
Universidade de Aveiro
2021

Rui Emanuel

Simões da Silva

Controlo e comunicação distribuídos para

UAVs

Distributed control and communication for

UAVs

Universidade de Aveiro
2021

Rui Emanuel

Simões da Silva

Controlo e comunicação distribuídos para

UAVs

Distributed control and communication for

UAVs

Dissertação apresentada à Universidade de Aveiro para cumprimento
dos requisitos necessários à obtenção do grau de Mestre em Engen-
haria de Computadores e Telemática, realizada sob a orientação cien-
tífica da Doutora Susana Isabel Barreto de Miranda Sargento, Profes-
sora Catedrática do Departamento de Eletrónica, Telecomunicações e
Informática da Universidade de Aveiro e do Doutor Nuno Miguel Abreu
Luís, Professor Adjunto do Instituto Superior de Engenharia de Lisboa.

o júri / the jury

presidente / president Professor Doutor Artur José Carneiro Pereira
Professor Auxiliar, Universidade de Aveiro

vogais / examiners
committee

Professor Doutor Rui Lopes Campos
Professor Auxiliar, Universidade do Porto

Professora Doutora Susana Isabel Barreto de Miranda Sargento
Professora Catedrática, Universidade de Aveiro

agradecimentos /
acknowledgements

Agradeço ao Instituto de Telecomunicações pelo suporte financeiro
aquando da realização desta Dissertação, no âmbito do projeto
FRIENDS: Fleet of dRones for radIological inspEction, commuNication
anD reScue (PTDC/EEI-ROB/28799/2017).
Agradeço à professora Susana Sargento pela oportunidade que me
deu, assim como pela disponibilidade e apoio durante o desenvolvi-
mento deste projeto.
Ao Nuno Luís que, como coorientador, também colaborou no desen-
volvimento desta Dissertação com os seus conselhos e sugestões.
À Margarida Silva por toda a ajuda fornecida, principalmente durante
a fase inicial do projeto, em algumas partes que se mostraram um
pouco complicadas.
Ao André Mourato e ao Nuno Ferreira, que embora não tenham co-
laborado diretamente no desenvolvimento deste projeto, deram-me
uma grande ajuda, com conselhos sobre os drones e na realização de
testes.

Gostaria também de agradecer a todos os que sempre me apoiaram
durante todo o meu percurso académico.
À minha família, principalmente aos meus pais e ao meu irmão,
porque sem o seu apoio, não teria sido possível chegar até aqui.
Aos meus colegas, que de perto sempre me acompanharam e
apoiaram desde que comecei o meu percurso universitário, principal-
mente ao Tiago, ao Afonso e ao Vasco.
E também aos meus amigos mais próximos que já me acompanham
há imensos anos, e que mesmo estando longe agora, sempre es-
tiveram lá quando foi preciso, nomeadamente o Jorge, José, Diogo e
a tantos outros.

Palavras Chave Drones, Missões, Gestão de Frotas, Descentralização, Rede, Android

Resumo Os drones têm-se tornado mais populares nos últimos anos devido a
uma diminuição de custos e a uma gama mais ampla de casos de
uso. Podem ser usados para vários fins, incluindo recreação e ativi-
dades mais específicas, como monitorização de florestas, agricultura
e até mesmo no caso de um desastre natural. São a ferramenta ideal
para auxiliar ou até mesmo substituir um ser humano devido ao seu
tamanho minúsculo, facilidade de utilização e mobilidade. Os pilotos
automáticos foram projetados para permitir que os drones realizem
missões sem a necessidade de controlo humano. Muitas ferramen-
tas diferentes foram desenvolvidas para gerir uma frota de drones,
seguindo os seus movimentos e enviando instruções.

Uma nova abordagem para estas ferramentas foi apresentada nesta
Dissertação. Normalmente, as arquiteturas desenvolvidas são mais
centralizadas, o que significa que os drones estão sempre sob o co-
mando de uma estação terrestre. Em vez disso, desenvolvemos um
método para que os drones comuniquem uns com os outros e tomem
decisões com base em dados em tempo real recolhidos durante as
missões, mesmo quando estão fora do alcance da estação terrestre.
Isso foi feito criando dois módulos separados, um para os drones e
outro para a estação terrestre. O módulo dos drones executa missões,
monitorizando a telemetria e a conectividade de rede com o resto
da frota, enquanto o módulo da estação terrestre recolhe a teleme-
tria dos drones e gere os drones disponíveis para realizar as missões.
Criámos um método para aumentar o alcance máximo da rede da
plataforma por meio de drones de retransmissão ativados de acordo
com as métricas de rede.

Também desenvolvemos um método para integrar dispositivos An-
droid na plataforma. Por exemplo, uma pessoa pode pedir um drone
usando uma aplicação em Android, efetuando o pedido e fornecendo
a sua localização.

Tudo o que desenvolvemos foi testado passo a passo para validar o
trabalho realizado. Primeiro usámos ferramentas de simulação para
verificar o trabalho localmente antes de passar para os testes em
hardware real usando drones físicos num ambiente real, com um
único drone primeiro e depois com vários drones em cooperação.

Keywords Drones, Missions, Fleet Management, Decentralization, Network, An-
droid

Abstract Drones have been more popular in recent years due to lower prices
and a wider range of use cases. They can be used for various pur-
poses, including recreation and more specific activities such as forest
monitoring, agriculture, and even in the event of a natural disaster.
They are the ideal tool to assist or even substitute a human due to
their tiny size, quick deployment and mobility. Autopilots were de-
signed to allow drones to carry out missions without the need for hu-
man control. Many different tools have been developed to manage a
fleet of drones by tracking their movements and sending instructions.

A new approach to these tools has been presented in this Dissertation.
Typically, the architectures developed are more centralized, mean-
ing that the drones are always under the control of a ground station.
Instead, we devised a method for drones to communicate with one
another and make decisions based on real-time data collected dur-
ing missions, even when they are out of range of the ground station.
This was accomplished by creating two separate modules, one for
the drones and the other for the ground station. The drone module
executes missions, monitoring telemetry and network connectivity
with the rest of the fleet, while the ground station module retrieves
telemetry from the drones and manages the available drones to per-
form missions. We have created a method of extending the maximum
network range of the platform through relay drones activated through
a change on the network metrics.

We also devised a method to integrate Android devices into the plat-
form. For example, a person could request a drone using an Android
application by placing the order and providing its location.

Everything we developed was tested step by step to validate the per-
formed work. First we used simulation tools to verify the work locally
before moving on to real hardware testing using physical drones in
a real environment, with single drones first, and then with multiple
drones in cooperation.

Contents

Contents i

List of Figures iii

List of Tables v

List of Abbreviations vii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Document outline . 3

2 Background and Related Work 5

2.1 Unmanned Aerial Vehicles . 5

2.2 Drone components . 6

2.3 Mission planning and control . 9

2.4 Additional technologies and other tools . 11

2.5 Related Projects . 14

2.6 Summary . 18

3 Architecture 19

3.1 Base architecture . 19

3.1.1 Drone module . 20

3.1.2 Ground Station module . 21

3.1.3 Simulation tool . 21

3.2 Requirements . 22

3.3 Proposed architecture . 23

3.3.1 Network module . 25

3.3.2 Android module . 25

3.3.3 Drone module . 25

3.3.4 Ground Station module . 26

3.4 Summary . 26

i

4 Implementation 27
4.1 Modules . 27

4.1.1 General overview . 27
4.1.2 Communication between modules . 28
4.1.3 Network Module . 33
4.1.4 Android Module . 39
4.1.5 Drone Module . 42
4.1.6 Ground Station Module . 44

4.2 Relay . 45
4.2.1 Modules integration . 46
4.2.2 Message exchange and format . 47
4.2.3 Drone performing a mission . 50
4.2.4 Relay Drone . 51
4.2.5 Ground Station . 57
4.2.6 Routing . 58
4.2.7 Relay summary . 59

4.3 Rescue . 61
4.3.1 Modules integration . 61
4.3.2 Android application . 62
4.3.3 Drone . 65
4.3.4 Rescue summary . 66

4.4 Summary . 66

5 Experiments and Results 69
5.1 Simulated experiments . 69

5.1.1 Relay mission . 70
5.1.2 Android integration . 74

5.2 Experiments in a real environment . 74
5.2.1 Hardware . 74
5.2.2 Testing relay with network integration 75

5.3 Summary . 85

6 Conclusion 87
6.1 Final observations . 87
6.2 Future work . 88

References 91

ii

List of Figures

2.1 An example of open and closed frames. 7

2.2 Holybro Pixhawk 4 Power Module (PM07). 7

2.3 Examples of Flight Controllers. 8

2.4 Example of GPS modules. 8

2.5 Raspberry Pi 4 Model B and NVIDIA® Jetson Nano™. 9

2.6 QGroundControl GUI. 10

3.1 Base architecture. 20

3.2 Proposed architecture. 24

4.1 Network Module Implementation. 33

4.2 Android Module Implementation. 39

4.3 The user interface of the application. 41

4.4 Drone Module Implementation. 42

4.5 Ground Station Module Implementation. 44

4.6 Example of a mission scenario. 45

4.7 Modules connection for a mission with relay. 46

4.8 Flow for a Relay Request. 48

4.9 Flow for a Cancel Request. 49

4.10Drone’s different speed zones. 52

4.11Example scenario for a mission with relay support. 54

4.12Example scenarios using batman-adv to route information. 59

4.13Flow for the drone that initiates a mission. 60

4.14Flow for the drone that performs the relay. 60

4.15Modules connection for a mission with relay and Android integration. 61

4.16The user will see one of these messages if one or both of the prerequisites
(connection and Global Positioning System (GPS), respectively) are not met. 62

4.17The user will receive a response to the request depending on the availability
of drones. 64

4.18Request cancelation. 65

4.19The user will receive this message if the drone cancels the mission. 65

4.20Flow for the drone performing a rescue mission. 66

5.1 Example of a mission with relay, displaying the paths of the drones. 70

5.2 Graph with the distance between the mission drone and its relay. 71

iii

5.3 Graph displaying the improvement using different Quality of Service (QoS)
policies. 73

5.4 One of the drones used in the experiments. 75
5.5 Path planned for the mission drone. 78
5.6 Relay request performed by the first drone. 79
5.7 Path followed by the drones. 80
5.8 Network quality between drone01 and the Ground Station during the mission. 81
5.9 Optimal and real distance between the two drones throughout the mission. 82
5.10Signal between the two drones throughout the mission. 83
5.11Telemetry gathered by the different nodes during the mission. 84

iv

List of Tables

4.1 The key parameters in a network measurement. 34
4.2 Parameters list for each connection in a network measurement. 35
4.3 List of parameters in the configuration file. 37
4.4 Supported commands in the Drone Module. 43
4.5 Requests handled by the Ground Station for the relay scenario. 57

5.1 Drones specifications. 74
5.2 Ground Station specifications. 75

v

vi

List of Abbreviations

AMSL Above Mean Sea Level

API Application Programming Interface

CSMA Carrier Sense Multiple Access

ESC Electronic Speed Controller

FC Flight Controller

FIFO First In, First Out

FW Fixed-Wing

GPS Global Positioning System

GS Ground Station

GUI Graphical User Interface

HITL Hardware-In-The-Loop

HTTP HyperText Transfer Protocol

IoD Internet of Drones

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

LAN Local Area Network

MAC Media Access Control

MAVLink Micro Air Vehicle Link

MQTT Message Queuing Telemetry Transport

vii

MR Multi-Rotor

QoS Quality of Service

RC Radio Control

RCL ROS Client Library

RCLPY ROS Client Library for Python

REST Representational State Transfer

ROS Robot Operation System

SDK Software Development Kit

SITL Software-In-The-Loop

TCP Transmission Control Protocol

TDMA Time-Division Multiple Access

UAS Unmanned Aircraft System

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

USB Universal Serial Bus

VTOL Vertical Take-Off and Landing

viii

Chapter 1

Introduction

This chapter provides some context for the development of this Dissertation. We
begin by presenting the motivations that lead to the work done, and then explain the
key goals that were set. Then, we outline the organization of the Dissertation, briefly
describing the various chapters.

1.1 Motivation

Unmanned Aerial Vehicles (UAVs), or drones, are pilotless aerial vehicles. They were
originally designed to be used in military activities, but in recent years, their applica-
tions have broadened, and they are now utilized for a variety of purposes, ranging from
personal use to more specialized research.

This increased accessibility enables them to be employed in highly specialized cir-
cumstances, such as forest monitoring and emergencies like natural catastrophes and
the COVID-19 epidemic. However, this demands the use of several drones, and the abil-
ity to control a fleet of drones requires the use of a platform that meets these require-
ments. To accomplish these objectives, various studies have been conducted. [1], for
example, provides a set of functionalities and tools that allows the management of a fleet
of drones, as well as features that make developing and debugging new features simpler.
In addition, the Ground Station always coordinates the fleet on this platform, which has
a centralized architecture. This restricts the platform because a mission is always sent
from the Ground Station, which means that if the drone’s connection to the ground sta-
tion is lost, the drone will be unable to receive commands. This is also a concern when
we do not have direct eye contact with a drone. We have no method of acquiring data
and coordinating a drone’s return if we do not know where it is in case of a malfunction
that requires manual intervention. The platform’s reliance on the ground station limits
the situations where drones can be employed and what they might execute.

The primary purpose of this Dissertation is to address these restrictions by designing
an architecture that focuses more on drones and less on the ground station. This way,
even if the contact with the Ground Station is temporarily lost, a drone may still complete
a mission, decreasing its dependency from the Ground Station.

As a starting point, we will use the base platform from [1] to provide a way to deliver

1

missions. The Ground Station module is responsible for keeping track of which drones
are online at any time, assigning tasks, and receiving data from them, such as telemetry,
which provides information such as a drone’s current location. On the other hand, the
Drone Module concentrates on making the interface with a drone as simple as possi-
ble, by eliminating low-level user interactions and offering a high-level and user-friendly
means of creating missions.

We aim to combine existing characteristics with new ones to allow drones to commu-
nicate directly with one another without the intervention of the Ground Station. Because
the drones will coordinate missions among themselves, this could expand their capabil-
ities. We also aim to deploy relay drones to increase the platform’s network range by
acting as intermediary links between multiple endpoints, allowing for longer-distance
connections. This will demand a mechanism to evaluate network conditions and deter-
mine when these relays are required.

Finally, we plan to incorporate Android smartphones into the platform as a whole.
This could be the most challenging part, as the current architecture does not accommo-
date these devices. The objective is to create an application that allows Android devices
to communicate with drones, allowing the former to assign missions.

1.2 Objectives

We established a list of goals that needed to be met in order to attain a more decen-
tralized architecture:

• Create a drone-to-drone communication channel.

• Allow mission code to be performed in the drones rather than at the Ground Station.

• Develop a system that allows drones to make decisions on their own, based on data
collected in real time during missions, even when they are not connected to the
ground station.

• Create a ground station module to handle requests from drones.

• Integrate a mechanism for assessing the platform’s network conditions.

• Integrate Android devices into the platform, by developing an application that al-
lows for a user to assign a mission to a drone.

We want to achieve our objectives by improving the present Drone and Ground Station
modules by adding new communication channels and functionalities. After that, we will
need to create two new modules: one for the network and one for Android. Then, to allow
the platform’s current capabilities to grow, combine these with what already existed to
expand functionalities and the number of scenarios in which they can be applied, testing
them in a real-world environment with drones.

2

1.3 Document outline

This Dissertation is divided into five chapters.
Chapter 2, Background and Related Work, provides context for the Dissertation, in-

cluding how Unmanned Aerial Vehicles (UAVs) have grown in importance in recent years,
and how they are now used, as well as a detailed description of a drone’s main compo-
nents. Following that, we go over some of the tools that may be used to plan and manage
missions for drone fleets, and the essential technologies used to create these platforms.
Finally, we describe related Unmanned Aerial Vehicle (UAV) studies and provide a brief
description of some of their limitations, as well as how the work developed in this Dis-
sertation aims to overcome them.

Chapter 3, Architecture, outlines the most significant modules established in [1] that
served as a basis. We next list and explain the requirements that must be met to achieve
our objectives, and we conclude by proposing an architecture, defining the various mod-
ules and how communication is performed.

Chapter 4, Implementation, discusses how the various modules presented through-
out the Dissertation are implemented. First, we describe the overall implementation
of modules communication and then go over each one separately. Then, we describe
the scenarios in which these modules were evaluated, and how the various components
interacted.

Chapter 5, Experiments and Results, explains the various experiments conducted to
test and validate the implementation, first in a simulator and then in a real-world scenario
using real hardware. Finally, we examine the data and evaluate what is working well and
what needs improvement.

Chapter 6, Conclusion, provides a brief overview of the work completed, some re-
marks, and a list of potential future ideas.

3

4

Chapter 2

Background and Related Work

In this chapter, we will discuss the research that was conducted prior to the develop-
ment of the Dissertation, including describing UAVs, its applications, the many compo-
nents that make up the UAVs, as well as discussing available control platforms. We will
also discuss how the work in this Dissertation made use of the platform developed in [1],
which provided a set of tools that made both setting up drones for flying and developing
new features much easier.

2.1 Unmanned Aerial Vehicles

An Unmanned Aerial Vehicle (UAV), often known as a drone, is an aircraft that does
not have a human pilot, crew, or passengers on board. UAVs are a component of a larger
system known as an Unmanned Aircraft System (UAS), which also includes a ground-
based controller and a communication system with the UAV [2]. It can be commanded
remotely or autonomously.

Drones were first designed to be used in military missions that were too risky for
humans to perform. Drone experiments began in the 1920s, following World War I [3],
and were eventually upgraded to the first cruise missile variants, such as the Fieseler
Fi-103 [4], the German V-1 flying bomb, employed during World War II. Fast forwarding
a few years to the Cold War era, the United States deployed drones as reconnaissance
vehicles to spy on Soviet territory, and the Israeli Army later used them in the 1980s [5].
The MQ-1 Predator1, the first iteration of UAVs with heavy military armaments, was de-
ployed by the United States in the Balkans in 1995. However, as technology progressed
and hardware components became affordable, drones began to be commercialized as a
recreational product and for personal use, being widely used in various scientific areas.

Applications for UAVs

Drones can be used for a variety of reasons, since their characteristics, such as small
size, easy and quick deployment, and mobility, make them a better alternative to other

1https://www.deagel.com/Support%20Aircraft/Predator/a000517

5

https://www.deagel.com/Support%20Aircraft/Predator/a000517

vehicles [6]. They enable deployment in regions where smaller movements are impossi-
ble to access by traditional techniques or where human lives are at risk. They are also
used in monitoring missions, such as checking for fires in forest areas and even assisting
in firefighting2.

Other uses for UAVs include:

• Agricultural applications include crop monitoring and dusting3;

• Filmmaking, by giving new angles of coverage not generally available with standard
cameras4;

• Monitoring pollution and analyzing air quality with sophisticated sensors5;

• Using thermal cameras to monitor crowds during the COVID-19 pandemic6.

2.2 Drone components

Several drones are also used to research new approaches. These drones differ from
the ones typically sold for recreational use, in that they are purchased in pieces and
assembled by researchers, allowing for the attachment of specific equipment required
for investigations. We will go through these components in more detail on the next
pages.

Drone Frame

The frame of a drone (see Figure 2.1) is the drone’s main structure. It is where the
drone’s arms are kept, each with its own motor and propeller. It can be a "closed" piece,
which means the rest of the components, including sensors and other electronics, are
stored inside of it; this is common in recreational drones because it is more user-friendly.
The problem of these drones is that they usually cannot be upgraded with a new gear.
They can also be an "open" piece, which means that the components are held in a central
wheel, and the user can add more sensors as needed.

