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resumo 
 

 

Neste trabalho, é estudada a informação de eletrocardiogramas (ECG) 
adquiridos de 19 doentes durante o período pós-operatório. Após procedimentos 
cirúrgicos, os doentes experienciam frequentemente dor pós-operatória, que 
deve ser controlada de forma efetiva.  
A avaliação da dor é um passo essencial para garantir a escolha adequada do 
procedimento analgésico, e, atualmente, é baseada numa avaliação feita pelo 
próprio doente. No entanto, estes métodos de avaliação são subjetivos, 
descontínuos e inadequados para avaliar a dor de doentes que têm dificuldade 
ou não conseguem comunicar verbalmente. Neste contexto, o desenvolvimento 
de um método objetivo e contínuo para avaliar e monitorizar a dor pós-
operatória, e que não necessita que o doente auto-relate a sua dor, pode ajudar 
a ultrapassar estas limitações. Um método mais objetivo é clinicamente 
relevante, uma vez que pode melhorar o controlo da dor do doente no serviço 
de recobro e promover uma melhor recuperação.  
Nos últimos anos, a avaliação da dor através de indicadores fisiológicos tem sido 
estudada, uma vez que consistem numa medida não invasiva da atividade do 
sistema nervoso. Este estudo teve como objetivo encontrar relações entre 
alterações fisiológicas e mecanismos da dor e descobrir informação relevante 
extraída dos sinais ECG para estudar os processos da dor, tendo sido realizada 
uma análise univariada e uma análise multivariada. Os métodos implementados 
neste trabalho podem ser divididos em pré-processamento, extração e seleção 
de caraterísticas, e métodos de agrupamento. Também foram implementados 
testes estatísticos para estudar a normalidade e correlação entre variáveis e as 
diferenças significativas entre grupos. Assim, foi investigada que caraterística 
ou combinação de caraterísticas descreve melhor a resposta da dor pós-
operatória e qual a técnica de agrupamento que apresenta melhores resultados.  
A abordagem multivariada provou ser mais promissora que a abordagem 
univariada, permitindo a identificação e distinção de diferentes tipos de 
caraterísticas da dor baseadas na informação extraída dos sinais ECG. 
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abstract 

 
In this work, the information of electrocardiogram (ECG) signals collected from 
19 patients during the postoperative period is studied. After surgical procedures, 
patients often experience postoperative pain, which should be managed 
effectively.  
The assessment of pain is a crucial step to guarantee a suitable analgesic control 
of postoperative pain, and currently, it is based on the self-reports of the patients. 
However, these assessment methods are subjective, discontinuous, and 
inadequate for evaluating the pain of subjects unable or with limited capacity to 
communicate verbally. In this context, developing an objective and continuous 
tool for assessing and monitoring postoperative pain that does not require patient 
reports can overcome these limitations. Such a tool is of great clinical relevance 
because it can improve pain control during the patient stay in the post-surgery 
care unit and ultimately promote better recovery.  
In the last years, the evaluation of pain through physiological indicators has been 
studied since they represent non-invasive measures of the nervous system 
activity. This study aimed to find relationships between physiological alterations 
and pain mechanisms and discover relevant information extracted from ECG 
signals to study pain processes. Both univariate and multivariate analyses were 
carried out. The methods implemented in this work can be divided into pre-
processing, feature extraction and selection, and clustering analysis. Statistical 
tests were also employed to assess the normality and correlation of the features 
and significative differences between groups. It was investigated which feature 
or combination of features better describe postoperative pain response and 
which clustering technique has better performance.  
The multivariate approach proved to be more promising than the univariate 
approach, allowing different types of pain characteristics to be identified and 
distinguished based on the extracted features from the ECG signals. 
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Chapter 1 Introduction 

Introduction 

In this first chapter, an introduction to the subject of the dissertation is made. Firstly, it is introduced 

the context in which this dissertation is inserted. Then, the importance and motivation that led to the 

realization of this work are presented, and the corresponding objectives are established. Lastly, a brief 

description of the document outline is provided. 

1.1 Background 

After surgery, patients commonly suffer from postoperative pain, which should be controlled to 

prevent complications [1]. The acute pain that arises after surgery can resort to chronic postoperative 

pain. Chronic pain can persist months after the procedure, which is reflected in a longer medical care 

period and higher medical expenses. The transition to chronic pain can be due to preoperative risk 

factors, such as age and gender, and intraoperative risk factors, including surgery duration and the 

possible damaging of nerves during surgical manipulation. Lastly, it can appear because of postoperative 

factors, for example, undertreatment or overtreatment of pain [1], [2]. In addition to this, pain and its 

inadequate management can lead to psychological and physiological adverse effects [3]. 

Undertreatment may contribute to tachycardia and increased cardiac metabolic demand, whereas 

overtreatment may lead to respiratory complications, delirium, oversedation, urinary retention, ileus, 

and postoperative nausea and vomiting [4]. Inadequate treatment is also related to deep vein 

thrombosis, pulmonary embolism, coronary ischemia, myocardial infarction, pneumonia, poor wound 

healing, insomnia, demoralization, postoperative stress, and opioid addiction [5], [6]. It is also believed 

that children and neonates exposed to untreated pain can experience long-term consequences, such as 

altered pain sensitivity (e.g., hyperalgesia) and maladaptive pain (e.g., chronic pain) [3], [7]. Therefore, 

postoperative pain should be alleviated rapidly and managed effectively to decrease patient discomfort, 

promote better recovery, and, ultimately, reduce postoperative morbidity and mortality [1], [4], [5].  

 Pain is a personal and subjective experience that depends on biological, psychological, and social 

factors. Even when two individuals receive similar sensory stimuli (e.g., same surgical procedure), they 

can have different sensory experiences [8], [9]. Therefore, a suitable choice of analgesic techniques for 

pain control is dependent on an accurate assessment [10], [11]. As patient needs and characteristics, 

such as age or cognitive ability, can differ, various pain assessment tools suitable for the different patient 

groups are required (an extensive description of such tools is provided in subchapter 3.1 Current Pain 

Assessment Tools). The tools can be primarily divided into the ability of the patient to self-report pain. 

When he is capable, the standard postoperative assessment methods are based on self-reports through 

scoring systems. One example is the Numeric Rating Scale (NRS) that requires the patients to rate their 

pain on a scale from 0 to 10, where 0 is no pain, and 10 is the worst pain imaginable [12]. Faces Pain 

Scale-Revised (FPS-R) is another widely chosen self-report measure that uses facial expressions instead 

of numbers to assess pain intensity, mostly used with children [7]. However, when patients have limited 

ability or are unable to communicate verbally or understand the scales, the assessment cannot rely on 

self-reports [12], [13]. In these cases, some behaviors exhibited when in pain can be observed to assess 

pain in the patient, for example, indicators in facial expression and body movements [7], [12], [14]. In 

addition, physiological parameters such as heart rate (HR), blood pressure (BP), respiratory rate, and 
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oxygen saturation can also be measured along with patient observation [7], [12]. A wide variety of scales 

that combine different behavior and physiological parameters exist [7]. 

1.2 Motivation 

 The current pain assessment tools have limitations that complicate the assessment task and may 

lead to a poor assessment of pain. The following limitations were found: 

• The methods are not continuous and provide short-term measures. The available tools are 

intermittent, resulting, most of the time, in large time intervals between assessments [15]; 

• Pain evaluation tasks can be too complex and time-consuming. For example, tools based on an 

observer are multidimensional. These tools describe several physiological and behavioral 

parameters increasing the complexity of the scale and the time required to assess pain [7], [12]; 

• The subjective experience of pain can be challenging to evaluate from a third-person 

perspective. Due to individual differences in pain expression, the intensity assessed may not 

reflect the actual pain being experienced by the patient [9], [16]; 

• Behavior and physiological changes are not always specific to pain. Physiological changes may 

be due to other causes, such as illness, whereas behavioral responses, such as crying in neonates, 

might occur due to stressors other than pain [3], [17]. 

The problems identified on the available methods promoted the description of a set of 

characteristics that a pain assessment tool should comprise. Firstly, in the postoperative period, pain 

intensity should be monitored and recorded continuously to optimize analgesic control and pain relief 

in clinical settings [15], [18]. In addition, measurements should be easy and practical to acquire without 

requiring a heavy workload for health care professionals. Moreover, ideally, the assessment should be 

objective and not involve a subjective perspective from an observer evaluating the pain [19]. Ultimately, 

it is expected that such a tool could result in better care and improve the patient’s quality of life. 

Therefore, besides the physiological description of pain, the work developed in this dissertation had as 

main motivation the search for physiological characteristics that could be potentially used as a reliable 

and feasible instrument to assess postoperative pain in clinical settings.  

1.3 Objectives 

 In the context of the motivation described above, this dissertation aims to study the physiological 

description of postoperative pain based on electrocardiogram (ECG) signals to better comprehend pain 

in humans through physiological changes. The main goals of this work are: 

• Analyze each extracted feature individually as a postoperative pain indicator; 

• Observe the influence of pain on the features of the ECG signal accordingly with self-reported 

pain; 

• Investigate if pain-relief medication posed a signature on the ECG features; 

• Perform a multivariate study to explore if more than one feature improves the description of 

postoperative pain; 

• Evaluate which combination of features better distinguishes pain parameters, i.e., intensity and 

persistence. 
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1.4 Document Outline 

 This dissertation consists of 5 chapters, organized as follows: 

 Chapter 2 – “Postoperative Pain” firstly explains the sensory mechanisms of the nervous system that 

compose postoperative pain. Then, the components that contribute to the subjectivity of pain are 

detailed and, after, pharmacological interventions associated with surgery are mentioned.  

 Chapter 3 - “Pain Assessment” provides a summary of current methods for measuring pain intensity. 

