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palavras-chave frustração celular, aprendizagem automática, aprendizagem sem supervisão,
deteção de anomalia, one-class support vector machines, isolation forest , k-
means.

resumo Os Sistemas de Frustração Celular modelam interações entre agentes apre-
sentadores e detetores, com o objetivo de concretizar deteções de anomalias
em data sets. Estes dois tipos de agentes seguem uma dinâmica frustrada
(i.e., instável), na qual continuamente trocam de agente do outro tipo com o
qual estão emparelhados, quando uma amostra normal é apresentada pelos
agentes apresentadores. De forma a que os SFCs consigam fazer deteções,
os apresentadores têm de mostrar amostras anómalas que tenham uma ou
mais características anómalas, o que leva a que os agentes emparelhem du-
rante mais tempo, levando a emparelhamentos estáveis e consequentemente
deteções.
Este trabalho melhora as versões anteriores do modelo ao permitir que os
detetores vejam duas regiões do espaço das características como anómalas,
com uma região normal entre elas. A técnica de clustering K-means também
foi utilizada para agrupar dados nos data sets, para que os detetores consi-
gam particionar o espaço das características e sejam atribuídos a uma certa
região que verão como normal, enquanto que o resto verão como anómala.
Mostra-se que não existe necessidade de treinar populações de detetores
separadamente para fazer deteções em data sets que tenham amostras anó-
malas entre amostras normais.
A versão atual do modelo é comparada com versões prévias do modelo de
Frustração Celular, e também com dois métodos bem conhecidos de deteção
de anomalias, o One-Class Support Vector Machines, e o Isolation Forest.
Os resultados mostram que tem desempenho equiparável em relação aos
métodos concorrentes, enquanto que em relação às versões prévias, é capaz
de atingir resultados equivalentes sendo um modelo mais robusto aplicável
em mais situações com menos esforço.
Por fim, algumas ideias sobre trabalho futuro são discutidas de forma a que
o modelo seja melhorado, pois ainda revela alguns problemas quando certas
condições pouco favoráveis surgem em data sets.
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keywords cellular frustration, machine learning, unsupervised learning, anomaly detec-
tion, one-class support vector machines, isolation forest, k-means.

abstract Cellular Frustrated Systems model the interactions between presenter and
detector agents, with the goal of detecting anomalies in data sets. These
two types of agents follow a frustrated dynamic (i.e., unstable), in which they
continuously change the agent of the other type they are paired with, when
a normal sample is presented by the presenter agents. In order for CFSs
to make detections, presenters must show abnormal samples that have one
or more abnormal features, which leads the agents to pair for longer times,
leading to stable pairs, hence detections.
This work improves upon the previous versions of this model by allowing de-
tectors to see two regions of feature space as abnormal, with a normal region
of feature space in-between. The K-means clustering technique is also used
to cluster data in data sets, so that detectors are able to partition the feature
space and be assigned to a certain region which they will see as normal, with
the rest being seen as abnormal. It is shown that there is no need to train
separate populations of detectors in order to make detections with data sets
that have abnormal samples in-between normal ones.
The current version of the model is compared with previous versions of the
Cellular Frustration model, and also with two well known anomaly detection
methods, the One-Class Support Vector Machines, and the Isolation Forest.
The results show that it has comparable performance in relation to the com-
peting methods, whereas regarding the previous versions, it is able to achieve
the same results while being a more robust model applicable in more situati-
ons with less effort.
Finally, some ideas for future work are discussed in order to further improve
the model, which still has some issues when certain unfavorable conditions
arise in data sets.
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CHAPTER 1

Introduction

Nowadays, machine learning (ML) is very popular for developing powerful algorithms that

solve complex tasks and real world problems. These often involve processing large amounts

of data to uncover useful information, which is a process called data mining. Applications

of ML can be found in almost every professional �eld, from business to sports, academia to

industry, robotics to healthcare.

Speci�cally, ML is a �eld of research that develops mathematical models capable of pro-

ducing predictions. Part of the development process of a model requires adjusting parame-

ters, and in order to do that, a lot of information must be fed to the model. This information

comes from the real world in the form of data sets.

Since in the real world there are di�erent kinds of situations, problems, tasks, that need

to be dealt with, the need for di�erent ML models arises. Some models are better for cate-

gorical prediction, and some for numerical prediction. Categorical prediction means trying

to identify something as being part of a class of objects. This is the case, for instance, when

trying to recognize di�erent fruits while sorting them [1]. Numerical prediction tries to

make a prediction regarding the evolution of a trend of data points by means of a mathe-

matical technique called regression. For example, if a model can be adjusted to �t the data

from the stock prices of some stock in the stock market, it will be able to predict the closing

price of that stock [2].

One �eld of ML of particular interest is anomaly detection, which tries to tackle the

problem of recognizing patterns in data that exhibit unexpected behavior. These patterns

are often called anomalies or outliers, and these terms are used interchangeably. The im-

portance of this �eld comes from the fact that anomalies in data are important information

that can be acted upon in many application domains. [3]

There are many possible applications of anomaly detection. Some practical examples

are: detecting malignant tumors through an MRI image [4]; recognizing an abnormal net-

work tra�c pattern because a hacked computer in a network of computers is sending in-

formation to an unauthorized destination [5]; preventing credit card fraud by detecting

irregular transactions [6].

This work’s contribution to the anomaly detection �eld consists in improving the cel-

lular frustration (CF) model described in [7], by making it more general and accurate. Al-

though this work builds on previous attempts in the same direction, more work is still re-

1



2 CHAPTER 1. INTRODUCTION

quired. CF algorithms still remain poorly studied despite good results for detecting anoma-

lies in data sets, and for this reason, it is important to make these studies.

This work is organized as follows. In chapter 2 an overview of the most relevant tech-

niques and concepts in ML related to this work are provided, particularly regarding anomaly

detection. In chapter 3 the CF model will be explained in detail, setting clearly the termi-

nology, de�nitions and concepts, in order to provide a clear picture of its inner workings

and how it can be applied in anomaly detection scenarios. In chapter 4 the CF model devel-

oped in this work will be compared to its previous versions, and to other anomaly detection

methods. To compare their performances, synthetic and real data sets will be used, with

these results being discussed in detail. Finally, in chapter 5 a summary of the work done,

and results obtained, will be made, along with a brief description of possible future work.



CHAPTER 2

Machine Learning Methods And
Concepts

Machine learning is a multidisciplinary �eld with many fundamental concepts that must

�rst be understood in order to apply ML techniques successfully, and some of these will be

discussed in this chapter.

Although the focus of this work will be on anomaly detection, which is mostly associ-

ated with the ML sub�eld known as unsupervised learning, a brief overview of supervised

learning and relevant techniques thereof will be provided.

Two of the most popular anomaly detection algorithms are explained in this chapter,

and these are the One-Class Support Vector Machines (OCSVMs), and Isolation Forest (IF).

The popular K-means clustering technique will also be explained. Finally, an overview of

the most common ML techniques performance evaluation methods and concepts, will be

described.

2.1 Data Sets, Samples, And Features
All measured real world information is stored in what is called a data set, which is a col-

lection of related sets of information organized as a matrix, X = {xN = (v1, . . . , vn)∀Su :
u = 1, 2, . . . , N}, as seen in Figure 2.1. Each set of information is called a sample, S, which

has features, Ff∀f = 1, . . . , n, that characterize a measurement.

Figure 2.1: Visual representation of a data set, and how samples’

feature values are stored in it. A data set is a matrix with each sample

on a row, and values from di�erent features on each column. The

total number of samples is NS .

There are two ways to store data in data sets. Labeled data has a column output vector

of dependent target variables, t = (t1, . . . , tN), each with a corresponding input vector of

independent variables, xN . This column vector is the rightmost column of values in a data

set. Unlabeled data does not have the labels t, having only the input vectors xN .

3



4 CHAPTER 2. MACHINE LEARNING METHODS AND CONCEPTS

2.2 Data Normalization
In ML it is often required to normalize data stored in a data set before using it. This aims to

give equal importance to features and avoid biases regarding the way an algorithm weighs

the importance of features in a data set. This is particularly important when there is no

information beforehand regarding the order of magnitude of the data.

For instance, if a data set has features with values with very di�erent orders of magni-

tude, perhaps with di�erences in the hundreds or thousands, when calculating how alike

two data points are based on the distance between them, the algorithm would consider the

values with greater orders of magnitude with a bigger weight, which would a�ect the result

immensely. This is especially true in algorithms involving distance measurements for clas-

si�cation, regression or clustering. This can be solved with two normalization techniques

commonly used in ML called min-max normalization and z-score normalization, although

there are others. The description of these methods references the ones in [8].

The min-max normalization computes a linear transformation on a data set by map-

ping feature values, vu, to a new range of values as follows vu ∈ [minF ,maxF ] → v′u ∈
[min′F ,max

′
F ], whereminF andmaxF are the minimum and maximum values of the orig-

inal range, and min′F and max′F are the new range values, respectively. This is done by

calculating

v′u =
vu −minF

maxF −minF
(max′F −min′F ) +min′F . (2.1)

Notice there’s never any issue while mapping the original values, but if a new value not

initially present in the data set is mapped, there is a chance it will provoke an out-of-bounds

error if it is less than min′F or greater than max′F . To solve this, one can simply map any

values less than min′F to min′F and any values greater than max′F to max′F .

Another issue is that outliers could create distortions in the mapping of the normalized

values. This happens because a lot of values are compressed in a small range because the

normalization maps the outliers to the edge of the range and therefore must be farther

from the majority of points. This required separation between points is what is considered

a distortion, because it gives a sense that values are more closely related than they really

are.

The z-score normalization is useful when the minimum and maximum values of a fea-

ture F are unknown, while also being robust to outliers if they are present. It requires the

mean, µ, and standard deviation, σ, of each feature to normalize each feature accordingly.

It normalizes a feature F ’s value, vu, by calculating

v′u =
vu − µF
σF

. (2.2)

One issue with this normalization is that the range of the new values cannot be de�ned,

but it will be around zero. This means that the order of magnitude of the values in di�erent

features can vary a little, when in reality they should all have the same order of magnitude.

2.3 Supervised Learning
Supervised learning is an approach to ML usually applied in classi�cation or regression

problems. Supervised methods rely on human input for labelling data sets correctly so that



2.3. SUPERVISED LEARNING 5

the model can learn from it, and produce correlations between the labeled output vector of

target variables, t = (t1, . . . , tn), and the corresponding set of input vectors, {xn}, where

n = 1, . . . , N is the nth row of the data set used for training a model.

In regression and classi�cation problems the common approach is to extract the input

and corresponding output variables from a training set, which will be used to train a model

that �ts the training data, so that when a new observation is provided to the model it can

accurately make a prediction. In regression a prediction is a real continuous value, while

in classi�cation it is a discrete binary value that labels the class of the prediction.

Some real world applications of supervised learning are: computer vision regarding ob-

ject recognition [9]; classifying applicants for life insurance by doing a risk assessment [10];

predicting healthcare costs of individuals to help prioritize the allocation of care manage-

ment resources [11].

Some problems with this approach are: human expertise required to set up models prop-

erly; higher chance of poorly trained algorithms due to human error when building training

sets; unable to independently cluster or classify data. [12]

A summary of some fundamental concepts and methods of supervised learning will

be provided, which describe how ML methods in general work, especially regarding the

mathematical concepts behind them.

2.3.1 Linear Regression
The linear regression model coupled with the least-mean-squares (LMS) algorithm is prob-

ably one of the simplest and most well known approach to a regression problem. Its de-

scription references [13].

