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1. Introduction

Grünbaum’s problem, consisting in the classification of locally toroidal polytopes,
was, during several years, one of the central problems in the theory of abstract
polytopes. The classification of the known finite locally toroidal regular polytopes
can be found in [16], in particular, the classification of the finite universal locally
toroidal regular 4-polytopes whose facets and vertex-figures are maps {4, 4}(s,0) or
{4, 4}(s,s), also known as polytopes of Euclidean type [4, 4, 4] [12].

This classification is almost complete and listed in the following table, where all
parameters, corresponding finite regular polytopes {{4, 4}(t1,t2), {4, 4}(s1,s2)}, and
the respective automorphism groups G are given. The classification of the universal

Table 1. The known finite universal regular polytopes {{4, 4}(t1,t2), {4, 4}(s1,s2)}.

(t1, t2) (s1, s2) |G| G

(2,0) (s, s), s ≥ 2 64s2 (C2 × C2) o [4, 4](s,s)

(2,0) (2s, 0), s ≥ 1 128s2
(C2 × C2) o [4, 4](2,0), s = 1
((C2 × C2) o [4, 4](s,s))× C2, s ≥ 2

(3,0) (3,0) 1440 S6 × C2

(3,0) (4,0) 36864 C2 o [4, 4](3,0)
(3,0) (2,2) 2304 (S4 × S4) o (C2 × C2)
(2,2) (2,2) 1024 C4

2 o [4, 4](2,2)
(2,2) (3,3) 9216 C6

2 o [4, 4](3,3)
(3,0) (5,0) 3916800 Sp4(4)× C2 × C2

finite regular polytopes {{4, 4}(t,0), {4, 4}(s,0)}, for s, t ≥ 3 and both odd, is still an
open problem, being conjectured in [16] that those given in Table 1 are the only
finite ones.

Given a group G and a core-free subgroup H of G. The action of G on G/H
gives a faithful transitive permutation representation of degree |G : H|. Moreover,
H is the stabilizer of a point. On the other hand, the stabilizer of a point in a
faithful transitive permutation representation is core-free. This gives a one-to-one
correspondence between core-free subgroups and faithful transitive permutation
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representations. In the present paper, whenever we refer the degree of a poly-
tope, we mean the degree of a faithful transitive permutation representation of its
automorphism group, corresponding to the index of a core-free subgroup.

There are various atlases of abstract regular polytopes available [3, 14, 15], which
give either group presentations of the polytopes or, alternatively, permutations that
generate the group of automorphisms of the polytopes, corresponding to faithful
permutation representations. Of course the latter are not uniquely determined.

Faithful permutation representations of the groups of abstract regular polytopes
can be represented by CPR graphs [17]. The number of vertices of a CPR graph
is the degree of the permutation representation and the edges are labeled with the
elements of the set of types I of the polytope. More precisely, {x, y} is an i-edge
of a CPR graph whenever xρi = y, where ρi is an involution of the generating set
of the automorphism group of the polytope. Despite the fact that CPR graphs are
not uniquely determined by the group of automorphisms of a polytope, they turn
out to be an important tool in the classification of abstract regular polytopes. In
particular in [2, 4, 5, 6, 7, 8], connected CPR graphs of degree n were constructed
to determine abstract regular polytopes of high rank for An and Sn. For this
reason the study of faithful transitive permutation representations of polytopes has
emerged. Connected CPR graphs are in fact, Schreier graphs.

In [9] we gave the list of all possible degrees for toroidal regular maps (for the
regular toroidal map of type {3, 6} the degrees given in [9] were rectified in [10]). In
[11] we completed the investigation on a surface of genus 1, and rank 3, considering
the group of a regular toroidal hypermap of type (3, 3, 3).

In this paper we continue this study considering the infinite families of lines 1 and
2 of Table 1. The degrees of the remaining polytopes of Table 1 can be determined
computationally. Indeed we were able to compute them in GAP [13] (see Table 2).
Using the same algorithm we found the degrees of the polytopes of lines 1 and 2 of
Table 1 only up to s = 79 and s = 47, respectively.

This paper is organized as follows. In Section 2 we briefly give the definition of
the abstract regular polytopes denoted by {{4, 4}(t1,t2), {4, 4}(s1,s2)}. In Section 3
we give some results that were obtained in [9] which will be used in the following sec-
tions. In Section 4 we establish relations between {4, 4}(s,s), {{4, 4}(2,0), {4, 4}(s,s)}
and {{4, 4}(2,0), {4, 4}(2s,0)}. Finally, in Section 5, we determine the possible degrees
of the faithful transitive permutation representations of the two infinite families of
Table 1.

2. The finite universal regular polytopes {{4, 4}(t1,t2), {4, 4}(s1,s2)}

The regular toroidal maps {4, 4}(s,0) and {4, 4}(s,s) are factorizations of the Cox-

eter group [4, 4] = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)4, (ρ1ρ2)4, (ρ0ρ2)2〉, by

(ρ0ρ1ρ2ρ1)s = 1 or (ρ0ρ1ρ2)2s = 1,

respectively. The size of the automorphism group of {4, 4}(s,0) is 8s2 while the size

of the automorphism group of {4, 4}(s,s) is 16s2. For the map {4, 4}(s,0), consider
the translations u = ρ0ρ1ρ2ρ1 and v = uρ1 (these correspond to two possible
unitary translations, of a squared regular tiling, from a vertex to each of its adjacent
vertices). We have the following equalities

uρ0 = u−1, uρ2 = u, vρ0 = v and vρ2 = v−1.
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Table 2. The degrees of the known finite universal regular poly-
topes {{4, 4}(t1,t2), {4, 4}(s1,s2)}.

