (zn2 − z∗2), we deduce that zn1 zn2 ⇀ z∗1z
∗
2 in L2(Q). Therefore, un ⇀ u∗ in

L2(Q). Since Uad is closed, then u∗ ∈ Uad.

Step.3: We conclude that unzn2 ⇀ u∗z∗2 in L2(Q). Letting n → ∞ in (2.10), we obtain
that z∗ is a solution of equation (2.7) corresponding to u∗. Therefore,

J(z∗, u∗) =

∫ T

0
az∗2(t, x)dtdx+

b

2
|| u∗(t, x) ||2L2(Q])

≤ lim inf

∫ T

0
azn2 (t, x)dtdx+

b

2
|| un(t, x) ||2L2(Q)

≤ lim

∫ T

0
azn2 (t, x)dtdx+

b

2
|| un(t, x) ||2L2(Q)= J∗.

This shows that J attains its minimum at (z∗, u∗).

The infimum of our objective function gives rise to the desired optimal control.

2.7 Necessary optimality conditions

Now we characterize the optimality that we proved to exist in Section 2.6. Let (z∗, u∗)
be an optimal pair and uε = u∗ + εu, ε > 0, be a control function such that u ∈ L2(Q)
and u ∈ Uad. We denote by zε = (zε1, z

ε
2, z

ε
3, z

ε
4) and z∗ = (z∗1 , z

∗
2 , z
∗
3 , z
∗
4) the corresponding

trajectories associated with the controls uε and u∗, respectively.
In the following result we decompose the right-hand side of our control system into three

quantities: M , related to the Laplacian part; R, linked to the control part; and F for the
remaining terms.

Theorem 2.8. For all i ∈ {1, 2, 3, 4}, the mapping u 7−→ zi(u) defined
from Uad to W 1,2([0, T ], H(Ω)) is Gateaux differentiable with respect to u∗. Moreover, for all
u ∈ Uad, set z′i(u∗)u = Zi. Then Z = (Z1, Z2, Z3, Z4) is the unique solution of the problem

∂Z

∂t
= MZ + FZ + uR subject to Z(0, x) = 0,

where

F =


−β (z∗2 + ηC · z∗3 + ηA · z∗4)− µ 0 0 0
β (z∗2 + ηC · z∗3 + ηA · z∗4) −ξ3 ω γ

0 φ −ξ2 0
0 ρ 0 −ξ1

 and R =


−z∗2
z∗2
0
0

 .

Proof. Put Zεi =
zεi−z∗i
ε . By subtracting the two systems verified by zεi and z∗i , we get

∂Zε

∂t
= MZε + FZε + uR subject to Zε(0, x) = 0, for all x ∈ Ω.
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Consider the semigroup (Γ(t), t ≥ 0) generated by M . Then the solution of this system is
given by

Zε(t, x) =

∫ t

0
Γ(t− s)FZε(s, x)ds+

∫ t

0
Γ(t− s)uRds.

Since the elements of the matrix F ε are uniformly bounded with respect to ε, according to
Grönwall’s inequality one has that Zεi is bounded in L2(Q). Hence, zεi → z∗i in L2(Q). Letting
ε→ 0, we have

∂Z

∂t
= MZ + FZ + uR subject to Z(0, x) = 0, for all x ∈ Ω.

Adopting the same technique, we deduce that Zεi → Z∗i as ε→ 0.

Let p = (p1, p2, p3, p4) be the adjoint variable of Z and denote by F ∗ the adjoint of the
Jacobian matrix F . We can write the dual system associated to our problem as

−∂p
∂t
−Mp− F ∗p = D∗Dψ subject to p(T, x) = 0, (2.11)

where

D =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 and ψ =


0
a
0
0

 .

Lemma 2.9. Under the hypothesis of Theorem 2.6, the system (2.11) of adjoint variables
admits a unique solution p ∈W 1,2([0, T ], H(Ω)) with pi ∈ G(T,Ω).

Proof. The result follows by the change of variables s = T − t so as to apply the same method
performed in the proof of Theorem 2.8.

We are now in a position to obtain a necessary optimality condition for the optimal control
u∗.

Theorem 2.10. Let u∗ be an optimal control and z∗ ∈ W 1,2([0, T ];H(Ω)) its corresponding
solution. Then,

u∗ = min

(
1,max

(
0,
z∗2(p2 − p1

b

))
. (2.12)

Proof. Let u∗ be an optimal control and let z∗ be the corresponding optimal state. Set
uε = u∗ + εu ∈ Uad and let zε be the corresponding state trajectory. We have

J ′(u∗)(u) = lim
ε→0

1

ε
(J(uε)− J(u∗))

= lim
ε→0

1

ε

(
a

∫ T

0

∫
Ω

(zε2 − z∗2) dxdt+
b

2

∫ 1

0

∫
Ω

(
(uε)2 − (u∗)2

)
dxdt

)
= lim

ε→0

(
a

∫ T

0

∫
Ω

(
zε2 − z∗2

ε

)
dxdt+

b

2

∫ 1

0

∫
Ω

(
2uu∗ + εu2

)
dxdt

)
.
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Since lim
ε→0

zε2 − z∗2
ε

= lim
ε→0

z2(u∗ + εu)− z∗2
ε

= Z2, lim
ε→0

zε2 = z∗2 and zε2, z
∗
2 ∈ L∞(Q), then J is

Gateaux differentiable with respect to u∗ with

J ′(u∗)(u) =

∫ T

0

∫
Ω
aZ2dxdt+ b

∫ T

0

∫
Ω
uu∗dxdt

=

∫ T

0
〈Dψ,DZ〉dt+

∫ 1

0
〈bu∗, u〉L2(Ω)dt.

If we take u = v − u∗, then we obtain

J ′(u∗)(v − u∗) =

∫ T

0
〈Dψ,DZ〉dt+

∫ 1

0
〈bu∗, v − u∗〉L2(Ω)dt.

Since ∫ T

0
〈Dψ,DZ〉dt =

∫ T

0
〈D∗Dψ,Z〉 dt

=

∫ T

0

〈
−∂p
∂t
−Mp− F ∗p, Z

〉
dt

=

∫ T

0

〈
p,
∂Z

∂t
−MZ − FZ

〉
dt

=

∫ T

0
〈p,R(v − u∗)〉 dt

=

∫ T

0
〈R∗p, v − u∗〉L2(Ω) dt

and Uad is convex, then J ′(u∗)(v − u∗) ≥ 0 for all v ∈ Uad, which is equivalent to∫ T

0
〈R∗p+ bu∗, v − u∗〉L2(Ω)dt ≥ 0 for all v ∈ Uad.

Thus, bu∗ = R∗ᵀp and, consequently, u∗ =
z∗2(p2 − p1)

b
. Since u∗ ∈ Uad, we have that (2.12)

holds.

A constructed method is adopted here to give an explicit expression of our optimal control.

2.8 Conclusion and future work

We have extended the time deterministic epidemic SICA model due to Silva and Torres
[125] to spatiotemporal dynamics, which take into account not only the local reaction of
appearance of new infected individuals but also the global diffusion occurrence of the other
infected individuals. This allows to incorporate an additional amount of arguments into the
system. More precisely, firstly we have modeled the spatiotemporal behavior by incorporating
the well-known Laplace operator, which has been employed in the literature, in different
contexts, to better understand what happens during any possible displacement of different
species and individuals. Here, we justify and interpret its use in the context of HIV/AIDS
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epidemics. Secondly, we have presented an optimal control problem to minimize the number
of infected individuals through a suitable cost functional. Proved results include: existence
and uniqueness of a strong global solution to the system, obtained using some adapted tools
from semigroup theory; some characteristics of the existing solution; existence of an optimal
control, investigated using an effective method based on some properties within the weak
topology; and necessary optimality conditions to quantify explicitly the optimal control.

As future work, we plan to develop numerical methods for spatiotemporal optimal control
problems, implementing the necessary optimality conditions we have proved here. This is
under investigation and will be addressed elsewhere.
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Chapter 3

Stochastic approach:
Mathematical prerequisites and
original results

tionMathematical prerequisites and original results

3.0.1 Existence and uniqueness of solutions of stochastic differential equa-
tions

Using [153], we recall the following:
Consider the stochastic differential equation

dξ(t) = a(t, ξ(t))dt+ σ(t, ξ(t))dW (t) (∗),
whose solution, it is natural for us to expect, is a diffusion process with coefficient of diffusion
σ2(t, x) and coefficient of transfer a(t, x).

Let us assume that σ2(t, x) and a(t, x) are Borel functions for x ∈ R and t ∈ [t0, T ]
Equation (∗) is equivalent to

ξ(t) = ξ(t0) +

∫ T

t0

a(s, ξ(s))ds+

∫ T

t0

σ(s, ξ(s))dW (s) (∗∗)

and it is solved under the condition that ξ(t0) is given.For the integrals in (∗) and hence the
differentials in (∗∗) to be meaningful, we need to introduce the σ-algebras of events Ft
In what follows, the quantity ξ(t0) is always assumed to be independent of the processW (t)−
W (t0) and by the σ-algebra of Ft we shall understand the minimal σ-algebras with respect to
which the variables ξ(t0) and W (t)−W (t0 for t0 < s ≤ t are measurable.
We shall consider ξ(t) to be a solution of equation (∗∗) if ξ(t) is Ft measurable, if the integrals
in (∗∗) exist, and if (∗∗) holds for every t ∈ [t0, T ] with probability 1.

Theorem 3.1. Let b(t, x) and σ(t, x) for t ∈ [t0, T ] denote two Borel functions satisfying the
following conditions for some K:

a. For all x and y ∈ R,

| a(t, x)− a(t, y) | + | σ(t, x)− σ(t, y) |≤ K | x− y |
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b. For all x ∈ R,
| a(t, x) |2 + | σ(t, x) |2≤ K2(1+ | x |2).

Then equation (∗∗) has a solution. If ξ1(t, x) and ξ2(t, x) ae two continuous solutions
(for fixed ξ0(t) of equation (∗∗), then

P{ supt0≤t≤T | ξ1 − ξ2 |> 0} = 0

3.0.2 Statement of the Stochastic Maximum Principle

Let (Ω,F, {Ft}t≥0, P ) be a given filtered probability space satisfying the usual conditions,
on which an m dimensional standard Brownian motion W (t) is given. We consider the fol-
lowing stochastic controlled system:{

dx(t) = b(t, x(t))dt+ σ(t, x(t))dW (t), t ∈ [0, T ]
x(0) = x0.

(3.1)

with the cost functional

J(u(.)) =

∫ T

0
f(t, x(t), u(t))dt+ h(x(T )).

In the above, b : [0, T ]× Rn × U → Rn×m, σ : [0, T ]× Rn × U → Rn×m,
f : [0, T ]× Rn × U → R, h : Rn → R.
We define
b(t, x, u) = (bj(t, x, u))1≤j≤n, σ(t, x, u) = (σj(t, x, u))Tr1≤j≤m,

σj(t, x, u) = (σi×j(t, x, u))1≤i≤n, 1 ≤ j ≤ m
Let us make the following assumptions:

(S0) {F}t≥0 is the natural filtration generated by W (t), augmented by all the P -nul sets in
F;

(S1) (U, d) is a separable metric space and T ≥ 0;

(S2) The maps b, σ, f and h are mesurable, and there exist a constant L and a modulus of
continuity ω : [0,∞)→ [0,∞) such that for
φ(t, x, u) = b(t, x, u), σ(t, x, u), f(t, x, u), h(x), we have{

| φ(t, x, u)− φ(t, x̂, û) |≤ L | x− x̂ | +ω(d(u, û)),∀t ∈ [0, T ], x, x̂ ∈ Rn, u, û ∈ U
| φ(t, 0, u) |≤ L,∀t, u ∈ [0, T ]× U (3.2)

(S3) The maps b, σ, f and h are C2, moreover, there exist a constant L and a modulus of
continuity ω : [0,∞)→ [0,∞) sush that for
φ(t, x, u) = b(t, x, u), σ(t, x, u), f(t, x, u), h(x), we have

| φx(t, x, u)− φx(t, x̂, û) |≤ L | x− x̂ | +ω(d(u, û)),
| φxx(t, x, u)− φxx(t, x̂, û) |≤ L | x− x̂ | +ω(d(u, û)),

∀t ∈ [0, T ], x, x̂ ∈ Rn, u, û ∈ U

Define now,
U[0,T ] := {u : [0, T ]× Ω→ U | u is {Ft}t≥0 adapted}
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Our optimal control problem can be stated as follows:
Any u ∈ U[0,T ] satisfying

J(u(.)) = inf
u(.)∈U[0,T ]

J(u(.)).

is called an optimal control, the corresponding state variable x(.)) and
(x(.)), u(.)) are called an optimal state process/trajectory and optimal pair respectively.
We introduce the following terminal value problem for a stochastic differential equation.

dp(t) = −{bx(t, x(t), u(t))T p(t) +
∑m

j=1 σ
j
x(t, x(t), u(t))T qj(t)

−fx(t, x(t), u(t))}dt+ q(t)dW (t) t ∈ [0, T ].
p(T ) = −hx(x(T )).

One has to introduce another variable to reflect the uncertainty or the risk factor in the sys-
tem. This is done by introducing an additional adjoint equation as follows:



dP (t) = −{bx(t, x(t), u(t))TP (t) + P (t)bx(t, x(t), u(t))

+
∑m

j=1 σ
j
x(t, x(t), u(t))TP (t)σjx(t, x(t), u(t))

+
∑m

j=1

(
σjx(t, x(t), u(t))TQ(t) +Q(t)

∑m
j=1 σ

j
x(t, x(t), u(t))

)
+Hxx(t, x(t), u(t), p(t), q(t))}dt
p(T ) = −hxx(x(T )).

Where the Hamiltonian function is defined by:

H(t, x, u, p, q) = (p | b(t, x, u)) + tr[qTσ(t, x, u)]

− f(t, x, u), (t, x, u) ∈ [0, T ]× Rn × U.

Theorem 3.2 (Stochastic Maximum Princilpe). Let (S0)− (S3) hold. Let (x(.), u(.)) be an
optimal pair of the problem. Then there are a pair of processes{

(p(.), q(.)) ∈ L2
F(0, T,Rn)× (L2

F(0, T,Rn))m

(P (.), Q(.)) ∈ L2
F(0, T,Sn)× (L2

F(0, T,Sn))m

verifying the above statements.

3.1 A stochastic time-delayed model for the effectiveness of Mo-
roccan COVID-19 deconfinement strategy

The original results of this section are published in [158].

3.1.1 Introduction

Coronavirus disease 2019 (COVID-19), reclassified as a pandemic by the World Health
Organization (WHO) on March 11, 2020 [107], is an infectious disease caused by a new type
of virus belonging to the coronaviruses family and recently named severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). All the countries affected by this disease have taken
many preventive measures, including containment. The containment established by the Mo-
roccan government and the public authorities at the right time made it possible to avoid the
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worst: according to the minister of Health, at least 6000 lives were saved thanks to the mea-
sures adopted to face the spread of this pandemic [96]. The resistance measures, regarded as
necessary and urgent, cannot be sustainable.

Actually, the deconfinement is a new stage entered by the COVID-19 pandemic. Therefore,
several countries strategically planned their deconfinement strategies. The extension of the
state of emergency in Morocco until May 20, 2020 will no doubt have economic repercussions.
If Morocco won the first round, or at least limited the consequences, especially in terms of
limiting the pandemic and health management of the situation, the second seems difficult and
complex. Indeed, it must not only be well thought out but also its axes of resistance have to
be well-identified. In this context, all efforts should be focused on stabilizing the economy by
intelligently relying on resources. Economic deconfinement is part of the solution and should
be gradual and concerted. Indeed, it is absurd to think that the return to the normality is in
the near months, because the unavailability of an effective vaccine implies that the virus will
always be with us in the near future, which poses a risk for the population. This economic
deconfinement should be prepared and accompanied by other related measures, in particular
under health, security, education and social assistance. In this period of general crisis, the
response must try to mitigate the impacts on priority sectors, such as agriculture, agrifood,
transport and foreign trade, in relation to imports that are vital to the Moroccan economy. The
challenge is to ensure resistance and a continuity of value creation while preventing a sector
from being detached from the economic body. So to speak, priority must be given to vital
sectors whose health directly affects all Moroccan activity, while protecting those bordering on
chaos. According to the deconfinement strategy, which is applied by the Moroccan authorities,
it is mandatory to study the occurrence of an eventual second wave and it’s magnitude.

Mathematical modeling through dynamical systems plays an important role to predict the
evolution of COVID-19 transmission [102]. However, while taking into account the deconfine-
ment policies, the environmental effects and the social fluctuations should not be neglected
in such a mathematical study in order to describe well the dynamics and consider an addi-
tional degree of realism [55, 79, 135, 150]. For these reasons, we describe here the dynamics
of the deconfinement strategy by a new D-COVID-19 model, governed by delayed stochastic
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differential equations (DSDE), as follows:

dS(t) =

(
ρC(t)− δS(t)− β(1− u)

S(t)Is(t)

N

)
dt

−σ1(1− u)
S(t)Is(t)

N
dB1(t) + σ2(C(t)− S(t))dB2(t),

dC(t) = (δS(t)− ρC(t)) dt+ σ2(S(t)− C(t))dB2(t),

dIs(t) =

(
βε(1− u)

S(t− τ1)Is(t− τ1)

N
− αIs(t)

−(1− α)(µs + ηs)Is(t)

)
dt

+σ1

(
ε(1− u)

S(t− τ1)Is(t− τ1)

N

)
dB1(t)

+σ3(µs + ηs − 1)Is(t)dB3(t),

dIa(t) =

(
β(1− ε)(1− u)

S(t− τ1)Is(t− τ1)

N
− ηaIa(t)

)
dt

+σ1(1− ε)(1− u)
S(t− τ1)Is(t− τ1)

N
dB1(t),

dFb(t) =

(
αγbIs(t− τ2)−

(
µb + rb

)
Fb(t)

)
dt+ σ3γbIs(t− τ2)dB3(t),

dFg(t) =

(
αγgIs(t− τ2)−

(
µg + rg

)
Fg(t)

)
dt+ σ3γgIs(t− τ2)dB3(t),

dFc(t) =

(
αγcIs(t− τ2)−

(
µc + rc

)
Fc(t)

)
dt+ σ3γcIs(t− τ2)dB3(t),

dR(t) =

(
ηs(1− α)Is(t− τ3) + ηaIa(t− τ3) + rbFb(t− τ4)

+rgFg(t− τ4) + rcFc(t− τ4)

)
dt− σ3ηsIs(t− τ3)dB3(t),

dM(t) =

(
µs(1− α)Is(t− τ3) + µbFb(t− τ4) + µgFg(t− τ4)

+µcFc(t− τ4)

)
dt− σ3µsIs(t− τ3)dB3(t),

(3.3)

where S represents the susceptible sub-population, which is not infected and has not been
infected before but is susceptible to develop the disease if exposed to the virus; C is the confined
sub-population; Is is the symptomatic infected sub-population, which has not yet been treated,
it transmits the disease, and outside of proper support it can progress to spontaneous recovery
or death; Ia is the asymptomatic infected sub-population who is infected but does not transmit
the disease, is not known by the health system and progresses spontaneously to recovery; Fb,
Fg and Fc are the patients diagnosed, supported by the Moroccan health system and under
quarantine, and subdivided into three categories: benign, severe, critical forms, respectively.
Finally, R and M are the recovered and died classes, respectively. At each instant of time,
the equation D(t) := µs(1− α)Is(t− τ3) + µbFb(t− τ4) + µgFg(t− τ4)

+µcFc(t− τ4)− σ3µsIs(t− τ3)
∆B3(t)

∆t
=

∆M(t)

∆t

gives the number of the new dead due to disease. The parameter 1− u represents the level of
measures undertaken on the susceptible population while δ is the confinement rate and ρ rep-
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resents the deconfinement rate. We adopt the bilinear incidence rate to describe the infection
of the disease and use the parameter β to denote the transmission rate. It is reasonable to
assume that the infected individuals are subdivided into individuals with symptoms and oth-
ers without symptoms, for which we employ the parameter ε to denote the proportion for the
symptomatic individuals and 1− ε for the asymptomatic ones. The parameter α measures the
efficiency of public health administration for hospitalization. Diagnosed symptomatic infected
population is completely distributed into one of the three forms Fb, Fg and Fc, by the rates
γb, γg and γc, respectively. Then, γb + γg + γc = 1. The mean recovery period of these forms
are denoted by 1/rb, 1/rg and 1/rc, respectively. The latter forms die also with the rates µb,
µg and µc, respectively. Symptomatic infected population, which is not diagnosed, moves to
the recovery compartment with a rate ηs or dies with a rate µs. On the other hand, asymp-
tomatic infected population moves to the recovery compartment with a rate ηa. The time
delays τ1 and τ2 denote the incubation period and the period of time needed before the charge
by the health system, respectively. The time delays τ3 and τ4 denote the time required before
the death of individuals coming from the compartments Is and the three forms Fb, Fg and
Fc, respectively. Here, B1(t), B2(t) and B3(t) are independent standard Brownian motions
defined on a complete probability space (Ω,F ,P) with a filtration {Ft}t≥0 and satisfying the
usual conditions, that is, they are increasing and right continuous while F0 contains all P-null
sets and σi represents the intensity of Bi, i = 1, 2, 3. The schematic diagram of our extended
model is illustrated in Figure 3.1.

Figure 3.1: Schematic diagram of model (3.3).

Remark 3.3. The stochasticity is introduced in model (3.3) by perturbing the most sensitive
parameters: β, α, δ, and ρ.

Remark 3.4. For the sake of simplicity, we have assumed that the parameters δ and ρ are
perturbed with the same intensities, that is, we assume that Moroccan individuals possess the
same behaviors and reactions towards the authorities instructions.

Remark 3.5. Note that the multipliers of Is(t− τ2) terms are the same as σ3dB3(t) although
they are premultiplied by different constants. Indeed, the portion of diagnosed symptomatic
infected population is completely distributed into the three forms Fb, Fg, and Fc, by the rates
γb, γg and γc, respectively. Then, γb +γg +γc = 1. In addition, we assume that the parameter
α, which measures the efficiency of public health administration for hospitalization, undergoes
random fluctuations.
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Remark 3.6. For illustration and clarification purposes, let us suppose, as an example, that
the disease progression is started from 15th of March and value of τ1 is 5. Then a susceptible
individual, after contact with an infected one at instant t, becomes himself infected at instant
t + τ1. Suddenly, the compartment of the infected is fed at the instant t by the susceptible
infected at the instant t− τ1. Therefore, in the considered situation, when the infection starts
at March 15, the term βε(1 − u)S(T )Is(T )/N of new infected is equal to zero on 12th, 13th
and 14th March, due to the absence of the infection.

Remark 3.7. Temporarily asymptomatic individuals are included in the class Is of symp-
tomatic, while individuals in Ia, who are permanently asymptomatic, will remain asymptomatic
until recovery and will not spread the virus, a fact which has been recently confirmed by the
World Health Organization.

For biological reasons, we assume that the initial conditions of system (3.3) satisfy:

S(θ) = φ1(θ) ≥ 0, C(θ) = φ2(θ) ≥ 0, Ia(θ) = φ3(θ) ≥ 0,
Is(θ) = φ4(θ) ≥ 0, Fb(θ) = φ5(θ) ≥ 0, Fg(θ) = φ6(θ) ≥ 0,
Fc(θ) = φ7(θ) ≥ 0, R(θ) = φ8(θ) ≥ 0, M(θ) = φ9(θ) ≥ 0,

(3.4)

where θ ∈ [−τ, 0] and τ = max{τ1, τ2 τ3, τ4}.
The rest of the section is organized as follows. The first part of the study deals with

the existence and uniqueness of a positive global solution that ensures the well-posedness of
the D-COVID-19 model (3.3). A sufficient condition for the extinction is established in the
second phase. . Then, some numerical scenarios, to assess the effectiveness of the adopted
deconfinement strategy, are presented in the next step. The study ends up with an adequate
conclusion.

3.1.2 Existence and uniqueness of a positive global solution

Let us denote R9
+ := {(x1, x2, x3, x4, x5, x6, x7, x8, x9) | xi > 0, i = 1, 2, . . . , 9}. We begin

by proving the following result.

Theorem 3.8. For any initial value satisfying condition (3.4), there is a unique solution

x(t) = (S(t), C(t), Is(t), Ia(t), Fb(t), Fg(t), Fc(t), R(t),M(t))

to the D-COVID-19 model (3.3) that remains in R9
+ with probability one.

Proof. Since the coefficients of the Stochastic Differential Equations with several delays (3.3)
are locally Lipschitz continuous, it follows from [94] that for any square integrable initial value
x(0) ∈ R9

+, which is independent of the considered standard Brownian motion B, there exists
a unique local solution x(t) on t ∈ [0, τe), where τe is the explosion time. For showing that this
solution is global, knowing that the linear growth condition is not verified, we need to prove

that τe = ∞. Let k0 > 0 be sufficiently large for
1

k0
< x(0) < k0. For each integer k ≥ k0,

we define the stopping time τk := inf

{
t ∈ [0, τe)/xi(t) /∈

(
1

k
, k

)
for some i = 1, 2, 3

}
, where

inf ∅ = ∞. It is evident that τk ≤ τe. Let T > 0, and define the twice differentiable function
V on R3

+ → R+ as follows:

V (x) := (x1 + x2 + x3)2 +
1

x1
+

1

x2
+

1

x3
.
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By Itô’s formula, for any 0 ≤ t ≤ τk ∧ T and k ≥ 1 we have

dV (x(t)) = LV (x(t))dt+ σ(x(t))dBt,

where L is the differential operator of function V :

LV (x(t)) =

(
2(S(t) + C(t) + Is(t))−

1

S2(t)

)(
ρC(t)− δS(t)− β(1− u)

S(t)Is(t)

N

)
+

1

2

(
2 + 2

S3(t)

)((
− σ1(1− u)

S(t)Is(t)

N

)2

+ (σ2(C(t)− S(t)))2

)
+

(
2(S(t) + C(t) + Is(t))−

1

C2(t)

)
(δS(t)− ρC(t))

+
1

2

(
2 + 2

C3(t)

)
(−σ2(C(t)− S(t)))2 +

1

2

(
2 + 2

C3(t)
(−σ2(C(t)− S(t))

)2

+

(
2(S(t) + C(t) + Is(t))−

1

I2
s (t)

)(
βε(1− u)S(t−τ1)Is(t−τ1)

N − αIs(t)

−(1− α)(µs + ηs)Is(t)

)
+

(
σ1ε(1− u)S(t−τ1)Is(t−τ1)

N

)2)
.

