
Universidade de Aveiro
2021

Pedro David

Lopes Matos

Desenvolvimento de um pipeline para extração e

mapeamento de termos biomédicos

Development of a pipeline for the extraction and

mapping of biomedical terms

Universidade de Aveiro
2021

Pedro David

Lopes Matos

Desenvolvimento de um pipeline para extração e

mapeamento de termos biomédicos

Development of a pipeline for the extraction and

mapping of biomedical terms

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-

tos necessários à obtenção do grau de Mestre em Engenharia Informática, reali-

zada sob a orientação científica do Doutor José Luís Guimarães Oliveira, Professor

catedrático do Departamento de Eletrónica, Telecomunicações e Informática da

Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor Luís Filipe de Seabra Lopes
professor associado da Universidade de Aveiro

vogais / examiners committee Prof. Doutora Paula Alexandra Gomes da Silva
professora auxiliar da Faculdade de Ciências e Tecnologias da Universidade de Coimbra

Prof. Doutor José Luís Guimarães Oliveira
professor catedrático da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Com o terminar de mais uma etapa no meu percurso académico, não o poderia

fazer sem deixar algumas palavras de agradecimento às pessoas que dele fizeram

parte.

Em primeiro lugar, à minha família, em especial aos meus pais e à minha

avó, por estarem presentes e por todo o apoio que me deram durante todos estes

anos e por me terem proporcionado as condições financeiras para poder enriquecer

a minha formação.

Gostaria também de agradecer aos meus amigos e a todos os que tive a

oportunidade de conhecer nos últimos anos por terem sido os pilares de apoio nos

bons e maus instantes e por terem partilhado comigo os momentos de descontração.

Por último, mas não menos importante, ao Professor Doutor José Luís Oli-

veira e ao João Almeida pela excelente orientação e acompanhamento durante o

desenvolvimento desta dissertação.

Palavras Chave Registos eletrónicos de saúde, modelo comum de dados, harmonização de dados,

desenvolvimento de aplicações web

Resumo Desde a sua origem, há algumas décadas, os registos eletrónicos de saúde têm sido

usados para melhorar os processos associados aos cuidados de saúde. Por outro

lado, muito investigadores têm vindo a utilizar este tipo de dados para realizar es-

tudos observacionais, de modo a enriquecer o conhecimento na área, por exemplo,

prevendo se um conjunto de características fisiológicas e/ou genéticas nos torna

mais vulneráveis a determinadas doenças.

Contudo, para que os resultados obtidos nestes estudos sejam considerados rele-

vantes, é necessário recolher e tratar múltiplos dados, recolhidos de diversas fontes,

hospitais ou unidades médicas. Apenas desta forma será possível prevenir o envie-

samento de dados. No entanto, a falta de harmonização de dados e de utilização

de normas entre estes sistemas cria uma barreira durante a condução de estudos

observacionais. Uma possível solução é mapear os termos contidos numa base de

dados de registos médicos para um modelo comum de dados. Este tem sido o ob-

jetivo principal da Observational Health Data Sciences and Informatics (OHDSI),

uma rede internacional de investigadores.

A aplicação Rabbit in a Web, apresentada nesta dissertação, foi desenvolvida para

facilitar o processo de mapeamento, criando um ambiente colaborativo onde vá-

rios utilizadores podem participar na especificação das relações entre os dados.

A aplicação segue um modelo cliente-servidor com uma arquitetura dividida em

três camadas e foca-se sobretudo na usabilidade, criando uma interface visual que

utiliza várias tecnologias web modernas. O servidor foi desenvolvido usando a fra-

mework Spring Boot ao passo que do lado do cliente, foi usado ReactJS para o

frontend da aplicação.

Keywords Electronic health records, common data model, data harmonization, full-stack web

development

Abstract Since its conception, some decades ago, Electronic Health Records (EHRs) have

been used to improve healthcare procedures. On the other hand, many researchers

have been using this data to conduct observational studies in order to enhance the

knowledge in the medical area, predicting whether a set of physiological and/or

genetic characteristics makes us vulnerable to certain diseases.

Nevertheless, it is necessary to collect and process multiple data, collected from

different sources, hospitals, or medical units for the obtained results to be consid-

ered relevant. However, the lack of data harmonization and usage of standards

between these systems creates a barrier when conducting observational studies.

One possible solution is to map the concepts stored in an EHR database to a com-

mon data model. This has been the main objective of the Observational Health

Data Sciences and Informatics (OHDSI), an international network of researchers.

The Rabbit in a Web application, presented in this dissertation, was developed to

ease the mapping process, creating a collaborative environment where several users

can participate in specifying the relationships between data. The application fol-

lows a client-server model with an architecture divided into three layers and focuses

mainly on usability creating a user interface that uses modern web technologies.

The server was developed using the Spring Boot framework while on the client-side,

ReactJS was used for the application’s frontend.

Contents

Contents i

List of Figures iii

List of Tables v

Glossary vii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Outline . 2

2 Background 3

2.1 Electronic Health Records . 3

2.1.1 Specification standards . 4

2.1.2 Semantic standards . 5

2.1.3 Messaging standards . 7

2.1.4 Common Data Model . 8

2.2 Extract-Transform-Load tools . 10

2.3 OHDSI tools . 11

2.3.1 White Rabbit . 12

2.3.2 Rabbit in a Hat . 13

2.4 Web applications and tools . 15

2.4.1 Automatic migration tools . 16

2.4.2 Vaadin . 17

2.4.3 Full-stack app . 18

2.5 Summary . 18

3 Requirements analysis 21

3.1 Functional requirements . 21

i

3.2 Non-functional requirements . 24

3.3 Summary . 25

4 Architecture Proposal 27

4.1 Client-server model . 27

4.2 Server-side components . 29

4.2.1 Database reader . 30

4.2.2 Summary generator . 30

4.2.3 Backend . 32

4.3 Client-side components . 35

4.3.1 Procedure . 36

4.3.2 User . 36

4.3.3 Administration . 37

4.3.4 Controls . 37

4.3.5 Utilities . 37

4.3.6 Communications . 37

4.4 Summary . 38

5 System’s implementation 39

5.1 Technological stack . 39

5.2 Implementation of the server-side . 41

5.2.1 Used technologies . 41

5.2.2 Data model . 43

5.3 Implementation of the client-side . 45

5.4 Deployment . 46

5.5 User interface overview . 49

5.6 Summary . 56

6 Conclusion 57

6.1 Final considerations . 57

6.2 Future work . 58

References 59

Deployment instructions 63

ii

List of Figures

2.1 openEHR standard components and structure [17] . 5

2.2 Knowledge representation in UMLS [23] . 7

2.3 OMOP CDM structure and relations . 10

2.4 White Rabbit application’s UI . 12

2.5 File obtained using White Rabbit (partially) . 13

2.6 Mappings between table from MIMIC-III and OMOP CDM version 5.3.1 according to [34].

Selection of the table observation . 14

2.7 Mappings between fields from the tables noteevents (MIMIC-III) and note (OMOP CDM

v5.3.1). Selection of the field language_concept_id and its concepts. 14

2.8 Rabbit in a Hat running on a web server created by AJAX Swing 16

2.9 Rabbit in a Hat running on a web server created by Webswing 17

3.1 Use cases diagram . 22

4.1 System’s architecture following a 3-tier client-server model 28

4.2 Component diagram of system’s architecture . 29

4.3 Adapter pattern to transform ETL objects . 31

4.4 System’s data pipeline and interaction between applications 32

4.5 Procedure component modules . 33

4.6 Authentication using JWT behaviour . 35

4.7 Client-side component diagram . 36

5.1 Languages and frameworks used in system’s implementation 40

5.2 System’s data model . 44

5.3 VM architecture . 47

5.4 Container architecture . 47

5.5 System’s deployment diagram . 48

5.6 Jenkins pipeline for CI/CD . 49

5.7 Collaborator’s list of ETL procedures . 50

5.8 Possibilities to create ETL procedures . 51

iii

5.9 List of all ETL procedures . 51

5.10 List of users . 52

5.11 Logged user’s profile page . 52

5.12 Administrators visiting other users profiles with different roles 53

5.13 Content displayed when selecting table fact_relationship from the OMOP CDM v5.3.1 . 54

5.14 Mapping between tables chartevents_7 and measurement 55

5.15 Concepts of field note_type_concept_id . 55

5.16 Field mapping selection between fields charttime and note_datetime 56

iv

List of Tables

2.1 AUROC results obtained for the best terminology standard in each task for both prediction

models . 7

v

Glossary

ANSI American National Standards Institute

API Application Programming Interface

AUI Atom Unique Identifier

AUROC Area Under the Receiver Operating Characteristic

CDM Common Data Model

CI/CD Continuous Integration/Continuous Delivery

CRUD Create, Read, Update and Delete

CSS Cascade Style Sheet

CSV Comma Separated Value

CUI Concept Unique Identifier

HL7 FHIR HL7 Fast Healthcare Interoperability Resources

ETL Extract-Transform-Load

EHR Electronic Health Record

EMR Electronic Medical Record

GUI Graphic User Interface

GWT Google Web Toolkit

HL7 Health Level Seven International

HL7 v2 HL7 Version 2

HL7 v3 HL7 Version 3

HTTP Hypertext Transfer Protocol

JVM Java Virtual Machine

JWT JSON Web Token

HTML HyperText Markup Language

ICD International Classification of Diseases

ISO International Organization for Standardization

LOINC Logical Observation Identifiers, Names, and Codes

MPP Massively Parallel Processing

NoSQL Not only SQL

NPM Node Package Manager

OAS OpenAPI Specification

OHDSI Observational Health Data Sciences and Informatics

OMOP CDM Observational Medical Outcomes Partnership CDM

OS Operating System

PHR Patient Health Record

POM Project Object Model

RBAC Role-Based Access Control

RDBMS Relational Database Management System

RIM HL7 Reference Information Model

RNN Recurrent Neural Network

SDO Standard Development Organization

vii

SNOMED CT Systematized Nomenclature of Medicine Clinical Terms

SQL Structured Query Language

VM Virtual Machine

UI User Interface

UMLS United Medical Language System

viii

CHAPTER 1
Introduction

1.1 Motivation

The Electronic Health Records (EHRs) have been used in hospitals and medical units

since a few decades ago to improve the quality of healthcare provided to patients [1]. However,

each one of these institutions uses a data model that is different from others, and the records,

which are usually plain text, don’t follow a terminology or classification system to represent

data. This lack of standardization and data harmonization reduces interoperability between

EHR systems and makes the comparison of the results difficult [2].

Common Data Models (CDMs), namely the Observational Medical Outcomes Partnership

CDM (OMOP CDM), allow mapping medical concepts stored in EHR databases to their

standard definition. This way is possible to use data from multiple sources in order to improve

the quality of obtained results and to mitigate the risk of biased results [3]. However, the

mapping process is lingering mainly because of the lack of data harmonization described

above.

The desktop application Rabbit in a Hat was designed to help in the process: it allows

to dynamically create mappings between tables and fields (or columns) from both databases

and provides detailed information to create correct mappings. The lack of a collaborative

environment that would allow specialists to work simultaneously from different locations and

other usability issues make this application quite unusable.

Possible solutions to implement the collaborative features and to solve the usability issues

is to adapt Rabbit in a Hat into a web application so that multiple users could use it in

different locations.

This dissertation proposes to create a pipeline to migrate data from an EHR database

to the OMOP CDM which includes the integration of the web application with an Extract-

Transform-Load (ETL) tool.

1

1.2 Objectives

The dissertation aims to create a web application capable of mapping medical concepts

stored in an EHR database to their standard definiton in the OMOP CDM. The application

should follow a client-server model with modular components. Furthermore, features must

be implemented to achieve a collaborative environment. Finally, the application needs to be

integrated with an ETL tool to migrate data from one database to another.

Following a top-down approach, it is necessary to follow the next steps:

• Study the importance of interoperability in EHR systems and how standards can be

used to improve it.

• Analyse ETL tools and explore the desktop application Rabbit in a Hat to understand

its strengths and limitations. It was possible to conclude that it was necessary to adapt

it into a web application.

• Analyze different approaches to understand how the adaptation process could be con-

ducted. The best solution is to create a web application following a client-server model.

• Define the system’s requirements as well as its architecture.

• System development using proper languages and frameworks.

1.3 Outline

The remaining chapters of this dissertation follow the structure described below:

Chapter 2 describes the state-of-art of mechanisms to improve interoperability between

EHR systems. The dissertation’s goal only considers the OMOP CDM, but it was essential to

understand the usage of standards in other levels. It also presents a description of the most

relevant ETL tools and other approaches that could be followed.

Chapter 3 aims to define the system’s functional requirements describing the existing

actors and possible use cases. It also specifies which quality attributes are desired to achieve.

Chapter 4 presents the system’s architecture and its division into three tiers with multiple

layers and modules. It provides a theoretical description of each module and its responsibilities

following a technology-free approach.