This model is given by linear combinations of nonlinear functions as

y(x, ω) = ω0 +
M−1∑
j=1

ωjφj(x),

whereM is the number of parameters, φj(x) are basis functions, and ω0 is a bias parameter

that allows o�setting data. To simplify this formula, one can de�ne an extra dummy basis

function, φ0(x) = 1, so that it becomes

y(x, ω) =
M−1∑
j=0

ωjφj(x) = ωTφ(x), (2.3)

where ω = (ω0, . . . , ωM−1)
T

and φ = (φ0, . . . , φM−1)
T

. In this case the vector φ(x) of basis

functions can be written as φ(x) = x. Usually the y(x, ω) function is called a hypothesis

function and will be used to make predictions regarding a target variable t.
To make predictions the model must be trained to compute values close to the ones in

the output vector of the training set, which is to say y(x, ω) ≈ t is the goal. To �gure out

how far a prediction is from the real value, the mean squared error (MSE) function is used,

which is one of many possible cost functions, and it is given by

E(ω) =
1

2N

N∑
n=1

(tn − ωTxn)2, (2.4)
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where N is the number of observations in the training set, and
1
2

is a convenience factor.

The LMS algorithm is a sequential learning algorithm based on the technique of stochas-

tic gradient descent that minimizes the cost function, which means it tries to approach the

real value during training when computing the hypothesis function.

First the gradient of the cost function is needed, and it is given by

∇E(ω) =
∂

∂ω
E(ω) =

1

N
(ωTx− t)x. (2.5)

The idea behind this algorithm is that the model parameters should be continually up-

dated until the cost function converges to a local or global minimum. This is done by

updating the parameters vector ω using

ω(τ+1) = ω(τ) − η∇E(ω) = ω(τ) + η
1

N
(tn − ω(τ)Txn)xn, (2.6)

where τ is the iteration number, and η is the learning rate parameter. Note that the learn-

ing rate should be chosen adequately so that the algorithm converges fast. While a larger

learning rate will lead to faster convergence, if it is too large the algorithm will diverge,

therefore some trial and error may be required to �nd an optimal learning rate.

2.3.2 Logistic Regression
In classi�cation several of the steps seen in linear regression are also taken. Although the

idea here is to take an input vector and assign it a class in a set of discrete classes,Ck, where

k = 1, . . . , K . These classes are disjoint and each input is only assigned to one output class.

The input space is divided into decision boundaries, which means that decisions are made

based on where the hyperplane splits the data. The description of this method references

[14].

When dealing with a probabilistic model in a two-class problem, it is common for the

target variable to take the form of a binary value such as tn ∈ {0, 1}, such that t = 1
represents the positive class, and t = 0 represents the negative class. The value of t can

also represent the probability of the prediction being one or the other class.

In this situation, the hypothesis function used in the linear regression model no longer

suits the model, mainly because it predicts values in a continuous range, well beyond the

binary values considered here. Therefore, a new function called sigmoid, or logistic, func-

tion is chosen, because it outputs values between 0 and 1, which will be very useful for

making probabilistic predictions regarding classes that are represented by binary values.

This function is given by

σ(ωTx) =
1

1 + e−ωT x
. (2.7)

In this case, instead of minimizing a cost function the goal is to maximize it, therefore the

stochastic gradient ascent algorithm will be used, which is quite similar to the previously

discussed stochastic gradient descent algorithm in every aspect.

To get to the cost function, �rst the likelihood function must be de�ned, and it is given

by

p(tn|xn, ω) =
N∏
n=1

σ(ωTxn)tn(1− σ(ωTxn))1−tn , (2.8)
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where σ(ωTxn) = p(t = 1|xn, ω). Then the cost function will be derived as

E(ω) = ln(p(tn|xn, ω)) =
N∑
n=1

(tn ln(σ(ωTxn)) + (1− tn) ln(1− σ(ωTxn))), (2.9)

and its gradient as

∇E(ω) =
N∑
n=1

(σ(ωTxn)− tn)xn. (2.10)

Finally, just as in the linear regression case, this gives the rule that updates the param-

eters of the model as

ω(τ+1) = ω(τ) + η∇E(ω) = ω(τ) + η(tn − ω(τ)Txn)xn. (2.11)

2.3.3 Support Vector Machines

The Support Vector Machines (SVMs) method is an ML approach typically used in classi�-

cation of both linear and nonlinear data, although it can also be used for regression.

Linearly Separable Data

For this description, [15] is referenced and the two-class classi�cation problem is consid-

ered, which can be approached with the linear model

y(x) = wTφ(x) + b, (2.12)

where φ(x) is a �xed feature space transformation, and b is the bias parameter. The training

set has N input vectors x1, . . . , xN , with corresponding target values t1, . . . , tN , where

tn ∈ {−1, 1}, and n = 1, . . . , N .

Given a training data set is linearly separable in feature space, there is at least one set

of parameters w and b such that y(xn) > 0 for points with tn = 1, and y(xn) < 0 for points

with tn = −1, and tny(xn) > 0 for all training points. Since there can be many solutions,

the SVM �nds the best one by �nding the one that will give the minimum classi�cation

error on new observations.

The way the SVM �nds the best solution is by searching for the maximum margin hy-

perplane (MMH). This is the decision boundary with the largest distance between samples

from di�erent classes. First, one must know how to compute the distance from any point xn
to the decision surface, which is given by

tny(xn)
‖w‖ . Note that all points satisfy the constraint

tn(wTφ(xn) + b) ≥ 1.

Since the distance between any support vector and the decision surface is
1
‖w‖2 , the

maximal margin is given by
2
‖w‖2 . This makes it obvious that in order to maximize the

maximal margin, ‖w‖2 must be minimized. Therefore, the objective function will be
1
2
‖w‖2,

still subject to the constraints mentioned previously, which is an example of a quadratic

programming problem.
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To solve this optimization problem, Lagrangian multipliers an ≥ 0 will be used, which

gives the following Lagrangian function

L(w, b, a) =
1

2
‖w‖2 −

N∑
n=1

an(tn(wTφ(xn) + b)− 1), (2.13)

where a = (a1, . . . , aN)T . By equating the derivatives of L(w, b, a) with respect to w and b
equal to zero, the following conditions emerge

w =
N∑
n=1

antnφ(xn), (2.14)

0 =
N∑
n=1

antn. (2.15)

By eliminating w and b from L(w, b, a) using these conditions, what is left is the dual rep-

resentation of the maximum margin problem, given by

L̃(a) =
N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm), (2.16)

which will be maximized with respect to a, subject to the constraints

an ≥ 0, (2.17)

N∑
n=1

antn = 0. (2.18)

Also, the kernel function introduced here is de�ned by k(x, x′) = φ(x)Tφ(x′).

Finally, new data points can be classi�ed by the trained model by evaluating the sign of

y(x), which can be expressed in terms of {an} and the kernel function, resulting in

y(x) =
N∑
n=1

antnk(x, xn) + b. (2.19)

The resulting sign of this calculation tells on which side of the hyperplane the data point

lies, and consequently its class.

For every data point either an = 0 or tnyn(xn) = 1, and for those that an = 0 they

will not be used to make predictions for new observations. The relevant data points are

called support vectors, and since they satisfy tny(xn) = 1 they will lie on the MMH. See

Figure 2.2 for an example. This is crucial for the practicability of SVMs, because after the

model is trained many of the data points will not be used in calculations, and only the

support vectors will be used for those calculations that return predictions.

After solving the optimization problem and �nding the values for a, only the parameter b
is left to be determined. Considering Equation 2.19 with the understanding that any support

vector xn satis�es tny(xn) = 1, this gives

tn
∑
m∈S

(amtmk(xn, xm) + b) = 1, (2.20)
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where S is the set of indices of the support vectors. Finally, the parameter b is given by

b =
1

NS

∑
n∈S

(
tn −

∑
m∈S

amtmk(xn, xm)

)
, (2.21)

where NS is the total number of support vectors.

Figure 2.2: SVM decision boundary with

margins de�ned by support vectors. Here the

MMH separates data points into two classes.

The margins, represented by dashed lines, are

de�ned based on the support vectors that the

SVM found, which in turn are represented by

the points circled by dashed lines, while the

distance between the margins is called the

maximal margin.

As mentioned in the beginning, this approach assumes linearly separable data, which

might not always be the case, especially when the class distributions overlap due to outliers

or noise. When this is the case, the decision boundary reached after training may lead to

poor generalization. Therefore, during training there must be some leeway for the misclas-

si�cation of some training points. For this next part of the description, [16] is referenced.

The idea is then to allow data points to be misclassi�ed with a penalty proportional

to the distance from the decision boundary. For this a linear function of the distance will

be used, and slack variables ξn ≥ 0 with one slack variable for each training point will

be introduced. For data points on or inside the correct margin ξn = 0, whereas for the

remaining points ξn = |tn − y(xn)|. For instance, a point on the decision boundary y(xn) =
0 will have ξn = 1, while points beyond that will be misclassi�ed with ξn > 1. Points with

0 < ξn ≤ 1 are correctly classi�ed but are between the decision boundary and the margin.

This results in the classi�cation constraint being

tny(xn) ≥ 1− ξn, (2.22)

where the slack variables satisfy ξn ≥ 0.

This results in what are called Soft-Margin SVMs, and the corresponding objective func-

tion is

C

N∑
n=1

ξn +
1

2
‖w‖2 , (2.23)

where C > 0 is a user de�ned parameter that controls the width of the maximum margin

and the penalty for misclassi�cations. When C → ∞ the previous SVM is recovered. If

C is small some misclassi�cations are allowed. The goal here is to minimize this objective

function in order to maximize the margin.

The Lagrangian is then

L̃(a) =
N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm), (2.24)
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which is equal to the one in the linearly separable case, although now the constraints are

0 ≤ an ≤ C, (2.25)

N∑
n=1

antn = 0. (2.26)

Nonlinearly Separable Data

When data are not linearly separable, the previously discussed SVM would not be able to

de�ne a decision boundary that clearly separates the data into di�erent classes, therefore

no proper solution would be found. To solve this problem two things must be done to get

a nonlinear SVM. First the original data are transformed into a higher dimensional space

by means of a nonlinear mapping. This makes it more likely that the data become linearly

separable, and therefore the next step is again solving a quadratic optimization problem

that tries to �nd a linear separating hyperplane in this new higher dimensional space. The

MMH found corresponds to a nonlinear separating decision surface in the original space.

This case’s description references [17].

One example of this mapping would be mapping a 2-D input vector x = (x1, x2) into

a 3-D space, z, using the mappings φ1(x) = x1, φ2(x) = x2, and φ3(x) = x21. Now the

decision surface would be given by

y(z) = w1x1 + w2x2 + w3x
2
1 + b = w1z1 + w2z2 + w3z3 + b.

The linear decision surface in z space e�ectively corresponds to a nonlinear second-order

polynomial in the original space. The issues now are choosing an appropriate mapping and

the computational cost of doing all the dot products during training and testing.

To solve the new issues a mathematical trick called the kernel trick will be used. Since

during training the training vectors appear as dot products, φ(x)Tφ(x′), instead of calculat-

ing the dot product on the transformed vectors, it is equivalent to apply a kernel function

to the original data. This way the mapping is avoided and all the calculations can be done

in the original space which is likely to be of a lower dimensionality.

Two popular kernels are the Polynomial kernel of degree h

k(x, x′) = (xTx′ + 1)h, (2.27)

and the Gaussian radial basis function (RBF) kernel

k(x, x′) = e−
‖x−x′‖2

2σ2 = e−γ‖x−x
′‖2 . (2.28)

Although there is no simple rule for determining the best kernel for any given situation,

in practice, choosing di�erent kernels does not usually make a big di�erence in the model’s

accuracy, and during training the SVM will always �nd a solution.

Training this model can take some time if a large data set is used for training, but it is an

accurate model capable of dealing with complex nonlinear decision boundaries. Addition-

ally, the support vectors found provide a compact description of the trained model, while

being less prone to over�tting compared to other methods.
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2.4 Unsupervised Learning

Unsupervised learning is an approach to ML that does not require human input, which

means data are unlabeled. Models created using this technique are capable of learning

simply by processing huge amounts of data. They do this to �nd hidden structures and

patterns in data, that allow them to understand how data are correlated and consequently

make predictions based on that.

