
����������
�������

Citation: Pereira, F.C.; Gonçalves,

A.M.; Costa, M. Outliers Impact on

Parameter Estimation of Gaussian

and Non-Gaussian State Space

Models: A Simulation Study. Eng.

Proc. 2022, 18, 31. https://doi.org/

10.3390/engproc2022018031

Academic Editors: Ignacio Rojas,

Hector Pomares, Olga Valenzuela,

Fernando Rojas and Luis Javier

Herrera

Published: 22 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Outliers Impact on Parameter Estimation of Gaussian and
Non-Gaussian State Space Models: A Simulation Study †

Fernanda Catarina Pereira 1,∗ , Arminda Manuela Gonçalves 2,‡ and Marco Costa 3,‡

1 Centre of Mathematics, University of Minho, 4710-057 Braga, Portugal
2 Department of Mathematics and Centre of Mathematics, University of Minho, 4710-057 Braga, Portugal;

mneves@math.uminho.pt
3 Centre for Research and Development in Mathematics and Applications, Águeda School of Technology and

Management, University of Aveiro, 3810-193 Aveiro, Portugal; marco@ua.pt
* Correspondence: id9976@alunos.uminho.pt
† Presented at the 8th International Conference on Time Series and Forecasting, Gran Canaria, Spain,

27–30 June 2022.
‡ These authors contributed equally to this work.

Abstract: State space models are powerful and quite flexible tools that allow systems that vary
significantly over time due to their formulation to be dealt with, because the models’ parameters
vary over time. Assuming a known distribution of errors, in particular the Gaussian distribution,
parameter estimation is usually performed by maximum likelihood. However, in time series data, it
is common to have discrepant values that can impact statistical data analysis. This paper presents
a simulation study with several scenarios to find out in which situations outliers can affect the
maximum likelihood estimators. The results obtained were evaluated in terms of the difference
between the maximum likelihood estimate and the true value of the parameter and the rate of valid
estimates. It was found that both for Gaussian and exponential errors, outliers had more impact in
two situations: when the sample size is small and the autoregressive parameter is close to 1, and
when the sample size is large and the autoregressive parameter is close to 0.25.

Keywords: state space models; parameter estimation; outliers; simulation study

1. Introduction

There are several books in the literature that describe state space models in detail [1–5].
A major advantage of these models is the possibility of explicitly integrating the unobserv-
able components of a time series by relating to each other stochastically.

State space models have in their structure a latent process, the state, which is not
observed. The Kalman filter is typically used to estimate it, as it is a recursive algorithm
that, at each time, computes the optimal estimator in the sense that it has the minimum
mean squared error of the state when the model is fully specified, and one-step-ahead
predictions by updating and improving the predictions of the state vector in real time when
new observations become available. The Kalman filter was originally developed by control
engineering in the 1960s in one of Kalman’s papers [6] describing a recursive solution to
the linear filter problem for discrete time. Today, this algorithm is applied in various areas
of study.

Usually, to estimate the unknown parameters of the model, the maximum likelihood
method is used by assuming normality of the errors; however, this assumption cannot
always be guaranteed. Non-parametric estimation methods can be a strong contribution
when it comes to the initial values of iterative methods used to optimize the likelihood
function, which often do not verify the convergence of the algorithms due to the initial
choice of these parameters. For example, ref. [7] propose estimators based on the general-
ized method of moments, the distribution-free estimators, where these estimators do not
depend on the distribution of errors.
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Nevertheless, even if the assumption of normality of errors is not verified, the Kalman
filter still returns optimal predictions within the class of all linear estimators. However,
the optimal properties of Kalman filter predictors can only be ensured when all state space
models’ parameters are known. When the unknown parameter vector is replaced by its
estimate, the mean squared error of the estimators is underestimated.

The analysis and modeling of dynamic systems through state space models has been
quite useful given its flexibility. In its formulation, the state process is assumed to be a
Markov process, allowing optimal predictions of the states and, consequently, observations
based only on the optimal estimator of the current state to be obtained.

Despite these advantages, any prediction model is dependent on the quality of the data.
Particularly, in many cases, meteorological time series are subject to higher uncertainties,
and Kalman filter solutions can be biased [8].

In particular, outliers are an important issue in time series modeling. Time series data
are typically dependent on each other and the presence of outliers can impact parameter
estimates, forecasting and also inference results [9]. In the presence of incomplete data
and outliers in the observed data, ref. [10] developed a modified robust Kalman filter.
Ref. [11] showed that linear Gaussian state space models are suitable for estimating the
unknown parameters and can consequently affect the state predictions, especially when
the measurement error was much larger than the stochasticity of the process. Ref. [12]
proposed a non-parametric estimation method based on statistical data depth functions to
obtain robust estimates of the mean and the covariance matrix of the asset returns, which is
more robust in the presence of outliers, and also does not require parametric assumptions.