On the other hand, chapter 5 studies the system’s implementation, discussing the used

frameworks and why possible alternatives were not chosen.

2

CHAPTER 2
Background

This chapter aims to describe the reasons that lead to the lack of interoperability and

data harmonization between EHR systems and presents solutions to mitigate this problem

on multiple levels, from the record itself until the communication between systems. It also

provides an overview of the current best ETL frameworks, discussing the advantages and

disadvantages of each one considering the needs of this project.

Finally, it presents the desktop applications White Rabbit and Rabbit in a Hat, detailing

different methodologies to migrate the last into a web environment where it could be accessible

through a web browser.

2.1 Electronic Health Records

An EHR is, according to its International Organization for Standardization (ISO) definition,

"an official repository of information that keeps track of all health status and treatments that

a patient has been submitted to" [4]. In other words, it is an electronic version of a patient’s

medical information and includes their medical history, personal information or test results,

and administrative clinical data [1], [5].

The EHRs have replaced the traditional paper forms, which usually include redundancy

and typically don’t use standardized terminology. Besides, they fail to deliver accurate data,

and the documentation is generally incomplete [6].

Electronic Medical Records (EMRs), Patient Health Records (PHRs), and EHRs have

been used almost as synonyms. However, they differ in the target users and in who maintains

them. EMRs are only used by healthcare providers, and PHRs are exclusively used by patients.

EHRs are used by both groups but maintained only by the patients [7].

These health records are patient-centered, and the primary goal of their usage is to provide

better medical quality to patients and improve the population’s health [8]. Patient information

retrieval is faster and more secure, increasing the quality of care and productivity. It is also

possible to access and manage a broader range of data, including demographic information [1].

3

The EHRs can also be used secondarily by researchers to conduct observational studies to

improve our knowledge in the medical area. These studies analyze the cause-effect relationship

of procedures or treatments to a risk factor in subjects that select their treatment environment.

The main difference from experimental studies is the absence of control and test groups and,

therefore, who and who are not submitted to the procedure or treatment [9].

Yang et al. used EHRs to build a Poisson model in order to discover patterns that would

predict the number of Angioplasty, a coronary artery procedure. The goal of this research

was to provide better estimations on coronary artery disease [10]. Another way of improving

medical quality with health data is by providing more adequate medical prescriptions to

patients. Electronic prescriptions (E-prescriptions) systems, such as E-Prescribing1, use EHRs

and share the information to provide more appropriate drug prescriptions, helping in the

decision making and reducing the risks that could occur in the traditional paper prescription.

The observational studies have greater timeliness and generalizability; however, using

data from a small number of sources could lead to biased results. To mitigate this problem

is essential to increase the number of data sources from different medical units or hospitals.

Only with a more significant data set with more patients’ data, it is possible to contrast the

obtained results and understand the effect of potential capture bias [11].

However, EHR data and systems have the disadvantage of lack of interoperability, i.e.,

don’t have the “ability (...) to work with other systems or products without special effort

on the part of the customer” [12]. Furthermore, some records consist of unstructured text

and don’t use standards to define codes, classifications, or nomenclatures [13]. This lack

of standardization reduces data quality and hinders results comparison [2], [11]. Improving

interoperability is essential to increase efficiency by providing information more quickly, which

helps in the decision-making process [14].

The following sections will present mechanisms that can be used to increase interoperability

in various levels of a healthcare information system.

2.1.1 Specification standards

The EHRs collected from different sources might have different structures, which decreases

interoperability. Standards that create and manage health data with the same structure can

be used to mitigate this problem.

A standard is a document approved by a recognized entity that provides guidelines or

rules for repeated use. The advantages that using standards can bring are flexibility and risk

and cost reduction. The larger the number of databases or systems used, the greater the

benefits that can be achieved [14].

Open-source standards increase interoperability and reduce the impact on the production

of valuable knowledge for clinical decisions. The openEHR2, developed by the openEHR

Foundation, is an example of an open-source standard created to grant interoperability between

1https://www.practiceehr.com/features/e-prescribing
2https://www.openehr.org/

4

https://www.practiceehr.com/features/e-prescribing
https://www.openehr.org/

systems and is used to store, manage, and run queries on EHRs [15]. Due to its free access,

professionals without medical experience can contribute to the modeling and structuring of

forms [16].

Figure 2.1 represents the composition of the openEHR standard and how data is structured.

The model is mainly composed of two of the components presented in the figure: the reference

model and the archetypes. This two-level modeling allows the separation of representation of

EHR instances from the domain knowledge, enabling semantic interoperability.

Figure 2.1: openEHR standard components and structure [17]

The first level, the reference model, defines the necessary structures and attributes

to represent an EHR. On the other hand, the second level focuses on archetypes and

templates and holds the medical knowledge. An archetype represents medical concepts that

are structured following a meta-standard, the Archetype Definition Language, improving

semantic interoperability [18]. Since archetypes use the same structure, it is possible to reuse

them, which promotes reusability. Therefore, the openEHR Foundation provides a free access

repository, the Clinical Knowledge Management3, to store and manage the archetypes and

templates. A template collects and restrains archetypes and is used to create Application

Programming Interfaces (APIs) and user interface forms.

Other advantages of the OpenEHR are its easy-to-use interface and database schema that

provides critical information to users [5].

OpenEHR is independent of the clinical terminology standard adopted and allows to

conceptualize every clinical concept. However, it is still possible to use other terminology

standards, such as the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT)

or the Logical Observation Identifiers, Names, and Codes (LOINC), in the archetypes [19].

2.1.2 Semantic standards

Besides using standards to define the EHR structure, it is possible to increase the interop-

erability of systems by adopting semantic and terminology standards.

3https://ckm.openehr.org/ckm/

5

 https://ckm.openehr.org/ckm/

Only a few decades ago clinical terms started being organized which led to ambiguity and

lack of maintainability in information systems. A terminology standard allows creating codes

for clinical terms and to more easily create relations between them [14].

The SNOMED CT4 is a multilingual clinical healthcare terminology and is one of the

most adopted in the world. It is used to ease clinical documentation and analyze data more

efficiently [14]. It was released in 2002 and in 2018 consisted of more than 341000 active

concepts [20].

More than a coding scheme that allows identifying medical concepts and terms, it is also

a multi-dimension classification, enabling relations between concepts. This coding system is

better than others for two main reasons: it supports multiple relationships and is virtually

future-proof since concepts, terms, their respective codes, and relations can be changed.

The International Classification of Diseases (ICD)5 is another semantic standard similar

to SNOMED CT and it is used worldwide. It was created in 1900 and is currently maintained

by the World Health Organization. A new revision is released with more data almost every

decade and is currently on the 11th revision [21].

Another way of increasing interoperability with semantic standards is by using repositories

of clinical terminologies. The United Medical Language System (UMLS)6 is an example of a

repository of vocabularies and contains mappings to almost all clinical terminologies [22].

It is composed of 4.26 million concepts and more than 10 million relationships between

terms. It uses approximately 15.2 million terms from 211 vocabularies, including SNOMED CT

and ICD [23].

The existence of multiple names to express the same concept among terminologies and

the lack of a unique format to represent them create a barrier in information retrieval. The

UMLS solves this issue by mapping various names from different clinical terminologies into a

single concept.

The UMLS is composed of the Semantic Network containing semantic types and relations

and the SPECIALIST Lexicon and Lexical Tools. However, its main component is the

Metathesaurus which includes terms and codes from other terminology standards.

The entity that structures knowledge is called concept and is identified by a Concept

Unique Identifier (CUI), name, one or more semantic types, and other attributes. Terms

from clinical terminologies, e.g., atrial fibrillation, are mapped into a single concept and are

denominated as atoms. They are composed of an Atom Unique Identifier (AUI) given by the

UMLS, a code that identifies the standard where it comes from, and a name [23]. Figure 2.2

is a schematic representation of the information in this standard.

4https://www.snomed.org/snomed-ct/get-snomed
5https://www.who.int/standards/classifications/classification-of-diseases
6https://www.nlm.nih.gov/research/umls/index.html

6

https://www.snomed.org/snomed-ct/get-snomed
https://www.who.int/standards/classifications/classification-of-diseases
https://www.nlm.nih.gov/research/umls/index.html

Figure 2.2: Knowledge representation in UMLS [23]

Rasmy et al. studied the impact of the terminology standard in two prediction tasks [24].

They used data from 5 different standards, including the UMLS and the 9th and 10th revision

of the ICD, to create an L2LR and Recurrent Neural Network (RNN) prediction models. The

tasks consisted of predicting heart failure caused by diabetes and the occurrence of pancreatic

cancer.

The L2LR model presented the best results when using the UMLS in both tasks considering

the Area Under the Receiver Operating Characteristic (AUROC) metric. On the other hand,

with the RNN model, the UMLS was better in predicting the occurrence of pancreatic cancer;

PheWAS obtained better results for the heart failure task. Table 2.1 presents the best models

in each task using the AUROC metric to compare results.

Table 2.1: AUROC results obtained for the best terminology standard in each task for both prediction
models

Heart failure task Pancreatic cancer task

L2LR model
UMLS
(81.15)

UMLS
(80.53)

RNN model
PheWAS
(85.87)

UMLS
(82.24)

The good results obtained with the UMLS terminology can be explained by its higher

number of codes and better semantic consistency and hierarchical relations. Furthermore, it

has other advantages, such as changing tables and updating or adding new concepts [25].

2.1.3 Messaging standards

Health Level Seven International (HL7)7 is an international Standard Development Or-

ganization (SDO) affiliated with the American National Standards Institute (ANSI) that

produces standards to exchange EHR data for clinical and administrative purposes [14]. HL7

7https://www.hl7.org

7

https://www.hl7.org

also delivers electronic documents structure and content standards, but this section focuses

on the messaging standards [26].

The first messaging standard developed by HL7 and the most used globally is HL7 Version

2 (HL7 v2)8. Created in 1989 following an ad hoc approach, its main feature is integrating

hospital systems, including administrative and clinical systems. One of the reasons for its

success is because it is based on a few and simple principles. However, the lack of an ontology

that could control the communicated concepts and the heavy reliance on local customizations

led to the development of a new messaging standard, HL7 Version 3 (HL7 v3)9.

The third version started being developed in 1995, and unlike the previous version, it

followed a top-bottom approach. It introduced the HL7 Reference Information Model (RIM),

which defined the structure of the semantic and lexical elements, despite not being considered

a model of healthcare data nor a model of any message. However, this standard requires the

development of other software systems that can include complex model transformations since

it is not directly implementable. Furthermore, HL7 v2 and HL7 v3 are not interoperable, and

translation software is necessary to exchange data. Its syntactic complexity and the issues

that arose from it were an opportunity to create a new messaging standard, HL7 Version 4 or

HL7 Fast Healthcare Interoperability Resources (HL7 FHIR)10.

This standard, on the other hand, was developed considering the advantages and disad-

vantages of existing standards and the examples of interoperability that were successfully

implemented. The top-bottom approach followed in developing the HL7 v3 was one of its

disadvantages; therefore, HL7 FHIR uses an iterative approach. It is a RESTful API that

provides Hypertext Transfer Protocol (HTTP) services capable of performing basic Create,

Read, Update and Delete (CRUD) operations in EHR data. The healthcare data is captured

and shared as a modular data unit called resource. They are distinct and identifiable, have

a well-defined boundary, and differ from each other in usage and meaning. Besides, the

HL7 FHIR extensions allow extending these resources to meet new requirements [23].

This version of the standard is easy to implement, and its applications are rapidly deployed

and can be used with a semantic standard, such as SNOMED CT. The HL7 FHIR defines

how EHR data is communicated, and a semantic standard defines the nomenclature that must

be followed, increasing the interoperability between systems.

2.1.4 Common Data Model

The EHRs can be used in observational studies, but to reduce the risk of obtaining biased

results it is important to use multiple sources and databases. However, each one has its data

model and uses local terminologies which results in a lack of interoperability. A solution to

this problem is to migrate data to a CDM.

This concept is used in a wide range of areas, and it can be defined as a set of schemes

that allows the storage of data from different sources with different data models in a standard

8https://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
9https://www.hl7.org/implement/standards/product_brief.cfm?product_id=186

10https://www.hl7.org/fhir/

8

https://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
https://www.hl7.org/implement/standards/product_brief.cfm?product_id=186
https://www.hl7.org/fhir/

data model. The utilization of a CDM is especially important when an observational study

is being conducted because it allows harmonizing data from various sources of information.

Only analyzing data from a large number of patients and disparate sources is possible to

contrast the obtained results in order to understand the effect of potential capture bias and

to draw conclusions with statistical value [3].

Moreover, when EHR systems are being used, it is important to carefully handle the

patient’s private information. A CDM alleviates these restrictions because it omits the

extraction step, and the data analysis is executed in its native environment.