Some real world applications of unsupervised learning are: sentiment analysis in so-

cial media to correlate people’s emotions with what they post online [18]; detecting faulty

equipment in time to prevent economic loss [19]; recommending news to users online

through a recommendation engine [20].

Some problems with this approach are: inaccurate results are likelier; human inter-

vention is required to validate results; less clear how data are clustered based on hidden

relations. [21]

In this work, unsupervised learning will be used to perform anomaly detection and

clustering. What follows are descriptions of the methods K-means, used for clustering,

OCSVM, and IF, used for anomaly detection.

2.4.1 K-means

Clustering is an ML technique used to group unlabeled data based on their similarity. A

clustering algorithm takes in raw data and tries to �nd patterns in that data so that it can

output labeled groups of data that are correlated in some way. The one used in this work was

the K-means clustering algorithm, which is one of the most popular and simpler algorithms

that provides adequate results, hence why it was chosen. This algorithm’s description ref-

erences [22].

This algorithm aims to partition a data set {x1, . . . , xN} with N observations, with xi
havingD dimensions, intoK clusters, whereK is a user de�ned parameter that prede�nes

the number of desired clusters. The idea is that distances between points in a cluster are

small compared to those outside their cluster, so it makes sense to group them. To use

distances as a metric in this algorithm, the data set has to �rst be normalized according to

Equation 2.2.

A cluster can essentially be identi�ed by its center, therefore it is useful to formalize

this concept as a set of D dimensional vectors {µk}, where k = 1, . . . , K , and each µk
represents the kth cluster. In the end there will be a set of vectors {µk} with data points

assigned to them, where the sum of the squared distances of each point to the closest cluster

center is a minimum.

During the process of assigning data points to clusters, each point xn will have a corre-

sponding set of binary indicator variables rnk ∈ {0, 1} that tells which cluster k the point

xn is assigned to. If point xn is assigned to cluster k, rnk = 1, otherwise if assigned to some

other cluster j 6= k, rnj = 0, and this is known as the 1-of-K coding scheme.

The objective function in this scenario is given by

J =
N∑
n=1

K∑
k=1

rnk ‖xn − µk‖2 . (2.29)
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Now the goal is to minimize J by �nding the values {rnk} and vectors {µk} that do so. This

is done by means of an iterative process with two successive steps that perform optimiza-

tions with respect to rnk and µk. To kick-start this process, initial values must be chosen

for each µk. Then in the �rst step, J is minimized with respect to rnk while µk is �xed, and

in the second step, J is minimized with respect to µk while rnk is �xed. This is repeated

until the algorithm converges.

(a) (b)

Figure 2.3: K-means clustering when (a) K = 2 and (b) K = 3. In this example synthetic

data was generated from two separate Gaussian distributions with di�erent parameters.

Note how the algorithm always manages to provide a solution even if it does not �t the

data adequately, as seen in (b). Nevertheless, when theK parameter is correctly chosen the

algorithm usually does a good job of clustering data, as seen in (a). This is a trivial example,

but in more complicated cases, the elbow method is typically used to �nd an adequate K .

To determine rnk �rst note that terms with di�erent n are independent, therefore it

is possible to optimize for each n individually by setting rnk = 1 for any value of k that

minimizes ‖xn − µk‖2. This means the nth point is assigned to the closest cluster center.

Formally,

rnk =

{
1 if k = arg minj ‖xn − µj‖2

0 otherwise.

(2.30)

To optimize µk with rnk �xed, �rst note that J can be minimized by equating to zero its

derivative with respect to µk, which gives

2
N∑
n=1

rnk(xn − µk) = 0, (2.31)

and solving for µk gives

µk =

∑
n rnkxn∑
n rnk

. (2.32)

In Equation 2.32 the denominator represents the number of points assigned to cluster k,

therefore µk is equal to the mean of all points xn in cluster k. This is why this algorithm is

called K-means.
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As mentioned, this two-step procedure is performed until the algorithm either con-

verges or simply stops due to a limiting condition regarding the number of iterations al-

lowed. Note that this algorithm always converges because J is systematically minimized,

although it is possible that convergence will occur at a local minimum rather than a global

minimum. In Figure 2.3 a visual representation of the results produced by K-means clus-

tering can be seen.

When it is unclear what a good K value would be when applying clustering to a data

set, the elbow method, as seen in Figure 2.4, can be used to plot a distortion score against

a range of K values, which visually clari�es what an adequate K value would be for that

data set. This distortion score is essentially the objective function J .

The main goal of the elbow method is decreasing the sum of within-cluster variance of

each cluster, which happens the more clusters there are. Although this allows grouping data

with more granularity, after a certain point, splitting a cohesive cluster only reduces this

variance slightly, while producing clusters that group information in a potentially worse

way. [23]

Figure 2.4: Elbow method applied to the clustering example

in Figure 2.3. Note that for K = 2 the curve suddenly shifts

direction, similar to a human arm, where the highest score is the

shoulder, the point where the curve suddenly shifts direction is

the elbow, and the remaining curve is the forearm. This shift

signals the optimal K for the data set.

2.4.2 One-Class Support Vector Machines

In the original SVM method, the goal was to di�erentiate points by labeling them with dif-

ferent classes, and there could be simply two classes or many classes. But in some situations

the interest lies in distinguishing normal observations in a training set from abnormal ob-

servations that do not belong to the distribution of those training points. Speci�cally this is

called outlier detection, when the training data has observations far from the regions with

more densely packed observations, or novelty detection, when a new observation is pre-

sented to the model so that it can be classi�ed as being part of the normal observations or

not. This is equivalent to having only one class and labeling normal data with that class. To

solve this issue the OCSVM method was developed. This method’s description references

[24].

To separate data from the origin the following quadratic program problem must be

solved,

min
w∈F,ξ∈RN ,b∈R

1

2
‖w‖2 +

1

νN

∑
i

ξi − b (2.33)

s.t. wTφ(xi) ≥ b− ξi, ξi ≥ 0, (2.34)

where N is the number of observations, x1, . . . , xN is the training data, F is a dot product

space, i = 1, . . . , N , and ν ∈ [0, 1] represents the fractions of support vectors and outliers.
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The decision function that computes on which side of the hyperplane a point is, is given

by

f(x) = sgn

(∑
i

aik(xi, x)− b

)
, (2.35)

where the coe�cients are found as the solution of the dual problem

min
a

1

2

∑
i,j

aiajk(xi, xj) (2.36)

s.t. 0 ≤ ai ≤
1

νN
,
∑
i

ai = 1, (2.37)

where j = 1, . . . , N . Also, for any ai which is not at the upper or lower bound, the corre-

sponding xi satis�es b = wTφ(xi) =
∑

j ajk(xj, xi).

Essentially this method estimates a function, f , that outputs 1 in a small region of space

where most data points are concentrated, and −1 everywhere else. Since it uses the kernel

trick it transforms the data according to the kernel used, and separates it from the origin

with maximum margin. When a new observation is computed with f , its value determines

which side of the hyperplane it lies on.

2.4.3 Isolation Forest
This method uses binary trees to e�ciently isolate anomalous data points in a data set.

Since these points are prone to isolation they ought to be closer to the root, contrary to

normal points which should be further along the tree. See Figure 2.5b for an example of a

tree. The only two parameters considered in this method are the number of trees, t, used,

and the sub-sampling size, ψ. This method’s description references [25].

Since an isolation tree is a full binary tree, a node, T , can be an external node with zero

children nodes or an internal node with one test and two children nodes, (Tl, Tr). A test

involves a split value p between the minimum and maximum value of a feature q, such that

the test q < p splits points into Tl and Tr.
Given a data set and a corresponding subset X = {x1, . . . , xN}, where N is the num-

ber of observations, an isolation tree can be made by recursively dividing X by randomly

selecting a feature q and a split value p until one of three conditions is met: a tree height

limit is reached; |X| = 1, which means only one point is left to partition; all the remaining

points in X have the same values.

A tree structure represents this recursive partitioning, and the path length from the root

to an external node, where an isolated point lies, equals the number of partitions needed to

isolate that point. Figure 2.5 depicts this process clearly.

If all points are di�erent, then when an isolation tree is fully grown, each one will be

isolated in an external node. This means there will be N external nodes and N − 1 internal

nodes, with the total of nodes being 2N − 1.

The path length, h(x), is equal to the number of edges between x’s external node and

the root of the isolation tree. For N observations in a data set, the average path length is

given by

c(N) = 2H(N − 1)−
(

2(N − 1)

N

)
, (2.38)
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where H(a) is the harmonic number, and c(N) is the average of h(x), which is used to

normalize h(x).

The anomaly score, s, of a point, x, is given by

s(x,N) = 2−
E(h(x))
c(N) , (2.39)

where E(h(x)) is the average of h(x) in an ensemble of isolation trees. Note s’s lower and

upper bounds are respectively given by E(h(x)) → N − 1 =⇒ s → 0 and E(h(x)) →
0 =⇒ s → 1, resulting in 0 < s ≤ 1, with the understanding that 0 < h(x) ≤ n − 1.

The middle ground between de�nitely being an anomaly and de�nitely being a normal

observation is given by E(h(x)) → c(N) =⇒ s → 0.5. This means that when a point

has s ≈ 1 it is an anomaly, whereas if s � 0.5 it is probably a normal observation. If all

observations score s ≈ 0.5 then most likely there are no anomalies in the data set.

(a) (b)

Figure 2.5: IF’s (a) feature space partitioning and (b) resulting isolation tree that detects an

outlier. In (a) the split order gives a sense of how easy it is for an outlier, such as point E,

to be partitioned early on in the process. In (b) the isolation tree visually represents all the

isolated points and their depths in relation to the root, which is represented by the top of

the tree. Note how the outlier point E has depth = 1, because one edge has to be traversed

to reach it, and therefore is immediately recognized as an outlier, whereas the remaining

points require further partitioning to be isolated.

To use IF for detecting anomalies, two things must be done. First the isolation trees

must be trained, each with a di�erent sub-sample of the training data. Then in the detec-

tion stage, each observation of the test set is passed through all the isolation trees, and an

anomaly score is calculated for each one. During this last stage, when each observation x is

passed through an isolation tree, h(x) is calculated by counting the number of edges from

the root to the external node, and subsequently E(h(x)) is derived, which is necessary to

calculate the aforementioned anomaly score, as seen in Equation 2.39. On average anoma-

lies should be closer to the root. One way to rank how outlying a point is, is by sorting



16 CHAPTER 2. MACHINE LEARNING METHODS AND CONCEPTS

points according to their path lengths or anomaly scores, where the ones at the top will be

considered anomalies.

2.5 Performance Evaluation Metrics
There are many ways to evaluate the performance of an ML technique given some data,

but only a few that are most commonly used will be mentioned. In regression problems

the two most popular metrics are the mean absolute error (MAE) and MSE. In classi�cation

problems some of the most used metrics are the confusion matrix, accuracy, recall, preci-

sion, speci�city, fallout, miss rate, the receiver operating characteristic (ROC) curve, and

the area under curve (AUC).

The MAE is given by

MAE =
1

N

N∑
n=1

|tn − xn| , (2.40)

where xn is the prediction, tn the target value, and N the number of observations [26].

Some properties of this error function are: it is slower to converge with a �xed learning

rate, therefore a dynamic learning rate will most likely be required; it is robust to outliers

since it does not increase the error dramatically when they appear; although it measures

the distance from the predicted value to the target value it does not tell the direction of the

error.

The MSE is given by

MSE =
1

N

N∑
n=1

(tn − xn)2, (2.41)

where the di�erent variables represent the same as in Equation 2.40 [27]. Some properties

of this error function are: an adequate �xed learning rate will allow a fast convergence;

since its gradient is higher when the error is high and lower when the error is low, it will

give a more precise value when converging; it is sensitive to outliers since it will square the

error when they appear, giving more weight to them.