2https://newyork.cbslocal.com/2021/09/30/fdny-drones-2/
3https://spectrum.ieee.org/chris-andersons-expanding-drone-empire
4https://www.theatlantic.com/technology/archive/2014/02/the-future-of-sports-

photography-drones/283896/
5https://journals.vgtu.lt/index.php/Aviation/article/view/3004
6https://www.forbes.com/sites/stevebanker/2020/06/11/is-the-future-of-drones-now/?sh=

633a76333284

6

https://newyork.cbslocal.com/2021/09/30/fdny-drones-2/
https://spectrum.ieee.org/chris-andersons-expanding-drone-empire
https://www.theatlantic.com/technology/archive/2014/02/the-future-of-sports-photography-drones/283896/
https://www.theatlantic.com/technology/archive/2014/02/the-future-of-sports-photography-drones/283896/
https://journals.vgtu.lt/index.php/Aviation/article/view/3004
https://www.forbes.com/sites/stevebanker/2020/06/11/is-the-future-of-drones-now/?sh=633a76333284
https://www.forbes.com/sites/stevebanker/2020/06/11/is-the-future-of-drones-now/?sh=633a76333284

Figure 2.1: An example of open7and closed8frames, respectively.

Distribution Board

The Power Management Board (see Figure 2.2) is a vital part of the drone’s wiring
circuit. It is a Power Supplier as well as a Power Distributor. It distributes power straight
from the battery to the remaining components, including the Flight Controller (FC) and
Electronic Speed Controller (ESC), as well as informing the FC on the amount of energy
provided.

Figure 2.2: Holybro Pixhawk 4 Power Module (PM07)9.

Flight Controller

The Flight Controller (see Figure 2.3) is the device that runs the flight software. It
accepts commands from the Radio Control (RC) or any sort of software running autopilot,
and delivers them to the drone’s ESC that control motors’ speed, which then sends them
straight to the motors by adjusting their speed. It also retrieves information from the
drone’s state, such as GPS coordinates, and provides it to the user.

7https://www.dji.com/pt/flame-wheel-arf/feature
8https://www.dji.com/pt/phantom-4-pro?site=brandsite&from=mobile_nav
9https://docs.px4.io/master/en/power_module/holybro_pm07_pixhawk4_power_module.html

7

https://www.dji.com/pt/flame-wheel-arf/feature
https://www.dji.com/pt/phantom-4-pro?site=brandsite&from=mobile_nav
https://docs.px4.io/master/en/power_module/holybro_pm07_pixhawk4_power_module.html

Figure 2.3: Examples of Flight10Controllers11.

GPS Module

The GPS module (see Figure 2.4) is a standard GPS module that is necessary for au-
tonomous flights, as well as remote control in any flying mode that requires a worldwide
position, usually supporting global navigation satellite systems (GNSS12). Most of them
come with a FC and an integrated compass, used for determining the direction the drone
is facing (heading) and the proper direction to face when a new destination coordinate is
entered (bearing).

Figure 2.4: Examples of GPS13modules14.

Onboard computer

To execute any form of a mission, the devices that are running it must be directly con-
nected to the Flight Controller. Because it is not possible to fly a drone while attached
to a conventional computer, the solution relies on the use of an on-board computer (see
Figure 2.5). A common example is any type of Raspberry because it is inexpensive and
simple to use, with the ability to perform any type of task as long as it is not too heavy.
However, if we want to conduct any kind of task that requires more computer power,

10https://www.dji.com/pt/naza-m-v2
11https://docs.px4.io/master/en/flight_controller/pixhawk4.html
12https://www.euspa.europa.eu/european-space/eu-space-programme/what-gnss
13See footnote 10
14https://docs.px4.io/master/en/GPS_compass/

8

https://www.dji.com/pt/naza-m-v2
https://docs.px4.io/master/en/flight_controller/pixhawk4.html
https://www.euspa.europa.eu/european-space/eu-space-programme/what-gnss
https://docs.px4.io/master/en/GPS_compass/

such as image processing, we need something better, such as a NVIDIA® Jetson Nano™,
because it has more computational power with enhanced CPU, GPU, and memory. Typ-
ically, these devices run a lightweight version of an operating system, such as Ubuntu
arm6415.

Figure 2.5: Raspberry Pi 4 Model B16and NVIDIA® Jetson Nano™17, respectively.

The components above are the ones that, when combined, allow us to have a viable
drone for our tests. We will now go over different platforms for managing a fleet of
drones.

2.3 Mission planning and control

Various tools are available on the market for setting up missions and controlling
drones, ranging from free and open-source software that allows to transmit commands
and track their movements to more specialized software created for particular applica-
tions.

QGroundControl

QGroundControl18 is a free open-source application, member of The Dronecode Foun-
dation19, that provides full flight control and mission planning for drones that communi-
cate via the Micro Air Vehicle Link (MAVLink)20 protocol. It is particularly useful for both
end-users and developers. It provides a graphical user interface with a map that shows
the drone’s global location, as well as information like battery level and flight mode. It
also allows a user to give simple commands such as take off, coordinates, and landing,
as well as complete missions with multiple tasks. Apart from that, when connecting a
FC, it gives a number of options, such as the sort of drone frames21 that may be used, as

15https://ubuntu.com/download/server/arm
16https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
17https://developer.nvidia.com/embedded/jetson-nano-developer-kit
18http://qgroundcontrol.com/
19https://www.dronecode.org/
20https://mavlink.io/en/
21https://docs.px4.io/v1.9.0/en/getting_started/frame_selection.html

9

https://ubuntu.com/download/server/arm
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
http://qgroundcontrol.com/
https://www.dronecode.org/
https://mavlink.io/en/
https://docs.px4.io/v1.9.0/en/getting_started/frame_selection.html

well as allowing to calibrate the embedded sensors and presenting a list of configurable
parameters provided by the Flight Controller.

Figure 2.6: QGroundControl Graphical User Interface (GUI)22.

DroneKit

DroneKit23 is a free open-source platform that includes a Software Development Kit
(SDK) and a web Application Programming Interface (API) for developing apps for drone
systems that use the MAVLink20 communication protocol. Path Planning, Autonomous
Flight, and Live Telemetry Recovery are all possible. It is split into two parts: DroneKit
Python is a Python API that allows to plan and design missions for use in onboard com-
panion computers (covering high-level situations like Computer Vision, 3D modeling, and
so on), but it can also be used by Ground Station (GS) apps to provide commands to the
drones performing the missions. DroneKit-Android is the second part, which provides
an API that can be used to control any type of UAV, such as control copters, planes, and
ground vehicles, in a manner similar to the first part, but this time for Android devices.

Mission Planner

Mission Planner24, which is part of the ArduPilot25 project, is likewise a free and open
source platform. It sets waypoints, sends commands to a fleet of drones, analyzes mission

22https://docs.qgroundcontrol.com/master/en/index.html
23https://dronekit.io/
24https://ardupilot.org/planner/
25https://ardupilot.org/

10

https://docs.qgroundcontrol.com/master/en/index.html
https://dronekit.io/
https://ardupilot.org/planner/
https://ardupilot.org/

logs, and customizes a variety of autopilot settings. It also comes with a fully complete
Software-In-The-Loop (SITL) simulation that simulates the drone’s point of view for a
more realistic experience. It is very similar to QGroundControl in terms of graphical
user interface (see Figure 2.6).

Precision Hawk

Precision Hawk26, in contrast to the products mentioned above, provides enterprise-
level tools. It is primarily aimed at accumulating massive amounts of aerial data for
future study. It enables users to fly the drones themselves with the necessary hardware,
using its integrated platform, or to hire a skilled team for this purpose, as well as a team
of data scientists for aerial intelligence. It is also developer-friendly, offering users ways
for integrating their platform with previously existing operations. One of the most widely
used study fields in which their technologies could be valuable is agriculture, because
their combination of specialized sensors and data collection enables for more effective
and efficient farming decisions.

2.4 Additional technologies and other tools

Beyond the above-mentioned control platforms, there are a few other related tech-
nologies and relevant tools worth mentioning.

MAVLink

MAVLink20 is a messaging protocol that is used in a variety of UAV systems around
the world and is managed by the Dronecode Foundation19. It was founded in 2009 by
Lorenz Meier27. However, because it is a free and open source project, many others
have contributed to its growth throughout the years. It can be used for communication
between drones and external nodes (e.g. GSs), or even between onboard components
in drones and other vehicles. It follows a typical publish/subscribe format with point-to-
point communication. Some of the characteristics that distinguish this protocol are that
it is very efficient and lightweight, working in applications with very limited network
bandwidth, and that it is very reliable, working properly in communication channels
with high noise/latency and providing methods for packet authentication, corruption, and
packet loss. MAVLink 228, an improved version of MAVLink, offers improved security and
flexibility while being backwards compatible with the original one.

MAVSDK

MAVSDK29 is a higher-level tool, also managed by the Dronecode Foundation19, that
is directly tied to MAVLink20, since it includes a set of libraries for a variety of pro-

26https://www.precisionhawk.com/
27https://github.com/LorenzMeier
28https://mavlink.io/en/guide/mavlink_2.html
29https://mavsdk.mavlink.io/main/en/index.html

11

https://www.precisionhawk.com/
https://github.com/LorenzMeier
https://mavlink.io/en/guide/mavlink_2.html
https://mavsdk.mavlink.io/main/en/index.html

gramming languages that may be used to interface with any vehicle that uses MAVLink
as its communication protocol. This tool comes with an API that allows a user to man-
age vehicles and includes features like mission planning, vehicle control, and telemetry
gathering.

PX4

The Dronecode Foundation19 supports PX430, a professional open source autopilot.
Its features include control over a variety of aircraft, including fixed wing, multicopters,
and Vertical Take-Off and Landing (VTOL), support for a variety of hardware for vehicle
control and sensors, and a variety of flight modes, all of which are backed up by numer-
ous safety features to protect the vehicle in the event something goes wrong. PX4 is
made up of two main layers31: the flight stack and the middleware. The Flight Stack is
the actual Flight Control System, consisting of a collection of algorithms for autonomous
drone guidance, navigation, and control. Fixed wing, multirotor, and VTOL airframe con-
trollers, as well as attitude and position estimators, are all included. On the other hand,
middleware encompasses any form of communication channel, both internal - between
software and hardware - and external - between the device and the rest of the world (with
a Ground Control Station, for example). PX4 also supports both SITL, by simulating the
software in a computer and Hardware-In-The-Loop (HITL), by running simulations on a
real flight controller, with a list of fully compatible simulators32. Last but not least, as
part of the Continuous Integration Program33, developers can integrate PX4 with new
hardware by modifying existing algorithms.

ROS1 and ROS2

The Robot Operation System (ROS)34 is a collection of libraries and tools for creating
robot-based applications. Despite the fact that its primary goal was to be utilized by
robots, ROS is now used in a wide range of hardware. It was first launched in 2007,
but much has changed since then, and ROS2 was eventually released to address these
changes, taking the finest features of ROS1 and improving them. The decision not to
upgrade ROS1 and instead build a new framework from the ground up was made due
to the intrusive nature of the additional required functionalities, which could utterly
disrupt an already functioning system. With the usage of rosbridge35, it is possible for
nodes to communicate with one other even if one uses ROS1 and the other uses ROS2,
and even between different ROS distributions. To record the messages that go through
the existing topics, we use rosbags36. A node in ROS is a component that performs a
certain computational work and follows a publisher/subscriber model, which means that
messages are published to topics and received by anyone who has subscribed to those

30https://px4.io/
31https://docs.px4.io/master/en/concept/architecture.html
32https://docs.px4.io/master/en/simulation/
33https://docs.px4.io/master/en/test_and_ci/
34https://docs.ros.org/en/rolling/
35http://wiki.ros.org/rosbridge_suite
36https://docs.ros.org/en/foxy/Tutorials/Ros2bag/Recording-And-Playing-Back-Data.html

12

https://px4.io/
https://docs.px4.io/master/en/concept/architecture.html
https://docs.px4.io/master/en/simulation/
https://docs.px4.io/master/en/test_and_ci/
https://docs.ros.org/en/rolling/
http://wiki.ros.org/rosbridge_suite
https://docs.ros.org/en/foxy/Tutorials/Ros2bag/Recording-And-Playing-Back-Data.html

topics. A node can subscribe to as many topics as it wants, and publish to as many
topics as it wishes. One of the most significant differences between ROS2 and ROS1 is
that ROS1 required the running of a ROS master node with a collection of nodes and
programs that are pre-requisites of a ROS-based system, known as roscore37, in order
for the ROS nodes to communicate and work properly, whereas ROS2 does not, evolving
from a centralized architecture to a peer-to-peer architecture. This also means that
ROS2 no longer requires creating XML launch files38, instead requiring simply coding
the nodes’ routines in the programming language of choice, utilizing the supplied API
and ROS Client Library (RCL), such as rclpy in Python and rclcpp in C++.

Gazebo

Gazebo39 is a free open source robotics simulator developed as part of The Player
Project40. With Gazebo, we can test any kind of algorithm and even teach Artificial
Intelligence. It combines a complex physics engine with high-quality graphics, including
3D rendering of environments, textures, shadows, and lighting, as well as a GUI to help
with the job. For environmental, sensor, and robot control, Gazebo provides an API that
permits direct access using plugins that can be custom developed by the user. It is
also feasible to incorporate more specialized hardware, such as contact sensors and 3D
cameras, to provide sensor data for more complex projects. The best thing about Gazebo
is that it is fully integrated with both ROS41 and ROS242, allowing to simulate a robot
using ROS messages with the help of libraries that act as a bridge between Gazebo’s C++
API and ROS’ services. Because Gazebo is fully compatible with PX4’s Flight Stack43 and
MAVLink20 messages, this simulator can be used to test UAV missions and algorithms.

jMavSim

PX430 and the MAVLink20 protocol are supported by jMAVSim44, an open-source sim-
ulator. It is simpler than Gazebo39, as it just simulates UAVs with four motors (quadro-
tors). It only shows the drone in a simulated environment with telemetry data45, and
it does not handle advanced environmental factors like shadows or lighting. It supports
basic commands like takeoff, flight, and landing, making it an excellent choice for testing
smaller missions and/or algorithms. Because of all of these, it is far lighter than Gazebo,
making it the best existing alternative, particularly when the device executing the simu-
lator lacks the necessary performance or when multiple instances of a simulation must
be run at the same time.

37http://wiki.ros.org/roscore
38https://roboticsbackend.com/ros1-vs-ros2-practical-overview/#Why_ROS2_and_not_keep_

ROS1
39http://gazebosim.org/
40http://playerstage.sourceforge.net/
41http://gazebosim.org/tutorials?tut=ros_overview
42http://gazebosim.org/tutorials?tut=ros2_overview
43https://docs.px4.io/master/en/simulation/gazebo.html
44https://github.com/PX4/jMAVSim
45https://docs.px4.io/master/en/simulation/jmavsim.html

13

http://wiki.ros.org/roscore
https://roboticsbackend.com/ros1-vs-ros2-practical-overview/#Why_ROS2_and_not_keep_ROS1
https://roboticsbackend.com/ros1-vs-ros2-practical-overview/#Why_ROS2_and_not_keep_ROS1
http://gazebosim.org/
http://playerstage.sourceforge.net/
http://gazebosim.org/tutorials?tut=ros_overview
http://gazebosim.org/tutorials?tut=ros2_overview
https://docs.px4.io/master/en/simulation/gazebo.html
https://github.com/PX4/jMAVSim
https://docs.px4.io/master/en/simulation/jmavsim.html

2.5 Related Projects

In recent years, there has been a significant increase in the use of UAVs in a variety of
research fields, with UAVs being used to replace traditional methods [6]. Several studies
have also been carried out in order to discover new ways to improve the autopilot fea-
tures, as well as the ability to control several drones with platforms. We will take a look
at a few of these now.

In [7], an UAV was used to examine multiple field plowing techniques. The UAV would
fly through the field with a depth-sensing device called an RGB-D sensor installed on it. It
was possible to classify the three different plowing depths that were tested, which were
plane, 25 centimeters, and 50 centimeters deep, using this data, leading the authors
to conclude that this method could be used as a terrain classifier, making it faster and
easier than traditional methods, which are done by hand or occasionally with the use of
satellite images.

Still in the agricultural field, UAVs with the function of plant protection were tried
in [8]. These drones took full advantage of the PX430 firmware and featured a Pixhawk
411 placed on the drone that ran the autopilot software. The plant protection UAV con-
trol system was divided into two parts: the flight control system and the spray system.
The results revealed that the control system could meet a plant protection UAV’s spray
control requirements.

The work in [9] describes a test of a new UAV design. It was able to improve the
aircraft’s performance by removing the most complex components of a Fixed-Wing (FW)
aircraft and adding two extra side-motors, creating a hybrid drone between Multi-Rotor
(MR) and FW. PX430 firmware was used in the tests, together with QGroundControl18 to
select the desired trajectory and Gazebo39 to display the UAV model in 3D.

Because drones may only stay in the air for a short period of time due to battery
limitations, [10] addresses how to improve trajectory planning to extend this duration.
The authors created a machine learning model that estimates the battery’s lifespan based
on several flying situations, and a variety of other variables that could occur in real-
world circumstances. It was feasible to infer that the models and algorithms constructed
were capable of achieving near-optimal performance by completing the set of a mission’s
target sites in the lowest possible time to improve battery duration using rigorous testing,
both in simulators and in real life.

A hybrid nonlinear control system in a quadcopter drone was tested in [11]. When
faced with uncertainties, such as any form of disruption during a flight, both internal,
such as the movement of the UAV’s multiple rotors, and external, such as wind gusts, a
drone’s trajectory tracking can become quite inaccurate. In order to compare these re-
sults to conventional control systems, this experiment used a nonlinear predictive model
and a fuzzy[12] feedforward compensator46, as well as a lot of computer simulation. The
authors found that the performance of this hybrid feedback fuzzy feedforward autopilot
could undoubtedly execute accurate trajectory tracking in the face of uncertainty, while
also enhancing overall stability based on the data analysis from these simulations.

46https://www.sciencedirect.com/topics/engineering/feedforward-control

14

https://www.sciencedirect.com/topics/engineering/feedforward-control

Smart cities, which make use of the Internet of Things (IoT)47, have become increas-
ingly significant as technology has advanced in recent years. As a result, the Internet
of Drones (IoD)48 arose, which is a combination of drones and IoT. Drones, as we all
know, need a GPS module to navigate on their own. However, these GPS modules are
often of poor quality, resulting in inaccurate geolocation. To address this, a study pub-
lished in [13] proposed a cooperative drone position measurement approach (CDPM).
This entails every drone that is online being connected to each other and constantly ex-
changing their position and measuring distance between each other, as well as applying
algorithms to determine their own location based on this data. This work concluded from
the simulations conducted in a real-world scenario that, using CDPM as a positioning de-
vice for self-drone positioning, taking advantage of the sensors installed in other drones,
increased localization accuracy.

A platform for controlling multiple drones was suggested in a previous Dissertation,
[14], and also in [15], allowing more inexperienced users to plan, execute, and monitor
complex missions that require drone cooperation, taking full advantage of the autopilot
features. Drone Side and Ground Side were the two halves of the solution. A Mission
Handler was featured on the Drone Side, which would receive tasks and send them to
the Flight Controller. The Ground Side consisted primarily of a Drone Manager and a
Mission Planner, which would send the user’s missions to the drones, and a Telemetry
Analyzer, which would receive telemetry data from the drones, allowing the user to track
the progress of the missions, as well as have data to analyze in the event of a debugging
process, such as if a drone crashed.