Data migration into a CDM allows to write and test the analyses only once and then run

them on the databases with slight modifications [11]. The most difficult task in the mapping

procedure is in the initial phases when the local codes are being mapped to their respective

standard concepts in the CDM which require specific knowledge of the local information

stored in each EHR database.

However, it is important to note that the data stored in each database will not be migrated

to a single CDM database instance. In fact, for each database, it will be used an instance of

the CDM to migrate data.

Over the last years, organizations invested to create their own CDM with the same

purpose of storing EHR data from various systems. One example is the Sentinel Common

Data Model11 created by Sentinel Operations Center. Similarly, the OMOP CDM, adopted

by the Observational Health Data Sciences and Informatics (OHDSI)12, has been used with

the final goal of producing a better analysis of the data collected from different sources using

standard vocabularies to store data. Its primary goal is to produce statistical analysis code

once and re-use it at the other sources and it was designed considering four observational

research purposes:

• To identify groups of patients with healthcare interventions and outcomes.

• To characterize these groups for various parameters such as demographic information or

healthcare delivery.

• To predict the occurrence of the outcomes in individual patients.

• To estimate the effect that the interventions have on a population.

The OMOP CDM has changed and evolved and is currently in version 6.0. Figure 2.3

represents an overview of tables and some of the relationships between them.

The data model is divided into various areas:

• Standardized clinical data - data about clinical events collected in observation

periods and personal information about the patient, such as procedures.

• Standardized health system data – information about the healthcare provider.

• Standardized derived elements – data extracted from other tables including ag-

gregation in periods, denominated here as “eras,” of condition, drugs, and condition

occurrence.

11https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model
12https://www.ohdsi.org/

9

https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model
https://www.ohdsi.org/

Figure 2.3: OMOP CDM structure and relations

• Standardized health economics – information about the health plan, costs of

patients.

• Standardized metadata – general metadata derived from the stored data during the

ETL process.

• Standardized vocabularies – information about concepts that are used in fact tables,

including its domain and class [27].

The focus of this dissertation is to create a pipeline to migrate data from EHR databases

to the OMOP CDM. It is important to understand how interoperability in EHR systems can

be achieved, but it is also essential to understand how data migration is executed and what

are the best frameworks to do that. In the next section, it will be presented the concept of

ETL and discussed which tools are better for that end.

2.2 Extract-Transform-Load tools

The ETL process consists of storing data that comes from disparate sources into a data

warehouse or database. This data must be transformed to be represented in the desired

state [28]. This procedure has three steps:

• Extraction - where data is analyzed and collected from sources that can be databases,

files, or applications.

10

• Transform - can include correction and cleansing of data, removing incorrect or

duplicate data, and fixing errors; the main goal is to change collected data so it can fit

into the desired format.

• Loading - transformed data is stored into a database or a multidimensional structure [29].

The most complete ETL tools and those that satisfy more needs are Oracle Data Integra-

tor13 and IBM Information Server14; however, they are not open-source. From the tools with

free access, the ones that are considered the best are Pentaho Data Integration15 and Talend

Open Studio16 [28].

Most of these tools allow parallelization to obtain gains in perfomance [30]. Other

advantages provided by ETL tools are the control of metadata, retrieval of statistics, data

profiling and high-quality management, and cleansing [31].

The Pentaho Data Integration possesses a Massively Parallel Processing (MPP) system that

uses internal and external memory and databases and, therefore, increases the performance.

Nevertheless, one of its major disadvantages is the lack of a mechanism that allows recognizing

the data that is changed during the extraction and transformation steps.

OHDSI developed a desktop application, Rabbit in a Hat17, that is based on the same

principles of the ETL process. It allows mapping tables and fields of an EHR database to

tables and fields of the OMOP CDM, respectively. ETL tools could be integrated with this

application to migrate the data, however, some of its features create usability issues and

reduce the potential that it could achieve.

2.3 OHDSI tools

OHDSI is an international network of researchers whose main goal is to increase the

population’s health using health data [32]. They are responsible for the development of some

desktop applications, namely Rabbit in a Hat and White Rabbit18, that typically operate

over EHR databases, and the data contained in them.

Rabbit in a Hat, as said before, allows performing the mapping of concepts stored in an

EHR database to their standard definition in the OMOP CDM. However, the files containing

the information about the database must be generated using the White Rabbit.

The following sections will detail the functioning of these two applications, discussing their

main goal and why they are important in the scope of this project.

13https://www.oracle.com/middleware/technologies/data-integrator.html
14https://www.ibm.com/products/information-server-for-data-integration
15https://help.pentaho.com/Documentation/9.1/Products/Pentaho_Data_Integration
16https://www.talend.com/products/talend-open-studio/
17http://ohdsi.github.io/WhiteRabbit/RabbitInAHat.html
18http://ohdsi.github.io/WhiteRabbit/WhiteRabbit.html

11

https://www.oracle.com/middleware/technologies/data-integrator.html
https://www.ibm.com/products/information-server-for-data-integration
https://help.pentaho.com/Documentation/9.1/Products/Pentaho_Data_Integration
https://www.talend.com/products/talend-open-studio/
http://ohdsi.github.io/WhiteRabbit/RabbitInAHat.html
http://ohdsi.github.io/WhiteRabbit/WhiteRabbit.html

2.3.1 White Rabbit

White Rabbit is a desktop application developed with Java and using the toolkit Swing to

prepare the ETL process [33]. It is responsible for reading the structure of an EHR database

and creating a file with it.

The structure can be contained in SAS or delimited text files, but the application can also

access the database and directly makes the structure reading and subsequently write it into

the file.

It is possible to use multiple Relational Database Management System (RDBMS), including

PostgreSQL, MySQL, or Redshift and the obtained file is an XLSX file where each page

represents a table and, for each one, the lines represent the columns of the table and some

of its attributes, such as the data type, if it is nullable and the table it belongs to. Figure

2.4 represents the application’s User Interface (UI) where it is possible to configure the data

source.

Figure 2.4: White Rabbit application’s UI

After the configuration, it is possible to select the tables that should be considered in

the file and define some parameters, namely the number of rows that must be read for each

table. This is important because it gives an idea of the number of empty columns or rows

or the maximum length of some columns. Figure 2.5 is a portion of the obtained result. It

represents only the data stored on the table chartevents_7 when the database is created but

not populated, i.e., the tables are completely empty.

12

Figure 2.5: File obtained using White Rabbit (partially)

2.3.2 Rabbit in a Hat

Various CDMs were designed to receive the migrated data from EHR databases mapping

the medical concepts to their standard definition. However, the mapping procedure is a task

that can take months to be executed and includes research and the presence of specialists on

both databases. Ideally, it should be made in a collaborative environment and using tools

that would allow the specialist to work in different locations.

The desktop application Rabbit in a Hat is a Java Swing application developed by OHDSI

to ease the mapping procedure between an EHR database and the OMOP CDM. A table

from the EHR database is mapped to an OMOP CDM table creating a table mapping. Then,

for each one is possible to map fields from the table of the EHR database to the fields of the

OMOP CDM table, creating a field mapping.

The application’s UI is very intuitive and designed to help users to create the most

correct mappings providing details about tables - their columns and respective data type and

description - whenever needed. The information about the EHR database is given by a file

that is generated using White Rabbit. The version of the OMOP CDM is variable and is

possible to choose between version 4.0 and version 6.0. Then, using drag and drop is possible

to create table and field mappings. The output obtained is a summary file with the logic

behind each mapping that is used by specialists to create scripts to migrate data. Figures

2.6 and 2.7 present Rabbit in a Hat’s UI when creating mappings between tables and fields,

respectively.

13

Figure 2.6: Mappings between table from MIMIC-III and OMOP CDM version 5.3.1 according
to [34]. Selection of the table observation

Figure 2.7: Mappings between fields from the tables noteevents (MIMIC-III) and note (OMOP CDM
v5.3.1). Selection of the field language_concept_id and its concepts.

This tool can be useful, especially in the early stages of the mapping procedure when

the knowledge about the databases is still not sufficient to create the most correct mappings.

Rabbit in a Hat provides visual information about the databases’ tables and fields and its UI

is intuitive and easy to use which facilitates the procedure.

However, desktop applications are developed under a set of specific characteristics which

makes it impossible or hard to use in a heterogeneous environment where each user has a

14

machine with different specifications. Another disadvantage inherent to desktop applications

is that a collaborative environment is impossible to adopt if the users are working in different

locations which is normal during the mapping procedure.

Specifically, Rabbit in a Hat, besides the problems related to desktop applications, is also

very restrictive because it only allows using the OMOP CDM, even if it is possible to use its

various versions. Another disadvantage is the result obtained: the summary file only contains

the documentation for the mappings that were made, the Structured Query Language (SQL)

instructions to migrate the data from an EHR database to the CDM database must be written

by a programmer.

Moreover, writing the SQL instructions to make the ETL procedure also brings some

disadvantages that could be mitigated using proper tools. These instructions usually are

executed in a single-threaded environment which results in a worse performance [30].

One of the main disadvantages is the lack of a collaborative environment. A possible

solution for this problem is following a web-based approach, migrating the existing desktop

application into a web server, or creating a new web application. In the next section, it will

be discussed which alternative is better, presenting some tools and the obtained results.

2.4 Web applications and tools

Web applications are applications with a Graphic User Interface (GUI) that can be accessed

using a web browser. In the specific case of Rabbit in a Hat, using it as a web application

helps to adopt a collaborative environment where specialists could work in different locations

simultaneously. Another advantage of web applications over desktop applications is that

software and hardware limitations are fewer, any user can access the application independently

of the operating system or the hardware specifications of the machine that is used.

There are multiple approaches to transform Rabbit in a Hat into a web application,

including:

• Migrate to a web server - using automatic migration tools that use the original

application and deploy it in a web server. The UI is equal to the original but only

accessible through a web browser.

• Adapt the UI - using frameworks, namely Vaadin19, to create a GUI in Java similar

to the original so that browsers could interpret it. The remaining code could be reused.

• Create a new web application - creating a web application following a client-server

architecture and using proper frameworks. It is possible to use some of the code.

The next subsections will present these approaches and some of the tools used, discussing

the results obtained using some of them.

19https://vaadin.com

15

https://vaadin.com

2.4.1 Automatic migration tools

A desktop application can be migrated to a web environment using tools that automatically

launch a web server and execute the application on that server. This solution does not need a

reverse engineering process to adapt the original application to the new environment.

For applications developed in Java Swing, these tools create a Java Virtual Machine (JVM)

that is shared between the processes and limits the resources that are being spent. The GUI is

presented to the user by transforming Java code into HyperText Markup Language (HTML)

elements. However, when more complex libraries are used this process becomes less efficient

and some elements are wrongly rendered. Despite reusing totally or partially the code already

developed, the results obtained can be lower than expected [35].

AJAX Swing20 and Webswing21 are both automatic migration tools that were used in the

first instance to understand if this approach was the best one to follow. The obtained results

are presented in figures 2.8 and 2.9, respectively.

Figure 2.8: Rabbit in a Hat running on a web server created by AJAX Swing

20http://www.creamtec.com/products/ajaxswing/
21https://www.webswing.org/

16

http://www.creamtec.com/products/ajaxswing/
https://www.webswing.org/

Figure 2.9: Rabbit in a Hat running on a web server created by Webswing

As observed, the GUI obtained when using AJAX Swing (Figure 2.8) lacks some elements:

arrows that connect tables or fields are not correctly rendered and borders are not present in

the final result. On the other hand, Webswing (Figure 2.9), which is a more powerful and

complete tool, provides a GUI very identical to the original. However, in both situations, a

usability issue comes up: there is a window inside the browser due to the code that is reused.

Another problem that emerges when the code is totally reused is that each time a user

accesses the GUI, a new process is launched deleting the previous one and the data stored in

it. Therefore, it is only possible to have a single mapping session simultaneously making it

impossible to work in a collaborative environment.

The study of these tools was important to consider if it was worthy to try to adapt the

original code in order to implement collaborative features. It was possible to conclude that

the best approach was to create a new web application using some of the code but creating a

new GUI. Since the code is developed in Java, it was firstly used Vaadin which is a framework

to develop full-stack applications entirely in Java.

2.4.2 Vaadin

Vaadin is a framework that allows the development of a full-stack web application using

Java, transforming Java objects into TypeScript objects that would be rendered as HTML

elements, making it possible to show them on a web browser.

It is composed of many UI components based in the Google Web Toolkit (GWT) resulting

in the same output independently of the platform used. Furthermore, it is possible to receive

requests from the browser and render the response in it using a “terminal adapter” [36]. It

allows integration with database systems to store data and the usage of Java classes allows

the abstraction of the database structure in the "domain layer" [37].

17

Since Vaadin only uses Java to create both the backend and the frontend, it is possible to

reuse the code that makes the management of the mappings between tables and fields. The

code of the GUI must be adapted to respect this framework’s semantics. Besides reusability,

another advantage is the easy integration of Cascade Style Sheet (CSS) in the Java code.