To describe the performance evaluation metrics used in classi�cation problems, [28]

was referenced.

When dealing with a classi�cation problem, the way the accuracy of predictions is mea-

sured is essentially by calculating the ratio of correct predictions to total predictions, and

this takes the form of

Accuracy =
number of correct predictions

number of predictions

=
TP + TN

TP + TN + FP + FN

, (2.42)

where the di�erent kinds of predictions made are true positives (TP), true negatives (TN),

which represent the correct predictions made regarding the positive and negative classes,

respectively, and false positives (FP), false negatives (FN), which represent the wrong pre-

dictions made regarding the positive and negative classes, respectively, although sometimes

the model simply outputs a correct or wrong prediction as seen with the logistic regression

for instance. If the accuracy is preferred in terms of a percentage, then the resulting ratio
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just needs to be multiplied by 100. Note that when using accuracy as a metric it is important

to have a balanced data set. A balanced data set requires an approximately equal number

of samples from each class.

The confusion matrix in Table 2.1 takes the di�erent kinds of predictions TP, TN, FP, and

FN, and presents them in a tabular visualization to make it clear how much the prediction

model is confusing the two classes, positive and negative.

Table 2.1: Confusion matrix used in classi�cation problems. The sum of the diagonal

with TP and TN represents the total of correct predictions, while the sum of the negative

diagonal with FP and FN represents the total of incorrect predictions. The sum of all four

cells represents the total of predictions made regarding the provided data set.

Real

Class

Predicted

Class Positive

Class

Negative

Class

Positive Class TP FN

Negative Class FP TN

Recall, or true positive rate (TPR), is the ratio of predicted positive cases that are indeed

real positives in relation to false negatives, and is also an important metric for the ROC

curve. It is given by

TPR =
TP

TP + FN

. (2.43)

Precision, or positive predictive value (PPV), is the ratio of predicted positive cases that

are indeed real positives in relation to false positives, and it is given by

PPV =
TP

TP + FP

. (2.44)

Speci�city, or true negative rate (TNR), is the ratio of predicted negative cases that are

indeed real negatives in relation to false positives, and it is given by

TNR =
TN

TN + FP

. (2.45)

Fallout, or false positive rate (FPR), is the ratio of predicted positive cases that in reality

are negatives in relation to true negatives, and is also an important metric for the ROC

curve. It is given by

FPR =
FP

FP + TN

. (2.46)

Miss rate, or false negative rate (FNR), is the ratio of predicted negative cases that in

reality are positives in relation to true positives, and it is given by

FNR =
FN

FN + TP

. (2.47)

The ROC curve plots TPR against FPR, which are normalized metrics, at various detec-

tion thresholds, and it allows the comparison between classi�ers with di�erent models or
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parameters by visually showing how a classi�er performed. Figure 2.6 shows the di�erent

performances that classi�ers can have and how those are plotted in the ROC curve.

The AUC is calculated with numerical integration methods that solve de�nite integrals,

which in this case was the trapezoidal rule with non-uniform grid given by

AUCb−a = I(f) =

∫ b

a

f(x) dx ≈
N∑
k=1

f(xk−1) + f(xk)

2
∆xk, (2.48)

where a is the �rst point x0, b is the last point xN , and ∆xk = xk − xk−1 is the width of

a segment of the grid [29]. In the context of this work, the AUC is always calculated in a

�nite interval [a, b], where a = 0 and b = 1.

Since the ROC curve is inside the unit square, the AUC is always 0 ≤ AUC ≤ 1. For

the best classi�er AUC = 1, while for the worst classi�er AUC = 0. When AUC = 1
2

three

scenarios are possible: the classi�er is a random classi�er; some parts of the ROC curve are

below the diagonal that de�nes a random classi�er, while others are above it, compensating

each other; half of the ROC curve has TPR = 0 while the other half has TPR = 1. [30]

Figure 2.6: Generic ROC curve that shows possible performances for a classi�er. Points

above the diagonal means the performance of the classi�er is better than simply random

chance, while being below the diagonal means the performance is worse than chance. When

points lie exactly on the diagonal, FPR = TPR throughout the curve, and this means the

classi�er outputs correct results at the same rate as incorrect ones, therefore it is a random

classi�er. The best possible classi�er has (FPR = 0,TPR = 1) in the top left corner, which

means that every classi�cation is correct. The worst possible classi�er has (FPR = 1,TPR =
0) in the bottom right corner, which means that every classi�cation is incorrect. When

comparing di�erent classi�ers with this curve, the goal is always to choose the best possible

classi�er, which means choosing the classi�er with the performance curve that is above the

diagonal and farthest from it, in other words, the one closest to having (FPR = 0,TPR = 1)
in the top left corner.



CHAPTER 3

Cellular Frustration Model

The algorithms that solve the Stable Marriage Problem (SMP) create arrangements where

all agents are paired in stable bonds. Stable bonds are created when paired agents cannot

be destabilized by interacting with other agents. Therefore, solving the Stable Marriage

Problem amounts to �nding such stable arrangements. [31] The inspiration for the CF

model was in part taken from this model, but it operates di�erently.

With CF algorithms the goal of the dynamic is the opposite. Instead, agents should be

designed to engage in a perpetual unstable dynamic, therefore never reaching con�gura-

tions where all agents are in stable pairings. This dynamic depends on the information

presented by one set of agents and contained in a sample of a data set. The principle is that

if agents have been prepared to engage in a very unstable dynamic when samples from a

normal class are presented, then when samples from an abnormal class are displayed the

population should engage in a less frustrated dynamic.

Based on this principle, these algorithms give good results in anomaly detection tasks

when compared to currently popular anomaly detection algorithms. More interestingly,

since these algorithms derive from models appropriate to describe cellular interactions in

the real immune system, this work can gain relevance for building a deeper understanding

of how the immune system works [32].

In this chapter, the concepts and terminology that de�ne the CF model are presented.

These build upon those presented in [7] and [33].

3.1 Terminology And De�nitions
De�nition 1 (Agent). An agent ai ∈ A ∀i ∈ {0, 1, 2, . . . , NA} : NA = |A|, is de�ned as a
tuple ai = {si, li, Ki,mi}, where:

• si is the signal shown by the agent;

• li is a sequence of signals called the global preference list of the signals shown by the
agents of the opposite type;

• Ki is the set of agents with which an agent ai can interact with;

19
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• mi is the state of an agent ai and contains the index i of the agent with which it is
matched, or the value −1 if it is unmatched.

De�nition 2 (Agent types). The set of agentsA is made up of two subsets of agents, where in
one exist presenters P , and in the other, detectorsD, such thatA = P ∪D and P ∩D = ∅. The
total number of presenters and detectors is given by NP = |P | and ND = |D|, respectively.
Hence, the total number of agents is given by NA = NP +ND.

De�nition 3 (Subtypes). In this model there can be subtypes for each type of agent. The
subtypes of presenters are de�ned by the ordering of their list of signals li, where the �rst
signal si of that list determines its subtype. On the other hand, the subtypes of detectors are
de�ned by the signal si that they show. A pair of matched agents of the same subtype is called
M , whereas if their subtypes are di�erent it is calledM .

De�nition 4 (Signals). The set of signals shown by presenters is given by XP = {si : si ∈
X ⊂ R ∧ ai ∈ P}, whereas the set of signals shown by detectors is given by XD = {si : si ∈
X ⊂ {1, 2} ∧ ai ∈ D}. While presenters can show many signals, detectors only show one
signal, which is equal to their subtype. To clarify when one or the other is being referenced,
the notation sPi will be used when mentioning the presenters’ set of signals and sDi when men-
tioning the detectors’ set of signals.

De�nition 5 (Rankings). The preference lists li, are ordered according to the preferences of
their agents’ ai, towards the signals contained in them, with each signal si having a ranking
rli(si) associated with it. Each ranking is simply the index of a signal in li. A lower index rank
is preferred over a higher index one.

De�nition 6 (Detectors’ Domains). Each detector has a normal domain, I , and an abnor-
mal domain, O, for each feature’s distribution of a cluster of samples. A randomly generated
threshold probability, νi, sets how many samples are included in I , as NS = 100 − 100νi%,
with O having the remaining.

In statistics the normal domain would be the acceptance region of a distribution, while

the abnormal domain would be the rejection region.

De�nition 7 (Detectors’ Critical Values). Each I has symmetric critical values zνi/2 calcu-
lated from the normalized features’, Ff , distributions of values vf∀Su, of samples, S, within it,
that give it lower and upper bounds. The lower bound is given by zνi/2 = min{vf∀Su}, while
the upper bound is given by z1−νi/2 = 1− zνi/2.

See Figure 3.3 and Figure 3.4 to understand how De�nition 6 and De�nition 7 relate to

the way detectors see signals si as either being inside or outside their normal domains.

De�nition 8 (Signals Mapping). Detectors establish a mapping, M , of signals, sPi , as M :
si → {ιi, oi}∀ai ∈ P , where signals ιi ∈ I ⊂ XP ∧oi ∈ O ⊂ XP : I∪O = XP ∧I∩O = ∅.
Therefore, detectors see the continuous values shown by the signals sPi as binary signals.

See Figure 3.1, Figure 3.3 and Figure 3.4 for a visual representation of how signals are

mapped.
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De�nition 9 (Interactions Between Types Of Agents). Only interactions between agents of
di�erent types are allowed, such that Ki ⊆ D ∀ ai ∈ P and Ki ⊆ P ∀ ai ∈ D. Furthermore,
there can only be pairs of agents, e.g., one agent bound to another.

(a)

(b)

Figure 3.1: CF model’s mapping of information from the samples in a data set onto presen-

ters and ultimately detectors’ preference lists. (a) Shows how each sample’s information is

mapped onto a set of presenters signals. (b) Shows the preference lists of both presenters

and detectors and how the signals they show are mapped onto those lists. Note that presen-

ters show a wide range of signals while detectors only show the signals 1 and 2, which are

ranked in the presenters’ preference lists according to their subtype, meaning presenters

will always prefer detectors that have the same subtype as them. The signals shown by

presenters are mapped onto a binary set of signals that represent the signal either being

inside the normal domain of a detector or outside it.

(a) (b) (c)

Figure 3.2: The three fundamental ways agents interact when deciding who to pair with.

(a) When both agents are unpaired. (b) When all agents except one are paired. (c) When all

agents are paired.

De�nition 10 (Decision Rules). To update the states mj , mt, of agents aj, at ∈ P , and mi,
mu, of agents ai, au ∈ D, when these interact with each other, it is necessary to follow the
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update rules R:

1. ifmi = −1 ∧mj = −1⇒ mi = j,mj = i.

2. ifmi = t ∧mj = −1 ∧ rli(sj) < rli(st)⇒ mi = j,mj = i,mt = −1.

3. ifmi = −1 ∧mj = u ∧ rlj(si) < rlj(su)⇒ mi = j,mj = i,mu = −1.

4. if mi = −1 ∧ mj = u ∧ rlj(si) = rlj(su) ∧ sj ∈ Ii ∧ sj ∈ Ou ⇒ mi = j,mj =
i,mu = −1.

5. if mi = t ∧mj = u ∧ rli(sj) < rli(st) ∧ rlj(si) < rlj(su) ⇒ mi = j,mj = i,mt =
−1,mu = −1.

6. ifmi = t ∧mj = u ∧ rli(sj) < rli(st) ∧ rlj(si) = rlj(su) ∧ sj ∈ Ii ∧ st ∈ Oi ∧ sj ∈
Ou ⇒ mi = j,mj = i,mt = −1,mu = −1.

It becomes apparent that the agents follow a greedy strategy, since each agent swaps

pair whenever they have the opportunity to pair with a preferred agent.

It is important to note the distinction between these rules and the ones considered in

the original CF model used as reference in this work. Originally, only rules 1, 2, 3, and

5, existed, with no rule ever mentioning the states of the signals as either being inside or

outside a detector’s normal domain.