Various institutions and businesses use drones to accomplish duties such as surveil-
lance and inspection. To help with this, the research presented in [16] suggests a
microservice-oriented architecture that includes methods for organizing and optimizing
drone deployment. The goal is for a single operator to manage a fleet of drones using
tools that automatically assign, coordinate, and control the fleet to achieve a given pur-
pose. Drones are viewed as a service in this architecture. The authors validated this
architecture by testing it in an emergency scenario, specifically a multi-vehicle incident.
The operator in this scenario can select the mission type (for example, "Recognition"),
the location and radius of the operation zone, and the landing site for the drones. Follow-
ing the operator’s selection of these options, the system would gather available resources
and develop flight plans, which the user could subsequently deploy.

The work in [17] offers an algorithm that employs Reinforcement Learning to allow a
fleet of drones to monitor a particular area autonomously. Drones can move to the target
area and coordinate themselves without having to set up a flight path in advance, thanks
to this algorithm’s ability to discover the optimum path by recognizing obstacles and
avoiding collisions. One of the most potential applications is monitoring forest wildfires
by providing virtual reality to firefighters. The authors concluded that the algorithm has
80% success probability based on simulations.

In recent years, one of the most common applications for drones has been as a de-
livery system. Drones deliver packages to customers considerably more quickly than

47https://www.iotforall.com/what-is-internet-of-things
48https://www.ericsson.com/en/blog/2021/6/internet-of-drones-sky-is-not-the-limit

15

https://www.iotforall.com/what-is-internet-of-things
https://www.ericsson.com/en/blog/2021/6/internet-of-drones-sky-is-not-the-limit

traditional ways. However, one of these systems’ flaws is that, when the drones are near
populated areas, they frequently lose GPS and even communication with the controlling
entity. The work in [18] proposes a mechanism for allowing drones to accomplish specific
activities, even while the constraints described are in effect to avoid this issue. They do
it by processing images to identify safe landing zones and potential obstructions. The re-
searchers used a real drone to conduct testing through landing and take off without any
human intervention. The implementation turned out to be a success in the end. The work
in [19] depicts a similar scenario, but the drones will be delivering meals. Customers’
waiting time is extremely limited in this scenario. The utilization of charging stations
across the system was studied and how they affected the system’s overall performance.

With the advancement of current technologies, 5G has emerged, and the number
of infrastructures that use it is steadily growing. The work in [20] suggests to use a
combination of drones and 5G in Critical Infrastructure Preventive Maintenance as a
Service (PMaaS). The idea is to deploy drone swarms to help with monitoring, offloading
tasks, and media processing in these infrastructures.

The work in [21] researched how to use drones to detect gas leaks. For this, the
researchers used a swarm of drones controlled by a ground control station to mount
gas sensors that monitor industrial air pollution. They also built a coverage algorithm
that automatically elaborates and assigns paths to each drone. The drones perform a
mapping of the gas concentration while on a mission. The tests were carried out in a
simulator and a real-life scenario with a gas leak. Because the drones could move to the
correct location and detect the leak, the software and hardware were validated.

Drones are employed in rescue missions to assist in regions that would be difficult
for a human to reach or to automate this process due to their quick deployment. The
research undertaken in [22] looked into how drones could be used in these situations.
The drones would use RGB cameras to evaluate live streaming data sets such as object
tracking and face recognition, allowing them to coordinate their actions. Drones would
fly over some areas of interest and utilize these tools to detect situations where assis-
tance is required. Even though no actual tests were conducted, this study looked at the
various capabilities that drones can bring in realistic scenarios.

A mission planning framework is presented in another Dissertation, [1]. This frame-
work is divided into two parts: a drone control module that receives commands and
instructs the drones to carry out those commands, and GS software that serves as an
interface with the drone module for submitting commands and receiving telemetry data,
as well as simulation tools for testing new features in development. This Dissertation
also addressed the issue of support for multi-drone cooperation missions, which had not
been addressed in previous solutions. The drones are constantly controlled by the GS
under this architecture, and they always need to be connected to it in order to receive
commands, which can limit the mission’s ability to work properly in some circumstances.
Drone-to-drone communications and implementing mechanisms that would allow drones
to complete missions even when they were not connected to a GS were planned as part
of the future work of this student’s Dissertation, both of which were addressed in this
Dissertation.

One drone may not be sufficient for a single mission. A connection between the

16

drones and the Ground Station is required when using multiple drones. To overcome this
problem, the research published in [23] looked into implementing a new routing protocol
between the network’s various nodes. The authors did this by using the location of the
drones and their flight itineraries. The authors put their technology produced in real
drones to validate the features. They also examined more specific scenarios like drone
replacement, such as when a drone runs out of battery and needs to return to base or
when a drone collides. Finally, it was determined that the protocol developed outper-
formed previous routing protocols to ensure quick route updates and high, consistent
throughput.

The work in [24] deals with a scenario in which a drone is conducting a mission and
must send data to a Ground Station, mainly live video data. This requires a continuous
connection between the two ends. Relay drones are used when the drone is too far away
from the operator and loses communication. These connect to increase the network’s
maximum range. Drones should be placed evenly spaced in open environments. How-
ever, this is usually not true when near high obstacles or uneven terrain, because the to-
pography will limit the relays’ ability to send data. This study proposes a new distributed
protocol to enhance throughput (the rate at which information is sent through a network)
and packet delivery ratio (ratio of packets successfully received) for the latter case. Each
relay used software to determine the ideal placement by evaluating the Packet Delivery
Ratio and sharing those values with the rest of the links. The experiments demonstrated
that, moving a drone further away from the mid-point between links can increase net-
work quality, indicating that asymmetric links can be beneficial. The gains in packet
delivery and throughput were 40% and 300%, respectively. [25] adds to this research
by contrasting two medium access protocols for this scenario: Carrier Sense Multiple
Access (CSMA) and Time-Division Multiple Access (TDMA). The same authors used the
same scenario to test the relay implementation in [26]. The goal was to optimize the
network once more by determining the ideal placement for each drone. However, this
research focused on establishing two separate approaches to accomplishing this: one
centralized and the other distributed. The centralized method was implemented in its
entirety in the Ground Station, taking advantage of the potential for increased comput-
ing capability. The GS did all of the math and only sent the results to the drones. In
the distributed approach, each drone would track its neighbors’ locations and compute
the necessary metrics independently. The investigators used simulations to replicate a
real scenario as closely as possible. The data analysis determined that both approaches
completed their tasks successfully, converging from an equidistant to an asymmetrical
placement with an increase in the end-to-end packet delivery ratio of up to 15%. How-
ever, because the drones have less powerful hardware, the calculations took 1.4 times
longer on average in the distributed method than the centralized one. Nonetheless, the
distributed method provides a mechanism for lowering platform overhead and control-
ling drones more naturally.

17

2.6 Summary

This chapter showed how UAVs are important now, by replacing the way various tasks
were done in the past. We also discussed some of the existing control platforms on the
market, as well as research done to improve present features in the autopilots’ system
and control platforms involving several drones.

The most significant point to emphasize is that the work done in [1] served as a basis
for the work done in this Dissertation, which used many of the capabilities offered by
the previously built framework to make development substantially easier. This Disser-
tation focused on some of the existing platform’s limitations and attempted to address
them, most notably the fact that the current architecture was centralized, which meant
that drones only received commands from the GS, which could be a problem if this con-
nection was lost due to network issues or the drone being too far away. This issue was
addressed presenting a more decentralized architecture in which drones may make their
own decisions based on certain conditions without relying on the GS. These issues are
addressed in greater depth in the following chapter.

18

Chapter 3

Architecture

In this chapter, we will discuss the architecture that existed previously as part of
another Dissertation, as well as the improvements that were proposed in this Dissertation
to make the drones more independent of the GS. We describe the two separate modules
that comprised the platform, one on the drones and the other on the GS, as well as how
they communicate with one another and the new modules that were developed.

3.1 Base architecture

We must first summarize the work that served as the basis for this Dissertation before
moving on to the proposed architecture. The MSc Thesis in [1] provided a framework
for managing missions with several drones, as well as support tools for developing ad-
ditional capabilities. We will look at some of its most important characteristics. Figure
3.1 shows a simplified version of the architecture presented in [1]. We did not cover sev-
eral additional features in-depth in this Dissertation. This is because that portion of the
architecture was not modified for this Dissertation: some sections of the base platform
were not affected by the development of a more decentralized approach, and as a result,
they are still working as before. We will only examine the most important features: the
Drone Module and the Ground Station Module. These modules provided functions that
were quite useful for this Dissertation. While we did not change the original code, some
parts were integrated with other modules, and new components were introduced.

19

Figure 3.1: Base architecture.

The base architecture provided a more centralized approach, meaning the Ground
Station commands everything and should always be connected to the fleet. The GS would
not only manage and receive data from the fleet. but also send each instruction that made
up a mission to the drones. This is the main limitation of this approach and a concern,
since the GS will be unable to send those instructions if connectivity is lost at any point
during a mission.

3.1.1 Drone module

The drone module includes software that acts as a link between the ground station,
the onboard computer, and the flight controller of the drone. The MAVLink protocol
connects the drone’s FC and onboard computer, allowing the drone module to utilize
those capabilities to transmit commands directly to the FC as well as receive telemetry
from it, which can be accessed by the GS monitoring the flights. The drone module
communicates with any external node via a ROS2 node, which subscribes to a topic
to receive commands and publishes telemetry and status messages. This module can be
used in real hardware (on a drone’s onboard computer) or in combination with simulation
software to emulate drone behavior for testing and debugging.

The drone module is comprised of the following parts:

• Command Handler - Subscribes to the /cmd topic to receive commands and or-
ders the Flight Controller to perform them, as well as notifying the status tracker
when a command begins, ends or fails.

• Status Tracker - Sends messages to the /status topic to notify the GS and the

20

mission running on the onboard computer that a certain command has initiated or
completed, as well as other key events like the FC disconnecting.

• Telemetry Filter - Filters and publishes the most essential telemetry parameters
received from the Flight Controller to the /telem topic, which can be used by the
Ground Station and other drones, on a frequent basis.

3.1.2 Ground Station module

A ROS2 node in the Ground Station is utilized to communicate with the UAVs. The GS
played a larger role in the previous architecture since it was more centralized, therefore
only a couple of its characteristics were used in the current architecture, and only those
will be explained:

• Drone Manager - This component stores telemetry and data from the drones so
that other components can update and/or retrieve it. This module included a node
that let external applications to interface with the UAV, including sending com-
mands, however this feature was not required for this Dissertation.

• Status Updater - This module uses the ROS2 node to receive data from the drones
and updates the information in the Drone Manager.

• Task Scheduler - This module is critical because it detects probable drone time-
outs by verifying when a drone stops transmitting telemetry messages. If this hap-
pens, the user will be notified that something went wrong.

This module also had a component for mission planning, such as sending commands
to the drone through an external application using a Representational State Transfer
(REST) API or via HyperText Transfer Protocol (HTTP) using a dashboard, both of which
were not used for this Dissertation.

3.1.3 Simulation tool

One of the most crucial parts from the previous Dissertation was the simulation tool.
It is not a part of the central architecture, but it is essential to mention it. This compo-
nent may launch numerous drone modules using a launch script, simulating a real-world
scenario. PX430 firmware is used for simulation support1, while MAVLink20 is used for
communication. They can be placed anywhere in the world and act just as if they were
in a real-life situation. jMAVSim2 can also be used for a more immersive experience.
This tool made debugging much easier during this Dissertation’s development process
because it allowed us to test everything on a single computer before moving on to actual
hardware in a real environment.

1https://docs.px4.io/master/en/simulation/
2https://docs.px4.io/master/en/simulation/jmavsim.html

21

https://docs.px4.io/master/en/simulation/
https://docs.px4.io/master/en/simulation/jmavsim.html

3.2 Requirements

Before we go over the proposed architecture, we need to talk about what we will need
to make it function. There is a list of requirements that must be fulfilled in order for the
system to function properly.

Autonomous navigation

The ability for a UAV to move without the use of a Radio Control is one of the most ob-
vious requirements. When a drone receives an instruction, it should carry it out without
the need for human intervention. To meet this demand, each drone includes a mounted
Flight Controller with autopilot capabilities. Only the most basic commands were re-
quired for this Dissertation, such as arming, taking off, landing, returning home, and
traveling to a specific coordinate. However, someone should always be on hand with
a RC to engage manual control in the event that something goes wrong or the drone
behaves abnormally.

Telemetry gathering

The usage of GPS coordinates is one of the most basic components of today’s drone
systems. They must use the installed GPS module to obtain current coordinates in order
to fly autonomously, as these will be used to calculate where to go next when a new
destination is given. Driving with a RC in any flying mode that holds the drone in the
same position (staying in the same place while not receiving any commands), such as
Position Mode3, requires the GPS as well. Apart from that, it is crucial to keep track of
the drones’ positions during the flight to see if anything goes wrong.

Network monitoring

Drones require monitoring the network with the different nodes to know who they
can communicate with. A network measuring method was added to the platform for this
Dissertation, which was previously absent. Each drone performing a mission will run
software in the background that checks the network’s strength with the Ground Station
and/or other drones. This information could be utilized for logging purposes only, or it
could be used to influence the mission’s progress.

Communication

Since the platform is composed of different nodes and modules working together to
accomplish a mission, they need to communicate. A drone has two types of communica-
tion. The first one is internal, between the onboard computer and the Flight Controller,
where the onboard computer sends commands to the FC and receives telemetry. As
explained before, this part of the communication is done using the MAVLink protocol

3https://docs.px4.io/v1.12/en/getting_started/flight_modes.html#position-mode-mc

22

https://docs.px4.io/v1.12/en/getting_started/flight_modes.html#position-mode-mc

and is physically done through a Universal Serial Bus (USB) cable, connecting both de-
vices. The second type is external between the drone and other devices in the same
network (other drones or the Ground Station). This part of the communication is done
through ROS2, with each device in the network running a ROS node. The Message Queu-
ing Telemetry Transport (MQTT)4 protocol is used to communicate from and to Android
devices when they are integrated. The different nodes communicate using an ad-hoc
network in real-world circumstances. The benefit of using this type of network is that all
two devices need to communicate with each other is to be within range of each other,
making it the best option for our scenarios.

Android Integration

We will also need the means to integrate Android smartphones with the new platform.
An Android smartphone needs to connect with the rest of the platform, or at least a part
of it, which may be the Ground Station or a single drone. We will develop an Android
Application that allows a user to perform requests and receive feedback from the drones
to achieve this.

3.3 Proposed architecture

In order to meet the previously described requirements, we propose the architecture
illustrated in Figure 3.2.

Figure 3.2 depicts a simplified form of the architecture, using the architecture pro-
posed in [1] as a starting point. The components listed in blue are those that already
existed, whereas the components marked in green are those that were added for this
Dissertation.

There are two main modules in this architecture: the Drone Module and the Ground
Station Module, both described in detail in the Section 3.1. The Drone Module is made up
of everything that runs on the onboard computer, including the drone module software
and mission scripts, and the Flight Controller, which is wired to the onboard computer
and receives commands from it as well as sending telemetry from the drone, using the
MAVLink protocol for this. The Ground Module software and the scripts for managing
requests from drones created in this Dissertation operate in the device that serves as
Ground Station.

As previously stated, MAVLink is used to communicate between internal components
of a drone (such as the FC and onboard computer). In contrast, ROS2 is used to commu-
nicate between drones and the ground station. However, unlike the base architecture,
this one allows drones to connect directly with other drones using ROS2. Drones will
now be able to read the mission status of other drones, telemetry and network strength
monitoring, which will influence the missions’ evolution. Drones can now execute mis-
sions without needing a constant connection to the Ground Station since they can now
make decisions based on data received straight from other drones.

4https://mqtt.org/

23

https://mqtt.org/

Figure 3.2: Proposed architecture.

24

A network module was also created. This module allows drones to interact with other
drones or the Ground Station to evaluate network conditions. It sends packets to a
target node on a routine basis, calculating various metrics that can be used to examine
the network’s status. This information can play a more significant role in some cases
because one may program a drone to do something specific if a connection to a particular
node is lost or below a configured threshold.

Android device integration is also a new feature. Aside from the existing ROS2 com-
munication, a new communication protocol called MQTT has been established to com-
municate with these devices. In addition, an application was developed to enable this
communication using a simple interface, so a user can use it to send and receive mes-
sages from a drone.

The new components made in the Drones and Ground Station modules and the new
modules developed in this Dissertation are described below.

3.3.1 Network module

• Monitor - Monitors the network, computing various metrics such as signal strength
to assess the network’s status between drones and the Ground Station. This module
is critical since the drones will use it to ensure that connectivity does not fail. It
can be run in just some of the nodes or all of them, depending on the scenario.

• Request Handler - Receives requests for specific connections to be monitored and
forwards them to the Monitor.

• Publisher - Publishes the results of the measurements in a specified ROS2 topic.

3.3.2 Android module

• Android application - The Android application will allow an Android device to
communicate with the rest of the platform via the MQTT protocol.

• Server - The MQTT core is launched on the server, allowing other nodes to publish
and subscribe to this broker. It is possible to put it in a drone or the Ground Station.

3.3.3 Drone module

• Mission Code - The mission code now runs directly on the drones, eliminating the
Ground Station’s dependency. This comprises everything that goes into creating a
mission, from a basic set of target coordinates to more complex computations.

• Message Receiver - During the course of a mission, listens for messages from the
Ground Station and/or other drones for crucial information that could affect the
mission’s outcome.

• Message Publisher - During some stages of missions, the publisher’s responsibil-
ity is to inform or make requests to other nodes of the platform, such as drones or
the Ground Station.

25

3.3.4 Ground Station module

• Stored Information - Drone-related information, such as which drones are avail-
able to perform missions.

• Message Receiver and Handler - Receives and replies to requests from drones,
updating the Stored Information.

Message format

A new drone-drone communication point has been established to allow drones to
communicate with one another. The drones communicate by publishing and subscribing
to messages using a designated topic in ROS2. A consistent message format was utilized
to keep everything in order. Messages are sent in JavaScript Object Notation (JSON)
format and must include the following fields:

• The sender’s identifier (which might be a drone or the GS).

• The receiver’s identifier, the node in which the message is destined (which might
also be a drone or the GS).

• The type of the message, defining the purpose of the message.

• The date and time the message was sent.

• Because the type is insufficient to send all essential information, some messages
have additional specific fields.

3.4 Summary

In this chapter, we looked at the platform’s architecture. The work done in a prior Dis-
sertation, on the other hand, was extremely important because it served as a foundation
for the work done in this Dissertation. Thus, even though the author of this Dissertation
did not create it, its main elements were discussed, as well as the improvements made
to enable a more decentralized platform, allowing drones to be more independent from
the Ground Station.

We also described the new modules created in this Dissertation (Network and An-
droid) that are now part of the architecture, their components, and purpose.

We will look at how these modules were implemented in more detail in the upcoming
chapter.

26

Chapter 4

Implementation

The implementation of the various modules will be discussed in this chapter. First,
we will go over a general overview, and then we will describe each module in-depth,
including what it is composed of, what it does, and how it works. Then we will go over
some of the scenarios created to test these modules, including their components and how
they operate in these scenarios.

4.1 Modules

Four modules form the platform - Drone, Ground Station, Network, and Android.
Depending on the scenario, they may work individually or together.

4.1.1 General overview

The several developed modules give a range of new platform functionalities. It is
worth noting that we are using the architecture illustrated in the Figure 3.2 as a ref-
erence. Each module has a set of interfaces that allow it to communicate with other
modules.