After, it reviews related work in the area of objective assessment of postoperative pain using different 

physiological signals, while introducing the signals. 

 Chapter 4 - “Physiological Assessment of Postoperative Pain” describes the data collection protocol 

as well as all the work done regarding the implementation of the methods to study postoperative pain 

with ECG signals. It also details and discusses the results that were obtained. 

 Chapter 5 - “Conclusions and Further Research” comprises a summary of the results. In addition, 

conclusions regarding the study of postoperative pain are established, and the associated limitations 

and proposals for future work are discussed as well. 
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Chapter 2 Postoperative Pain 

Postoperative Pain 

In order to have a better understanding of the pain phenomenon, several topics that compose pain 

experience will be explored in this chapter. Firstly, the concept and descriptive variables of pain are 

introduced. After, the physiological mechanisms of nociception and inflammation that compose the 

sensory dimension of postoperative pain are described. Then, the components that modulate the inter-

individual differences in the experience of pain are explored. Finally, the influence of the anesthesia 

given before the surgery, a pharmacological intervention specific to postoperative pain, is considered. 

2.1 Pain 

 The International Association for the Study of Pain (IASP) defines pain as “An unpleasant sensory 

and emotional experience associated with, or resembling that associated with, actual or potential tissue 

damage.” Pain may vary in intensity (mild, moderate, and severe) and duration (transient, intermittent, 

or persistent), and it can be divided into four types: nociceptive, inflammatory, neuropathic, and 

functional [22]. In addition, two concepts of pain perception can be differentiated, pain threshold and 

pain tolerance. Pain threshold is linked to pain sensitivity and corresponds to the intensity at which a 

person perceives a stimulus as a painful one. On the other hand, pain tolerance is the maximum level of 

pain a person can endure. When evaluating acute postoperative pain in the clinical setting, the analysis 

of pain tolerance may be more relevant [4], [30].  

 The sensation of pain results from mechanisms and pathways that involve the central nervous 

system, which consists of the brain and the spinal cord, and the peripheral nervous system, which is 

composed of nerves [20], [23], [24]. However, pain is not only related to these pathways, as it is strongly 

affected by inter-individual variability, which is modulated by multiple contributions [8], [9]. 

2.2 Postoperative Pain Pathways and Mechanisms 

 Postoperative pain corresponds to a pain of a long duration that arises from tissue injury and trauma 

from recent surgical intervention [6], [15]. Pain that surges from surgery combines various processes of 

the nervous system. Not only is it due to nociceptive mechanisms, but it is also related to inflammatory 

processes [1]. 

2.2.1 Nociceptive pain 

 IASP describes nociceptive pain as “pain that arises from actual or threatened damage to non-neural 

tissue and is due to the activation of nociceptors” [8]. Nociceptive pain occurs when the tissue suffers 

trauma from noxious stimuli, e.g., mechanical force (surgical incision), thermal or chemical stimulation 

[21]. The sensory experience initiates when nociceptors, peripheral neurons that act as pain receptors, 

detect the external stimulus. When the noxious stimuli exceed a threshold, they activate the receptors 

and transduction occurs, and the painful external stimulus is converted into electrical signals. The 

electrical information is then conducted from the peripheral nervous system to the central nervous 

system. The electrical activity travels, through unmyelinated (C-fiber) or thinly myelinated (Aδ- fiber) 
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axons of the nociceptors, from the peripheral terminal to the central terminal of the neurons, reaching 

the spinal cord. The nociceptors, first-order neurons, end in the dorsal horn of the spinal cord and 

synapse with second-order neurons that transmit the signals via ascending pathways to the brain, more 

specifically to the thalamus. From there, third-order neurons, also known as relay neurons, transfer the 

information to the somatosensory cerebral cortex, where the stimulus is perceived as an intense and 

unpleasant sensation known as pain [20], [22]–[25]. 

2.2.2 Inflammatory pain 

 Inflammation occurs after the tissue is injured to promote healing and repair the tissue trauma and 

eliminate the necrotic cells. During the inflammation process, inflammatory chemical factors are 

released at the site of the injury or inflammation. The chemical factors are detected by the peripheral 

terminal of the nociceptors of the necrotic tissue [26]. These chemical agents can activate the 

nociceptors originating pain or can alter the sensitivity of the terminals without producing direct 

nociceptor activation. An increase in sensitivity is due to a reduction of the activation threshold of the 

nociceptors’ terminals, making tissues more sensitive and responsive to contact or movement. This 

hypersensitivity, known as hyperalgesia, is an increased and exaggerated response to a stimulus that 

normally causes pain. In addition, the inflammatory process may lead to sensitization of tissues, known 

as allodynia, in which a stimulus that usually is not painful provokes pain [22], [26]. 

2.3 Pain Subjectivity 

As described previously, the sensory component of postoperative pain relates to inflammation and 

noxious stimulation of the nociceptors. However, pain perception is affected by several factors, such as 

genetics, age, emotional state, personality, and cognitive components, that contribute to inter-

individual differences. The experience of pain is, therefore, a complex and subjective event. Due to these 

differences, pain can be challenging to generalize and diagnose, and, consequently, it can be difficult to 

achieve optimal pain relief [9], [22]. The study of the contribution of each factor could provide a better 

understanding of the differences between individuals. Pain sensitivity can be studied by applying 

different painful stimuli, such as pressure, cold, heat, or chemicals [9], [27]. Even though the 

experimental models developed to study sensitivity do not represent clinical pain, some studies prove 

the clinical relevance of evaluating sensitivity via cold or heat stimulus and reveal a prospective linkage 

to postoperative pain [28]. 

 Variations related to genetic factors can be explored through twin studies, i.e., studies conducted 

on monozygotic (identical) or dizygotic (fraternal) twins since they allow to distinguish the differences 

in pain perception that result from genetics and the variability that result from the environment [4], [9], 

[27]. Nielsen et al. performed a twin study concluding that the contribution of genetic and 

environmental factors to variance in pain sensitivity depends on the pain modalities. Results revealed 

60% and 26% of variation due to genetics for pain induced by cold-pressor and heat, respectively, 

showing that heritability is not equal across modalities [27]. Angst et al. also concluded that 49% of the 

variance of pain tolerance under a cold pressor stimulus could be assigned to heritability [28]. In 

addition, Norbury et al. analyzed heritability in women in two separated populations and discovered 

45% to 53% of variation due to genetics after heat-induced pain [29]. 

 Furthermore, gender and ethnicity, which are also connected to genetics, can contribute to pain 

differences. However, studies regarding these two parameters should not rely only on the genetics 
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context since they are strongly influenced by social components [4], [27]. One study reported that pain 

sensitivity to heat and cold-pressor is superior in women when compared to men [28]. Moreover, 

studies that specifically investigate postoperative pain show that there is still conflict in the findings 

relative to gender differences. Some studies argue that women report higher pain, while others say that 

men do. In contrast, others show that there is no difference in the reports between genders. However, 

the type of surgery and the study design varied between studies, which could cause inconsistent 

conclusions [4]. 

 Age can also influence pain sensation. In the study conducted by Angst et al., older individuals had 

decreased sensitivity to heat and cold pressor pain [28]. Another study indicates that older age is related 

to less sensitivity to heat-induced pain than the group of individuals with middle age, which is 

concordant with the first study’s results [30]. Psychological and physiological alterations related to age, 

such as alteration of the peripheral nerves’ density and the increase of degenerated sensory fibers, are 

associated with advanced age, which helps support the results of the studies [31]. However, the revision 

of several studies suggests a consensus still does not exist on the variation of pain sensitivity during the 

life of an individual [30].  

 Moreover, redirection of attention from pain to a cognitive process during a task can reduce pain 

sensation. In addition, individual experience related to previous knowledge of a specific stimulus and 

expectation of pain intensity can influence nociceptive processing [9]. Chang et al. collected information 

concerning patients’ emotions about surgery, revealing that most patients considered postoperative 

pain fearful and would cause tiring-exhaustion [32]. Besides, a personality profile that exhibits specific 

psychological characteristics, such as anxiety and catastrophizing, can also contribute to variability in 

the pain experience. In a clinical scenario, anxiety can aggravate pain, and depression is connected to 

more frequent and severe pain [9], [28]. 

2.4 Anesthesia and Analgesia 

 Beyond the contributors to differences in pain experience specified above, postoperative pain also 

integrates pharmacological interventions. Before the surgical procedure, anesthesia is given to the 

patient, blocking pain signals during surgery, while after, analgesia control of pain can be performed. 

Balanced anesthesia combines three types of drugs, a hypnotic, an analgesic, and a muscle relaxant 

(as shown in Figure 2.1), and induces a reversible state of unconsciousness, antinociception, and 

paralysis during the surgery [33], [34].   

 

Figure 2.1: Anesthetic state results from the balance of three drugs: 
analgesics, hypnotics, and muscle relaxants. Adapted from [35]. 
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In the postoperative period, the effects of general anesthesia may extend longer in some patients 

as a result of changes in pharmacokinetics, for example, the removal of anesthesia from the body can 

be different. The pharmacokinetics of drugs can be approximated by mathematical models [36], and the 

three-compartment model commonly describes the pharmacokinetics of intravenous anesthetic [34]. 

The three-compartment model approximates the body as a central compartment (plasma) and two 

peripheral compartments, one which equilibrates rapidly (muscle) and another which equilibrates 

slowly (fat) [34]. The pharmacokinetic properties of drugs may change due to extremely high or low 

body weight, which means that their metabolism and elimination may change [37]. In practice, clinicians 

usually classify obesity and malnutrition using BMI (Body Mass Index), defined as the ratio between 

weight (kg) and the height squared (m2) [37], and obesity is defined as BMI > 30 kg∙m-2 [38]. Obese 

individuals have a higher mass of poorly vascularised adipose tissue which is associated with prolonging 

effect and delaying terminal elimination of the drug [37]. Therefore, the removal of anesthesia from the 

body can take longer in patients with more fat tissue. 