Thus,

LV (x(t)) ≤ 2(S(t) + C(t) + Is(t))ρC(t) + δ
S(t) + β(1−u)S(t)Is(t)

NS2(t)

+

(
1 +

1

S3(t)

)((
σ1(1− u)

S(t)Is(t)

N

)2

+ (σ2(C(t)− S(t)))2

)
+2(S(t) + C(t) + Is(t))δS(t) +

ρ

S(t)
+

(
1 +

1

C3(t)

)
(σ2(C(t)− S(t)))2

+2(S(t) + C(t) + Is(t))βε(1− u)S(t−τ1)Is(t−τ1)
N

+ α
Is(t) + (1− α)(µs + ηs)

1
Is(t)

+

(
1 +

1

I3
s (t)

)(
(−σ3Is(t)(1− µs − ηs)2 +

(
σ1ε(1− u)

S(t− τ1)Is(t− τ1)

N

)2
)
.

By applying the elementary inequality 2ab ≤ a2 + b2, we can easily increase the right-hand
side of the previous inequality to obtain that

LV (x) ≤ D(1 + V (x)),

where D is an adequate selected positive constant. By integrating both sides of the equality

dV (x(t)) = LV (x(t))dt+ σ(x(t))dBt

between t0 and t ∧ τk and acting the expectation, which eliminates the martingale part, we
get that

E(V (x(t ∧ τk)) = E(V (x0)) + E

∫ t∧τk

t0

LV (xs))ds

≤ E(V (x0)) + E

∫ t∧τk

t0

D(1 + V (xs))ds
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≤ E(V (x0)) +DT +

∫ t∧τk

t0

EV (xs))ds.

Gronwall’s inequality implies that

E(V (x(t ∧ τk)) ≤ (EV (x0) +DT ) exp(CT ).

For ω ∈ {τk ≤ T}, xi(τk) equals k or
1

k
for some i = 1, 2, 3. Hence,

V (xi(τk)) ≥
(
k2 +

1

k

)
∧
(

1

k2
+ k

)
.

It follows that

(EV (x0) +DT ) exp(CT ) ≥ E
(
χ{τk≤T}(ω)V (xτk)

)
≥

(
k2 +

1

k

)
∧
(

1

k2
+ k

)
P (τk ≤ T ) .

Letting k →∞, we get P (τe ≤ T ) = 0. Since T is arbitrary, we obtain P (τe =∞) = 1. With
the same technique, we also deduce that the rest of the variables of the system are positive
on [0,∞). This concludes the proof.

3.1.3 Extinction of the disease

In this section, we obtain a sufficient condition for the extinction of the disease.

Theorem 3.9. Let (S(t), C(t), Is(t), Ia(t), Fb(t), Fg(t), Fc(t), R(t),M(t)) be a solution of the
D-COVID-19 model (3.3) with positive initial value defined in (3.4). Assume that

σ2
1 >

β2

2(α+ (1− α)(µs + ηs))
.

Then,

lim sup
t→∞

ln
Is(t)

t
< 0.

Namely, Is(t) tends to zero exponentially a.s., that is, the disease dies out with probability 1.

Proof. Let

d ln Is(t) =

[
1

Is(t)

(
βε(1− u)S(t− τ1)Is(t− τ1)

N
− αIs(t)− (1− α)(µs + ηs)Is(t)

)
− 1

2I2
s (t)

((
σ1
βε(1− u)S(t− τ1)Is(t− τ1)

N

)2

+ (σ3(µs + ηs − 1)Is(t))
2

)]
dt

+
1

Is(t)
σ1
βε(1− u)S(t− τ1)Is(t− τ1)

N
dB1 +

1

Is(t)
σ3(µs + ηs − 1)Is(t)dB3.

To simplify, we set

G(t) :=
ε(1− u)S(t− τ1)Is(t− τ1)

N
,
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R1(t) :=
σ1

Is(t)

βε(1− u)S(t− τ1)Is(t− τ1)

N
=

βσ1

Is(t)
G,

R3(t) :=
σ3

Is(t)
(µs + ηs − 1)Is(t),

H := −α− (1− α)(µs + ηs).

We then get

d ln Is(t) =
βG(t)

Is(t)
−H(t)− 1

2

((
σ1G(t)

Is(t)

)2

+ (σ3(µs + ηs − 1)Is(t))
2

)
+R1(t)dB1 +R3(t)dB3

= −σ
2
1

2

[(
G(t)

Is(t)

)2

− 2β

σ2
1

G(t)

Is(t)

]
+H +R1(t)dB1 +R3(t)dB3

= −σ
2
1

2

[(
G(t)

Is(t)
− β

σ2
1

)2

− β2

σ4
1

]
+H +R1(t)dB1 +R3(t)dB3

≤ β2

2σ2
1

+H +R1(t)dB1 +R3(t)dB3.

Hence,

ln Is(t)

t
≤ ln Is(0)

t
+

β2

2σ2
1

+H +
M1(t)

t
+
M3(t)

t
,

where

M1(t) =

∫ t

0
R1(s)dB1, M3(t) =

∫ t

0
R3(s)dB3.

We have

〈M1,M1〉t =

∫ t

0

(
1

Is(s)
σ1G(s)

)2

ds

=

∫ t

0
σ1

2ε2(1− u)2S(t− τ1)2Is(t− τ1)2

N2I2
s

ds

≤
∫ t

0
σ1

2ε2(1− u)2N
4

N2

1

I2
s

ds

≤
∫ t

0
σ1

2ε2(1− u)2N2ds.

Then,

lim sup
t→∞

< M1,M1 >t
t

≤ σ1
2ε2(1− u)2N2 <∞.

From the large number theorem for martingales [62], we deduce that

lim
t→∞

M1(t)

t
= 0.

We also have

< M2,M2 >t =

∫ t

0

(
1

Is(s)
σ3(µs + ηs − 1)Is(s)

)2

ds

58



=

∫ t

0

(
σ2

3(µs + ηs − 1)2
)
ds

=
(
σ2

3(µs + ηs − 1)2
)
t.

Thus,

lim sup
t→∞

< M2,M2 >t
t

≤ σ2
3(µs + ηs − 1) <∞.

We deduce that
lim
t→∞

M2(t)

t
= 0.

Subsequently,

lim sup
t→∞

ln Is(t)

t
≤ β2

2σ2
1

− α− (1− α)(µs + ηs).

We conclude that if
β2

2σ2
1

−α−(1−α)(µs+ηs) < 0, then lim I(t)
t→∞

= 0. The proof is complete.

3.1.4 Results and discussion

In this section, we simulate the forecasts of the D-COVID-19 model (3.3), relating the
deconfinement strategy adopted by Moroccan authorities with two scenarios. We assume u
defined as follows:

u =



u0, on [March 2,March 10];
u1, on (March 10,March 16];
u2, on (March 16,March 20];
u3, on (March 20,April 6];
u4, on (April 6,April 25];
u5, fromApril 25 on;

where ui ∈ (0, 1], for i = 0, 1, 2, 3, 4, 5, measures the effectiveness of applying the multiple
preventive interventions imposed by the authorities and presented in Table 3.1.
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Table 3.1: Summary of considered non-pharmaceutical interventions.

Policies Decisions
With minimal social
distancing measure u = 0.1, on [March 2,March 16]

u = 0.2, on (March 16,March 20]
With middle social
distancing measure u = 0.1, on [March 2,March 16],

u = 0.2, on (March 16,March 20]
u = 0.4, on (March 20,April 6]

With high social
distancing measure u = 0.1, on [March 2,March 16],

u = 0.2, on (March 16,March 20],
u = 0.4, on (March 20,April 6]
u = 0.6, on (April 6,April 25]

With maximal social
distancing measure u = 0.1, on [March 2,March 16],

u = 0.2, on (March 16,March 20],
u = 0.4, on (March 20,April 6],
u = 0.6, on (April 6,April 25]
u = 0.7, fromApril 25 on.

COVID-19 is known as a highly contagious disease and its transmission rate, β, varies from
country to country, according to the density of the country and movements of its population.
Ozair et al. [111] assumed β to be [0.198 − 0.594] per day for Romania, and [0.097 − 0.291]
per day for Pakistan. Further, Kuniya [79] estimated β as 0.26 (95%CI, 2.4 − 2.8). Observ-
ing the number of daily reported cases of COVID-19 in Morocco, we estimate β as 0.4517
(95%CI, 0.4484 − 0.455). After the infection, the patient remains in a latent period for 5.5
days [26], in average, before becoming symptomatic and infectious or asymptomatic with a
percentage that varies from 20.6% of infected population to 39.9% [97], while the time needed
before his hospitalization is estimated to be 7.5 days [73, 144]. All the parameter values chosen
for the D-COVID-19 model 3.3 are summarized in Table 3.1.4.

Parameter β ε γb γg γc α ηa ηs µs
Value 0.4517 0.794 0.8 0.15 0.05 0.06 1/21 0.8/21 0.01/21

Parameter µb µg µc rb rg rc τ1 τ2 τ3 τ4

Value 0 0 0.4/13.5 1/13.5 1/13.5 0.6/13.5 5.5 7.5 21 13.5

Remark 3.10. From a biological point of view, the latency period is independent of the re-
gion or country under study, depending only on the structural nature of the SARS-CoV-2
coronavirus.

We consider that all measures and the adopted confinement strategy previously discussed
are conserved. The evolution on the number of diagnosed infected positive individuals given
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by the D-COVID-19 model (3.3) versus the daily reported confirmed cases of COVID-19 in
Morocco, from March 2 to May 6, is presented in Figure 3.2. We see that the curve generated
by the D-COVID-19 model (3.3) follows the trend of the daily reported cases in Morocco. So,
we confirm that the implemented measures taken by the authorities have an explicit impact
on the propagation of the virus in the population since the curve of the D-COVID-19 model
(3.3) has been flattening from April 17 and tends to go towards the extinction of the disease
from May 05. In Figure 3.3, we see that Morocco has spent almost 40% of the total duration
of the epidemic at May 11 and will reach extinction after four months, in average, from the
start of the epidemic on March 2, 2020 (t = 0).
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Figure 3.2: Evolution of COVID-19 confirmed cases in Morocco per day: curve predicted by
our model (3.3) accordigly with Tables 3.1 and 3.1.4 versus real data.
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Figure 3.3: Evolution given by the D-COVID-19 model (3.3) without deconfinement (ρ = 0).

To prove the biological importance of delay parameters, we give the graphical results of
Figure 3.4, which allow to compare the evolution of diagnosed positive cases with and without
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Figure 3.4: Effect of delays on the diagnosed confirmed cases versus clinical data.

delays. We observe in Figure 3.4 a high impact of delays on the number of diagnosed positive
cases. Indeed, the plot of model (3.3) without delays (τi = 0, i = 1, 2, 3, 4) is very far
from the clinical data. Thus, we conclude that delays play an important role in the study of
the dynamical behavior of COVID-19 worldwide, especially in Morocco, and allows to better
understand the reality.

we consider the deconfinement of 30% of the population returning to work from May 20,
and this proportion is immediately integrated into the susceptible population. Numerical
simulations are presented for three possible scenarios. In the first, we consider that the whole
population highly respects the majority of the measures announced by the authorities in
relation with the deconfinement (Figure 3.5). The second and third scenarios show the direct
impact on the curves when the population moderately respects the measures with different
levels, σ2 = 0.10 and σ2 = 0.15, respectively. With the last two scenarios we observe the
growth in the final number of infected, deaths, severe and critical forms, which are the most
important to monitor, since the health system should not be saturated. It is also important
to note the appearance of a second significant peak and the fact that the time required for
extinction becomes longer, which relates to the value of σ2 (Figures 3.6 and 3.7).
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Figure 3.5: Evolution of the D-COVID-19 model (3.3) with deconfinement (ρ = 0.3) from
May 20, 2020 and high effectiveness of the measures (σ2 = 0.01).
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Figure 3.6: Evolution of the D-COVID-19 model (3.3) with deconfinement (ρ = 0.3) from
May 20, 2020 and moderate effectiveness of the measures (σ2 = 0.10).

63



Days
0 100 200 300 400 500D

ia
g

n
o

s
e

d
 c

o
n

fi
rm

e
d

 c
a

s
e

s

0

1000

2000

3000

Days
0 100 200 300 400 500

S
e

v
e

re
 f

o
rm

s

0

200

400

600

Days
0 100 200 300 400 500

D
e

a
th

s

0

50

100

Days
0 100 200 300 400 500

C
ri

ti
c

a
l 

fo
rm

s

0

50

100

150

200

Figure 3.7: Evolution of the D-COVID-19 model (3.3) with deconfinement (ρ = 0.3) from
May 20, 2020 and moderate effectiveness of the measures (σ2 = 0.15).

—————————-

It should be mentioned that all our plots were obtained using the Matlab numerical com-
puting environment by discretizing system (3.3) by means of the higher order method of
Milstein presented in [70] and used in [90].

3.1.5 Conclusions

In this work, we have proposed a delayed stochastic mathematical model to describe the
dynamical spreading of COVID-19 in Morocco by considering all measures designed by au-
thorities, such as confinement and deconfinement policies. More precisely, our model takes
into account four types of delays: the first one is related to the incubation period, the second
is the time needed to move from the symptomatic infected individuals to the three forms of
diagnosed cases, the third is the time needed to move from the class of infected individuals to
the recovered or dead class, while the last one is the time needed to pass from the three types
of classes of individuals supported by the Moroccan health system, and under quarantine,
to the recovered or dead compartments. Besides, to well describe reality, we have added a
stochastic factor resulting from possible maladjustment of the population individuals to the
measures.

To show that our model is mathematically and biologically well-posed, we have proved
the global existence of a unique positive solution (see Theorem 3.8). Our result has shown
a possible extinction of the disease when σ2

1 is greater than a threshold parameter (see The-
orem 3.9). In addition, numerical simulations have been performed to forecast the evolution
of COVID-19. More precisely, we have shown that the evolution of our D-COVID-19 model
follows the tendency of daily reported confirmed cases in Morocco (see Figure 3.2). Further,
if Moroccan people would maintain, strictly, their confinement policy, we observe that the
disease dies out around four months from March 2, 2020 (see Figure 3.3). On the other hand,
in response to the decision of deconfinement represented by the liberation of the 30% of pop-
ulation, which took place at May 20, we simulate three scenarios corresponding to different
values of the intensity σ2. When σ2 = 0.01 (Figure 3.5), the eradication of the disease from
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the population comes early compared to the cases when σ2 = 0.10 (Figure 3.6) and σ2 = 0.15
(Figure 3.7). Additionally, the number of diagnosed confirmed cases mainly changes because
of the value of this intensity and a small perturbation leads to relevant quantitative changes
and significant variations on the time needed for extinction. Thus, we observe that the value
of this perturbation has a high impact on the evolution of COVID-19, which means the Mo-
roccan population has a big interest to respect the governmental measures announced May
20, 2020, in order to have a successful and good deconfinement strategy.

Here we have compared the predictions of the proposed model (3.3) with real data until
middle of May 2020. We leave the comparison of the real data in Morocco till the end of 2020
to a future work, where we also plan to incorporate the predictions of the evolution of our
COVID-19 model with respect to preventive Moroccan measures by regions and cities.

3.2 Modeling and Forecasting of COVID-19 Spreading by De-
layed Stochastic Differential Equations

The original results of this section are published in [88].

3.2.1 Introduction

Coronaviruses are a large family of viruses that cause illnesses, ranging from the common
cold to more serious illnesses such as Middle Eastern Respiratory Syndrome (MERS-CoV)
and Severe Acute Respiratory Syndrome (SARS-CoV). The new coronavirus COVID-19 cor-
responds to a new strain that has not previously been identified in humans. On 11 March
2020, COVID-19 was reclassified as a pandemic by the World Health Organization (WHO).
The disease has spread rapidly from country to country, causing enormous economic dam-
age and many deaths around the world, prompting governments to issue a dramatic decree,
ordering the lockdown of entire countries.

Since the confirmation of the first case of COVID-19 in Morocco on 2 March 2020 in
the city of Casablanca, numerous preventive measures and strategies to control the spread
of diseases have been imposed by the Moroccan authorities. In addition, Morocco declared a
health emergency during the period from 20 March to 20 April 2020 and gradually extended it
until 10 June 2020 in order to control the spread of the disease. In this section, we report the
assessment of the evolution of COVID-19 outbreak in Morocco. Besides shedding light on the
dynamics of the pandemic, the practical intent of our analysis is to provide officials with the
tendency of COVID-19 spreading, as well as gauge the effects of preventives measures using
mathematical tools. Several other papers developed mathematical models for COVID-19 for
particular regions in the globe and particular intervals of time, e.g., in [42] a Susceptible–
Infectious–Quarantined–Recovered (SIQR) model to the analysis of data from the Brazilian
Department of Health, obtained from 26 February 2020 to 25 March 2020 is proposed to better
understand the early evolution of COVID-19 in Brazil; in [56], a new COVID-19 epidemic
model with media coverage and quarantine is constructed on the basis of the total confirmed
new cases in the UK from 1 February 2020 to 23 March 2020; while in [99] SEIR modelling
to forecast the COVID-19 outbreak in Algeria is carried out by using available data from 1
March to 10 April, 2020.

Mathematical modeling, particularly in terms of differential equations, is a strong tool that
attracts the attention of many scientists to study various problems arising from mechanics,
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biology, physics, and so on. For instance, in [133], a system of differential equations with
density-dependent sublinear sensitivity and logistic source is proposed and blow up properties
of solutions are investigated; paper [143] presents a mathematical model with application
in civil engineering related to the equilibrium analysis of a membrane with rigid and cable
boundaries; [81] studies nonnegative and classical solutions to porous medium problems; and
[82] a two-dimensional boundary value problem under proper assumptions on the data. Herein,
we will focus on the dynamic of COVID-19. Tang et al. [135] used a Susceptible–Exposed–
Infectious–Recovered (SEIR) compartmental model to estimate the basic reproduction number
of COVID-19 transmission, based on data of confirmed cases for the disease in mainland China.
Wu et al. [150] provided an estimate of the size of the epidemic in Wuhan on the basis of
the number of cases exported from Wuhan to cities outside mainland China by using a SEIR
model. In [79], Kuniya applied the SEIR compartmental model for the prediction of the
epidemic peak for COVID-19 in Japan, using real-time data from 15 January to 29 February,
2020. Fanelli and Piazza [55] analyzed and forecasted the COVID-19 spreading in China,
Italy and France, by using a simple Susceptible–Infected–Recovered–Deaths (SIRD) model.
A more elaborate model, which includes the transmissibility of super-spreader individuals,
is proposed in Ndaïrou et al. [102]. The model we propose here is new and has completely
different compartments: in the paper [102], they model susceptible, exposed, symptomatic
and infectious, super-spreaders, infectious but asymptomatic, hospitalized, recovered and the
fatality class, with the main contribution being the inclusion of super-spreader individuals;
in contrast, here we consider susceptible individuals, symptomatic infected individuals, which
have not yet been treated, the asymptomatic infected individuals who are infected but do
not transmit the disease, patients diagnosed and under quarantine and subdivided into three
categories—benign, severe and critical forms—recovered and dead individuals. Moreover, our
model has delays, while the previous model [102] has no delays; our model is stochastic, while
the previous model [102] is deterministic. In fact, all mentioned models are deterministic and
neglect the effect of stochastic noises derived from environmental fluctuations. To the best
of our knowledge, research works that predict the COVID-19 outbreak taking into account
a stochastic component, are a rarity [24, 71, 128]. The novelty of our work is twofold: the
extension of the models cited above to a more accurate model with time delay, suggested
biologically in the first place; secondly, to combine between the deterministic and the stochastic
approaches in order to well-describe reality. To do this, the formulation and the well-posedness
of the model is performed. The second task is devoted to the qualitative analysis of the
proposed model. Parameters estimation and forecast of COVID-19 spreading in Morocco is
presented after that, however. The study ends with appropriate discussion and conclusions.

3.2.2 Models Formulation and Well-Posedness

Based on the epidemiological feature of COVID-19 and the several strategies imposed
by the government, with different degrees, to fight against this pandemic, we extend the
classical SIR model to describe the transmission of COVID-19 in the Kingdom of Morocco. In
particular, we divide the population into eight classes, denoted by S, Is, Ia, Fb, Fg, Fc, R and
M , where S represents the susceptible individuals; Is the symptomatic infected individuals,
which have not yet been treated; Ia the asymptomatic infected individuals who are infected
but do not transmit the disease; Fb, Fg and Fc denote the patients diagnosed, supported by the
Moroccan health system and under quarantine, and subdivided into three categories: benign,
severe and critical forms, respectively. Finally, R andM are the recovered and fatality classes.
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This model satisfies the following assumptions:

(1) all coefficients involved in the model are positive constants;

(2) natural birth and death rate are not factors;

(3) true asymptomatic patients will stay asymptomatic until recovery and do not spread the
virus;

(4) patients who are temporarily asymptomatic are included on symptomatic ones;

(5) the second infection is not considered in the model;

(6) the Moroccan health system is not overwhelmed.

According to the above assumptions and the actual strategies imposed by the Moroccan
authorities, the spread of COVID-19 in the population is modeled by the following system of
delayed differential equations (DDEs):



dS(t)

dt
= −β(1− u)

S(t)Is(t)

N
,

dIs(t)

dt
= βε(1− u)

S(t− τ1)Is(t− τ1)

N
− αIs(t)− (1− α)(µs + ηs)Is(t),

dIa(t)

dt
= β(1− ε)(1− u)

S(t− τ1)Is(t− τ1)

N
− ηaIa(t),

dFb(t)

dt
= αγbIs(t− τ2)−

(
µb + rb

)
Fb(t),

dFg(t)

dt
= αγgIs(t− τ2)−

(
µg + rg

)
Fg(t),

dFc(t)

dt
= αγcIs(t− τ2)−

(
µc + rc

)
Fc(t),

dR(t)

dt
= ηs(1− α)Is(t− τ3) + ηaIa(t− τ3) + rbFb(t− τ4) + rgFg(t− τ4) + rcFc(t− τ4),

dM(t)

dt
= µs(1− α)Is(t− τ3) + µbFb(t− τ4) + µgFg(t− τ4) + µcFc(t− τ4),

(3.5)

where t ∈ R+, N represents the total population size and u ∈ [0, 1] denotes the level of the
preventive strategies on the susceptible population. The parameter β indicates the transmis-
sion rate and ε ∈ [0, 1] is the proportion for the symptomatic individuals. The parameter α
denotes the proportion of the diagnosed symptomatic infected population that moves to the
three forms: Fb, Fg and Fc, by the rates γb, γg and γc, respectively. The mean recovery period
of these forms are denoted by 1/rb, 1/rg and 1/rc, respectively. The latter forms die also
with the rates µb, µg and µc, respectively. Asymptomatic infected population, which are not
diagnosed, recover with rate ηa and the symptomatic infected ones recover or die with rates
ηs and µs, respectively. The time delays τ1, τ2, τ3 and τ4 denote the incubation period, the
period of time needed before the charge by the health system, the time required before the
death of individuals coming from the compartments Is, Fb, Fg, and Fc, respectively. At each
instant of time,

D(t) =: µs(1− α)Is(t− τ3) + µbFb(t− τ4) + µgFg(t− τ4) + µcFc(t− τ4) =
dM(t)

dt
(3.6)

gives the number of new death due to the disease (cf. [102]).
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Remark 3.11. In system (3.5), delays occur at the entrances, when the actions of infection
take charge or the actions by the health system begin, and not at exits. Let us see an example.
A susceptible individual, after contact with an infected person at instant t, becomes himself
infected at instant t + τ1. Suddenly, the compartment of the infected is fed at the instant t
by the susceptible infected at the instant t− τ1. The same operation occurs at the level of the
other interactions between the compartments of the model.

Remark 3.12. We assume that the compartment of symptomatic infected Is does not com-
pletely empty at any time t. For this reason, one has µs+ηs < 1. Note also that the diagnosed
symptomatic infected population is completely distributed into one of three possible forms: Fb,
Fg and Fc, respectively by the rates γb, γg and γc. Then, γb + γg + γc = 1.

Remark 3.13. Biologically, τ3 = 21 days and τ4 = 13.5 days are the time periods needed
before dying, deriving from Is and the three forms Fb, Fg, Fc, respectively. That is why we
inserted these delays in the last equation of system (3.5).

Remark 3.14. We consider only a short time period in comparison to the demographic time-
frame. From a biological point of view, this means that we can assume that there is neither
entry (recruitment rate) nor exit (natural mortality rate), and vital parameters can be neglected.
Note also that in our model, the individuals that die due to the disease are included in the
population. Therefore, the total population is here assumed to be constant, that is, N(t) ≡ N
during the period under study. This assumption is also reinforced by the fact that the Moroccan
authorities have closed geographic borders.

The initial conditions of system (3.5) are

S(θ) = ϕ1(θ) ≥ 0, Is(θ) = ϕ2(θ) ≥ 0, Ia(θ) = ϕ3(θ) ≥ 0,
Fb(θ) = ϕ4(θ) ≥ 0, Fg(θ) = ϕ5(θ) ≥ 0, Fc(θ) = ϕ6(θ) ≥ 0,
R(θ) = ϕ7(θ) ≥ 0, M(θ) = ϕ8(θ) ≥ 0, θ ∈ [−τ, 0],

(3.7)

where τ = max{τ1, τ2, τ3, τ4}. Let C = C([−τ, 0],R8) be the Banach space of continuous
functions from the interval [−τ, 0] into R8 equipped with the uniform topology. It follows from
the theory of functional differential equations [64] that system (3.5) with initial conditions

(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8) ∈ C

has a unique solution. On the other hand, due to continuous fluctuation in the environ-
ment, the parameters of the system are actually not absolute constants and always fluctuate
randomly around some average value. Hence, using delayed stochastic differential equations
(DSDEs) to model the epidemic provide some additional degree of realism compared to their
deterministic counterparts. The parameters β and α play an important role in controlling
and preventing COVID-19 spreading and they are not completely known, but subject to some
random environmental effects. We introduce randomness into system (3.5) by applying the
technique of parameter perturbation, which has been used by many researchers (see, e.g.,
[43, 69, 89]). In agreement, we replace the parameters β and α by β → β + σ1Ḃ1(t) and
α → α + σ2Ḃ2(t), where B1(t) and B2(t) are independent standard Brownian motions de-
fined on a complete probability space (Ω,F ,P) with a filtration {Ft}t≥0 satisfying the usual
conditions (i.e., it is increasing and right continuous while F0 contains all P-null sets) and σi
represents the intensity of Bi for i = 1, 2. Therefore, we obtain the following model governed
by delayed stochastic differential equations:
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

dS(t) =

(
−β(1− u)

S(t)Is(t)

N

)
dt− σ1(1− u)

S(t)Is(t)

N
dB1(t),

dIs(t) =

(
βε(1− u)

S(t− τ1)Is(t− τ1)

N
− αIs(t)− (1− α)(µs + ηs)Is(t)

)
dt

+σ1

(
ε(1− u)

S(t− τ1)Is(t− τ1)

N

)
dB1(t) + σ2(µs + ηs − 1)Is(t)dB2(t),

dIa(t) =

(
β(1− ε)(1− u)

S(t− τ1)Is(t− τ1)

N
− ηaIa(t)

)
d(t)

+σ1(1− ε)(1− u)
S(t− τ1)Is(t− τ1)

N
dB1(t),

dFb(t) =

(
αγbIs(t− τ2)−

(
µb + rb

)
Fb(t)

)
dt+ σ2γbIs(t− τ2)dB2(t),

dFg(t) =

(
αγgIs(t− τ2)−

(
µg + rg

)
Fg(t)

)
dt+ σ2γgIs(t− τ2)dB2(t),

dFc(t) =

(
αγcIs(t− τ2)−

(
µc + rc

)
Fc(t)

)
dt+ σ2γcIs(t− τ2)dB2(t),

dR(t) =

(
ηs(1− α)Is(t− τ3) + ηaIa(t− τ3) + rbFb(t− τ4) + rgFg(t− τ4) + rcFc(t− τ4)

)
dt

−σ2ηsIs(t− τ3)dB2(t),

dM(t) = (µs(1− α)Is(t− τ3) + µbFb(t− τ4) + µgFg(t− τ4) + µcFc(t− τ4)) dt
−σ2µsIs(t− τ3)dB2(t),

(3.8)

where the coefficients are locally Lipschitz with respect to all the variables, for all t ∈ R+.
We denote R8

+ = {(x1, x2, x3, x4, x5, x6, x7, x8) | xi > 0, i = 1, 2, . . . , 8}. We have the
following result.