This work arose from the project “TO CHAIR—The Optimal Challenges in Irrigation”,
in which short-term forecast models, with the state space representation, were developed
to model the time series of maximum air temperature. For this project, we analyzed
data provided by the University of Trás-os-Montes and Alto Douro, corresponding to
the maximum air temperature observed in a farm, located in the district of Bragança,
between 20 February and 11 October 2019, and data from the website weatherstack.com,
corresponding to the forecasts with a time horizon of 1 to 6 days of the same meteorological
variable for the same location. The main goal focused on improving the accuracy of
the forecasts for the farm. However, there were some modeling problems, particularly
regarding the convergence of the numerical method, which arose in the presence of outliers.

Therefore, to evaluate and compare the quality of the estimates of the unknown param-
eters of the linear invariant state space model in the presence of outliers, this paper presents
four simulation studies: the first is based on the linear Gaussian state space model; the
second is based on the linear Gaussian state space model with contaminated observations;
the third is based on the linear non-Gaussian state space model with exponential errors; and
the last one is based on the linear non-Gaussian state space model with exponential errors
and contaminated observations. For each of the four studies, several scenarios were tested,
in which 2000 samples with valid estimates of size n (n = 50, 200, 500) were simulated.
The results obtained were evaluated in terms of the difference between the maximum
likelihood estimate and the true value of the parameter and the rate of valid estimates.

2. Simulation Design

In general, the linear univariate state space model is given as follows:

Yt = βtWt + et, observation equation (1)

βt = µ + φ(βt−1 − µ) + εt, state equation (2)

where t = 1, . . . , n is the discrete time and

• Yt is the observed data;
• Wt is a factor, assumed to be known, that relates the observation Yt to the state βt at

time t;
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• {βt}t=1,...,n ∼ AR(1), −1 < φ < 1, E(βt) = µ, and var(βt) =
σ2

ε

1− φ2 ;

• E(et) = 0, E(etes) = 0, ∀t 6= s, and var(et) = σ2
e ;

• E(εt) = 0, E(εtεs) = 0, ∀t 6= s, and var(εt) = σ2
ε ;

• E(etεs) = 0, ∀t, s.

This paper aims to investigate under what conditions the presence of outliers affects
the estimation of parameters and states in the state space model. Thus, we simulate
time series of size n (n = 50, 200, 500) using the model defined by Equations (1) and (2).
For simplicity’s sake, we consider for all simulation studies Wt = 1, ∀t, and µ = 0, that is

Yt = βt + et, (3)

βt = φβt−1 + εt, t = 1, . . . , n. (4)

To create the contamination scenario, we study real time series concerning maxi-
mum air temperature. We used data from two different sources: the first corresponds
to daily records of maximum air temperature between 20 February and 11 October 2019
(234 observations) through a portable weather station installed on a farm located in the
Bragança district in northeastern Portugal; the second database corresponds to forecasts
from the weatherstack.com website. These forecasts have a time horizon of up to 6 days;
this means that, for a certain time t, we have forecasts given at times t− 6, t− 5, . . . , t− 1.

So, first we took the difference between the recorded/observed maximum temperature
and the website’s forecasts, say, Λt,(h), where t is the time, in days, and h is the time
horizon of the forecasts, h = 1, . . . , 6 days. Next, we calculated the percentage of outliers
of Λt,(h), whose percentage was on average 5%. Regarding the variable Λt,(h), outliers
were removed and replaced by linear interpolation, say, Λ∗t,(h), in order to remove the
contamination present in the data, and its mean was subtracted, Λ∗t,(h) − mean(Λ∗t,(h)),
so that it had zero mean. Then, for each time horizon h (h = 1, . . . , 6), the model with
a state space representation presented by Equations (3) and (4) was fitted to the data
Λ∗t,(h) −mean(Λ∗t,(h)).

In order to establish a relationship between the estimates of parameters φ, σ2
ε and σ2

e ,
that were obtained from the “non-contaminated” data, and the magnitude of the outliers of
Λt,(h), the linear regression model was fitted, whose relationship is given by

k = 1.8874 + 3.5161

√
σ2

ε

1− φ2 + σ2
e (5)

where k = |outliers of Λt,(h) −mean of Λt,(h)without outliers|, is the magnitude of the

outliers, and
σ2

ε

1− φ2 + σ2
e is the total variance of Yt. In total, Λt,(h) (h = 1, . . . , 6) shows

59 outliers.

In this work, four simulation scenarios were tested:

1. The first is based on the linear Gaussian state space model given by

Yt = βt + et, et ∼ N (0, σ2
e )

βt = φβt−1 + εt, εt ∼ N (0, σ2
ε ), t = 1, . . . , n

2. The second is based on the linear Gaussian state space model with contaminated ob-
servations.
To contaminate the model, the deterministic factor k, given in (5), is added in this way
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Yt = βt + et + Itk, et ∼ N (0, σ2
e )

βt = φβt−1 + εt, εt ∼ N (0, σ2
ε ),

where It ∼ B(1, 0.05).
3. The third is based on the linear non-Gaussian state space model with exponential

errors defined by

Yt = βt + et, et ∼ Exp(λe)−
1
λe

βt = φβt−1 + εt, εt ∼ Exp(λε)−
1
λε

, t = 1, . . . , n

4. The last one is based on the linear non-Gaussian state space model with exponential
errors and contaminated observations. Similar to scenario 2, we have

Yt = βt + et + Itk, et ∼ Exp(λe)−
1
λe

βt = φβt−1 + εt, εt ∼ Exp(λε)−
1
λε

, t = 1, . . . , n

where It ∼ B(1, 0.05), and k given in (5).