As postoperative management, adequate analgesia must be given to the patient when needed. 

Analgesics act as an antinociceptive to reduce the transmission of stimuli that cause pain through the 

sensory system. Postoperative analgesia may be obtained with a variety of techniques and therapeutics. 

It can be provided with opioids (e.g., morphine) and antipyretic analgesics (e.g., paracetamol), for 

example [33]. 
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Chapter 3 Pain Assessment 

Pain Assessment 

This chapter begins to address the most commonly used pain assessment tools in clinical settings. The 

exposed methods are primarily divided into the patient’s ability to self-report their pain and secondly 

into the patient’s age. Afterward, deriving from the identified challenges of the currently used 

assessment methods, an overview of the literature on the objective assessment of postoperative pain 

is given. A set of studies exploring physiological signals for pain evaluation after a surgical procedure is 

inspected. Firstly, the physiological signals recorded for this purpose are defined, and after, the methods 

implemented in each study are detailed. Lastly, the implementation of ECG signals for pain evaluation 

is discussed. 

3.1 Current Pain Assessment Tools 

 Assessing pain intensity consists of quantifying a painful sensation through clinically validated, 

reliable and safe tools that are appropriate to the type of pain and patient characteristics (e.g., age, 

cognitive and clinical condition, verbal communication capabilities) in order to optimize pain 

management [3], [39].  

3.1.1 Self-report pain assessment tools 

 Currently, standard postoperative pain assessment methods are based on patients’ self-reports [7]. 

Direção Geral da Saúde (DGS) establishes the prioritization of self-assessment from the age of 3, 

whenever possible, as a guideline [39]. When it comes to children with age superior to 3 and inferior to 

8, it is usually chosen the Faces Pain Scale (FPS), and the patient is asked to classify the intensity of pain 

based on facial expressions (see FPS-R in Figure 3.1) [3], [7]. Wong-Baker Faces Pain Scale is another 

facial expression scale available [3]. For ages superior to 8 years old, numerical scales can be chosen 

since it is expected the understanding of numerical order and value. A common method is the NRS, 

which is considered a good choice for assessing acute pain after a surgery, where the patient rates their 

pain on a scale from 0-10 (Figure 3.1) [3], [40]. The Visual Analogue Scale (VAS) is also commonly applied. 

The VAS requires the patient to mark on a 10 cm horizontal line the point that he feels that represents 

his pain (Figure 3.1) [18]. Assessment questionnaires are also recurrent systems [7], [14]. For example, 

in the case of the Short-form McGill Pain Questionnaire (SF-MPQ), the patient has to score, on a scale 

from 0 to 3, eleven sensory (e.g., throbbing, shooting, and stabbing) and four affective (e.g., sickening 

and fearful) descriptors [40]. The Verbal Rating Scale (VRS) is another method that is based on the use 

of adjectives and descriptive phrases. For simplicity of language, each description is converted to a 

number, for example, 0 - “no pain,” 1 - “mild pain,” 2 - “moderate pain,” and 3 - “severe pain” [41].  
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Figure 3.1: Self-report tools for pain assessment: FPS-R, NRS, and VAS. Adapted from [18], [19]. 

3.1.2 Pain assessment tools in patients with communication problems 

 Patients in the extreme of age (children and elderly), cognitive-impaired, unconscious, in the 

intensive care setting, or with a language barrier, have limited ability or are unable to self-report their 

pain [7], [14], [40]. Children may struggle with understanding and communicating their pain verbally due 

to their emotional and cognitive development [3]. In addition, neonates are nonverbal, so they depend 

on others to recognize and assess their pain [7]. Furthermore, cognitive impairment can also hazard the 

capacity of patients to self-report. For instance, delirium, a neurocognitive disorder common in aged 

and palliative populations, affects attention, memory, perception, and speech [14]. Additionally, 

critically ill patients in the intensive care unit can be sedated and, consequently, unable to self-report. 

Due to anesthesia, patients may also be unconscious during the earlier postoperative period [42], [43]. 

In these situations, a substitute for the verbal report must be used. Patients experiencing pain often 

display a variety of behaviors that indicate a painful experience. In addition, physiological markers can 

be measured [14], [40]. Pain may be associated with higher HR and BP, lower oxygen saturation, and 

more rapid, shallow, or irregular breathing patterns [17]. 

 Neonatal pain assessment is currently based on behavioral and physiological indicators, since facial 

expressions consist of an indicator of acute and short-term pain, and arm and leg activity are considered 

typical body movements during the experience of pain. For instance, increased activity or higher muscle 

tension (clenched fists and toes and tense arms or legs) are characteristic in the presence of pain. In 

addition to these, crying sounds can also be informative to evaluate pain in neonates. Consolability is 

also a parameter often analyzed by nurses when assessing pain in neonates [7], [17]. Many neonatal 

pain assessment tools are available, including the N-PASS (Neonatal Pain, Agitation and Sedation Scale) 

[39]. The N-PASS is indicated for gestational age between 0-100 days, and it considers behavioral 

components (crying, irritability, behavior state, facial expression, extremities of tone) and vital signals 

(HR, BP, respiratory rate, and oxygen saturation) [7], [11]. In older children, other scales can be selected. 

The COMFORT Pain Scale is used for infants and small children under the age of 3, being an appropriate 

scale to assess postoperative pain or pain in unconscious and ventilated infants. This instrument tests 

nine parameters divided into physiologic components (BP, HR, and respiratory distress) and behavioral 

components (alertness, calmness, crying, physical movement, muscle tone, and facial tension) [7], [40]. 

Moreover, for children under the age of 4 or unable to verbally communicate, the FLACC (Face, Legs, 

Activity, Cry, and Consolability), which considers five behavior categories, can be implemented. This tool 
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is validated for scoring postoperative pain in infants and children [39]. On the other hand, in cognitively 

impaired elderly individuals, such as patients with dementia, facial expressions, verbalizations, 

vocalizations, body movements, changes in interpersonal interaction, and physical changes can be used 

as behavioral indicators of pain [14]. The Abbey Pain Scale is a common scale, composed of both 

behavioral and physiological (e.g., temperature) components, for this group of patients [44].  

 To conclude, a large variety of pain assessment tools has been validated. Nevertheless, pain 

assessment from a third person can be a very challenging task in an already subjective process [9], [15], 

[16]. These tools vary widely from each other, not only in the combination of physiological and 

behavioral parameters that they evaluate but also in the metric range. For example, COMFORT Pain 

Scale varies in the range of 9-45, and FLACC varies in the range of 0-10, which can create confusion to 

understand whether a score of the scale corresponds to low, moderate, or severe pain. Thus, developing 

one standard measure to assess pain in all patients could facilitate communication and understanding 

of the pain scores [7], [19], [39]. Furthermore, behavior changes and physiological measures are not 

always specific to pain and may be due to other causes. Pain evaluation with physiological signals 

identifies changes from a normal baseline state, assuming that all individuals have the same baseline. 

However, ill individuals can have baselines values distinct from healthy ones, resulting in physiological 

indicators less specific for pain. Also, pain behaviors are not noticeable if neuromuscular blocking agents 

or sedatives are administrated to the patient [3], [17]. In addition to the problems detailed here, others 

were identified in the first chapter of this document. The assessment provides non-continuous and often 

short-term measures and can be complex and time-consuming when the tools are multidimensional.  

3.2 State of the Art of Objective Postoperative Pain Assessment 

In recent years, objective and non-invasive measurement of pain has been a topic under 

investigation due to its clinical relevance. The use of physiological signals as objective markers of 

nociception and pain is one of the strategies proposed in the literature as they could allow monitoring 

changes in the nervous system induced by pain [45]. Several physiological indicators have been 

investigated, yielding good results in the postoperative period. While given a special focus on ECG, as it 

is the signal addressed in this dissertation, the studies discussed in this section include ECG, 

electrodermal activity (EDA), surface electromyography (sEMG), pupil reflexes, and accelerometry 

signals.  

When the nervous system is stimulated by pain, stress, fear, or trauma, the body adapts to it, and 

physiological alterations occur. Unconscious and involuntary processes may happen, which are related 

to the Autonomic Nervous System (ANS). The ANS regulates physiologic processes including HR, BP, 

pupil diameter (PD), sweat glands, respiration, and body temperature and is composed of the 

sympathetic and parasympathetic divisions, which can have an excitatory or inhibitory effect. A stress-

related stimulus (pain) will activate the sympathetic division, whereas the parasympathetic tone will be 

more prominent if the body is at rest. The balance between sympathetic and parasympathetic tones 

varies according to the body’s needs and creates the autonomic tone. Only the sympathetic division 

innervates the sweat glands leading to sweat secretion when activated. The alterations in sweat glands’ 

secretion can be measured with EDA. In addition, the sympathetic division increases HR and dilates the 

pupil, whereas the parasympathetic division decreases HR and constricts the pupil. These alterations 

can be studied through the ECG and pupil reflexes, respectively. By measuring these physiological 

alterations, the autonomic response to noxious stimuli can be detected non-invasively. Also, muscle 
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contractions and movements, generated by signals carried to the skeletal muscles, can be provoked by 

pain experience and measured with sEMG and accelerometry signals [23]. 

This section is divided into the different signals used to assess pain, and for each signal, the studies 

that were found are discussed. The studies focus mainly on physiological indicators. However, video and 

audio signals are also presented as tools to assess pain. Table 3.1 summarizes the features extracted 

from the collected signals, the number and characteristics of the subjects enrolled in the studies, and 

the main conclusions of the authors. 