Theorem 3.15. For any initial value satisfying condition (3.7), there is a unique solution

x(t) = (S(t), Is(t), Ia(t), Fb(t), Fg(t), Fc(t), R(t),M(t))

to the COVID-19 stochastic model (3.8) that remains in R8
+ with a probability of one.

Proof. Since the coefficients of the stochastic differential equations with several delays (3.8)
are locally Lipschitz continuous, it follows from [94] that for any square integrable initial value
x(0) ∈ R8

+, which is independent of the considered standard Brownian motion B, there exists
a unique local solution x(t) on t ∈ [0, τe), where τe is the explosion time. For showing that this
solution is global, knowing that the linear growth condition is not verified, we need to prove

that τe =∞. Let k0 > 0 be sufficiently large for
1

k0
< x(0) < k0. For each integer k ≥ k0, we

define the stopping time τk = inf

{
t ∈ [0, τe) s.t. xi(t) /∈

(
1

k
, k

)
for some i = 1, 2, 3

}
, where

inf ∅ = ∞. It is clear that τk ≤ τe. Let T > 0 be arbitrary. Define the twice differentiable
function W on R∗3+ → R+ as follows:

W (x) = (x1 + x2 + x3)2 +
1

x1
+

1

x2
+

1

x3
.
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By Itô’s formula, for any 0 ≤ t ≤ τk ∧ T and k ≥ 1, we have

dW (x(t)) = LW (x(t))dt+ ζ(x(t))dB(t),

where ζ is a continuous functional defined on [0,+∞)× C([−τ, 0],R3×2) by

ζ(x(t)) =


−σ1(1− u)

S(t)Is(t)

N
0

σ1ε(1− u)
S(t− τ1)Is(t− τ1)

N
σ2(µs + ηs − 1)Is(t)

σ1(1− ε)(1− u)
S(t− τ1)Is(t− τ1)

N
0

 ,

B(t) = (B1(t), B2(t))T with the superscript “T ” representing transposition, and L is the
differential operator of function W defined by

LW (x(t)) =

(
2(S(t) + Is(t) + Ia(t))−

1

S2(t)

)(
−β(1− u)

S(t)Is(t)

N

)
+

(
1 +

1

S3(t)

)(
−σ1(1− u)

S(t)Is(t)

N

)2

+

(
2(S(t) + Is(t) + Ia(t))−

1

I2s (t)

)
×
[
βε(1− u)

S(t− τ1)Is(t− τ1)

N
− αIs(t)− (1− α)(µs + ηs)Is(t)

]
+

(
1 +

1

I3s (t)

)[(
σ1ε(1− u)

S(t− τ1)Is(t− τ1)

N

)2

+
(
σ2(µs + ηs − 1)Is(t)

)2]

+

(
2(S(t) + Is(t) + Ia(t))−

1

I2a(t)

)(
β(1− ε)(1− u)

S(t− τ1)Is(t− τ1)

N
− ηaIa(t)

)
+

(
1 +

1

I3a(t)

)(
σ1(1− ε)(1− u)

S(t− τ1)Is(t− τ1)

N

)2

.

Thus,

LW (x(t)) ≤ β(1− u)S(t)Is(t)

NS2(t)
+

(
1 +

1

S3(t)

)(
σ1(1− u)

S(t)Is(t)

N

)2

+ 2βε(1− u)
(
S(t) + Is(t) + Ia(t)

)S(t− τ1)Is(t− τ1)

N
+
α+ (1− α)(µs + ηs)

Is(t)

+

(
1 +

1

I3s (t)

)[(
σ1ε(1− u)

S(t− τ1)Is(t− τ1)

N

)2

+
(
σ2(µs + ηs − 1)Is(t)

)2]

+ 2β(1− ε)(1− u)
(
S(t) + Is(t) + Ia(t)

)S(t− τ1)Is(t− τ1)

N

+
ηa
Ia(t)

+

(
1 +

1

I3a(t)

)(
σ1(1− ε)(1− u)

S(t− τ1)Is(t− τ1)

N

)2

.

(3.9)

We now apply the elementary inequality 2xy ≤ x2 + y2, valid for any x, y ∈ R, by firstly
taking x = βε(1 − u) and y = S(t) + Is(t) + Ia(t) and, secondly, x = β(1 − ε)(1 − u) and
y = S(t) + Is(t) + Ia(t). In this way, we easily increase the right-hand side of inequality (3.9)
to obtain that

LW (x(t)) ≤ b1 + ψ
(
S(t) + Is(t) + Ia(t)

)2
+

b2
S(t)

+
b3
Is(t)

+
b4
Ia(t)

≤ D(1 +W (x(t))),
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where ψ, b1, b2, b3, and b4 are positive constants and

D = max (ψ, b1, b2, b3, b4)

By integrating both sides of equality

dW (x(t)) = LW (x(t))dt+ ζ(x(t))dB(t)

between t0 and t∧τk and acting the expectation, which eliminates the martingale part, we get

E(W (x(t ∧ τk)) = E(W (x0)) + E

∫ t∧τk

t0

LW (x(s)))ds

≤ E(W (x0)) + E

∫ t∧τk

t0

D(1 +W (x(s)))ds

≤ E(W (x0)) +DT +

∫ t∧τk

t0

EW (x(s)))ds

and Gronwall’s inequality implies that

E(W (x(t ∧ τk)) ≤ (EW (x0) +DT ) exp(CT ).

For ω ∈ {τk ≤ T}, xi(τk) equals k or
1

k
for some i = 1, 2, 3. Hence,

W (xi(τk)) ≥
(
k2 +

1

k

)
∧
(

1

k2
+ k

)
.

It follows that

(EW (x0) +DT ) exp(CT ) ≥ E
(
χ{τk≤T}(ω)W (xτk)

)
≥

(
k2 +

1

k

)
∧
(

1

k2
+ k

)
P (τk ≤ T ).

Since T is arbitrary, we obtain P (τe =∞) = 1.
By defining the stopping time:

τ̃k = inf

{
t ∈ [0, τe) s.t. xi(t) /∈

(
1

k
, k

)
for some i = 4, . . . , 8

}
, and considering the twice dif-

ferentiable function W̃ on R∗5+ → R+ as

W̃ (x) =

(
8∑
i=4

xi

)2

+

8∑
i=4

1

xi
,

we deduce, with the same technique, that all the variables of the system are positive on
[0,∞).
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3.2.3 Qualitative Analysis of the Models

The basic reproduction number, as a measure for disease spread in a population, plays an
important role in the course and control of an ongoing outbreak [48]. This number is defined
as the expected number of secondary cases produced, in a completely susceptible population,
by a typical infective individual. Note that the calculation of the basic reproduction number
R0 does not depend on the variables of the system but depends on its parameters. In addition,
the R0 of our model does not depend on the time delays. For this reason, we use the next-
generation matrix approach outlined in [141] to compute R0. Precisely, the basic reproduction
number R0 of system (3.5) is given by

R0 = ρ(FV −1) =
βε(1− u)

(1− α)(ηs + µs) + α
, (3.10)

where ρ is the spectral radius of the next-generation matrix FV −1 with

F =

(
βε(1− u) 0

0 0

)
and V =

(
(1− α)(ηs + µs) + α 0

0 ηa

)
.

Noting that the classes that are directly involved in the spread of disease are only Is, Ia,
Fb, Fg and Fc, we can reduce the local stability of system (3.5) to the local stability of

dIs(t)

dt
= βε(1− u)

S(t− τ1)Is(t− τ1)

N
− αIs(t)− (1− α)(µs + ηs)Is(t),

dIa(t)

dt
= β(1− ε)(1− u)

S(t− τ1)Is(t− τ1)

N
− ηaIa(t),

dFb(t)

dt
= αγbIs(t− τ2)−

(
µb + rb

)
Fb(t),

dFg(t)

dt
= αγgIs(t− τ2)−

(
µg + rg

)
Fg(t),

dFc(t)

dt
= αγcIs(t− τ2)−

(
µc + rc

)
Fc(t).

(3.11)

The other classes are uncoupled to the equations of system (3.5) and the total population size
N is constant. Then, we can easily obtain the following analytical results:

S(t) = N −
(
Is(t) + Ia(t) + Fb(t) + Fg(t) + Fc(t) +R(t) +M(t)

)
,

R(t) =
∫ t

0

[
ηs(1− α)Is(δ − τ3) + ηaIa(δ − τ3) + rbFb(δ − τ4)

+rgFg(δ − τ4) + rcFc(δ − τ4)

]
dδ,

M(t) =
∫ t

0

[
µs(1− α)Is(δ − τ3) + µaIa(δ − τ3) + µbFb(δ − τ4)

+µgFg(δ − τ4) + µcFc(δ − τ4)
]
dδ.

(3.12)

Let E = (Is, Ia, Fb, Fg, Fc) be an arbitrary equilibrium, and consider into system (3.12), the
following change of unknowns:

U1(t) = Is(t)− Is, U2(t) = Ia(t)− Ia, U3(t) = Fb(t)− Fb, U4(t) = Fg(t)− Fg

and U5(t) = Fc(t)− Fc.
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By substituting Ui(t), i = 1, 2, . . . , 5, into system (3.12) and linearizing around the free
equilibrium, we get a new system that is equivalent to

dX(t)

dt
= AX(t) +BX(t− τ1) + CX(t− τ2), (3.13)

whereX(t) = (U1(t), U2(t), U3(t), U4(t), U5(t))T andA, B, C are the Jacobian matrix of (3.11)
given by

A =


−α− (1− α)(µs + ηs) 0 0 0 0

0 −ηa 0 0 0
0 0 −(µb + rb) 0 0
0 0 0 −(µg + rg) 0
0 0 0 0 −(µc + rc)

 ,

B =


βε(1− u) 0 0 0 0

β(1− ε)(1− u) 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

and

C =


0 0 0 0 0
0 0 0 0 0
αγb 0 0 0 0
αγg 0 0 0 0
αγc 0 0 0 0

 .

The characteristic equation of system (3.12) is given by

P (λ) = (λ− a1(R0e
−λτ1 − 1))(λ+ ηa)(λ+ (µb + rb))(λ+ (µg + rg))(λ+ (µc + rc)), (3.14)

where
a1 = α+ (1− α)(µs + ηs).

Clearly, the characteristic Equation (3.14) has the roots λ1 = −ηa, λ2 = −(µb + rb),
λ3 = −(µg + rg), λ4 = −(µc + rc) and the root of the equation

λ− a1(R0e
−λτ1 − 1) = 0. (3.15)

We suppose Re(λ) ≥ 0. From (3.15), we get

Re(λ) = a1(R0e
−Re(λ)τ1 cos(Imλ τ1)− 1) < 0,

if R0 < 1, which contradicts Re(λ) ≥ 0. On the other hand, we show that (3.15) has a real
positive root when R0 > 1. Indeed, we put

Φ(λ) = λ− a1(R0e
−λτ1 − 1).

We have that Φ(0) = −a1(R0−1) < 0, limλ→+∞Φ(λ) = +∞ and function Φ is continuous
on (0,+∞). Consequently, Φ has a positive root and the following result holds.
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Theorem 3.16. The disease free equilibrium of system (3.5), that is,
(N, 0, 0, 0, 0, 0, 0, 0), is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Knowing the value of the deterministic threshold R0 characterizes the dynamical behavior
of system (3.5) and guarantees persistence or extinction of the disease. Similarly, now we
characterize the dynamical behavior of system (3.8) by a sufficient condition for extinction of
the disease.

Theorem 3.17. Let x(t) =
(
S(t), Is(t), Ia(t), Fb(t), Fg(t), Fc(t), R(t),M(t)

)
be the solution of

the COVID-19 stochastic model (3.8) with initial value x(0) defined in (3.7). Assume that

σ2
1 >

β2

2(α+ (1− α)(µs + ηs))
.

Then,

lim sup
t→+∞

ln
Is(t)

t
< 0. (3.16)

Namely, Is(t) tends to zero exponentially almost surely, that is, the disease dies out with
a probability of one.

Proof. Let

d ln Is(t) =

[
1

Is(t)

(
βε(1− u)

S(t− τ1)Is(t− τ1)

N
− αIs(t)− (1− α)(µs + ηs)Is(t)

)
− 1

2I2
s (t)

((
σ1
βε(1− u)S(t− τ1)Is(t− τ1)

N

)2

+
(
σ2(µs + ηs − 1)Is(t)

)2)]
dt

+ σ1βε(1− u)
S(t− τ1)Is(t− τ1)

NIs(t)
dB1(t) + σ2(µs + ηs − 1)dB2(t).

To simplify, we set

G(t) = ε(1− u)
S(t− τ1)Is(t− τ1)

N
, R1(t) = σ1β

G(t)

Is(t)
,

R3 = σ2(µs + ηs − 1), H = −α− (1− α)(µs + ηs).

d ln Is(t) =

[
βG(t)

Is(t)
+H − 1

2

((
σ1G(t)

Is(t)

)2

+R2
3

)]
dt+R1(t)dB1(t) +R3dB2(t)

=

[
−σ

2
1

2

[(
G(t)

Is(t)

)2

− 2β

σ2
1

G(t)

Is(t)

]
+H − R2

3

2

]
dt+R1(t)dB1(t) +R3dB2(t)

=

[
−σ

2
1

2

[(
G(t)

Is(t)
− β

σ2
1

)2

− β2

σ4
1

]
+H − R2

3

2

]
dt+R1(t)dB1(t) +R3dB2(t)

≤
[
β2

2σ2
1

+H

]
dt+R1(t)dB1(t) +R3dB2(t).
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Integrating both sides of the above inequality between 0 and t, one has

ln Is(t)

t
≤ ln Is(0)

t
+

β2

2σ2
1

+H +
M1(t)

t
+
M3(t)

t
,

where

M1(t) =

∫ t

0
R1(s)dB1(s) and M3(t) =

∫ t

0
R3dB2(s).

We have

< M1,M1 >t =

∫ t

0
σ1

2ε2(1− u)2S(s− τ1)2Is(s− τ1)2

N2I2
s (s)

ds

≤
∫ t

0
σ1

2ε2(1− u)2N
4

N2

1

I2
s (s)

ds

≤
∫ t

0
σ1

2ε2(1− u)2ds.

Then,

lim sup
t→∞

< M1,M1 >t
t

≤ σ1
2ε2(1− u)2 < +∞.

From the large number theorem for martingales [62], we deduce that

lim
t→∞

M1(t)

t
= 0.

We also have

< M3,M3 >t=

∫ t

0
σ2

3(µs + ηs − 1)2ds = σ2
3(µs + ηs − 1)2t.

Then,

lim sup
t→∞

< M3,M3 >t
t

≤ σ2
3(µs + ηs − 1) < +∞

and

lim
t→∞

M3(t)

t
= 0.

Subsequently,

lim sup
t→+∞

ln
Is(t)

t
≤ β2

2σ2
1

− α− (1− α)(µs + ηs).

We conclude that if
β2

2σ2
1

−α− (1−α)(µs + ηs) < 0, then lim I(t)
t→∞

= 0. This completes the

proof.
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3.2.4 Assessment of Parameters

Estimating the model parameters poses a big challenge because the
COVID-19 situation changes rapidly and from one country to another. The parameters are
likely to vary over time as new policies are introduced on a day-to-day basis. For this reason,
in order to simulate the COVID-19 models (3.5) and (3.8), we consider some parameter values
from the literature, while the remaining ones are estimated or fitted.

As the transmission rate β is unknown, we carry out the least-square method [79] to
estimate this parameter, based on the actual official reported confirmed cases from 2 March to
20 March, 2020 [96]. Through this method, we estimated β as 0.4517 (95%CI, 0.4484–0.455).
Since the life expectancy for symptomatic individuals is 21 days on average and the crude
mortality ratio is between 3% to 4% [148], we estimated µs = 0.01/21 per day and ηs = 0.8/21
per day. Furthermore, since the hospitals are not yet saturated and the epidemic situation is
under control, we assume that mortality comes mainly from critical forms with a percentage
of 40% for an average period of 13.5 days [148]. Then, we choose µc = 0.4/13.5 per day and
rc = 0.6/13.5 per day. According to [97], the proportion of asymptomatic individuals varies
from 20.6% to 39.9% and of symptomatic individuals from 60.1% and 79.4% of the infected
population. The progression rates γb, γg and γc, from symptomatic infected individuals to the
three forms, are assumed to be 80% of diagnosed cases for benign form, 15% of diagnosed cases
for severe form, and 5% of diagnosed cases for critical form, respectively [148]. The incubation
period is estimated to be 5.5 days [26] while the time needed before hospitalization is to be
7.5 days [73, 144]. Following a clinical observation related to the situation of COVID-19 in
Morocco, an evolution of symptomatic individuals is estimated towards recovery or death after
21 days without any clinical intervention. In the case when clinical intervention is applied,
we estimate the evolution of the critical forms towards recovery or death after 13.3 days. The
rest of the parameter values are shown in Table 3.2. ——————————–

Table 3.2: Parameter values of models (3.5) and (3.8).

Parameter Value Source Parameter Value Source
β 0.4517 Estimated u [0–1] Varied
ε 0.794 [97] γb 0.8 [148]
γg 0.15 [148] γc 0.05 [148]
α 0.06 Assumed ηa 1/21 Calculated
ηs 0.8/21 Calculated µs 0.01/21 Calculated
µb 0 Assumed µg 0 Assumed
µc 0.4/13.5 Calculated rb 1/13.5 Calculated
rg 1/13.5 Calculated rc 0.6/13.5 Calculated
τ1 5.5 [26] τ2 7.5 [73, 144]
τ3 21 Assumed τ4 13.5 Assumed
σ1 1.03 Calculated σ2 0.1 Assumed

3.2.5 Numerical Simulation of Moroccan COVID-19 Evolution

In this section, we present the forecasts of COVID-19 in Morocco related to different
strategies implemented by Moroccan authorities.

76



Taking into account the four levels of measures attached to containment, the effectiveness
level of the applied Moroccan preventive measures is estimated to be

u =


0.2, on (2 March, 10 March];
0.3, on (10 March, 20 March];
0.4, on (20 March, 6 April];
0.8, after 6 April.

In Figure 3.8, we see that the plots and the clinical data are globally homogeneous. In
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Figure 3.8: Comparison of the deterministic and the stochastic dynamical behavior with the
daily reported cases of COVID-19 in Morocco.

addition, the last daily reported cases in Morocco [108], confirm the biological tendency of
our model. Thus, our models are efficient to describe the spread of COVID-19 in Morocco.
However, we note that some clinical data are far from the values of the models due to certain
foci that appeared in some large areas or at the level of certain industrial areas. We conclude
also that the stochastic behavior of COVID-19 presents certain particularities contrary to
the deterministic one, namely the magnitude of its peak is higher and the convergence to
eradication is faster. On the other hand, the conditions in Theorems 3.9 and 3.17 are verified.
More precisely, the basic reproduction number R0 = 0.5230 is less than one from 12 May 2020

and σ2
1 = 1.0609 > 1.0598 =

β2

2(α+ (1− α)(µs + ηs))
, which means that the eradication of

disease is ensured.
To prove the biological importance of delay parameters, we give the graphical results of

Figure 3.9, which describe the evolution of diagnosed positive cases with and without delays.
We observe in Figure 3.9, a high impact of delays on the number of diagnosed positive cases,
thereby the plot of model (3.8) without delays (τi = 0, i = 1, 2, 3, 4) is very different to that
of the clinical data. Thus, we conclude that delays play an important role in the study of
the dynamic behavior of COVID-19 worldwide, especially in Morocco, and allow us to better
understand the reality.

In Figure 3.10, we present the forecast of susceptible, severe forms of deaths and critical
forms, from which we deduce that COVID-19 will not attack the total population.

In addition, the number of hospitalization beds or artificial respiration apparatus required
can be estimated by the number of different clinical forms. Moreover, we see that the number
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Figure 3.9: Effect of delays on the diagnosed confirmed cases.
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Figure 3.10: The evolution of susceptible, deaths, severe and critical forms from 2 March 2020.

of deaths given by the model is less than those declared in other countries [38], which shows
that Morocco has avoided a dramatic epidemic situation by imposing the described strategies.

Finally, we present in Figure 3.11, the cumulative diagnosed cases, severe forms, deaths
and critical forms 240 days from the start of the pandemic in Morocco. We summarize some
important numbers in Table 3.3, which gives us some information about the future epidemic
situation in Morocco.

Table 3.3: Estimated peaks and cumulative of diagnosed cases, severe forms, critical forms
and deaths.

Compartments Peak Cumulative
Diagnosed Around 190 18,890
Severe forms Around 28 2233
Critical forms Around 10 997
Deaths Around 5 468
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Figure 3.11: Cumulative diagnosed cases, severe forms, critical forms and deaths 240 days
from the start of the COVID-19 pandemic in Morocco.

3.2.6 Conclusions

In this study, we proposed a new deterministic model with delay and its corresponding
stochastic model to describe the dynamic behavior of COVID-19 in Morocco. These mod-
els provide us with the evolution and prediction of important categories of individuals to be
monitored, namely, the positive diagnosed cases, which can help to examine the efficiency of
the measures implemented in Morocco, and the different developed forms, which can quantify
the capacity of the public health system as well as the number of new deaths. Firstly, we
have shown that our models are mathematically and biologically well posed by proving global
existence and uniqueness of positive solutions. Secondly, the extinction of the disease was
established. By analyzing the characteristic equation, we proved that if R0 < 1, then the dis-
ease free equilibrium of the deterministic model is locally asymptotically stable (Theorem 3.9).
Based on the Lyapunov analysis method, a sufficient condition for the extinction was obtained
in the stochastic case (Theorem 3.17). Thirdly, and since there is a substantial interest in es-
timating the parameters, we applied the least square method to determine the confidence
interval of the transmission rate β as 0.4517 (95%CI, 0.4484–0.455). In addition, the rest of
the parameters were either assumed, based on some daily observations, or taken from the
available literature. Finally, some numerical simulations were performed to gather informa-
tion in order to be able to fight against the propagation of the new coronavirus. In 12 May
2020, the basic reproduction number was less than one (R0 = 0.5230), which means that the
epidemic was tending toward eradication, which is conditional on strict compliance with the
implemented measures. Currently, the consequences of the measures taken against COVID-19
in Morocco encourage their maintenance to control the spread of the epidemic and quickly
move towards extinction.

As future work, we intend to study the regional evolution of COVID-19 in Morocco.
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3.3 A Stochastic Capital-Labour Model with Logistic Growth
Function

The original results of this section are published in [159].

3.3.1 Introduction

Labour supply and demand are the essential variables governing the labour market. They
are influenced by demographic factors and the gross domestic product, which vary from house-
hold to household. In our context, the supply of labour is represented by the number of free
jobs and the demand for labour, noting that the workforce or labour force is the total number
of people eligible to work.

Motivated by the previous information, we propose to model the labour market by ordi-
nary differential equations (ODEs) describing the different interactions between the essential
components, that is, the free jobs and the labour force. The suggested model will take the
following form: 

du

dt
(t) = ru(t)

(
1− u(t)

K

)
−mu(t)v(t),

dv

dt
(t) = mu(t)v(t)− dv(t),

(3.17)

where u denotes the number of free jobs and v represents the total unemployed labour force.
The positive constant r is the natural per capita growth of free jobs and K is the theoretical
eventual maximum of the number of free jobs (related to the theoretical maximum of invest-
ment capital). The positive parameter d is the disappearance rate of labour force and muv is
the rate by which the labour force fills in the free jobs.
We have adopted the bilinear form to pass from the labour force compartment to the free job
one, while the recruitment of people depends progressively and proportionally to the consid-
ered employment policy.

It is well known that economies are subject to randomness in terms of natural perturbation
processes. Therefore, stochastic models are more suitable than deterministic ones, because
they can take into account not only the mean trend but also the variance structure around it.
Moreover, deterministic models will always produce the same results for fixed initial conditions,
whereas the stochastic ones may give different predicted values. Thus, in order to take into
account all the previous arguments, in this work we propose the following stochastic capital-
labour model with a logistic growth function:du(t) =

[
ru(t)

(
1− u(t)

K

)
−mu(t)v(t)

]
dt− σu(t)v(t)dB,

dv(t) = [mu(t)v(t)− dv(t)] dt+ σu(t)v(t)dB,

(3.18)

where B(t) is a standard Brownian motion with intensity σ, defined on a complete filtered
probability space (Ω,F , (Ft)t≥0,P) with the filtration (Ft)t≥0 satisfying the usual conditions.

Our work is organized as follows. first, we prove existence and uniqueness of a global
positive solution to our stochastic model (3.18). Then, using the Lyapunov analysis method,
we prove the extinction of the total labour force under an appropriate condition. Furthermore,
we give sufficient conditions for the persistence in mean of the total labour force. Follows
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some numerical simulations to illustrate our analytical results. Lastly, we finish with suitable
conclusions. Here all the equations and inequalities are intended almost surely (a.s.).

3.3.2 Existence and uniqueness of global economic solutions

To investigate the dynamical behaviour of a population model, the first concern is whether
the solution of the model is positive and global. In order to get a stochastic differential equation
for which a unique global solution exists, i.e., there is no explosion within a finite time, for
any initial value, standard assumptions for existence and uniqueness of solutions are the linear
growth condition and the local Lipschitz condition (cf. Mao [145]). However, the coefficients
of system (3.18) do not satisfy the linear growth condition as the incidence is non-linear.
Therefore, the solution of system (3.18) may explode at a finite time. In this section, using
the Lyapunov analysis method [124, 126], we show that the solution of system (3.18) is positive
and global.

Theorem 3.18. For any given initial value (u(0), v(0)) ∈ R2
+, there exists a unique positive

solution (u(t), v(t)) ∈ R2
+ of model (3.18) for all t ≥ 0 a.s. (almost surely). Moreover,

lim sup
t→∞

u(t) ≤ rK

µ
a.s., lim sup

t→∞
v(t) ≤ rK

µ
a.s.,

where µ = min{r, d}.