The Drone Module includes a ROS2 interface that allows it to communicate with any
other module that uses the same protocol, such as other drones or the Ground Station.
This is performed by posting messages on topics and subscribing to them. Physically,
we can accomplish this by using a built-in wireless interface in the onboard computer.
However, if such does not exist, it is possible to use a USB wireless adapter instead. The
onboard computer must, then, be configured to connect automatically to the platform’s
network upon booting. Therefore, they can communicate with each other as long as
they are connected to the same network. The Flight Controller is also connected to
the onboard computer via a wired USB connection. It can communicate in this manner.
This is accomplished by using MAVLink, which is the standard method for this type of
hardware. Through this link, it may transmit commands directly to the Flight Controller
and receive information from it, such as telemetry from the drone. We do not need to
know the low-level commands required to make a drone fly because [1] gives a form to
complete this task easier. Instead, we merely need to send a message to a specific topic,
which the drone module will gather and convert into the required data before sending it

27

to the Flight Controller. The mission code might also be executed by the drone’s onboard
computer, making the mission run entirely by the drone.

A ROS2 interface is also available on the Ground Station module to connect it to the
network. We can quickly run a set of software with this module that connects to the
network, and promptly identify any drones online by verifying published telemetry. We
can also use this software to monitor the commands that each drone receives, which
can be helpful in debugging. Sending commands is also possible. Finally, the Ground
Station could be utilized to control certain aspects of drone missions. For example, it can
receive and respond to drone messages, such as requests. Even in a more decentralized
architecture, the Ground Station should always handle these requests because it is the
module that oversees the entire fleet. Another significant feature of this module, also
included in [1], is displaying any error messages sent by a drone. This could happen, for
example, if a drone refuses to obey an order for some reason.

The network module is a brand-new module with the primary goal of integrating with
other modules to monitor current network conditions. It also communicates with the
rest of the platform through ROS2. Because it is aimed to be used inside a drone or
Ground Station, it does not require any additional physical connections as it is a single
script. This software does a network assessment on a selected target connection in the
background and uses the information to produce specific metrics that are then published
to a topic. This data could be gathered by the same node performing the evaluation or
by multiple nodes in the platform. What they do with it is determined by the scenario.

The Android module is also new, and it contains significant differences from the other
ones. One significant difference is that, unlike the other modules, it does not connect
with the rest of the platform using ROS2. MQTT is used instead. This is because ROS2
connectivity with these systems is challenging to develop. MQTT is similar to ROS2 in
that it employs a publish and subscribe model. However, a node must be linked to a
server to conduct these actions. A server can be located in either the Ground Station or
a drone. The fact that Android does not support ad-hoc connections creates an issue. As
a result, a separate mechanism through a wireless technology, such as Wi-Fi, is required
to facilitate communication. This complicates the platform because it requires two net-
works: a standard ad-hoc connection for the drones to communicate with one another
and with the Ground Station, and a Wi-Fi or similar type of network for the server to link
with the smartphone. The Android device can recognize and connect to that network
if the server’s node also runs an Access Point. Another option is to link both ends to a
pre-existing network, as long as the Android system recognizes it. The nodes can now
exchange messages using the MQTT protocol because they are connected to the same
network.

Since different modules are implemented, it is essential to explain how we imple-
mented their communication before moving on to a more detailed description of each
module.

4.1.2 Communication between modules

In practice, the author of this Dissertation had the choice of using Java, Python, or
C++ to accomplish this. C++ was initially dismissed because it is the language in which

28

there was less experience with, followed by Java because Python was easier to work with,
so ROS Client Library for Python (RCLPY) was used.

The most commonly used library throughout development was RCLPY. It comes with
utilities that make it simple to send and receive messages via ROS2 using Python. ROS2
uses topics to publish and subscribe. This means that when a node publishes a message
to a certain topic, it will be received by anyone who has subscribed to that topic. Of
course, this is only possible if the subscriber is in the same network as the publisher and
can communicate with it.

A simple example of how we publish a message is shown below.

Example Send a message using RCLPY

1 from rclpy.node import Node
2

3 node = rclpy.create_node("demo_node")
4 publisherCmd = node.create_publisher(String, "foo", 10)
5

6 msg = String()
7 msg.data = "bar"
8 publisherCmd.publish(msg)

In this example, the message "bar" is published to the topic "foo". The first step is to
build a node. One Python script must have at least one node to post messages. Then,
we establish a publisher that specifies the type of message that will be published on
that topic, which in our case is String. We also supply the topic’s name and the QoS
profile. Quality of Service refers to a set of parameters that alter how a publisher or
subscriber behaves while carrying out their duties. Using the value 10 as an argument
uses the default settings, which satisfy our purpose and do not necessitate a thorough
understanding of how they work. We need to declare a String and the data we want in
the attribute data after setting up the publisher. Then, finally, we use the publisher’s
publish method to publish the message by passing it as an argument.

Below, there is an example of how to subscribe to a topic.

Example Receive a message using RCLPY

1 class DemoSubscriber(Node):
2 def __init__(self):
3 name = "demo_subscriber"
4

5 super().__init__(name)
6 self.subscription = self.create_subscription(String,"foo",
7 self.listener_callback,10)

29

8

9 def listener_callback(self, msg):
10 print(msg.data)
11

12 def main():
13 demo_subscriber = DemoSubscriber()

To subscribe to a topic, we must first construct a class that contains the subscription’s
configuration. We supply the type of message, the name of the topic, the callback func-
tion name, and, once again, the QoS settings using the method create_subscription.
The callback function is a sequence of instructions that are executed each time a message
is received. In this example, we merely print the message’s content. After configuring
everything, we call the class in the main function to start the subscription.

These two implementations are essential to the architecture’s success. This code is
used to allow communication between the various nodes that use ROS2. A drone can
send a message to another drone, and the other drone, if subscribed, will be able to re-
ceive it and respond as needed. The messages delivered might be merely informative or
control messages that, upon reception, could change something in the receiver’s mission,
depending on the situation. However, this part only covered the ROS2 communication.

Let us now look at sending and receiving messages via the MQTT protocol because
the Android device will only interact in such way. The MQTT broker functions in the
same way as ROS2. One of its key disadvantages is that it is based on a centralized
architecture. This means that one node must be connected to a server to publish or
subscribe to messages. Paho-MQTT1 was used to enable this, providing tools to interact
with the MQTT broker in Python. Below is an example of code for how a drone could
use this library to send a message. The Android application will be able to receive this
information in this manner.

Example Send a message through MQTT using Python

1 import paho.mqtt.client as mqtt
2

3 client = mqtt.Client("demoClient")
4 client.connect("192.168.1.1")
5 client.publish("foo","bar")

This library’s publishing procedure is simple. First, create a client and give it a name.
Then, by providing an Internet Protocol (IP), we utilize the connect method to connect
to the server, which will only work if the server is up and running. After that, we call
the publish method, passing the topic and message to be published as parameters. The
client publishes "bar" in the topic "foo" in the example above.

1https://pypi.org/project/paho-mqtt/

30

https://pypi.org/project/paho-mqtt/

The procedure to subscribe to a topic is, just like in ROS2, a little more complex.

Example Receive a message through MQTT using Python

1 import paho.mqtt.client as mqtt
2

3 def MQTTHandler(client, userdata, message):
4 print(message.payload)
5

6 def main():
7 client = mqtt.Client("demoClient")
8 client.connect("192.168.1.1")
9 client.on_message = MQTTHandler

10 client.subscribe("foo")
11

12 client.loop()

The subscriber follows the same steps as the publisher. First, create a client and
connect it to the server as the initial step. Then, using the on_message method, we must
specify a callback function, just like in ROS2. Then we select which topics we want to be
subscribe to. Finally, we call the loop method to begin the subscription process. In this
example, when a message is received, the client prints the content of that message by
reading the attribute payload.

This completes the MQTT communication for the drone and the GS. We will now
show how to perform the same mechanism using an application. Again, the same library
was used, but this time for the Android application. Because listeners must be used to
perform the connections to the server and ensure that messages are sent, the actual
code is more complex. The application was developed using Android Studio2 and Java
language.

Example Send a message through MQTT using the Android application

1 import org.eclipse.paho.android.service.MqttAndroidClient;
2 import org.eclipse.paho.client.mqttv3.MqttClient;
3

4 String clientID = MqttClient.generateClientId();
5 client = new MqttAndroidClient(getApplicationContext(),
6 "tcp://192.168.1.1:1883", clientID);
7

8 String message = "bar"
9 client.publish("foo", message.getBytes(), 0, false);

2https://developer.android.com/studio

31

https://developer.android.com/studio

On the Android side, we use a similar procedure. First, we declare a client identifier
and associate it with a client. The IP address is then used to connect to the server, which
requires us to supply the protocol, Transmission Control Protocol (TCP), and the port on
which the server is executing. To send the message, we must first define it and then
use the publish method to send it. The topic’s name, the content of the message, the
QoS settings, and a retained flag are passed to this method. The supplied QoS profile
was 0 because that is the default, and this was a simple interaction that required nothing
more. The retained flag merely tells the server if it wishes to keep the published message
if another node does not receive it right away, which was not required for our app.

To finalize the inter-module communication, we show how to subscribe to and receive
messages through the app.

Example Receive a message through MQTT using the Android application

1 import org.eclipse.paho.client.mqttv3.IMqttActionListener;
2 import org.eclipse.paho.android.service.MqttAndroidClient;
3 import org.eclipse.paho.client.mqttv3.MqttClient;
4

5 String clientID = MqttClient.generateClientId();
6 client = new MqttAndroidClient(getApplicationContext(),
7 "tcp://192.168.1.1:1883", clientID);
8

9 client.subscribe("foo",0,null, new IMqttActionListener() {...})
10

11 client.setCallback(new MqttCallback() {
12 public void messageArrived(String topic, MqttMessage message) {
13 if (topic.equals("foo")) {System.out.println(message.getPayload())}
14 }

We connect the client to the server to receive a message. The subscribe method is
then used to provide which topics we want to receive messages from and the QoS profile
and user context. The topic is "foo," and the rest of the arguments are set to default.
Finally, we create a client callback and use the messageArrived function to indicate what
happens when a message from the "foo" topic is received. For demonstrating purposes,
we only print that message.

This completes the communication between modules implementation. Using these
libraries and methods, we can use a module to communicate with other modules. These
were only simple examples, and the messages sent and actions conducted in the actual
implementation are more complex, as covered in the rest of this chapter. Following this,
we have a detailed description of each module, including its purpose and implementation.

32

4.1.3 Network Module

The Network Module is used to determine the connectivity between the platform’s
nodes, drones, and the Ground Station. This module can be used just to keep track of
connectivity or, in some cases, it can even influence the mission’s outcome, as discussed
later in this Dissertation. It is structured as follows and can be linked with various
modules (one entry point in the Request Handler and one exit point in the Publisher).

Figure 4.1: Network Module Implementation.

When the module is deployed, the Monitor executes the algorithms to perform the
calculations, acquires the network’s quality, and publishes the results in a ROS2 topic
at a set rate. It begins by reading a configuration file and monitoring the connection
specified in that file. At any time, we can submit a request to a designated ROS2 topic
to update the connection we wish to monitor, which will be picked up by the Request
Handler and forwarded to the Monitor. The latter stops monitoring the prior request
when it selects the new one, yet a single request can have multiple connections. Because
the monitor utilizes network probes, we must first comprehend what they are. Although
the meaning of Probe varies, it is often understood to be a network monitor. They are
commonly used in many networks throughout the world, and they are used to monitor
traffic coming in and out in order to detect any problems that may arise, as well as to
improve performance3.

It is not required to utilize Probes in such a complex method in this Dissertation, but
we must use them to check for a connection with a certain node. A probe, for example,
could be used by a drone to test its connection with the GS. A script called Network.py
was written to accomplish this. It is important to highlight that this study was done
for PEI (Projeto em Engenharia Informática) by another group, not by the author of
this Dissertation. This Dissertation’s author just merged their work with the rest of the
platform that had been constructed.

Every existing node on the platform has an IP and Media Access Control (MAC) ad-
dress, just like any other device. This script sends a series of packets to a certain IP and

3https://www.helpsystems.com/resources/articles/everything-you-need-know-about-network-
probes

33

https://www.helpsystems.com/resources/articles/everything-you-need-know-about-network-probes
https://www.helpsystems.com/resources/articles/everything-you-need-know-about-network-probes

MAC address, and utilizes the time it takes for them to arrive and bitrate to determine
the signal strength to that node and measure network quality. The measurement’s re-
sult is then published to the /sensor/network/info topic. The message is sent in JSON
format ("attribute" : "value") and looks like this:

Example Simple JSON message format for network measuring

{
"droneId": "drone01",
... ,
"value": [{
"droneId1": [{
Information about connection between 'droneId1' and node X,
Information about connection between 'droneId1' and node Y,
}],

"droneId2": [{
Information about connection between 'droneId2' and node Z,
}]

]}
}

Some parameters were left out because they were unnecessary. The following are the
most significant:

Table 4.1: The key parameters in a network measurement.

Parameter Definition

droneId drone that has requested the message

value contains a list of the different measures that have been
requested by the drone in the attribute "droneId". This
"value" attribute has a list of JSON messages as its value,
with each element of that list having the source node as
an attribute and a list of one or more target nodes to
whom the connection will be tested as its value.

Let us look at a full example to see how this works. In this case, the drone with
the identifier "drone01" has requested a connection test with the node "groundStation",
which has the MAC address f4:f2:6d:0d:c0:7f and the IP 10.1.1.103.

34

Example A complete example of a JSON message format for network monitoring

{
"droneId": "drone01",
"sensorId": "real",
"type": "network",
"timestamp": 1627033747604,
"value": [{
"drone01": [{
"Station": "f4:f2:6d:0d:c0:7f",
"IP": "10.1.1.103",
"Latency": "1.82 ms",
"Signal": "43.46",
"TxByte": "593626",
"RxBit": "54.0 MBit/s",
"TxBit": "54.0 MBit/s",
"Relay": "groundStation",
"NetworkQuality": "HIGH"
}]

}]
}

The result contains a number of parameters that will be used to assess the network’s
strength.

These parameters have the following meanings:

Table 4.2: Parameters list for each connection in a network measurement.

Parameter Definition

Station The MAC address of the node that was used to test the
connection from "drone01."

IP The IP address of the node that was used to test the con-
nection from "drone01."

Latency The average time it took for a packet to arrive from the
source to the destination (in milliseconds)

Signal The connection’s signal strength, defined by a value be-
tween 30 and 90 (a lower value indicates a better con-
nection)

TxByte Number of bytes transmitted so far to test this connec-
tion

RxBit Bitrate of bits being received

TxBit Bitrate of bits being sent

Relay The name of the node that was used to test the connec-
tion from "drone01".

35

NetworkQuality Takes into account all relevant criteria and assigns a net-
work quality rating of Low, Medium, or High

The following method is used to determine network’s quality:

1 if (Signal) < 60 and (Latency) < 50 and (TxBit) > 5:
2 NetworkQuality = "HIGH"
3 elif (Signal) <= 75 and (Latency) < 100 and (TxBit) > 3:
4 NetworkQuality = "MEDIUM"
5 else:
6 NetworkQuality = "LOW"

The outcome is calculated using the signal strength, latency, and bitrate of the bytes
transmitted, as shown above.

Configuration File

The Network.py script is run with:

python3 Network.py -c Network.yml

To run, we must provide a file (Network.yml) with a network configuration as an
argument. Here is an example of a file like this:

Example Configuration file

droneId: drone01
sensorTopic: /sensor/network/info
infoTopic: /sensor/network/requests
telemTopic: /telem
rateHigh: 200
rateMedium: 300
rateLow: 400
groundStation_IP: "10.1.1.103"
groundStation_MAC: "f8:d1:11:08:2e:b1"
interface: "wlan0"

The following are the definitions of the parameters:

36

Table 4.3: List of parameters in the configuration file.

Parameter Definition

droneId The identifier of the drone that is running the script, the
same drone that will be making the queries

sensorTopic The topic for which network measurement results will be
published

infoTopic Custom connections measurements are requested for
this topic:

telemTopic The topic in which drones communicate telemetry, so
that the script may check if the drone that is requesting
connections is up and operating

rateHigh If the network quality is high, the interval of time (in mil-
liseconds) in which messages will be sent out

rateMedium If the network quality is medium, the interval of time (in
milliseconds) in which messages will be sent out

rateLow If the network quality is low, the interval of time (in mil-
liseconds) in which messages will be sent out

groundStation_IP IP address from the GS node

groundStation_MAC MAC address from the GS node

interface The network interface of the device that the script will
use to test the network connection

When this script is launched, it will continue to measure and publish the results for
the connection between the drone that is running the file and the GS, using the IP and
MAC defined in the groundStation_IP and groundStation_MAC parameters, respec-
tively. It does so at a set rate, which is determined by the rates defined in the configura-
tion file and the current network’s quality:

1 if quality == "HIGH" and self.rate != self.rate_high:
2 ...
3 self.rate = self.rate_high
4

5 if quality == "MEDIUM" and self.rate != self.rate_medium:
6 ...
7 self.rate = self.rate_medium
8

9 if quality == "LOW" and self.rate != self.rate_low:
10 ...
11 self.rate = self.rate_low

37

The higher the network’s quality, the more messages it will publish; this is done to
prevent the network from becoming overloaded when the quality is low.

Measuring a different network

Although the script maintains publishing these statistics, we can request a network
test on a network other than the one connecting the drone to the GS at any moment.
This is accomplished by publishing the request to the sensorTopic parameter’s specified
topic, in this example /sensor/network/info. The IDs, IP addresses, and MAC addresses
of the nodes in which we want to evaluate the network must be included in the message:

Example Simple JSON message format for a custom network measuring

{
"droneId": "...",
"connectionsId": [...],
"connectionsIp": [...],
"connectionsMac": [...]

}

The parameters connectionsId, connectionsIp and connectionsMac contain a list with
the group of nodes in which we want to measure the network. In order for everything to
work properly, all three lists must have the same size.

An example of the drone01 requesting a network evaluation with the drone02 and
drone03 is shown below:

Example A complete example of a JSON message format for a custom network mea-
surement request

{
"droneId": "drone01",
"connectionsId": ["drone02" "drone03"],
"connectionsIp": ["10.1.1.101" "10.1.1.102"],
"connectionsMac": ["ff:ff:ff:ff:ff:ff" "ee:ee:ee:ee:ee:ee"]
}

When sending this message, the Network.py script will receive it and perform the
required calculations. When this task is performed, it is published in the appropriate
topic. The message will look like this:

38

Example A complete example of a JSON message format for a custom network mea-
surement response

{
"droneId": "drone01",
...
"value": [{
"drone01": [{
"Station": "ff:ff:ff:ff:ff:ff",
"IP": "10.1.1.101",
...
"Relay": "drone02",
"NetworkQuality": "HIGH"},
{
"Station": "ee:ee:ee:ee:ee:ee",
"IP": "10.1.1.102",
...
"Relay": "drone03",
"NetworkQuality": "HIGH"
}]

}]
}

4.1.4 Android Module

The Android Module allows Android devices to be integrated with the rest of the
platform. For example, an Android application can be used to connect with the Ground
Station or drones and perform tasks such as requesting a drone for a specific location.

Figure 4.2: Android Module Implementation.

The Server and the Android application are the two components of this module. How-
ever, one can use the Server to connect this module to others.