3.2.1 ECG 

 An ECG detects the electrical activity of the heart recorded with electrodes placed on the body 

surface. The ECG signal represents a sequence of cardiac cycles, and it allows to see the P wave, the QRS 

complex, and the T wave, which compose one cardiac cycle (Figure 3.2). Each wave is correlated with 

electrical events (myocardial action potentials). The P wave indicates the atrium depolarization 

(contraction), the QRS complex represents ventricular depolarization (contraction), and the T wave is 

associated with ventricular repolarization (relaxation) [23], [46]. An import measure extracted from the 

ECG signal is the time elapsed between two successive R peaks, representing the length of a ventricular 

cardiac cycle, and it is referred to as the R-R interval (RR) [46]. These intervals allow determining the HR 

and the variability in RR intervals, known as heart rate variability (HRV). In the articles found in the 

literature, postoperative pain was studied with HR and HRV measures in patients after a surgical 

procedure. 

 

Figure 3.2: ECG signal [47]. 

Firstly, two studies investigating HR in the postoperative period were found. In one study, HR 

showed no correlation with the NRS [13]. Contrary, another study found a statistically significant 

association between HR and the NRS (r=0.19; p=0.02). However, HR did not alter after pain control and 

had low performance in discriminating patients with NRS ≤ 4 from patients with NRS > 4 [48]. 

Secondly, a study was conducted by Chang et al., who investigated the correlation between 

postoperative pain intensity, assessed using VAS and SF-MPQ, and HRV indices, measured for 5 minutes 

one day after abdominal surgery. The HRV indices under investigation included the standard deviation 

of RR intervals (SDNN), in the time domain, and very low frequency (VLF), low frequency (LF), high 

frequency (HF), and LF/HF ratio, in the frequency domain. Firstly, it was possible to see that the HRV 

parameters measured the next day after surgery were higher than the mean values measured and 

established for healthy individuals. Furthermore, LF/HF ratio correlated positively with the assessment 

tools, whereas the other HRV indices correlated negatively. An important remark withdrawn from this 

study is that different variables can influence HRV measures and, therefore, need to be pondered in 

future postoperative pain studies. For instance, the authors investigated the influence of the patient’s 
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position in which the HRV parameters were measured, concluding that patients in the semi-fowler 

position had higher values than those in the supine position. In addition, it was discovered that gender 

and age could affect HRV [32]. 

Additionally, the use of the Analgesia Nociception Index (ANI) was reported as a measure of 

immediate postoperative pain in awake patients in different age groups. Although, this index was also 

implemented to monitor and measure pain in unconscious patients. ANI corresponds to an analysis of 

the RR series variability that considers the influence of respiratory patterns on the HF component of the 

RR intervals [49], [50]. It consists of a non-invasive and continuous measure of the 

sympathetic/parasympathetic balance that ranges from 0 (maximal nociception) to 100 (maximal 

analgesia). Higher ANI values indicate an increase of parasympathetic tone, which occurs in the case of 

adequate analgesia. However, when nociception increases because of the surgical procedure, or when 

analgesia fades, sympathetic tone increases, parasympathetic tone decreases, and ANI values decrease 

[50]–[52]. Firstly, Boselli and colleagues studied ANI as an immediate postoperative pain intensity index 

in adults who self-reported pain using NRS [52], [53]. The authors found a statistically significant 

negative relationship between ANI and NRS: ANI=68.1−4.2×NRS, R2=0.33; p<0.01. In addition, a 

threshold of 50 allowed ANI to discriminate NRS > 3 with a sensitivity of 86%, a specificity of 86%, and 

an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.89 [52]. Later, Gall et al. 

investigated the use of ANI in children whose postoperative pain was assessed with FLACC. The study 

included a control group and a surgical group to compare ANI values and tested the behavior of 

instantaneous ANI and ANI averaged over a 256 second period. Both measures were significantly lower 

in the surgical group than in the control group (p<0.001). It was also observed how ANI measurements 

behaved to predict moderate-to-severe pain (FLACC ≥ 4), with a cut-off value of 66 to the instantaneous 

ANI and of 56 to the 256 second period ANI. Instantaneous ANI had more measurements of the control 

group below the cut-off value than ANI calculated over 256 seconds, so instantaneous ANI performs 

worse in predicting moderate-to-severe intensities. The threshold of 56 offered a sensitivity of 83%, a 

specificity of 93%, and an AUC of 0.94 to predict moderate-to-severe pain. Finally, ANI measured over 

the 256 seconds resulted in the following negative linear relationship with FLACC: 

ANI=76.1−4.3×FLACC, R2=0.54; p<0.01 [50]. Some limitations on the use of ANI were found. Firstly, 

studies in adults revealed that the anesthetic agent and technique could alter ANI response [52], [53]. 

Secondly, some drugs can induce changes in HRV that are not specific to nociception, and, therefore, 

patients who had received them were excluded from the studies  [50], [52], [53]. Therefore, although 

HRV may help healthcare providers to improve pain management, several aspects that need further 

study may compromise its use.  

3.2.2 EDA 

 EDA, commonly referred to as skin conductance (SC), corresponds to the variation of the electrical 

conductance of the skin in response to sweat secretion. When sympathetic activation occurs by 

emotional alterations and stress associated with pain, changes in the SC signal that arise from stimuli 

may occur [54]–[56]. If sweat glands are activated, they produce sweat that increases SC, and when the 

sweat is reabsorbed, SC decreases, producing a peak in the signal. The SC signal was explored in the 

postoperative period as the mean SC and the number of fluctuations within the mean SC per second 

(NFSC). Studies in different age groups were collected. 

 Ledowski and colleagues performed an observational pilot study that aimed to investigate the 

influence of immediate postoperative pain on SC in adults and its correlation with pain rates obtained 

with NRS after arrival in the recovery room [13]. The promising results of this pilot study led to 
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conducting a prospective study to test the initial conclusions with a bigger sample of participants [10]. 

In relation to the first study, two conclusions can be highlighted. Firstly, the mean SC was considered 

inappropriate as a possible tool for pain evaluation. Secondly, NFSC showed a significant correlation 

with the NRS rating of patients (r=0.625; p<0.01), allowing to differentiate moderate and severe pain 

(NRS > 3) with sensitivity of 89% and specificity of 74%, using a cut-off value for NFSC of 0.1 [13]. In 

addition, NFSC was significantly different among the no, mild, moderate, and severe pain categories in 

both populations (p<0.0001) [10], [13]. The prospective study also demonstrated that NFSC is 

significantly lower after administration of analgesic for pain management than before (p<0.013). Finally, 

the study with the bigger sample resulted in a similar performance of NRS in distinguishing no and mild 

pain from moderate to severe pain, with the cut-off value for NRS of 0.1, obtaining a sensitivity of 88.5%, 

specificity of 67.7%, and AUC of 75.5% [10]. After, Hullet et al. studied NFSC as a postoperative pain 

assessment tool in children. Different scales were implemented accordingly with age groups: FLACC, 

FPS-R, and VAS, for 1-3 years, 4-7 years, and 8-16 years, respectively. It was found that a cut-off value 

for NFSC of 0.13 can distinguish moderate and severe pain, with sensitivity of 90%, specificity of 64%, 

and AUC of 0.82, for all age groups. It was also verified that NFSC could be important when used as a 

negative predictor (predict no or mild pain) for the assessment in pediatric patients because only 3.2% 

(negative predictive value=96.8%) of the patients with moderate and severe pain were defined 

incorrectly as no/mild pain. Oppositely, 64.5% (positive predictive value=35.5%) of the patients were 

incorrectly defined as moderate/severe pain [57]. It can be concluded that NFSC is a tool with potential 

for pain assessment in the postoperative period. However, since SC is an index of the sympathetic 

nervous system, it can be influenced by other common sympathetic activators in the postoperative 

period, such as stress, anxiety, nausea, vomiting and drugs [7], [13], [57], [58]. For instance, it was 

demonstrated that neostigmine and glycopyrrolate, reversal drugs used for reverse muscle relaxant 

effects, significantly influence SC measures [59]. For these reasons, these authors argue on the feasibility 

of relying solely on the SC to assess pain. 

3.2.3 sEMG and accelerometry signals 

 sEMG is a non-invasive technique that measures the electrical activity generated by skeletal muscles 

through electrodes attached to the skin over the muscle of interest [60], [61], while accelerometry 

signals consist of the measurement of body movement [15]. As noted above, an increase in body 

movements and muscle contraction during periods of pain may occur compared to periods of no pain. 

A study was discovered in which the authors observed which alterations in EMG and accelerometry 

signals of infants occurred in the postoperative period. 

Schasfoort et al. proposed the study of body part activity and muscle activity as behavioral 

indicators of immediate postoperative pain, assessed using the COMFORT-behavior scale, in preverbal 

infants. Body part activity was obtained by three piezo-resistive acceleration sensors, two attached to 

both legs (uni-axial sensors) and one attached to one arm (bi-axial sensor). The extracted motility values 

resulted in the overall extremity acceleration. On the other hand, the EMG sensor was attached to the 

wrist flexor muscle. EMG envelopes were extracted from the signals and normalized with the baseline 

of each infant. Firstly, the authors found a statistically significant correlation between accelerometry-

based overall extremity activity and COMFORT-behaviour scale (r=0.76; p<0.001) and between EMG-

based wrist flexor activity and COMFORT-behaviour scale (r=0.55; p<0.001). Secondly, overall extremity 

activity showed better results in discriminating pain (COMFORT behavior score ≥ 17), with sensitivity of 

45% and specificity of 97%, than wrist flexor muscle activity, with sensitivity of 36% and specificity of 

96%. However, the combination of accelerometry and EMG measures produced the best results 
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corresponding to a sensitivity of 64% and a specificity of 96%. Therefore, EMG signals could be valuable 

to support the accelerometry measures in discriminating between pain and no pain. However, although 

specificity values are very high, sensitivity is low, and, therefore, these indicators need to be further 

studied. In addition, infants medicated with sedative drugs or muscle relaxants needed to be excluded. 