Proof. Since the drift and the diffusion of (3.18) are locally Lipschitz, then for any given
initial value (u(0), v(0)) ∈ R2

+, there exists a unique local solution for t ∈ [0, τe), where τe
is the explosion time. To show that this solution is global, we need to show that τe = +∞.
Define the stopping time τ+ as

τ+ := inf {t ∈ [0, τe) : u(t) ≤ 0 or v(t) ≤ 0} .

We suppose that τ+ < +∞. For any t ≤ τ+, we define the following function:

F (t) := ln(u(t)v(t)).

By using Itô’s formula and system (3.18), we obtain that

dF = r
(

1− u

K

)
−mv +mu− d− σ2

2
(u2 + v2) + σ(u− v)dB

≥ − r

K
u−mv − d− σ2

2
(u2 + v2) + σ(u− v)dB.

Integrating both sides between 0 and t, we get that

F (t) ≥ F (0) +

∫ t

0
H(s)ds+ σ

∫ t

0
(u(s)− v(s))dB(s), (3.19)

where H(s) = − r

K
u(s)−mv − d− σ2

2
(u2(s) + v2(s)). At least one among u(τ+) and v(τ+)

is equal to 0. Then, we get
lim
t→τ+

F (t) = −∞.
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Letting t→ τ+ in (3.19) we obtain

−∞ ≥ F (t) ≥ F (0) +

∫ τ+

0
H(s)ds+ σ

∫ τ+

0
(u(s)− v(s))dB(s) > −∞,

which is a contradiction. Thereby, τ+ = +∞, which means that the model has a unique global
solution (u(t), v(t)) ∈ R2

+ a.s. We now prove the boundedness. If we sum the equations from
system (3.18), then

dN(t) =
(
ru
(

1− u

K

)
− dv

)
dt,

where N(t) = u(t) + v(t). Thus,

dN(t) =
(
ru(1− u

K
)− dv

)
dt

=
(
ru− dv − r

K
(u−K)2 − 2ur + rK

)
dt

=
(
−ru− dv − r

K
(u−K)2 + rK

)
dt,

dN

dt
≤ −µN + rk,

where µ = min{r, d}, and so

eµt
dN

dt
≤ eµt (−µN + rk) ,∫ t

0
eµs

dN

ds
ds ≤

∫ t

0
eµs (−µN(s) + rK) ds,

eµtN(t) ≤ rK

µ
(eµt − 1) +N(0),

N(t) ≤ rK

µ
(1− e−µt) +N(0)e−µt,

lim sup
t→∞

N(t) ≤ rK

µ
a.s.

This fact implies that lim supt→∞ u(t) ≤ rK

µ
a.s. and lim supt→∞ v(t) ≤ rK

µ
a.s., which

completes the proof.

3.3.3 Extinction of total labour force

When studying dynamical systems, it is important to discuss the possibility of extinction
or persistence of a population. Here we investigate extinction of the capital-labour.

Theorem 3.19. For any initial data (u(0), v(0)) ∈ R2
+, if

m2

2σ2
− d < 0, then v(t) → 0 when

t→ +∞ a.s.

Proof. Let us define G1(t) := log(v(t)). Applying Itô’s formula to G leads to

dG1 =

(
mu(t)− d− σ2

2
u2(t)

)
dt+ σu(t)dB,
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dG1 =

(
−σ

2

2

(
u(t)− m

σ2

)2
+
m2

2σ2
− d
)
dt+ σu(t)dB,

dG1 ≤
(
m2

2σ2
− d
)
dt+ σu(t)dB.

Integrating from 0 to t and dividing both sides by t, we have

log(v(t)

t
≤ log(v0)

t
+

1

t

∫ t

0
(
m2

2σ2
− d)ds+

σ

t

∫ t

0
u(s)dB(s)

≤ log(v0)

t
+

1

t

∫ t

0
(
m2

2σ2
− d)ds+

σ

t

∫ t

0
u(s)dB(s)

≤ log(v0)

t
+
m2

2σ2
− d+

σ

t

∫ t

0
u(s)dB(s).

Let Mt :=

∫ t

0
σu(s)dBs. Then,

lim sup
t→+∞

< Mt,Mt >

t
= lim sup

t→+∞

σ2

t

∫ t

0
u2(s)ds ≤ σ2

(
rK

µ

)2

< +∞

and, by using the strong law of large numbers for martingales (see, e.g., [145]),

lim sup
t→+∞

Mt

t
= 0.

Therefore,

lim sup
t→+∞

log(v(t)

t
≤ log(v0)

t
+
m2

2σ2
− d.

Thus, if
m2

2σ2
− d < 0, then v(t)→ 0 when t→ +∞ a.s.

3.3.4 Persistence in the mean of total labour force

Now, we investigate the persistence property of v(t) in the mean, that is, we give conditions
for which

lim inf
t→∞

1

t

∫ t

0
v(s)ds > 0.

For convenience, we introduce the following notation:

〈x(t)〉 :=
1

t

∫ t

0
x(s)ds.

Theorem 3.20. Let (u(t), v(t)) be a solution of system (3.18) with initial value (u(0), v(0)) ∈
R2

+. If

Rs0 =
r

d
− σ2K2

2d
> 1 and m >

r

K
, (3.20)

then the variable v(t) satisfies the following expression:

lim inf
t→∞

〈v〉 ≥ d(Rs0 − 1)

m+ d
> 0. (3.21)
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Proof. Using the second equation of system (3.18), we have

v(t)− v(0)

t
= m〈uv〉 − d〈v〉+

σ

t

∫ t

0
u(s)v(s)dB. (3.22)

Applying Itô’s formula on model (3.18) leads to

d ln(u(t)) =

[
r
(

1− u

K

)
−mv − 1

2
σ2v2

]
dt− σvdB (3.23)

and
d ln(v(t)) =

[
mu− d− 1

2
σ2u2

]
dt+ σudB. (3.24)

Integrating both sides of (3.23) and (3.24) from 0 to t, and dividing by t, leads to

ln(u(t))− ln(u(0))

t
= r − r

K
〈u〉 −m〈v〉 − σ2

2
〈v2〉 − σ

t

∫ t

0
v(s)dB (3.25)

and
ln(v(t))− ln(v(0))

t
= m〈u〉 − d− σ2

2
〈u2〉+

σ

t

∫ t

0
u(s)dB. (3.26)

Combining (3.22), (3.25), and (3.26), we derive that

v(t)− v(0)

t
+

ln(u(t))− ln(u(0))

t
+

ln(v(t))− ln(v(0))

t

= r − r

K
〈u〉+m〈u〉+ (m− σ2)〈uv〉 − (d+m)〈v〉 − d− σ2

2
〈(u+ v)2〉

+
σ

t

∫ t

0
(u(s)− v(s) + u(s)v(s))dBs

≥ r − d− σ2

2
K2 − (d+m)〈v〉+

(
m− r

K

)
〈u〉

+
σ

t

∫ t

0
(u(s)− v(s) + u(s)v(s))dBs.

Since m− r

K
> 0, then

v(t)− v(0)

t
+

ln(u(t))− ln(u(0))

t
+

ln(v(t))− ln(v(0))

t

≥ r − d− σ2

2
K2 − (d+m)〈v〉

+
σ

t

∫ t

0
(u(s)− v(s) + u(s)v(s))dBs.

Therefore,

(d+m)〈v〉 ≥r − d− σ2

2
K2 +

σ

t

∫ t

0
(u(s)− v(s) + u(s)v(s))dB(s)

− v(t)− v(0)

t
− ln(u(t))− ln(u(0))

t
− ln(v(t))− ln(v(0))

t
.
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Table 3.4: Parameter values used in the numerical simulations.

Parameters Fig. 3.12 Fig. 3.13
r 1 1
d 0.2 0.2
m 0.001 0.1
K 100 100
σ 0.09 0.001
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Figure 3.12: Extinction of the total labour force.

Let us denote

M1(t) := σ

∫ t

0
(u(s)− v(s) + u(s)v(s))dB(s).

Using the strong law of large numbers for martingales, together with the fact that almost
surely for every ε there exists T such that 0 < u(t), v(t) < rK

µ + ε for every t > T , we can say
that

lim
t→∞

v(t)

t
= 0, lim

t→∞

u(t)

t
= 0, lim

t→∞

M1(t)

t
= 0 a.s.

Thus,

lim inf
t→∞

〈v〉 ≥
r − d− σ2

2
K2

(d+m)
=
d(Rs0 − 1)

m+ d
> 0,

where Rs0 =
r

d
− σ2K2

2d
. The proof is complete.

In this section, we illustrate our mathematical results through numerical simulations. In
the two considered examples, we apply the algorithm presented in [70] to solve system (3.18)
and we use the parameter values from Table 3.4, inspired from [116].

Figure 3.12 shows the evolution of the free jobs and the total labour force during the
period of observation. It can be seen that both curves of the total labour force, corresponding
to the deterministic and to the stochastic models, converge toward zero. This indicates the
extinction of the total labour force, which is consistent with our theoretical results. Indeed,

for the used parameters (see Table 3.4), one has
m2

2σ2
− d = −0.19 < 0 and it follows, from

Theorem 3.19, that v(t)→ 0 with probability one when t→ +∞. ———————-
The evolution of the free jobs and the total labour force, for both deterministic and stochas-

tic models, is also illustrated in Fig. 3.13. In this case, the key conditions (3.20) of our Theo-

rem 3.20 are satisfied: Rs0 =
r

d
− σ2K2

2d
= 4.99 > 1 and m− r

K
= 0.09 > 0. As predicted by

Theorem 3.20, one can clearly see in Fig. 3.13 the persistence of the total labour force.
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Figure 3.13: Persistence of the total labour force.

3.3.5 Conclusions

The labour force (workforce), which can be defined as the total number of people who
are eligible to work, is a centred component of each modern economy, whereas free jobs are
systematically supplied by companies. In this work, we have proposed and analysed a capital-
labour model by means of an economic dynamical system describing the interaction between
free jobs and labour force. Mathematically, our model is governed by stochastic differential
equations, where the component of stochastic noise is considered for an additional degree of
realism, intended to describe well reality. Furthermore, the transmission rate by which the
labour force individuals are moving to the free jobs compartment is modelled by the logistic
growth function with an appropriate carrying capacityK. Some relevant results were obtained.
First of all, by proving existence and uniqueness of a global positive solution, as well as its
boundedness, we have shown that the proposed model is mathematically and economically
well-posed. Moreover, a sufficient condition for the extinction of labour force is obtained, via
the strong law of large numbers for martingales, in addition to adequate sufficient conditions
for the persistence in mean. In order to illustrate our theoretical results, we have implemented
some numerical simulations where, for a good accuracy of the approximate numerical solutions,
the Milstein scheme has been used.

3.4 A stochastic SICA Epidemic Model with Jump Lévy Pro-
cesses

The results of this section are published in [160].

3.4.1 Introduction

Human immunodeficiency virus (HIV) is known as a pathogen causing the acquired im-
munodeficiency syndrome (AIDS), which is the end-stage of the infection. After that the
immune system fails to play its life-sustaining role [30, 147]. On the other hand, accord-
ing to the world health organization [148], 36.7 million people living with HIV, 1.8 million
people becoming newly infected with HIV and more than 1 million deaths annually. Based
on these alarming statistics, HIV becomes a major global public health issue. Mathematical
modeling of HIV viral dynamics is a powerful tool for predicting the evolution of this disease
[10, 77, 103, 129, 131].

On the other hand, stochastic quantification of several real life phenomena have been much
helpful in understanding the random nature of their incidence or occurrence. This also helped
in finding solutions to such problems arising from them either in form of minimization of their
undesirability or maximizing their rewards. Besides, the infectious diseases are exposed to
randomness and uncertainty in terms of normal infection progress. Therefore, the stochastic
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Table 3.5: Parameters, their Meaning in the suggested SICA model

Parameters Meaning
Λ Recruitment rate
µ Natural death rate
β The transmission rate
φ HIV treatment rate for I individuals
ρ Default treatment rate for I individuals
α AIDS treatment rate
ω Default treatment rate for C individuals
d AIDS induced death rate

modeling are more appropriate comparing to the deterministic models; considering the fact
that the stochastic systems do not take into account only the variable mean but also the
standard deviation behavior surround it. Moreover, the deterministic systems generate similar
results for initial fixed values, but the stochastic ones can give different predicted results.
Several stochastic infectious models describe the effect of white noise on viral dynamics have
been deployed [156, 6, 91, 112, 115].

In this work, based on [125], we propose and analyze a mathematical model for the trans-
mission dynamics of HIV and AIDS. Our aim is to show the effect of the lévy jump in the
dynamics of the population, the Lévy noise is used to describe the contingency and the out-
burst. So will be interesting to consider the following stochastic model driven by white noise
and the Lévy noise jointly:



dS(t) = (Λ− βI(t)S(t)− µS(t)) dt− σI(t)S(t)dWt

−
∫
U
J(u)I(t−)S(t−)Ň(dt, du),

dI(t) = (βI(t)S(t)− (ρ+ φ+ µ)I(t) + αA(t) + ωC(t)) dt+ σI(t)S(t)dWt

+

∫
U
J(u)I(t−)S(t−)Ň(dt, du),

dC(t) = (φI(t)− (ω + µ)C(t)) dt,

dA(t) = (ρI(t)− (α+ µ+ d)A(t)) dt,

(3.27)

where susceptible individuals (S); HIV-infected individuals with no clinical symptoms of AIDS
(the virus is living or developing in the individuals but without producing symptoms or only
mild ones) but able to transmit HIV to other individuals (I); HIV-infected individuals under
ART treatment (the so called chronic stage) with a viral load remaining low (C) and HIV-
infected individuals with AIDS clinical symptoms (A). the parameters of the SICA model
(3.27) is given in table 3.5. Moreover, Wt is a standard Brownian motion with intensity σ
defined on a complete filtered probability space (Ω,F , (Ft)t≥0,P) with the filtration (Ft)t≥0

satisfying the usual conditions. We denote by S(t−), I(t−) and z(t−) the left limits of
S(t), I(t) and z(t) respectively. N(dt, du) is a Poisson counting measure with the stationary
compensator ν(du)dt, Ñ(dt, du) = N(dt, du) − ν(du)dt where ν is defined on a measurable
subset U of the non-negative half-line with ν(U) <∞. J(u) represents the jumps intensity.
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3.4.2 Existence and Uniqueness of the global positive solution

Define
Ω = {(S; I;C;A) ∈ R4

+/
Λ

µ+ d
≤ S + I + C +A ≤ Λ

µ
}

Theorem 3.21. For any given initial data (S(0); I(0);C(0);A(0)) ∈ Ω, there exists a unique
global positive solution (S(t); I(t);C(t);A(t)) ∈ Ω for every t ≥ 0, a.s of the system 3.18.
Moreover,

lim sup
t→∞

S(t) ≤ Λ

µ
a.s., lim inf

t→∞
S(t) ≥ Λ

µ+ d
a.s.,

lim sup
t→∞

I(t) ≤ Λ

µ
a.s., lim inf

t→∞
I(t) ≥ Λ

µ+ d
a.s.,

lim sup
t→∞

C(t) ≤ Λ

µ
a.s., lim inf

t→∞
C(t) ≥ Λ

µ+ d
a.s.,

lim sup
t→∞

A(t) ≤ Λ

µ
a.s., lim inf

t→∞
A(t) ≥ Λ

µ+ d
a.s..

Proof. By Assumption (H) J is a bounded function and 0 < J(u) ≤ µ
Λ , u ∈ U . The local Lips-

chitzianity of the drift and the diffusion with the given initial data (S(0); I(0);C(0);A(0)) ∈ Ω
enable us to confirm existence and uniqueness of the local solution (S(t); I(t);C(t);A(t)) ∈ Ω
for t ∈ [0, τe), where τe is the explosion time.
To prove that the current solution is global, we need to define the stopping time

τ = {t ∈ [0, τe)/S(t) ≤ 0, I(t) ≤ 0, C(t) ≤ 0, A(t) ≤ 0}

Assuming that τe < ∞, we have τ ≤ τe then there exist T > 0 and ε > 0 such that
P (τ ≤ T ) > ε. We consider the following function V on R4

+:
V (x, y, z, t) = log(xyzt)
Using the Itô’s formula, we get:

dV (t,X(t)) = LV (t,X(t))dt+ ∂xV (t,X(t)).b(t,X(t))dWt

+

∫
U

(V (X(t−) + J(u))− V (X(t−))) Ň(dt, du)

where b reflects with abbreviation, the drift coefficient

dV = LV dt+

(
Λ

S
− βI + βS − rh− φ− 2µ+ α

A

I
+ ω

C

I

)
dWt

+

∫
U

log(1− JI)(1 + JS)Ň(dt, du),

where L denotes the differential operator. We have,

LV = (Λ− βIS − µS)
1

S
+ (βIS − (ρ+ φ+ µ)I + αA+ ωC)

1

I
− σ2I2

2
− σ2S2

2

+

∫
U

[log(1− JI)(1 + JS)− JI + JS]ν(du).
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Remark that 1− JI > 0 from Assumption (H). Consequently,

LV ≥ −βΛ

µ
−2µ−ρ−φ− σ

2Λ2

µ2
+

∫
U

[log(1−JI)+JI]ν(du)+

∫
U

[log(1+JS)−JS]ν(du) := K.

Observe that x 7−→ log(1 + x)− x and x 7−→ log(1− x) + x are nonpositive functions.
So,
dV ≥ Kdt+

(
Λ
S − βI + βS − rh− φ− 2µ+ αAI + ωCI

)
dWt+

∫
U log(1−JI)(1+JS)Ň(dt, du),

Integrating the last equality from 0 to t, we get
V (S(t), I(t), C(t), A(t)) ≥ V (S(0), I(0), C(0), A(0)) +K(t)
+
∫ t

0

∫
U

(
Λ
S − βI + βS − rh− φ− 2µ+ αAI + ωCI

)
dWs

+
∫ t

0

∫
U log(1− JI)(1 + JS)Ň(ds, du).

Because of the continuity of the state variable, some components of

(S(τ), I(τ), C(τ), A(τ))

being equal to 0, we get therefore that limt→τ V (τ) = −∞.
Letting t→ τ , we deduce
−∞ ≥ V (S(0), I(0), C(0), A(0)) +K(t)
+
∫ t

0

∫
U

(
Λ
S − βI + βS − rh− φ− 2µ+ αAI + ωCI

)
dWs

+
∫ t

0

∫
U log(1 − JI)(1 + JS)Ň(ds, du) > ∞., which contradicts our assumption and achieves

the proof.
We shall show the boundedness of the solution.
Summing up the equations from system (3.27) yields

dN(t)

dt
= Λ− µN(t)− dA(t)

Adressing an upper and lower bounds, we get

Λ− (µ+ d)N(t) ≤ dN(t)

dt
≤ Λ− µN(t),

where N(t) = S(t) + I(t) + C(t) +A(t). So,

eµt
dN(t)

dt
≤ eµt (Λ− µN(t)) ,∫ t

0
eµs

dN(s)

ds
ds ≤

∫ t

0
eµs (Λ− µN(s)) ds,

eµtN(t) ≤ Λ

µ
(eµt − 1) +N(0),

N(t) ≤ Λ

µ
(1− e−µt) +N(0)e−µt,

lim sup
t→∞

N(t) ≤ Λ

µ
a.s.

Adopting the same technique, we have also, lim inft→∞N(t) ≥ Λ

µ+ d
a.s..

This confirms the requested boundedness.

89



3.4.3 Extinction of I(t)

The extinction of I(t) under some sufficient condition is investigated in this work.

Theorem 3.22. Then, if β2

2σ2 < (ρ+ φ+ µ) + (α+ ω)Λ
µ , so I(t)→ 0 when t→ +∞ a.s.

Proof. Let,
V (I) = log(I)

Using Itô’s formula corresponding to the Poissonian process, we get

dV (t,X(t)) = LV (t,X(t))dt+ ∂xV (t,X(t)).σI(t)S(t)dWt

+

∫
U

(V (X(t−) + J(u))− V (X(t−))) Ň(dt, du)

= LV (t,X(t))dt+ σS(t)dWt +

∫
U

(log(1 + JS)) Ň(dt, du),

where,
LV = (βIS − (ρ+ φ+ µ)I + αA+ ωC)1

I −
σ2S2

2 +
∫
U log(1 + JS)− JS]ν(du).

Which implies that,
LV ≤ β2

2σ2 − (ρ+ φ+ µ) + (α+ ω)Λ
µ

dV ≤ ( β
2

2σ2 − (ρ+ φ+ µ) + (α+ ω)Λ
µ )dt+ σS(t)dWt +

∫
U log(1 + JS)Ň(dt, du)

Integrating this from 0 to t and dividing by t on both sides, we have

log(I(t)

t
≤ log(I0)

t
+

1

t

∫ t

0
(
β2

2σ2
− (ρ+ φ+ µ) + (α+ ω)

Λ

µ
)ds

+
1

t

∫ t

0
σS(s)dB(s) +

1

t

∫ t

0

∫
U

log(1 + JS)Ň(ds, du)

≤ log(I0)

t
+

β2

2σ2
− (ρ+ φ+ µ) + (α+ ω)

Λ

µ
+
σ

t

∫ t

0
S(s)dB(s)

+
1

t

∫ t

0

∫
U

log(1 + JS)Ň(ds, du)

We pose

Mt =

∫ t

0
σS(s)dBs,

so,

lim sup
t→+∞

< Mt,Mt >

t
= lim sup

t→+∞

σ2

t

∫ t

0
S2(s)ds ≤ σ2

(
Λ

µ

)2

<∞,

then by using the strong law of large numbers theorem for martingales (see [84]) and the fact
that the solution of the principal system is bounded we get,

lim sup
t→+∞

Mt

t
= 0,
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therefore,

lim sup
t→+∞

log(I(t)

t
≤ β2

2σ2
− (ρ+ φ+ µ) + (α+ ω)

Λ

µ
.

Then, if β2

2σ2 < (ρ+ φ+ µ) + (α+ ω)Λ
µ , so I(t)→ 0 when t→ +∞ a.s.

3.4.4 Persistence of I(t) and S(t) in the mean

In this section, we shall investigate the persistence property of S(t) and I(t) in the mean.
That’s means that

lim inf
t→∞

1

t

∫ t

0
x(s)ds > 0,

where, x(t) ∈ {S(t), I(t)}. For convenience, we define the following notation:

< x(t) >=
1

t

∫ t

0
x(s)ds.

Theorem 3.23. Let (S(t), I(t), C(t), A(t)) be a solution of system (3.27) with any initial
value (S(0), I(0), C(0), A(0)). If

β
Λ

µ+ d
> (ρ+ φ+ µ) +

σ2Λ2

2µ2
. (3.28)

Then,

lim inf
t→∞

< I(t) >≥ 1

(ρ+ φ+ µ)

(
βΛ

µ+ d
− (ρ+ φ+ µ)− σ2Λ2

2µ2

)
> 0, (3.29)

lim inf
t→∞

< S(t) >
Λµ

Λβ + µ2
> 0. (3.30)

Proof. Using the first equation of the system (3.27), we have

S(t)− S(0)

t
=

1

t

∫ t

0
(Λ− βIS − µS)ds− 1

t

∫ t

0
σISdWs

− 1

t

∫ t

0

∫
U
J(u)ISŇ(ds, du)

≥ 1

t

∫ t

0
(Λ− βΛ

µ
S − µS)ds− 1

t

∫ t

0
σISdWs

− 1

t

∫ t

0

∫
U
J(u)ISŇ(ds, du)

(
Λβ

µ
+ µ) < S > ≥ Λ− S(t)− S(0)

t

− 1

t

∫ t

0
σISdWs

− 1

t

∫ t

0

∫
U
J(u)ISŇ(ds, du)
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Using the strong law of large numbers for martingales and the boundedness of solution, we
get

lim inf
t→∞

< S(t) >≥ Λµ

Λβ + µ2
> 0.

Integrating the second equation of the system (3.27) from 0 to t and dividing the both sides
by t, we obtain:

I(t)− I(0)

t
=

1

t

∫ t

0
((βI(s)S(s)− (ρ+ φ+ µ)I(s) + αA(s) + ωC(s)) ds

+
1

t

∫ t

0
σISdWs +

1

t

∫ t

0

∫
U
J(u)ISŇ(ds, du)

≥ −(ρ+ φ+ µ) < I(t) > +
1

t

∫ t

0
σISdWs

+
1

t

∫ t

0

∫
U
J(u)ISŇ(ds, du)

Using again the Itô’s formula on a function V with V (I) = log(I) and decreasing the right
side part,
we get what follows:

dV = (βIS − (ρ+ φ+ µ)I + αA+ ωC)
1

I
− σ2S2

2

+

∫
U

log(1 + JS)− JS]ν(du))dt+ σS(t)dWt

+

∫
U

log(1 + JS)Ň(dt, du)

≥ (β
Λ

µ+ d
− (ρ+ φ+ µ) + α

µ

µ+ d
+ ω

µ

µ+ d
)

− σ2S2

2
+

∫
U

log(1 + JS)− JS]ν(du))dt

+ σS(t)dWt +

∫
U

log(1 + JS)Ň(dt, du)

log I(t)− logI(0)

t
≥ (β

Λ

µ+ d
− (ρ+ φ+ µ) + α

µ

µ+ d
+ ω

µ

µ+ d
)−

σ2Λ2

2µ2
+

1

t

∫
U

log(1 + JS)− JS]ν(du))ds

+
1

t

∫ t

0
σS(s)dWs +

1

t

∫ t

0

∫
U

log(1 + JS)Ň(ds, du)

By summing
I(t)− I(0)

t
and log I(t)−log I(0)

t , applying yet the strong law of large numbers for
martingales, positivity and boundedness of solution, we get
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Figure 3.14: The Susceptible and infected population as function of time.

lim inf
t→∞

< I(t) > ≥ 1

(ρ+ φ+ µ)

(
βΛ

µ+ d
− (ρ+ φ+ µ)− σ2Λ2

2µ2

)
> 0.

Consequently, the requested persistence in mean of I(t) holds.

3.4.5 Numerical results

This section is devoted to illustrate our mathematical findings by numerical simulations.
In the following examples we apply the algorithm presented in [166] to solve system (3.27)
and we take the parameter values given in Table 3.6.

Parameters Fig. 3.14 Fig. 3.15
Λ 10 100
µ 0.0125 0.0013
β 0.0001 0.1
φ 1 1
ρ 0.1 0.1
α 0.33 0.33
ω 0.09 0.09
d 1 1

Table 3.6: Parameters values

Figure 3.14 shows the dynamics of susceptible and infected class during the period of
observation for the case of the disease extinction. From this figure, we clearly observe that the
curves representing the infected population converge to 0. It will be worthy to notice that in
this case, the susceptible individuals increase to reach their maximum which means that the
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Figure 3.15: The Susceptible and infected population as function of time.

disease dies out. This is consistent with our theoretical findings concerning the extinction of
SICA model.