For each of the four scenarios, sample sizes of n = 50, 200, 500 were simulated. In this
study, a range of values were simulated for φ (0.25, 0.75), and σ2

ε and σ2
e (0.10, 1.00, 5.00,

0.10, 2.00, 0.05). For each parameter combination, 2000 replicates with valid estimates were
considered, i.e., estimates within the parameter space: −1 < φ < 1, σε > 0, and σe > 0.
In all simulations, we take the initial state β0 = 0 in the Kalman filter.

To evaluate the quality of the parameter estimates, we considered the Root Mean
Square Error (RMSE),

RMSE(Θ) =

√√√√ 1
2000

2000

∑
i=1

(
Θi − Θ̂i

)2

the Mean Absolute Error (MAE),

MAE(Θ) =
1

2000

2000

∑
i=1

∣∣∣Θi − Θ̂i

∣∣∣
the Mean Absolute Percentage Error (MAPE),

MAPE(Θ) =
1

2000

2000

∑
i=1

∣∣∣∣∣Θi − Θ̂i
Θi

∣∣∣∣∣× 100

Θ = (φ, σ2
ε , σ2

e ) and the convergence rate. The convergence rate provides information
about the percentage of valid estimates among all simulations (simulations with valid and
non-valid estimates). The convergence rate is given by the number of valid simulated
estimates (in this case, 2000) divided by the number of total simulations.

To estimate the unknown parameters of the state space model (3) and (4) Θ = (φ, σ2
ε , σ2

e )
of each simulation, the maximum likelihood method was used by assuming the normality
of the disturbances for all four scenarios. Log-likelihood maximization was performed
by the Newton–Raphson numerical method. In this study, the R package “astsa” was
used [3,13,14].
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3. Results

In this section, the simulation results are presented. Tables 1–3 present the results of
the simulations in terms of the RMSE, MAE, MAPE (%) and the convergence rate (%) for
sample sizes n = 50, n = 200 and n = 500, respectively, considering both non-contaminated
(NC) and contaminated Gaussian errors. Tables 4–6 show the simulation results considering
contaminated and non-contaminated exponential errors.

Table 1. RMSE, MAE, MAPE and convergence rate of Θ with 2000 simulations of sample sizes n = 50,
considering Gaussian errors (NC = Non-Contaminated; C = Contaminated).

Parameters RMSE MAE MAPE (%) Convergence Rate

φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e (%)

0.25

0.10 0.05 NC 0.2542 0.0563 0.0502 0.1894 0.0484 0.0452 75.7423 48.3383 90.4927 2000/2679 ' 75%
C 0.3823 0.3325 0.3095 0.2983 0.2375 0.2052 119.3057 237.5420 410.4236 2000/3059 ' 65%

1.00 0.10 NC 0.2598 0.4638 0.3699 0.1934 0.3634 0.2632 77.3528 36.3408 263.1570 2000/2466 ' 81%
C 0.3514 1.3520 1.2319 0.2717 1.0957 0.7552 108.6993 109.5651 755.1521 2000/2295 ' 87%

5.00 2.00 NC 0.2880 2.7078 2.2864 0.2184 2.2837 1.9787 87.3520 45.6746 98.9341 2000/2515 ' 80%
C 0.3820 6.3580 5.6467 0.2994 5.1446 4.1499 119.7610 102.8927 207.4966 2000/2223 ' 90%

0.10 1.00 NC 0.3320 0.6580 0.6630 0.2634 0.4794 0.5380 105.3703 479.3548 53.7974 2000/3520 ' 57%
C 0.4851 1.5345 1.1760 0.3916 1.0672 0.9876 156.6558 1067.1860 98.7612 2000/2533 ' 79%

2.00 5.00 NC 0.3097 3.3616 3.3738 0.2404 2.6656 2.7813 96.1717 133.2785 55.6251 2000/3137 ' 64%
C 0.4735 6.8657 5.6124 0.3706 4.8976 4.7397 148.2420 244.8814 94.7940 2000/2265 ' 88%

0.05 0.10 NC 0.2672 0.0750 0.0727 0.2077 0.0621 0.0620 83.0659 124.1018 62.0471 2000/3015 ' 66%
C 0.4473 0.3198 0.3676 0.3585 0.2216 0.2602 143.4173 443.1005 260.2065 2000/3033 ' 66%

0.75

0.10 0.05 NC 0.1595 0.0503 0.0367 0.1228 0.0413 0.0309 16.3687 41.2797 61.7597 2000/2265 ' 88%
C 0.4356 0.3444 0.5165 0.3019 0.1916 0.3533 40.2592 191.5928 706.5637 2000/3843 ' 52%

1.00 0.10 NC 0.1190 0.3430 0.1885 0.0917 0.2728 0.1408 12.2261 27.2783 140.7727 2000/2374 ' 84%
C 0.3056 1.3890 2.3812 0.2071 0.9184 1.7949 27.6161 91.8402 1794.8840 2000/2552 ' 78%