(t1, t2) (s1, s2) Set of Possible Degrees
Minimal degree

Core-free subgroups

(2,0) (2,0) {m |m a divisor of 128 ∧m ≥ 32} 〈ρ0, ρ2〉
(2,0) (4,0) {m |m a divisor of 512 ∧m ≥ 32} 〈ρ0, ρ3, (ρ1ρ2)2〉

(3,0) (3,0)
{m |m a divisor of 1440 ∧m ≥ 60∧
∧m 6= 96} ∪ {40, 30, 24, 20, 12} 〈ρ0, ρ2, ρ1ρ3〉

(3,0) (4,0)
{m |m a divisor of 36864 ∧m ≥ 72}

∪ {18, 36, 48} 〈ρ0, ρ1, ρρ23 , ρ
ρ2ρ1ρ2
3 〉

(3,0) (2,2) {m |m a divisor of 2304 ∧m ≥ 12} 〈ρ0, ρ2, ρ3, ρ1ρ2ρ1〉
(2,2) (2,2) {m |m a divisor of 1024 ∧m ≥ 16} 〈ρ0, ρ1, ρ2〉
(2,2) (3,3) {m |m a divisor of 9216 ∧m ≥ 24} 〈ρ0, ρ1ρ0ρ1, ρ3, ρ2ρ3ρ2, ρρ2ρ1ρ23 〉

(3,0) (5,0)

{2i · 255, 2i · 1275,
2i · 3825, 2i · 425 | 2 ≤ i ≤ 10}
∪ {2i · 765 | 3 ≤ i ≤ 10}

∪ {2i · 15, 2i · 17 | 5 ≤ i ≤ 6}
∪ {2i · 85 | i ∈ {2, 6, 7, 8}}
∪ {2i · 225 | 8 ≤ i ≤ 10}
∪ {2i · 153 | 7 ≤ i ≤ 10}
∪ {2i · 51 | 7 ≤ i ≤ 8}

〈(ρ0ρ1ρ2)2, (ρ1ρ2ρ0)2, [(ρ1ρ2)2]ρ3〉

In the case of the map {4, 4}(s,s), consider g := uv = (ρ0ρ1ρ2)2 and h := u−1v =
gρ0 (corresponding to unitary translations with the direction of the diagonal of a
square). We have the following equalities

gρ1 = g, gρ2 = h−1 and hρ1 = h−1.

The universal regular polytope {{4, 4}(t1,t2), {4, 4}(s1,s2)} where (t1, t2) ∈ {(t, t), (t, 0)}
and (s1, s2) ∈ {(s, s), (s, 0)} with t, s ≥ 2, is the Coxeter group [4, 4, 4] = 〈ρ0, . . . , ρ3〉,
factored out by two relations of the following set; one with parameter t and the
other with parameter s.

{(ρ0ρ1ρ2ρ1)t, (ρ1ρ2ρ3ρ2)s, (ρ0ρ1ρ2)2t, (ρ1ρ2ρ3)2s}

The effect of this factorization is that the facets and vertex figures of the honey-
comb {4, 4, 4}, which are planar infinite tilings {4, 4}, collapse to a finite toroidal
regular map, {4, 4}(t1,t2) and {4, 4}(s1,s2), respectively. That is, G3 = 〈ρ0, ρ1, ρ2〉
and G0 = 〈ρ1, ρ2, ρ3〉 are the automorphism groups of the toroidal maps {4, 4}(t1,t2)
and {4, 4}(s1,s2), respectively.

This construction always gives a regular polytope of type {4, 4, 4}, but the known
finite ones are those given in Table 1.

3. The degrees of the toroidal regular maps of type [4, 4]

Let M be the group of a toroidal map that is a quotient of an infinite irreducible
Coxeter group of euclidean type [4, 4] by 〈us〉 (resp. 〈gs〉), where u (resp. g) is
an unitary translation of the regular tessellation of the plane by squares, with the
direction of an edge (resp. diagonal) of a square. Let v (resp. h) be a conjugate
of u (resp. g) such that v /∈ 〈u〉 (resp. h /∈ 〈g〉) and T = 〈u, v〉 ∼= Cs × Cs (resp.
T = 〈g, h〉 ∼= Cs × Cs). Consider a faithful transitive action of M on n points.
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In particular, if M is the group of {4, 4}(s,s), then T is intransitive [9, Proposition
3.3]. As T is a normal subgroup of M , the orbits of T form a block system for the
representation of M . Moreover, we have the following two results that give the size
of a T -orbit.

Lemma 3.1. [9, Lemma 3.4] LetM be the group of a toroidal regular map {4, 4}(s,0)
or {4, 4}(s,s) with a faithful transitive permutation representation of degree n. If

n 6= s2, then M is embedded into Sk o Sm with n = km (m, k > 1) and

(i) k = ab where s = lcm(a, b) and,

(ii) m is a divisor of |M |s2 .

Lemma 3.2. Let K = 〈α, β〉 where α and β are the actions of the generators of
T restricted to a block. If B := |K : 〈α〉| and C := |K : 〈β〉|, then the size of a
T -orbit is k = ds where d = gcd(B,C).