39

Because ROS2 on Android has some limitations, a new method of connecting with the
rest of the system was used. The MQTT protocol will be used by this module, since it is
a lightweight mechanism of communications utilizing a publish/subscribe structure.

Unlike ROS2, which is a point-to-point broker, MQTT is a centralized broker, which
means that it needs a server to connect clients to. This server can be run on either the
GS or a drone.

Server

The Mosquitto4 broker was used to run the server because it implements the MQTT
protocol and is the most extensively used message broker for this purpose. Furthermore,
it is quite simple to use. After installing, running this command on Linux will start the
server:

sudo systemctl start mosquitto

The following command can be used to send a message to the topic "bar," which will
result in the message "foo" being published to that topic:

mosquitto_pub -m "foo" -t "bar"

We can subscribe to the topic "foo" using the following command, and each message
received will be displayed in the terminal:

mosquitto_sub -t "foo"

Although Mosquitto comes with a set of preset configurations that work, it is prefer-
able to utilize a custom configuration. The below is the one that was used:

Example Mosquitto configuration format 1

bind_address 192.168.X.X
port 1883
allow_anonymous true

The MQTT server’s IP and port are defined in the first two lines. The IP is the address
of the server’s machine, and the port is generally 1883, which is the standard for MQTT
communications.

The third line makes it possible for any device to connect to the MQTT server and
publish/subscribe without requiring authentication.

However, both first lines can be replaced with a single one:

4https://mosquitto.org/

40

https://mosquitto.org/

Example Mosquitto configuration format 2

listener 1883 0.0.0.0

allow_anonymous true

We do not have to specify the IP address because 0.0.0.0 will do it for us. However,
this configuration had a drawback because the Android device would not connect to the
server, therefore the first one was utilized instead.

Android Application

The commands presented before allow us to interact via MQTT using a Linux termi-
nal; but, in order to integrate this connection with an Android system, we must use a
specialized library. A small application was created in Android Studio using the paho-
mqtt library to make this possible.

The user is provided with two text boxes and a button when the application first
opens. The IP address of the server is entered in the first text field. This is the IP of
the server node, the same IP of the machine that runs the server. The phone’s ID is the
second. The smartphone, like the drones, needs to have a unique identification because
it will be used to communicate with the system.

The rest of the interface comprises a single button for requesting or canceling a
drone, as we can see in Figure 4.3.

Figure 4.3: The user interface of the application.

41

There was only one scenario in which the application was used. As a result, the format
of the messages sent and received and how the application interacts with the rest of the
system are covered in that scenario’s explanation.

4.1.5 Drone Module

The Drone Module comprises the different components that allow the drone to fly
autonomously and be monitored.

Figure 4.4: Drone Module Implementation.

The Flight Controller is a low-level piece of hardware that connects directly with
the drone’s electronic components, such as the ESC, and is part of the Drone Module.
MAVLink is used to communicate with the FC using a wired USB connection, while ROS2
is used for the rest of the module’s internal and external interfaces.

The parts marked in blue represent the modules that were developed in [1], and
described in Section 3.1.1, while the parts marked in green represent the components
that were developed in this Dissertation.

The Mission Code is the code that contains the list of commands that the drone must
follow to execute a mission. Missions come in many different forms. For example, one
of the most common instances is a drone carrying a set of sensors (e.g. temperature),
mapping a specific area using those sensors to recover data. The Mission Code in this
example would be a set of coordinates that the drone had to travel to and a separate
script that would run the code that communicates to the physical sensor.

A set of functions was created to support the various commands. The Command
Handler receives an order by reading a message in the ROS2 topic /cmd. These mes-
sages have a specific format and are transformed into a low-level instruction and sent
directly to the Flight Controller over USB. The RCLPY library is used to send commands.
The table below shows the available commands, with the restriction that only the most
commonly used ones are supported, as only the most basic ones were required for this
Dissertation.

42

Table 4.4: Supported commands in the Drone Module.

Function name Description Parameters

arm_cmd Arm the drone. droneId

takeoff_cmd Arm and takeoff the drone. droneId
alt - altitude (optional)

land_cmd Land the drone. droneId

goto_cmd Send the drone to a specific co-
ordinate.

droneId
lat - latitude
lon - longitude
alt - altitude (optional)
yaw (optional)
speed (optional)

cancel_cmd Cancel the current command on
execution.

droneId

return_home_cmd Land the drone in the same loca-
tion from where it took off.

droneId

Each function converts the command into the equivalent ROS2 message and pub-
lishes it to the /cmd, which is subsequently picked up by the Command Handler and
forwarded to the FC. No additional commands were required for the scenarios in which
we tested this architecture. Because the scripts that utilize these commands are run
in drones, if we do not provide a droneId for these commands, it will use the default
droneId, which is the ID of the drone in which the script is running.

If no altitude is specified for the takeoff instruction, the default altitude specified in
the configurations (as stated in [1]) is used instead. In this situation, the altitude is the
height above ground level.

The altitude is defined in Above Mean Sea Level (AMSL), the speed is defined in
meters per second, and the yaw angle is positive for clockwise direction, with 0º being
North in the case of the goto instruction. If no yaw is specified, the drone will compute
the proper bearing in the direction of the target location, and if no altitude is given, it
will use the current. If the speed is not specified, the maximum safe speed of 5 m/s is
used.

Another useful function created was waitForTask, because while giving a command
to a drone, we may only want to send the following command once the current one has
been completed. By providing the name of the command and the state of that command
(start or finish) as parameters, the code will listen to the /status topic until that message
arrives and only then move to the next order.

The code below demonstrates a simple example of sending a mission to a drone using
the code.

43

Example Mission consisting of taking off, going to a coordinate and landing

1 takeoff_cmd()
2 waitForTask(cmd='takeoff',state='finish')
3

4 goto(40.634450026723975, -8.659722852039286, alt=20, speed=5)
5 waitForTask(cmd='goto',state='finish')
6

7 land_cmd()
8 waitForTask(cmd='land',state='finish')

In this mission, the drone will take off from its current location, travel at a speed of 5
m/s to the provided location, and then land.

The Message Receiver and Publisher were also implemented using the RCLPY li-
brary, using the designed methods for subscribers5 and publishers6, respectively.

4.1.6 Ground Station Module

The main objective of the Ground Station is to manage the fleet.

Figure 4.5: Ground Station Module Implementation.

The blue sections are the units developed in [1] and explained in Section 3.1.2, while
the green parts are the elements created in this Dissertation.

The Message Receiver and Handler listens for requests from drones and replies to
those requests using the stored data about the fleet, such as which drones are available
to perform specific tasks. The relay_gs.py script is used to accomplish this.

Depending on the drone’s type of mission and role, the data stored may be divided
into different categories. With this more decentralized design, it is not necessary to
keep the Ground Station connected to the fleet at all times because the missions will

5https://docs.ros2.org/latest/api/rclpy/api/topics.html#module-rclpy.subscription
6https://docs.ros2.org/latest/api/rclpy/api/topics.html#module-rclpy.publisher

44

https://docs.ros2.org/latest/api/rclpy/api/topics.html#module-rclpy.subscription
https://docs.ros2.org/latest/api/rclpy/api/topics.html#module-rclpy.publisher

proceed normally without it; nonetheless, this connection is required to monitor the
drones’ location and send commands.

4.2 Relay

The relay was the first scenario in which these modules were tested. When a drone is
executing a mission, it is always beneficial to maintain a connection between the drone
and the Ground Station to track its position and evaluate data that the drone may be
recovering. For instance, if the drone is mapping a particular location and collecting
data with a specific sensor, or if the drone has an attached camera and is transmitting
video feed. The connection with the GS is not required to make the drones perform the
missions because the mission code is running locally on the onboard computer; however,
communication is necessary if we need to give further commands from the Ground Sta-
tion or monitor what is happening. If a drone goes too far away from the GS during a
mission, it will not be able to communicate. Therefore, a second drone will be dispatched
for this purpose, maintaining a set distance between the first drone and the GS. This sec-
ond drone will act as a bridge between the first and the GS. Any telemetry and data from
the first drone will be forwarded to the Ground Station, and any command from the GS
will be forwarded to the first drone. The second drone might also get too far away from
the GS, requiring the usage of a third drone, and so on.

Figure 4.6: Example of a mission scenario.

Figure 4.6 represents a scenario in which a relay would be required. Each circle
indicates the maximum signal range a node would have if it were positioned in the center.

45

The A circle symbolizes a drone on a mission, the B circle represents a relay, and the GS
represents the Ground Station. Drone A would not communicate with the GS or vice
versa if drone B was not stationed there because they are too far apart. This is a concern
since, without direct eye contact with the drone and no ability to get its telemetry in the
GS, there is no way to know the mission’s progress or send a command to the drone in
an emergency or to abort the mission.

4.2.1 Modules integration

Three of the designed modules - Drone, Ground Station, and Network - were em-
ployed to make the relay possible, and the method they communicate is shown in Figure
4.7.

Figure 4.7: Modules connection for a mission with relay.

The modules on the drones are similar; the only difference is in the mission code. The
first drone has a code corresponding to its mission (depending on the type of mission
it is conducting), while the second drone has a code that allows it to act as a relay. In
addition, a network module is active on both drones to keep track of the network. Drones
communicate with one another via ROS2 and share data such as status, telemetry, and
control messages as needed. ROS2 is also used by drones to communicate with the
Ground Station and share vital data.

The Ground Station has the task of managing which drones are available and respond
to relay requests.

46

4.2.2 Message exchange and format

This Section describes how the drone sends a request to the Ground Station when it
needs one and how the Ground Station reacts with them, including the various sorts of
messages sent and the parameters that make up those messages.

Requesting a relay

For this example, we will assume that a drone (drone A) is sent out with a mission. If
at some point, this drone requires a relay, it will send a message to the ROS2 topic /info
with the following content:

Example Message sent to the GS when a relay is needed

{
"FROM" : "droneA",
"TO" : "GroundStation",
"TYPE" : "requestRelay",
"IP" : "10.1.1.1",
"MAC" : "ff:ff:ff:ff:ff:ff"
}

A simple JSON message with the sender (FROM) being the ID of the drone requesting
this relay, the receiver (TO) being the GroundStation and the type "requestRelay". This
message also contains the IP and MAC addresses of the drone, because a relay will
require this data to be able to monitor the network with drone A. The GS node will
receive this message and check if there are any available drones to respond to this call.
If there are, it will respond back to drone A with the ID of the drone that was assigned to
the relay task in the field "droneAssigned":

Example Response from the GS

{
"FROM" : "GroundStation",
"TO" : "droneA",
"TYPE" : "relayAccepted",
"droneAssigned" : "droneB"
}

At the same time, it sends a message to the relay drone, containing the ID, IP and
MAC addresses of the drone it must pursue in the field "droneAssigned", indicating that
it must take off and follow drone A:

47

Example Message sent to the relay drone assigning the mission

{
"FROM" : "GroundStation",
"TO" : "droneB",
"TYPE" : "relayAssigned",
"droneAssigned" : "droneA",
"IP" : "10.1.1.1",
"MAC" : "ff:ff:ff:ff:ff:ff"
}

Figure 4.8: Flow for a Relay Request.

Figure 4.8 shows the flow of messages exchanged during a relay request.

Suppose there are no any available drones to complete this task. In that case, the
Ground Station sends a "relayPending" message to the drone, indicating that it has re-
ceived the request and will respond as soon as drones are available.

Canceling a relay

Drone A will continue the mission usually after drone B has been dispatched, and if at
some point the relay is not required anymore, it will send a message to the GS to cancel
the relay:

Example Message sent to the GS when a relay is not required anymore

{
"FROM" : "droneA",
"TO" : "GroundStation",
"TYPE" : "cancelRelay"
}

48

The GS will update the known information, eliminating drone A from the list of drones
with a relay drone. In addition, drone A sends a message to drone B, requesting that he
be released:

Example Message sent to drone performing the relay to return home

{
"FROM" : "droneA",
"TO" : "droneB",
"TYPE" : "freeDrone"
}

Following reception of this message, drone B will begin its journey back home, and
at some point along the way, it will send a message to the GS indicating that it is once
again eligible for relay.

Example Message sent to drone performing the relay to return home

{
"FROM" : "droneB",
"TO" : "GroundStation",
"TYPE" : "freeDrone"
}

This message will be received by the GS node, which will update the list of available
drones, allowing drone B to be used for another relay mission later, as shown in Figure
4.9.

Figure 4.9: Flow for a Cancel Request.

Again, this could happen repeatedly, because there could be cases where drone B

49

gets too far away from the Ground Station and then sends a "requestRelay" message to
the GS, causing drone C to begin pursuing drone B, and so on.

4.2.3 Drone performing a mission

To maintain constant contact with the GS, the drone performing the task must contin-
uously monitor the network between itself and the GS, requesting a drone if it becomes
unreliable. It is important to remember that the relay drones’ primary function is to
serve as a link between the drones performing missions and the GS.

Whenever a drone is performing a certain mission, it runs goto_with_relay.py and
Network.py in parallel, as part of the Mission Code. As described in the previous part,
Network.py will monitor the connection between the drone and the GS. goto_with_re-
lay.py will examine the data recovered and determine whether a relay is required or not.
The Network Quality parameter is used to do this.

The only value for Network Quality that is appropriate is "HIGH". The values "ME-
DIUM" and "LOW" are not. As a result, whenever the quality falls below "HIGH", a relay
should be initiated. However, because measurements are not always 100 percent ex-
act, we must account for the probability of inaccuracies. For example, we may have a
"MEDIUM" measurement in the middle of a series of "HIGH" measurements. To circum-
vent this issue, a relay will only be activated if a specified number of consecutive mea-
surements have poor network quality. This value is set by the relayNetworkThreshold
parameter. The application keeps track of how many times a poor quality is detected and
resets the counter to zero when a good one is found, triggering a relay whenever the
counter reaches the specified value:

1 if networkQuality != "HIGH":
2 relayNetworkCounter += 1
3 else:
4 relayNetworkCounter = 0
5

6 if relayNetworkCounter >= relayNetworkThreshold:
7 "send message to the GS requesting a relay drone"
8 ...

Of course, this only happens if the drone is not already supplied with a relay. If it
does, it will look at the inverse, a set of measurements with a good network, and if it
finds such, the relay will be cancelled. This occurs when the drone is too close to the GS,
resulting in a good connection.

1 if networkQuality == "HIGH":
2 relayNetworkCounter += 1
3 else:

50

4 relayNetworkCounter = 0
5

6 if relayNetworkCounter >= relayNetworkThreshold:
7 "send message canceling the relay drone"
8 ...

4.2.4 Relay Drone

As seen above, the probes are used by the drone performing the mission. Now we
can see how the relay drones use them. For relay drones, relay_drone.py is the script
that contains the mission code. These drone will use the Network.py script to monitor
their network with the GS after being assigned the relay and taking off. Because a drone
with the relay function may have its own relay, it will check for values using the same
exact parameter (Network Quality) as the mission’s first drone.

The Network Probes, on the other hand, have an additional role for these types of
drones. The network’s quality will determine the distance this drone will maintain from
the mission drone, meaning that these drones also monitor the connection with the mis-
sion drone. However, because the Network Quality parameter only has three possible
values (High, Medium, and Low), it is difficult to determine whether the quality is exces-
sively high or moderately high. We will need a parameter with a larger range of values
to do this. The Signal is the better parameter for this. Signal’s value can range from 0
to 90, and it is proportional to the distance between the drones, thus the value will be
smaller if two drones are closer together and vice-versa, because a lower value means
a better connection. This, of course, is what happens in open environments with vast
space. However, in areas with uneven terrain and obstacles, this may not be so linear.

The goal is to keep the Signal at a level that is neither too high nor too low. Too
high indicates a poor connection, implying that the drones are too far apart, which could
cause issues if communications deteriorate. Low indicates a good connection; however,
too low indicates that the drones are too close to each other, which is unnecessary if
the drone can be moved a little further while maintaining a decent connection quality.
To do this, the recommended Signal value should be somewhere between a High and
a Medium connection (between 55 and 65). This threshold is set by the user in the
relaySignalToKeep variable, which can be adjusted.

This variable, as well as the actual Signal value, are taken into account whenever a
relay drone has to calculate a new coordinate of where to travel (which could happen
several times per second):

1 if signalStrength > relaySignalToKeep:
2 targetDistance -= distanceAdjustment
3 elif signalStrength < relaySignalToKeep:
4 targetDistance += distanceAdjustment

51

The current value of the Signal is represented by signalStrength in the code above.
If it is higher than the one we want, it means the drone is farther away than the optimal
distance, and we should shorten it, and vice versa. The targetDistance variable spec-
ifies the distance between the relay drone and the drone it is following. The drone will
get closer or farther away from the drone it is following as this value is decreased or in-
creased. This variable will be slightly adjusted each time a new coordinate is calculated.
The variable distanceAdjustment specifies the amount of adjustment. It comes as near
to the optimal distance as feasible this way. This variable does not have a constant value
and instead fluctuates throughout the mission. The user specifies the first value for this
distance in the targetDistanceDefault variable at the start of the mission.

Behaviour during relay mission execution

Knowing how the distance changes during a mission makes it simpler to comprehend
how a relay drone determines the coordinates for where to go. The relay drone will
compute a new coordinate in a loop after taking off, which means that once it calculates
one and sets it as destiny, it will instantly calculate the next one, terminating only when
the mission is done or a relay is no longer required.

The following are the steps taken by a relay drone to calculate a coordinate:

1. Request a network measurement between itself and the drone it is following;

2. From the preceding request, retrieve the Signal parameter;

3. Using the value of the Signal, update the targetDistance variable using the me-
thod previously given;

4. Get the GPS coordinates from the drone it is following;

5. Calculate a new adjusted distance with the targetDistance. Only the former will
be utilized to perform the final calculations;

6. To make the calculations, use all of the previously specified parameters;

7. Set the resulting coordinate as the destination.

The stages 5 and 6 will be covered in further depth on the following pages.

Stage 5 - Calculating the best distance

Even though targetDistance is affected by network measurements in order to obtain
the best distance, this parameter will still undergo a minor correction before the calcu-
lations are performed. Let us take a look at Figure 4.10 to get a better understanding.

Figure 4.10: Drone’s different speed zones.

52

Assume a drone is at position A and wishes to travel to position B. When we instruct
a drone to travel to a specific location, we select the speed at which we want it to travel.
However, if the drone is halted or moving at a slower speed than that, it will take a
moment to reach it. The same goes for stopping when it gets close to its destination. It
begins to slow down before reaching its destination. As a result, this journey is divided
into three stages: accelerating (green), traveling (yellow), and slowing down (red).

It is necessary to clarify this because there is a specific moment during a mission that,
if it occurs, may be affected by these factors. If the mission drone keeps moving away
from the GS, the relay drones’ computed coordinates will eventually be near the drone’s
present position, putting them in the red zone. As a result, the relay drone’s speed will
equalize with that of the drone it is following, and it will never reach its desired speed.
When this point is reached, the relay drone will be unable to go as close to the target as it
had intended. For example, even if the drone is aiming for a distance of 65 meters, it may
only be able to get closer to 75-80 meters. The only method for the drone to reach this
distance of 65 meters is to provide it with coordinates that are less than that distance.
This is why the distance requires one more minor adjustment:

1 distanceBetweenDrones = Math.calcDistance((myLatitude,
2 myLongitude),(targetLat, targetLon))
3 differenceBetweenDistances = distanceBetweenDrones - targetDistance
4 correctedDistance = targetDistance - differenceBetweenDistances
5

6 # Avoid negative values for correctedDistance
7 if correctedDistance < 0:
8 correctedDistance = targetDistance

As we can see, the first step is to determine the distance between the relay drone and
the mission’s first drone. This is accomplished by utilizing a function accessible within
the Math.py module, which uses the geopy module from Python to compute the distance
between two coordinates:

1 import geopy.distance
2

3 # Calculates the distance between 2 coordinates and returns the result in meters
4 def calcDistance(coord1, coord2):
5 return geopy.distance.distance(coord1, coord2).km * 1000

Following that, we subtract the targetDistance parameter from the distance be-
tween the two drones, obtaining differentBetweenDistances. Finally, we use the dif-
ference between targetDistance and differentBetweenDistances as the final distance
parameter, which we call correctedDistance. Let us look at an example.