5.00 2.00 NC 0.1364 2.2249 1.5857 0.1062 1.8382 1.3111 14.1653 36.7633 65.5527 2000/2220 ' 90%
C 0.2899 6.8220 10.8105 0.1897 4.5106 8.5797 25.2983 90.2117 428.9829 2000/2192 ' 91%

0.10 1.00 NC 0.3152 0.4849 0.4972 0.2410 0.3009 0.3666 32.1341 300.8559 36.6612 2000/2695 ' 74%
C 0.5611 1.4225 1.4693 0.3981 0.8159 1.2037 53.0740 815.9315 120.3714 2000/2751 ' 73%

2.00 5.00 NC 0.2362 2.6149 2.4755 0.1784 1.8878 1.9114 23.7931 94.3914 38.2272 2000/2228 ' 90%
C 0.4479 6.7006 7.5337 0.3085 4.2198 6.1402 41.1287 210.9902 122.8036 2000/2302 ' 87%

0.05 0.10 NC 0.2296 0.0582 0.0526 0.1743 0.0429 0.0414 23.2456 85.7212 41.3812 2000/2223 ' 90%
C 0.5148 0.3089 0.4349 0.3731 0.1787 0.3175 49.7412 357.4894 317.4564 2000/3234 ' 62%

As expected, contamination had an impact on the performance of the maximum
likelihood estimators.

First, it is seen that for small sample sizes and non-contaminated errors, the conver-
gence rate tends to decrease. For example, for n = 500 in the case of non-contaminated
Gaussian errors, the convergence rate was over 72%, while for n = 50, it was over 57%.
For contaminated Gaussian and exponential errors, the convergence rate decreased com-
pared to non-contaminated errors.

Overall, an improvement in the rate of valid estimates (convergence rate) is noticeable
when φ = 0.75 compared to φ = 0.25 in the case of non-contaminated Gaussian and
exponential errors. In the case of contaminated Gaussian and exponential errors, this
behavior only occurred when n = 500.
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Table 2. RMSE, MAE, MAPE and convergence rate of Θ with 2000 simulations of sample sizes
n = 200, considering Gaussian errors (NC = Non-Contaminated; C = Contaminated).

Parameters RMSE MAE MAPE (%) Convergence Rate

φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e (%)

0.25

0.10 0.05 NC 0.2125 0.0533 0.0486 0.1552 0.0481 0.0445 62.0843 48.0637 89.0227 2000/2142 ' 93%
C 0.4414 0.2937 0.3973 0.3511 0.2170 0.3170 140.4550 216.9786 634.0003 2000/3415 ' 59%

1.00 0.10 NC 0.1827 0.3872 0.3342 0.1263 0.2890 0.2466 50.5172 28.8980 246.6108 2000/2158 ' 93%
C 0.3302 1.2494 1.3655 0.2531 1.1183 0.8983 101.2448 111.8291 898.3335 2000/2339 ' 86%

5.00 2.00 NC 0.2257 2.4857 2.2298 0.1647 2.1584 1.9656 65.8709 43.1676 98.2816 2000/2114 ' 95%
C 0.3210 6.0353 5.7585 0.2525 5.2843 4.1940 101.0001 105.6860 209.6988 2000/2171 ' 92%

0.10 1.00 NC 0.3294 0.5910 0.5952 0.2693 0.4203 0.4418 107.7206 420.3230 44.1772 2000/3064 ' 65%
C 0.5079 1.1490 1.2565 0.4159 0.7094 1.1202 166.3406 709.3999 112.0214 2000/2934 ' 68%

2.00 5.00 NC 0.2942 3.1051 3.0346 0.2352 2.4888 2.4204 94.0959 124.4377 48.4077 2000/2432 ' 82%
C 0.4888 5.2005 5.9769 0.3932 3.6031 5.3909 157.2640 180.1539 107.8174 2000/2355 ' 85%

0.05 0.10 NC 0.2512 0.0690 0.0672 0.1992 0.0574 0.0555 79.6690 114.7299 55.4981 2000/2353 ' 85%
C 0.4992 0.2898 0.3841 0.4026 0.1951 0.3182 161.0268 390.1951 318.2143 2000/3550 ' 56%

0.75

0.10 0.05 NC 0.0791 0.0306 0.0223 0.0613 0.0243 0.0177 8.1741 24.2574 35.4005 2000/2020 ' 99%
C 0.3249 0.1774 0.6307 0.1998 0.1042 0.5622 26.6395 104.1552 1124.3160 2000/5655 ' 35%

1.00 0.10 NC 0.0557 0.1838 0.1057 0.0442 0.1468 0.0859 5.8966 14.6823 85.8500 2000/2175 ' 92%
C 0.2726 0.7185 2.5998 0.1459 0.5113 2.3158 19.4529 51.1345 2315.7740 2000/3564 ' 56%

5.00 2.00 NC 0.0763 1.4259 0.9946 0.0596 1.1414 0.7971 7.9484 22.8271 39.8563 2000/2022 ' 99%
C 0.1241 3.4324 10.9591 0.0944 2.3950 10.0756 12.5843 47.8992 503.7812 2000/2054 ' 97%