Lemma 1. Only the R rules, 1, 5, and 6, change the number of unmatched agents.

Proof. From De�nition 10 it can be taken that when all the rules have had their conditions

ful�lled, only rule 1 lowers by two the number of unmatched agents and only rules 5, and 6,

equally increase that same number, whereas the remaining rules do not change the number

of unmatched agents.

De�nition 11 (Stable Matching). A matching between two agents, ai and aj , is said to be
stable, when the successive use of rules, R, on every other agent does not change the states,mi

andmj , of those two agents.

De�nition 12 (Stochastic Iteration). During a stochastic iteration and given a sequence in
which all NA agents are included, each one of these agents will be sequentially randomly
chosen to interact with another agent of the opposite type, which itself was chosen randomly.
Next, the states,mi, of these agents will be updated according to rules, R.

De�nition 13 (Population Con�guration). A population con�guration, C , is given by the
set of matched agents along with the set of unmatched agents: C = {ai, aj : mi = j ∧mj =
i : i, j = 1, . . . , NA} ∪ {ai : mi = −1: i = 1, . . . , NA}.

De�nition 14 (Stable Con�guration). A con�guration, C , is said to be stable when all agents
that are within it are in a stable matching.

Despite being possible to achieve a stable con�guration, it is important to note that the

probability of a population of agents reaching such a con�guration is tiny.
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Lemma 2. The probability of a population, with equal number of presenters and detectors,
staying in an unstable con�guration by the end of an iteration is NA

2
− 1 greater than ending

up in a stable con�guration.

Proof. In the worst case scenario, consider a population that is just one iteration away from

ending up in a stable con�guration. This can be achieved by unmatching two agents bound

to each other in a population already in a stable con�guration. Furthermore, assume that

the next iteration involves one of these unmatched agents.

The probability of that agent choosing the only other unmatched agent and therefore

returning to a stable con�guration is
1
NA
2

= 2
NA

. Therefore, the probability of the population

remaining unstable is 1 − 2
NA

. Since

1− 2
NA
2
NA

= NA
2
− 1 this means the probability of the

population remaining unstable is
NA
2
− 1 greater than ending up in a stable con�guration,

with this probability increasing the more agents that are involved.

De�nition 15 (Matching Lifetime). The lifetime of a matching between two agents is deter-
mined by the number of iterations that elapsed between the iteration when they matched and
the iteration when they unmatched. This is represented by τi ∈ N.

3.2 Procedure And Mechanisms
The CF model has several steps and mechanisms that allow it to train detectors and conse-

quently perform detections on data sets. The most important mechanisms will be explained

in some detail in order to give a deeper and clearer understanding of the inner workings of

the model.

3.2.1 Feature Space Normalization

It is important to normalize feature values in data sets in order to facilitate the mapping of

the signals as explained previously. The min-max normalization described in Equation 2.1

was used in this model and the values were mapped to the range [0, 1] ∈ R.

3.2.2 Feature Space Partitioning

One major problem with CF is that detectors require an accurate partition of the feature

space, otherwise there will be many false positives or false negatives, hence no detection at

all. One way to solve this is by partitioning the feature space into clusters. This way detec-

tors see less feature space as being normal. Note that since detectors take the distribution

of values within each feature and divide it into normal and abnormal domains, it becomes

crucial to ensure these domains are properly de�ned.

Figure 3.3 shows the di�erence between a clustered and non-clustered data set and how

this impacts a detector’s ability to detect anomalies. In this example K-means clustering

with K = 2 was used.

After this partitioning, detectors are then able to correctly map the continuous feature

values to the binary signals shown by presenters during training, as either being inside or
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outside their normal domains. Figure 3.4 describes this in terms of the cumulative distri-

bution function Fi(zνi/2), estimated from the data available for training, that is considered

when looking at the distribution of a feature’s values.

(a) (b)

Figure 3.3: Training samples distributions projections (a) without and (b) with clustering.

In (a) there is only one cluster, therefore all detectors base their view of the feature space

on the left tail of Gaussian 1 and the right tail of Gaussian 2. This has the consequence of

making the detectors see a lot of the abnormal feature space as normal, which is the case

in [7]. In (b) detectors are assigned to each cluster, therefore they are able to partition the

feature space better. This way they are able to better distinguish normal regions of space

from abnormal ones. In tests discussed later on, detectors were distributed evenly across

all clusters considered during training.

Note how detectors in this work have two tails, which means they should be more

robust to false negatives when abnormal feature values show on either side of the feature

space distribution, but this might also mean that more normal values will be considered

abnormal during testing, hence more false positives. In [7] detectors only have one tail,

hence one abnormal domain with which to detect abnormal samples. This means that even

if a very obvious abnormal feature value appears in a sample inside the normal domain, it

will be considered as a normal value, leading to a false negative. It becomes apparent that

the approach in this work is more aggressive than the one in [7] regarding the mapping of

feature values into normal and abnormal signals.

During testing, it was noticed that detectors specialized to their assigned cluster (i.e.,

normal domains based solely on the features’ distributions of samples from their cluster),

had di�culty dealing with samples from others clusters, because to them anything outside

their cluster was abnormal, therefore many false positives would ensue. This led to the de-

velopment of the shu�ing procedure, which is quite simply randomly swapping detectors’

pairs of left and right critical values of each feature with other detectors. This led to more

robust detections, since now when detectors saw samples from di�erent clusters than the

one they were assigned to originally, they would see those as only partly abnormal, which

means they would see some features as normal, leading to less false positives.
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Figure 3.4: Mapping of normalized feature values si into

binary signals ιi and oi. In order for detectors to map signals

si onto signals inside or outside their normal domain, they

must calculate Fi(zνi/2) for each feature. When si lies in the

left, or right, tail of the distribution, Fi(zνi/2) ≤ νi/2 and

Fi(z1−νi/2) ≥ 1 − νi/2, respectively, and it will be mapped

onto a signal oi, otherwise it will be mapped onto a signal ιi.
νi ∼ U(0, νmax), where typically νmax ≤ 0.2.

3.2.3 Cellular Frustration Dynamic

There are three main stages when using the CF model, and these are training, calibration,

and monitoring. Although they have di�erent purposes and functions, the main loop is the

same. This loop is described in Algorithm 3.1. Note that the total number of iterations the

algorithm executes is nmax and the period between changing samples is T , which typically

was T = 100.

Algorithm 3.1 Cellular frustration dynamic.

1: Initialize detectors’ global preference lists with signals ιi and oi randomly ranked

2: {τi} ← 0
3: for all n ∈ [1, nmax] do
4: if n mod T is 0 then
5: Change sample shown by presenters

6: for all aj ∈ P ∪ ai ∈ D do
7: Pick a random presenter aj
8: Pick a random detector ai
9: decision(A, ai, aj) - apply decision rules in De�nition 10

10: for all ai ∈ A do
11: if ai ∈ A is paired then
12: τi ← τi + 1

3.2.4 Sample Rotation

Presenters show many samples from the data set throughout the CF dynamic, therefore,

there has to be some method of selecting samples from it. Some di�erent methods are:

sequentially in the same order as they are stored in the data set; if clustering was applied to

the data set, sequentially but on a per-cluster basis, selecting all samples from each cluster

before moving on to the next cluster; completely random; randomly selecting a cluster and

then randomly selecting a sample from that cluster. The second method was chosen.
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3.2.5 Agent Dissociation
To prevent two agents from being paired for too long, possibly even during the entirety of

the dynamic, when an agent is selected to take its turn in an iteration, there is a chance that

it will become unmatched. This does not signi�cantly alter the results since the probability

of this dissociation happening is fairly low.

3.2.6 Detectors’ Preference Lists

Figure 3.5: Detectors’ local pref-

erence lists for a sample.

Detectors have two preference lists, one global and one

local. The global list has all the possible binary sig-

nals each presenter can show, as de�ned in De�nition

1. The local list only has the binary signals currently

shown by presenters given the selected sample, as seen

from each detector’s perspective regarding its normal

and abnormal domains, as seen in Figure 3.5 with ref-

erence to Figure 3.6. This list is used for computational

reasons, to decrease access times to signals.

The global preference list of every detector is ini-

tially randomized, such that the binary signals corre-

sponding to each presenter are scattered throughout the list without any ordering. Later on

there will be some ordering of these signals when education is introduced. These unordered

lists can be seen as per the example in Figure 3.6.

Figure 3.6: Detectors’ unordered global preference lists li, be-

fore training. In this caseNP = ND = 4 =⇒ NA = 8, which

means there are 4 signals shown in any given moment, while

the total number of possible binary signals is 8, which will

have to be represented in detectors’ preference lists. Signals

from presenters of the opposite subtype to each detector are

colored in gray.

3.2.7 Training
During training, when agents are paired for too long, this indicates that they both have

each other high on their preference lists, therefore detector agents must be trained to avoid

this attachment to presenters with subtype equal to theirs that show signals ιi. The goal is

to train detectors to prefer signals oi, so that when an abnormal sample is shown, detectors

will have high a�nity with presenters’ signals and become very attached to them, leading

to long matching lifetimes. Since presenters of the same subtype as detectors will generate

the longest matching lifetimes, after training, these presenters will have their signals lowest

in detectors’ preference lists. This will result in a frustrated dynamic.
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Training a batch of detectors is only done every few thousand iterations En, in order

to allow statistically relevant detectors’ matching lifetimes to appear. The condition check

that sends a detector to training compares a detector’s current τi with the threshold for

training τthreshold, which is updated to a new lower value based on the highest τi amongst all

detectors, but only if no detectors were trained after the last En iterations, which typically

was En = 1500.

Algorithm 3.2 Detector education.

1: τmax ← 0
2: trained← false
3: for all ai ∈ D do
4: if τi > τmax then
5: τmax ← τi
6: if τi > τthreshold then
7: aj is paired with ai
8: trained← true
9: newRank← random integer

greater than rankli(sj)
10: In li swap signal at rank

rankli(sj) with signal at rank

newRank

11: mi,mj ← −1
12: τi, τj ← 0
13: if trained is false then
14: τthreshold ← τmax

Algorithm 3.3 Training.

1: Initialize detectors’ global preference

lists with signals ιi and oi randomly

ranked

2: {τi} ← 0
3: τthreshold ← nmax
4: for all n ∈ [1, nmax] do
5: if n mod T is 0 then
6: Change sample shown by pre-

senters

7: for all aj ∈ P ∪ ai ∈ D do
8: Pick a random presenter aj
9: Pick a random detector ai

10: decision(A, ai, aj) - apply deci-

sion rules in De�nition 10

11: for all ai ∈ A do
12: if ai ∈ A is paired then
13: τi ← τi + 1
14: if n mod En is zero then
15: education(A, τthreshold)

Algorithm 3.2 describes how the detectors’ preference lists are manipulated in order

to produce an educated population of detectors capable of recognizing abnormal samples

when presented. Algorithm 3.3 is essentially the same as Algorithm 3.1 with the added

function that educates detectors.

The education mechanism is visually described in Figure 3.7, and the �nal educated lists

for an example case are shown in Figure 3.8.

3.2.8 Calibration
Before detection can be achieved, detectors must be calibrated with the normal samples

used for testing in a two-step procedure. First an activation tau, τact, is de�ned as follows.

When running the CF dynamic, a sorted vector of taus, c(τi), will count the number of times

any detector leaves a pairing with a lifetime τi. When the dynamic ends, a cumulative sum

is performed on this vector in order to get the number of times each τ ≥ τi occurred. Then

these new values in c(τ ≥ τi) are averaged as follows cavg(τ ≥ τi) = c(τ ≥ τi)/NS/ND,

where NS is the total of all calibration samples. Finally, τact = max{cavg(τ ≥ τi) < 1}.
This is visually shown in Figure 3.9.
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Figure 3.7: Detector being educated with an education operation applied

to its global preference list li. This operation consists in swapping the

signal outlined in red with a signal lower ranked in the li. This is triggered

by a long matching lifetime τi > τthreshold, which is undesirable when

detectors are interacting with samples they perceive as normal, therefore

they must learn to dislike these samples. This stable matching happens

becauseD2 ranks highly the signal shown by P2, and since they are both

of the same subtype, P2 also ranksD2 highly in its preference list. On top

of this,D2 also sees the signal s2 as being inside its normal domain, which

according to the decision rules further promotes this stable matching.