53

If the relay drone is 80 meters away from the first drone and wishes to achieve a
target distance of 65:

distanceBetweenDrones = 80

differenceBetweenDistances = 80− 65 = 15

correctedDistance = 65− 15 = 50

In this situation, instead of 65 meters, a distance of 50 meters will be provided. This
allows the relay drone to come closer to the first drone, avoiding red zones, and achieve
the desired distance of 65 meters. This also works if the relay drone is closer than
expected:

distanceBetweenDrones = 50

differenceBetweenDistances = 50− 65 = −15

correctedDistance = 65− (−15) = 80

In such cases, a coordinate that is greater than the target distance will be provided.

The only thing left to do is be cautious if the correctedDistance returns a negative
number. This will occur if the distanceBetweenDrones is greater than double the tar-
getDistance. In these circumstances, we simply use targetDistance as previously and
disregard the correctedDistance.

Stage 6 - Calculating the next coordinate

Now that we have gathered all the necessary information, we can start the calcula-
tions using the scenario depicted in Figure 4.11.

Figure 4.11: Example scenario for a mission with relay support.

Drone A is performing a mapping mission. The Ground Station is marked with GS.

54

Drone B is a relay drone assigned to perform the relay of A. So, B has to stay in
line, between A and GS within a determined distance of A. The red circle around A has
the radius equal to the distance we want nodes to keep between them (targetDistance).
There is also another variable, tolerance, which is the error allowed to be committed
when calculating a new coordinate. If targetDistance is 50 meters and the tolerance is
2 meters, it means the new coordinate drone B is destined to travel to could be anywhere
between 48 and 52 meters from drone A.

Drone A’s coordinates are retrieved from the /telem topic.
The first step is to calculate the angle between drone A and the GS.
This is done by using the arctan function present in the python’s math module:

1 angleInRadians =
2 math.atan2(GS_Latitude - droneA_Latitude,GS_Longitude - droneA_Longitude)

This returns the angle we need. In this example, and according to Figure 4.11, it
should be around 45º or 0,785 radians.

We can now determine the correspondent coordinate in the red circumference using
the angle and these well-known geometric equations:

x = radius ∗ cos(angle)
y = radius ∗ sin(angle)

But, there is a problem - radius is defined in meters and, since we are working with
GPS coordinates, the X and Y axis are defined in degrees. Unfortunately, it is not possible
to directly convert meters to degrees or vice-versa, because Earth is not a perfect sphere,
but an ellipsoid. In order to do this, we have to calculate the radius, in degrees, that
corresponds to a certain distance, in meters.

We begin by utilizing a base radius, in this case, the author of this Dissertation used
0.01, which corresponds to around 1 kilometer (depending on the Earth’s location) and
the formulas previously explained, in which longitude equates to X and latitude to Y:

lonCorrection = radius ∗ cos(angleInRadians)

latCorrection = radius ∗ sin(angleInRadians)

As a consequence, the existing coordinate in the red circle is obtained. However, the
obtained Longitude and Latitude are relative to the center of the circle (the drone itself),
therefore we must add them to the drone’s coordinates to make them absolute.

targetLongitude = droneA_Longitude+ lonCorrection

targetLatitude = droneA_Latitude+ latCorrection

After having a new coordinate (targetLatitude, targetLongitude), we calculate the
distance, in meters, between this coordinate and the drone A, using the previously
described calcDistance function:

55

1 min_distance = targetDistance - tolerance
2 max_distance = targetDistance + tolerance
3

4 coord1 = (GS_Latitude, GS_Longitude)
5 coord2 = (targetLat, targetLon)
6

7 distance = calcDistance(coord1, coord2)

Finally, we check to see if this coordinate is within the tolerance specified:

1 if distance >= min_distance and distance <= max_distance:
2 returns the current coordinate
3 else:
4 radius = radius * 0.975

If this condition is met, it suggests we were successful in locating a suitable coordi-
nate. If it is false, the radius is reduced slightly and everything is recalculated with the
new radius. This loop can be repeated until a coordinate is obtained, but it is the best
way to get an accurate distance. The tolerance should not be less than 2 meters to risk
not being able to determine the correct coordinate.

Whenever a new coordinate is found, a new goto command is issued (message sent
to /cmd topic), the drone B retrieves drone A’s new position (from /telem) and does the
whole procedure again. At the same time this is happening, the same drone is monitoring
the /info for any important information.

Returning home

When a relay drone ends its mission and returns home, it uses probes once again.
Because relay drones can undertake multiple missions in a sequence, after complet-

ing one, they must notify the GS using the "freeDrone" message, as previously men-
tioned. Because they may be too far away from the GS when a mission concludes, they
may not be within communication range, thus we must ensure that they are before deliv-
ering this message. We will use a simple mechanism similar to the one we used to cancel
a relay for this. While returning home, the drone repeatedly measures the network be-
tween itself and the GS and uses the Network Quality parameter to determine whether
the quality is adequate to send the message:

1 if networkQuality == "HIGH":
2 relayNetworkCounter += 1

56

3 else:
4 relayNetworkCounter = 0
5

6 if relayNetworkCounter >= relayNetworkThreshold:
7 "send freeDrone message to the GS"

We use the relayNetworkThreshold parameter once more to determine how many
times the network must be measured with HIGH quality before transmitting the mes-
sage.

After starting its course back home, the drone begins monitoring messages from the
Ground Station to check if it is assigned a new mission. The drone may receive this even
before landing, meaning it may be on its way back to base when it gets the request,
turning around to execute the new relay mission.

4.2.5 Ground Station

In the relay scenario, the Ground Station module is in charge of managing the avail-
able drones to conduct relay tasks and respond to requests received from drones. The
code for the Drone Manager and the Message Receiver and Handler are contained
in relay_gs.py, which allows the GS to operate the fleet. Before running anything in the
Drone Module, we must execute this script first.

The stored information is divided into two categories: available drones to perform
as relay and mission drones that already have a relay drone. Any requests for which an
instant answer is not possible are saved and dealt with as soon as possible. The table
below displays a list of possible requests and responses that can be sent to the Ground
Station:

Table 4.5: Requests handled by the Ground Station for the relay scenario.

Type Meaning Responses

requestRelay It is sent by a
drone when it
requires a relay.

Looks for drones that are available. If any are
found, it responds with a "relayAccepted" message
and assigns the relay drone the task, updating the
stored information; otherwise, it saves the request
and responds with "relayPending".

cancelRelay It is sent by
a drone when
it no longer re-
quires a relay.

Removes any pending requests from this drone
and, if it is present in the list of drones with relay,
removes it.

freeDrone It is sent by
a relay drone
when it is ready
to receive a re-
lay task.

Checks for any pending relay requests. If there are
any, responds to the oldest one, updating the stored
data; otherwise, simply adds the drone to the list of
available drones.

57

4.2.6 Routing

The relay mission’s main goal is to employ a drone to send information from a drone
performing a specific mission to the GS and vice versa. As a result, having a relay in the
proper location is pointless if the drone is not routing any data.

We utilized batman-adv7 to accomplish this. This library allows us to set up a mesh
network connecting the many nodes that make up our system, creating a virtual interface
over the wireless USB adapter’s physical layer. When a node is correctly configured with
these settings and the interface is turned on, the library broadcasts the IP and MAC
address to potential neighbors. When it connects to a neighbor, it receives its information
and creates a route to that node, regularly sending packets to verify network metrics like
latency. When new nodes join the network, they all use a discover protocol to calculate
metrics between themselves and determine the best route from one node to the next and
whether or not hops are required. This means that when a packet is sent from point A to
point B, it may need to be passed by a node in the middle. To the user, everything seems
to be a single Local Area Network (LAN)8.

We did not consider this as a separate module or a component of one of the already
existing modules, since we only needed to make a few configurations to set up this net-
work.

Figure 4.12 depicts three examples of how this network behaves.

7https://www.open-mesh.org/projects/batman-adv/wiki
8https://www.cisco.com/c/en/us/products/switches/what-is-a-lan-local-area-network.html

58

https://www.open-mesh.org/projects/batman-adv/wiki
https://www.cisco.com/c/en/us/products/switches/what-is-a-lan-local-area-network.html

Figure 4.12: Example scenarios using batman-adv to route information.

The circumference of each circle represents the maximum communication range of
the node in the system. A batman-adv instance is running on every node. This network
will always take the quickest and shortest route to its destination. Consider the situation
where we need to communicate data from node A to node B. In the first scenario, these
two nodes are within range of each other; hence, even though node C is in the middle,
it is unnecessary to route information through this node. The two nodes are also too far
apart in the second situation. However, because node C is within range of both, batman-
adv will internally identify a path through C. In the last example, A and B are also out of
range; thus, C is employed to relay information. It is also feasible to utilize D (A -> C ->
D -> B), but the route with the fewest hops would be selected.

4.2.7 Relay summary

The general flow for a relay mission for the first drone, a drone executing any assign-
ment that might require a relay at some point, is shown in Figure 4.13. This first drone
sets out on its mission as usual, heading to a certain set of coordinates. It examines the
connection with the GS to see if it is good or not. If it is, it proceeds normally; otherwise,
it will contact the GS to request a relay drone and proceeding the mission normally,
independently from the answer. After the request is granted, it begins monitoring the
network to see if, at some point, the relay is no longer necessary.

The flow for the relay drones is a little more complex. In the base station, a relay
drone will begin listening for any requests from the GS. After receiving one, it takes off
and starts receiving the coordinates of the drone it is intended to follow, using those
together with the network signal strength to that drone to calculate the next target loca-
tion and the appropriate distance to keep from it. At the same time, it keeps an eye on
the connection with the Ground Station in case a relay is necessary. These actions are
depicted in Figure 4.14.

59

Figure 4.13: Flow for the drone that initiates a mission.

Figure 4.14: Flow for the drone that performs the relay.

60

4.3 Rescue

Another feature of this system is requesting a drone from the GS using an Android
smartphone to come to an individual’s encounter, which might be utilized in a rescue
mission. The concept is to employ a drone in an emergency circumstance, similar to
other scenarios already in existence. An application makes a request and sends GPS
coordinates to a drone that has been assigned to the task. The drone is equipped with
a camera to transmit visual feedback to the Ground Station to see the individual who
performed the request.

4.3.1 Modules integration

All of the designed modules - Drone, Ground Station, Network, and Android - were
used to make the rescue mission possible. The method they use to communicate is de-
picted in Figure 4.15.

Figure 4.15: Modules connection for a mission with relay and Android integration.

The majority of the modules are connected in the same way as in the relay mission.
There is, however, a notable difference. A Mosquitto server is installed on the drone do-
ing the mission, allowing it to interact with the Android app. The android app is not part
of the mission drone’s module; instead, it is run by a user outside of the mission drone’s
module. We did not require any complicated computations to test this new functionality.
When the drone receives a request, it will simply travel to the coordinates provided by
the Android app. The user can cancel the request at any time, and the drone will return

61

home.

4.3.2 Android application

A user must press the panic button shown in Figure 4.3 to perform a rescue request.
Upon pressing it, the app checks to see if the system’s GPS is turned on and then checks
for its present location.

Because of the way the Android GPS API is designed, anytime an app requests the
most recent location from the GPS Service, the Android system obtains coordinates from
the OS rather than the GPS itself. Checking the GPS for the present position at a specified
time is not possible. This causes a problem because the most recent location saved could
be hours/days old and incorrect, which is a problem that can occur from time to time
when using older Android versions.

However, there are two options for resolving this:

• Open an app that is more closely linked to the system. The best illustration of this
is Google Maps. The OS will save the updated position if you open this program
and request the current location;

• Updating the current location. Even if the program is unable to get the first position
after clicking the panic button, it activates a listener that is triggered anytime the
global position is modified, allowing it to store the new one and communicate it as
soon as possible.

Whenever the panic mode is engaged, the application retrieves (if one exists) and
communicates the stored coordinate from the system, doing so once every second. If
this fails, it will keep retrying once every second until it is able to do so or until the user
cancels the request.

Apart from the required global position, the application requires a connection to the
same network as the server (same as ROS2) in order to receive and transmit messages
to and from the server.

Figure 4.16: The user will see one of these messages if one or both of the prerequisites
(connection and GPS, respectively) are not met.

Assuming that everything is in order (connection and GPS), the application will use
the MQTT node to send the following message to the topic "sensors":

62

Example Message from Android Application to the server requesting a rescue

{
"sensorId": "phone01",
"type": "locatorRequest"

}

The message contains the request type as well as the phone’s ID. After then, the
server sends an accept or reject message (depending on whether or not drones are avail-
able). The ID of the drone assigned to that task is also included in the affirmative mes-
sage.

Example Positive response from the server

{
"FROM" : "Server",
"TO" : "phone01",
"type" : "chaseAccepted",
"droneAssigned" : "drone01"

}

When there are available drones, the aforementioned message is delivered; other-
wise, the following message is sent:

Example Negative response from the server

{
"FROM" : "Server",
"TO" : "phone01",
"type" : "chaseDenied"

}

The user’s rescue request is automatically terminated if the latter is sent (the user
can retry at any time).

Feedback on requests will always be provided to the user.

63

Figure 4.17: The user will receive a response to the request depending on the
availability of drones.

Unlike drones, the GPS coordinates on an Android system do not change very often
(moving 1 or 2 meters may not be enough to update the position, depending on the GPS
model and Android version). Therefore, because sending messages to the server with
repeated information at smaller intervals is unnecessary, the application delivers each
message at a second interval.

After delivering the first message to request a drone and obtaining a positive reply,
the app will communicate each user’s current position to the drone in this interval.

Example Message sent from the Android device containing its location

{
"sensorId": "phone01",
"type": "locator",
"timestamp": 1631554876034,
"value": {
"lat": 40.634027873904756,
"lon": -8.660564121419112,
"alt": 8.960174560546875

}
}

The phone’s ID is always provided together with the coordinates, which the assigned
drone needs to make sure it is getting data from the right device.

By pressing the "stop" button, the user can cancel this request at any time. When this
occurs, the app cancels the request and sends the following message to the drone:

Example Message sent from the Android canceling the request

{
"sensorId": "phone01",
"type": "locatorCancel"
}

64

Figure 4.18: Request cancelation.

One additional scenario is possible. The user will receive the following notice and the
request will be canceled if the mission has to be canceled by the drone executing the
task rather than the user, due to a lack of relay drones.

Figure 4.19: The user will receive this message if the drone cancels the mission.

4.3.3 Drone

We need to examine how the drones carry out this task now that we have seen what
the application is.

Besides running the server, the drone will run the chase_with_relay.py script to
complete this task.

We simply run the script with the command:

python3 chase_with_relay.py -d drone01

The -d parameter represents the drone’s ID. When the script starts, the drone will be
in its home position and will begin monitoring the /sensors topic in MQTT, while waiting
for a request from a user.

Upon receiving a request, it responds positively or negatively, depending on its avail-
ability. If the response is positive, it takes off. After taking off, the drone will listen for
coordinates sent by the Android system. And then, the drone will simply dislocate to each
coordinate. Another important detail to notice is that this mission type supports relay.
Like the relay missions mentioned in the previous Section, the first drone dispatched to
assist the user can request a relay drone at any time using the exact same methods.

In addition, the drone executing this flight will monitor the /sensors topic for any
cancel from the Android device (locatorCancel, in case the mission is canceled by the
user).

If the drone receives a locatorCancel message at any time, it will alert its relay drone
(if one exists) and return home. This method is performed for each drone involved in the

65

mission at that point.

In case there are several involved relays, each one must inform its relay. Assuming
drones A (first to be dispatched), B (relay of drone A), C (relay of drone B) and so on, the
messages will be transmitted in this order:

A → B → C → D

And each one will return home.

4.3.4 Rescue summary

Figure 4.20 depicts the flow of a drone conducting a rescue operation. First, the
drone will listen to any requests made by the user through the Android app. When the
drone receives one, it will acknowledge the user’s request, respond to it and move to the
coordinates provided by that same user. In addition, it monitors the network with the
Ground Station upon starting its mission because a relay may be required at some point
throughout the operation. However, because this part is already fully described in Figure
4.13, it was simplified in Figure 4.20 and is merely displayed as "Relay Procedure".

Figure 4.20: Flow for the drone performing a rescue mission.

4.4 Summary

In this chapter, first, we gave a general overview of the several modules created and
a description of their purpose. Then, we explained how we implemented the communi-
cation between them. Next, we specified how each of the modules was implemented and
what was needed to make them functional. Finally, we went over the various scenarios in

66

which these modules were deployed. We also outlined the role of each one and the role of
each node involved in these scenarios. We will look at the individual tests conducted to
validate the architecture and implementation outlined in this chapter in the next chapter.

67

68

Chapter 5

Experiments and Results

We will discuss the experiments and tests conducted to validate the work presented
in this dissertation. The experiments were divided into two categories: simulated and
real-world. Simulated experiments used the simulator tools previously developed, as
described in Section 3.1.3, whereas real-world testing involved taking real UAVs outside
and testing in the approaches. Preliminary validation steps took place in the simulator
before going on to a real scenario to ensure the proper operation of the system.

5.1 Simulated experiments

The initial step in creating this Dissertation was to use the features that had already
been created. As described in Section 4.1.5, a few functions were created to send the
most basic commands to a drone using the RCLPY1 library. Each function would convert
the order to a ROS2 message and publish it, which would be retrieved by the Command
Handler in the Drone Module, and this time converted to a low-level command and sent
directly to the Flight Controller.

The first approach was to validate the different functions by writing small excerpts
of code, such as the one provided in Section 4.1.3. QGroundControl18 was used to track
the missions’ progress and check the drones’ telemetry to make sure everything was
working properly. Following the validation of this part, the next step was to construct
a drone-drone communication point using ROS2 nodes. A few simple examples were
created to test this communication, using the features in the RCLPY library, publishing
the messages from one drone and checking for their receipt in the other. Following
this validation, the relay scenario was tested utilizing the message exchange outlined in
Section 4.2.2.

1https://github.com/ros2/rclpy

69

https://github.com/ros2/rclpy

5.1.1 Relay mission

Figure 5.1: Example of a mission with relay, displaying the paths of the drones.

Figure 5.1 depicts the path of two drones (one following a set of coordinates, per-
forming a mission and its relay), marked with colored lines, during a mission. The green
circle represents the area where the drones took off, while the red circle represents
where the mission came to an end. The little cyan circle represents the Ground Station’s
location. The first drone follows a set of coordinates around the Ground Station, calling
a relay shortly after takeoff, and the second drone continues to follow it until the mis-
sion is completed. We can distinguish two comparable forms, one smaller than the other.
The larger one, in red, depicts the course of the mission’s first drone, while the smaller
one, in yellow, depicts the path of a relay drone. Because they are centered around a
point, which is the coordinate of the Ground Station, and the relay drone is always in line
between the first drone and the GS, the paths for both drones have similar shapes.

This map was obtained by utilizing the rosbags feature to acquire the drone’s teleme-
try, as described in Section 2.4, and then by using the gmplot2 library to convert the
data to a plot using Google Maps’ features.