0.10 1.00 NC 0.2457 0.3409 0.3348 0.1779 0.1836 0.2116 23.7169 183.5833 21.1571 2000/2139 ' 94%
C 0.4690 0.8662 1.5181 0.3137 0.4036 1.3994 41.8257 403.6151 139.9393 2000/2673 ' 75%

2.00 5.00 NC 0.1293 1.4609 1.3363 0.0943 1.0084 0.9691 12.5672 50.4175 19.3819 2000/2012 ' 99%
C 0.3233 3.2270 7.9895 0.1826 1.8840 7.3360 24.3493 94.1989 146.7208 2000/2320 ' 86%

0.05 0.10 NC 0.1246 0.0326 0.0291 0.0927 0.0232 0.0216 12.3547 46.3956 21.6304 2000/2025 ' 99%
C 0.3633 0.2014 0.4895 0.2410 0.1021 0.4373 32.1288 204.1943 437.3301 2000/4233 ' 47%

When the errors are not contaminated, the RMSE, MAE and MAPE tend to decrease
with increasing sample size. However, this premise is not true when the errors are con-
taminated. In fact, it was found that for both Gaussian and exponential errors, outliers
had more impact in two situations: when φ = 0.75 and n = 50 (Tables 1 and 4); and when
φ = 0.25 and n = 500 (Tables 3 and 6). This impact is reflected in the RMSE, MAE and
MAPE, which produced very high values.

Furthermore, there are many cases where, for example, the RMSE of the estimators
of the contaminated errors are 3 times higher than the RMSE of the non-contaminated
errors. For example, in the case of the Gaussian errors with n = 500, φ = 0.25, σ2

ε = 0.10
and σ2

e = 0.05, the RMSE of φ, σ2
ε and σ2

e of the contaminated Gaussian errors were about
3, 6 and 11 times higher, respectively, compared to the non-contaminated Gaussian errors
(Table 3).

On the other hand, comparing both the Gaussian and exponential error cases, we find
that there are no significant differences in the convergence rate, as well as in the efficiency
of the autoregressive φ estimator. However, the RMSE, MAE and MAPE of the variance
estimators, σ2

ε and σ2
e , are in general higher in the case of exponential errors.
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Table 3. RMSE, MAE, MAPE and convergence rate of Θ with 2000 simulations of sample sizes
n = 500, considering Gaussian errors (NC = non-contaminated; C = contaminated).

Parameters RMSE MAE MAPE (%) Convergence Rate

φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e (%)

0.25

0.10 0.05 NC 0.1670 0.0487 0.0451 0.1246 0.0440 0.0410 49.8262 43.9675 81.9983 2000/2090 ' 96%
C 0.5099 0.2843 0.4946 0.4266 0.2027 0.4261 170.6503 202.6937 852.1144 2000/3936 ' 51%

1.00 0.10 NC 0.1322 0.3212 0.2834 0.0926 0.2411 0.2142 37.0469 24.1096 214.2324 2000/2073 ' 96%
C 0.3757 1.0511 1.6760 0.2954 0.9210 1.3679 118.1795 92.1025 1367.9340 2000/2309 ' 87%

5.00 2.00 NC 0.1665 2.1973 2.0204 0.1219 1.9401 1.8018 48.7737 38.8022 90.0924 2000/2015 ' 99%
C 0.3571 5.2313 7.1197 0.2745 4.4927 6.0116 109.7836 89.8549 300.5794 2000/2154 ' 93%

0.10 1.00 NC 0.3186 0.5157 0.5157 0.2655 0.3497 0.3555 106.1993 349.7172 35.5477 2000/2793 ' 72%
C 0.5660 1.0072 1.2870 0.4735 0.5918 1.1856 189.3834 591.7733 118.5649 2000/2666 ' 75%

2.00 5.00 NC 0.2596 2.7002 2.6426 0.2080 2.1282 2.0529 83.2062 106.4111 41.0575 2000/2102 ' 95%
C 0.4327 4.9215 5.7057 0.3449 3.4861 5.2227 137.9698 174.3029 104.4536 2000/2347 ' 85%

0.05 0.10 NC 0.2375 0.0645 0.0628 0.1900 0.0528 0.0510 75.9833 105.5881 50.9948 2000/2082 ' 96%
C 0.5787 0.2691 0.4908 0.5039 0.1635 0.4430 201.5559 326.9245 443.0177 2000/4751 ' 42%

0.75

0.10 0.05 NC 0.0477 0.0195 0.0142 0.0373 0.0154 0.0114 4.9771 15.3516 22.7729 2000/2003 ' 100%
C 0.1696 0.0817 0.6618 0.1106 0.0549 0.6455 14.7532 54.8753 1291.0500 2000/2501 ' 80%

1.00 0.10 NC 0.0395 0.1343 0.0782 0.0318 0.1081 0.0647 4.2341 10.8147 64.6665 2000/2090 ' 96%
C 0.0732 0.3663 2.5760 0.0587 0.2834 2.5003 7.8213 28.3405 2500.3230 2000/2815 ' 71%

5.00 2.00 NC 0.0474 0.9427 0.6600 0.0371 0.7485 0.5228 4.9477 14.9700 26.1379 2000/2005 ' 100%
C 0.0744 1.9273 10.4652 0.0578 1.4293 10.1291 7.7126 28.5863 506.4527 2000/2020 ' 99%