However, events such as drag and drop or mouse-click are not very well supported and

JavaScript libraries that would help in some features do not exist for this framework or are

difficult to integrate with it. Therefore, some features are almost impossible to develop.

The results obtained using Vaadin allows us to conclude that a new approach must be

followed. The proposal is to develop a new web application using proper languages and tools

and more decentralized.

2.4.3 Full-stack app

The final approach adopted and the most classic is the development of a full-stack web

application with the frontend separated from the data layer by a services layer, following a

client-server approach. Since the components are separated, it is possible to develop each one

using proper tools or languages.

In this case, to develop the frontend, it was used ReactJS22 which is a JavaScript framework,

and its main characteristic is the component-based architecture. This allows the development

of reusable modular components. Angular was also considered but it is a more complete

framework and, therefore, heavier. Besides, it is less modular than ReactJS which is the main

reason why the last was chosen.

As said before, the frontend and the data storage are separated by a processing layer

that provides services consumed by the frontend. This intermediary layer was developed

using Spring Boot23, a framework that is used to build Spring applications using Java. The

development of the API in Java was a crucial aspect to reuse as much code as possible from the

OHDSI applications. This approach is the one that was followed to develop the application,

that was denominated Rabbit in a Web, and to solve the dissertation’s proposal.

2.5 Summary

This chapter started by addressing the problem of the lack of interoperability between

EHR systems and databases while presenting standards and other tools, namely CDMs, to

mitigate it. Multiple standards were discussed, including openEHR, UMLS, or HL7 FHIR,

but the focus was on the OMOP CDM since the dissertation’s goal is to migrate data from

EHR databases to it.

The concept of ETL was studied and some frameworks were presented but OHDSI’s

Rabbit in a Hat was discussed in more detail since it is the only application that, despite not

being an ETL framework, allows to map data from an EHR database into the OMOP CDM.

22https://reactjs.org/
23https://spring.io/projects/spring-boot

18

https://reactjs.org/
https://spring.io/projects/spring-boot

Its usability issues and the lack of a collaborative environment were presented as the main

reasons why it was important to migrate the application into a web environment. Different

approaches were studied and followed, and it was possible to conclude that the best one was

to create a new web application, more decentralized, based on a client-server model where

adequate frameworks and languages must be used on each side of the model.

The next chapters detail the system’s specifications, providing a list of well-defined

functional and non-functional requirements, and presenting the proposed architecture.

19

CHAPTER 3
Requirements analysis

The previous chapter analyzed the desktop application Rabbit in a Hat and its disadvan-

tages, namely its usability issues and lack of collaborative features. Three approaches were

followed to understand how to overcome these problems. It was possible to conclude that

automatic migration tools and the Java frameworks to create GUIs for web applications were

not viable. They would reuse all or most of the existing code, but the major issues would

remain.

The development of a new web application using proper frameworks and languages seems

to be the best approach to follow. This chapter details the developed solution’s functional

and non-functional requirements.

This chapters aims to define the system’s scope, providing a list of functional requirements.

It also discusses the quality attributes and non-functional requirments that must be achieved.

3.1 Functional requirements

While exploring the Rabbit in a Hat desktop application and with the opinions of some

of its users, it was possible to conclude that some implemented features needed alterations.

Moreover, in order to achieve a collaborative environment, it was mandatory to develop new

ones. Therefore, some functional requirements have been defined to meet users’ needs.

The functional requirements define the system’s behaviour, i.e., what it should do to

respond to the inputs [38]. However, some of the actions are not available to all end users. The

system will be used by two different groups of users, actors. Each one will have a well-defined

role and a set of available features. These actors are defined as:

• Collaborator – Has permissions to create and edit ETL procedures. Can access other

users’ profiles and invite them to or remove them from procedures. Doesn’t have

privileges to manage users in the system.

21

• Administrator - Entity that moderates the application. Has total control over ETL

procedures and user management. It is a special kind of collaborator, so has access to

the same set of operations as they do.

Figure 3.1 is a simple use case diagram representing the most critical use cases and their

relations with the actors. The diagram is divided into two areas:

• Users management – Use cases that involve the creation and management of user

accounts in the system.

• ETL procedures management – Considers the use cases that involve ETL procedures

and the operations that users can perform within them.

Figure 3.1: Use cases diagram

22

The use cases represented above can be described as:

• Sign up and log in – Users must create an account or log in into the system to access

the remaining features. At the moment of registration, the user is given the role of

collaborator.

• Give privileges to collaborators – Administrators can change the users’ roles in the

system, giving privileges to collaborators, transforming them into administrators. On

the other hand, they can not remove privileges from any actor.

• Edit user account - Both administrators and collaborators can edit their own profile.

The possible operations include changing username and e-mail.

• Delete collaborator account – Administrators can only delete collaborator’s accounts.

It is not possible to delete accounts from other administrators and collaborators cannot

remove any kind of account. Deleting its own account is also not possible.

• Create ETL procedures – Collaborators and administrators are allowed to create

ETL procedures by using two methods: using the database scan file provided by White

Rabbit or using a procedure’s summary file created and supplied by the system. The

database scan file method creates a procedure that only contains information about

tables and fields; the summary file option also contains the information about both

databases but might include mappings between tables and fields.

• Manage collaborators in ETL procedures – Administrators and collaborators with

access to a procedure can invite other users or remove them from the procedure’s list

of collaborators. However, it is not possible to remove themselves to avoid situations

where a procedure does not have collaborators with access to it.

• Edit ETL procedure – users with access to a procedure or administrators can edit

them. The operations available are:

– Change the ETL procedure’s name.

– Change the EHR database name.

– Change the OMOP CDM version.

– Change comment of tables and fields from both databases.

– Create and remove mappings that connect a table from the EHR database and

another from the OMOP CDM database, change their completion status and logic.

– Inside a mapping that connects tables, create and remove mappings between the

fields from both tables following the same logic: a field from the EHR side connects

to another from the OMOP CDM side and change the field mapping’s logic.

• Download summary files – Summary files are generated as the output of the system

to users. They contain information about a procedure from different perspectives and it

is possible to create different types of files, including:

– Files for each database that include a list of their fields and additional information

for each one, namely the comment, the table it belongs to, and the field mappings

connected to it.

23

– Summary file for table mappings that shows for each table from the EHR database,

which tables from the OMOP CDM it is connected to and respective logic and

field mappings.

• Save ETL procedure into file – Collaborators and administrators can save a procedure

into a file. This file includes all alterations that have been made since its creation and

can be used to create a new procedure.

• Mark an ETL procedure as deleted – Collaborators can delete a procedure. However,

it is not removed from the system; it remains persisted but not visible to the collaborators

that had access to it, only to administrators.

• Mark an ETL procedure as not deleted – Administrators have access to all

procedures, even those that have been marked as deleted by their collaborators. They

can also change their deletion state, making them accessible again to the collaborators

that previously had access to it.

• Delete an ETL procedure – Administrators can remove a procedure from the system,

deleting it entirely. This operation can be applied to all procedures, independently of

their deletion state. Moreover, it is an irreversible action, hence only administrators can

perform it.

3.2 Non-functional requirements

Functional requirements specify what the system should do. On the other hand, non-

functional requirements, or quality attributes, define how it should perform the features; they

are measurable properties that define how well the system satisfies the users’ needs [38].

The application was developed to achieve some quality attributes, namely maintainability,

usability, performance, and modularity. Below, some requirements that were considered to

achieve them are described:

• Usability - The application’s GUI must be intuitive and easy to use. Tips must be

provided to help the users in case of not knowing how to proceed. For some of the

features, there must be multiple ways to perform them.

• Modularity - The system must be designed to have various small components with

well-defined responsibilities. The modularity and responsibility assignment helps in

maintainability and the discovery of sources of error.

• Role-Based Access Control (RBAC) – There are multiple roles, and each has a set

of permissions, i.e., a well-defined list of possible features. Users are assigned roles at

the moment of registration, and administrators can manage the roles, giving permissions

to users [39].

• Easy to deploy – The system’s deployment should be a procedure that hides all the

complexity from the end-users in all stages. With a couple of steps, users must be able

to have the application ready to use. Proper technologies must be adopted to ease the

installation process [40].

24

• Virtualization - Virtualization must be considered, adopting the usage of containers for

each system’s component that runs over the host’s Operating System (OS). Virtualization

also allows achieving availability by launching new container instances whenever needed

(horizontal scaling). In the production environment, the system must be deployed in a

Virtual Machine (VM) instead of physical machines [41].

• Web technologies – The system must run in a web environment and the application’s

GUI must be accessible using a web browser, namely Mozilla Firefox and Google Chrome.

Technologies, such as HTML5, CSS3, and JavaScript must be used to create a responsive

interface, regardless of the user’s environment [42].

3.3 Summary

This chapter defined the system’s functional requirements, describing the actors and their

roles and the set of features available for each. Moreover, it was also analyzed the quality

attributes that the system should achieve and that must be considered during its development.

The next chapter presents the proposed solution’s architecture, explaining the responsibil-

ities of each component and module.

25

CHAPTER 4
Architecture Proposal

The previous chapter detailed the system’s requirements and to fulfill them it is essential

to specify the application’s architecture. The study and definition of the architecture is a

central aspect of the development because it improves the system adaptability. This chapter

describes the solution’s architecture focusing on the theoretical specifications and not on the

used technologies.

4.1 Client-server model

The software architecture defines the system’s organization: the scope and responsibilities

of each component and how they interact with the others [43].

The solution’s architecture is based on a client-server model where the clients send requests

that the server responds to. This model allows separating the processing through various

machines or containers since the server is separated from the client-side [44]. Furthermore, it

follows a 3-tier architecture which includes the client-side, the application server, or middleware,

and the database server, as in Figure 4.1.

27

Figure 4.1: System’s architecture following a 3-tier client-server model

The client-side tier is responsible for sending requests to the application server and

presenting the application’s interface to users in a web browser with the data obtained from

the response. It is divided into two layers:

• Presentation layer – renders the GUI and presents the correct information according

to the request the user sent.

• Communication layer – sends requests to the application server’s RESTful API and

sends the response to the presentation layer. The communication between the client-side

and the application server adopts the HTTP protocol.

The application server receives requests from the client-side and sends the response with

all necessary information. Besides, all the system’s logic is processed and executed in this tier,

adding, removing, or updating entries in the database. Therefore, it also communicates with

the database server to manage the stored data. As with the client-side tier, it is also divided

into two layers:

• Controller layer – consists of a RESTful API that provides a set of services to be

consumed by the clients. These services are accessible using endpoints.

28

• Service layer – is the layer that contains all the system’s business logic. When the

controller layer receives a request, it calls the methods in this layer in order to execute

the necessary operations and to obtain the data to respond properly.

The last tier, the database server, only contains one layer, the persistence layer. This tier

is responsible for the data management in the database. The service layer communicates with

the database server to get data from the database, add new entries and update the existing

ones.

This architecture only specifies the responsibilities of each layer and why they communicate

with the others. However, some layers or tiers might have a large set of responsibilities; for

example, the application service tier is responsible for creating ETL procedures and all the

edition features of them, managing users and roles, and for the authentication methods.

Separating the system into multiple components helps increasing cohesion since each one is

responsible for a defined and smaller set of responsibilities. Furthermore, it also improves the

system’s modularity and adaptability because new features are easier to implement. Figure

4.2 presents the system’s component diagram.

Figure 4.2: Component diagram of system’s architecture

The tiers and layers presented previously are not represented in this diagram. The client-

server model is a more abstract representation of the system’s architecture, focusing on its

physical details. On the other hand, the component diagram allows creating a logical separation

of the component’s scope while keeping the adoption of good practices and principles. The

following sections will discuss the application server and client components, detailing each

module and its responsibilities.

4.2 Server-side components

The application server is mainly responsible for the data management, namely the man-

agement and edition of ETL procedures and users. It contains a RESTful API that provides

29

the services consumed by the client-side and all the business logic and rules. Moreover, this

component also contains the authentication methods and settings that define the public and

private endpoints.

4.2.1 Database reader

The database reader module is responsible for reading the files that contain information

about databases. For each version of the OMOP CDM since its version 4.0, there is a Comma

Separated Value (CSV) file that contains the information of tables and columns (or fields) of

that version. These files are organized by fields, i.e., each row describes a column of the table

and includes attributes such as the name, the data type, and the table where it belongs to.

On the other hand, the files containing the EHR database’s structure must be created

using the White Rabbit application. The created file is similar to the CSV files described

above but includes more information about tables, namely their number of rows, the number

of checked rows or the number of rows that are empty.

In both situations, this module contains the classes and methods to read the files, to create

the fields, tables, and databases objects, and to persist them on the database. Some methods

from this component were based on the existing ones from the White Rabbit application. The

main alterations were made to adapt the objects to the new data model.

4.2.2 Summary generator

Summary files are a central aspect of the system’s functional requirements, as defined

previously in section 3.1. There are three types of summary files: two CSV files for the

columns from the EHR database and the OMOP CDM, and a text file with the mappings

between tables and fields, as presented in the web browser.