2https://pypi.org/project/gmplot/

70

https://pypi.org/project/gmplot/

Analyzing performance during a relay mission

Figure 5.2: Graph with the distance between the mission drone and its relay.

We have information regarding the distance between the two drones in Figure 5.2.
The X-axis shows the number of relay drone coordinates issued throughout the mission,
while the Y-axis shows the distance in meters between the relay drone and the drone it
is following. The blue line depicts the optimal distance between the drones to optimize
the mission, while the orange line displays the actual distance between them.

As we can see, the relay drone is further away in the beginning because it takes a
while to take off while the other drone is getting away from the Ground Station. After
approaching the first drone, it maintains proximity to the ideal distance. Because the
drone’s software performs more tasks than just calculating distance, there may be a
slight delay, even in the simulator, which is acceptable. This makes it difficult for the
drone to maintain the optimal distance all of the time. Thus we must always include in a
6 to 10-meter inaccuracy. When the drone moves away from the Ground Station, it will
always be a little further away from the desired distance, such as between 80-140 and
250-310 on the X-axis. However, the opposite behavior happens when it gets close to the
Ground Station, between 170-230 on the X-axis.

Overall, the algorithm appears to work effectively, and the relay drone is able to
position itself in the correct location.

71

Performance issues

We discussed the importance of performance in relay missions before. A relay drone
has no idea which path the first drone will take and must rely entirely on the data of
others to determine the optimum location. If this is a lengthy process for some reason,
it may cause additional delays and, in the worst-case situation, the relay may be too far
away from the first drone, causing connectivity issues.

The implementation of a slight change to the distance parameter during calculations,
as stated in 4.2.4, was one of the ways employed to reduce the delay. This did not make
a significant difference, although it was feasible to verify that it assisted the drone in
better positioning itself in some occasions.

The change of the QoS settings was the factor that made the most significant differ-
ence. QoS is a set of policies that allow users to fine-tune the communication between
nodes3. Both publishers and subscribers may be affected by these settings. Only the
parameters for subscribers were updated for this Dissertation. When a subscriber is set
up, it creates a First In, First Out (FIFO)-style4 structure of a specific size in which the
messages received in that issue are automatically stored. The data can then be fetched
at any time by the user from that FIFO. Because it is a FIFO, it will always retrieve the
oldest message when retrieving a message, which is fine most of the time, but in the case
of telemetry, it may lead the drone to use old telemetry even if it has the most recent.
The drones’ module publishes telemetry every 0.2 seconds, and the FIFO size is set to 10
by default, with the messages having a lifetime duration, which means they are only re-
moved from the FIFO when the user retrieves them. We do not mean lifetime duration in
the literal sense because the messages will not last forever, but a lifetime in the context
of the mission because they will not expire during the mission. Thus, if two drones are
online (one conducting a mission and the other serving as a relay), the FIFO will store
five messages from each, with the oldest message being roughly one second old. As a
result, the drone will always be one second behind current information, resulting in a
second delay. To avoid this, the duration of the messages was modified from lifetime to
0.2 seconds, which is the same as the time interval at which the drones publish telemetry.
This ensures that the telemetry messages are always the most recent.

3https://docs.ros.org/en/rolling/Concepts/About-Quality-of-Service-Settings.html
4https://www.investopedia.com/terms/f/fifo.asp

72

https://docs.ros.org/en/rolling/Concepts/About-Quality-of-Service-Settings.html
https://www.investopedia.com/terms/f/fifo.asp

Figure 5.3: Graph displaying the improvement using different QoS policies.

Figure 5.3 depicts the outcome of a test to examine how the telemetry delay impacts
the relay mission’s performance. We kept a constant distance of 65 meters between
the drones for this test, marked by the red dotted line. Thus, there was no network
integration. The missions followed the same route as the one illustrated in the Figure
5.2 but with two different sets of QoS settings.

The blue line depicts the distance when using default QoS policies (resulting in a
one-second delay), whereas the orange line displays the distance when using customized
policies (message lifetime adjusted to 0.2 seconds). We can easily compare the two lines
and observe that the drone can keep itself significantly closer to the front drone with this
change, making the strategy the best.

Network probes

Because the Network.py script does not work in a simulated environment, testing
the integration of network probes is a little different from a real scenario. This happens
since measuring a network between two different nodes is only possible when they are
running on different devices. Unfortunately, everything in a simulated environment runs
on the same device, making it impossible. However, it is possible to emulate this behavior
by creating a script that periodically sends a message to the topic containing network
information, with the same format as the message in Network.py.

The probes integration was already included in the tests provided in 5.1.1, ensuring
its usability.

73

5.1.2 Android integration

A Mosquitto server, as described in 4.1.4, was used to evaluate Android device inter-
operability. The server ran in a simulated environment on localhost on the same device
as the other modules. The application’s usefulness was evaluated by requesting and can-
celing a drone, then analyzing the drones’ behavior with QGroundControl and using a
relay in this type of mission with network integration. The laptop running the Mosquitto
server also had an Access Point that the smartphone connected to allow communication
with this device. However, throughout the simulation, everything was connected to the
same network, allowing the drones to send and receive data directly from the Android
device. This would not be possible in a real-world scenario because the drones only have
an ad-hoc connection to establish point-to-point contact with other nodes (other drones
and the Ground Station). In order to connect to the Android system, a drone requires
a wireless connection. One possible solution is for the drone to have two connections:
an ad-hoc connection that is already in use to connect to other drones and the GS, and a
wireless connection that serves as an access point for the Android system. As a result, the
Access Point would be on a drone rather than in the GS. At the time of writing this Disser-
tation, due to the limitations mentioned above, no real hardware tests were conducted to
test integration with Android devices. Instead, we recorded a video5 demonstrating the
validity of the Android Module using the simulator and the application.

5.2 Experiments in a real environment

We tested the software on real hardware after the validation in the simulated en-
vironment has been completed. This was accomplished with the usage of real drones.
A USB connection was used to connect the Flight Controller to the onboard computer.
Each drone featured a wireless USB adapter with a specific connection to an AD-HOC
network to link to other drones and the Ground Station. Even though the drones were
using autopilot software, someone with a RC was always ready to take manual control of
a drone if necessary.

5.2.1 Hardware

The drones’ complete specifications are shown in table 5.1.

Table 5.1: Drones specifications.

Component Model

Flight controller Pixhawk 4 with NEO-M8N GPS
Frame DJI F550
Radio Control FLYSKY FS-i6 and FLYSKY FS-iA6B
Onboard Computer NVIDIA® Jetson Nano™
Operating System Linux4Tegra
Wireless USB Adapter TP-Link TL-WN722N

5https://youtu.be/9HcQscgYTRk

74

https://youtu.be/9HcQscgYTRk

Figure 5.4: One of the drones used in the experiments.

A laptop was used as Ground Station. To connect to the fleet of drones, this device,
like the drones, used a wireless USB adapter. The complete specifications are listed in
table 5.2.

Table 5.2: Ground Station specifications.

Component Model

CPU Intel Core i5-8300H 2.3-4.0GHz
Memory 16GB
Operating System Ubuntu 18.04 LTS
Wireless USB Adapter TP-Link TL-WN722N

Only the onboard computer was used in the initial experiments with real hardware.
We needed to make sure that communication was flowing through every node in the
platform before sending the drones out into the field, so we tested it in the lab. Following
that, some tests were performed solely to test the placement of the relay drone in order
to check if it could respond swiftly and avoid the delay discussed in 5.1.1. This was
accomplished by simply flying a drone in manual mode, assigning a second drone to
it and hard coding the relay drone to follow the first drone without requiring the first
drone to request a relay from the Ground Station. Following the placement validation,
the communication drone-drone and drone-GS was tested on the field, and in the end,
we attached the network probes.

Having validated every feature individually, we advanced to a full scale test.

5.2.2 Testing relay with network integration

The main goal of this test was to ensure that all components worked together in a
real-world scenario using real hardware. However, for this test, we did not integrate the
Android module.

The hardware used was a laptop that served as the Ground Station and had the speci-
fications listed in table 5.2, and two drones using the components listed in table 5.1. The

75

modules’ interfaces and algorithms used were already described (Section 4.2).

Goals

The goal of this test was to validate the following functionalities:

• Drone-Drone communication - Drones can communicate with one another by
sending and receiving messages.

• Drone-GS communication - Drones can send requests to the GS, and the GS can
reply.

• GS management - The GS is capable of adequately handling requests and assign-
ing relay drones missions.

• Drone placement - The relay drone can position itself between the mission drone
and the Ground Station.

• Network probes integration - Nodes can use the network probes to monitor their
connections with other nodes appropriately.

• Relay drone distance - The relay drone can use the network probes to find the
optimal distance to keep from the mission drone, as mentioned in Section 4.2.4.

• Routing - The relay can efficiently perform its primary function by forwarding in-
formation from the mission drone, such as telemetry, to the Ground Station and
vice-versa.

Software and scripts

Each node was executing a collection of programs that enabled them to carry out
their mission duties:

• Mission drone (ID: drone01) and relay drone (ID: drone02)

– Telemetry Filter, Command Handler, and Status Tracker - It will be able
to receive commands and send telemetry and status updates.

– Rosbags - Record every ROS2 topic to obtain logs.

• Mission drone (ID: drone01)

– Flight mode - The drone will be operated by hand using an RC.

– Network probes - It is constantly monitoring the network with Ground Sta-
tion.

– Mission code - The code (goto_with_relay.py) analyzes the probe’s output to
determine when a relay is required.

• Relay drone (ID: drone02)

76

– Flight mode - Autonomously flight using commands sent by the mission code.

– Network probes - Both the mission drone and the Ground Station’s network
are monitored.

– Mission code - The code (relay_drone.py) places the relay in the proper lo-
cation using the probe’s data and telemetry from the mission drone.

• Ground Station

– Drone Manager, Status Updater and Task Scheduler - Monitor the drones’
telemetry and other relevant information.

– Rosbags - Record every ROS2 topic to obtain logs.

– Network probes - Monitor the network with both drones.

To work as a single network, every node on the platform ran the batman-adv software,
as detailed in 4.2.6. This allowed the relay drone to forward data from the mission drone
to the GS and vice versa.

Parameters used

For this test, the following parameters were used:

• Mission drone

– relayNetworkThreshold - 10. When the drone has ten network measure-
ments in a row with MEDIUM or LOW quality, it requests a relay, and when it
has ten network measurements in a row with HIGH quality, it will cancel the
relay.

• Relay drone

– targetDistanceDefault - 12 meters. The relay drone will stay 12 meters away
from the mission drone when the mission begins.

– distanceAdjustment - 0.1 meters. The relay drone will adjust the distance
to maintain from the first drone with this amount each time a new coordinate
is calculated, adding or subtracting from the current distance (see Section
4.2.4).

– relaySignalToKeep - 60. This is the relay drone’s signal value to keep from
the mission drone. We chose the value 60 since it is in the middle range (range
is 30 to 90).

Video emulation

One of the goals of this scenario was to use a camera in the mission drone to broad-
cast video to the Ground Station. We could not attach a camera to the drone due to
hardware limitations. We emulated this transmission since it is essential to see how

77

video transmission affects network quality. We used iperf6 for this, simulating the load of
the video in the network, sending packets from the mission drone to the Ground Station
at a set rate.

The Ground Station was running the following command:

iperf -s -u -i 1

It ran as a server (receiving packets) because of the -s parameter. The -u parameter
tells the server to use User Datagram Protocol (UDP) to accept packets. The -i specifies
the interval between periodic bandwidth reports (this only changes the rate that iperf
notifies in the terminal of the packets receives in that interval).

The mission drone, on the other hand, was running the following configurations to
run as a client:

iperf -c X.X.X.X -u -b 1m -t 600

The -c argument provide the IP address to which the packets should be sent (in this
case, the Ground Station). The -u option instructs the client to send packets using UDP.
We sent data at a pace of 1MB/s, an expected rate for video transmission, determined by
the -b parameter. Finally, the -t parameter specifies the duration of the command. We
set the timer to 600 seconds, the average length of time for a mission.

Mission plan

Figure 5.5 shows the mission path that the mission drone was planned to follow.

Figure 5.5: Path planned for the mission drone.

6https://iperf.fr/

78

https://iperf.fr/

The location of the Ground Station is indicated by the letters GS. The mission drone
was controlled by an RC and flew in the direction of the arrows. The green arrow depicts
the predicted zone where the drone should have a good connection with the GS. The
yellow arrow denotes the point at which the network begins to deteriorate, resulting in
a relay request from this drone. Finally, the red zone is where the relay should be within
range of the first drone to perform its duty.

The first part of the mission entails maneuvering the first drone slowly via the arrow-
marked path. The drone’s path does not have to be equal to the one illustrated in Figure
5.5, but the goal is to move the drone perpendicularly from the GS to determine if the
relay drone is correctly aligned with the mission drone and the GS. The second stage
entails examining the recovered network data and determining whether the relay could
correctly calculate a distance based on signal strength using the parameters defined in
the previous Section.

Results

Using the telemetry data acquired, the first thing we will look at is the route taken by
the two drones. We will filter part of the data and recreate the path from the raw data,
because placing all of the data together in a map could be confusing to examine.

Figure 5.6: Relay request performed by the first drone.

Figure 5.6 shows the moment the relay request was performed by the mission drone.
The red color represents the mission drone, while the yellow color represents the relay
drone. Both drones are marked with squares while on the ground. The mission started
when the first drone took off and followed its path. Within a distance of more than 10
meters from the Ground Station, the network began to lose quality, prompting the first
drone to request the relay only seconds after it started moving forward. The third image
in Figure 5.6 illustrates the relay request being made, indicating that the relay drone
(yellow triangle) took off. The latter was already doing its duty in the fourth image.

The remainder of the drones’ itinerary is shown in Figure 5.7. The first drone was pi-
loted manually and followed an "S"-shaped trajectory, while the relay drone autonomously
gathered telemetry from the first drone and calculated the ideal position to land. The pi-
lot would stop the drone for roughly 1 second when turning on this "S"-shaped path.
Then, it accelerates until reaching the next corner, then coming to a complete stop be-

79

fore turning and proceeding to the next destination doing this for the whole course.

Figure 5.7: Path followed by the drones.

When the drone approached the GS, the relay did the same, and when turning left or
right, the relay would also do the same.

At the end of the mission, the drone approached the GS and communicated directly
with it without needing the relay, so it canceled it. The relay drone returned home and
landed after receiving the canceling message.

We can conclude from the images that the relay remained inline between the mission
drone and the Ground Station. Of course, this alignment was not perfect; the drone may
depart from the "ideal line" occasionally, but minor deviations are acceptable. This vali-
dates one of the features of the relay mission’s implementation: the drone’s positioning.

Mission drone

Now we will address how the network’s quality affected the mission. In this test, a
drone will request a relay if the network quality to the Ground Station begins to deterio-
rate.

Figure 5.8 depicts the history of network quality between drone01 and the GS through-
out the mission. The X-axis indicates the number of seconds since the mission began,
while the Y-axis represents the network’s quality. A value of 1 indicates low quality, a
value of 2 indicates medium quality, and a value of 3 indicates high quality.

80

Figure 5.8: Network quality between drone01 and the Ground Station during the
mission.

As we can see, within a few seconds after the mission began, the network quality
dropped below high, prompting the drone to request a relay. Throughout the rest of the
mission, the quality remained low, for the most part, occasionally rising to medium. This
occurred because, despite the relay being already in place, the information in the graph
above is computed using a direct connection from drone01 to the GS. As a result, while
the mission drone could still send telemetry to the GS via the relay drone, it could not do
so directly, leading to low quality in the connection (or no connection at all). Around 230
seconds after the mission’s beginning, the first drone approached the GS, restoring the
quality to high and allowing direct communication between these two nodes. As a result,
the drone canceled the relay, and the relay drone returned home.

This concludes the information about the mission drone. It was able to carry out its
duties correctly, requesting and canceling the relay at the appropriate times using the
network probes’ information.

Relay drone

We will now look at the second drone, the relay. This one is a little more complicated
because it uses probes to measure distance and check for connection with the GS if a
relay is required. However, we only had two drones for the mission, so we had to disable
the latter. Figure 5.9 depicts a part of the data retrieved by the relay drone during the
mission. The drone used telemetry to determine the optimal and actual distance between
the two drones each time it issued a new coordinate.

81

Figure 5.9: Optimal and real distance between the two drones throughout the mission.

The blue line denotes the distance the relay should maintain from the first drone,
while the orange line denotes the actual distance. As we can see, the optimal distance
began at 12 meters, specified in the targetDistanceDefault parameter. However, con-
trary to our expectations, the distance did not increase above this value. Preliminary
tests with the drones on the ground showed that the Signal’s value would only go above
60 when the drones were 20-25 meters apart. Instead, we can observe that the value
fluctuated continuously around 12 meters, even dropping to 10 meters near the end.
This is due to the Signal’s value oscillating around 60 throughout the mission, causing
the ideal distance to change quite frequently and could be caused by the drone’s vibra-
tions during the flight. The orange line also oscillates a lot, but this is to be expected. As
previously stated, when the pilot was flying the mission drone, it stopped the drone while
turning for a brief moment before continuing. When the first drone goes forward, the
relay drone will need a fraction of a second to pick up the telemetry, calculate, and issue
a new coordinate when moving forward. Thus there will be a slight delay. As a result, the
distance increases. Similarly, when the drone comes to a halt, the relay can approach
it, resulting in a reduction in distance and a close approach to the optimal distance, the
blue line. This happened in a cycle throughout the mission, so the orange line is made
up of rising and falling lines. Figure 5.9 shows a few of these maximum and minimum
peaks. We can also see a time when the relay lost connection totally for a brief while,
as indicated by the message "Poor comms", resulting in a higher climb in the distance
than the rest of the mission. This happened because the mission drone moved forward
too quickly. Because the connectivity was deteriorating at more than 12 meters, the
drone lost contact with the first drone, which it only regained when we brought the first

82

drone closer. The distance increased near the end because the first drone had already
canceled the relay, and the relay was returning home. The same happened at the start
when the drone had just taken flight and was further away. Overall, the relay stayed be-
tween 14 and 15 meters away from the first drone. This results in an acceptable average
inaccuracy of 4-5 meters because the ideal distance is always around 10-11 meters.

Figure 5.10 depicts the Signal’s value throughout the mission between drone02 and
drone01 to verify the oscillation in this parameter.

Figure 5.10: Signal between the two drones throughout the mission.

The X-axis shows the number of seconds since the mission began, while the Y-axis
shows the Signal value. The blue line reflects the value of Signal collected by drone02
throughout the mission, and the red line indicates the value 60 we provided to re-
laySignalToKeep. We can observe from Figure 5.10 that the Signal was exceedingly
unreliable during the mission. It is important to remember that a lower number indicates
a greater connection and vice versa. As previously stated, when the first drone comes
to a halt, the connection’s strength should grow, lowering the value as the relay can get
closer. Therefore, the graph will show maximum peaks, marked with "Drone Stopped."
When the first drone resumes flight after a halt, it increases its distance from the relay,
causing the connection to deteriorate, resulting in a greater value and a minimal peak,
labeled "Drone Stopped." We expected the Signal to climb to 90 in the mission phase
when contact had stopped ("Poor comms"), indicating no connection. However, due to
the instability we discussed before, the Signal just bounced quickly between 50 and 75.
Similar to Figure 5.9, the value was higher at the start of the mission because the relay
had just taken off and was further away, and in the end, when it was returning home.