Figure 3.8: Trained detectors and their ordered global pref-

erence lists li with reference to the lists in Figure 3.6. Some

signals were correctly educated to lower ranks while some

were not. All lists now have mostly gray colored signals at the

top, which means detectors learned to prefer signals from pre-

senters of the opposite subtype, which leads to lower match-

ing lifetimes when presenting normal samples, hence cellu-

lar frustration is achieved. In general all lists are trained well.

D2’s li has one signal on top of the list shown by a presenter of

the same subtype, because it never appeared during training.

InD4’s li, an incorrect education occurred, where a previously

correctly ranked signal ι1 now has a lower rank, and signal ι3
climbed the list, which is bad, because it leads to long pairings

with normal samples. This can happen when the population’s

con�guration is very stable at some point and triggers a long

matching. Although very problematic this sort of event is rare.

Figure 3.9: Calibration of an

activation tau τact.

The idea is that the highest τ ≥ τi, where on average

detectors have a low c(τ ≥ τi) when shown normal test

samples, should be a τ where response is minimum for

normal samples but still above 0. Therefore, for abnor-

mal samples it should be easy for even weak responses to

trigger detections. It is important to select an activation

tau where on average detectors still have c(τ ≥ τi) > 0,

because if c(τ ≥ τi) = 0, when a normal sample is shown

during testing it easily triggers a detection, leading to

false positives.

The CF dynamic is run for wmax iterations for each

sample, where wmax = 5000 in this case. Each sample

needs to be evaluated for a few thousand iterations to

avoid the in�uence of statistical �uctuations when reg-

istering matching lifetimes.
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Finally, an activation threshold ni(τact)∀ai ∈ D is de�ned as follows. The same CF

dynamic is run again, and a sorted vector ci,j(τact)∀j, where j corresponds to a normal

sample used for calibration, will register the number of times a detector ai establishes a

matching lifetime τi ≥ τact, for each sample j. Then each detector’s activation threshold is

calculated as ni(τact) = ci,x(τact), where x = NS × f , with f ∈ [0, 1]. In this case f = 0.05,

which means the 5% largest number of pairing lifetimes greater than τact were considered.

3.2.9 Detection

The last stage when applying this model is the monitoring stage, where both normal and

abnormal samples from the test set are monitored in order to extract the responses from

detectors towards each sample. From these responses a ROC curve is plotted to see the

performance of the model when trying to distinguish abnormal samples from normal ones.

(a) (b)

Figure 3.10: Translation of detectors’ responses to a typical ROC curve. (a) Shows the

normalized responses obtained for the normal and abnormal samples, with two threshold

examples for 90% and 95% of the normal samples, represented by the dotted and dashed

lines, respectively. All the responses towards normal and abnormal samples above the dot-

ted or dashed lines are considered detections, be it true positives or false positives. (b)

Shows the example thresholds translated into the TPR for a given FPR seen in a typical

ROC curve.

There should be a frustrated dynamic when a normal sample is presented, whereas

when an abnormal sample is presented more stable pairings should occur, leading to long

pairing lifetimes, which in turn produce a response from detectors towards these abnormal

samples much higher than towards normal samples. Therefore, there should be a clear dif-

ference between these responses, hence result in a good detection by the cellular frustrated

system (CFS).

In this stage, the same CF dynamic considered in the calibration stage is also run here,

for the same wmax iterations per sample. Finally, the total response towards a sample j by

the collection of detectors, is based on the number of times each detector established a long
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pairing lifetime relative to its activation threshold, and it is calculated as follows

Rj =

ND∑
i

(ci,j(τact)− ni(τact))H(ci,j(τact)− ni(τact)), (3.1)

where H is the Heaviside step function. See Figure 3.10 to better understand how the ROC

curve is plotted based on detectors’ responses.

The Heaviside step function guarantees a result has a lower bound of zero if the calcu-

lation it takes as argument results in a negative value, and it is given by

H(x) =

{
1 x > 0

0 x < 0.[34]

(3.2)

CFSs have the ability to detect three di�erent abnormal patterns in trained detectors’

local preference lists, which allow them to make detections when an abnormal sample is

shown by presenters. These are the presence of abnormal signals oi that were rarely or

never shown during training, the absence of too many normal signals ιi compared to how

common they were during training, and the absence of combinations of signals ιi frequently

shown together during training. These are more clearly explained in Figure 3.11.
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(a) (b) (c) (d)

Figure 3.11: Mechanisms of local preference lists that allow detectors to make detections,

with reference to Figure 3.8. These four examples show the local preference lists of detec-

tors when a certain combination of signals is shown by presenters, and how the order of

these signals in preference lists leads to detections. Since each presenter can only show one

of its two possible binary signals at any given time, there is no purpose in representing the

remaining signals that are not being evaluated at that time, therefore the local preference

list representation is more appropriate. (a) Shows how a properly educated list prevents

erroneously detections when during monitoring a normal sample is presented, and detec-

tors should not be making long pairings. Since the signals at the top of the list belong to

presenters with the opposite subtype to D1, frustration is achieved. (b) During training the

signal o2 never appeared because it is an abnormal signal, and no sample contained any

feature value that could be mapped to it, so it remained in its original randomly generated

rank in D2’s global preference list. Therefore, when a sample appears in the monitoring

stage with some feature value that can be mapped to o2, it appears at the top, which pro-

vokes a response from D2, leading to a detection. (c) When the combination of two normal

signals at the top of D3’s list become absent, the abnormal signal o3 is able to climb the list

and induce a stable matching between D3 and P3. Since both have the same subtype, P3

becomes very attached to D3, leading to a detection. This sort of absent combinations can

happen when certain features are strongly correlated. (d) When many sequential signals

ιi in D4’s list become absent, the signals oi are able to climb the list provoking a strong

response and triggering a detection. It is important to note that in all these situations, a

strong response only occurs when a collection of detectors share the same view of a sample.

This is especially important for the detection mechanism that relies on absent combination

of signals ιi, where only a few might disappear in each li for an abnormal sample hard to

detect.





CHAPTER 4

Results

In this chapter the CF model will be tested alongside the anomaly detection methods men-

tioned in chapter 2. These methods and K-means clustering, will be implemented using the

Scikit Learn library version 1.0 in [35]. The tests in this chapter will consider two types

of data sets, synthetic and real data sets. The synthetic data sets will come from Gaussian

distributions with parameters based on the ones considered in [36]. The real data set con-

sidered here will be the one in [37] provided by [38], which contains red and white wines

with their qualities labeled. In this work only the white wines were considered.

To evaluate the performance of the anomaly detection models tested in this chapter, the

ROC curve and AUC described in chapter 2 will be used. This will be particularly useful to

compare the results obtained in this work for the CF model, with the ones obtained in [7]

and [36], for the white wines data set. Additionally, to better explain the results of the CF

model, the detectors’ responses and how they perceive the features of samples in each test,

will be shown and discussed.

4.1 Tests With Synthetic Data Sets
To test any model methodically, one important requirement is having control over the test

environment, in order to be able to tweak parameters and see how these a�ect results,

allowing drawing conclusions. This is why before testing an ML model with real data,

testing it with synthetic data is an important step. The results from these tests should give

some indication of how the model will behave with real world data, hence how useful it

will be and in which scenarios it can be applied.

The synthetic data sets used were generated according to the Gaussian distribution,

given by

f(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2), (4.1)

where µ is the mean, σ is the standard deviation, and x is a random variable such that

X ∼ N (µ, σ2) [39]. Six di�erent data sets, corresponding to six di�erent test cases, were

generated with each one having Nf = 11 number of features. The reasoning behind this

Nf is because the real data sets tested later on also have 11 features, therefore it is useful to

perform these tests with that same condition. Three di�erent Gaussian distributions were

33
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used to generate data points for each feature, two for normal samples, and one for abnormal

samples. Since each of these distributions always maintained the same parameters when

generating points for each feature, all features are directly correlated.

In each test case, 1000 normal samples and 500 abnormal samples were generated.

Three clusters of data points were created based on these samples. One cluster had 500
normal samples from one Gaussian distribution, a second cluster also had 500 normal sam-

ples but from a di�erent Gaussian distribution, and �nally a third cluster had the only 500
abnormal samples generated by the third Gaussian distribution. The parameters used for

each test case in each Gaussian distribution are in Table 4.1. These test cases reference the

ones in [36]. Each test case was run �ve times with random normal samples selected for

training and testing, in order to average results to avoid in�uences from statistical �uctua-

tions. All methods were cross validated with exactly the same samples.

Table 4.1: Parameters used in each Gaussian distribution for each test case. Nn is the total

number of normal samples,N1 is the number of normal samples in the �rst cluster,N2 is the

number of normal samples in the second cluster, and Na is the total number of abnormal

samples, which are in the third cluster.

Case

Samples

Normal

(Nn = 1000)
Abnormal

(Na = 500)
Cluster 1

(N1 = 500)
Cluster 2

(N2 = 500)
Cluster 3

µ σ µ σ µ σ
1 0.3 0.1 0.4 0.1 0.7 0.1

2 0.48 0.06 0.54 0.06 0.51 0.12

3 0.25 0.06 0.5 0.06 0.75 0.06

4 0.38 0.06 0.64 0.06 0.51 0.12

5 0.25 0.06 0.75 0.06 0.50 0.06

6 0.48 0.02 0.52 0.02 0.50 0.03

The distribution of samples from each generated cluster in feature space, for each test

case, is represented in Figure 4.1 without clustering. This �gure only contains the test set

used in one selected test run for each case. It contains 250 samples from Cluster 1, 250
samples from Cluster 2, and 500 samples from Cluster 3. Before using the training set with

the CF method, K-means clustering was applied with K = 2.

As stated before, two competing anomaly detection methods will be compared with

the CF model presented in this work. The results for each test case using each anomaly

detection method, can be seen in Figure 4.4 and Figure 4.5. For the CF model, the responses

curves and the number of signals oi detectors see in samples, can be seen in Figure 4.2 and

Figure 4.3, respectively. Based on these results a brief discussion for each test case will

follow.

4.1.1 Test Cases 1, 3, And 5

The test cases 1, 3, and 5, will be grouped together in this discussion because of the similar-

ities of their results. The data sets considered in these tests have the abnormal samples well

separated from the normal samples clusters. Therefore, all methods should have identical
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detection performances in all cases, these being 100% detection rates with 0% false positives.

These expected results are exactly what is seen in Figure 4.4a, Figure 4.4c, and Figure 4.4e.

Table 4.2 con�rms these results.

(a) Case 1. (b) Case 2. (c) Case 3.

(d) Case 4. (e) Case 5. (f) Case 6.

Figure 4.1: Visual representation of the distributions of the data points in the test set for

each test case. Before using the generated data sets with the CF model, they are normal-

ized with min-max normalization, as seen in Equation 2.1, with normalized values in the

range [0, 1] ∈ R. For a better understanding of how detectors are assigned to each cluster,

and consequently see some samples as normal and some as abnormal, see Figure 3.3 and

Figure 3.4.

In particular for the CF model, it is worth noting the pattern seen in the responses, Fig-

ure 4.2, and signals oi, Figure 4.3, plots. In Figure 4.2a, approximately 100% of the responses

towards abnormal samples are greater than Rj = 0.1, and in Figure 4.2c and Figure 4.2e,

all the responses towards abnormal samples are greater than Rj = 0.1, whereas towards

normal samples all the responses are less than Rj = 0.1. In Figure 4.3a, Figure 4.3c, and

Figure 4.3e, the ratio of number of signals oi detectors see in the abnormal samples to the

number of signals oi they see in normal samples is approximately double or more. This is a

clear indication that the model can easily make detections when more features in a sample

are abnormal compared to the ones the model was trained on.