Proof. Consider that α and β are the actions of the generators of T on a block of
size k. Let K := 〈α, β〉, A := |α|, B := |K : 〈α〉| and C := |K : 〈β〉|. The order of
K is AB and K acts regularly on the block, hence k = AB. As α and β commute,
we have the following

K/〈α〉 = {〈α〉, 〈α〉β, 〈α〉β2, . . . , 〈α〉βB−1} and

K/〈β〉 = {〈β〉, 〈β〉α, 〈β〉α2, . . . , 〈β〉αC−1}.

Thus B divides |β| and C divides |α| = A. Let D := A/C. As k = AB = |β|C
we have |β| = DB. Now s = lcm(|α|, |β|) = lcm(CD, BD) = D lcm(C,B) and
k = AB = DCB = D lcm(C,B) gcd(C,B) = s gcd(C,B). To conclude the proof
consider d = gcd(C,B). �

In [9] we list all possible degrees of toroidal regular maps, in particular of the
toroidal regular maps of type [4, 4], given by the following results. We replace the
name used before, “CPR graph”, by Schreier graph, as in this case the graphs are
assumed to be connected.

Theorem 3.3. [9, Theorem 4.2] Let s > 2. There exists a Schreier graph of a
toroidal map {4, 4}(s,0) with n vertices if and only if n = s2 or n is either 2ab, 4ab
or 8ab where a and b are positive integers with s = lcm(a, b).

The list of degrees of the theorem above are in correspondence with the number
m of T -orbits, n = mab for m = 2, 4, 8 and n = s2 for m = 1.

For the toroidal map {4, 4}(2s,0), Theorem 3.3 can be used to determine all the
possible degrees.

Corollary 3.4. Let s > 1. There exists a Schreier graph of a toroidal map
{4, 4}(2s,0) with n vertices if and only if n = 4s2 or n is either 2ab, 4ab or 8ab
where a and b are positive integers with 2s = lcm(a, b).

Theorem 3.5. [9, Theorem 4.4] Let s ≥ 2. There exists a Schreier graph of a
toroidal map {4, 4}(s,s) with n vertices if and only if n is 2s2, or either 4ab, 8ab or
16ab where a and b are positive integers with s = lcm(a, b).
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4. Relations between the degrees of types [4, 4] and [4, 4, 4]

As mentioned in Section 1, there is a correspondence between core-free subgroups
and faithful transitive actions. Clearly if H is a core-free subgroup of G, and G is
a subgroup of K of index κ, then H is also core-free in K and |K : H| = κ|G : H|.
Hence, if G has a faithful transitive permutation representation of degree n, then
K has a faithful transitive permutation representation of degree κn. Consequently,
we have the following result.

Corollary 4.1. If n is a degree of the toroidal map {4, 4}(s,s) (resp. {4, 4}(2s,0)),
then 4n is a degree of the locally toroidal polytope {{4, 4}(2,0), {4, 4}(s,s)} (resp.
{{4, 4}(2,0), {4, 4}(2s,0)}).

This guarantees that {{4, 4}(2,0), {4, 4}(s,s)} has faithful transitive permutation
representations with degrees

8s2, 16ab, 32ab and 64ab,

with s = lcm(a, b); while {{4, 4}(2,0), {4, 4}(2s,0)} has faithful transitive permutation
representations with degrees

16s2, 32ab, 64ab and 128ab

with s = lcm(a, b). We will prove that these lists are incomplete.
In what follows we give conditions under which there is a one-to-one correspon-

dence between the degrees of {4, 4}(s,s) and {{4, 4}(2,0), {4, 4}(s,s)}. Before that, we
prove the following result that can be used for any group having a central involution.

Proposition 4.2. Let G be a transitive group of degree n containing a central
involution α. Then G is embedded into S2 oSn

2
, where the blocks are the 〈α〉-orbits.

If 〈α〉 is the kernel of this embedding, then n
2 is the degree of a faithful transitive

permutation representation of G/〈α〉.

Proof. The orbits of α, of size two, form a block system for G. Consider the group
homomorphism f : G → Sn

2
induced by the action of G on these blocks. There-

fore the isomorphism G/〈α〉 ∼= f(G), determines a faithful transitive permutation
representation of G/〈α〉 on n

2 points. �

Proposition 4.3. Let s > 2. Let x ∈ {1, . . . , n} be a point of a faithful tran-
sitive permutation representation of {{4, 4}(2,0), {4, 4}(s,s)} whose group is G =
〈ρ0, ρ1, ρ2, ρ3〉. Let G0 = 〈ρ1, ρ2, ρ3〉 (the group of {4, 4}(s,s)). If ρ0 is fixed-point

free, thenG0 acts faithfully and transitively on the 4-sets {x, xρ0, x(ρ0ρ1)2, xρ1ρ0ρ1}.
In particular, G0 has a faithful transitive permutation representation of degree n/4.