We can now compare Figures 5.9 and 5.10 using this information. According to the

83

implementation explained before, when the Signal’s value falls below 60, indicating a
good connection, the optimal distance (blue line in Figure 5.9) should increase and vice-
versa. Looking at Figure 5.9, we can see that the optimal distance oscillates many times
around 12 meters in the first part of the mission, whereas the blue line rises and falls
more linearly in the second half. This happens because, in Figure 5.10, we can see
that, while the Signal’s value tends to bounce around 60 through the whole mission, this
oscillation occurs far more frequently in the first half, while the value stays longer above
or below the red line in the second half. Analyzing the second half of the mission, we can
see that the Signal remains above 60 most of the time. Similarly, as shown in Figure 5.9,
the ideal distance tended to reduce during this period. As a result, both graphs have an
observable correlation, as intended.

Routing

We need to validate the routing to complete the analysis of the data collected during
this mission. We will look at the raw telemetry data collected by the various nodes
to verify the routing, shown in Figure 5.11. Every message published over ROS2 was
individually recorded by each of the drones and the Ground Station.

Figure 5.11: Telemetry gathered by the different nodes during the mission.

The telemetry data acquired by the Ground Station is shown on the left, the telemetry
gathered by drone01 is shown in the middle, and the telemetry data collected by drone02
is shown on the right. The path taken by drone01 is shown in red, whereas the route
taken by drone02 is shown in yellow.

By comparing the three images in Figure 5.11, we can observe that the start and end
positions of the drones’ path change slightly, as represented by the red markers. This
happened because the data started and stopped being recorded in the different nodes
at different times, which differed by a few seconds. However, the routes appear to be

84

equal, and the information obtained by the three nodes shows no significant variances.
Both drones have the same information because if one drone can receive telemetry from
the other, the opposite is also true. The case is slightly different with the Ground Sta-
tion, since it will eventually lose communication with the first drone during the mission,
resulting in telemetry loss, unless, of course, the relay is forwarding such data. The fact
that the GS contains the same information as the drones demonstrates that it was getting
this data via the relay throughout the flight. Otherwise, we would not have the telemetry
in the green circle area because the drone was too far away. This is because the green
circle symbolizes a zone where the mission drone would be too far away from the GS and
unable to send telemetry if the relay was not present.

Discussion

We completed the mission successfully in the end. We were able to verify the features
we wanted and meet our objectives. Drones can send requests to the Ground Station,
which the latter can answer. A relay can receive telemetry from another drone and
utilize it, along with the data gathered by the network probes, to compute an appropriate
location between that drone and the GS. There are, however, a few things that need
improvement. The obtained Signal was extremely unstable, resulting in a significant
oscillation in the optimal distance value. This did not happen as much in the lab, and
it could be due to the drone’s movements during flight. Another factor that hampered
our testing was the wireless USB adapter’s maximum range, which was only about 12-15
meters in the field but at least 20 meters in the lab. Because the relay would not react
quickly enough before losing the connection if we moved the mission drone too fast, we
could only make minimal motions with this drone. The goal would be to obtain a distance
graph comparable to Figure 5.2, which was not achieved under these circumstances.
Aside from the hardware, we must improve the network metrics. It is unreliable to
utilize merely the current Signal’s value; alternatively, we could use an average Signal
with an average weight based on the previous seconds. This would result in a more
consistent value sequence for this parameter, and hence a more consistent value for the
ideal distance.

5.3 Summary

We discussed the strategies used to debug and validate the software developed in this
Dissertation in this chapter. Initially, everything was tested in a virtual environment, with
both the Ground Station and the drones running on the same device. The testing in real
hardware was carried out only after ensuring that everything was working well in the
simulator and was carried out in incremental steps. First, the primary communications
were established, followed by the positioning of the relay drone, followed by the relay
in combination with full drone-drone and drone-GS connection, and last, the network
probes were integrated and validated.

The relay was tested with real hardware, and while there is a need for improvement
in a few aspects, such as network metrics, the majority of the results were favorable.

85

A few constraints with the Android device integration, as stated in Section 5.1.2,
rendered it impossible to test in real conditions at the time of writing this Dissertation,
but this will be addressed in the near future.

86

Chapter 6

Conclusion

We conclude this Dissertation with a brief overview of the work done so far and some
recommendations to improve the platform.

6.1 Final observations

This Dissertation established a foundation for a new type of architecture. We based
on past work from other Dissertations and attempted to address the most significant
drawbacks. The earlier architecture was more centralized, which meant that the drones
were always controlled by the Ground Station, causing issues when the drones were
too far away and leading to communication losses. We began by establishing a direct
communication channel between drones, allowing them to contact one another. The
relay scenario was then chosen as a starting point because it involves communication
between drones as well as between drones and the Ground Station. The network probes,
which measure the network’s quality, signal, and other essential information, were then
added to the platform as a new feature. The drones utilize this information to determine
when a relay is required, allowing them to make a relay request. The ability to use
Android devices within the rest of the platform was another new feature. A user uses an
application to request a drone by providing their coordinates to the drone.

The work was accomplished by improving the two main modules: the Drone Module
and the Ground Station Module. The drone module runs the software from the previous
Dissertation, which allows the drone to publish telemetry and receive commands. The
software from this Dissertation executes the new mission code and monitors the net-
work’s quality. The Ground Station Module also runs the previously developed software,
which acts as a fleet manager by receiving telemetry from the drones, monitoring which
ones are online, and reporting any errors that may occur during missions. In addition,
the new software handles requests from the drones and keeps track of which drones are
available to perform tasks, such as the relay mission.

There are two new modules - Network and Android. The first module allows a node to
keep track of the network’s conditions to other nodes. This information may be used for
logging purposes or, as we have seen in the relay scenario, may have a more prominent
role and affect some conditions during the mission’s execution. The Android module is

87

used to allow the connection of Android systems to the rest of the platform. For example,
a user could use an application to request a drone to its location in a rescue situation.
This drone would provide video feedback to the Ground Station, so whoever is watching
could help assess the situation.

The work produced throughout this Dissertation was rigorously evaluated. Every-
thing was tested in stages, which meant that every time a new feature was added, it was
debugged before moving on to the next one. Thanks to the simulation tool, we were able
to test the software locally, on the same device, before exporting it to real hardware.
The drone-drone communication was the first thing to be tested, followed by the relay
placement algorithm and then the relay mission, which included network monitoring.
After validating these features using the simulator, we proceeded to field tests with the
software produced proving functional. However, some components need improvement.

Some difficulties had to be overcome during the development of this Dissertation. The
implementation used the ROS Client Library for Python (RCLPY) and required a specific
approach for our work, which did not appear to be widely used because there were few
examples of how we could implement it. Most of the examples found were straightfor-
ward, making it a little challenging to work with initially. The paho−mqtt library, which
we used to create the Android app, presented the same issue. Unfortunately, most of the
available examples only covered the essentials. Because our application was a little more
complex to implement, we needed to take a few more steps to make it work, which re-
quired a lot of trial and error. The tests on real hardware were difficult at times, since the
drone’s hardware can have small problems, such as displaying errors that prevent the
drone from taking off and needing several restarting of the drone’s Flight Controller. As
a result, having multiple drones working simultaneously proved complicated sometimes
when more than one drone was required.

Finally, we believe we addressed the key points. The main goal of creating an ar-
chitecture more independent from the Ground Station was achieved. We were able to
deploy relay drones and make them work even when the connection with the GS was
momentaneously lost. The communication was successfully performed, and the drones
could send messages to each other. Network probes are now integrated with the rest of
the platform, allowing a drone to monitor the connection with other nodes. The Android
module needs testing since it was not validated in a real scenario, only in a simulated
environment.

Although only a few use case scenarios were explored, the work produced here served
as a good starting point for a more decentralized architecture. Now is the time to con-
tinue the work that was started here, refining existing features and introducing new
ones, and expanding the variety of scenarios in which they can be employed.

6.2 Future work

This Dissertation supported the development of drones that are less reliant on the
Ground Station and added new modules. However, many features can be enhanced or
added, such as the following:

• Improve the relay placement algorithm - The developed placement algorithm is

88

very straightforward. However, it is possible to improve and optimize it in the future
by employing more advanced algorithms to find the ideal location for the drone, for
example, by estimating the first drone’s future position based on its direction and
speed.

• Improve the network metrics - Using only the actual Signal value to verify the
network’s conditions did not show to be the most effective way. We should employ
more complex methods in the future, such as generating an average network signal
based on several past measurements and combining it with specialized software
like iperf.

• Add support for several mission drones to have a single relay drone - For the
time being, a relay drone can operate as a relay for a single mission drone. If two
or more mission drones are too far away from the Ground Station but close enough
to each other, a single relay drone can relay to all of them. We could reduce the
number of drones required in real-world circumstances by developing this type of
support.

• Extend the number of use case scenarios - Since this was a starting point, the
relay and the Android scenario were the only ones tested with the new decentral-
ized strategy, with drones solely using telemetry and network data to progress the
mission. More use cases should be explored, such as when a drone uses a spe-
cific type of sensor, such as a temperature sensor, and the data collected from that
sensor influences the flight path of other drones in the fleet.

• Test the Android support in real scenarios - The Android implementation was
evaluated in simulation, but we could not test it in real-world circumstances due
to the limitations stated in Section 5.1.2. To implement this in a real scenario, we
need a method to allow the drone that is performing the rescue mission to have a
connection through ad-hoc (for other drones and the GS) and a second connection
to Android devices.

89

90

References

[1] Ana Silva. “A mission planning framework for fleets of connected drones.” Master’s
thesis. Integrated Masters in Computer and Telematics Engineering - University of
Aveiro, 2021. Available at: http://hdl.handle.net/10773/31385.

[2] Junyan Hu and Alexander Lanzon. “An innovative tri-rotor drone and associated
distributed aerial drone swarm control.” In: Robotics and Autonomous Systems
103 (2018), pages 162–174. ISSN: 0921-8890. DOI: https://doi.org/10.1016/
j.robot.2018.02.019. Available at: https://www.sciencedirect.com/science/
article/pii/S0921889017308163.

[3] David Donald. Encyclopedia of World Aircraft. Prospero Books, 1997, page 854.

[4] Richard J Evans. The Third Reich at War. Penguin Press, 2009.

[5] Priscilla Mary Roberts Spencer C. Tucker. The Encyclopedia of the Arab-Israeli
Conflict: A Political, Social, and Military History: A Political, Social, and Military
History. 2008, pages 1054–55.

[6] Hendrik Bodecker Kay Wackwitz Lukas Schroth. Drone Application Report 2021.
Drone Industry Insights, 2021.

[7] Paolo Tripicchio et al. “Towards Smart Farming and Sustainable Agriculture with
Drones.” In: 2015 International Conference on Intelligent Environments. 2015,
pages 140–143. DOI: 10.1109/IE.2015.29.

[8] Kang Yang, Guang You Yang, and S Isi Huang Fu. “Research of Control System
for Plant Protection UAV Based on Pixhawk.” In: Procedia Computer Science 166
(2020), pages 371–375. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.
procs.2020.02.082.

[9] Khoa Dang Nguyen, Cheolkeun Ha, and Jong Tai Jang. “Development of a New Hy-
brid Drone and Software-in-the-Loop Simulation Using PX4 Code.” In: Intelligent
Computing Theories and Application. Edited by De-Shuang Huang et al. Cham:
Springer International Publishing, 2018, pages 84–93. ISBN: 978-3-319-95930-6.
Available at: https://link.springer.com/chapter/10.1007/978-3-319-95930-
6_9.

[10] Chien-Ming Tseng et al. “Flight Tour Planning with Recharging Optimization for
Battery-operated Autonomous Drones.” In: CoRR abs/1703.10049 (2017). arXiv:
1703.10049. Available at: http://arxiv.org/abs/1703.10049.

91

http://hdl.handle.net/10773/31385
https://doi.org/https://doi.org/10.1016/j.robot.2018.02.019
https://doi.org/https://doi.org/10.1016/j.robot.2018.02.019
https://www.sciencedirect.com/science/article/pii/S0921889017308163
https://www.sciencedirect.com/science/article/pii/S0921889017308163
https://doi.org/10.1109/IE.2015.29
https://doi.org/https://doi.org/10.1016/j.procs.2020.02.082
https://doi.org/https://doi.org/10.1016/j.procs.2020.02.082
https://link.springer.com/chapter/10.1007/978-3-319-95930-6_9
https://link.springer.com/chapter/10.1007/978-3-319-95930-6_9
https://arxiv.org/abs/1703.10049
http://arxiv.org/abs/1703.10049

[11] Fendy Santoso et al. “Robust Hybrid Nonlinear Control Systems for the Dynamics
of a Quadcopter Drone.” In: IEEE Transactions on Systems, Man, and Cybernetics:
Systems 50.8 (2020), pages 3059–3071. DOI: 10.1109/TSMC.2018.2836922.

[12] Felipe Matheus Mota Sousa, Vitória Matos Barbosa Amarante, and Rodolpho Ro-
drigues Fonseca. “Adaptive Fuzzy Feedforward-Feedback Controller Applied to
Level Control in an Experimental Prototype.” In: IFAC-PapersOnLine 52.1 (2019).
12th IFAC Symposium on Dynamics and Control of Process Systems, including
Biosystems DYCOPS 2019, pages 219–224. ISSN: 2405-8963. DOI: https://doi.
org/10.1016/j.ifacol.2019.06.065. Available at: https://www.sciencedirect.
com/science/article/pii/S2405896319301508.

[13] Chao-Yang Lee. “Cooperative Drone Positioning Measuring in Internet-of-Drones.”
In: 2020 IEEE 17th Annual Consumer Communications Networking Conference
(CCNC). 2020, pages 1–3. DOI: 10.1109/CCNC46108.2020.9045111.

[14] Nuno Paula. “Multi-drone control with autonomous mission support.” Master’s the-
sis. Integrated Masters in Computer and Telematics Engineering - University of
Aveiro, 2018. Available at: http://hdl.handle.net/10773/27846.

[15] Nuno Paula et al. “Multi-drone Control with Autonomous Mission Support.” In:
2019 IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). 2019, pages 918–923. DOI: 10.1109/PERCOMW.
2019.8730844.

[16] Juan A. Besada et al. “Drones-as-a-service: A management architecture to provide
mission planning, resource brokerage and operation support for fleets of drones.”
In: 2019 IEEE International Conference on Pervasive Computing and Communi-
cations Workshops (PerCom Workshops). 2019, pages 931–936. DOI: 10.1109/
PERCOMW.2019.8730838.

[17] Shafkat Islam and Abolfazl Razi. “A Path Planning Algorithm for Collective Moni-
toring Using Autonomous Drones.” In: 2019 53rd Annual Conference on Informa-
tion Sciences and Systems (CISS). 2019, pages 1–6. DOI: 10.1109/CISS.2019.
8693023.

[18] Albert Y. Chung, Joon Yeop Lee, and Hwangnam Kim. “Autonomous mission com-
pletion system for disconnected delivery drones in urban area.” In: 2017 IEEE
International Conference on Robotics and Biomimetics (ROBIO). 2017, pages 56–
61. DOI: 10.1109/ROBIO.2017.8324394.

[19] Roberto Pinto et al. “A network design model for a meal delivery service us-
ing drones.” In: International Journal of Logistics Research and Applications 23.4
(2020), pages 354–374. DOI: 10.1080/13675567.2019.1696290. eprint: https:
//doi.org/10.1080/13675567.2019.1696290. Available at: https://doi.org/
10.1080/13675567.2019.1696290.

[20] Theodore Zahariadis et al. “Preventive maintenance of critical infrastructures us-
ing 5G networks amp; drones.” In: 2017 14th IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS). 2017, pages 1–4. DOI:
10.1109/AVSS.2017.8078465.

92

https://doi.org/10.1109/TSMC.2018.2836922
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.06.065
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.06.065
https://www.sciencedirect.com/science/article/pii/S2405896319301508
https://www.sciencedirect.com/science/article/pii/S2405896319301508
https://doi.org/10.1109/CCNC46108.2020.9045111
http://hdl.handle.net/10773/27846
https://doi.org/10.1109/PERCOMW.2019.8730844
https://doi.org/10.1109/PERCOMW.2019.8730844
https://doi.org/10.1109/PERCOMW.2019.8730838
https://doi.org/10.1109/PERCOMW.2019.8730838
https://doi.org/10.1109/CISS.2019.8693023
https://doi.org/10.1109/CISS.2019.8693023
https://doi.org/10.1109/ROBIO.2017.8324394
https://doi.org/10.1080/13675567.2019.1696290
https://doi.org/10.1080/13675567.2019.1696290
https://doi.org/10.1080/13675567.2019.1696290
https://doi.org/10.1080/13675567.2019.1696290
https://doi.org/10.1080/13675567.2019.1696290
https://doi.org/10.1109/AVSS.2017.8078465

[21] Pietro Tosato et al. “An Autonomous Swarm of Drones for Industrial Gas Sens-
ing Applications.” In: 2019 IEEE 20th International Symposium on "A World of
Wireless, Mobile and Multimedia Networks" (WoWMoM). 2019, pages 1–6. DOI:
10.1109/WoWMoM.2019.8793043.

[22] Sven Mayer, Lars Lischke, and Pawel W. Woźniak. “Drones for Search and Rescue.”
In: 1st International Workshop on Human-Drone Interaction. Ecole Nationale de
l’Aviation Civile [ENAC]. Glasgow, United Kingdom, May 2019. Available at: https:
//hal.archives-ouvertes.fr/hal-02128385.

[23] Jiyeon Lee et al. “Constructing a reliable and fast recoverable network for drones.”
In: 2016 IEEE International Conference on Communications (ICC). 2016, pages 1–
6. DOI: 10.1109/ICC.2016.7511317.

[24] Luis Ramos Pinto, Luis Almeida, and Anthony Rowe. “Balancing Packet Delivery
to Improve End-to-End Multi-hop Aerial Video Streaming.” In: Iberian Robotics
conference. Springer. 2017, pages 807–819.

[25] Luis Ramos Pinto, Luis Almeida, and Anthony Rowe. “Demo abstract: Video stream-
ing in multi-hop aerial networks.” In: 2017 16th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks (IPSN). IEEE. 2017, pages 283–
284.

[26] Luis Ramos Pinto and Luis Almeida. “Optimal Relay Network for Aerial Remote
Inspections.” In: (2021). DOI: 10.20944/preprints202112.0037.v1.

93

https://doi.org/10.1109/WoWMoM.2019.8793043
https://hal.archives-ouvertes.fr/hal-02128385
https://hal.archives-ouvertes.fr/hal-02128385
https://doi.org/10.1109/ICC.2016.7511317
https://doi.org/10.20944/preprints202112.0037.v1

94

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Objectives
	Document outline

	Background and Related Work
	Unmanned Aerial Vehicles
	Drone components
	Mission planning and control
	Additional technologies and other tools
	Related Projects
	Summary

	Architecture
	Base architecture
	Drone module
	Ground Station module
	Simulation tool

	Requirements
	Proposed architecture
	Network module
	Android module
	Drone module
	Ground Station module

	Summary

	Implementation
	Modules
	General overview
	Communication between modules
	Network Module
	Android Module
	Drone Module
	Ground Station Module

	Relay
	Modules integration
	Message exchange and format
	Drone performing a mission
	Relay Drone
	Ground Station
	Routing
	Relay summary

	Rescue
	Modules integration
	Android application
	Drone
	Rescue summary

	Summary

	Experiments and Results
	Simulated experiments
	Relay mission
	Android integration

	Experiments in a real environment
	Hardware
	Testing relay with network integration

	Summary

	Conclusion
	Final observations
	Future work

	References

