ABSTRACT B Κ ()

ICC9

ECerS

CERAMICS IN EUROPE

F6	Tuning the Electro-Catalytic Properties of Mixed Conducting Perovskite-Type Oxides	Melanie Maurer
F7	Investigation of the transport mechanism in (Ba)_(0.5) (La)_(0.5) (Co)_(0.5-x) (Fe)_(0.5) (Zn)_x O_(3- δ)	Francis Oseko
F8	Characterization and stability of metal exsoluted perovskites as sofcs electrodes	Juan Carlos Pérez-Flores
F9	The role of the electrolyte for the oxygen exchange mechanism close to the triple phase boundary of Pt YSZ microelectrodes	Kirsten Rath
F10	Composition-dependent characteristics of sol-gel BaTi1-xHfxO3 ceramics	Cătălina-Andreea Stanciu
F11	Temperature dependent dielectric behavior of (Ba,Sr)TiO3 solid solutions sintered from sol-gel derived powders	Cătălina-Andreea Stanciu
F12	Tuning Oxygen Non-Stoichiometry in Spark Plasma Sintered LiNi0.5Mn1.5O4 High Voltage Cathode Materials	Michael Stuer
F13	Laminated lithium-conducting oxide ceramics for use as solid state electrolytes	Leonhard Tannesia
F14	Developing Composition Stability of La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) Under Reducing Conditions by Molybdenum Doping for Anode Applications in LT-SOFCs	Kimia Yousefi Javan
F15	The effect of synthesis method and Sr-dopant amount on the electrical conductivity of strontium-doped lanthanum manganites	Andreja Žužić

Symposium G: Ceramics for energy and environmental technology / Membranes

G1	The effect of manganese dioxide on dielectric properties of 0.3BT – 0.1BMT – 0.6BF composite	Sergejus Balčiūnas
G2	Synthesis method as a factor controlling phase composition and ionic conductivity of Na3Zr2Si2PO12 NASICON – Towards improved electrolyte for sodium-metal solid state battery	Aleksandra Boroń
G3	Synthesis and characterization of Nano TiO2/Expanded Perlite applied to the photocatalytic degradation of 4-nitrophenol.	Antonia Ekonomakou
G4	Improved performance of Ni-rich NMC using a chemically activated coating process	Yiran Guo
G5	High power factor in isovalently substituted Ca3Co4O9 ceramic through a rapid preparation method	Maria A. Madre
G6	Deep eutectic solvents as possible electrolytes for Al-ion cells	Magda Mączka
G7	Suppression of interfacial reactions in lithia-based cathodes for lithium ion batteries	Yong Joon Park
G8	The influence of preparation conditions and microstructure of hydrothermally derived MnO2 electrode materials on electrochemical performance of pseudocapacitors	Paweł Pasierb
G9	TiO2 nanotubes on translucent spinel substrate: degradation of different pollutants under UVA irradiation in water	Patrícia Petrisková
G10	Phase relationships, electrical transport properties and redox behavior of oxides in the PrVO4-Ca2V2O7 system for SOFC applications	Rui Pinto
G11	Formation mechanism of organosilica layers towards periodic porosity	Marie Alix Pizzoccaro- Zilamy

Phase relationships, electrical transport properties and redox behavior of oxides in the PrVO4-Ca2V2O7 system for SOFC applications

Rui Pinto¹, Blanca Arias-Serrano², Aleksey Yaremchenko¹

¹ CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal ² Leibniz Institute for Plasma Science and Technology, Greifswald, Germany

Abstract:

Rare-earth and alkaline-earth vanadates attract attention as prospective materials for electrochemical applications, in particular, as redox-reversible components for fuel electrodes of solid oxide fuel cells (SOFC). An essential advantage of $(Ln,A)VO_x$ -derived components of SOFC anodes is their anticipated resistance to carbon deposition and sulfur-containing impurities, which is critical for hydrocarbon- and biogas-fueled SOFCs. The present work was focused on the oxides of the PrVO₄-Ca₂V₂O₇ system as fuel electrode precursors, with an emphasis on phase formation, redox and thermomechanical behavior, and electrical properties.

 $PrVO_4$, $Ca_2V_2O_7$ and the ceramics with the nominal composition $Pr_{1,2}Ca_xVO_{4,6}$ (x = 0.02-0.20) were prepared by the conventional solid-state route. Ceramics samples were sintered at 1000°C for $Ca_2V_2O_7$ and 1300°C for other materials. XRD demonstrated the formation of phase-pure $Pr_{1,2}Ca_xVO_{4,6}$ solid solutions with the tetragonal zircon-type structure for up to 5 at.% of calcium in Pr sublattice. At the same time, SEM/EDS suggest a lower solubility indicated by the presence of Ca-V-O phase impurities. Doping by calcium increases mixed ionic-electronic conductivity of $Pr(Ca)VO_4$ ceramics under oxidizing conditions. The electronic contribution is p-type and decreases with reducing $p(O_2)$. The reduction of $Pr_{1,2}Ca_xVO_{4,6}$ ceramics in a 10%H₂-N₂ atmosphere at 800°C leads to phase separation and formation of perovskite-like $PrVO_3$ and $CaVO_3$ phases. The redox behavior of $PrVO_4$ - $Ca_2V_2O_7$ ceramics on isothermal cycling between air and $10\%H_2$ -N₂ was studied by impedance spectroscopy, thermogravimetry, dilatometry and post-mortem XRD analysis.

Acknowledgements:

This work was financially supported by the FCT (project CARBOSTEAM (POCI-01-0145-FEDER-032295) and project CICECO - Aveiro Institute of Materials (UIDB/50011/2020 and UIDP/50011/2020)). Rui Pinto acknowledges PhD scholarship by the FCT (grant 2020.04654.BD).