Proof. Let δ := (ρ0ρ1)2. Let f : G → Sn
2

be the embedding of G into S2 o Sn
2

determined by the 〈δ〉-orbits. Firstly let us prove that Ker(f) = 〈δ〉.
Suppose that 〈g, h〉 ∩Ker(f) is nontrivial. As Ker(f) is embedded into C

n
2
2 , all

the elements of the kernel are involutions. The only involutions of 〈g, h〉 are gs/2,
hs/2 or (gh)s/2 (in particular s must be even). Any case implies that (gh)s/2 ∈
Ker(f). As (gh)s/2 is a central involution we get (gh)s/2 = δ, a contradiction.
Consequently f(ρ1), f(ρ2) and f(ρ3) are involutions and the group generated by
these involutions satisfies all the defining relations of {4, 4}(s,s). This implies that
H = f(G0) must be the group of a toroidal map {4, 4}(s,s). As ρ0 is fixed-point-free,

and 〈ρ0, (ρ0ρ1)2〉 is a normal subgroup of G, the orbits of 〈ρ0, (ρ0ρ1)2〉 must have
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the same size, i.e. they are 4-sets of the form {x, xρ0, x(ρ0ρ1)2, xρ1ρ0ρ1} with x ∈
{1, . . . , n}. In particular f(ρ0) is nontrivial and commutes with f(G0). This shows
that G/Ker(f) ∼= C2 ×H, which is precisely the Coxeter group with disconnected
Coxeter diagram obtained factoring G by 〈δ〉. In particular, Ker(f) = 〈δ〉.

By Proposition 4.2 G/〈δ〉 has a faithful transitive permutation representation of
degree n

2 . Furthermore G/〈δ〉 is isomorphic to 〈α〉 × H, where α is an involution

(ρ0 acting on 2-sets {x, x(ρ0ρ1)2}).
Now 〈α〉×H is embedded into S2 oSn

4
. Moreover we may use a similar argument

to the one before, to conclude that the kernel of this embedding is 〈α〉.
Factoring 〈α〉×H by 〈α〉 gives a group isomorphic to G0. Thus by Proposition 4.2

G0 has a faithful transitive permutation representation of degree n
4 .

Moreover, the orbits of α are pairs of 2-sets {{x, x(ρ0ρ1)2}, {xρ0, xρ0(ρ0ρ1)2}}
and the action of G0 is faithful on the 4-sets {x, x(ρ0ρ1)2, xρ0, xρ0(ρ0ρ1)2}. �

The following corollary to Proposition 4.2 gives sufficient conditions that guar-
antees an one-to-one correspondence between the degrees of {{4, 4}(2,0), {4, 4}(s,s)}
and {{4, 4}(2,0), {4, 4}(2s,0)} for s ≥ 2.

Corollary 4.4. Let G be the group of {{4, 4}(2,0), {4, 4}(2s,0)} (s ≥ 2) acting
transitively and faithfully on n points. Suppose that f is the embedding of G into
Sn

2
determined by the connected components of δ := (ρ1ρ2ρ3)2s. If Ker(f) = 〈δ〉

then n = 2n′ where n′ is a faithful transitive permutation representation of the
group of {{4, 4}(2,0), {4, 4}(s,s)}.

Proof. Let G = 〈ρ0, ρ1, ρ2, ρ3〉 be the group of {{4, 4}(2,0), {4, 4}(2s,0)}. The trans-

lation δ := (ρ1ρ2ρ3)2s is a central involution in G. Moreover G/〈δ〉 is the group of
{{4, 4}(2,0), {4, 4}(s,s)}. Thus by Proposition 4.2 we get the correspondence between
the degrees of {{4, 4}(2,0), {4, 4}(s,s)} and {{4, 4}(2,0), {4, 4}(2s,0)} stated. �

5. The degrees of {{4, 4}(2,0), {4, 4}(s,s)} and {{4, 4}(2,0), {4, 4}(2s,0)}

Let n be the degree of a faithful transitive permutation representation of the
group G = 〈ρ0, ρ1, ρ2, ρ3〉 of the polytope {{4, 4}(2,0), {4, 4}(s,s)} with s ≥ 2. Let
us denote by G0 the maximal parabolic subgroup of G generated by {ρ1, ρ2, ρ3},
that is, the group of {4, 4}(s,s). Consider the subgroup T of G0 generated by

g := (ρ1ρ2ρ3)2 and h := gρ1 . We have the following relations.

h = hρ0 , g = gρ0 , g = gρ2 , h−1 = hρ2 and h−1 = gρ3 .

Proposition 5.1. The groupG has a faithful transitive permutation representation
of degree 8s2, 16ab, 32ab and 64ab, where and a and b are positive integers such
that s = lcm(a, b).

Proof. This follows from Theorem 3.5 and Corollary 4.1. �

The degrees given above are in correspondence with the indexes of core-free
subgroups of {4, 4}(s,s). Let us now give other core-free subgroups corresponding
to degrees that are not listed in Proposition 5.1.

Proposition 5.2. Let a and b be positive integers such that s = lcm(a, b). The
subgroups

(1) 〈ρ0〉 × 〈ρ2, ρ3〉;
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(2)
(
〈ρ0〉 × 〈ga/2, hb〉

)
o 〈ρ2, ρ1ρ2ρ1〉 if a is even and lcm(a/2, b) = s and(

〈ρ0〉 × 〈ga, hb/2〉
)
o 〈ρ2, ρ1ρ2ρ1〉 if b is even and lcm(a, b/2) = s;

(3)
(
〈ρ0〉 × 〈ga, hb〉

)
o 〈ρ2, ρ1ρ2ρ1〉

are core-free subgroups of G with indexes 4s2, 4ab and 8ab, respectively.