The CSV files are created iterating over the tables of the desired database and writing

one line at a time. However, to create the summary file of the mappings, it is not possible to

create an image from the GUI since the application server is separated from the client.

This component contains the methods to write the files, including methods to create the

images. In the application Rabbit in a Hat, it was possible to create an image of what was

being displayed in the UI. Therefore, it is necessary to create an adapter that receives an

ETL procedure object respecting the system’s data model as input and changes the attributes

to respect the model from the desktop application. Then, using Java Swing is possible to

create a panel and create an image from it. Figure 4.3 represents the adaption process and

into which classes are attributes adapted.

30

Figure 4.3: Adapter pattern to transform ETL objects

The classes to create the panel with the tables and mappings, and the image from it were

adapted from the original code from Rabbit in a Hat. This component and the database reader

component only use the necessary code from the original applications and modules. The main

reason to only use a portion of code is that it’s easier to change classes and attributes and

obtain the objects in the desired state.

Fully exporting them as dependencies of the system is more straightforward but has the

31

disadvantage of adding unnecessary complexity. Besides, it could be necessary to create more

adapters to use the classes of those modules, which increases the coupling between classes.

These two components essentially handle the system’s inputs and outputs. However,

despite the adaption of some of the White Rabbit’s code, it is still necessary to use the

application to generate the EHR database’s structure file. Figure 4.4 is a diagram that

represents the input and output files and the interaction between applications.

Figure 4.4: System’s data pipeline and interaction between applications

4.2.3 Backend

The modules described previously are responsible for the file reading and writing operations

and are used in some of the system’s features. However, the main component of the application

server is the backend.

It is the largest component of the application server since it contains most of its modules.

Furthermore, the RESTful API that provides the web services to be consumed by the clients

is present in this component as well as all the business logic and rules. The backend is

also responsible to add security to the system, applying the necessary authentication and

authorization methods. Figure 4.2 showed in detail how the backend module is structured,

specifying the modules that provide services to the users.

Procedure

The ETL procedures are involved in the majority of the functional requirements since it is

possible to create, manage, and delete them. Moreover, there are multiple ways of editing

them, including adding or removing mappings between tables or fields, changing the comment

or the logic.

This module would contain most of the business logic, so the best way to keep the

modularity is to divide it into multiple submodules, each one dealing with a specific element

from the procedure object. Figure 4.5 represents the module’s composition.

It is possible two observe that a procedure component contains modules for the two

databases and the table mappings. Each database module is responsible for the creation of

32

Figure 4.5: Procedure component modules

the respective object and its persistence on the database. Furthermore, the modules that deal

with their tables and fields are also contained inside the database module because they are a

part of it.

The table mapping module contains the operations related to the management of mappings

between tables and fields, allowing to change the logic of mappings, or mark a mapping between

tables as complete.

All the modules provide services to the users through the RESTful API. Some of them

only include one or two services, and for that reason, they could be aggregated with the

other services from another module. However, this would increase the coupling between the

components, reducing the system’s modularity.

33

Users

The users can only use the application if they are logged in with the credentials provided

at the registration moment. A user needs to specify its username, email, and password, which

is encrypted before storing it on the database.

The existence of roles allows users to execute different sets of operations and features.

Therefore, to specify the privileges, it is also necessary to define a set of roles as a user’s

attribute, that can be later altered by administrators.

The management of users and roles is a responsibility of the user component, which also

allows the edition of the users’ accounts details, such as changing the email. It also provides

the services to create an account, verifying if some of the provided attributes have already

been taken, and log in to the system.

Security

Security was not one of the quality attributes defined in section 3.2; however, it is important

to keep some of the user’s information private and the services are only accessible if the user

is authenticated and has the authorization to access them.

One of the responsibilities of this component is to retrieve data from the request to sign

up and log in to the system. When a user sends a request to register in the system, the

password must be encrypted. On the other hand, if the user tries to sign in to the system,

this component must verify if the credentials are correct. The security and user components

seem to have the same functionalities. The main difference is that the user component must

provide the services to receive the authentication requests and the security component must

validate the data in them.

When the user successfully logs in to the system, a JSON Web Token (JWT) is created

and sent back as a response. This token is a security token that identifies the user who made

the request and verifies if he has the authorization to access a resource or service [45]. Then,

the following request made by the user contains the JWT in its header and if it is still valid,

the system sends a proper response according to the request. Figure 4.6 is an interaction

diagram that exemplifies the procedure described above.

Finally, this module is also responsible for defining which endpoints are public: there is no

need to be authenticated to access them.

34

Figure 4.6: Authentication using JWT behaviour

Utils

This component has the responsibility of sending proper responses to clients. When

operations related to a request are executed with no errors, the response should only contain

the necessary data. For example, if the client changes a table comment, the only object that

must be sent in the response is the altered table object. Static classes are defined in this

component to specify which attributes should be included in the response, according to the

request that has been received.

On the other hand, if the user is not authorized to access a service, a response with the

error code and a description should be sent. Also, if there is a failure during the execution of

the operations, the response should include a description of the error.

4.3 Client-side components

The client-side communicates with the application server’s RESTful API to consume its

services. The data contained in the received responses should be interpreted and displayed in

the GUI to the users.

As in the server-side, the focus was to divide the client-side into small modules with

well-defined responsibilities. Not only does modularity increase, but reusability also increases

because some classes that define HTML elements, such as buttons, can be used in multiple

places.

35

Figure 4.7 is a component diagram that represents how the client-side is structured. Almost

all components communicate with the server’s API but are mediated by a specific module

with methods designed to handle communications. In the following subsections, these modules

and their responsibilities will be detailed.

Figure 4.7: Client-side component diagram

4.3.1 Procedure

As in the application server, the procedure is also the most important component from

the client side. It provides the list of procedures that the logged user has access to, and when

selecting one, it provides the interface that shows the tables and fields from both databases as

rectangles and the mappings as arrows, similarly to the Rabbit in a Hat’s UI.

Besides, it is also in this component that all the procedure edition features must take place.

This includes altering tables or fields comments, adding or removing mappings, changing their

logic, but also retrieving the summary files, managing users with access to the procedure, and

even marking it as deleted.

4.3.2 User

The user component must be responsible for the profile management, allowing to change

the logged user’s username and e-mail. It is also in this component that it is possible to visit

other users’ profiles, and if the user who is visiting it is an administrator, it is possible to give

privileges to the visited user.

The interfaces to create an account on the system and to log in must also be provided by

the user component.

36

4.3.3 Administration

The administration module provides the interface for all the administrative features. The

management of procedures is executed displaying a list with all the procedures, even those

which have been marked as deleted. Here, administrators can actually remove them, mark

them as visible again and access any of them.

The user management is also performed in this component, allowing the administrators to

give privileges to collaborators or delete their accounts.

4.3.4 Controls

The controls component contains classes that define generic HTML elements with prede-

fined parameters that are used and configured in multiple other modules. Among the elements

are simple buttons, text fields, file inputs, or rectangles to define tables and fields with and

without tooltips.

The elements could be defined directly in the classes where they would be necessary.

However, keeping them separated increases modularity and maintainability. If some parameter

is wrongly defined, it is only required to alter it in the generic class instead of in every

occurrence. Furthermore, it allows keeping the action or purpose of the element, in a given

context, separated from its layout.

The components that have been detailed until now focus on providing the interface to

clients. Combined, they could represent the presentation layer described in the client-server

model (Figure 4.1).

4.3.5 Utilities

The utilities module is a simple component whose main objective is to provide the correct

headers to be sent in the requests to the RESTful API.

There are two types of headers: a simple header for requests that only contain data as

parameters and another that is used when it is necessary to also send a file, namely when

creating ETL procedures. In both cases, the JWT received after the log in operation is used

in the header so that the application server can authenticate the user.

4.3.6 Communications

The RESTful API is responsible for providing a list of services to be consumed by the

client-side. This component handles the communication with the application server.

The headers described before are used in the requests that are sent. The obtained responses

are then sent back to the component which made the request in its original state. The data

manipulation is the responsibility of the component that made the request, this one acts as a

bridge between the modules that render the layout and the application server.

The utilities and communications modules are equivalent to the communication layer since

they have the same purpose and objectives.

37

4.4 Summary

This chapter detailed the system’s architecture, defining it as a client-server model with

3-tier architecture. It also described the composition and goals of each tier, focusing on the

responsibilities and not on the technologies used in the implementation. It was also presented

the system’s component diagram where it was possible to have a better comprehension of the

system’s structure.

The next chapter will present the system’s implementation and discuss the adopted

technologies to develop each component.

38

CHAPTER 5
System’s implementation

Chapter 3 defined both the functional and non-functional requirements, and considering

it, the system’s architecture was defined in chapter 4, focusing on the responsibilities of each

component from the client and server-side.

This chapter will focus on the system’s implementation, detailing the technological aspect

and presenting the tools that were used.

5.1 Technological stack

Figure 4.1 represents the system’s architecture that follows a client-server model with 3

tiers and multiple layers. Each layer uses a set of programming languages and frameworks to

implement the respective responsibilities.

Based on that model, figure 5.1 presents the technologies that were used in each tier and

layer.

39

Figure 5.1: Languages and frameworks used in system’s implementation

These are the technologies that were used to implement the system but were not the

only ones. Other tools were used, for example, to apply Continuous Integration/Continuous

Delivery (CI/CD) principles. These tools include:

• Github1 - it is a hosting service to store software’s source code [46]. The branch

workflow was adopted, where for each feature, a new branch is created. When the

feature is implemented, a pull request is created, and the code is merged into the master

branch.

• Jenkins2 - Jenkins is a continuous integration tool that is connected with the reposi-

tory [47]. Every push to the master branch triggers the Jenkins pipeline that will be

1https://github.com
2https://www.jenkins.io

40

https://github.com
https://www.jenkins.io

explained later in this chapter.

• Google Cloud Platform3 - it is a set of cloud computing services provided by Google.

It was used to launch two virtual machines: one for the CI/CD server, where Jenkins

would be running, and another to deploy the system in the production environment.

• Nginx4 - Nginx is, besides a web server, a software load balancer that handles the

request traffic that is sent by the clients to the application server [48].

The next sections will detail the technologies that were used in each tier, discussing the

advantages and disadvantages of other possibilities and the reasons that led to choosing the

adopted framework or language. Since the database server only uses one technology, it will be

aggregated with the explanation of the application server’s tools.

5.2 Implementation of the server-side

The system server-side includes the application server and the database server. The

architecture and the theoretical description of the first one and its modules were detailed in

section 4.2. On the other hand, this section will focus mainly on the technologies that were

used in those two tiers and the reasons that led to their adoption.

5.2.1 Used technologies

The desktop application Rabbit in a Hat was developed using Java. Most of the tools and

frameworks used in the server development are based on Java in order to reuse or adapt some

of the code already created.

From all the tools that will be presented, the only one that is not based on Java is

PostgreSQL which is used for database management.

Spring Boot

Spring Boot is one of the frameworks from the Spring environment used to create web

applications using Java [49]. This framework allows the usage of all Spring’s modules but

much more easily and efficiently [50]. It was used to develop the application server structure,

including the RESTful API that provides services to the clients and all the business logic and

rules.

The advantages of Spring Boot include its auto-configuration that allows having an

embedded web server which makes the applications portable [51]. The configuration files,

management of dependencies, and the easy connection to various database systems were also

critical aspects that led to the choice of this framework. The documentation and bibliography

referring to Spring Boot are rich, providing multiple ways of solving the same problem,

according to the needs. Another advantage of this framework is the possibility to create

3https://cloud.google.com
4https://www.nginx.com

41

https://cloud.google.com
https://www.nginx.com

various profiles with different configurations for the various environments (development,

production).

Django5 could also be used to develop the application server since it has a lot in common

with Spring Boot. The connection to database management systems is very easy and direct,

and since most of the dependencies are already installed in the framework, their management

is simpler [52]. The main difference is that Django uses Python as the programming language

instead of Java, which can be a disadvantage in some cases, depending on the application and

its purpose [53].

The main reason for choosing Spring Boot is because the desktop application Rabbit in a

Hat is developed using Java. Most of the logic of reading the input files, writing the output

files, managing tables, fields, or mappings was reused or partially adapted to respect the new

data model or implement new features.

Apache Maven

Spring Boot, described previously, was selected to develop the application server’s modules.

The next step is to define which automation tool to compile the project will be used.

There are three well-known tools for this purpose: Apache Ant6, Apache Maven7, and

Gradle8. The last is the most recently developed from the three and it is the one with better

documentation and online community. However, the Apache tools have a great advantage

over Gradle: the number of plugins publicly available is higher [54]. Therefore, the chosen

tool was Apache Maven.