The evolution of the infection for both the susceptible and infected population with Lévy
jumps model is illustrated in Fig. 3.15 in the case of the disease persistence. We note that
in this epidemic situation, all the four SICA compartments, i.e. the susceptible, the infected,
HIV-infected individuals under ART treatment (the so called chronic stage) with a viral load
remaining low, and HIV-infected individuals with AIDS clinical symptoms which means that
the disease persists. This is consistent with our theoretical findings concerning the infection
persistence.

3.4.6 Conclusion

In this work, we have considered and extended the Stochastic epidemic SICA model due
to Silva and Torres , (see [125]) to a new model driven by white noise and Lévy noise jointly so
as to better describe the sudden social fluctuations, and performed some adequate numerical
simulation not only to support our theoretical results but also for predicting the asymptotic
behavior of the solution of the corresponding system in this study. More precisely,first of all,
existence and uniqueness of solutions of the current system are investigated using Lyapunov
analysis method.
Secondly, w’ve demonstrated that the model is well posed biologically and mathematically

by means of the establishment of the boundedness subject to: lim supt→∞N(t) ≤ Λ

µ
a.s.

lim inft→∞N(t) ≥ Λ

µ+ d
a.s., as well as the positivity of the solution which facilitated the

rest of the study.
Thirdly, we have constructed an appropriate sufficient condition for having the extinction of
the model showing that with an effective threshold of an eventual biggest magnitude of the
volatility σ, subject to: β2

2σ2 < (ρ+ φ+ µ) + (α+ ω)Λ
µ , the eradication of disease occurs.

Fourth, Novel significant sufficient condition, subject to:
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lim inft→∞ < I(t) >≥ 1
(ρ+φ+µ)

(
βΛ
µ+d − (ρ+ φ+ µ)− σ2Λ2

2µ2

)
> 0, and

lim inft→∞ < S(t) > Λµ
Λβ+µ2

> 0 related to the occurrence of the corresponding persistence in
mean is obtained, which mentions that with an adopted smallest magnitude of volatility σ,
the model is persistent in mean.
Lastly, Some numerical simulations are implemented to confirm and illustrate our mathemat-
ical results linked to the considered model intending to give some supplementary information
helping decision maker to select a good strategy controlling disease by means of the increasing
or decreasing the intensity of volatility on one hand, on the other hand, influence of the Lévy
noise on the evolution of variables of the system is taken into account.

3.5 Near-optimal control of a stochastic SICA model
with imprecise parameters

3.5.1 Introduction

Nowadays various kinds of infectious diseases including hepatitis C, HIV/AIDS spread around the
globe. Further, despite the advanced medical technology, infectious diseases remain growing threat to
mankind. Therefore, the decision-maker of public health system build up different strategies to control
the spread of diseases. Mathematical model have become important tools in analyzing the growth and
controlling it. The infection by human immunodeficiency virus (HIV) goes on to be a major public
issue. There is again no cure or vaccine to AIDS. Whereas, antiretroviral (ART) treatment improves
health, prolongs life, and diminishes the risk of HIV infection. Several mathematical models have
been proposed for HIV/AIDS transmission dynamics (see, e.g., Anderson, 1988; Anderson et al., 1989;
Bhuni et al., 2009a, 2011; Cai et al., 2009; Granich et al., 2009; Greenhalgh et al., 2001; Hyman and
Stanly, 1988. Joshi et al., 2008; May and Anderson, 1987; Musgrave and Watmough, 2009 and so
on). The recent work is based on the work due to Djordjevic, Silva, and Torres [15] in which the
authors consider a new stochastic SICA model by means of the presence of the white noise (Brownian
motion with positive intensity) due to the environment fluctuations that perturb the coefficient rate
of transmission β → β + δBt, in order to good describe reality as follows:
Stochastic SICA model (Djordjevic et al) [15] without control

dS(t) = [Λ− β (I(t) + ηC .C(t) + ηA.A(t)) .S(t)− µS(t)] dt

− δ (I(t) + ηC .C(t) + ηA.A(t)) .S(t)dB(t),

dI(t) = [β (I(t) + ηC .C (t) + ηA.A(t)) .S(t)− ε3I(t) + αA(t) + ωC(t)] dt

+ δ (I(t) + ηC .C(t) + ηA.A(t)) .S(t)dB(t),

dC(t) = [φI(t)− ε2C (t)] dt,

dA(t) = [eI(t)− ε1A (t)] dt,

(3.31)

The latter paper of Torres et al generalizes stochastically that made by Torres et al (2016), which is also
based on that of Silva and Torres (2015) which subdivides the human population into four exhaustively
and mutually exclusive compartments: susceptible individuals (S); HIV-infected individuals with no
clinical symptoms of AIDS (the virus is living or developping in the individuals but without producing
symptoms or only mild ones) but able to transmit HIV to other individuals (I); HIV-infected individuals
under ART treatment (the so called chronic stage) with a viral load remaining low (C); and HIV-
infected individuals with AIDS clinical symptoms (A). The total population at time t, denoted by
N(t) is given by

N(t) = S(t) + I(t) + C(t) +A(t).

The key issue in this study is to carry out some purposes, in the second section we have applied on the
actual SICA model one of the most significant control associated to the proposed Hamiltonian function
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and ended up the use of Pontryagin’s maximum principle, further, an other kind of control called:
Near-optimal control in [88] which replaces the precise biological parameters by the imprecise ones is
established to take into account all possibly environment perturbations, throught the constract of some
estimates of the currently variables which are performed by the advanced mathematical techniques
(Itô’s formula, Convexity, Cauchy Scwhart’z inequality, Hôlder’s inequality, Burkholder-Davis-Gundy
inequality, and so on) in the third section, the fourth and fifth sections are devoted to the handling of
the necessary and sufficient conditions for the near-optimal control.

3.5.2 Optimal control on the stochastic SICA model
We have inspired the form of the recent control from [88]

dS(t) = [Λ− β (I(t) + ηC .C(t) + ηA.A(t)) .S(t)− µS(t)] dt

− δ (I(t) + ηC .C(t) + ηA.A(t)) .S(t)dB(t),

dI(t) =

[
β (I(t) + ηC .C (t) + ηA.A(t)) .S(t)− ε3I(t) + αA(t) + ωC(t)− mu(t).I(t)

1 + γI(t)

]
dt

+ δ (I(t) + ηC .C(t) + ηA.A(t)) .S(t)dB(t),

dC(t) =

[
φI(t)− ε2C (t) +

mu(t).I(t)

1 + γI (t)

]
dt,

dA(t) = [eI(t)− ε1A (t)] dt,

(3.32)

with
ε1 = α+ µ+ d; ε2 = ω + µ; ε3 = e+ φ+ µ. (3.33)


dS(t) = dx1(t) = f1 (x(t)) dt+ σ1 (x(t)) .dBt,

dI(t) = dx2(t) = f2 (x(t), u(t)) dt+ σ2 (x(t)) .dBt,

dC(t) = dx3(t) = f3 (x(t), u(t)) dt,

dA(t) = dx4(t) = f4 (x(t)) dt.

(3.34)

with 

f1 (x(t)) = Λ− β (x2 + ηC .x3 + ηA.x4) .x1 − µx1,

f2 (x(t), u(t)) = β (x2 + ηC .x3 + ηA.x4) .x1 − ε3x2 + αx4 + ωx3 −
mu(t).x2
1 + γx2

,

f3 (x(t), u(t)) = φx2 − ε2x3 +
mu(t).x2
1 + γx2

,

f4 (x(t)) = ex2 − ε1x4,
σ1 (x(t)) = −σ2 (x(t)) = −δ (x2 + ηC .x3 + ηA.x4) .x1,

(3.35)

and x(t) = (S(t), I(t), C (t) , A(t)) .
Stochastic objective function
We introduce the cost function J (u) such that

J (u) = E

{∫ T

0

L (x(t), u (t)) dt+ h (x(T ))

}
(3.36)

with L : R4 × R −→ R; h : R4 → R, L and h are assumed to be continuously differentiables . Let
U ⊆ R be a bounded non empty closed set.
Control process u (.) is a control process : [0, T ] × Ω −→ U. That is called admissible if it is an
Ft-adapted process with values in U. the set of all admissible controls is denoted by Uad. The Control
problem is formulated to find an admissible control that minimizes the objective function

J (0, x0, u (.)) = J (u) over all u (.) ∈ Uad.
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The value function is as follows.
v (0, x0) = minJ (u) .

Stochastic Hamiltonian function
We regard the Hamiltonian function associated to the stochastic optimal problem :

H (x, u, p, q) = 〈f (x, u) , p〉+ 〈σ, q〉 − L (x, u) , (3.37)

with σ = (σ1, σ2) ,
and 〈., .〉 denotes an Euclidian inner product.

3.5.3 Stochastic Pontryagin’s Maximum Principle
Related equations

It follows from the stochastic maximum principle [95] that:
dx∗(t) =

∂

∂p
H (x∗, u∗, p, q) dt+ σ (x∗(t)) dBt

dpi(t) = − ∂

∂xi
H (x∗, u∗, p, q) dt+ qi(t)dBt

H (x∗, u∗, p, q) = max
u∈Uad

H (x∗, u, p, q)

(3.38)

Where x∗(t) is an optimal trajectory of x (t) . The initial state and terminal costate conditions are

x∗ (0) = x0; pi(T ) = − ∂

∂xi
h (x∗(T )) . (3.39)

Notice that the second order stochastic differential equation is omitted from the fact that the diffusion
coefficient σ does not depend on the control u.

3.5.4 Near-optimal control with imprecise parameters
In the majority of the epidemic model, parameter values are quite often assumed to be precisely

known, nevertheless, it’s mandatory to make into account the influence of numerous uncertainties,
this leads to the inclusion of the stochastic SICA model with imprecise parameters governed by an
adequate near-optimal control which will be defined in the sequel.

Known definitions

(D1) An admissible control u∗(.) is called optimal if u∗(.) attains the minimum of J(0, x0, u
∗(.))

(D2) (ε−optimal control) For a given ε > 0, an admissible control uε(.) is called (ε−optimal control), if

| J(0, x0, u
∗(.))− V (0, x0 |≤ ε

(D3) (Near-optimal control) A family of admissible controls uε(.) parametrized by ε > 0 and any
element uε(.) in the family are called near-optimal, if

| J(0, x0, u
∗(.))− V (0, x0 |≤ δ(ε)

holds for a sufficient small ε > 0, where δ is a function of ε satisfying δ(ε)→ 0 as ε→ 0.
The estimate δ(ε) is called an error bound. If δ(ε) = cεω, for some c, ω > 0, then uε(.) is called
near-optimal with order εω.
(D4) An interval number A is represented by closed interval [al, au] and defined by
A = [al, au] = {x ∈ R/al ≤ x ≤ au},
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where al and au are the left and the right limits of the interval number, respectively.
We can represent an interval [a, b] by the so called an interval-valued function which is taken as:
h(k) = a1−kbk for k ∈ [0, 1].
Notice that the sum, difference, product and the division of two interval numbers are interval numbers.

Lemma 3.24. (Ekeland’s principle [22]) Let (Q, d) be a complete metric space and F (.) : Q → R be
a lower-semicontinuous and bounded from below. For any ε > 0, we assume that uε ∈ Q satisfies

F (uε) ≤ inf
u∈Q

F (u) + ε.

Then there is a uλ ∈ Q (λ > 0) such that for all u ∈ Q

F (uλ) ≤ F (uε), d(uλ, uε) ≤ λ, F (uλ) ≤ F (u) +
ε

λ
d(uλ(.), uε(.))

Setting

(S1) For all 0 ≤ t ≤ T , the partial derivatives lS(t), lI(t), lC(t), lA(t) and hS(t), hI(t) are continuous,
and there is an imprecise parameter C such that

| lS(t) + lI(t) + lC(t) + lA(t) |≤ C(1+ | S(t) | + | I(t) | + | C(t) | + | A(t) |).

And, (1+ | S(t) |)−1 | hS(t) | +(1+ | I(t) |)−1 | hI(t) |≤ C.

(S2) Let x(t), x
′
(t) ∈ R4

+ and u, u
′ ∈ Uad. Then for any 0 ≤ t ≤ T , the function l(x(t), u(t)) is

differentiable on u(.), and there exists an imprecise parameter C such that

4∑
i=0

| hxi(x(t))− hx′i(x
′
(t)) |≤ C.

4∑
i=0

| xi(t)− x
′

i(t) |,

and

| l(x(t), u(t))− l(x(t), u
′
(t)) | + | lu(t)(x(t), u(t))− lu′ (t)(x(t), u

′
(t)) |≤ C | u(t)− u

′
(t) | .(3.40)

(S3) The control set U is convex.
Remark By the Mazur’s theorem, we can obtain the existence of the optimal control under
hypothesis (S3).
We assume that the stochastic SICA model has some biological imprecise parameters through
the interval numbers so as to better describe uncertain parameters.

Stochastic SICA model with control and imprecise parameters.

The system (3.32) becomes after replacing each parameter ζ with the imprecise one

ζk = (ζl)
1−k(ζu)k ∈ [ζl, ζu]
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for k ∈ [0, 1].

dS(t) = [Λk − βk (I(t) + (ηC)k.C(t) + (ηA)k.A(t)) .S(t)− µkS(t)] dt

− δk (I(t) + (ηC)k.C(t) + (ηA)k.A(t)) .S(t)dB(t),

dI(t) = [βk (I(t) + (ηC)k.C (t) + (ηA)k.A(t)) .S(t)− (ε3)k.I(t)

+ αk.A(t) + ωkC(t)
mk.u(t).I(t)

1 + γkI(t)
]dt

+ δk (I(t) + (ηC)k.C(t) + (ηA)k.A(t)) .S(t)dB(t),

dC(t) =

[
φk.I(t)− (ε2)k.C (t) +

mku(t).I(t)

1 + γkI (t)

]
dt,

dA(t) = [ek.I(t)− (ε1)k.A (t)] dt

(3.41)

3.5.5 The requested estimates of the state and costate variables.

Let u and u
′ ∈ Uad

Set the following metric on Uad[0, T ] as: d(u, u
′
) = Emes{t ∈ [0, T ] : u(t) 6= u

′
(t)},

where mes represents Lebesgue measure. Since U is closed, it can be shown that Uad is a complete
metric space under d.

Lemma 3.25. For any θ ≥ 0 and u ∈ Uad, we have

E sup
0≤t≤r

(| S(t) |θ + | I(t) |θ + | C(t) |θ + | A(t) |θ) ≤ C,

where C is an imprecise parameter depending only on θ.

Proof. Let N(t) = S(t) + I(t) + C(t) +A(t)
Adding member to member all equations of the system (10), we get

dN(t)

dt
= Λk − µk.N(t)− dk.A(t),

then
dN(t)

dt
≤ Λk − µk.N(t),

since dk.A(t) ≥ 0
Multiplying by exp(uk.t) the both sides of the previous inequality, we obtain

exp(uk.t).
dN(t)

dt
≤ Λk.exp(uk.t)− µk.exp(uk.t).N(t)

An integration by parts between 0 and t leads to

N(t).exp(uk.t)−N(0)−
∫ t

0

N(s).exp(uk.s)ds ≤
Λk
µk

(exp(uk.t)− 1)−
∫ t

0

µk.exp(uk.s).N(s)ds.

Equivalently, we have,

N(t) ≤ Λk
µk

(1− exp(−uk.t)) +N(0).exp(−uk.t).
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Therefore,

lim sup
t→+∞

N(t) ≤ Λk
µk
.

We have also
dN(t)

dt
≥ Λk − (µk + dk).N(t).

Applying the same foregoing manner, we get

lim inf
t→+∞

N(t) ≥ Λk
µk + dk

We conclude that
Λk

µk + dk
≤ lim inf

t→+∞
N(t) ≤ lim sup

t→+∞
N(t) ≤ Λk

µk
.

Thus, all solutions S(t), I(t), C(t), and A(t) of the current model are bounded over the regarded almost
surely positively invariant bounded set

Ω = {(S(t), I(t), C(t), A(t)) ∈ R4
+ :

Λk
µk + dk

≤ N(t) ≤ Λk
µk
} ⊂ R4

+.

Shortly, the trajectories of all solutions will enter and remain in Ω with probability 1.
This achieves the proof.

Lemma 3.26. For all θ ≥ 0 and 0 < k < 1 satisfying kθ < 1 and u, u
′ ∈ Uad along with the

corresponding trajectories x and x′, there exists an imprecise parameter C = C(θ, k) such that

4∑
i=1

E sup
0≤t≤T

| xi(t)− x
′

i(t) |2θ≤ Cd(u(t), u
′
(t))kθ (3.42)

Proof. Suppose firstly that θ ≥ 1. Set

x(t) = (x1(t), x2(t), x3(t), x4(t)) = (S(t), I(t), C(t), A(t)).

In view of the Hôlder’s inequality for θ ≥ 1

E sup
0≤t≤r

| x1(t)− x
′

1(t) |2θ

≤ C.E
∫ r

0

[(β2θ
k + δ2θk ) | (x2 + (ηC)k.x3 + (ηA)k.x4).x4

− ((x
′

2 + (ηC)k.x
′

3 + (ηA)k.x
′
4)).x4 |2θ +(µk)2θ | x1(t)− x1′(t) |2θ]dt

≤ C.E
∫ r

0

4∑
i=1

| xi − x′i |2θ dt

(3.43)
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We have also,

E sup
0≤t≤r

| x2(t)− x
′

2(t) |2θ

≤ C.E
∫ r

0

[(β2θ
k + δ2θ) | (x2 + (ηC)k.x3 + (ηA)k.x4).x4−

((x
′

2 + (ηC)k.x
′

3 + (ηA)k.x
′
4)).x4 |2θ +

(ε3)2θk | x2(t)− x′2(t) |2θ +α2θ
k | x4(t)− x

′

4(t) |2θ +

ω2θ
k | x3(t)− x′3(t) |2θ +

m2θ
k |

u(t).x2(t)

1 + ηk.x2
− u′(t).x′2(t)

1 + ηk.x′2
|2θ]dt

≤ C.E
∫ r

0

4∑
i=1

| xi − x′i |2θ +CE

∫ r

0

χu(t)6=u′(t)dt

≤ C[E

∫ r

0

4∑
i=1

| xi − x′i |2θ dt+ d(u, u′)kθ]

since,

E

∫ r

0

χu(t)6=u′(t)dt

≤
(
E

∫ r

0

dt

)1−kθ

.

(
E

∫ r

0

χu(t)6=u′(t)dt

)kθ
≤ C(θ, k) (Emes{t/u(t) 6= u′(t)})kθ

≤ C.d(u, u′)kθ.

Remark that the Hôlder’s inequality occurred under the hypothesis kθ < 1. We found also:

E sup
0≤t≤r

| x3(t)− x
′

3(t) |2θ≤ C[E

∫ r

0

4∑
i=1

| xi − x′i |2θ dt+ d(u, u′)kθ],

and,

E sup
0≤t≤r

| x4(t)− x
′

4(t) |2θ≤ C[E

∫ r

0

4∑
i=1

| xi − x′i |2θ dt+ d(u, u′)kθ],

Combining the last four inequalities, we get

4∑
i=1

E sup
0≤t≤r

| xi(t)− x
′

i(t) |2θ≤ C[E

∫ r

0

4∑
i=1

| xi − x′i |2θ dt+ d(u, u′)kθ],

Therefore, the lemma is true by using the Gronwall’s inequality.
To proof the desired result in the case 0 ≤ θ < 1, we apply the Cauchy-Schwartz’s inequality for
obtaining,
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4∑
i=1

E sup
0≤t≤r

| xi(t)− x
′

i(t) |2θ

≤
4∑
i=1

[
E sup

0≤t≤r
| xi(t)− x

′

i(t) |2
]θ

≤
[
Cd(u, u′)k

]θ
≤ Cθd(u, u′)kθ.

Where C is an imprecise parameter because of its dependence of the considered imprecise ones. This
completes the proof.

Lemma 3.27. For any u, u′ ∈ Uad, we have

4∑
i=1

E sup
0≤t≤T

| pi(t) |2 +

2∑
i=1

E

∫ T

0

| qi(t) |2 dt ≤ C, (3.44)

where C is an imprecise.

Proof. We have,

dp1(t) = −∂x1H(x∗, u∗, p, q)dt+ q1(t)dBt = −b1dt+ q1dBt

so,

p1(t) +

∫ T

t

q1(s)dBs = P1(T ) +

∫ T

t

b1(s)ds

For all t ≥ 0, x(t) ∈ Ω,

E | p1(t) |2 +E{
∫ T

0

| q1(s) |2 ds} ≤ CE | p1(T ) |2 +C(T − t)E{
∫ T

0

| b1(s) |2 ds}

≤ CE | p1(T ) |2 +C(T − t)
4∑
i=1

E{
∫ T

0

| pi(s) |2 ds}+ C(T − t)
2∑
i=1

E{
∫ T

0

| qi(s) |2 ds},

we obtain the same inequalities for i ∈ {2, 3, 4}.
By adding member to member, we get,

4∑
i=1

E | pi(t) |2 +

2∑
i=1

E

∫ T

t

| qi(s) |2 ds

≤ CE | pi(T ) |2 +C(T − t)
4∑
i=1

E{
∫ T

t

| pi(s) |2 ds}+ C(T − t)
2∑
i=1

E{
∫ T

t

| qi(s) |2 ds}

Then,
4∑
i=1

E | pi(t) |2 +
1

2

2∑
i=1

E{
∫ T

t

| qi(s) |2 ds}

≤
4∑
i=1

CE | pi(T ) |2 +C(T − t)
4∑
i=1

E{
∫ T

t

| pi(s) |2 ds},
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where t ∈ [T − ε, T ] with ε = 1
C ,

Using Gronwall’s inequality, we obtain

4∑
i=1

sup
0≤t≤T

E | pi(t) |2≤ C,
4∑
i=1

E{
∫ T

t

| qi(s) |2 ds} ≤ C (3.45)

One obtain the same result over [T − 2ε, T ], [T − 3ε, T ], and so on.
By repeating for a finite number of steps; we conclude that for any t ∈ [0, T ], the expected estimate
emerges.
Further, from

p1(t) = p1(T ) +

∫ T

t

b1(s)ds−
∫ T

0

q1(s)dBs +

∫ t

0

q1(s)dBs

and the elementary inequality:

| m1 +m2 +m3 +m4 |n≤ 4n(| m1 |n + | m2 |n + | m3 |n + | m4 |n),

for any n > 0.
we have,

| p1(t) |2≤ C[| p1(T ) |2 +

∫ T

0

(

4∑
i=1

| pi(s) |2)ds+

∫ T

0

(

2∑
i=1

| qi(s) |2)ds

+ (

∫ T

0

q1(s)dB)2 + (

∫ t

0

q1(s)dB)2]

Analogous statements could be established similarly for p2, p3,and p4,
next, by addition, we get

4∑
i=1

| pi(t) |2≤ C[

4∑
i=1

| pi(T ) |2 +

∫ T

0

(

4∑
i=1

| pi(s) |2)ds

+

∫ T

0

(

2∑
i=1

| qi(s) |2)ds+

2∑
i=1

(

∫ T

0

qi(s)dB)2

+

2∑
i=1

(

∫ t

0

qi(s)dB)2]

The Burkholder-Davis-Gundy inequality[23] leads to the following:

4∑
i=1

E sup
0≤t≤T

| pi(t) |2≤ C[

4∑
i=1

| pi(T ) |2

+

4∑
i=1

E{
∫ T

0

sup
0≤v≤s

| pi(v) |2)ds}

+

2∑
i=1

E{
∫ T

0

sup
0≤v≤s

| qi(v) |2)ds}].

The establishment of our desired result is achieved by applying the Gronwall’s inequality.

Lemma 3.28. Let (S1) and (S2) holds. For any 1 < η < 2 and 0 < k < 1 satisfying (1+k)η < 2, there
exists a constant C = C(η, k) such that for any u, u′ ∈ Uad along with the corresponding trajectory
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x, x′ and the solution (p, q), (p′, q′) of the related adjoint equation, we have

4∑
i=1

E{
∫ T

0

| pi(t)− p′i(t) |η dt}+

4∑
i=1

E{
∫ T

0

| qi(t)− q′i(t) |η dt} ≤ Cd(u, u′)
kη
2 (3.46)

Proof. Let
−
pi(t) = pi(t)− p′i(t), i ∈ {1, 2, 3, 4} and

−
qi(t) = qi(t)− q′i(t), i ∈ {1, 2}.

It follows from the adjoint equation that:



d
−
p1(t) = −[(−βk(x2 + (ηC)kx3 + (ηA)kx4)− µk)

−
p1 + (βk(x2 + (ηC)kx3 + (ηA)kx4)− µk)

−
p2

− δk(x2 + (ηC)kx3 + (ηA)kx4 − µk)
−
q1 + δk(x2 + (ηC)kx3 + (ηA)kx4)

−
q2 +

−
f1]dt+

−
q1dB

d
−
p2(t) = −[−βkx1

−
p1 + (βkx1 − ε3 −

mku

(1 + δkx2)2
)
−
p2

+ (φ+
mku

(1 + γkx2)2
−
p3 + e

−
p4 − δx1)

−
q1

+ δkx1
−
q2 +

−
f2]dt+

−
q2dB

d
−
p3(t) = −[−βk(ηC)kx1

−
p1 + βk(ηC)kx1

−
p2 − ε2

−
p3 − δk(ηC)kx1

−
q1 + δkηCx1

−
q2 +

−
f3]dt

d
−
p4(t) = −[−βk(ηA)kx1

−
p1 + βk(ηA)kx1

−
p2 − (ε1)k

−
p4

− δk(ηA)kx1
−
q1 + δk(ηA)kx1

−
q2 +

−
f4]dt,

(3.47)
where



−
f1 = βk[(x2 + (ηC)kx3 + (ηA)kx4)− (x′2 + (ηC)kx

′
3 + (ηA)kx

′
4)](p′2 − p′1)

− (σ)k[(x2 + (ηC)kx3 + (ηA)kx4)− (x′2 + (ηC)kx
′
3 + (ηA)kx

′
4)](q′2 − q′1)

− Lx1
(x, u) + Lx1

(x′, u′)

−
f2 = (β)k(x1 − x′1)(p′2 − p′1) + [

mku

1 + (η)kx2
− (mku

′)k
1 + (η)kx′2

](p′3 − p′2)

(δ)k(x1 − x′1)(q′2 − q′1)− Lx2
(x, u) + Lx2

(x′, u′)

−
f3 = (β)k(ηC)k(x1 − x′1)(p′2 − p′1) + (δ)k(ηC)k(x1 − x′1)(q′2 − q′1)− Lx3

(x, u) + Lx3
(x′, u′)

−
f4 = (β)k(ηA)k(x1 − x′1)(p′2 − p′1) + (δ)k(ηA)k(x1 − x′1)(q′2 − q′1)− Lx4

(x, u) + Lx4
(x′, u′).