Proof. (1) Let H = 〈ρ0〉 × 〈ρ2, ρ3〉 ∼= C2 × D8. As 〈ρ0〉 and 〈ρρ10 〉 have a trivial
intersection, we have

H ∩Hρ1 = 〈ρ2, ρ3〉 ∩ 〈ρρ12 , ρ3〉 = 〈ρ3〉.

In addition,

H ∩Hρ1ρ2 = 〈ρ2, ρ3〉 ∩ 〈ρρ12 , ρ
ρ1ρ2
3 〉 = 〈ρρ23 〉,

hence H ∩Hρ1 ∩Hρ1ρ2 is trivial. Since |H| = 16, we have that |G : H| = 4s2.
(2) As lcm(a/2, b) = s, 〈ga/2, hb〉 and 〈ha/2, gb〉 have trivial intersection. In ad-

dition the intersections 〈ρ2, ρρ12 〉∩〈ρ
ρ3
2 , ρ

ρ3ρ1
2 〉 and 〈ρ0〉∩〈ρρ10 〉 are trivial. Therefore

H ∩Hρ1 ∩Hρ3 is trivial. Since |H| = 8 s
2

a
2 b

, we have that |G : H| = 4ab.

The proofs for the other group given in (2) and for the group given in (3) follow
similar arguments. �

Lemma 5.3. The following two conditions are equivalent.

(1) a and b are even numbers.
(2) a is even and lcm(a/2, b) = lcm(a, b), or b is even and lcm(a, b/2) =

lcm(a, b).

Proof. Suppose that a and b are both even. Let α and β be the maximal integers
such that 2α divides a and 2β divides b. Then if α ≤ β, then lcm(a/2, b) = lcm(a, b),
otherwise lcm(a, b/2) = lcm(a, b).

To prove that (2) implies (1), observe that if a is even and b is odd, then
lcm(a/2, b) < lcm(a, b). �

In what follows, it will be proven that the degrees given in Proposition 5.2 are
the only ones missing in the list of degrees of {{4, 4}(2,0), {4, 4}(s,s)} obtained by
Proposition 5.1.

Similarly to Lemma 3.1 we have the following result.

Lemma 5.4. If n 6= s2, then G is embedded into Sk o Sm with n = km (m, k > 1)
and

(i) k = ab where s = lcm(a, b) and,

(ii) m is a divisor of |G|s2 = 64.

Proof. As T = 〈g, h〉 is a normal subgroup of G, in the proof of [9, Lemma 3.4]
replace M , the group of a toroidal map, by G, the group of the locally toroidal
polytope {{4, 4}(2,0), {4, 4}(s,s)}. �

In this section, let m be the number of T -orbits and k be the size of a T -orbit
(thus n = km). We will consider m ∈ {1, 2, 4}, as the existence of faithful transitive
permutation representations of degrees n = mab for m ∈ {8, 16, 32, 64} (for any
integers a and b with lcm(a, b) = s) is guaranteed by Propositions 5.1 and 5.2.
Given a numbering on the T -orbits, let us denote by gi and hi the actions of g and
h on block i (or T -orbit i), respectively. Let ∆i denote the block i.
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We will consider cases m ∈ {1, 2} and m = 4 separately, but before we proceed,
let us prove a result that will be used later in both cases.

Proposition 5.5. Let K be a transitive group containing the regular subgroup
H = 〈α, β |αa = βb = [α, β]〉 with a, b ≥ 1. If δ ∈ K is an involution commuting
with both α and β, then δ ∈ H and one of the following situations must occur:

(1) δ = αa/2 and a is even;
(2) δ = βb/2 and b is even or;
(3) δ = αa/2βb/2 and both a and b are even.

Proof. If δ ∈ H, then, as δ is an involution, there are at most the three possibilities
for δ given in the statement of this proposition. Suppose that δ /∈ H. Then for some
integers i and j, δαiβj is in the stabilizer of a point x [1, page 9]. As H is regular,
any point y can be written as xh with h ∈ H. But then, yδαiβj = xhδαiβj =
xδαiβjh = xh = y. This implies that δαiβj is trivial, a contradiction. �

In Proposition 5.5, when a 6= 1 and b = 1, the group H, is a cyclic group of
order a. Then there is only one possibility for an involution commuting with the
generator α of H, that is, αa/2.

5.1. Case: m ∈ {1, 2}.

Proposition 5.6. m 6= 1.

Proof. Suppose that m = 1, that is, T is transitive. In this case T is regular, hence
n = s2. If ρ0 has a fixed point then, as ρ0 commutes with g and h, ρ0 is trivial, a
contradiction. Thus ρ0 is fixed-point free. Hence, by Proposition 4.3, there exists
a faithful transitive permutation representation of the group of the toroidal map
{4, 4}(s,s) on 4-sets with T being transitive. But T cannot be transitive, as proven
in [9, Proposition 3.3]. �

Proposition 5.7. If m = 2, then k 6= s.

Proof. Suppose that k = s. If ρ0 is fixed-point free, then by Proposition 4.3,
{4, 4}(s,s) has a faithful transitive permutation representation of degree n = s/2,
contradicting Theorem 3.5. Hence, ρ0 must have a fixed point. Consequently,
(ρ0ρ1)2 fixes the blocks and therefore, s is even. Moreover, as ρ0 commutes with
both, g and h, it fixes a block point-wise. In addition, ρ1 must swap the two blocks,
otherwise ρ0 would be trivial.