It is a building tool for projects developed in Java and what distinguishes it from the

other tools is its extensible architecture. It uses the Project Object Model (POM) to describe

the project and it is defined in the pom.xml file. This file includes the project name, group

and artifact ID, and version. Moreover, it is possible to define instructions for the different

lifecycles of the project which simplifies the command execution [55].

PostgreSQL

PostgreSQL9 is an open-source RDBMS that uses the SQL language to manage and run

queries over the data stored in the database.

Spring Boot can be easily integrated with relational databases, including PostgreSQL and

Not only SQL (NoSQL) databases, such as MongoDB10 or Neo4j11. NoSQL databases were

not considered to store data; although, they can be more efficient than PostgreSQL when

executing queries over large amounts of EHR data [56].

5https://www.djangoproject.com
6https://ant.apache.org
7https://maven.apache.org
8https://gradle.org
9https://www.postgresql.org

10https://www.mongodb.com
11https://neo4j.com

42

https://www.djangoproject.com
https://ant.apache.org
https://maven.apache.org
https://gradle.org
https://www.postgresql.org
https://www.mongodb.com
https://neo4j.com

Other relational databases, such as MySQL12 and MariaDB13, were also studied. All of

them are open-source RDBMS, and the performance is similar between them [57]. PostgreSQL

was chosen because it is a viable framework for the system’s implementation.

OpenAPI Specification

The OpenAPI Specification (OAS)14 is a standard interface that allows understanding the

behavior of a service provided by a RESTful API [58]. The purpose is to describe what a

service does and the impact that its actions have on the system. It specifies the parameters

that should be present on the request and the possible responses and respective HTTP codes.

Documenting an API is a good practice when developing software because it makes

maintenance easier in the future and, when it is a public API, makes it more easily adoptable.

5.2.2 Data model

Figure 4.3, previously presented, is a class diagram that represents an ETL object from

the Rabbit in a Hat application. There, it is possible to understand that there will be two

database objects, each with a list of tables and these with a list of fields. If the field is from

the EHR database, then it is possible to exist a list of value counts; on the other, if it is from

the OMOP CDM, then it might contain a list of concepts. Furthermore, the ETL object will

very likely have a list of connections between tables and fields.

The system’s data model needs to respect these constraints and also consider the existence

of users and roles. Figure 5.2 is an entity-relationship diagram that describes the system data

model.

12https://www.mysql.com
13https://mariadb.org
14https://swagger.io/specification/

43

https://www.mysql.com
https://mariadb.org
https://swagger.io/specification/

Figure 5.2: System’s data model

44

The tables considering the EHR side (EHR Database, EHR Table, EHR Field and Value

Count) are separated from the tables from the OMOP CDM side (OMOP Database, OMOP

Table, OMOP Field and Concepts) despite having various fields in common. It is necessary to

differentiate value counts from concepts and, therefore, it is not possible to have a generic

Field class that could be related to both. With two different classes to define fields, it is

better to have two classes to define tables and databases because it increases modularity and

maintainability.

Besides, if generic classes were used, there would be tables in the database with more

entries and with more empty fields, which worsens performance. For example, the table EHR

Table has two columns that the table OMOP Table hasn’t, and using a generic table would

lead to multiple rows with those two columns empty.

In the next section, the languages and frameworks used in the client-side will be detailed,

discussing their advantages and disadvantages while comparing them with other alternatives.

5.3 Implementation of the client-side

The client-side, as well as the server-side, are composed of multiple components with

well-defined responsibilities. Its main function is to retrieve data from the application server

using the services provided by the RESTful API and present it to the users.

The main concern when developing the client-side was to create a visual interface with

modern web technologies and frameworks. The focus is on usability: users should easily

understand how the application works.

Figure 5.1 presented the technologies that were used in the multiple layers. ReactJS

was used to develop the GUI alongside well-known libraries, namely Material-UI. These are

the primary tools used in the presentation layer. On the other hand, Axios is the library

responsible for handling the communications with the server’s API and providing correct data

to the presentation layer.

ReactJS

ReactJS is an open-source JavaScript framework well known for its component-based

architecture, which allows modularity and reusability. This architecture allows updating data

in a child component without reloading the parent component.

ReactJS is not considered a full framework since the number of installed dependencies

is lower, making it lightweight compared with other frameworks, namely AngularJS15 [59].

This characteristic is an advantage since it can increase ReactJS performance over the other

frameworks [60].

Furthermore, the online community is broad which increases the number of publicly

available libraries and components.

15https://angular.io

45

https://angular.io

Material-UI and React Bootstrap

Material-UI16 is a components library for ReactJS that provides highly customizable

components, including buttons, text fields, or sliders. The components are intuitive, easy-to-

use, and highly responsive in order to improve user experience.

React Bootstrap17 is also an external library that provides components but based on

Bootstrap. Despite creating familiar and consistent components, Material-UI is used whenever

possible because Bootstrap-based applications are usually heavier and can slow them down [61].

In the application’s GUI, React Bootstrap was only used to create the navigation bar

since it has a standard layout, even if it is less customizable. The remaining components, such

as buttons, or modals, were developed using Material-UI.

Axios

The frameworks described before are used in the presentation layer to create the appli-

cation’s user interface. However, to present data to the user, it is necessary to consume the

services provided by the application server’s RESTful API and handle the response.

Axios18 is a JavaScript library that works as an HTTP client for browsers. It is responsible

for sending requests to the API and providing the responses to the presentation layer that

will handle it [62].

Node.js and NPM

Node.js19 is a web server for JavaScript applications that supports asynchronous event

modeling [63]. One of the main features of Node.js is its Node Package Manager (NPM)

which is an essential tool to manage packages and JavaScript external libraries. NPM is also

responsible for the server actions and defining its environment.

ReactJS developers usually use NPM to share their components which make this combina-

tion of framework advantageous.

The previous sections have been detailing the technologies that were used in the system’s

development. However, to be able to use the application, it is necessary to deploy it. This

includes orchestrating the configuration, compilation, and building of the projects and database.

The following section will discuss the deployment strategy that was implemented and the

technologies that were used in that process.

5.4 Deployment

Easy deployment is one of the non-functional requirements defined and discussed in section

3.2. The goal is that with a few commands, the system is up and running with no further

16https://material-ui.com/pt/
17https://react-bootstrap.github.io
18https://axios-http.com
19https://nodejs.org/en/

46

https://material-ui.com/pt/
https://react-bootstrap.github.io
https://axios-http.com
https://nodejs.org/en/

configurations and, if possible, hiding the technical issues of installation from the users.

The system needs to be deployed in a machine with physical resources (hardware). However,

deploying it directly in the machine requires adapting the deployment steps to the OS.

Virtualization is a technology that allows running services using resources but with abstraction

on the physical layer, i. e., on the hardware.

It can be achieved using a VM, where the machine’s hardware is emulated to the guest

OS as if it exists [64]. However, as represented in Figure 5.3, the architecture of a VM can

reduce speed and performance because of the multiple layers below the application layer and

the couplings between them [65].

Figure 5.3: VM architecture Figure 5.4: Container architecture

An alternative to VMs is containers that share the kernel with the machine that is hosting

them. This tight integration with the host’s OS reduces the overhead observed in VMs [66].

Figure 5.4 represents the architecture of a container running on a host.

As observed above, containers can share hardware and software resources, namely host

libraries, with the host. This, allied with the usage of the host kernel, reduces the container

size, especially when compared with VM’s size, and allows a faster set up and initialization.

Docker20 is an open-source technology that allows containers virtualization [65]. Docker

containers hold applications with all the necessary dependencies to run correctly [67]. It is a

suitable solution for systems that follow a micro-service approach where each service runs

individually in a container [66]. Since this system’s architecture is based on this approach,

Docker seems a proper tool for the application deployment.

The system uses multiple Docker images in the deployment, as explained below:

• PostgreSQL - image pulled directly from Docker Hub21, the Docker’s official image

repository. The connection configurations are previously defined, making the database

management and the installation process easier for the user.

20https://www.docker.com
21https://hub.docker.com

47

https://www.docker.com
https://hub.docker.com

• Backend - image with the application server built using a Dockerfile that contains

a set of steps for pulling the Apache Maven and Java images, installing necessary

dependencies, defining the profile, and setting up the application.

• Frontend – Similar to the application server, a Dockerfile is used to build the client

application. In the first place, it pulls and installs Node.js, then installs all dependencies

and libraries and starts the application.

• Nginx – React provides a web server for development and a better one for production.

However, Nginx is used because, besides being a web server, it is also a load balancer

and allows the launch of new instances of the client application if one is overloaded.

All these containers need to start in a specific order and communicate between them for

system’s good functioning. Docker Compose22 is used for the containers orchestration and

to define the environment variables for each container, namely the database authentication

variables. This way is possible to set up all or some of the containers in the proper order with

just one command. Figure 5.5 is a deployment diagram that represents schematically the

containers described above and how they are connected and communicate with each other.

Figure 5.5: System’s deployment diagram

22https://docs.docker.com/compose/

48

https://docs.docker.com/compose/

Jenkins, an automation server, was used to automate the deployment process. It is

responsible to execute tasks related to software building, testing, and deploying and to manage

the operations until the application deployment in the production environment.

The server is connected to the application’s Github repository so that every time there

is a push to the master branch, Jenkins automatically checkouts the code and executes the

instructions contained in the Jenkinfile.

First, it builds the server project and pushes the artifact to the artifact repository. After

that, Docker images are created for both server and client projects and pushes them to the

Docker registry. Finally, in the VM where the application will be running in the production

environment, the Docker images are pulled and deployed. Figure 5.6 represents the pipeline

described above.

Figure 5.6: Jenkins pipeline for CI/CD

The next section will present the system’s GUI and discuss the operations possible to do

in each component. It will also explain the visual differences according to the roles of the

logged user.

5.5 User interface overview

The GUI provides a set of separators and workspaces to meet user’s needs and to respect

the different roles. Since the administrators can do all the tasks that a collaborator can, some

of the pages are similar for both roles, differing only on the content that is displayed. One

example of that is a page for the list of ETL procedures that a user has access to. However,

administrators have a separate but identical page with a list of all procedures with more

detail. This section aims to show and describe the possible actions present in each component

of the user interface.

49

The first component presented to users when accessing the application is the home page.

It is a simple page with little information that only allows the user to log in and sign up

because it is required authentication to access the remaining interface components. It gives

some context about the system’s goal and insights about the features.

After logging into the application, it is displayed a list of ETL procedures which the logged

user has access to. Moreover, the content in the navigation bar changes, providing a set

of separators to where is possible to be redirected. This includes redirections to the user’s

profile page, and a button to log out from the application, besides to the page with the list

of procedures (Figure 5.7). On all the remaining interface components is possible to use the

navigation bar to be redirected to other pages.

Figure 5.7: Collaborator’s list of ETL procedures

Only when an administrator is logged in the system, as in Figure 5.9, an additional

section appears in the navigation bar that gives access to the components that deal with

administration features.

The table layout is also used in other interface components when the goal is identical:

provide a list of elements with multiple attributes that can be ordered by some of them.

Initially, cards were used to give information about ETL procedures, but tables provide a

better organization, and it is easier to sort by any attribute.

Furthermore, it is also on this page where is possible to create new procedures. As said

before, there are two ways of creating a procedure, so when a user tries to create one, the

two possibilities are shown: using a database scan from the EHR database created with the

White Rabbit tool (Figure 5.8a) or using a summary file from other procedure generated in

the application (Figure 5.8b).

50

(a) Create procedure using the database scan (b) Create procedure using the summary file

Figure 5.8: Possibilities to create ETL procedures

One of the operations only accessible to administrators is the retrieval of all ETL procedures.

The layout presented in Figure 5.9 is very similar to the one observed in Figure 5.7, but

with more displayed attributes, namely, if the procedure has been deleted by users (but not

removed from the database), the list of users that have access to the procedure and a button

to delete it from the database.

Figure 5.9: List of all ETL procedures

The goal in this component is that, despite having more displayed attributes, the admin-

istrator could have a clean page with only the important information to properly manage

the procedures. Moreover, it is important that in a few steps, the administrator can do the

administrative tasks, namely change the procedure’s deletion status, and make it visible again

to the collaborators or completely remove it from the system.

All the details inside an ETL procedure are accessible to administrators and it can be

edited by them. It is better to provide a faster way to access a procedure if necessary, such as

a button, than to provide information that could be avoidable.

The other operation only allowed to administrators is the users’ management. Also in this

component, a table is used to provide information about users including the username, the e-

mail, and the privileges. However, in this case, is only possible to sort to show administrators

in first or last place. The main difference to the previous tables described before is the

51

searching bar that allows to only display a list of users whose username or e-mail match or

contains the searching text (Figure 5.10).

Figure 5.10: List of users

One of the remaining interface components is the profile page. This is a simple component

whose main goal is to provide information about a user. However, the content displayed

and the possible operations are different for each role and if the user is visiting its profile or

another user’s profile.