0.10 1.00 NC 0.1732 0.2068 0.2027 0.1219 0.1011 0.1174 16.2546 101.1061 11.7441 2000/2001 ' 100%
C 0.2439 0.5109 1.5706 0.2001 0.2151 1.5087 26.6834 215.1086 150.8725 2000/2390 ' 84%

2.00 5.00 NC 0.0723 0.7514 0.7300 0.0554 0.5623 0.5663 7.3812 28.1170 11.3252 2000/2000 ' 100%
C 0.1162 1.6095 7.9601 0.0903 1.0526 7.6541 12.0342 52.6321 153.0817 2000/2014 ' 99%

0.05 0.10 NC 0.0689 0.0175 0.0159 0.0528 0.0131 0.0122 7.0341 26.2519 12.2090 2000/2002 ' 100%
C 0.1914 0.1201 0.5832 0.1534 0.0547 0.5635 20.4470 109.4875 563.4770 2000/2293 ' 87%

Table 4. RMSE, MAE, MAPE and convergence rate of Θ with 2000 simulations of sample sizes n = 50,
considering exponential errors (NC = non-contaminated; C = contaminated).

Parameters RMSE MAE MAPE (%) Convergence rate

φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e (%)

0.25

0.10 0.05 NC 0.2403 0.0621 0.0520 0.1799 0.0504 0.0457 71.9672 50.3763 91.4927 2000/2635 ' 76%
C 0.3995 0.3399 0.3274 0.3134 0.2428 0.2110 125.3731 242.7797 422.0013 2000/3048 ' 66%

1.00 0.10 NC 0.2591 0.5315 0.3983 0.1934 0.4320 0.2635 77.3567 43.2020 263.5235 2000/2442 ' 82%
C 0.3516 1.3525 1.3138 0.2744 1.0954 0.7735 109.7515 109.5363 773.5130 2000/2313 ' 86%

5.00 2.00 NC 0.2810 3.0601 2.4320 0.2140 2.4909 1.9947 85.6126 49.8187 99.7367 2000/2489 ' 80%
C 0.3788 6.3086 5.6419 0.2971 5.0720 4.0209 118.8333 101.4390 201.0444 2000/2221 ' 90%

0.10 1.00 NC 0.3352 0.7070 0.7121 0.2656 0.4958 0.6145 106.2327 495.7865 61.4506 2000/3845 ' 52%
C 0.4979 1.4952 1.2090 0.4045 1.0352 1.0202 161.7847 1035.2270 102.0164 2000/2500 ' 80%

2.00 5.00 NC 0.3036 3.5020 3.6159 0.2359 2.7018 3.0956 94.3541 135.0912 61.9127 2000/3273 ' 61%
C 0.4756 7.4254 5.7965 0.3764 5.2303 4.8901 150.5748 261.5164 97.8024 2000/2281 ' 88%

0.05 0.10 NC 0.2712 0.0818 0.0775 0.2089 0.0644 0.0676 83.5522 128.8785 67.6088 2000/3045 ' 66%
C 0.4505 0.3498 0.3421 0.3573 0.2485 0.2372 142.9146 496.9232 237.1900 2000/3014 ' 66%
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Table 4. Cont.

Parameters RMSE MAE MAPE (%) Convergence Rate

φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e (%)

0.75

0.10 0.05 NC 0.1611 0.0564 0.0398 0.1246 0.0450 0.0322 16.6099 45.0059 64.3029 2000/2273 ' 88%
C 0.4359 0.3223 0.5405 0.3033 0.1875 0.3750 40.4453 187.5322 750.0313 2000/3694 ' 54%

1.00 0.10 NC 0.1175 0.4488 0.1929 0.0925 0.3574 0.1397 12.3275 35.7367 139.7342 2000/2364 ' 85%
C 0.3433 1.3662 2.5133 0.2284 0.9272 1.8790 30.4537 92.7218 1879.0050 2000/2470 ' 81%

5.00 2.00 NC 0.1448 2.7020 1.7189 0.1120 2.1216 1.3609 14.9294 42.4323 68.0429 2000/2181 ' 92%
C 0.3000 6.8179 11.0149 0.1977 4.5487 8.6278 26.3555 90.9748 431.3905 2000/2176 ' 92%

0.10 1.00 NC 0.3093 0.4945 0.5622 0.2368 0.3007 0.4524 31.5769 300.7228 45.2368 2000/2672 ' 75%
C 0.5765 1.3806 1.5393 0.4103 0.7817 1.2490 54.7124 781.7267 124.9006 2000/2792 ' 72%

2.00 5.00 NC 0.2394 2.8641 2.9144 0.1801 1.9810 2.3408 24.0172 99.0487 46.8162 2000/2221 ' 90%
C 0.4688 6.9340 7.5328 0.3241 4.3006 6.0393 43.2112 215.0307 120.7854 2000/2277 ' 88%

0.05 0.10 NC 0.2345 0.0614 0.0594 0.1767 0.0437 0.0484 23.5599 87.3926 48.3987 2000/2246 ' 89%
C 0.5399 0.3405 0.4259 0.4039 0.2083 0.3024 53.8548 416.5115 302.3952 2000/3314 ' 60%

Table 5. RMSE, MAE, MAPE and convergence rate of Θ with 2000 simulations of sample sizes
n = 200, considering exponential errors (NC = non-contaminated; C = contaminated).