Nevertheless, the results were satisfactory and sufficient to prove that measuring pain using 

accelerometry and muscle activity in preverbal infants is feasible and has the potential to discriminate 

pain [15]. 

3.2.4   Other studies 

 Other studies used pupil reflexes to study postoperative pain since pupil dilatation might be a 

sympathetic response to noxious stimuli. Pupil reflexes can be evaluated as a measure of PD, pupillary 

light reflex amplitude (PLRA), and pupillary dilatation reflex (PDR). PDR is the difference between 

pupillary diameter before and after painful stimulation, whereas PLRA is the diameter variance after 

light stimulation [48], [62]. Aissou et al. found a significant correlation between VRS and PDR. In addition, 

PDR proved to discriminate VRS ≥ 1 with sensitivity of 91% and specificity of 94%, using a threshold of 

23% of variation [63]. Contrarily, Kantor et al. did not find an association between acute postoperative 

pain and PD or PLRA. Authors argue that the lack of association with postoperative pain may be due to 

the nature of this type of pain because it is continuous. Moreover, the mean intensity of postoperative 

pain was small (NRS=4.7±3.1) and may not be enough to evoke an alteration in pupil diameter. Pupil 

reflexes may also be affected by the remaining effects of anesthesia, which may weaken pain 

experience, or by other drugs administered to the patient, for instance, anticholinergic agents or 

vasoactive drugs. In conclusion, PD and PLRA did not revealed to be adequate indicators of acute 

postoperative pain. Furthermore, PDR requires a painful stimulation which is not an optimal strategy 

[48].  

 Not only can physiological signals be used for this purpose, as video and audio signals were also 

investigated in a study conducted by Salekin et al. to assess postoperative pain in neonates, whose pain 

was evaluated with the N-PASS scale. The video signal allows an analysis of behavioral indicators of pain, 

including facial expression and body movement, and the audio signal aims to record crying sounds. The 

methodology comprehended a unimodal approach in which the performance for facial expression, body 

movement, and crying sounds was examined individually, and a multimodal approach using all three 

measures. The crying sound classifier produced the highest performance metrics within unimodal 

approaches compared to the classifiers using body or face. In comparison to the crying sound, the 

multimodal approach has a similar performance. Nonetheless, the authors concluded that a multimodal 

approach is more reliable for assessing pain in the clinical context because multiple conditions can affect 

the measurements of the signals. For example, the face and body may not be visible due to hospital 

equipment, oxygen masks, or tapes, baby movements may be constricted, or babies may be under 

sedation. Furthermore, as pain experience varies between individuals, some babies may move around 

while others may cry when feeling pain [11]. 
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Table 3.1: Objective markers for the assessment of postoperative pain. (legend: y.o., - years old). 

Features Subjects Results/ Key findings Reference 

HR 
25 adults 
(21-67 y.o.; 
14 female) 

HR showed no correlation with NRS 
[13] 
(2006) 

HR 
145 adults 
(50 ± 17 y.o.; 
75 female) 

HR showed a significant correlation with NRS 
(r=0.19; p=0.02) 

HR did not change after administration of analgesia 

HR had low performance in discriminating NRS > 4 
(AUC=0.62) 

[48] 
(2014) 

VLF, LF, HF, 
LF/HF, and 
SDNN 

34 adults 
(18-79 y.o.; 
22 female) 

The patient’s age, gender, and position during signal 
acquisition could influence HRV values 

LF/HF ratio correlated positively with pain, whereas 
SDNN VLF, LF, and HF correlated negatively 

[32] 
(2012) 

ANI 

200 adults 
(44 ± 18 y,o., 
51 ± 17 y.o.; 
88 female) 

ANI has an inverse linear relationship with NRS 
scores 

An ANI threshold of 50 allowed to discriminate 
moderate to severe pain (sensitivity=86%, 
specificity=86%, AUC=0.89) 

[52] 
(2013) 

ANI 

Surgical group: 
32 children 
(0.4-16 y.o.) 

Control group: 
31 children 
(0.8-15 y.o.) 

ANI has an inverse linear relationship with FLACC 
scores 

An ANI threshold of 56 allowed to discriminate 
moderate to severe pain (sensitivity=83%, 
specificity=93%, AUC=0.94) using ANI values average 
over 256 seconds  

[50] 
(2015) 

NFSC and 
Mean SC 

25 adults 
(21-67 y.o.; 
14 female) 

NFSC showed a significant correlation with NRS 
(r=0.625; p<0.01) 

NFSC was significantly different between no, mild, 
moderate and severe pain reports (p<0.0001) 

A NFSC threshold of 0.1 differentiated moderate to 
severe pain (sensitivity=89%, specificity=74%) 

[13] 
(2006) 

NFSC 
73 adults 
(18-81 y.o.; 
30 female) 

NFSC was significantly different between no, mild, 
moderate and severe pain reports (p<0.001) 

NFSC was significantly lower after administration of 
analgesia than before (p<0.013) 

A NFSC threshold of 0.1 differentiated moderate to 
severe pain (sensitivity=88.5%, specificity=67.7%, 
AUC=75.5%) 

[10] 
(2007) 

NFSC 

165 children 
(1-3 y.o., 
4-7 y.o., 
8-16 y.o.) 

A NFSC threshold of 0.13 distinguished moderate to 
severe pain (sensitivity=90%, specificity=64%, 
AUC=0.82) 

[57] 
(2009) 
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Concluding, several strategies produced important developments and findings in the field of 

objective indicators of postoperative pain. Some measures exhibited significant correlation with the 

stimulus and proved their potential to detect pain presence, not being able, however, to discern its 

severity. Furthermore, some authors debate the use of more than one signal as a more reliable method. 

Essentially, although the results of the studies are encouraging, the clinical viability of these tools still 

needs to be further investigated and validated for clinical use. 

Since this dissertation will explore ECG signals as an indicator for postoperative pain, a brief 

discussion will be made on the feasibility of its use. Firstly, the use of some drugs can alter the function 

of the ANS by enhancing or suppressing sympathetic and parasympathetic activity, and consequently, 

influence the physiological measurements, limiting their use in some patient groups [23]. The authors 

of the studies discussed above report this limitation in using HRV and other measures regulated by ANS. 

Drugs may also induce changes in the morphology, amplitude, and duration of the ECG curve. Moreover, 

HR can vary in response to hemodynamic changes influenced by circulatory changes, illness, and 

cardioactive and vasoactive drugs. Hence, in hemodynamically unstable patients, their use may not be 

reliable to evaluate pain [64]. The studies also showed that the age and gender of the patient and the 

anesthetic agent and technique might affect HRV measurement [48], [50], [51]. In addition, stress and 

anxiety, commonly experienced in the postoperative period, are activators of sympathetic activity and, 

therefore, may influence the physiological response [52], [57]. Concluding, several modulators of the 

nervous system may induce physiological changes that are not specific to pain. Nonetheless, the studies 

evaluating HRV proved that HRV metrics could accomplish binary discrimination between no/mild pain 

and moderate/severe pain with good performance and, therefore, demonstrated the usefulness of 

using ECG measures as a surrogate for postoperative pain.  

Mobility 
features 
(overall 
extremity 
acceleration) 
and EMG 
signal 
envelope of 
the wrist 
flexor muscles 

Accelerometer:
14 infants 
(45-400 days) 

EMG: 
7 infants 
(45–379 days) 

Accelerometry-based overall extremity activity and 
EMG-based wrist flexor activity showed a significant 
correlation with COMFORT-behavior scale (r=0.76; 
p<0.001 and r=0.55; p<0.001, respectively) 

The accelerometery-EMG based indicator showed 
better results in discriminating pain than 
accelerometery or EMG individually (sensitivity=64%, 
specificity=96%) 

[15] 
(2007) 

PDR 
100 adults 
(52-62 y.o.; 
58 female) 

PDR showed a statistically significant correlation 
with VRS (r=0.88; p<0.0001) 

A threshold of 23% of variation allowed PDR to 
discriminate VRS ≥ 1 (sensitivity=91%, 
specificity=94%) 

[63] 
(2012) 

PD and 
PLRA 

145 adults 
(50 ± 17 y.o.; 
75 female) 

No statistically significant association was found 
between NRS and PD (r=0.10; p=0.54) or PLRA 
(r=0.03; p=0.72) 

[48] 
(2014) 

Visual 
features from 
face and body 
images and 
spectrogram 
of crying 
sounds 

45 neonates 
(30-41 weeks) 

Multimodal approach is better and more reliable 
than a unimodal approach in neonates 

Multimodal approach had good performance to 
predict postoperative pain (accuracy=0.7936, 
precision=0.8028, recall=0.7936, f1-score=0.7920, 
AUC=0.9010) 

[11] 
(2020) 
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Chapter 4 Physiological Assessment of Postoperative Pain 

Physiological Assessment of Postoperative Pain 

In this chapter, a study is conducted on physiological changes of ECG signals associated with patients’ 

pain experience during the postoperative period. Firstly, the protocol and setup implemented for data 

collection are presented. After, the dataset used for the work developed in this dissertation is described. 

Following, the methods of the study performed are detailed, accompanied by a discussion of the results. 