Regarding the fact that there does not seem to be a strict correlation between the average

number of signals oi and the intensity of the corresponding response, for the same averaged

samples, it should be noted that this being an average, sometimes there are less than 11
signals oi in a sample, leading to a weaker response from detectors. The model does predict

several detection mechanisms that allow this, for example when a single signal ιi from a
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presenter of the opposite subtype is higher in the detectors’ preference lists it will promote

a frustrated dynamic, decreasing their capability to make detections, even though most

signals are oi. This being inferred from the results, more analysis is required to empirically

demonstrate it.

4.1.2 Test Case 2
The data set in this case presents a di�cult situation, since almost all the abnormal samples

overlap the normal ones. In order to detect all the abnormal samples, some trade-o� with

FPR will be required. This can be seen in Figure 4.4b, where the OCSVM and IF have higher

detection rates at 0% FPR than the CFSs CF [0, 5]% and CF [0, 20]%. The intervals [0, 5]%
and [0, 20]%, refer to the randomly generated νi values of detectors, which can be any value

in those intervals for each CFS considered. Table 4.2 also shows that all methods achieved a

somewhat similar level of performance, with CF only having approximately less 10% AUC

than the other methods.

(a) Case 1. (b) Case 2. (c) Case 3.

(d) Case 4. (e) Case 5. (f) Case 6.

Figure 4.2: Detectors’ normalized average responses for each test case with synthetic data.

For the corresponding ROC curves see Figure 4.4. The samples in each response curve of

each run for each test, were sorted prior to averaging, so that each run’s highest and lowest

response provoking samples were averaged accordingly. The ROC curves in Figure 4.4 were

averaged considering the FPR and TPR of each test run, not the �nal averaged responses.

Figure 4.3b shows that abnormal samples only have half of their signals seen as oi, in CF

[0, 20]%, which is half of what is seen in cases 1, 3, and 5, with normal samples still having

low amounts of signals oi, these being approximately two. This means detectors can still

make detections thanks to a high ratio of number of signals oi seen in abnormal samples
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to normal samples, but just barely. In order for more detections to occur with this kind of

ratio, some combination of signals ιi must disappear in detectors’ preference lists, in order

to promote long pairings, hence detections. In CF [0, 5]% the same detection mechanism

applies, but since there are even less signals oi seen in abnormal samples than in CF [0, 20]%,

the overall performance is worse, as can be seen in Figure 4.4b when comparing the curves

of CF [0, 5]% and CF [0, 20]%. The reason why CF [0, 20]% is able to make more detections

with less false positives, is because it has a higher νmax, allowing the model to de�ne wider

abnormal domains in its detectors, which in turn will be able to recognize more abnormal

samples, albeit at the cost of also seeing more signals oi in normal samples, as is apparent

in Figure 4.3b.

(a) Case 1. (b) Case 2. (c) Case 3.

(d) Case 4. (e) Case 5. (f) Case 6.

Figure 4.3: Average number of signals out oi seen per detector in each normal and abnor-

mal sample for each test case with synthetic data. Each point corresponds to a sample, with

all samples being sorted prior to averaging in the same order for each test as in Figure 4.2.

4.1.3 Test Case 4

The test setup in this case is very similar to the one in case 2, albeit with normal samples be-

ing further apart, requiring the CF model to learn two separate normal regions of samples

overlapping the whole abnormal region, while in case 2 essentially only one big normal

region needed to be learned, with many detectors sharing much of the same knowledge

of the feature space. Regarding the performances of the several methods, it is clear from

Table 4.2 that both OCSVM and IF were able to detect approximately 100% of the abnor-

mal samples without false positives, with the CF model performing worse up to 30%. The
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OCSVM with the RBF kernel can easily de�ne decision boundaries around the Gaussian

clusters used for training, allowing it to still separate well most of the abnormal samples

from the normal ones. The IF with its techniques of sub-sampling and randomly generated

forest of isolation trees, can more precisely learn the normal regions, because they sit on

the edge of the abnormal region, where abnormal samples are sparser, and in addition to

this, the abnormal samples are quite dispersed, which further helps it partition the feature

space. The results in Figure 4.4d con�rm this.

(a) Case 1. (b) Case 2. (c) Case 3.

(d) Case 4. (e) Case 5. (f) Case 6.

Figure 4.4: ROC curves for each test case with synthetic data. The OCSVM and IF methods

were used with the default parameters of the library. For OCSVM, k(x, x′) = e−γ‖x−x
′‖2

,

γ = 1
Nfσ2 , and ν = 0.5. For IF, t = 100, and ψ = min{256, |S|}. The CF method was used

with NP = ND = 110, nmax = 106
, and νmax = 5% for CF [0, 5]%, and νmax = 20% for CF

[0, 20]%. For the AUC scores see Table 4.2, and for a zoomed in view between 0% and 10%
FPR see Figure 4.5.

Table 4.2: Average AUC (%) and corresponding standard deviation, for each test case for

each model.

Case

1 2 3 4 5 6

µ σ µ σ µ σ µ σ µ σ µ σ
CF [0, 5]% 100 0.0 84.0 1.1 100 0.0 82.2 2.5 100 0.0 33.9 0.7
CF [0, 20]% 100 0.0 87.8 0.6 100 0.0 70.0 3.3 100 0.0 39.2 0.7

OCSVM 100 0.0 97.7 0.2 100 0.0 99.8 0.0 100 0.0 70.0 0.8
IF 100 0.0 96.2 0.3 100 0.0 99.4 0.1 100 0.0 59.1 1.6

Looking at Figure 4.2d and Figure 4.3d, bearing in mind the performances of both CF
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[0, 5]% and CF [0, 20]% in case 2, it is important to understand why CF [0, 20]% now per-

forms 10% worse than CF [0, 5]%. Essentially, what allowed it to perform better in case 2,

now hinders its performance. It is clear that CF [0, 20]% had a higher response to abnormal

samples with its detectors seeing higher amounts of signals oi in them, but due to the wider

abnormal domains de�ned in its detectors, that also means that normal samples contained

in these regions will also evoke a similar response, leading to more false positives, as seen in

its ROC curve. On the other hand, it can be inferred that CF [0, 5]% was able to better edu-

cate its detectors’ preference lists, because even though both abnormal and normal samples

had equal amounts of signals oi, the ones shown in normal samples were likely lower on

their preference lists, with the ones in abnormal samples being higher. Not only this, but

it is likely that some signals ιi shown by presenters of the opposite subtype were also high

on their preference lists, so that when a normal sample was shown, a frustrated dynamic

followed, whereas when an abnormal sample was shown, those signals disappeared, push-

ing to the top the signals oi that would lead to a detection. Further analysis is required to

demonstrate this empirically.

(a) Case 1. (b) Case 2. (c) Case 3.

(d) Case 4. (e) Case 5. (f) Case 6.

Figure 4.5: ROC curves in Figure 4.4 cuto� at 10% FPR for each test case with synthetic

data. For clarity, Table 4.3 holds the values of each model’s TPR (%) at 10% FPR.

Clarifying Edge Cases

Test case 4 was chosen to illustrate the sort of edge cases that might arise in data sets, which

either lead to detections with zero or some false positives.

It is clear from Figure 4.6, that the samples detectors collectively see as having almost

all the signals as signals oi will generate strong responses which approach Rj = 1.0, as
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Table 4.3: Average TPR (%) at 10% FPR and corresponding standard deviation, for each

test case for each model.

Case

1 2 3 4 5 6

µ σ µ σ µ σ µ σ µ σ µ σ

CF [0, 5]% 100 0.0 70.4 1.7 100 0.0 28.6 12.4 100 0.0 4.60 0.26

CF [0, 20]% 100 0.0 71.6 2.0 100 0.0 25.1 2.0 100 0.0 3.42 0.37

OCSVM 100 0.0 93.0 0.7 100 0.0 99.4 0.0 100 0.0 34.8 2.5

IF 100 0.0 88.3 1.8 100 0.0 99.3 0.2 100 0.0 17.0 2.4

seen with Sample 3, whereas if only approximately half or less of the signals are signals

oi, weaker responses will ensue, approaching Rj = 0.0. Since in this case the abnormal

samples 1 and 2 share most of the feature space with normal samples, the calibration done

using normal samples will result in weak responses towards them, with both generating

identical responses.

In a ROC curve, the responses towards samples 1 and 2 would result in true positives

only for a high percentage of false positives, which means they are very hard to e�ectively

detect, whereas Sample 3 would result in a true positive for 0% false positives, which means

it is very easy to detect.

(a) (b) (c)

Figure 4.6: Edge cases that arise in data sets, considering a single run of test case 4. (a)

Shows the same clusters as in Figure 4.1d, but with three di�erent abnormal samples intro-

duced manually by substituting three abnormal samples in the original data set. Sample 1

has all its features equal and inside Cluster 1. Sample 2 has all its odd features equal and

inside Cluster 1, and all its even features equal and inside Cluster 2. Sample 3 has all its

features equal and outside both clusters. (b) Shows the quantity of signals oi each detector

sees in each sample. (c) Shows the responses each sample provoked.

4.1.4 Test Case 6
The scenario in this case is a very hard one to tackle, since not only do the normal and

abnormal samples overlap completely, but the normal samples are also quite dispersed. It

is obvious that training any model in these conditions will be di�cult. Nevertheless, this

test tries to show how far these methods can be taken before failing. As per Figure 4.4f,

it becomes clear that all methods struggled, which means they performed similarly to a

random classi�er or even worse than that, with OCSVM still being able to make some
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detections with low FPR. This is likely due to the fact that the RBF kernel can still easily

de�ne decision boundaries due to the Gaussian nature of the normal samples, despite this,

the overlap between normal and abnormal samples in the test set does not allow a good

performance, similar to the ones in cases 1, 3, and 5. The same cannot be said for the

remaining methods, since it is apparent that they either performed similar to a random

classi�er, in the case of the IF, or even worse than that, in the case of the CF model. For

the IF it is hard to distinguish abnormal samples from normal ones with its partitioning

technique with so much overlap, hence the poor results. For the CF model it is clear that

the detectors involved cannot accurately partition the feature space to separate abnormal

and normal samples, because of the overlap between these samples. Therefore, they are not

able to make any sort of relevant distinction between normal and abnormal samples. Even

worse, the model starts classifying samples as opposite to their true class, which means

the model learned that normal samples are in fact abnormal. Figure 4.2f and Figure 4.3f

explain why this happened. Since detectors see an equal amount of signals oi, or on average

one more, in normal samples compared to abnormal ones, their responses will be stronger

towards normal samples, with response curves towards normal samples being above the

response curves towards abnormal samples. Approaching rates of 100% false positives all

models were able to eventually make detections at rates approaching 100% true positives,

but this fact is not very useful since a model that makes detections with this sort of trade-o�

is impractical for use.

4.2 Tests With A Real Data Set

After testing the anomaly detection methods with synthetic data, real world data was used

to test their performances. The data set used was the white wines data set in [37], which

has 4898 samples with 11 features, based on physicochemical tests, and 1 label, based on

sensory data, with these being: 1 - �xed acidity; 2 - volatile acidity; 3 - citric acid; 4 - residual

sugar; 5 - chlorides; 6 - free sulfur dioxide; 7 - total sulfur dioxide; 8 - density; 9 - pH; 10 -

sulphates; 11 - alcohol; 12 - quality, which is the label of the data, more speci�cally being a

score between 0 (worst) and 10 (best).

The data labels were not used to train the models, since as mentioned, the anomaly

detection models tested are unsupervised. Nevertheless, the labeled data was useful to

separate the wines into classes, therefore creating subsets of the original data set, which

were used to test the models with di�erent classes of wines.