(3.48)

We assume that

φ(t) = (φ1(t), φ2(t), φ3(t), φ4(t))

is the solution of the following linear stochastic differential equation
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

dφ1(t) = [−(β)k(x2 + (ηC)kx3 + (ηA)kx4)φ1 − (β)kx1φ2 − (β)k(ηC)kx1φ3 − βk(ηA)kx1φ4

+ | −p1 |η−1 sgn(
−
p1)]dt+ [−(δ)k(x2 + (ηC)kx3 + (ηA)kx4)φ1

− (δ)kx1φ2 − (σ)k(ηC)kx1φ3 − (δ)k(ηA)kx1φ4+ | −q1 |η−1 sgn(
−
q1)]dB

dφ2(t) = [(β)k(x2 + (ηC)kx3 + (ηA)kx4 − (µ)k)φ1 + ((β)kx1 − (ε3)k −
mku

(1 + (γ)kx2)2
φ2+

(β)k(ηC)kx1φ3+

βk(ηA)kx1φ4+ | −p2 |η−1 sgn(
−
p2)]dt+ [(δ)k(x2 + (ηC)kx3+

(ηA)kx4)φ1 + (δ)kx1φ2 + (δ)k(ηC)kx1φ3 + (δ)k(ηA)kx1φ4+ | −q2 |η−1 sgn(
−
q2)]dB

dφ3(t) = [φk +
mku

(1 + (γ)kx2)2
− (ε2)kφ3+ | −p3 |η−1 sgn(

−
p3)]dt

dφ4(t) = [ekφ2 − (ε)kφ4+ | −p4 |η−1 sgn(
−
p4)]dt,

(3.49)

where sgn(.) is a symbolic function. Using the previous Lemma and hypothesis (S1), we show the
existence and uniqueness of the solution of the current equation. Using Cauchy-Schwartz’s inequality,
we obtain the following statement

4∑
i=1

E sup
0≤t≤T

| φi(t) |η1≤
4∑
i=1

E

∫ T

0

| −pi |η dt+

2∑
i=1

E

∫ T

0

| −qi |η dt,

where η1 > 2 and 1
η1

+ 1
η = 1. Set a function as follows

V (
−
p, φ) =

4∑
i=1

−
piφi(t).

Using Ito’s formula, we have

4∑
i=1

E

∫ T

0

| −pi |η dt+

2∑
i=1

E

∫ T

0

| −qi |η dt

= −
4∑
i=1

E

∫ T

0

φi
−
fidt+

4∑
i=1

Eφi(T ) [hxi(x(T ))− hxi(x′(T ))]

≤ C
4∑
i=1

(
E

∫ T

0

|
−
fi |η dt

) 1
η
(
E

∫ T

0

| φi |η1 dt

) 1
η1

+ C

4∑
i=1

(
E [hxi(x(T ))− hxi(x′(T ))]

η) 1
η × (E | φi(T ) |η1)

1
η1

≤ C

(
4∑
i=1

E

∫ T

0

| −pi |η dt+

2∑
i=1

E

∫ T

0

| −qi |η dt

) 1
η1

×

 4∑
i=1

(
E

∫ T

0

|
−
fi |η dt

) 1
η

+

4∑
i=1

(
E | hxi(x(T )− hxi(x′(T )) |η)

1
η

)
By the elementary inequality previously mentioned, we have
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4∑
i=1

E

∫ T

0

| −pi |η dt+

2∑
i=1

E

∫ T

0

| −qi |η dt

≤ C

[
4∑
i=1

E

∫ T

0

|
−
fi |η dt+

4∑
i=1

E | hxi(x(T ))− hxi(x′(T )) |η
] (3.50)

Using (S2) and previous Lemma , we obtain

4∑
i=1

E | hxi(x(T ))− hxi(x′(T )) |η≤ Cη
4∑
i=1

E | xi(t)− x′i(t) |η] ≤ Cd(u, u′)
kη
2 .

Using Cauchy-Schwartz’s inequality, we have

E

∫ T

0

|
−
fi |η dt

≤ C

[
E

∫ T

0

| x2 − x′2 |η
(

4∑
i=1

| p′i |η +

2∑
i=1

| q′i |η
)
dt+ E

∫ T

0

| Lx1
(x, u)− Lx1

(x′, u′) |η dt

]

≤ C

(
E

∫ T

0

| x2 − x′2 |
2η

2−η dt

)1− η2
( 2∑

i=1

∫ T

0

| p′i |2 dt

) η
2

+

(
2∑
i=1

∫ T

0

| q′i |2 dt

) η
2

+ Cd(u, u′)
kη
2 .

(3.51)

Observe that 2η
1−η < 1, 1− η

2 >
kη
2 and d(u, u′) < 1. It comes from Lemmas 3.27 and 3.28 that

E[

∫ T

0

|
−
f1 |η dt] ≤ d(u, u′)

kη
2 .

Using a similar manner and omitting the details, we obtain

4∑
i=1

E

∫ T

0

|
−
fi |η dt ≤ Cd(u, u′)

kη
2 .

Next,
4∑
i=1

E

∫ T

0

| −pi |η dt+

2∑
i=1

E

∫ T

0

| −qi |η dt ≤ Cd(u, u′)
kη
2 .

This achieves the proof.

3.5.6 Necessary condition for near-optimal control

The following theorem provides a necessary condition for the near-optimal control of our system.

Theorem 3.29. Let (S1) and (S2) hold, h and L are convex, and (pε(t), qε(t)) be the solution of the
associated adjoint equation under control uε.There exists an imprecise parameter C such that for any
η ∈ [0, 1], ε > 0 and any ε− optimal pair (xε(t), uε(t)), the following condition emerges

inf
u∈Uad

E{
∫ T

0

(
mku(t)Iε(t)

1 + γkIε(t)
(pε3(t)− pε2(t)) + L(xε(t), u(t)))dt}

≥ E{
∫ T

0

(
mku

ε(t)Iε(t)

1 + γkIε(t)
(pε3(t)− pε2(t)) + L(xε(t), uε(t)))dt} − Cε

η
3 .

(3.52)
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Proof. The function J(x0, .) : Uad → R is continuous under the metric d.
Applying previous Lemma and taking λ = ε

2
3 there exists an admissible pair xε(t), uε2(t) such that

d(uε(t),
−
u
ε

(t)) ≤ ε 2
3 , (3.53)

−
J(0, x0;

−
u
ε

(t)) ≤
−
J(0, x0;u(t)) (3.54)

for all u ∈ Uad[0, T ], where

−
J(0, x0;u(t)) = J(0, x0;u(t)) + ε

1
3 d(uε,

−
u
ε

(t)). (3.55)

It’s equivalent to the fact that (
−
x
ε

(t),
−
u
ε

(t)) is an optimal pair for the principal system under the
considered cost function. Moreover, a necessary condition for (

−
x
ε

(t),
−
u
ε

(t)) will be extracted by the
following setting.

Let
−
t ∈ [0, T ] , ρ > 0 and u ∈ Uad[0, T ] by

uρ = u(t) if t ∈ [
−
t ,
−
t + ρ],

and uρ =
−
u
ε

t if t ∈ [0, T ]\[
−
t ,
−
t + ρ]

We deduce from that

−
J(0, x0,

−
u
ε

(t)) ≤
−
J(0, x0, u

ρ(t), (3.56)

and
d(uε(t),

−
u
ε

t) ≤ ε 2
3 . (3.57)

It comes from the Taylor’s expansion that

−ρε 1
3

≤ J(0, x0;uρ(t))− J(0, x0; ,
−
u
ε

(t))

= E

∫ T

0

[
L(xρ, uρ)− L(

−
x
ε

,
−
u
ε

)
]
dt+ E[h(xρ(T ))− h(

−
x
ε

(T ))]

≤
4∑
i=1

E{
∫ T

0

Lxi(
−
x
ε

, uρ)(xρi −
−
xi
ε

)dt}

+ E{
∫ −t+ε
−
t

[L(
−
x
ρ

, u)− L(
−
x
ε

,
−
u
ε

)]dt}

+

4∑
i=1

E[hxi(x
ρ(T ))(xρi (T )− −x

ε

i(t)))] + o(ρ].

(3.58)

The Itô’s formula applied on
∑4
i=1

−
p
ε

i(x
ρ
i −

−
x
ε

i) yields to∑4
i=1Ehxi(x

ρ(T ))(xρi (T )− −x
ε

i(T ))] ≤ {E
∫ −t+ρ
−
t

[(uρ − −u
ε

)(
−
p
ε

3)− −p
ε

1) + (uρ − −u
ε

)
−
p
ε

3]dt}.
Subsequently,

−ρε 1
3 ≤ J(0, x0;uρ(t))− J(0, x0; ,

−
u
ε

(t))

+ E{
∫ −t+ρ
−
t

[L(
−
x
ρ

, u)− L(
−
x
ε

,
−
u
ε

)]dt}

+ E{
∫ −t+ρ
−
t

[(u(t)− −u
ε

)(t))((
−
p3(t)− −p1(t)) + (u(t)− −u

ε

))
−
p
ε

3]dt}+ o(ρ).

(3.59)
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Dividing by ρ and letting ρ→ 0, we have

−ε 1
3 ≤ E[L(

−
x
ε

(t), u(
−
t ))− L(

−
x
ε

(t),
−
u
ε

(t))] + E[(u(
−
t )

−−u
ε

(t))((
−
p3(t)− −p1(t)) + (u(t)− −u

ε

))
−
p
ε

3(t)].

We estimate here the following variation

E{
∫ T

0

[(uρ(t)− −u
ε

(t)))
−
p
ε

3(t)− (uρ(t)− uε(t)))pε3(t)]dt}

= E{
∫ T

0

(
−
p
ε

3(t)− pε3))(uρ(t)− uε(t))dt}+ {
∫ T

0

pε3(t)(uε(t)− −u
ε

)(t))dt}

= I1 + I2.

We easily conclude that for 0 < k < 1 and 1 < η < 2 verifying (1 + k]η < 2,

I1 ≤ (E

∫ T

0

| −p
ε

3(t)− pε3(t) |η dt)
1
η (E

∫ T

0

| uρ3(t)− uε(t) |
η
η−1 dt)

η−1
η

≤ C(d(u, u′)
kη
2 )

1
η (E

∫ T

0

(| uρ(t) |
η
η−1 + | uε(t) |

η
η−1 )dt)

η−1
η

≤ Cε k3 ,
and

I2 ≤ C(E

∫ T

0

| pε3(t) |2 dt) 1
2 (E

∫ T

0

| uε(t)− −u
ε

(t)) |2 χ
uε(t)6=−u

ε

(t)
(t)dt)

1
2

≤ C(E

∫ T

0

(| uε(t) |4 + | −u
ε

(t) |4)dt)
1
4 (E

∫ T

0

χ
uε(t)6=−u

ε

(t)
(t)dt)

1
4

Thus,

E

∫ T

0

[(uρ(t)− −u
ε

(t))(
−
p
ε

3(t)− (
−
p
ε

1(t))− (uρ(t)− uε)(t))pε3(t)]dt ≤ ε k3 . (3.60)

With a similar argument, we obtain

E{
∫ T

0

[(uρ(t)− −u
ε

(t))(
−
p
ε

3(t)
−
p
ε

1(t))− uρ(t)− uε(t))(pε3(t)− pε1(t))]dt}

+ E{
∫ T

0

[L(
−
x
ε

(t), uρ(t))− L(
−
x
ε

(t),
−
u
ε

(t))]− [L(xε(t), uρ(t))− L(xε(t), uε(t))]dt}

≤ ε k3 .

(3.61)

We can also obtain the desired result from the above inequalities and the definition of the Hamiltonian
function.

3.5.7 Sufficient condition for near-optimal control
Theorem 3.30. . Suppose that hypothesis (S1), (S2) and (S3) hold.
Let (xε(t), uε(t)) be an admissible pair and (pε(t), qε(t)) be the solution of adjoint Equation correspond-
ing to (xε(t), uε(t)). Assume that H and h are convex, a.s. If for some ε > 0,

E

∫ T

0

(
mku

ε(t)xε2(t)

1 + γkxε2(t)
(pε3 − pε2) + L (xε(t), uε(t))

)
dt

≤ inf
u∈Uad

E

∫ T

0

mku(t)xε2(t)

1 + γkxε2(t)
(pε3 − pε2) + L (xε(t), u(t)) dt+ ε,

(3.62)
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Then,

J(0, x0, u
ε(t)) ≤ inf

u∈Uad
J(0, x0, u(t)) + Cε

1
3

.

Proof. From the definition of the Hamiltonian function H, we have

J(0, x0, u
ε(t))− J(0, x0, u(t)) = I1(t) + I2(t) + I3(t), (3.63)

With

I1 =E

∫ T

0

[H(t, xε(t), uε(t), pε(t), qε(t))−H(t, x(t), u(t), pε(t), qε(t))]dt;

I2 =E[h(xε(T ))− h(x(T ))]

I3 =E

∫ T

0

[(f>(xε(t), uε(t))− f>(x(t), u(t)))pε(t)

+ (σ>(xε(t), uε(t))− σ>(x(t), u(t)))qε(t)]dt

(3.64)

Using the convexity of H, we obtain

I1 ≤
4∑
i=1

E

∫ T

0

Hxi(t, x
ε(t), uε(t), pε(t), qε(t))(xεi(t)− xi(t))dt

+ E

∫ T

0

Hu(t, x(t), u(t), pε(t), qε(t))(uε(t)− u(t))dt

(3.65)

Similarly,

I2 ≤
4∑
i=1

E(hxi(x
ε(T )− xi(T ))). (3.66)

Itô’s formula on
∑4
i=1 p

ε
i(t)(x

ε
i(t)− xi(t)) yields to

4∑
i=1

E(hxi(x
ε(T )− xi(T ))))

= −
4∑
i=1

E

∫ T

0

(xεi(t)− xi(t))Hxi(t, x
ε(t), uε(t), pε(t), qε(t))dt

+

4∑
i=1

E

∫ T

0

pεi(t) | fi(xε(t), uε(t))− fi(x(t), u(t)) | dt

+

4∑
i=1

E

∫ T

0

qεi (t) | σi(xε(t))− σ(x(t)) | dt.

Hence,

I3 =

4∑
i=1

E(hxi(x
ε(T ))(xεi(T )− xi(T )))

+

4∑
i=1

E

∫ T

0

(xεi(t)− xi(t))).(Hxi(t, x
ε(t), uε(t), pε(t), qε(t))dt

(3.67)
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We arrive then at,

J(0, x0, u
ε(t))− J(0, x0, u(t))dt

≤ E
∫ T

0

(Hu(t, xε(t), uε(t), pε(t), qε(t))(uε(t)− u(t))dt.
(3.68)

To finish this proof, we need to estimate the quantity

Hu(t, xε(t), uε(t), pε(t), qε(t))(uε(t)− u(t))dt.

Consider then, the following metric
−
d on Uad defining by:

−
d(u, u′) = E

∫ T

0

yε(t) | u(t)− u′(t) | dt (3.69)

where

yε(t) = 1 +

4∑
i=1

| pεi(t) | +
2∑
i=1

| qεi (t) | . (3.70)

It is straightforward to state that
−
d is a complete metric as a weighted L1 norm.

We might get from the definition of the Hamiltonian function

E

∫ T

0

H(t, xε(t), uε(t), pε(t), qε(t))dt ≥ sup
u∈Uad

E

∫ T

0

H(t, xε(t), u(t), pε(t), qε(t))dt− ε (3.71)

By setting a functional F (.);Uad → R

F (u(t)) = E

∫ T

0

H(t, xε(t), uε(t), pε(t), qε(t))dt (3.72)

Using (S2) we can see that F (.) is continuous with respect to the metric
−
d.

Thus, there exists a
−
u
ε

(t) ∈ Uad such that

−
d(uε(t),

−
u
ε

(t)) ≤ ε 1
2

F (
−
u
ε

(t)) ≤ F (u(t)) + ε
1
2

−
d(uε(t),

−
u
ε

(t)),

(3.73)

for any u ∈ Uad.
It follows that

H(t, xε(t), uε(t), pε(t), qε(t)) = min
u∈Uad

[H(t, xε(t), u(t), pε(t), qε(t)) + ε
1
2 yε(t) | u(t)− −u

ε

(t)) |] (3.74)

Using [40], we get

0 ∈ ∂u(t)H(t, xε(t),
−
u
ε

(t)), pε(t), qε(t)) ⊂ ∂u(t, xε(t), uε(t)), pε(t), qε(t)) + [−ε 1
2 yε(t), ε

1
2 yε(t)]. (3.75)

From the differentiability of the function H with respect to u, (S1), there exists

λε1(t) ∈ [−ε 1
2 yε(t), ε

1
2 yε(t)]. (3.76)
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such that

Hu(t, xε(t), uε(t), pε(t), qε(t)) + λε1(t) = 0. (3.77)

We might conclude from (3.77) and (S2) that

| Hu(t, xε(t),
−
u
ε

(t)), pε(t), qε(t)) |
≤| λε1(t) |

≤ 2ε
1
2 yε(t).

(3.78)

The previous statements and Hôlder’s inequality lead to the desired result.
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Chapter 4

Fractional approach:
Mathematical prerequisites and
original results

4.1 Mathematical prerequisites

4.1.1 Some definitions and properties within the fractional calculus
In this subsection, we recall some definitions and properties of fractional operators that will be

useful in the sequel. For more details, see [16, 21, 39, 74, 75, 85, 114].

Definition 4.1. Let f ∈ L1(t0,+∞) and 0 < α ≤ 1. The Riemann–Liouville (RL) fractional integral
of function f is defined by

RLIαt0f(t) =
1

Γ(α)

∫ t

t0

(t− x)α−1f(x)dx, (4.1)

where Γ(·) is the Gamma function.

Definition 4.2. Let f ∈ H1(t0,+∞) and 0 < α ≤ 1. The Caputo (C) fractional derivative of function
f is given by

CDα
t f(t) =

1

Γ(1− α)

∫ t

t0

f
′
(x)

(t− x)α
dx. (4.2)

Definition 4.3. Let f ∈ H1(t0,+∞) and 0 < α ≤ 1. The Caputo–Fabrizio (CF) fractional derivative
of function f is given by

CFDα
t f(t) =

1

2

B(α)(2− α)

1− α

∫ t

t0

f
′
(x) exp

[
− α

1− α
(t− x)

]
dx, (4.3)

where B(α) denotes a normalization function obeying B(0) = B(1) = 1. The fractional integral
associated with the CF fractional derivative is defined by

CF
t Iαt0f(t) =

2(1− α)

B(α)(2− α)
f(t) +

2α

B(α)(2− α)
RL
t I1t0f(t). (4.4)

Definition 4.4. Let f ∈ H1(t0,+∞) and 0 < α ≤ 1. The Atangana–Baleanu–Caputo (ABC) frac-
tional derivative of function f is given by

ABC
t0 Dα

t f(t) =
B(α)

1− α

∫ t

t0

f
′
(x)Eα

[
− α

1− α
(t− x)α

]
dx. (4.5)
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The fractional integral associated with the ABC fractional derivative is defined by

ABC
t Iαt0f(t) =

1− α
B(α)

f(t) +
α

B(α)
RL
t Iαt0f(t). (4.6)

Definition 4.5. Let α > 0 and β > 0. The Mittag-Leffler function of two parameters α and β is
defined by

Eα,β(z) =

∞∑
j=0

zj

Γ(αj + β)
, z ∈ C.

Remark 4.6. If β = 1, then we have

Eα,1(z) = Eα(z) =

∞∑
j=0

zj

Γ(αj + 1)
,

which is called the Mittag-Leffler function of one parameter α; if α = β = 1, then one gets

E1,1(z) =

∞∑
j=0

zj

j!
= exp(z).

Theorem 4.7. The derivative of the Mittag-Leffler function satisfies:

dEα,β
dz

(z) = E2
α,α+β(z).

Definition 4.8 (See [67]). Let 0 ≤ α < 1 and β > 0. The left-weighted generalized fractional derivative
of order α of function f , in the Riemann–Liouville sense, is defined by

R
a,wD

α,βf(x) =
1

φ(α)

1

w(x)

d

dx

∫ x

a

(wf)(s)Eβ
[
−µα(x− s)β

]
ds, (4.7)

where Eβ denotes the Mittag–Leffler function of parameter β defined by

Eβ(z) =

∞∑
j=0

zj

Γ(βj + 1)
, z ∈ C, (4.8)

and w ∈ C1([a, b]) with w,w′ > 0. The corresponding fractional integral is defined by

a,wI
α,βf(x) = φ(α)f(x) + ψ(α)RLa,wI

βf(x), (4.9)

where RL
a,wI

β is the standard weighted Riemann–Liouville fractional integral of order β given by

RL
a,wI

βf(x) =
1

Γ(β)

1

w(x)

∫ x

a

(x− s)β−1w(s)f(s)ds, x > a. (4.10)

In [5, 120, 134], the authors prove the following inequalities for estimating the fractional derivative
of certain functions.

Lemma 4.9. Let u(t) be a real continuous and differentiable function. Then, for any t ≥ t0 and
0 < α ≤ 1, we have

ABC
t0 Dα

t

(
u2(t)

)
≤ 2u(t)ABCt0 Dα

t u(t), (4.11)

CF
t0 Dα

t

(
u2(t)

)
≤ 2u(t)CFt0 Dα

t u(t), (4.12)

C
t0D

α
t

(
u2(t)

)
≤ 2u(t)Ct0D

α
t u(t). (4.13)
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Lemma 4.10. Let u(t) be a positive real continuous and differentiable function. Then, for any t ≥ t0,
0 < α ≤ 1, and u∗ > 0, one has

ABC
t0 Dα

t

[
u(t)− u∗ − u∗ ln

u(t)

u∗

]
≤
(

1− u∗

u(t)

)
ABC
t0 Dα

t u(t), (4.14)

C
t0D

α
t

[
u(t)− u∗ − u∗ ln

u(t)

u∗

]
≤
(

1− u∗

u(t)

)
C
t0D

α
t u(t). (4.15)

In this subsection, we present some definitions and properties from the fractional calculus literature,
which will help us to prove our main results. Along the text, f ∈ H1(a, b) is a sufficiently smooth
function on [a, b] with a, b ∈ R. In addition, we adopt the following notations:

φ(α) :=
1− α
B(α)

, ψ(α) :=
α

B(α)
,

where 0 ≤ α < 1 and B(α) is a normalization function obeying B(0) = B(1) = 1. Along the text, we
denote

µα :=
α

1− α
.

Lemma 4.11 (See [118]). Let α > 0, p ≥ 1, q ≥ 1 and
1

p
+

1

q
≤ 1 + α (p 6= 1 and q 6= 1 in the case

1

p
+

1

q
= 1 + α). If f ∈ Lp(a, b) and g ∈ Lq(a, b), then

∫ b

a

f(x)RLa,1 I
αg(x)dx =

∫ b

a

g(x)RLIαb,1f(x)dx,

where RL
a,1 I

β is the left standard Riemann–Liouville fractional integral of order α given by

RL
a,1 I

αf(x) =
1

Γ(α)

∫ x

a

(x− s)α−1f(s)ds, x > a, (4.16)

and RLIαb,1 is the right standard Riemann–Liouville fractional integral of order α given by

RLIαb,1f(x) =
1

Γ(α)

∫ b

x

(s− x)α−1f(s)ds, x < b. (4.17)

4.2 Lyapunov Functions and Stability Analysis
of Fractional-Order Systems

The original results of this section are published in [33].

4.2.1 Introduction
In the last few years, the application of fractional differential equations (FDEs) has increased and

gained much attention from researchers due to their ability in modeling and describing anomalous
dynamics of real-world processes with memory and hereditary properties. Due to these properties,
FDEs have been widely and successfully applied in various fields of science and engineering, such as
viscoelasticity, signal and image processing, physics, mechanics, control, biology, and economy and
finance [44, 132].

Fractional calculus (FC) literature assists to remarkable development of the fractional notions of
differentiation. Several types of fractional derivatives were proposed, such as the Riemann–Liouville
(RL), Caputo (C), Caputo–Fabrizio (CF) and Atangana–Baleanu–Caputo (ABC) operators. The
standard RL and C derivatives [75] have certain disadvantages, being classified as fractional derivatives
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with singular kernels. Caputo and Fabrizio [39] suggested a new fractional derivative in which the
memory is represented by an exponential kernel. Few years later, another fractional derivative was
proposed by Atangana and Baleanu [74], where the memory kernel is modeled by the Mittag–Leffler
function. These operators are extensively used by different researchers to describe the dynamics of
various nonlinear systems [25, 34, 72, 98, 122, 139].

Stability is one of the powerful tools for analyzing the qualitative properties of non-linear dynamical
systems. Lyapunov’s direct method, also called the second Lyapunov’s method, represents an effective
way to examine the global behavior of a system without resolving it explicitly. This technique is
based on constructing appropriate functionals, called the Lyapunov functionals, that should satisfy
some conditions. In physics, these functionals can be either energy, potential, or other, but generally
there is no precise technique to determine them. Recently, many scholars have focused on the stability
analysis of fractional-order systems and some others have proposed specific Lyapunov functionals
candidates, such as Volterra-type and quadratic functions [5, 46, 83, 120, 134, 142]. Nevertheless,
these functions remain inadequate and incompatible with certain classes of fractional-order systems.

Motivated by the aforementioned works and observations, our main contribution here is to pro-
pose general Lyapunov functionals as candidates for fractional-order systems. We first develop new
inequalities to estimate the fractional-order derivative of specific functions that generalize some works
existing in the literature. These estimates allow us to construct suitable Lyapunov’s functionals for
fractional-order systems and, therefore, to establish the global stability of their steady-states.

The rest of the work is structured as follows. First, some necessary definitions and properties
related to the fractional calculus are recalled. Second, useful estimations for fractional derivatives are
proved. Further, as an application of our results, the global stability of a SEIR fractional-order model
with a general incidence rate is studied. Finally, we end with an adequate conclusions.

4.2.2 Useful fractional derivative estimates
The aim of this section is to establish some new estimates for the fractional derivative of function

Ψ defined by

Ψ(u) =

∫ u

u∗

g(s)− g(u∗)

g(s)
ds

= u− u∗ −
∫ u

u∗

g(u∗)

g(s)
ds,

(4.18)

where g is a non-negative, differentiable, and strictly increasing function on R+. Our estimates will
allow us to extend the classical Lyapunov functions to fractional-order systems.

Note that Ψ is positive in R+ \ {u∗} with Ψ(u∗) = 0. In fact, Ψ is differentiable and

dΨ

du
= 1− g(u∗)

g(u)
.

Since g is a strictly increasing function, then Ψ is strictly decreasing if u < u∗ and strictly increasing
if u > u∗, with u∗ its global minimum.

Theorem 4.12. Let u(t) be a real positive differentiable function. Then, for any t ≥ t0, 0 < α ≤ 1,
and u∗ > 0, we have

ABC
t0 Dα

t Ψ(u(t)) ≤
(

1− g(u∗)

g(u(t))

)
ABC
t0 Dα

t u(t), (4.19)

CF
t0 Dα

t Ψ(u(t)) ≤
(

1− g(u∗)

g(u(t))

)
CF
t0 Dα

t u(t). (4.20)

Proof. We start by reformulating inequality (4.19). By the linearity of the ABC fractional derivative,
we obtain that

ABC
t0 Dα

t Ψ(u(t)) = ABC
t0 Dα

t u(t)− ABC
t0 Dα

t

[∫ u(t)

u∗

g(u∗)

g(s)
ds

]
.
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Hence, the inequality (4.19) becomes

ABC
t0 Dα

t u(t)− ABC
t0 Dα

t

[∫ u(t)

u∗

g(u∗)

g(s)
ds

]
≤
(

1− g(u∗)

g(u)

)
ABC
t0 Dα

t u(t).