As k = s, either the action of g within a block, say ∆1, has order s or gcd(|g1|, |g2|) =
1. Let us consider the two cases separately.

Firstly assume g1 and h2 are cycles of order s. Since g and h commute,

g = g1h
α
2 and h = gβ1 h2

for some integers α and β. As (ρ0ρ1)2 is a fixed-point free central involution, by

Proposition 5.5, we have (ρ0ρ1)2 = g
s/2
1 h

s/2
2 . Assume without loss of generality

that ρ0 fixes a point in ∆1, so that ρρ10 = g
s/2
1 and ρ0 = h

s/2
2 .

If α and β are even, one gets gs/2 = g
s/2
1 and hs/2 = h

s/2
2 , hence (ρ0ρ1)2 =

(gh)s/2, a contradiction.

If α is odd and β is even, one gets gs/2 = g
s/2
1 h

s/2
2 and hs/2 = h

s/2
2 , hence

(gh)s/2 = g
s/2
1 = ρρ10 , a contradiction. Similarly if α is even and β is odd one gets

the contradiction (gh)s/2 = h
s/2
2 = ρ0.
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If α and β are both odd, one gets gs/2 = hs/2, hence (gh)s/2 is trivial, a contra-
diction.

Now consider the case gcd(|g1|, |g2|) = 1. Let |g1| = a, |g2| = b with b odd. Then

ab = s. In this case, (ρ0ρ1)2 = g
a/2
1 h

a/2
2 . But also, as b is odd, (gh)s/2 = (g1h2)a/2,

a contradiction.
�

Proposition 5.8. m 6= 2.

Proof. Let m = 2. By Lemma 3.2 and Proposition 5.7, k > s. Then both 〈g〉
and 〈h〉 act intransitively within a block. If ρ0 is fixed-point free, then the group
of {4, 4}(s,s) has a faithful transitive permutation representation on n/4 points by
Proposition 4.3, with T having either one or two orbits. We know T cannot have one
orbit by [9, Proposition 3.3] and if T has two orbits, then n/4 = 2s2 [9, Lemma 4.3],
meaning that the size of a T -orbit acting on n points is k = (2s)2, a contradiction.
Thus ρ0 must have a fixed point and thus must fix an entire block point-wise.

The permutation ρ0 cannot have a trivial action in both blocks, hence ∆1ρ1 = ∆2

and (ρ0ρ1)2 fixes the blocks. In particular, s is even. In addition, neither ρ2 nor ρ3
can swap the blocks. Hence, since ρ3 must fix a block, therefore |gi| = |gρ3i | = |h

−1
i |.

As in addition |g1| = |g2| and |h1| = |h2|, we must have |gi| = |hi| for i = 1, 2
(meaning that each cycle of the cyclic decomposition of g, and h, has order s).

Assume that ρ0 acts trivially on block ∆1. As (ρ0ρ1)2 is a central involution,
Proposition 5.5 determines the possibilities for (ρ0ρ1)2. The action of (ρ0ρ1)2 on
block ∆1 cannot be (g1h1)s/2 otherwise (ρ0ρ1)2 = (gh)s/2. Thus either (ρ0ρ1)2 =
(g1h2)s/2 or (ρ0ρ1)2 = (h1g2)s/2. Since (ρ0ρ1)2 = ((ρ0ρ1)2)ρ3 , in any case one gets

g
s/2
i = h

s/2
i (for i ∈ {1, 2}). This gives gs/2 = hs/2, a contradiction. �

5.2. Case: m = 4.

Proposition 5.9. Let w = w1w2 . . . wl with wj ∈ {ρi | i = 0, 1, 2, 3} for j ∈
{1, . . . , l} and such that

| {j ∈ {1, . . . , l} |wj = ρ1 ∨ wj = ρ3} |
is odd. If w acts non-trivially within a T -orbit, then k = s2.

Proof. Suppose that w acts non-trivially on ∆1 and let K = 〈g1, h1〉. As gw1 = h±11 ,
we have |g1| = |h1|. Moreover, by conjugation, we get |gi| = |hi| for i ∈ {1, . . . , 4}.
Hence |g1| = |h1| = s. Let B = |K : 〈g1〉| = |K : 〈h1〉|. We have k = |K| = Bs. Let

us prove that B = s. There exists an integer j such that gB1 = hBj1 . Conjugating

by w, this implies that hB1 = gBj1 . Hence, (g1h1)B = (g1h1)Bj . As |g1h1| = s,

B ≡ Bj mod s. Now the equality gB1 = hBj1 can be rewritten as gB1 = hB1 , or
equivalently (g1h

−1
1 )B is trivial. As |g1h−11 | = s, we have B = s. �

Proposition 5.10. The element u := ρ1ρ2ρ3ρ2 cannot fix all T -orbits.

Proof. Suppose that u fixes ∆i for some i ∈ {1, . . . , 4}. Then there exist a pair of
integers r and t such that ugrht fixes a point x ∈ ∆i. Hence us fixes x. Moreover,
as us commutes with both g and h, it fixes every point in ∆i.