Unfortunately this data set is not balanced, therefore training the models using indi-

vidual classes of wines is impractical. This can be seen in Table 4.4, where it is clear that

some wine classes have a lot more samples than others. The solution found was to simply

aggregate classes of wines into new classes that better represent the data set as a whole.

The new classes considered are as follows: classes 3, 4 and 5 become the Worst class; classes

4, 5 and 6, become the Bad class; classes 5, 6 and 7, become the Moderate class; classes 6, 7
and 8, become the Good class; classes 7, 8 and 9, become the Best class.

Table 4.4: Number of samples, NS , in each original wine class.

Class 3 4 5 6 7 8 9
NS 20 163 1457 2198 880 175 5
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The total number of samples each new class of wines has, that was used for training the

models, can be seen in Table 4.5, along with the number of samples used to test the models,

which essentially are the remaining samples belonging to the other classes of wines with

respect to the class being used for training.

These data sets were always normalized according to Equation 2.2 before using them

with OCSVM, IF, and K-means. Each wine class test was run �ve times with random normal

samples selected for training and testing, in order to average results to avoid in�uences from

statistical �uctuations. All methods were cross validated with exactly the same samples.

Before training the CFSs, the training samples were clustered using the K-means clustering

method, with K = 4, determined through the elbow method discussed in chapter 2.

The results for each wine class test using each anomaly detection method, can be seen

in Figure 4.9 and Figure 4.10. For the CF model, the responses curves and the number of

signals oi detectors see in samples, can be seen in Figure 4.7 and Figure 4.8, respectively.

Based on these results a brief discussion for each wine class test will follow.

Table 4.5: Number of normal samples, Nn, in each wine class during training and testing,

and number of abnormal samples, Na, during testing.

Class Worst Bad Moderate Good Best

Training Nn 500 500 500 500 500

Testing

Nn 1140 3318 4035 2753 560
Na 3258 1080 363 1645 3838

4.2.1 All Wine Classes Tests

All the classes data sets present very di�cult scenarios for anomaly detection methods,

since in each of them both the normal and abnormal samples overlap a lot, similar to the

scenario in Figure 4.1f. This translates to poor performances, similar to a random classi�er,

as can be seen in Figure 4.9 and Table 4.6, with all methods performing similarly to each

other. The OCSVM with the RBF kernel de�nes decision boundaries not very well suited for

the con�guration of the samples in the data set, since some of their features’ distributions

are very di�erent to the Gaussian distribution. Not only this, but the overlapping nature of

normal and abnormal samples also leads to false positives. Similarly, the IF has di�culty

in generating forests of isolation trees that successfully partition abnormal samples closer

to their roots. The CF model shares the same issues, since it is di�cult to train detectors

to recognize abnormal samples when they completely overlap with normal ones during

testing.

Both the CF [0, 5]% and CF [0, 20]% CFSs performed similarly, regarding the responses

towards normal and abnormal samples, and the number of signals oi detectors saw in these

samples. This can be seen in Figure 4.7 and Figure 4.8. In all tests the ratio of the number

of signals oi seen in abnormal samples to normal ones is approximately one. This backs the

hypothesis that due to the overlapping nature of the data, training the models to distinguish

between normal and abnormal samples is very hard, with any detections made coming

with the trade-o� of FPR. For detections to occur in these situations, the several detection

mechanisms must be used, although this must be showed empirically in the future. In

fact, comparing Figure 4.7 and Figure 4.8 with Figure 4.2d, Figure 4.2f, Figure 4.3d, and
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(a) Worst. (b) Bad. (c) Moderate.

(d) Good. (e) Best.

Figure 4.7: Detectors’ normalized average responses for each wine class test. For the cor-

responding ROC curves see Figure 4.9. Regarding the averaging of the responses and ROC

curves, the same explanation in Figure 4.2 applies here.

Figure 4.3f, it becomes apparent that the same issues arise in these wine classes tests as in

tests 4 and 6 with synthetic data.

Table 4.6: Average AUC (%) and corresponding standard deviation, for each wine class

test for each model.

Class

Worst Bad Moderate Good Best

µ σ µ σ µ σ µ σ µ σ
CF [0, 5]% 54.9 4.0 55.3 1.8 53.5 0.9 55.7 3.2 62.4 2.1
CF [0, 20]% 55.3 0.9 55.6 0.5 59.8 1.0 59.6 1.8 64.2 1.0

OCSVM 41.2 0.5 47.1 0.5 63.3 0.3 56.2 0.3 50.5 1.2
IF 43.4 0.8 51.7 1.1 64.3 0.8 56.1 1.6 52.4 1.1

4.3 Comparison With Previous Cellular Frustration
Models

In this �nal section, a brief comparison will be made between the detection rates achieved

with each version of the CF model, at 10% FPR for each wine class test. These results can be

seen in Table 4.8. Note that the standard deviations of all tests are missing for the CF in [36],
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(a) Worst. (b) Bad.

(c) Moderate. (d) Good.

(e) Best.

Figure 4.8: Average number of signals out oi seen per detector in each normal and abnor-

mal sample for each wine class test. Each point corresponds to a sample, with all samples

being sorted prior to averaging in the same order for each test as in Figure 4.7. Note that

the simple reason why some �gures have visibly more points of certain colors and less of

others, is because the normal and abnormal samples in the test sets are unbalanced, as is

shown in Table 4.5.

which makes it hard to understand if those results are in range of the standard deviations

of the other CF versions, or how consistent they were.

Overall the results across all three versions of the CF model are very similar, being

within standard deviations of each other, except for the Moderate wine class test, which

was 2.1% worse with the current version, considering the best case scenario regarding the

standard deviation for CF [0, 20]% and worst case scenario for CF in [7]. This was expected

since the current model did not remove the prior mechanisms for detection, nor decision

rules that govern the CF dynamic. The current model adds new decision rules that allow

the creation and use of detectors with two tails instead of one, which before limited the
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(a) Worst. (b) Bad. (c) Moderate.

(d) Good. (e) Best.

Figure 4.9: ROC curves for each wine class test. The OCSVM and IF methods were used

with the default parameters of the library. For OCSVM, k(x, x′) = e−γ‖x−x
′‖2

, γ = 1
Nfσ2 ,

and ν = 0.5. For IF, t = 100, and ψ = min{256, |S|}. The CF method was used with

NP = ND = 110, nmax = 106
, and νmax = 5% for CF [0, 5]%, and νmax = 20% for CF

[0, 20]%. For the AUC scores see Table 4.6, and for a zoomed in view between 0% and 10%
FPR see Figure 4.10.

Table 4.7: Average TPR (%) at 10% FPR and corresponding standard deviation, for each

wine class test for each model.

Class

Worst Bad Moderate Good Best

µ σ µ σ µ σ µ σ µ σ
CF [0, 5]% 18.2 4.6 13.8 1.6 20.0 0.8 19.2 1.7 21.8 1.7
CF [0, 20]% 15.0 3.6 12.7 1.1 21.9 1.7 21.1 1.9 23.4 1.2

OCSVM 5.06 0.13 6.63 0.05 26.0 0.6 16.8 0.2 12.7 0.8
IF 5.29 0.61 8.13 0.54 27.2 1.2 17.5 1.5 14.0 2.4

application of the model to only certain data sets, or otherwise required training separate

populations of detectors to achieve the same results.

The di�erences in results can be attributed to: the new decision rules that govern the

agents’ interactions; the di�erent ways the CFSs were calibrated; the parameters considered

for the CF model; the stochastic nature of the model; the randomly selected samples used

for training and testing the CFSs.

Further analysis can be done to the current version of the CF model, like the ones in [7],
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(a) Worst. (b) Bad. (c) Moderate.

(d) Good. (e) Best.

Figure 4.10: ROC curves in Figure 4.9 cuto� at 10% FPR for each wine class test. For clarity,

Table 4.7 holds the values of each model’s TPR (%) at 10% FPR.

Table 4.8: Average TPR (%) at 10% FPR and corresponding standard deviation, for each

wine class test for each CF model version.

Class

Worst Bad Moderate Good Best

µ σ µ σ µ σ µ σ µ σ
CF [0, 5]% 18.2 4.6 13.8 1.6 20.0 0.8 19.2 1.7 21.8 1.7
CF [0, 20]% 15.0 3.6 12.7 1.1 21.9 1.7 21.1 1.9 23.4 1.2
CF in [36] 16.2 — 14.1 — 26.7 — 22.3 — 23.1 —

CF in [7] 16.5 4.2 15.3 2.9 27.4 1.7 20.2 2.2 19.7 2.2

but this will be left as future work. There is some evidence that the current model has not

yet reached its �nal form, like the fact that detectors that are too specialized in some region

of the feature space, will see normal samples from other regions as abnormal, leading to

false positives if a large percentage of detectors incur in that mistake. To solve this, instead

of two symmetric abnormal domains, there could be two independent abnormal domains,

each with its signal oi, i.e., a signal oi,l in the left tail, and a signal oi,r in the right tail.

Hopefully this will allow the detectors to more clearly distinguish abnormal samples from

normal ones to their left and right, instead of identifying them as the same type of anomaly

regardless of the side the sample appears on.

Regarding the K-means clustering technique used, it should be obvious that this is not

the best option for clustering data sets, either for the CF model or when working with many

other ML methods. It was used due to its simplicity and adequate results in this context,
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but more advanced and �tting means of clustering data can be used, as was discussed in

[36].

One �nal note regarding future improvements to the CF model is that the shu�ing

procedure introduced is not �nalized, with this being an introductory version of it for the

purpose of helping to solve the problem that arises when detectors are too specialized in a

certain region of space. A more deliberate treatment of the con�guration of detectors’ lists

of critical values must be developed in future work.





CHAPTER 5

Conclusion

This work described how improvements to the decision rules of the CF model and how

detectors look at samples, allow it to be applied in a more generalized way when dealing

with data sets with varying data con�gurations, especially if data are clustered in separate

regions of the feature space. The data considered here were synthetic and real in nature, in

order to test the models in a controlled environment and also in a real world environment

where conditions are less predictable and have more nuance, respectively. This work also

showed that the gains in the results regarding synthetic data in [36], were also maintained

without resorting to a particular clustering technique and applying the CF model separately

to each cluster of normal data in order to train multiple populations of detectors. Finally, as

in previous works, not only was the OCSVM method tested and compared with the current

CF model, but in addition to it the IF method was also tested.

The results of the synthetic data tests clearly show that in relation to the CF model in [7],

the current model can handle more situations regarding the distribution of data in feature

space, especially when abnormal samples lie in between normal samples. Regarding the CF

model in [36] identical results were obtained, but with a more streamlined application of

CFSs, since the model can now handle clustered data independently of its con�guration in

feature space, with only one population of trained detectors. Previously there was the need

to run two independent CFSs to be able to detect abnormal samples in between regions of

space with normal samples. Now, a single CFS can handle the same situation. In relation

to the competing anomaly detection methods, OCSVM and IF, it also became clear that in

most situations CFSs are capable of comparable results.

The results of the real data tests clearly show that overall the current CF model performs

comparably to the previous ones. As mentioned, there are drawbacks to the current model,

but these can be solved in future iterations as there is already some idea of the kinds of

solutions that can be implemented, as discussed in the previous chapter. In relation to the

OCSVM and IF methods, for the default parameters of the Scikit Learn library, the CF model

performed between 1.1 to 3.6 times better regarding detection rates at 10% FPR, in four out

of the �ve classes, with the remaining class test showing the OCSVM and IF performed

approximately 1.2 times better than the CF model.

The initial goal of this work of further improving the CF model was achieved with re-

sults con�rming this. Still, more research into the mechanisms of the model and improve-

ments to the current model implementation must be done. Especially regarding the way

49



50 CHAPTER 5. CONCLUSION

the partitioning of feature space is done and how detectors are assigned to certain regions

of space, and how they identify normal and abnormal regions of the feature space.
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