Parameters RMSE MAE MAPE (%) Convergence Rate

φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e (%)

0.25

0.10 0.05 NC 0.2195 0.0567 0.0502 0.1605 0.0501 0.0458 64.1779 50.0747 91.6168 2000/2185 ' 92%
C 0.4489 0.2919 0.4062 0.3589 0.2159 0.3230 143.5695 215.8788 645.9832 2000/3303 ' 61%

1.00 0.10 NC 0.1942 0.4247 0.3510 0.1343 0.3304 0.2550 53.7222 33.0384 255.0102 2000/2194 ' 91%
C 0.3275 1.2229 1.3829 0.2520 1.0916 0.8967 100.8199 109.1563 896.7205 2000/2299 ' 87%

5.00 2.00 NC 0.2352 2.6233 2.2958 0.1709 2.2450 2.0030 68.3418 44.8991 100.1478 2000/2120 ' 94%
C 0.3157 6.0485 5.8589 0.2491 5.2427 4.2303 99.6284 104.8537 211.5132 2000/2170 ' 92%

0.10 1.00 NC 0.3263 0.6068 0.6071 0.2698 0.4264 0.4734 107.9090 426.4313 47.3421 2000/3235 ' 62%
C 0.5063 1.1797 1.2615 0.4136 0.7430 1.1099 165.4252 743.0232 110.9928 2000/2793 ' 72%

2.00 5.00 NC 0.2871 3.0873 3.0756 0.2286 2.4294 2.4630 91.4476 121.4710 49.2608 2000/2409 ' 83%
C 0.4800 5.3433 5.8893 0.3878 3.7179 5.2539 155.1106 185.8963 105.0775 2000/2349 ' 85%

0.05 0.10 NC 0.2547 0.0706 0.0689 0.2040 0.0582 0.0576 81.5998 116.3832 57.6243 2000/2381 ' 84%
C 0.4861 0.2824 0.3672 0.3959 0.1923 0.3042 158.3634 384.6917 304.2286 2000/3600 ' 56%

0.75

0.10 0.05 NC 0.0796 0.0350 0.0233 0.0617 0.0274 0.0186 8.2315 27.4339 37.1357 2000/2037 ' 98%
C 0.3272 0.2014 0.6101 0.1953 0.1114 0.5404 26.0350 111.3510 1080.8030 2000/5646 ' 35%

1.00 0.10 NC 0.0597 0.2508 0.1085 0.0474 0.1994 0.0873 6.3241 19.9427 87.2755 2000/2177 ' 92%
C 0.2891 0.7251 2.6068 0.1467 0.5148 2.3368 19.5576 51.4762 2336.7630 2000/3530 ' 57%

5.00 2.00 NC 0.0746 1.6329 1.0466 0.0594 1.3146 0.8439 7.9157 26.2910 42.1946 2000/2025 ' 99%
C 0.1272 3.6999 10.6605 0.0940 2.5298 9.7850 12.5288 50.5952 489.2506 2000/2058 ' 97%

0.10 1.00 NC 0.2397 0.3397 0.3613 0.1728 0.1807 0.2566 23.0433 180.7138 25.6634 2000/2212 ' 90%
C 0.4477 0.8176 1.5542 0.3042 0.3849 1.4218 40.5591 384.9222 142.1828 2000/2667 ' 75%

2.00 5.00 NC 0.1296 1.5155 1.5429 0.0951 1.0538 1.1744 12.6814 52.6910 23.4870 2000/2015 ' 99%
C 0.3411 3.2286 8.1396 0.1906 1.8699 7.4604 25.4199 93.4933 149.2072 2000/2354 ' 85%

0.05 0.10 NC 0.1199 0.0326 0.0327 0.0888 0.0235 0.0253 11.8369 46.9942 25.2911 2000/2029 ' 99%
C 0.4057 0.1971 0.4953 0.2636 0.0980 0.4410 35.1415 196.0500 440.9552 2000/4253 ' 47%
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Table 6. RMSE, MAE, MAPE and convergence rate of Θ with 2000 simulations of sample sizes
n = 500, considering exponential errors (NC = non-contaminated; C = contaminated).