4.1 Study Contextualization 

 As discussed earlier, the body’s reaction to pain could be detected through physiological and 

behavioral measurements. The study of physiological alterations during the postoperative period after 

a surgical procedure can help understand the relation between postoperative pain and physiological 

response. Therefore, this chapter aims to study the individual behavior of several extracted features 

from the ECG signal, the relationship between features, and to evaluate which combination of features 

better describes the pain experience. Figure 4.1 represents the methods that were implemented in this 

study. The data was collected postoperatively in the recovery room. The raw collected signals were then 

pre-processed, and 5-minutes and 10-minutes windows of information were extracted regarding pain 

assessment and management annotations. The features calculated in each time interval were firstly 

explored individually. Afterward, a multivariate analysis exploring feature combinations was conducted, 

after performing feature selection to discard the non-relevant features. 

 
Figure 4.1: Methodology for the study of physiological alterations of ECG signal during 

postoperative pain experience. 

4.2  Protocol and Setup for Data Collection 

 Due to the ongoing COVID-19 pandemic, the acquisition of physiological signals from patients in 

clinical settings was not viable. Thus, in this work, a set of previously collected data containing ECG 

signals was used, which was collected during July and August of 2019. This study was a collaboration 

between the Institute of Electronics and Informatics Engineering of Aveiro (IEETA) from the University 

of Aveiro (UA) and the Centro Hospitalar Tondela-Viseu, E.P.E. (CHTV). The study was approved, and it 

is registered by the Ethics Committee for Health of the CHTV (document number 894) and by the Ethics 

and Deontology Council of the University of Aveiro (document number 36/2018). 
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The participants were recruited from volunteer patients undergoing elective abdominal surgery at 

Hospital de São Teotónio - CHTV. The informed consent provided to the volunteers is available online1. 

The exclusion criteria included the following: 

• Age inferior to 18 years and superior to 85 years; 

• Cardiac disorders, major systemic diseases, congenital syndromes, pacemakers, and 

psychological/psychiatric/mental disorders; 

• Comorbid diagnosis of chronic pain (e.g., Rheumatoid arthritis); 

• Inability to comprehend or answer the self-report measures; 

• Refusal to provide informed consent. 

 The protocol implemented in this study followed several steps: 

1. After the patients’ selection, an interview was held to explain to the patient the procedures 

during the data collection and the different sensors he would wear on his body. They were also 

informed that they could quit the data collection at any time; 

2. At the entrance in the recovery room, after being stabilized by the clinical team, electrodes were 

placed on the body of the patient, and the positioning was maintained through the recording.  

The ECG signal was collected during the standard clinical practices of analgesia (which were 

performed according to the clinicians’ decisions/demands) and without compromising the 

patient’s wellbeing; 

3. A waiting time of 5 minutes was considered to stabilize the signal, while signal recordings were 

visually inspected; 

4. While in the recovery room, patients were asked to describe their pain level at different time 

points during the recording. The patients’ pain evaluations were based on self-report (several 

assessments, as necessary, until discharge); 

5. The clinical interventions were registered, and every time an analgesic therapeutic was 

applied/changed, a trigger was manually deployed or annotated; 

6. If necessary, according to the analgesic therapeutics, and if the patients are in conditions 

approved by the clinical team, the patients’ pain was evaluated based on self-report; 

7. With respect to the clinical conditions after surgery, a data collection instrument1 was applied 

and fulfilled by the clinician team, addressing multiple variables, such as age, gender, diagnosis, 

health issues, surgical intervention and related procedures, type of pain, location of pain, level 

of pain, and pain relief intervention/therapeutics (both in surgery and recovery rooms); 

8. As the clinical team considered that the patient was stable for discharge, the data collection 

ended, and the electrodes were removed. 

4.3 Dataset 

 The dataset used in this work is composed of ECG signals, patient’s age and gender, and type of 

surgical intervention. In addition, the procedures performed during the patient stay in the recovery 

room were also collected, including self-reports of pain, pain relief therapeutics, and other medical 

 
1https://github.com/danielapais/Mestrado_Dissertacao 



 

19 
 

interventions, such as patient repositioning. These procedures are associated with time triggers that 

mark the event occurrence in the ECG signal. 

 ECG recordings with a sampling frequency of 500 Hz from twenty patients were recorded, one 

recording for each patient. However, one patient was withdrawn from the study because of the lack of 

pain assessment annotations during the ECG recording. Therefore, the patients consisted of ten females 

and nine males, with ages ranging from 23 to 83 years. The pain scale consisted of a verbal description 

of pain through adjectives and phrases by the patients. The self-reports from patients were converted 

and grouped into four categories: 0 – “no pain”, 1 – “mild pain”, 2 – “moderate pain”, and 3 – “severe 

pain”. A variable number of pain assessment points was obtained for each patient during ECG recording, 

and a total of 32 pain readings were acquired, with 12 assessments in patients with no pain, 4 in those 

with mild pain, 11 with moderate pain, and 5 in those with severe pain, as shown in Table 4.1. Category 

“no pain” included 4 readings of three female individuals and 8 of four male individuals. The mild 

intensity contains 3 readings from three different females and 1 from a male patient. “Moderate” 

readings correspond to 8 reports from six females and 3 reports from three males. Lastly, the severe 

category comprehends 2 readings from two male patients and 3 readings from a female patient. Among 

all patients, four (two females and two males) did not receive any pain analgesia during their stay in the 

recovery room since three of them did not experience pain at any time and one only reported mild pain 

at entering the recovery room. In addition, any analgesic was given after a time point of pain assessment 

(of mild pain) to another different patient, as this patient was already being medicated for pain 

management (Table 4.1).  

 

Table 4.1: Number of postoperative pain assessments for each pain category. 

Pain Total pain assessments 
Number pain assessments 
followed by pain control 

0 – no pain 12 0 

1 – mild 4 2 

2 – moderate 11 11 

3 – severe 5 5 

Total assessments for all 
categories 

32 18 

 

 An analysis of the number of mild, moderate, and severe reports of each patient was also done. 

Table 4.2 represents how many patients reported a non-zero level of pain several times during their stay 

in the recovery room, both before and during ECG recording, which varied from 0 to 6 reports. In general, 

patients who did not experience pain or that only report pain one time (number of reports ≤ 1) are 

younger males (3 males, 23 ≤ age ≤ 58 y.o.) and older females (5 females, 64 ≤ age ≤ 83 y.o.). On the 

other hand, male patients who reported a non-zero level of pain more than one time and fewer than 

four times (1 < number of reports ≤ 3) are older (5 males, 59 ≤ age ≤ 83 y.o.) than the ones with a number 

of reports inferior or equal to one, and the two females had ages 34 and 51 y.o. The three patients who 

reported pain more than three times (number of reports > 3) were women aged 37, 69, and 82. In 

general, the seven patients who described more than three times a non-zero level of pain showed 

persistent pain during the ECG recording, despite being medicated with analgesic therapeutics. 
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Table 4.2: Number of patients and the respective number of non-zero levels of pain. 

Number of reports 0 1 2 3 4 5 6 

Number of patients 3 6 3 4 1 1 1 

  

Furthermore, different surgical procedures were performed, which may lead to superior or inferior 

pain experience according to the type of surgical manipulation. For instance, the two patients who 

underwent gastric bypass complained of pain several times, whereas patients subjected to bilateral 

sympathectomy reported a less painful experience in the recovery room. The fact that patients 

underwent different procedures creates a wider variability in pain experiences. However, the reduced 

number of patients makes it difficult to draw conclusions on the pain intensity variation within types of 

surgery. In addition, since the available dataset comprehends a reduced representation of genders and 

age groups, it is not possible to observe relevant patterns of pain intensity regarding these two variables. 

4.4 Pre-processing 

 ECG signals were pre-processed by filtering and normalization processes. However, firstly, the last 

samples of the ECG signals, which do not have useful information due to periods with excessive noise, 

were eliminated.  

 Filtering the noise of the signals is an essential step of pre-processing, as it allows to increase the 

quality of the signal. Noise can have a variety of origins, including physiological, equipment, or 

environmental interference. Common noises observed in ECG signals are powerline interference, which 

corresponds to meddling at a frequency of 50 Hz or 60 Hz [65], [66], and baseline wander (or baseline 

drift), whose content usually has frequencies below 1 Hz [46], [67]. To identify the noise in the signals 

and select the filtering technique, the frequency components of the ECG signals were analyzed using 

Welch’s power spectral density estimate. This analysis allowed to identify content in the low frequencies 

and, in some spectrums, content at 50 Hz and respective harmonics and, therefore, bandpass filtering 

was considered suitable for removing the noise content found in the signals. This filter removes low-

frequency noise and high-frequency noise content, according to the cut-off frequencies used. This 

filtering technique is widely used, but different cut-off frequencies are suggested [68]. In order to choose 

the filter parameters, the performance of different combinations of filter orders and cut-off frequencies 

were tested. The noise was then removed by filtering the ECG signals with a bandpass Butterworth filter, 

of order 4, with cut-off frequencies of 0.5 Hz and 40 Hz. An example of the filtering process is shown in 

Figure 4.2. 
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Figure 4.2: Raw and filtered ECG signal. 

 

After filtering the signals, their amplitude was normalized in relation to the individual patient 

baseline to reduce inter-individual differences. The normalized signal is given by Equation 4.1, where 

mean_baseline and stdev_baseline are the mean and the standard deviation of the baseline signal, 

respectively. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 =  
𝑆𝑖𝑔𝑛𝑎𝑙 − 𝑚𝑒𝑎𝑛𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑠𝑡𝑑𝑒𝑣𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 (4.1) 

 

Inter-subject variability corresponds to variations in the heartbeats among different subjects that 

can be a result of heart geometry (heart size and shape), individual attributes (age and weight), physical 

exercise, cardiac condition, emotions and fatigue, and electrodes characteristics and placement [69]. An 

ECG signal has the same waves for all individuals, but its geometrical characteristics, such as the 

amplitude of the waves, can vary between subjects [70]. Since the baseline was not collected previously 

to the surgery, the baseline state of each patient was assumed to be the last 10 minutes of the ECG 

recording (after the removal of the noisy samples mentioned above). It is expected that the patient is 

no longer under the influence of any pharmacologic intervention and no longer in pain during this 

period. The quality of the baseline segment selected from the filtered ECG was visually checked for 

artifacts to confirm that the information was viable.  