Because g is a non-negative function, we get

g(u(t))

[
ABC
t0 Dα

t u(t)− ABC
t0 Dα

t

(∫ u(t)

u∗

g(u∗)

g(s)
ds

)]
≤ (g(u(t))− g(u∗)) ABCt0 Dα

t u(t).

Thus,

ABC
t0 Dα

t u(t)− g(u(t))ABCt0 Dα
t

[∫ u(t)

u∗

1

g(s)
ds

]
≤ 0. (4.21)

Using the definition of ABC fractional derivative (4.5), we have

ABC
t0 Dα

t u(t) =
B(α)

1− α

∫ t

t0

u′(x)Eα

[
− α

1− α
(t− x)α

]
dx

and
ABC
t0 Dα

t

[∫ u(t)

u∗

1

g(s)
ds

]
=
B(α)

1− α

∫ t

t0

u′(x)

g(u(x))
Eα

[
− α

1− α
(t− x)α

]
dx.

Consequently, the inequality (4.21) can be written as

B(α)

1− α

∫ t

t0

u′(x)

(
1− g(u(t))

g(u(x))

)
Eα

[
− α

1− α
(t− x)α

]
dx ≤ 0. (4.22)

Now, we show that the inequality (4.22) is verified. For this, we denote

H(t) =

∫ t

t0

u′(x)

(
1− g(u(t))

g(u(x))

)
Eα

[
− α

1− α
(t− x)α

]
dx

and set

v(x, t) = Eα

[
− α

1− α
(t− x)α

]
;

dv(x, t)

dx
=
α2(t− x)α−1

1− α
E2
α,α+1

[
− α

1− α
(t− x)α

]
;

w(x, t) = u(x)− u(t)−
∫ u(x)

u(t)

g(u(t))

g(s)
ds;

dw(x, t)

dx
= u′(x)

(
1− g(u(t))

g(u(x))

)
.

Integrating by parts the integral H(t), we obtain that

H(t) =

[
Eα

[
− α

1− α
(t− x)α

]
w(x, t)

]x=t
x=t0

−
∫ t

t0

α2(t− x)α−1

1− α
E2
α,α+1

[
− α

1− α
(t− x)α

]
w(x, t)dx.

(4.23)

Since w(x, t) ≥ 0 and

lim
x→t

Eα

[
− α

1− α
(t− x)α

]
w(x, t) = 0,

it follows that

H(t) = −Eα
[
− α

1− α
(t− t0)α

]
w(t0, t)

−
∫ t

t0

α2(t− x)α−1

1− α
E2
α,α+1

[
− α

1− α
(t− x)α

]
w(x, t)dx ≤ 0.

As a result, the inequality (4.22) is satisfied and (4.19) holds true.
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Remark 4.13. Inequality (4.20) is obtained by replacing

Eα

[
− α

1− α
(t− x)α

]
with

exp

[
− α

1− α
(t− x)

]
and following the same steps as given in the proof of Theorem 4.12.

Remark 4.14. A similar inequality also holds for the Caputo fractional derivative as follows [36]:

C
t0D

α
t Ψ(u(t)) ≤

(
1− g(u∗)

g(u(t))

)
C
t0D

α
t u(t). (4.24)

If g(s) = s, then we obtain Ψ(u(t)) = u(t) − u∗ − u∗ ln
u(t)

u∗
. We obtain from Theorem 4.12 the

following corollary.

Corollary 4.15. Let u(t) be a positive differentiable function. For any t ≥ t0, 0 < α ≤ 1, and u∗ > 0,
we have

ABC
t0 Dα

t

[
u(t)− u∗ − u∗ ln

u(t)

u∗

]
≤
(

1− u∗

u(t)

)
ABC
t0 Dα

t u(t),

CF
t0 Dα

t

[
u(t)− u∗ − u∗ ln

u(t)

u∗

]
≤
(

1− u∗

u(t)

)
CF
t0 Dα

t u(t).

(4.25)

4.2.3 An application
In [151], Yang and Xu proposed a SEIR model with Caputo fractional derivative and general

incidence rate as follows:

C
0 D

α
t S(t) = Λα − dαS(t)− βαF (S(t))G (I(t)) ,

C
0 D

α
t E(t) = βαF (S(t))G (I(t))− (σα + dα)E(t),

C
0 D

α
t I(t) = σαE(t)− (γα + dα)I(t),

C
0 D

α
t R(t) = γαI(t)− dαR(t),

(4.26)

where α ∈ (0, 1]. The variables S(t), E(t), I(t) and R(t) represent the number of susceptible, exposed,
infective and recovered individuals at time t, respectively. All the other parameters are assumed to be
positive constants.

The authors of [151] first analyzed the global stability of the disease-free equilibrium and discussed
the stability of the endemic equilibrium but only when F (S) = S. However, they mentioned that they
can not use the estimation (4.15) in Lemma 4.10 to establish global stability in the general case and
kept this problem as an open question, for future work.

In addition, we note that function F (S(t))G (I(t)) does not cover all the incidence functions

existing in the literature, e.g.,
SI

1 + α1S + α2I + α3SI
, α1, α2, α3 ≥ 0 [86, 90], where we can not

separate the variables S and I. Here, we generalize the SEIR model (4.26) and apply our results to
give a rigorous proof of the stability for both equilibrium points.

Let us consider the general fractional-order SEIR model

0D
α
t S(t) = Λα − dαS(t)− F (S(t), I(t)) ,

0D
α
t E(t) = F (S(t), I(t))− (σα + dα)E(t),

0D
α
t I(t) = σαE(t)− (γα + dα)I(t),

0D
α
t R(t) = γαI(t)− dαR(t),

(4.27)
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where 0D
α
t denotes any fractional-order derivative mentioned above. The general incidence function

F : R2
+ → R+ is assumed to be continuously differentiable and to satisfy the following hypotheses:

F (S, 0) = F (0, I) = 0 and F (S, I) = IF1(S, I) for all S, I ≥ 0,

∂F1

∂S
(S, I) > 0 and

∂F1

∂I
(S, I) ≤ 0 for all S ≥ 0 and I ≥ 0,

∂F

∂I
(S, I) ≥ 0 for all S ≥ 0 and I ≥ 0.

(H)

Since R(t) does not appear in the first three equations of system (4.27), without loss of generality we
discuss the following system:

0D
α
t S(t) = Λα − dαS(t)− F (S(t), I(t)) ,

0D
α
t E(t) = F (S(t), I(t))−m1E(t),

0D
α
t I(t) = σαE(t)−m2I(t),

(4.28)

where m1 = σα + dα and m2 = γα + dα.

System (4.28) has a disease-free equilibrium Pf = (S0, 0, 0) with S0 =
Λα

dα
and an endemic equi-

librium P ∗ = (S∗, E∗, I∗) when R0 > 1, where

R0 =
σα

m1m2

∂F (S0, 0)

∂I

and E∗ ∈
[
0,

Λα

dα

]
, S∗ =

Λα −m1E
∗

dα
and I∗ =

σαE∗

m2
.

Next, we prove the global stability of both equilibriums by constructing appropriate Lyapunov
functionals and using our results of Section 4.2.2.

Theorem 4.16. The disease-free equilibrium Pf is asymptotically stable when R0 ≤ 1. The endemic
equilibrium P ∗ is asymptotically stable whenever R0 > 1.

Proof. For the disease-free equilibrium we define the following Lyapunov functional:

V0(t) =

∫ S(t)

S0

F1(x, 0)− F1(S0, 0)

F1(x, 0)
dx+ E(t) +

m1

σα
I.

Applying our results, we estimate the fractional time derivative of function V0 as

0D
α
t V0(t) ≤

(
1− F1(S0, 0)

F1(S(t, 0)

)
0D

α
t S(t) + 0D

α
t E(t) +

m1

σα
0D

α
t I(t).

Using the fact that Λα = dαS0, we get

0D
α
t V0(t) ≤

(
1− F1(S0, 0)

F1(S(t), 0)

)
(dα(S0 − S(t)) + I(t)F1(S0, 0)

F1(S(t), I(t))

F1(S(t), 0)

− m1m2

σα
I(t)

≤
(

1− F1(S0, 0)

F1(S(t), 0)

)
(dα(S0 − S(t)) + I(t)F1(S0, 0)− m1m2

σα
I(t)

=

(
1− F1(S0, 0)

F1(S(t), 0)

)
(dα(S0 − S(t)) +

(
∂F (S0, 0)

∂I
− m1m2

σα

)
I(t)

=

(
1− F1(S0, 0)

F1(S(t), 0)

)
(dα(S0 − S(t)) +

m1m2

σα
(R0 − 1) I(t).
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Since F1 is an increasing function with respect to S, one has

1− F1(S0, 0)

F1(S, 0)
≥ 0 for S ≥ S0,

1− F1(S0, 0)

f(S, 0)
< 0 for S < S0.

Then, we get (
1− F1(S0, 0)

F1(S, 0)

)
(S0 − S) ≤ 0.

It follows that 0D
α
t V0(t) ≤ 0 for R0 ≤ 1 with 0D

α
t V0(t) = 0 if S = S0 and I = 0. Substituting

(S, I) = (S0, 0) in (4.28) shows that E → 0 as t → ∞. We conclude that the disease-free equilibrium
Pf is asymptotically stable when R0 ≤ 1.

Next, we assume that R0 > 1 and we propose the following Lyapunov functional V1 for the endemic
equilibrium:

V1(t) =

∫ S(t)

S∗

F (x, I∗)− F (S∗, I∗)

F (x, I∗)
dx+

∫ E(t)

E∗

x− E∗

x
dx+

m1

σα

(∫ I(t)

I∗

x− I∗

x
dx

)
.

Computing the time fractional derivative of V1, we get

0D
α
t V1(t) ≤

(
1− F (S∗, I∗)

F (S(t), I∗)

)
0D

α
t S(t) +

(
1− E∗

E

)
0D

α
t E(t)

+
m1

σα

(
1− I∗

I

)
0D

α
t I(t).

Using the fact that Λα = dαS∗ + F (S∗, I∗), F (S∗, I∗) = m1E
∗ and σαE∗ = m2I

∗, we obtain

0D
α
t V1(t) ≤

(
1− F (S∗, I∗)

F (S(t), I∗)

)
dα(S∗ − S(t))

+F (S∗, I∗)

[
3− F (S∗, I∗)

F (S, I∗)
+

F (S, I)

F (S, I∗)
− E∗F (S, I)

EF (S∗, I∗)
− I

I∗
− I∗E

IE∗

]
=

(
1− F1(S∗, I∗)

F1(S(t), I∗)

)
dα(S∗ − S(t))− F (S∗, I∗)

[
G

(
I

I∗

)
−G

(
F (S, I)

F (S, I∗)

)
+G

(
F (S∗, I∗)

F (S, I∗)

)
+G

(
E∗F (S, I)

EF (S∗, I∗)

)
+G

(
I∗E

IE∗

)]
,

where G(x) = x− 1− ln(x). Now, we show that G
(
I

I∗

)
−G

(
F (S, I)

F (S, I∗)

)
≥ 0. For this, we set

H(I) = G

(
F (S, I)

F (S, I∗)

)
−G

(
I

I∗

)
.

Computing the derivative of H with respect to I, we obtain

dH

dI
=
F (S, I)− F (S, I∗)

F (S, I)F (S, I∗)

∂F (S, I)

∂I
− I − I∗

II∗
.

We discuss two cases:

Case 1. If I ≥ I∗, then F (S, I) ≥ F (S, I∗). Because

∂F (S, I)

∂I
= F1(S, I) + I

∂F1(S, I)

∂I
≤ F1(S, I)
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it follows that

dH

dI
≤ F (S, I)− F (S, I∗)

F (S, I)F (S, I∗)
F1(S, I)− I − I∗

II∗

=
1

F (S, I∗)
[F1(S, I)− F1(S, I∗)] ≤ 0.

Hence H(I) ≤ H(I∗) = 0.

Case 2. If I ≤ I∗, then F (S, I) ≤ F (S, I∗). Therefore,

dH

dI
≥ F (S, I)− F (S, I∗)

F (S, I)F (S, I∗)
F1(S, I)− I − I∗

II∗

=
1

F (S, I∗)
[F1(S, I)− F1(S, I∗)] ≥ 0.

Hence, H(I) ≤ H(I∗) = 0.

We conclude that 0D
α
t V1(t) is negative definite. Consequently, the endemic equilibrium P ∗ is asymp-

totically stable whenever R0 > 1.

4.2.4 Conclusions
In this section, we have developed some estimates for fractional derivatives without a singular

kernel and applied it to establish the stability of fractional-order systems. To illustrate the efficacy
of the obtained results, we have employed them to solve an open problem posed by Yang and Xu
in [151] and prove the stability of a SEIR fractional-order system with a general incidence rate. We
construct suitable Lyapunov functionals and proved the globally asymptotically stability of the disease-
free and endemic equilibriums in terms of the basic reproduction number R0. Our results generalize
and improve those of [11, 61, 119].

4.3 Taylor’s Formula for Generalized Weighted
Fractional Derivatives with Nonsingular Kernels

This work is published in [163]

4.3.1 Introduction
Taylor’s formulas play a crucial role in mathematical analysis, e.g., in asymptotic methods, non-

linear programming, the calculus of variations and optimal control [41, 101, 154]. In the literature,
one can find different forms of Taylor’s formulas, both on the classical and smooth one-dimensional
case as well as multi-dimensional, nonsmooth, and non-Newtonian cases [136, 8, 50] The appearance
of fractional-order theories requires the establishment of corresponding Taylor’s formulas [104, 149].
For this reason, Taylor’s theorems have been immediately proved, in different forms, for the Riemann–
Liouville fractional calculus [65, 146, 138] as well as for Caputo fractional derivatives [105]. The liter-
ature on fractional Taylor theorems is now vast: see, e.g., [29, 45, 47] and references therein. However,
all such fractional-order Taylor’s formulas are valid for fractional derivatives with a singular kernel
only. More recently, several researchers have been trying to use fractional calculus in the treatment
of dynamics of complex systems, which have complicated dynamics that cannot be properly described
with classical/singular-kernel fractional models [17, 32, 100, 157]. That gave rise to the appearance of
fractional derivatives with nonsingular kernels and, as consequence, to the need of obtaining Taylor’s
formulas for such kind of operators [75]. In particular, Fernandez and Baleanu have established in [57]
analogues of Taylor’s theorem for fractional differential operators defined using a Mittag–Leffler kernel
and a mean value theorem for the Atangana–Baleanu–Caputo (ABC) fractional derivative, introduced
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in [74] and now under strong current investigations [27, 66, 76]. Here we consider the generalized
weighted fractional derivative in Caputo sense as introduced in 2020 by Hattaf [67, 68]. Our main
results, formulated for this generalized weighted fractional calculus, allows one to extend, in a natural
and direct way, the 2020 results of Al-Refai [7] and the 2018 results of Fernandez and Baleanu [57] as
simple corollaries.

The work is organized as follows. First, for completeness and for fixing notations, we recall
necessary definitions and properties needed in the sequel to prove our results. The elaboration of new
tools, enabling us to obtain a general and rich Taylor’s formula (cf. Theorem 4.25), are given in the
sequel of main results. As an application, we obtain after that several new mean value theorems. We
end lastly an appropriate conclusion.

4.3.2 Preliminaries
In this section, we present some definitions and properties from the fractional calculus literature,

which will help us to prove our main results. Along the text, f ∈ H1(a, b) is a sufficiently smooth
function on [a, b] with a, b ∈ R.

Definition 4.17 (See, e.g., [93]). The Riemann–Liouville (RL) fractional integral operator of order
α > 0 with a ≥ 0 is defined by

RLIαa f(x) =
1

Γ(α)

∫ x

a

(x− s)α−1f(s)ds, x > a, (4.29)

where Γ(·) is the Gamma function.

For the sake of simplicity, we adopt the following notations:

φ(α) =
1− α
B(α)

,

ψ(α) =
α

B(α)
,

where B(α) denotes a normalization function obeying B(0) = B(1) = 1.

Definition 4.18 (See [39]). The Caputo–Fabrizio (CF) fractional derivative of order 0 ≤ α ≤ 1 of
function f is given by

CF
a Dαf(x) =

1

φ(α)

∫ x

a

f ′(s) exp [−µα(x− s)] ds (4.30)

with µα =
α

1− α
. The fractional integral associated with the CF fractional derivative is defined by

CF Iαa f(x) = φ(α)f(x) + ψ(α)RLI1af(x). (4.31)

Definition 4.19 (See [74]). The Atangana–Baleanu–Caputo (ABC) fractional
derivative of order 0 ≤ α ≤ 1 of function f is given by

ABC
a Dαf(x) =

1

φ(α)

∫ x

a

f ′(s)Eα [−µα(x− s)α] ds, (4.32)

where Eα denotes the Mittag–Leffler function of parameter α defined by

Eα(z) =

∞∑
j=0

zj

Γ(αj + 1)
, z ∈ C.

The fractional integral associated with the ABC fractional derivative is given by

ABCIαa f(x) = φ(α)f(x) + ψ(α)RLIαa f(x). (4.33)
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Definition 4.20 (See [7]). The weighted ABC fractional derivative of order 0 ≤ α ≤ 1 of function f
with respect to the weight function w is given by

C
aD

α
wf(x) =

1

φ(α)

1

w(x)

∫ x

a

(wf)′(s)Eα [−µα(x− s)α] ds, (4.34)

where w ∈ C1([a, b]) with w,w′ > 0. The corresponding fractional integral is defined by

CIαa,wf(x) = φ(α)f(x) + ψ(α)RLIαa,wf(x), (4.35)

where RLIαa,w is the standard weighted Riemann–Liouville fractional integral of order α given by

RLIαa,wf(x) =
1

Γ(α)

1

w(x)

∫ x

a

(x− s)α−1w(s)f(s)ds, x > a. (4.36)

Definition 4.21 (See [67]). Let β > 0. The generalized fractional derivative of order 0 ≤ α ≤ 1 of
function f with respect to the weight function w is given by

C
aD

α,β
w f(x) =

1

φ(α)

1

w(x)

∫ x

a

(wf)′(s)Eβ
[
−µα(x− s)β

]
ds, (4.37)

where w ∈ C1([a, b]) with w,w′ > 0. The corresponding fractional integral is defined by

CIα,βa,wf(x) = φ(α)f(x) + ψ(α)RLIβa,wf(x), (4.38)

where RLIβa,w is the standard weighted Riemann–Liouville fractional integral of order β.

Theorem 4.22 (See [67]). Let α ∈ [0, 1), β > 0. Then,

CIα,βa,w

(
C
aD

α,β
w f(x)

)
= f(x)−

(
w(a)

w(x)
f(a)

)
.

To simplify the writing, we denote by D
[α,β]
a the generalized fractional derivative (4.37) and by

I
[α,β]
a its associated fractional integral (4.38).

4.3.3 Main results
We begin by proving an important result that has a crucial role in the proof of our Taylor’s formula

for weighted generalized fractional derivatives with a nonsingular kernel (cf. proofs of Lemma 4.24
and Theorem 4.25).

Theorem 4.23. Suppose that f ∈ C([a, b]) and n ∈ N. Then,

In[α,β]a f(x) =
n∑
k=0

Cknφ(α)n−kψ(α)k
(
RLIkβa,wf(x)

)
with x ∈ [a, b] and α ∈ [0, 1], where I

n[α,β]
a = I

[α,β]
a · I[α,β]a · · · I[α,β]a (n-times).

Proof. We proceed by induction. Firstly, note that the equality of Theorem 4.23 is true for n = 0.
Supposing that the equality of Theorem 4.23 is true, we show that

I(n+1)[α,β]
a f(x) =

n+1∑
k=0

Ckn+1φ(α)n+1−kψ(α)k
(
RLIkβa,wf(x)

)
, x ∈ [a, b],

holds. Indeed,

I(n+1)[α,β]
a f(x) = Iα,βa

(
In[α,β]a f(x)

)
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= φ(α)
(
In[α,β]a f(x)

)
+ ψ(α)RLIβa,w

(
In[α,β]a f(x)

)
= φ(α)

[
n∑
k=0

Cknφ(α)n−kψ(α)k
(
RLIkβa,wf(x)

)]

+ψ(α)RLIβa,w

[
n∑
k=0

Cknφ(α)n−kψ(α)k
(
RLIkβa,wf(x)

)]

=

n∑
k=0

Cknφ(α)n+1−kψ(α)k
(
RLIkβa,wf(x)

)
+

n∑
k=0

Cknφ(α)n−kψ(α)k+1
(
RLI(k+1)β

a,w f(x)
)

= φ(α)n+1f(x) +

n∑
k=1

Cknφ(α)n+1−kψ(α)k
(
RLIkβa,wf(x)

)
+

n∑
k=1

Ck−1n φ(α)n+1−kψ(α)k(RLIkβa,wf(x))

+ψ(α)n+1
(
RLI(n+1)β

a,w f(x)
)

=

n+1∑
k=0

Ckn+1φ(α)n+1−kψ(α)k
(
RLIkβa,wf(x)

)
, x ∈ [a, b],

which completes the proof.

The following lemma will allow us to construct our weighted Taylor’s formula for weighted gener-
alized fractional derivatives with a nonsingular kernel.

Lemma 4.24. Suppose that Dn[α,β]
a f , D(n+1)[α,β]

a f ∈ C([a, b]) for 0 ≤ α ≤ 1. Then,

In[α,β]a Dn[α,β]
a f(x)− I(n+1)[α,β]

a D(n+1)[α,β]
a f(x)

=
w(a)

w(x)

(
Dn[α,β]
a f(a)

) n∑
k=0

Cknφ(α)n−kψ(α)k
(

(x− a)kβ

Γ(kβ + 1)

)
,

where D
n[α,β]
a = D

[α,β]
a ·D[α,β]

a · · ·D[α,β]
a n-times.

Proof. From the fact that Ir[α,β]a I
l[α,β]
a f = I

(r+l)[α,β]
a f , one has

In[α,β]a Dn[α,β]
a f(x)− I(n+1)[α,β]

a D(n+1)[α,β]
a f(x)

= In[α,β]a

(
Dn[α,β]
a f(x)− I[α,β]a D(n+1)[α,β]

a f(x)
)

= In[α,β]a

(
Dn[α,β]
a f(x)− I[α,β]a D[α,β]

a (Dn[α,β]
a f(x))

)
= In[α,β]a

(
w(a)D

n[α,β]
a f(a)

w(x)

)

= w(a)Dn[α,β]
a f(a)In[α,β]a

1

w(x)
.
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Using Theorem 4.23, we get that

In[α,β]a Dn[α,β]
a f(x)− I(n+1)[α,β]

a D(n+1)[α,β]
a f(x)

= w(a)
(
Dn[α,β]
a f(a)

) n∑
k=0

Cknφ(α)n−kψ(α)k
(
RLIkβa,w

(
1

w(x)

))

=
w(a)

w(x)

(
Dn[α,β]
a f(a)

) n∑
k=0

Cknφ(α)n−kψ(α)k
(x− a)kβ

Γ(kβ + 1)

and the proof is complete.

Follows the main result of our section.

Theorem 4.25 (Taylor’s formula for weighted generalized fractional derivatives with a nonsingular
kernel). Suppose that Dk[α,β]

a ∈ C([a, b]) for k = 0, 1, . . . , n+ 1 and 0 ≤ α ≤ 1. Then,

f(x) =
1

w(x)

[
w(a)

n∑
i=0

Di[α,β]
a f(a)

i∑
k=0

Cki φ(α)i−kψ(α)k
(x− a)kβ

Γ(kβ + 1)

+ w(ξ)D(n+1)[α,β]
a f(ξ)

n+1∑
k=0

Ckn+1φ(α)n+1−kψ(α)k
(x− a)kβ

Γ(kβ + 1)

]
(4.39)

with a ≤ ξ ≤ x, x ∈ [a, b], where

Di[α,β]
a = D[α,β]

a ·D[α,β]
a · · ·D[α,β]

a (i-times).

Proof. From Lemma 4.24, we have

n∑
i=0

(
Ii[α,β]a Di[α,β]

a f(x)− I(i+1)[α,β]
a D(i+1)[α,β]

a f(x)
)

=
w(a)

w(x)

n∑
i=0

(
Di[α,β]
a f(a)

) i∑
k=0

Cki φ(α)i−kψ(α)k
(x− a)kβ

Γ(kβ + 1)
,

that is,

f(x) − I(n+1)[α,β]
a D(n+1)[α,β]

a f(x) =
w(a)

w(x)

n∑
i=0

(
Di[α,β]
a f(a)

) i∑
k=0

Cki φ(α)i−kψ(α)k
(x− a)kβ

Γ(kβ + 1)
.

Using Theorem 4.23, we get

f(x) =
w(a)

w(x)

n∑
i=0

(
Di[α,β]
a f(a)

) i∑
k=0

Cki φ(α)i−kψ(α)k
(x− a)kβ

Γ(kβ + 1)

+

n+1∑
k=0

Ckn+1φ(α)n+1−kψ(α)k
(
RLIkβa D(n+1)[α,β]

a f(x)
)
.

Applying the integral mean value theorem yields

f(x) =
1

w(x)

[
w(a)

n∑
i=0

Di[α,β]
a f(a)

i∑
k=0

Cki φ(α)i−kψ(α)k
(x− a)kβ

Γ(kβ + 1)

+w(ξ)D(n+1)[α,β]
a f(ξ)

n+1∑
k=0

Ckn+1φ(α)n+1−kψ(α)k
(x− a)kβ

Γ(kβ + 1)

]
and the proof is complete.
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As immediate consequences of our Taylor’s theorem for generalized weighted fractional derivatives
with a nonsingular kernel (Theorem 4.25), we obtain most fractional-order Taylor’s formulas existing
in the literature.

Corollary 4.26 (Taylor’s formula for the weighted ABC derivative). Suppose that CaDkα
w f ∈ C([a, b]),

where 0 ≤ α ≤ 1 and k = 0, 1, . . . , n+ 1. Then,

f(x) =
1

w(x)

[
w(a)

n∑
i=0

C
aD

iα
w f(a)

i∑
k=0

Cki φ(α)i−kψ(α)k
(x− a)kα

Γ(kα+ 1)

+w(ξ)CaD
(n+1)α
w f(ξ)

n+1∑
k=0

Ckn+1φ(α)n+1−kψ(α)k
(x− a)kα

Γ(kα+ 1)

]
with a ≤ ξ ≤ x and x ∈ [a, b], where C

aD
iα
w =C

a Dα
w ·Ca Dα

w · · ·Ca Dα
w i-times.

Proof. Choose α = β in Theorem 4.25.