Thus, if u fixes every block then us is trivial, a contradiction. �

Proposition 5.11. If m = 4 and k 6= s2 then the action of G on the blocks is
described by one of the following graphs.
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Proof. The groupG acting on the 4 blocks is a group satisfying the defining relations
of G and such that

(ρ0ρ1ρ2ρ1)2 and (ρ1ρ2ρ3)2

are both trivial. Under these conditions, using GAP [13], we found the 51 block
actions given in Table 3. By Propositions 5.9 and 5.10 this list can be reduced to
only eight possibilities, those given in this proposition. �

Proposition 5.12. If m = 4 and k 6= s2, then k = ab, with a and b being even
divisors of s such that s = lcm(a, b).

Proof. Let us deal with two cases separately: (1) ρ0 is fixed-point free; (2) ρ0 has
a fixed-point.

(1) If ρ0 is fixed-point free, then the group of {4, 4}(s,s) has a faithful transitive
permutation representation on n/4 points by Theorem 4.3, with T having either
one, two or four orbits. The first possibility, T having exactly one orbit, cannot
happen by [9, Proposition 3.3]. This also excludes the second graph of the first
row of Proposition 5.11 (note that x, xρ0, xρ1ρ0ρ1 and x(ρ0ρ1)2 belong to different
blocks). If T has two orbits, then by [9, Lemma 4.3], n/4 = 2s2, meaning that the
size of a T -orbit acting on n points is k = 2s2, a contradiction. This excludes the
remaining graphs of the first row of Proposition 5.11.

Finally, suppose that T has four orbits when acting on the quadruples. Then the
size k of a T -orbit on the set of size n must be divisible by 4. Thus, by Lemma 3.1,
k/4 = a′b′ with lcm(a′, b′) = s and, by Lemma 5.4, k = ab with lcm(a, b) = s.
Hence we have k = 4gcd(a′, b′)s = gcd(a, b)s, and therefore gcd(a, b) is even, as
desired.

(2) Suppose now that ρ0 has a fixed point. Hence the action on the blocks cannot
be given by the first four graphs given in Proposition 5.11, where ρ0 is fixed-point
free. Whenever ρ0 has a fixed point in a block, say ∆i, then since it commutes with
both g and h, it must act trivially on ∆i.

Now consider the first three block actions described by the graphs given on the
second row of Proposition 5.11. If ρ0 is trivial on a block, then, as it commutes with
ρ2 and ρ3, we get that ρ0 acts as the identity, a contradiction. Thus the remaining
possibility for the block action is described by the alternating {1, 3}-square, the one
on the right side of the second row of Proposition 5.11.

Let ∆2 = ∆1ρ1, ∆3 = ∆2ρ3 and ∆4 = ∆3ρ1. As (ρ0ρ1)2 fixes the blocks, k must
be even and, consequently s is even.

Let K = 〈g1, h1〉 be the action of T on the block ∆1 and let B := |K : 〈g1〉|
and C := |K : 〈h1〉|. By Lemma 3.2 k = lcm(C,B)s and, as seen in the proof of
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Lemma 3.2, there exists some D such that |g1| = DC and |h1| = DB. One may
consider a = gcd(B,C) and b = s. Then it is sufficient to prove that both B and
C are even numbers.

Let us first prove that both |g1| and |h1| are even. Note that |g1| and |h1| cannot
both be odd, since s = lcm(|g1|, |h1|). Hence, suppose |g1| is even and |h1| is
odd. Since |h1| is odd, we must have (ρ0ρ1)2 = (g1h2h3g4)|g1|/2. We have s/2 ≡
0 mod |hi| for i ∈ {1, 4} and s/2 ≡ 0 mod |gi| for i ∈ {2, 3}, hence (h1g2g3h4)s/2 is
trivial. In addition, note that s/2 ≡ |g1|/2 mod |g1|. Consequently,

(gh)s/2 = (g1h2h3g4)s/2(h1g2g3h4)s/2 = (g1h2h3g4)s/2 = (g1h2h3g4)|g1|/2 = (ρ0ρ1)2

a contradiction. The case where |g1| is odd and |h1| is even can be treated similarly.
Then both |g1| and |h1| are even.

Suppose that gcd(C,B) is odd. Assume that C or B is odd, but not both. Then,
since the orders of both g1 and h1 are even, D must be even. Suppose first that

that B is even and C is odd. Let i and j be such that hB1 = gCi1 and gC1 = hBj1 .
As |hB1 | = |gC1 | = D both i and j must be coprime with D. Hence i and j are

odd numbers. Then h
Bs
2

1 = g
Cis
2

1 , implies that Cis
2 = 0 mod s, a contradiction,

since C and i are odd. We get the same contradiction if we assume that B is
odd and C is even. Thus B and C are both odd. Let α and β be such that
lcm(B,C) = αB = βC. Then, both α and β are odd. Thus, from the equalities
below, we get that (gh)s/2 is trivial:

(gh)s/2 = (g1h2h3g4)s/2(h1g2g3h4)s/2

= (g1h2h3g4)
D
2 lcm(B,C)(h1g2g3h4)

D
2 lcm(B,C)

= (g1h2h3g4)
D
2 βC(h1g2g3h4)

D
2 αB

= (g1h2h3g4)
DC
2 (β+αi)

= id,

a contradiction. Hence gcd(C,B) must be even. �

Theorem 5.13. Let a and b be positive integers such that s = lcm(a, b) and s ≥ 2.
Then the locally toroidal polytope {{4, 4}(2,0), {4, 4}(s,s)} has a faithful transitive
permutation representation of degree n if and only if

n ∈ {4s2, 8ab, 16ab, 32ab, 64ab} or n = 4ab if a and b are both even.