4.5 Feature Extraction 

 Postoperative pain is a long-lasting event that results from the recent damage of tissue. Therefore, 

selecting shorter time intervals from the physiological signal is necessary to study this phenomenon and 

its relationship with the ECG signal. These intervals of interest correspond to pain assessment and 

management moments, as they are associated with the intensity perceived and reported by the patient 

at that moment and with the relief of pain. Hence, postoperative pain intensity and experience can be 

studied in terms of physiological changes in those intervals. Two intervals were considered to investigate 

the influence of pain intensity and if pain-relief medication altered the features of the ECG signal. 

Therefore, after pre-processing the data, 5-minutes (150 000 samples) and 10-minutes (300 000 

samples) of ECG data were selected before assessment for all self-reports (no, mild, moderate, and 
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severe pain). Regarding the second proposed goal, 5-minutes and 10-minutes of ECG data, both before 

and after pain control, were selected for self-reports of mild, moderate, and severe pain. Before 

proceeding to feature extraction on these time segments, they were examined visually to inspect the 

presence of artifacts to prevent inaccurate measurement induced by those. Some artifacts were found, 

yet overall segments presented good quality. The feature extraction performed on those intervals allows 

to derive important variables that could be more informative and descriptive than the ECG signal [71]. 

Two Python packages were used to extract the features, Neurokit2 and Neurokit23, along with statistical 

functions. The statistical operations allowed to obtain more attributes from the ones firstly extracted. 

Table 4.3 lists the 45 features that were calculated.  

Primarily, HRV indices were obtained from R peaks samples, and it was only analyzed the ones 

considered appropriate for short-term measurements in the literature. Short-term indices are based on 

approximately 5-minutes intervals of HRV data [72]. For time-domain measurements, RMSSD, SDNN, 

pNN50, pNN20, HTI and TINN were referenced as suitable for short-term measures [72], [73], [74]. 

Additionally, MeanNN [73], SDSD, and CVNN were also considered appropriate for 5-minutes intervals 

[75], and MedianNN and CVSD were also calculated. For frequency-domain indices, spectral power 

density of the LF and the HF bands, and LF/HF ratio were introduced as short-term measures [72], [74]. 

In addition, the normalized LF (LFn), the normalized HF (HFn), and the log-transformed HF (LnHF) were 

also determined. For non-linear measures, the sample entropy of HRV (HRV_SampEn), the approximate 

entropy of HRV (HRV_ApEn), SD1, SD2, and SD1/SD2 were selected [72], [73]. 

Furthermore, R peaks also allowed to calculate HR. After HR calculation, the signal amplitude was 

normalized regarding the patient's baseline with Equation 4.1, and the minimum, maximum, mean, 

median, standard deviation, and the difference between the maximum and minimum of the normalized 

HR signal were computed.  

Additionally, features related to the ECG waves peaks and location of the waves were calculated. 

The P and Q waves were not used because only a small number of waves was detected in several 

segments, compromising the results. Firstly, it was calculated the mean and median amplitude of each 

wave peak. Secondly, the mean and median differences between consecutive waves were computed, 

with the wave differences normalized in relation to patients’ baselines.  

Lastly, it was also computed the mean and median area of the cardiac cycles of each segment and 

the sample and approximate entropy of the ECG signal. 

Besides the HR signal, which has the same length as the ECG segments, the other measurements are 

represented by a single value for each time interval. 

After feature extraction, an initial exploratory analysis was conducted, observing feature behavior 

to remove the ones without useful information, such as features with constant or missing values.  

 

 

 

 

 

 

 

 

 

 
2 https://neurokit.readthedocs.io/en/latest/ 
3 https://neurokit2.readthedocs.io/en/latest/ 



 

23 
 

Table 4.3: Description of the ECG features extracted in the processing stage. 

No Symbol Unit Feature description 

Time-domain HRV features 
1 MeanNN ms Mean of RR intervals 

2 MedianNN ms 
Median of the absolute values of the successive differences 
between RR intervals 

3 SDNN ms Standard deviation of RR intervals 
4 SDSD ms Standard deviation of successive differences of RR intervals 
5 RMSSD ms Root mean square of successive differences of RR intervals 

6 CVNN % 
Standard deviation of the RR intervals (SDNN) divided by the 
mean of the RR intervals (MeanNN) 

7 CVSD  
Root mean square of the sum of successive differences (RMSSD) 
divided by the mean of the RR intervals (MeanNN) 

8 pNN50 % 
Proportion of RR intervals greater than 50ms, out of the total 
number of RR intervals 

9 pNN20 % 
Proportion of RR intervals greater than 20ms, out of the total 
number of RR intervals 

10 TINN ms 
Baseline width of the RR intervals distribution obtained by 
triangular interpolation 

11 HTI  
Total number of RR intervals divided by the height of the RR 
intervals histogram 

Frequency-domain HRV features 
12 LF ms2 Spectral power density of the low-frequency band (0.04 - 0.15 Hz) 
13 HF ms2 Spectral power density of the high-frequency band (0.15 - 0.4 Hz) 
14 LFHF  Ratio of LF-to-HF power 
15 LnHF  Natural logarithm of HF 
16 LFn  Normalized low frequency 
17 HFn  Normalized high frequency 
Nonlinear HRV features 
18 SampEn  Sample entropy 
19 ApEn  Approximate entropy 
20 SD1 ms Poincaré plot standard deviation perpendicular the line of identity 
21 SD2 ms Poincaré plot standard deviation along the line of identity 
22 SD1/SD2  Ratio of SD1-to-SD2 
Other features 
23 HR bpm Heart rate signal 
24 MeanHR bpm Mean heart rate 
25 MedianHR bpm Median heart rate 
26 MinHR bpm Minimum heart rate 
27 MaxHR bpm Maximum heart rate 
28 StdevHR bpm Standard deviation of heart rate 
29 MaxMinHR bpm Difference between the highest and lowest heart rates 
30 
31 
32 

Mean_Diff_R_peaks 
Mean_Diff_S_waves, 
Mean_Diff_T_waves, 

ms Mean of successive differences of R-R, S-S, and T-T intervals 

33 
34 
35 

Median_Diff_R_peaks 
Median_Diff_S_waves, 
Median_Diff_T_waves 

ms Median of successive differences of R-R, S-S, and T-T intervals 

36 
37 
38 

Mean_Amplitude_R_peaks, 
Mean_Amplitude_S_waves, 
Mean_Amplitude_T_waves 

 Mean of R, S, and T waves peaks amplitude 

39 
40 
41 

Median_Amplitude_R_peaks, 
Median_Amplitude_S_waves, 
Median_Amplitude_T_waves 

 Median of R, S and T waves peaks amplitude 

42 Mean_Heartbeats_Area  Mean area of all cardiac cycles 
43 Median_Heartbeats_Area  Median area of all cardiac cycles 
44 ECG_SampEn  Sample entropy of ECG 
45 ECG_ApproxEn  Approximate entropy of ECG 
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4.6 Univariate Analysis 

The univariate analysis was performed in all 45 features, and it was divided into two studies, one 
based on the pain reports and the other on the analgesia effects, which will be explained in the following 
sections. 

4.6.1 Pain-reported analysis  

Initially, the computed features were studied using boxplots to visualize the distribution of the 

feature according to pain reported. The boxplots were drawn to assess differences between pain 

absence (no pain reports) and pain presence (mild, moderate, and severe pain reports), using notched 

boxes to facilitate visual comparison. If the notch-intervals do not overlap, there is evidence that the 

medians of the two groups being compared are different at the 5% level [76]. Figure 4.3 represents the 

behavior of some of the extracted features. These features were selected among the ones with low 

correlation and were chosen because they seemed to expose differences between the two groups. 

 

Figure 4.3: Boxplots of ECG features representing the distribution among two groups: pain absence 
and pain presence. The features include HRV_SampEn, HRV_pNN20, ECG_SampEn, MaxMinHR, 

MaxHR, and Mean_Amplitude_R_peaks, extracted from 5 minutes and 10 minutes intervals. The red 
triangle represents the mean. 

Firstly, we can see that all boxes overlap, although some differences between the two groups can 

be discerned. For the range of HR (MaxMinHR), the notch intervals do not overlap, which could indicate 

that likely there is a difference between the two groups. In addition, the “pain” category presents higher 

variability, and the “no pain” category has lower values of MaxMinHR. This behavior is also observed for 

maximum HR, sample entropy of ECG, and mean amplitude of R peaks. Contrarily, pain presence 

presents the lowest variability and lower values of pNN20 than pain absence. In relation to 

HRV_SampEn, the reports respective to pain presence have lower values than no pain reports.  
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4.6.2 Analgesia effect analysis 

 Afterward, with the goal of investigating if pain-relief medication posed a signature on the features, 

the significant difference between features corresponding to before and after pain control was tested 

with Wilcoxon signed-rank test (as features were not normally distributed). The statistical significance 

level was set at 5%. In addition, boxplots were created to visualize how the data of each feature behaves 

before and after analgesia. Figure 4.4 shows the boxplots, and Table 4.4 contains the p-values of the 

Wilcoxon test obtained for three of the features, as an example of this univariate analysis results. The 

same analysis was done for the remaining features. 

 

Figure 4.4: Boxplots representing ECG features differences before and after analgesia. The features 
include MaxMinHR, pNN20, and Mean_Amplitude_R_peaks, for 5 and 10 minutes intervals. The red 

triangle represents the mean. 
 