Corollary 4.27 (Taylor’s formula for the ABC derivative). Let ABCa Dkαf ∈ C([a, b]) with 0 ≤ α ≤ 1
and k = 0, 1, . . . , n+ 1. Then,

f(x) =

n∑
i=0

(
ABC
a Diαf(a)

) i∑
k=0

Cki φ(α)i−kψ(α)k
(x− a)k

Γ(k + 1)

+
(
ABC
a Diαf(ξ)

) n+1∑
k=0

Ckn+1φ(α)n+1−kψ(α)k
(x− a)k

Γ(k + 1)

with a ≤ ξ ≤ x and x ∈ [a, b], where ABC
a Diα =ABC

a Dα ·ABCa Dα · · ·ABCa Dα i-times.

Proof. Choose α = β and w(x) = 1 in Theorem 4.25.

Corollary 4.28 (Taylor’s formula for the CF derivative). Let CFa Dkαf ∈ C([a, b]) with 0 ≤ α ≤ 1
and k = 0, 1, . . . , n+ 1. Then,

f(x) =

n∑
i=0

(
CF
a Diαf(a)

) i∑
k=0

Cki φ(α)i−kψ(α)k
(x− a)k

Γ(k + 1)

+
(
CF
a Diαf(ξ)

) n+1∑
k=0

Ckn+1φ(α)n+1−kψ(α)k
(x− a)k

Γ(k + 1)

with a ≤ ξ ≤ x and x ∈ [a, b], where CF
a Diα =CF

a Dα ·CFa Dα · · ·CFa Dα i-times.

Proof. Choose α = β, w(x) ≡ 1, and the RL fractional integral of order one in Theorem 4.25.

4.3.4 An Application
As an application, we employ the obtained weighted Taylor’s formula to establish an appropriate

generalized mean value theorem for weighted generalized derivatives.

Theorem 4.29 (Generalized mean value theorem for the weighted generalized derivative). Suppose
that f ∈ C([a, b]) and D

[α,β]
a f ∈ C([a, b]) for 0 ≤ α ≤ 1. Then,

f(x) =
1

w(x)

(
w(a)f(a) + w(ξ)D[α,β]

a f(ξ)

(
φ(α) + ψ(α)

(x− a)β

Γ(β + 1)

))
for all x ∈ [a, b] with a ≤ ξ ≤ x.
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Proof. The result follows by taking n = 0 in Theorem 4.25 and performing some direct calculations.

As straight corollaries of our Theorem 4.29, we obtain mean value theorems for weighted ABC,
ABC, and CF derivatives.

Corollary 4.30 (Generalized mean value theorem for the weighted ABC derivative). Suppose that
f ∈ C([a, b]) and C

aD
α
wf ∈ C([a, b]) for 0 ≤ α ≤ 1. Then,

f(x) =
1

w(x)

(
w(a)f(a) + w(ξ)CaD

α
wf(ξ)

(
φ(α) + ψ(α)

(x− a)α

Γ(α+ 1)

))
for all x ∈ [a, b] with a ≤ ξ ≤ x.

Corollary 4.31 (Generalized mean value theorem for the ABC derivative). Suppose that f ∈ C([a, b])
and ABC

a Dαf ∈ C([a, b]) for 0 ≤ α ≤ 1. Then,

f(x) = f(a) +ABC
a Dαf(ξ)

(
φ(α) + ψ(α)

(x− a)α

Γ(α+ 1)

)
for all x ∈ [a, b] with a ≤ ξ ≤ x.

Corollary 4.32 (Generalized mean value theorem for the CF derivative). Suppose that f ∈ C([a, b])
and CF

a Dαf ∈ C([a, b]) for 0 ≤ α ≤ 1. Then,

f(x) = f(a) +CF
a Dαf(ξ) (φ(α) + ψ(α)(x− a))

for all x ∈ [a, b] with a ≤ ξ ≤ x.

Note that the classical mean value theorem is obtained from Theorem 4.29 by choosing w(x) = 1
and α = β = 1; from Corollary 4.30 by choosing w(x) ≡ 1 and α = 1; and from Corollaries 4.31 and
4.32 by choosing α = 1.

4.3.5 Conclusion

Nobody can deny the theoretical and practical interests of a Taylor formula in mathematical
analysis, not only to solve simple and complex real problems, but also to establish new mathematical
results within theories in development, like the ones found in the fractional frameworks in which
researchers have proved and used extensively generalized Taylor’s formulas for Riemann–Liouville,
Caputo and ABC fractional derivatives. In this work, a weighted Taylor’s formula for nonsingular
kernels, valid for weighted generalized fractional derivatives under some justified prerequisites, was
proved. As a result, we obtained various theoretical consequences, one of them being several generalized
mean value theorems, extending those available in the literature. We claim that our generalized
Taylor’s formula (4.39) has a great potential for the development of mathematical modeling with
fractional nonsingular kernel derivatives.

4.4 Weighted generalized fractional integration by parts and
the Euler–Lagrange equation

The original results of this section are published in [164].
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4.4.1 Introduction
In the last decade, fractional calculus took an important part in the theoretical study of dynam-

ical systems by showing significant results in many natural fields and engineering domains [35, 88].
For this reason, mathematicians pay now more attention to the generalization of several important
formulas in integral theory of Mathematical Analysis, namely the Newton–Leibniz formula, the Green
formula, and the Gauss and Stokes formulas [123]. Moreover, some are central tools that enable
mathematicians to extend other theories, good examples of that being the integration by parts for-
mula, Taylor’s formula, the Euler–Lagrange equation, Grönwall’s inequality, Lyapunov theorems and
LaSalle’s invariance principle [36, 80, 87].

Often, memory effects are modeled fractionally with Riemann–Liouville and Caputo derivatives
[93]. However, the fact that the Mittag–Leffer function is a generalization of the exponential function
gives naturally rise to new definitions of fractional operators. In 2020, Hattaf [67] has proposed a
new left-weighted generalized fractional derivative for both Caputo and Riemann–Liouville senses and
their associated integral operator. Motivated by applications in mechanics, where the introduction of
a right operator is needed [137], we introduce here the right-weighted generalized fractional derivative
and its associated integral operator, proving their main properties and, in particular, an integration
by parts formula.

It is worth to emphasize that integration by parts is of great interest in integral calculus and
mathematical analysis. For example, it represents a strong tool to develop the calculus of variations
through the so-called Euler–Lagrange equation, which is the central result of dynamic optimization
[15, 13, 92]. Motivated by the works [3, 12, 2, 165], and with the help of our weighted generalized
fundamental integration by parts formula, we extend here the Euler–Lagrange equation.

This section is organized as follows. In Section 4.4.2, we introduce the right-weighted generalized
fractional derivative and its associated integral, studying their well-posedness. Integration by parts
is investigated in Section 4.4.3, followed by Section 4.4.4 where the weighted generalized fractional
Euler–Lagrange equation is rigorously proved. We end with Section 4.4.5, illustrating the obtained
theoretical results with an application in the quantum mechanics framework.

4.4.2 Well-posedness of the right-weighted fractional operators
We denote the right-weighted generalized fractional derivative of order α in the Riemann–Liouville

sense by RDα,β
b,w and we define it so that the following identity occurs:

Q
(
R
a,wD

α,βf
)

(x) =
(
RDα,β

b,wQf
)

(x)

with Q being the reflection operator, that is, (Qf)(x) = f(a + b − x) with function f defined on the
interval [a, b].

Definition 4.33 (right-weighted generalized fractional derivative). Let 0 ≤ α < 1 and β > 0. The
right-weighted generalized fractional derivative of order α of function f , in the Riemann–Liouville
sense, is defined by

RDα,β
b,w f(x) =

−1

φ(α)

1

w(x)

d

dx

∫ b

x

(wf)(s)Eβ
[
−µα(s− x)β

]
ds, (4.40)

where w ∈ C1([a, b]) with w,w′ > 0.

To properly define the new right-weighted fractional integral, we need to solve the equation
RDα,β

b,w f(x) = u(x). We have

RDα,β
b,w f(x) = RDα,β

b,wQQf(x) = QR
a,wD

α,βQf(x) = u(x).

Then,
R
a,wD

α,βQf(x) = Qu(x)
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and thus

Qf(x) = φ(α)Qu(x) + ψ(α)RLa,wI
βQu(x) = φ(α)Qu(x) + ψ(α)QRLIβb,wu(x),

where RLIβb,w is the right-weighted standard Riemann–Liouville fractional integral of order β given by

RLIβb,wf(x) =
1

Γ(β)

1

w(x)

∫ b

x

(s− x)β−1w(s)f(s)ds, x < b. (4.41)

Applying Q to both sides of (4.41), we get

f(t) = φ(α)u(x) + ψ(α)RLIβb,wu(x).

Moreover,

a,wI
α,βQf(x) = φ(α)Qf(x) + ψ(α)RLa,wI

βQf(x)

= φ(α)Qf(x) + ψ(α)QRLIβb,wf(x)

= Q
[
φ(α)f(x) + ψ(α)RLIβb,wf(x)

]
.

We are now in conditions to introduce the concept of right-weighted generalized fractional integral.

Definition 4.34 (right-weighted generalized fractional integral). Let 0 ≤ α < 1 and β > 0. The
right-weighted generalized fractional integral of order α of function f is given by

Iα,βb,w f(x) = φ(α)f(x) + ψ(α)RLIβb,wf(x), (4.42)

where w ∈ C1([a, b]) with w,w′ > 0.

Our next result provides a series representation to the left- and right-weighted generalized fractional
derivatives.

Theorem 4.35. Let 0 ≤ α < 1 and β > 0. The left- and right-weighted generalized fractional
derivatives of order α of function f can be written, respectively, as

R
a,wD

α,βf(x) =
1

φ(α)

∞∑
j=0

(−µα)j RLa,wI
βjf(x) (4.43)

and
RDα,β

b,w f(x) =
−1

φ(α)

∞∑
j=0

(−µα)j RLb,wI
βjf(x). (4.44)

Proof. The Mittag–Leffler function Eβ(x) is an entire series of x. Since the series (4.8) is locally con-
verging uniformly in the whole complex plane, then the left-weighted generalized fractional derivative
can be rewritten as

R
a,wD

α,βf(x) =
1

φ(α)

1

w(x)

d

dx

∫ x

a

(wf)(s)

∞∑
j=0

(−µα)j
(x− s)βj

Γ(βj + 1)
ds

=
1

φ(α)

1

w(x)

∞∑
j=0

(−µα)j
1

Γ(βj + 1)

d

dx

∫ x

a

(wf)(s)(x− s)βjds

=
1

φ(α)

1

w(x)

∞∑
j=0

(−µα)j
1

Γ(βj)

∫ x

a

(wf)(s)(x− s)βj−1ds

=
1

φ(α)

∞∑
j=0

(−µα)j
(
RL
a,wI

βjf(x)
)
.

From Definition 4.33, and the same steps used before, one can easily rewrite the new right-weighted
generalized fractional derivative as equality (4.44). The proof of (4.43) is similar.
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Theorem 4.36. Let 0 ≤ α < 1 and β > 0. The left- and right-weighted generalized fractional
derivative and their associated integrals satisfy the following formulas:

a,wI
α,β
(R
a,w

Dα,βf
)
(x) =R

a,w D
α,β
(
a,wI

α,βf
)
(x) = f(x) (4.45)

and
Iα,βb,w

(R
Dα,β
b,w f

)
(x) =R Dα,β

b,w

(
α,βIb,wf

)
(x) = −f(x). (4.46)

Proof. We note that

a,wI
α,β
(R
a,w

Dα,βf
)
(x) = φ(α)

(R
a,w

Dα,βf
)
(x) + ψ(α)RLa,wI

β
(R
a,w

Dα,βf
)
(x)

=

∞∑
j=0

(−µα)j RLa,wI
βjf(x) + µα

RL
a,wI

β
( ∞∑
j=0

(−µα)j RLa,wI
βjf
)
(x)

=

∞∑
j=0

(−µα)j RLa,wI
βjf(x)−

∞∑
j=0

(−µα)j+1 RL
a,wI

β+βjf(x)

= f(t).

Then,

R
a,wD

α,β
(
a,wI

α,βf
)
(x) =

1

φ(α)

∞∑
j=0

(−µα)j RLa,wI
βj
(
a,wI

α,βf
)
(x),

=
1

φ(α)

∞∑
j=0

(−µα)j RLa,wI
βj

[
φ(α)f(x) + ψ(α)RLa,wI

βf(x)

]

=

∞∑
j=0

(−µα)j RLa,wI
βjf(x) + µα

∞∑
j=0

(−µα)j RLa,wI
βj+βf(x)

=

∞∑
j=0

(−µα)j RLa,wI
βjf(x)−

∞∑
j=0

(−µα)j+1 RL
a,wI

βj+βf(x)

= f(x)

and equality (4.45) holds true. The proof of equality (4.46) is similar.

4.4.3 Integration by parts
Our formulas of integration by parts are proved in suitable function spaces.

Definition 4.37. [75] For α > 0, β > 0 and 1 ≤ p ≤ ∞, the following function spaces are defined:

a,wI
α,β(Lp) :=

{
f : f = a,wI

α,β(η), η ∈ Lp(a, b)
}

and
Iα,βb,w (Lp) :=

{
f : f = Iα,βb,w (θ), θ ∈ Lp(a, b)

}
.

Theorem 4.38 (integration by parts without the weighted function). Let 0 ≤ α < 1, β > 0, p ≥ 1,

q ≥ 1 and
1

p
+

1

q
≤ 1 + α (p 6= 1 and q 6= 1 in the case

1

p
+

1

q
= 1 + α.

• If f ∈ Lp(a, b) and g ∈ Lq(a, b), then∫ b

a

f(x)(a,1I
α,βg)(x)dx =

∫ b

a

g(x)(Iα,βb,1 f)(x)dx. (4.47)
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• If f ∈ Iα,βb,w (Lp) and g ∈ a,wI
α,β(Lq), then∫ b

a

f(x)(Ra,1D
α,βg)(x)dx =

∫ b

a

g(x)(RDα,β
b,1 f)(x)dx. (4.48)

Proof. First, we prove equality (4.47). Since∫ b

a

f(x)(a,1I
α,βg)(x)dx =

∫ b

a

f(x)
[
φ(α)g(x) + ψ(α)RLa,1 I

βg(x)
]

= φ(α)

∫ b

a

f(x)g(x)dx+ ψ(α)

∫ b

a

f(x)RLa,1 I
βg(x)dx,

it follows from Lemma 4.11 that∫ b

a

f(x)(a,1I
α,βg)(x)dx = φ(α)

∫ b

a

f(x)g(x)dx+ ψ(α)

∫ b

a

g(x)RLIβb,1f(x)dx

=

∫ b

a

g(x)
[
φ(α)f(x) + ψ(α)RLIβb,1f(x)

]
=

∫ b

a

g(x)(Iα,βb,1 f)(x)dx.

Now, we prove (4.48):∫ b

a

f(x)(Ra,1D
α,βg)(x)dx =

∫ b

a

Iα,βb,1 θ(x)
(
R
a,1D

α,β( a,1I
α,βη)

)
(x)dx

=

∫ b

a

η(x)Iα,βb,1 θ(x)dx
(
from Theorem 4.36

)
=

∫ b

a

θ(x) a,1I
α,βη(x)dx

(
from equality (4.47)

)
=

∫ b

a

g(x)(RDα,β
b,1 f)(x)dx

(
from Theorem 4.36

)
.

The proof is complete.

Theorem 4.39 (weighted generalized integration by parts). Let 0 ≤ α < 1, β > 0, p ≥ 1, q ≥ 1 and
1

p
+

1

q
≤ 1 + α (p 6= 1 and q 6= 1 in the case

1

p
+

1

q
= 1 + α). If f ∈ Lp(a, b) and g ∈ Lq(a, b), then∫ b

a

f(x)(a,wI
α,βg)(x)dx =

∫ b

a

w(x)2g(x)

(
Iα,βb,w

(
f

w2

))
(x)dx, (4.49)∫ b

a

f(x)(Ra,wD
α,βg)(x)dx =

∫ b

a

w(x)2g(x)

(
RDα,β

b,w

(
f

w2

))
(x)dx. (4.50)

Proof. We have∫ b

a

f(x)(a,wI
α,βg)(x)dx =

∫ b

a

w(x)
f(x)

w(x)

(
a,wI

α,β
(gw
w

))
(x)dx

=

∫ b

a

f(x)

w(x)

(
a,1I

α,β (gw)
)

(x)dx

=

∫ b

a

w(x)g(x)

(
Iα,βb,1

(
f

w

))
(x)dx

(
from Theorem 4.38

)
=

∫ b

a

g(x)w(x)2
(
Iα,βb,w

(
f

w2

))
(x)dx.
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Therefore, equality (4.49) is true. Similarly, we have∫ b

a

f(x)(Ra,wD
α,βg)(x)dx =

∫ b

a

w(x)
f(x)

w(x)

(
R
a,wD

α,β
(gw
w

))
(x)dx

=

∫ b

a

f(x)

w(x)

(
R
a,1D

α,β (gw)
)

(x)dx

=

∫ b

a

w(x)g(x)

(
Dα,β
b,1

(
f

w

))
(x)dx

(
from Theorem 4.38

)
=

∫ b

a

g(x)w(x)2
(
Dα,β
b,w

(
f

w2

))
(x)dx

and equality (4.50) holds.

From (4.49) and (4.50) we get the following consequence.

Corollary 4.40. Let 0 ≤ α < 1, β > 0, p ≥ 1, q ≥ 1 and
1

p
+

1

q
≤ 1 +α (p 6= 1 and q 6= 1 in the case

1

p
+

1

q
= 1 + α). If f ∈ Lp(a, b) and g ∈ Lq(a, b), then

∫ b

a

f(x)
(
Iα,βb,w g

)
(x)dx =

∫ b

a

w(x)2g(x)

(
a,wI

α,β

(
f

w2

))
(x)dx,∫ b

a

f(x)
(
RDα,β

b,w g
)

(x)dx =

∫ b

a

w(x)2g(x)

(
R
a,wD

α,β

(
f

w2

))
(x)dx.

For a symmetric view of weighted generalized integration by parts, we propose the following
corollary of Theorem 4.39.

Corollary 4.41. Let 0 ≤ α < 1, β > 0, p ≥ 1, q ≥ 1 and
1

p
+

1

q
≤ 1 +α (p 6= 1 and q 6= 1 in the case

1

p
+

1

q
= 1 + α). If f ∈ Lp(a, b) and g ∈ Lq(a, b), then

∫ b

a

w(x)f(x)
(
a,wI

α,β g

w

)
(x)dx =

∫ b

a

w(x)g(x)

(
Iα,βb,w

f

w

)
(x)dx, (4.51)∫ b

a

w(x)f(x)
(
R
a,wD

α,β g

w

)
(x)dx =

∫ b

a

w(x)g(x)

(
RDα,β

b,w

f

w

)
(x)dx. (4.52)

4.4.4 The weighted generalized fractional Euler–Lagrange
equation

Let us denote by AC(I → R) the set of absolutely continuous functions X, where I = [a, b],
such that the left and right Riemann–Liouville weighted generalized fractional derivatives of X exist,
endowed with the norm

‖X‖ = sup
t∈I

(
| X(t) | + | RLa,wDα,βX(t) | + |RL Dα,β

b,wX(t) |
)
.

Let L ∈ C1(I × R× R× R→ R) and consider the following minimization problem:

J [X] =

(∫ b

a

L
(
t,X(t),RLDα,β

a,wX(t),RLDα,β
b,wX(t)

)
dt

)
−→ min (4.53)
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subject to the boundary conditions

X(a) = Xa, X(b) = Xb. (4.54)

With the help of weighted generalized fractional integration by parts, given by our Theorem 4.39,
we obtain the following necessary optimality condition for the fundamental weighted generalized frac-
tional problem of the calculus of variations (4.53)–(4.54).

Theorem 4.42 (the weighted generalized fractional Euler–Lagrange equation). If L ∈ C1(I × R ×
R× R → R) and X ∈ AC([a, b] → R) is a minimizer of (4.53) subject to the fixed end points (4.54),
then X satisfies the following weighted generalized fractional Euler–Lagrange equation:

∂2L+ w(x)2 RDα,β
b,w

(
∂3L

w(x)2

)
+ w(x)2 Ra,wD

α,β

(
∂4L

w(x)2

)
= 0.

Proof. Let J [X] =

∫ b

a

L
(
t,X(t),Ra,wD

α,βX(t),RDα,β
b,wX(t)

)
dt and assume that X∗ is the optimal

solution of problem (4.53)–(4.54). Set
X = X∗ + εη,

where η ∈ AC([a, b] → R) and ε is a small real parameter. By linearity of the weighted generalized
fractional derivative, we get

R
a,wD

α,βX(t) = R
a,wD

α,βX∗ + ε
(
R
a,wD

α,βη(t)
)

and
RDα,β

b,wX(t) = RDα,β
b,wX

∗ + ε
(
RDα,β

b,w η(t)
)
.

Consider now the following function:

J(ε) =

∫ b

a

L
(
t,X∗(t) + εη(t), Ra,wD

α,βX∗(t) + ε
(
R
a,wD

α,βη(t)
)
,

RDα,β
b,wX

∗(t) + ε
(
RDα,β

b,w η(t)
))

dt.

Fermat’s theorem asserts that
d

dε
J(ε)

∣∣∣∣
ε=0

= 0 and we deduce, by the chain rule, that

∫ b

a

(
∂2L · η + ∂3L ·Ra,w Dα,βη + ∂4L ·R Dα,β

b,w η
)
dt = 0,

where ∂iL denotes the partial derivative of the Lagrangian L with respect to its ith argument. Using
Theorem 4.39 of weighted fractional integration by parts, we obtain that∫ b

a

(
∂2L · η + w(x)2 · η · RDα,β

b,w

(
∂3L

w(x)2

)
+ w(x)2 · η · Ra,wDα,β

(
∂4L

w(x)2

))
dt = 0.

The result follows by the fundamental theorem of the calculus of variations.

4.4.5 An application
Let us consider the weighted generalized fractional variational problem (4.53)–(4.54) with

L
(
t,X(t),Ra,wD

α,βX(t),RDα,β
b,wX(t)

)
=

1

2

(
1

2
m |Ra,w Dα,βX(t) |2 +

1

2
m |R Dα,β

b,wX(t) |2
)
− V (X(t)),
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where X is an absolutely continuous function on [a, b] and V maps C1(I → R) to R. Note that

1

2

(
1

2
m |Ra,w Dα,βX(t) |2 +

1

2
m |R Dα,β

b,wX(t) |2
)

can be viewed as a weighted generalized kinetic energy in the quantum mechanics framework. By
applying our Theorem 1.10 to the current variational problem, we get that

1

2
m

[
w(x)2 RDα,β

b,w

(
R
a,wD

α,βX(t)

w(x)2

)
+ w(x)2 Ra,wD

α,β

(
RDα,β

b,wX(t)

w(x)2

)]
= V ′(X(t)),

where V ′ is the derivative of the potential energy of the system. We observe that relation (1.3)
generalizes Newton’s dynamical law mẌ(t) = V ′(X(t)).
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Chapter 5

Conclusion and future work

5.1 Conclusion

In this PhD thesis, we introduced new definitions related to the stochastic fractional operators with
their special properties, which were used to investigate the stochastic fractional integration by parts
formulas. Based on the last results, a Stochastic Fractional Euler-Lagrange equations are obtained
in the both Stochastic fractional Riemann-Liouville/Caputo sense. An application on the quantum
mechanics is established, see our paper [165].

The outbreak of COVID-19 pandemic has called the scientific community to fight against its spreed,
to help the Moroccan health authorities, we have contributed through some works driven by the models
of delayed deterministic and stochastic differential equations, equipped with different controls providing
many corresponding scenarios of the possibly expected behavioral situation of COVID-19, allowing to
well describe the evolution of the disease and to correctly predict the right trajectory of the virus so
that the Moroccan government takes the right decisions [88, 158, 162]. Inspired by some existing works
in the literature, we constructed an extended controlled spatio-temporal epidemic SICA model, with
a view to converting it as a perspective into a stochastic fractional spatio-temporal one. Moreover,
to deeply apply the stochasticity component, which is not limited to Brownian motion as the only
source of randomness, but also considers Jump Lévy noise, we have performed a new work titled
Stochastic SICA Epidemic Model with Jump Lévy Processes, see [160], in order to take into account
the continuous and discontinuous factors of the model. Further, a new tendency of the controlled
optimization problem driven by the elaboration of a large number of controls called quasi-optimal
controls with imprecise parameters is expressed in our established work: Quasi-optimal control on the
stochastic SICA model, in which we applied a suitable stochastic Pontryagin’s maximum principle. In
order to transform some advanced stochastic mathematical tools to the economic framework, we have
implemented our following work: A Stochastic Capital-Labour Model with Logistic Growth Function,
see [159]. My different works varies along my PHD thesis between a number of applications in diverse
areas, and certain theoretical published papers, see [165], and our second recently published paper
called Lyapunov functions for fractional order systems [33]. To bridge the gap in the fractional calculus
theory, we have proposed two works, the first one is related to the establishment of the Taylor’s Formula
for Generalized Weighted Fractional Derivatives with non singular Kernels, the second achievement is
about the release of the weighted generalized fractional integration by parts and the Euler–Lagrange
equation.

5.2 Published works

1. A Stochastic Fractional Calculus with Applications to Variational Principles [165];

2. Modeling the spread of COVID-19 pandemic in Morocco [162];
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3. A stochastic time-delayed model for the effectiveness of Moroccan COVID-19 deconfinement
strategy [158];

4. Modeling and Forecasting of COVID-19
Spreading by Delayed Stochastic
Differential Equations [88];

5. A Stochastic Capital-Labour Model
with Logistic Growth Function [159];

6. A stochastic SICA Epidemic Model with Jump Lévy Processes [160];

7. Lyapunov Functions and Stability Analysis
of Fractional-Order Systems [33];

8. Weighted generalized fractional integration by parts and the Euler–Lagrange equation [164].

5.3 Submitted work
1. Taylor’s Formula for Generalized Weighted Fractional Derivatives with Nonsingular Kernels

5.4 Work in progress
1. Near-optimal control on the stochastic SICA model;

2 The Spatiotemporal transmission of the
epidemic SICA model with control strategy.

5.5 Future works
As future work, we will focus on a new construction of a new weighted generalized fractional

calculus with non-singular kernel extending those available in the literature, aiming to expand the
possibilities of selecting the appropriate derivative with its corresponding integral with respect to the
phenomenon under development. Further, numerous eventual works linked to the previous announced
notion might be established, namely, the extended Cauchy-Lipshitz theorem, the extended mean value
integral, the extended Taylor’s formula, the extended integration by parts theorem, the extended
Euler-Lagrange equation and so on. Time-scale theory plays a pivotal role in the combination between
the discrete and the continuous processes, therefore, thinking about the conversion of some existing
results within the Time-scale area with the mentioned expected fractional operators is more significant
both for the development of mathematics and for its applications in the vital domains.
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