When a collaborator is logged in the system and visiting its profile page, as in Figure 5.11,

it is possible to edit the username and e-mail. It is also provided a list of the 10 most recently

modified ETL procedures in a table with a simpler layout since the goal is to give a quick

summary of recent activity.

Figure 5.11: Logged user’s profile page

On the other hand, if another user’s profile is being visited, it is given the username and

e-mail, with no edition features, and a similar table but with the 10 most recently modified

ETL procedures that both the logged and visited users have access to.

Instead, if an administrator is logged into the application, additional information and

operations are shown. Figure 5.12a represents the situation where an administrator visits

a collaborator’s profile. It is provided a checkbox to transform the visited user into an

administrator and a button to remove the user from the system. However, the checkbox

becomes disabled and checked if the administrator visits another’s profile or if he grants

privileges to the collaborator. The delete account button also disappears which means that is

not possible to remove privileges from other administrators (Figure 5.12b).

52

(a) Administrator visiting collaborator’s profile

(b) Administrator visiting administrator’s profile

Figure 5.12: Administrators visiting other users profiles with different roles

The interface’s main component is the ETL procedure page. It contains all the information

about tables, fields, and mappings between tables and fields. When designing this component,

one of the main concerns was to keep it similar to the original application, Rabbit in a Hat.

Users that are used to the desktop application should be able to perform multiple operations

without difficulty in this new environment.

The main similarities are that boxes represent tables and fields, and arrows create connec-

tions that start on boxes located on the left side (EHR database) and end on the right side

(OMOP CDM).

However, to implement some features and to improve usability, some aspects are different

than the original application. At first sight, the layout is identical to the Rabbit in a Hat’s

GUI, but some elements were added to implement features, including:

• Text fields to edit the name of the ETL procedure and the EHR database’s name.

• Options menu that contains management features, namely, manage users, obtain sum-

mary files, add or remove stem tables, save procedure in a file or mark it as deleted.

• Dropdown to select the OMOP CDM version to use.

The main differences are visible when starting to change the procedure. When a box that

represents a table is selected, as Figure 5.13 shows, the color of the remaining boxes from

that database becomes lighter. This usability feature enhances the selected box, visually

separating it from the others. Moreover, it helps to identify which database has a table

selected. Besides, a table containing information on the fields, such as their name, data type,

and a brief description, is displayed, as well as a text input to edit the table’s comment.

The arrows’ color also changes considering the selected box. If a table from the EHR

database is selected, all the arrows that start on that table become orange. Likewise, if a box

located on the OMOP CDM side is selected, the arrows that end on it change the color to

blue. All the other arrows become lighter.

53

Figure 5.13: Content displayed when selecting table fact_relationship from the OMOP CDM v5.3.1

One of the goals in this component is to provide multiple ways to perform some of the

operations, and, therefore, increase usability. The arrows that connect boxes can be created

using one of the three following possibilities:

• Select a box from the left side and then another from the right side.

• Drag the connection points (grey circles) from a left side box to one on the right side.

• Using the dropdown that contains the table names from the other database. This

dropdown also allows removing mappings.

These connections between tables need to be explored and edited to map the fields to

their standard definition. The idea behind the usability to edit table mappings is that for

simple operations, namely change its logic, mark it as complete or remove it, it should be

simple and direct. Figure 5.14 represents a table mapping selection when the user clicks only

once over an arrow. Besides the elements to perform the previous operations, the selected row

changes its color to red to enhance it from the remaining.

It is also possible to observe that some arrows have black color instead of the normal

grey, which means that the respective fields are mapped to their standard definition in the

OMOP CDM. Therefore, it is considered that the mapping between those tables is complete.

However, to manage the connections between fields inside a table mapping, it is necessary

to use another interface component. This should be very similar, including boxes to represent

fields and arrows to connect them, but visually, the user should be able to understand the

changes and distinguish both situations without difficulty.

When double-clicking over an arrow that connects tables, the panel to connect fields

becomes visible. The tables connected in that mapping are displayed immediately below the

text field to change the EHR database name and the dropdown to select the version of the

OMOP CDM. The fields of each table are also represented as rectangular boxes but with a

lighter color to distinguish them from the respective table.

54

Figure 5.14: Mapping between tables chartevents_7 and measurement

On the right side, the same elements to perform the operations related to the table mapping

as the ones described before are also visible. These elements are always visible so that the

collaborators also have a way to manage the table mapping in this component.

The content on the right side of the component only changes when a box or a mapping

is selected. In the first case, all the arrows that start or end on that box, depending on if

the field is from the EHR database or the OMOP CDM, become orange or blue, respectively,

and the other arrows take a lighter tonality. Some of the fields on the OMOP CDM represent

standard concepts and it is important to show them to the collaborator. Figure 5.15 represents

the interface component when the table note_type_concept_id is selected.

Figure 5.15: Concepts of field note_type_concept_id

55

On the other hand, when an arrow is selected, it changes its color to red, and a button to

delete the field mapping as well as a text input to edit the field mapping logic become visible

(Figure 5.16).

Figure 5.16: Field mapping selection between fields charttime and note_datetime

5.6 Summary

This chapter aimed to describe the system’s implementation, explaining the reasons that

led to the usage of adopted tools and frameworks. It also explored the deployment strategy

defining which containers were used and discussed the implementation of a CI/CD pipeline,

using Jenkins to automate the building and deployment steps. Finally, it was presented the

application’s interface, showing images of the main components and the usability features

that were implemented.

The system’s code is hosted in a public Github repository23 that counts with more than

200 commits. It was adopted a feature branch workflow where for each feature, a new branch

is created and when its development is complete, a pull request is created to merge the code

to the master branch.

The repository contains the Spring Boot project for the application server and the Node.js

project for the application’s interface. Moreover, all the files to deploy the system, as well as

the Jenkinsfile, are also available in the repository.

23https://github.com/pedrodlmatos/Rabbit-in-a-web

56

https://github.com/pedrodlmatos/Rabbit-in-a-web

CHAPTER 6
Conclusion

The study of the state-of-the-art tools to map data stored in EHR databases to its

standard concepts allows us to conclude there is a gap in this subject. Besides, the lack of

interoperability between EHR systems makes the usage of multiple sources a difficult task.

The best approach to map data to a CDM, specifically the OMOP CDM, is to create a

new application based on the existing one, Rabbit in a Hat.

6.1 Final considerations

The focus of this dissertation is the development of a pipeline to migrate data from EHR

databases to their standard definition in the CDM, specifically the OMOP CDM.

The first objective was the development of a web application that would implement

collaborative features. This would allow having multiple users, possibly in different locations,

working in the same procedure simultaneously, therefore fixing one of the main issues in the

existing applications. Furthermore, the other goal was the integration of the developed system

with an ETL framework to directly migrate data from one database to another, without

writing SQL instructions to do that.

The previous chapters detailed the system’s conception from its requirements analysis

until its implementation. In all chapters, the followed approaches are examined and other

alternatives are also presented, discussing the reasons that led to the adoption of one technology

instead of the others.

The first goal related to the system’s conception and development was achieved. The lack of

collaborative features was a major issue in other applications, namely in Rabbit in a Hat. The

system allows to have multiple registered users and involved in an ETL procedure and there

are multiple roles to allow user’s management. Moreover, the application’s GUI doesn’t have

the issues present on the Rabbit in a Hat’s interface but maintains a similar layout. Not only

the similarity between the GUIs but also between the summary files were considered so that

users that would adopt this solution could better comprehend the application’s functioning.

57

However, it was not possible to integrate an ETL framework with the system. In an initial

phase, multiple frameworks were studied, and Pentaho Data Integration was considered due

to its Java API.

Since the first step of the development process, one of the main concerns was to use

complete frameworks with proofs of good results from the community. Spring Boot is the

most used Java framework to create RESTful APIs and ReactJS, alongside Angular, are the

most used tools to create user interfaces for web applications.

Furthermore, it was important to adopt good practices during the development, namely

following the CI/CD approach, where the code changes were validated before merging them

with the previous version of the application. However, one of the most important steps on the

CI/CD pipeline, the testing stage, was not implemented. The tests would validate changes

and verify if methods were correctly developed. This stage would include unit and integration

tests on the server side and usability tests on the client side.

6.2 Future work

Some of the dissertation’s goals weren’t achieved therefore, in the future, the main feature

to implement is the system’s integration with an ETL framework. This would include creating

all the rules to cast data to the desired data type, define into which standard concepts the

data is mapped.

Another feature that would be interesting to implement is directly read the database

structure when creating a procedure. White Rabbit, another OHDSI tool, already accesses the

database and creates the file with its information about tables, fields, and relations between

them. Integrate this feature in the system would allow having another and more direct way to

create an ETL procedure and reducing the number of tools necessary to use the application

properly.

The application currently only considers the OMOP CDM as the destination of the

migrated data. The adoption of other CDMs, such as the Sentinel Common Data Model,

could make the application more generalizable, and more users could use it. The files that

contain all the information about the different versions of the OMOP CDM are simple CSV

files where each row describes a field. The other CDMs follow a similar relational structure

with tables and fields, so creating this type of file would not be a difficult task and would

make the application more comprehensive.

The Jenkins pipeline deploys the system in the production environment with all the correct

configurations for all the services. However, the container’s scalability was not tested to

prevent possible bottlenecks in situations of high demand. The existence of load balancers

and replicas for each service would make the system more robust and available even in peak

moments.

58

References

[1] C. S. Kruse, A. Stein, H. Thomas, and H. Kaur, “The use of Electronic Health Records to Support
Population Health: A Systematic Review of the Literature,” Journal of Medical Systems, vol. 42, no. 11,
pp. 203–214, Sep. 2018.

[2] K. Thiru, A. Hassey, and F. Sullivan, “Systematic review of scope and quality of electronic patient
record data in primary care,” BMJ, vol. 326, no. 7398, Jun. 2003.

[3] OHDSI, The Book of OHDSI, 1st ed. 2021.

[4] ISO/TR 20514:2005 Health informatics — Electronic health record — Definition, scope and context,
Oct. 2005. [Online]. Available: https://www.iso.org/standard/39525.html.

[5] I. Maglogiannis, “Towards the Adoption of Open Source and Open Access Electronic Health Record
Systems,” Journal of Healthcare Engineering, vol. 3, no. 1, pp. 141–161, Mar. 2012.

[6] H. Kim, P. C. Dykes, D. Thomas, L. A. Winfield, and R. A. Rocha, “A closer look at nursing
documentation on paper forms: Preparation for computerizing a nursing documentation system,”
Computers in Biology and Medicine, vol. 41, no. 4, pp. 182–189, Apr. 2011.

[7] C. A. Caligtan and P. C. Dykes, “Electronic health records and personal health records,” Seminars in
Oncology Nursing, vol. 27, no. 3, pp. 218–228, Aug. 2011.

[8] A. Hoerbst and E. Ammenwerth, “Electronic health records: A systematic review on quality require-
ments,” Methods of Information in Medicine, vol. 49, no. 4, pp. 320–336, Jul. 2010.

[9] P. R. Rosenbaum, “Observation Study,” in Encyclopedia of Statistics in Behavioral Science, B. S. Everitt
and D. C. Howell, Eds. Chichester, UK: John Wiley & Sons, 2005, pp. 1451–1462.

[10] S. Yang, F. Hadiji, K. Kersting, S. Grannis, and S. Natarajan, “Modeling Heart Procedures from EHRs:
An Application of Exponential Families,” in IEEE International Conference on Bioinformatics and
Biomedicine, Kansas City, MO, USA, 2017, pp. 491–497.

[11] J. M. Overhage, P. Ryan, C. Reich, A. Hartzema, and P. Stang, “Validation of a common data model for
active safety surveillance research,” Journal of the American Medical Informatics Association, vol. 19,
no. 1, pp. 54–60, Dec. 2011.

[12] IEEE, Standards glossary, Sep. 2016. [Online]. Available: https://www.standardsuniversity.org/

article/standards-glossary/#I, Accessed: 2021-08-09.

[13] K. Häyrinen, K. Saranto, and P. Nykänen, “Definition, structure, content, use and impacts of electronic
health records: A review of the research literature,” International Journal of Medical Informatics, vol. 77,
no. 5, pp. 291–304, May 2008.

[14] T. Benson and G. Grieve, Principles of Health Interoperability: SNOMED CT, HL7 and FHIR, 3rd ed.
New York City, NY, USA: Springer International Publishing, 2016.

[15] L. Min, Q. Tian, X. Lu, and H. Duan, “Modeling EHR with the openEHR approach: An exploratory
study in China,” BMC Medical Informatics and Decision Making, vol. 18, no. 1, pp. 1–15, Aug. 2018.

[16] F. Hak, D. Oliveira, N. Abreu, P. Leuschner, A. Abelha, and M. Santos, “An OpenEHR Adoption in a
Portuguese Healthcare Facility,” Procedia Computer Science, vol. 170, pp. 1047–1052, Jan. 2020.