Proof. This result follows from Propositions 5.1, 5.2, 5.8 and 5.12 and Lemma 5.3.
�

Theorem 5.14. Let a and b be positive integers such that s = lcm(a, b) and s ≥ 2.
Then the locally toroidal polytope {{4, 4}(2,0), {4, 4}(2s,0)} has a faithful transitive
permutation representation of degree n if and only if

n ∈ {8s2, 16ab, 32ab, 64ab, 128ab} or n = 8ab if a and b are both even.

Proof. Notice that the theorem holds when s = 2 (see Table 2). From now on
assume that s ≥ 3. Let G be the group of {{4, 4}(2,0), {4, 4}(2s,0)} and let n be
a degree of a transitive faithful permutation representation of G. Consider the
normal subgroup T of G generated by u2 and v2 where u = ρ1ρ2ρ3ρ2 and v = uρ2 .
Let δ := (ρ1ρ2ρ3)2s = (uv)s and β := (ρ0ρ1)2. As δ is a central involution, it
determines an embedding of G into S2 o Sn

2
where the blocks are the connected
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components of δ. Let f denote the homomorphism G → Sn
2

determined by this
embedding. If Ker(f) = 〈δ〉 then, by Theorem 5.13 and Corollary 4.4, n is one of
the degrees listed in the statement of this theorem. In what follows we lead with
the case Ker(f) 6= 〈δ〉.

Firstly consider the case s odd. In this case T has no involutions. Hence,
as all the elements of Ker(f) are involutions, the intersection of T with Ker(f)
is trivial, therefore f(G0) must be is the group of the map {4, 4}(s,s). If ρ0 ∈
Ker(f) then β ∈ Ker(f). But as β is a central involution in G, we get β = δ, a
contradiction. Hence |f(ρ0)| = |f((ρ0ρ1)2)| = 2. This shows that f(G) is the group
of {{4, 4}(2,0), {4, 4}(s,s)}, or equivalently, Ker(f) = 〈δ〉, a contradiction.

Let us now lead with the case s even. In this case δ ∈ T . Suppose that Ker(f)∩T
is not 〈δ〉. Then 〈us, vs〉 ≤ Ker(f). Indeed 〈us, vs〉 is the maximal subgroup of T
contained in Ker(f). Consequently, f(G0) is, in this case, the group of the map
{4, 4}(s,0). Now suppose that ρ0 ∈ Ker(f) then β := (ρ0ρ1)2 ∈ Ker(f), as before
one gets a contradiction. Hence Ker(f) = 〈us, vs〉 and G/Ker(f) is isomorphic to
the group of {{4, 4}(2,0), {4, 4}(2s′,0)} where s′ := s/2.

We may assume by induction the degrees of {{4, 4}(2,0), {4, 4}(2s′,0)} are precisely
those of the following list where lcm(a′, b′) = s′.

8s′2, 16a′b′, 32a′b′, 64a′b′, 128a′b′ or n = 8a′b′ if a′ and b′ are both even.

Assume without loss of generality that lcm(2a′, b′) = s. Then the degrees of G are
contained in the following list.

4s2, 16(2a′)b′, 32(2a′)b′, 64(2a′)b′, 128(2a′)b′ or n = 8(2a′)b′ if a′ and b′ are both even.

All these degrees correspond to the ones given in the statement of this theorem
with one exception, n = 4s2. Let us now rule out this possibility.

Suppose that n = 4s2 then, the number m of T -orbits is at most 4. We remind
that T = 〈u2, v2〉, δ = usvs, β = (ρ0ρ1)2 and, since s is even, Ker(f) = 〈us, vs〉. As
δ is a fixed-point-free involution (swapping n/2 pairs of points), and u2 and v2 have
the same cyclic decomposition, us swaps exactly n

4 pairs of points while vs swaps
the remaining n

4 pairs of points. As the orbits of T have the same size and T acts
regularly on each orbit, there exist exactly two possible sizes, say a and b, of a cycle
of the cyclic decomposition of u2 (and for v2). Moreover, as us has fixed points, a
and b must be distinct. Let us see that this implies that m = 2. Firstly, as the case
where a = b = s cannot happen, T cannot be transitive, thus m 6= 1. Secondly,
again as a = b = s cannot happen, n/4 6= s2, hence m 6= 4. Let ∆1 and ∆2 be
the T -orbits. As a 6= b, ∆1ρ2 = ∆2. Furthermore, ρ2 is the unique permutation
of the generating set of G, permuting the blocks. Indeed, as ρ0 commutes with u
and v, uρ1 = u−1, uρ3 = u, vρ1 = v and vρ3 = v−1, the other involutions, ρ0, ρ1
and ρ3, cannot swap the blocks as this would force the cyclic decomposition of u2

and v2 to be the same on the blocks, and a = b = s. Let u1, v1, u2 and v2 denote
the actions of u and v on ∆1 and ∆2, respectively. Let a and b be the orders of u21
and u22, respectively. Then us = ua1 , vs = va2 . The orbits of 〈β, δ〉 have the same
size, equal to 4. Thus, with no other possibilities, either β = vb1u

b
2 or β = δvb1u

b
2. In

addition, as ρ0 fixes the blocks and commutes with u2 and v2, we get ρ0 ∈ 〈β, δ〉, a
contradiction.

�
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Table 3. The possible actions on the blocks when m = 4
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