Parameters RMSE MAE MAPE (%) Convergence Rate

φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e φ σ2
ε σ2

e (%)

0.25

0.10 0.05 NC 0.1774 0.0502 0.0459 0.1295 0.0449 0.0415 51.8133 44.9298 83.0451 2000/2101 ' 95%
C 0.5105 0.2796 0.4923 0.4312 0.2000 0.4234 172.4715 200.0235 846.7976 2000/3882 ' 52%

1.00 0.10 NC 0.1360 0.3393 0.2890 0.0925 0.2583 0.2157 37.0141 25.8315 215.7496 2000/2068 ' 97%
C 0.3751 1.0426 1.6910 0.2938 0.9117 1.3735 117.5078 91.1686 1373.5180 2000/2331 ' 86%

5.00 2.00 NC 0.1704 2.2503 2.0470 0.1234 1.9625 1.8020 49.3534 39.2493 90.0986 2000/2017 ' 99%
C 0.3479 5.3039 7.0687 0.2679 4.5285 5.9227 107.1780 90.5707 296.1330 2000/2129 ' 94%

0.10 1.00 NC 0.3131 0.5300 0.5411 0.2597 0.3703 0.3968 103.8980 370.3198 39.6789 2000/2816 ' 71%
C 0.5597 1.0212 1.2769 0.4684 0.6074 1.1618 187.3698 607.3962 116.1793 2000/2652 ' 75%

2.00 5.00 NC 0.2601 2.7288 2.7233 0.2073 2.1620 2.1463 82.9108 108.0979 42.9251 2000/2126 ' 94%
C 0.4306 4.9082 5.7249 0.3452 3.5071 5.1919 138.0972 175.3540 103.8379 2000/2317 ' 86%

0.05 0.10 NC 0.2376 0.0645 0.0627 0.1901 0.0524 0.0510 76.0432 104.7235 50.9923 2000/2074 ' 96%
C 0.5858 0.2454 0.4984 0.5118 0.1446 0.4560 204.7275 289.2989 456.0194 2000/4715 ' 42%

0.75

0.10 0.05 NC 0.0475 0.0231 0.0155 0.0372 0.0181 0.0123 4.9720 18.1002 24.5343 2000/2004 ' 100%
C 0.1591 0.0842 0.6609 0.1062 0.0545 0.6454 14.1550 54.5197 1290.8090 2000/2474 ' 81%

1.00 0.10 NC 0.0384 0.1704 0.0773 0.0307 0.1373 0.0643 4.0941 13.7260 64.3178 2000/2080 ' 96%
C 0.0721 0.3674 2.5627 0.0581 0.2882 2.4862 7.7527 28.8233 2486.2120 2000/2794 ' 72%

5.00 2.00 NC 0.0466 1.0946 0.6805 0.0370 0.8577 0.5377 4.9267 17.1536 26.8825 2000/2003 ' 100%
C 0.0724 1.9116 10.6844 0.0572 1.4456 10.3496 7.6297 28.9121 517.4798 2000/2039 ' 98%

0.10 1.00 NC 0.1725 0.1945 0.2149 0.1211 0.0988 0.1473 16.1486 98.8105 14.7318 2000/2010 ' 100%
C 0.2492 0.5142 1.5627 0.1972 0.2080 1.4974 26.2946 208.0308 149.7398 2000/2384 ' 84%

2.00 5.00 NC 0.0760 0.8252 0.9283 0.0576 0.6068 0.7308 7.6842 30.3421 14.6165 2000/2001 ' 100%
C 0.1204 1.7123 7.9869 0.0934 1.0745 7.6659 12.4592 53.7261 153.3177 2000/2013 ' 99%

0.05 0.10 NC 0.0684 0.0185 0.0190 0.0524 0.0138 0.0149 6.9855 27.6962 14.9040 2000/2001 ' 100%
C 0.1908 0.1162 0.5854 0.1535 0.0531 0.5665 20.4642 106.2381 566.4536 2000/2334 ' 86%

4. Discussion

In this work, outliers were found to impact the performance of the Maximum Likeli-
hood estimators. In particular, it was found through the simulation study that outliers have
a very significant impact in both cases: when the sample size is small and the autoregressive
parameter is close to 1, and when the sample size is large and the autoregressive parameter
is close to 0.25. This impact was reflected in the RMSE, MAE and MAPE values which,
in many cases, were higher compared to the case of non-contaminated errors.

Moreover, we notice that the rate of valid estimates (convergence rate) is higher for
large sample sizes, and is more evident for non-contaminated Gaussian and exponential
errors. On the other hand, it is also important to have large sample sizes to avoid problems
related to parameter estimation [11]. In general, the convergence rate is lower when
Gaussian and exponential errors are contaminated.

Therefore, our next step is to develop methods to detect outliers in time series and/or
to establish other estimation methods that are more robust, in the sense that they do not
assume a distribution of the data and are less sensitive to outliers.

In this work, the outliers were generated from a regression model that established
a linear relationship between the magnitude of the outliers and the total variance of the
model with the state space representation of maximum air temperature real data. The rate
of outliers from the real data was 5%; thus, this was the percentage used in this work.

In the literature, we did not find a unanimous approach for doing this. For example,
ref. [15] contaminated the error of the zero-mean Gaussian equation of state by replacing
the standard deviation of the observation error with a 10-times-higher standard deviation
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with a probability of 10% (symmetric outliers). They also considered the case of asymmetric
outliers, where the zero mean of the observation error was replaced with a value 10 times
higher than the standard deviation with a probability of 10%. Ref. [16] followed the same
line as [15], but in this case they call symmetric outliers “zero-mean” and asymmetric
outliers “non-zero”, considering the probability of contamination to be 5%. Ref. [9]
contaminated both the observation and state equation errors, considering the magnitude
of the outliers equal to 2.5 the standard deviation from the diagonal elements of the
observation and state covariance matrices, respectively.
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