59

https://www.iso.org/standard/39525.html
https://www.standardsuniversity.org/article/standards-glossary/#I
https://www.standardsuniversity.org/article/standards-glossary/#I

[17] openEHR Foundation, openEHR - Specifications Start Page, 2021. [Online]. Available: https : / /

specifications.openehr.org, Accessed: 2021-09-15.

[18] D. Tarenskeen, R. van de Wetering, R. Bakker, and S. Brinkkemper, “The Contribution of Conceptual
Independence to IT Infrastructure Flexibility: The Case of openEHR,” Health Policy and Technology,
vol. 9, no. 2, pp. 235–246, Apr. 2020.

[19] G.-H. Ulriksen, R. Pedersen, and G. Ellingsen, “Infrastructuring in Healthcare through the OpenEHR
Architecture,” Computer Supported Cooperative Work, vol. 26, no. 1-2, pp. 33–69, Apr. 2017.

[20] O. Bodenreider, R. Corner, and D. J. Vreeman, “Recent Developments in Clinical Terminologies -
SNOMED CT, LOINC, and RxNorm,” Yearbook of Medical Informatics, vol. 27, no. 1, pp. 129–139,
Aug. 2018.

[21] G. C. Bowker, “The History of Information Infrastructures: The Case of the International Classification
of Diseases,” Information Processing & Management, vol. 32, no. 1, pp. 49–61, Jan. 1996.

[22] O. Bodenreider, “The Unified Medical Language System (UMLS): integrating biomedical terminology,”
Nucleic Acids Research, vol. 32, no. 1, pp. D267–D270, Jan. 2004.

[23] R. Saripalle, M. Sookhak, and M. Haghparast, “An interoperable UMLS terminology service using
FHIR,” Future Internet, vol. 12, no. 11, Nov. 2020.

[24] L. Rasmy, F. Tiryaki, Y. Zhou, Y. Xiang, C. Tao, H. Xu, and D. Zhi, “Representation of EHR data for
predictive modeling: A comparison between UMLS and other terminologies,” Journal of the American
Medical Informatics Association, vol. 27, no. 10, pp. 1593–1599, Oct. 2020.

[25] A. P. Reimer and A. Milinovich, “Using UMLS for electronic health data standardization and database
design,” Journal of the American Medical Informatics Association, vol. 27, no. 10, pp. 1520–1528, Oct.
2020.

[26] D. Bender and K. Sartipi, “HL7 FHIR: An Agile and RESTful Approach to Healthcare Information
Exchange,” in 26th IEEE International Symposium on Computer-Based Medical, Porto, Portugal, 2013,
pp. 326–331.

[27] T. M. V. Novo, “Arquitetura para Integração e Exploração de Registos Eletrónicos de Saúde,” M.S.
thesis, Universidade de Aveiro, Aveiro, Portugal, 2016.

[28] T. A. Majchrzak, T. Jansen, and H. Kuchen, “Efficiency evaluation of open source ETL tools,” in
Proceedings of the ACM Symposium on Applied Computing, Taichung, Taiwan, 2011, pp. 287–294.

[29] S. Vyas and P. Vaishnav, “A comparative study of various ETL process and their testing techniques in
data warehouse,” Journal of Statistics and Management Systems, vol. 20, no. 4, pp. 753–763, Nov. 2017.

[30] A. S. Pall and J. S. Khaira, “A comparative review of Extraction, Transformation and Loading tools,”
Database Systems Journal, vol. 4, no. 2, pp. 42–51, Jul. 2013.

[31] M. B. Biplob, G. A. Sheraji, and S. I. Khan, “Comparison of Different Extraction Transformation
and Loading Tools for Data Warehousing,” in International Conference on Innovations in Science,
Engineering and Technology, Chittagong, Bangladesh, 2018, pp. 262–267.

[32] Observational Health Data Sciences and Informatics, OHDSI - Observational Health Data Sciences and
Informatics, 2021. [Online]. Available: https://www.ohdsi.org, Accessed: 2021-10-24.

[33] OHDSI, White Rabbit, 2021. [Online]. Available: http://ohdsi.github.io/WhiteRabbit/WhiteRabbit.

html, Accessed: 2021-10-24.

[34] N. Paris and A. Parrot, “MIMIC in the OMOP Common data model,” medRxiv, Tech. Rep., 2020.

[35] B. Chen, H.-P. Hsu, and Y.-L. Huang, “Bringing Desktop Applications to the Web,” IT Professional,
vol. 18, no. 1, pp. 34–40, Jan. 2016.

[36] Y. G. Gutierrez and L. A. M. Chile, “Kelluntekun: Rich Internet Application for Collaborative Snippet
Management, Using Oows2.0 and Vaadin,” in International Conference of the Chilean Computer Science
Society, Talca, Maule, Chile, 2014, pp. 107–115.

60

https://specifications.openehr.org
https://specifications.openehr.org
https://www.ohdsi.org
http://ohdsi.github.io/WhiteRabbit/WhiteRabbit.html
http://ohdsi.github.io/WhiteRabbit/WhiteRabbit.html

[37] M. Goeminne and T. Mens, “Towards a survival analysis of database framework usage in Java projects,”
in IEEE International Conference on Software Maintenance and Evolution, Bremen, Germany, 2015,
pp. 551–555.

[38] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed. Upper Saddle River,
NJ, USA: Addison-Wesley, 2017.

[39] R. S. Sandhu, “Role-based Access Control,” Advances in Computers, vol. 46, pp. 237–286, 1998.

[40] D. Merkel, “Docker: lightweight Linux containers for consistent development and deployment,” Linux
journal, vol. 2014, no. 239, Mar. 2014.

[41] X. Wan, X. Guan, T. Wang, G. Ba, and B.-Y. Choi, “Application deployment using Microservice and
Docker containers: Framework and optimization,” Journal of Network and Computer Applications,
vol. 119, pp. 97–109, Oct. 2018.

[42] B. Frain, Responsive Web Design with HTML5 and CSS3, 1st ed. Birmingham, UK: Packt Publishing,
2012.

[43] D. Garlan, “Software Architecture,” in Encyclopedia of Software Engineering, J. J. Marciniak, Ed.
Chichester, UK: John Wiley & Sons, 2002.

[44] H. S. Oluwatosin, “Client-Server Model,” IOSR Journal of Computer Engineering, vol. 16, no. 1, pp. 67–
71, Feb. 2014.

[45] M. Jones, B. Campbell, and C. Mortimore, “JSON Web Token (JWT) Profile for OAuth 2.0 Client
Authentication and Authorization Grants,” Internet Engineering Task Force, Standard, 2015.

[46] Github, Inc., Github, 2021. [Online]. Available: https://github.com, Accessed: 2021-10-15.

[47] J. F. Smart, Jenkins: The Definitive Guide, 1st ed. Sebastopol, CA, USA: O’Reilly Media, Inc., 2011.

[48] R. Sone, “Chapter 8: Load Balancing with Nginx,” in Nginx, 1st ed. New York City, NY, USA: Apress,
2005, pp. 153–171.

[49] M. Gajewski and W. Zabierowski, “Analysis and Comparison of the Spring Framework and Play
Framework Performance, Used to Create Web Applications in Java,” in International Conference on
Perspective Technologies and Methods in MEMS Design, Polyana, Ukraine, 2019, pp. 170–173.

[50] K. S. P. Reddy, Beginning Spring Boot 2, Applications and Microservices with the Spring Framework,
1st ed. New York City, NY, USA: Apress, 2017.

[51] F. Gutierrez, Pro Spring Boot, 1st ed. New York City, NY, USA: Apress, 2016.

[52] D. Rubio, “Chapter 1: Introduction to the Django Framework,” in Beginning Django, 1st ed. New York
City, NY, USA: Apress, 2017, pp. 1–29.

[53] L. R. Abbade, M. A. A. da Cruz, J. P. C. Rodrigues, P. Lorenz, R. A. L. Rabelo, and J. Al-Muhtadi,
“Performance comparison of programming languages forInternet of Things middleware,” Transactions
on Emerging Telecommunications Technologies, vol. 31, no. 12, Dec. 2020.

[54] A. K. Mayilyan and L. M. Hovsepyan, “Research and Comparative Analysis of Build Technology
Programming in Java,” Mathematical Problems of Computer Science, vol. 50, pp. 107–110, Dec. 2018.

[55] P. Siriwardena, Maven Essentials, 1st ed. New York City, NY, USA: Apress, 2015.

[56] J. A. M. Stothers and A. Nguyen, “Can Neo4j Replace PostgreSQL in Healthcare,” AMIA Joint Summits
on Translational Science, vol. 2020, no. 1, pp. 646–653, May 2020.

[57] R. Poljak, P. Poščić, and D. Jakšić, “Comparative Analysis of the Selected Relational Database
Management Systems,” in Proceedings of the International Convention MIPRO, Opatija, Croatia, 2017,
pp. 1496–1500.

[58] Swagger, OpenAPI Specification - Version 3.0.3 | Swagger, 2021. [Online]. Available: https://swagger.

io/specification/, Accessed: 2021-10-15.

[59] C. Gackenheimer, Introduction to React, 1st ed. New York City, NY, USA: Apress, 2015.

61

https://github.com
https://swagger.io/specification/
https://swagger.io/specification/

[60] A. Kumar and R. K. Singh, “Comparative analysis of AngularJS and ReactJS,” International Journal
of Latest Trends in Engineering and Technology, vol. 7, no. 4, pp. 225–227, Nov. 2016.

[61] Vitaliy Ilyukha, Bootstrap: A detailed comparison, 2019. [Online]. Available: https://jelvix.com/

blog/bootstrap-vs-material, Accessed: 2021-10-15.

[62] John Jakob "Jake" Sarjeant, Axios, 2020. [Online]. Available: https://axios-http.com, Accessed:
2021-10-15.

[63] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-Performance Network Programs,”
IEEE Internet Computing, vol. 14, no. 6, pp. 80–83, Nov. 2010.

[64] C. Wolf and E. M. Halter, Virtualization, From the Desktop to the Enterprise, 1st ed. New York City,
NY, USA: Apress, 2005.

[65] C. Anderson, Presenter, Episode 217: James Turnbull on Docker, Software Engineering Radio: the
podcast for professional software developers, Jan. 2015. [Online]. Available: https://podcasts.apple.

com/us/podcast/episode-217-james-turnbull-on-docker/id120906714?i=1000330227102.

[66] T. Combe, A. Martin, and R. D. Pietro, “To Docker or Not to Docker: A Security Perspective,” IEEE
Cloud Computing, vol. 3, no. 5, pp. 54–62, Nov. 2016.

[67] B. B. Rad, H. J. Bhatti, and M. Admadi, “An Introduction to Docker and Analysis of its Performance,”
International Journal of Computer Science and Network Security, vol. 17, no. 3, pp. 228–235, Mar. 2017.

62

https://jelvix.com/blog/bootstrap-vs-material
https://jelvix.com/blog/bootstrap-vs-material
https://axios-http.com
https://podcasts.apple.com/us/podcast/episode-217-james-turnbull-on-docker/id120906714?i=1000330227102
https://podcasts.apple.com/us/podcast/episode-217-james-turnbull-on-docker/id120906714?i=1000330227102

Deployment instructions

The system uses containers to achieve virtualization and adopted Docker for the container

management. The following table presents the containers used in the system’s deployment,

detailing the Docker images and the ports used.

Container name Internal port External Port Depends on

postgres 5432 5432

backend 8000 8100 postgres

frontend 3000 3000 backend

nginx 3000 80 nginx

The right order to deploy the containers is postgres, backend, frontend and finally nginx.

A Makefile was created to ease the deployment process on the local machine. It allows to

set up all the containers at once or to specify the container to build. Therefore, to deploy all

system’s containers or just one it is necessary to execute the commands:

• make all - deploys all the containers of the system.

• make container_name - deploys only the specified container and those that it depends

on, replacing container_name by the name of the container, e.g, make postgres to deploy

the PostgreSQL container.

The stoppage and removal of containers is also performed using the Makefile with the

commands

• make stop_all – to stop and remove all containers.

• make stop_container_name – to remove the desired container and those that depend

on it.

63

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	Objectives
	Outline

	Background
	Electronic Health Records
	Specification standards
	Semantic standards
	Messaging standards
	Common Data Model

	Extract-Transform-Load tools
	OHDSI tools
	White Rabbit
	Rabbit in a Hat

	Web applications and tools
	Automatic migration tools
	Vaadin
	Full-stack app

	Summary

	Requirements analysis
	Functional requirements
	Non-functional requirements
	Summary

	Architecture Proposal
	Client-server model
	Server-side components
	Database reader
	Summary generator
	Backend

	Client-side components
	Procedure
	User
	Administration
	Controls
	Utilities
	Communications

	Summary

	System's implementation
	Technological stack
	Implementation of the server-side
	Used technologies
	Data model

	Implementation of the client-side
	Deployment
	User interface overview
	Summary

	Conclusion
	Final considerations
	Future work

	References
	Deployment instructions