Table 4.4: Wilcoxon signed-rank test’s p-value obtained to test differences of ECG features before and 
after analgesia. The features include MaxMinHR, pNN20, and Mean_Amplitude_R_peaks, extracted 
from 5 and 10 minutes intervals. 

Time interval MaxMinHR pNN20 Mean_Amplitude_R_peaks 

5 minutes 0.799 0.522 0.196 

10 minutes 0.966 0.609 0.054 

 

In general, it was not observed significant differences between the two groups. The resulting 

boxplots show that the boxes of both groups (before and after pain analgesia) overlap for both time 

intervals. In addition, compared to the boxplots results in Figure 4.3, the features do not behave as 

expected. On the one hand, in Figure 4.3, no pain ratings have lower and less variable mean amplitude 

of R peaks and more variable pNN20. However, after analgesia, this behavior is not observed. On the 

other hand, MaxMinHR behaves similarly to the pain intensity analysis, but the differences are less 

noticeable and prominent. In addition, the Wilcoxon results support what has been observed in the 

boxplots since the test exposed no statistically significant differences between the two groups for any 

of the features in neither 5 minutes intervals nor 10 minutes intervals. 

4.6.3 Discussion 

It is expected that analgesia had reduced pain and, consequently, physiological changes would occur 

and reveal pain relief. However, the features extracted from both time segments could not discriminate 
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nor indicate pain relief after pharmacological intervention. On the one hand, the analgesic effect may 

not have been enough to provoke an alteration in the ECG signal. Moreover, the individual features may 

not provide a complete description of the pain response and may not be sensitive enough. In other 

words, they may not be appropriate or may be insufficient to detect and discriminate differences.  

It is important to refer that the results were drawn on a limited dataset and, therefore, the 

information may have been insufficient. The study of the individual behavior of each feature should be 

conducted on a sample with more patients and with more pain assessment points. In addition, to 

complement this analysis in the future, pain should be assessed after analgesia to perceive if patients 

report pain reduction. 

4.7 Unsupervised Multivariate Analysis 

While the behavior of the individual features proved to be unsatisfactory, when combined, they may 

complement their information, and the pain description could improve. Therefore, an unsupervised 

multivariate analysis was explored to determine whether combinations of features are associated with 

and expose pain characteristics. Unsupervised learning is carried out by clustering algorithms which are 

performed considering that the data is unlabelled. The main goals of this task are to examine the data, 

extract useful information, and find groups that are similar. In short, it aims to discover patterns, 

associations, and relationships within the features from ECG signals concerning the postoperative pain 

experience.  

The studies proposed for clustering analysis will investigate the pain scores and the number of non-

zero levels of pain reported by each patient. Using the features computed on both time segments, two 

hypotheses will be explored:  

i. If the features are grouped accordingly to the reported pain intensity, presenting similar 

behavior within pain intensities; 

ii. If the features expose similarities respective to the number of times a patient reported pain 

during the postoperative period. 

 In addition, this study will explore the influence of the number of features used as input to the 

clustering algorithm, which varied from 2 to 10 features, and evaluate the performance of three 

clustering algorithms: k-means, agglomerative and spectral clustering. The library scikit-learn4 of Python 

will be used to perform the multivariate analysis. 

 Firstly, this subchapter will describe feature transformation and feature selection, which precedes 

the clustering tasks. After, the clustering models will be described, and the performance metrics used 

to evaluate and compare the results are listed. Finally, the case studies will be introduced, and the 

results of the unsupervised approach will be displayed and discussed. 

4.7.1 Feature transformation 

 Since the extracted features have different ranges and order of magnitudes, they should be 

transformed into the same scale to ensure a fair comparison, avoid misleading results, and improve the 

performance of machine learning models. One approach is to scale features between 0 and 1 with the 

min-max scaling [71].  

 
4 https://scikit-learn.org/stable/ 
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4.7.2  Feature selection 

 Feature selection is crucial before clustering tasks because the presence of irrelevant and redundant 

features can degrade the model's performance [77]. Moreover, having a smaller set of features reduces 

the complexity of the model and reduces run time. 

There are different types of feature selection methods, and, in this dissertation, feature selection 

was performed through feature correlation and variance analysis followed by backward sequential 

selection. 

Feature selection using correlation and variance 

One way of feature selection is to remove redundant variables using the correlation between 

features [71]. As features were not normally distributed, the Spearman correlation coefficient was 

computed. The resulting matrices obtained for both time intervals were represented as correlation 

heatmaps to observe the correlation's strength and direction (positive or negative) through a color code 

of the 44 features (HR signals were not used). The heatmaps are available in a Github repository1 for the 

features extracted from both 5 minutes and 10 minutes intervals. 

Features were considered strongly correlated if the correlation coefficient was superior to 0.9 and 

the statistical significance level was set at 5%. The one with higher variance was selected from the pair 

of highly correlated features because data with higher variance provide more information. For the 

features extracted from 5-minutes intervals, 24 of them have a correlation greater than 0.9, whereas, 

for the 10-minutes, 23 features are highly correlated. For example, literature sustains that RMSSD is 

equivalent to SD1, both representing short-term HRV [72], and it was obtained a perfect positive 

correlation between these two features, for both time intervals (r=1; p=0.0).  

Table 4.5 presents the selected features, and Figure 4.5 shows the correlation heatmap for the 

selected features in the 5-minutes interval, according to this procedure. 

 

Table 4.5: Selected features after studying features’ correlation and variance, for both 5 and 10 minutes 
intervals. 

Time interval Features Total 

Subset 5 min 

MedianNN, pNN20, TINN, HTI, LF, LFHF, LnHF, SampEn, SD2, 

ECG_SampEn, ECG_ApproxEn, MinHR, MaxHR, StdevHR, MaxMinHR, 

Mean_Amplitude_R_waves, Mean_Amplitude_S_waves, 

Median_Amplitude_T_waves, Mean_Diff_R_peaks, 

Mean_Heartbeats_Area 

20 

Subset 10 min Subset 5 min + pNN50  21 
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Figure 4.5: Heatmap of the correlation matrix of the features selected after correlation and 

variance analysis, for 5-minutes interval. Symbols * and ** represent statistical significance for 

p<0.05 and for p<0.01, respectively. 

 

Feature Selection using backward elimination 

A second selection technique was applied to reduce the input variables to the clustering model by 

choosing a subset of important features from the previously selected features. In this work, a varying 

number of features from 2 to 10 was tested. This selection was made with the backward elimination 

(using scikit-learn from Python5), selecting the important variables based on the relation with the 

desired output. Backward elimination starts with the set of all available features, and one feature at a 

time is removed. This algorithm performs k-fold cross-validation when removing the feature at each 

iteration to find the best one to remove from the set based on a greedy procedure that improves the 

estimator score. The algorithms K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) were 

used as estimators. The scores of the estimators are calculated for the subset of features and compared 

to the other subsets, and the feature selected to be removed is the one belonging to the subset that 

shows the least performance loss [77]. It is important to note that the target variable varied according 

 
5 https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html 
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to the case study, so different subsets of features were selected for the different case studies (for pain-

reported and the number of reported non-zero levels of pain analyses). 

4.7.3 Clustering models 

 Three clustering algorithms were tested, including k-means, agglomerative and spectral techniques. 

K-means clustering6 

The k-means clustering algorithm considers the distance of the samples to a centroid as a measure 

of similarity. It chooses centroids following these steps: 

1. Select initial centroids; 

2. Measure the distance between each sample and the centroids and assign the sample to the 

nearest centroid; 

3. Calculate the mean of all samples assigned to the centroid, which value corresponds to the new 

centroid; 

4. The last two steps are repeated until the difference between the new centroids, and the previous 

one is lower than a selected threshold. 

Agglomerative hierarchical clustering7 

Hierarchical clustering works by merging or splitting the clusters successively. In agglomerative 

clustering, the algorithms work as a “bottom-up” approach as it starts with each sample in its cluster 

and then merges pairs of clusters as the hierarchy moves up. This clustering technique considers the 

distance between samples as a measure of similarity. 

1. Assign each sample to one cluster; 

2. Determine the distance measurement between samples; 

3. Determine the linkage criteria to merge the clusters; 

4. In the end, all samples are grouped into one cluster.  

Spectral clustering8 

Spectral clustering examines graph distance as a metric of similarity. 

1. An affinity matrix, also called a similarity matrix, is created; 

2. Compute the components of the eigenvectors to define a feature vector for each sample in a 

low dimensional space. For k clusters, compute the first k eigenvectors; 

3. Perform k-means on the feature vectors to separate the samples into clusters. 

4.7.4  Evaluation metrics 

Three setups were tested with the unsupervised approach: the size of the time window used for 

feature extraction, the number of features as input for the clustering tasks, and the clustering algorithm. 

For each combination of these variables, a confusion matrix and several performance metrics were 

computed and examined. Briefly, a shorter interval would be optimal since less information would be 

needed. Additionally, a smaller input to the algorithm, that is, a smaller number of features, may 

improve the algorithm performance and reduce the complexity and computing time.  

 
6 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html 
7 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html 
8 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html 
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The performance of the clustering algorithms can be evaluated by confusion matrices, which allow 

easy and quick visualization of the performance of an algorithm by considering actual and predicted 

values. In binary classification, it can be represented by the matrix in Figure 4.6. 

 
Figure 4.6: Confusion matrix for binary problems. TP: True Positive, 

FP: False Positive, FN: False Negative, TN: True Negative. 

 The performance metrics based on the confusion matrix obtained to evaluate the results from 

clustering methods were accuracy, precision, recall, f1-score, and Matthews correlation coefficient. 

• Accuracy is the number of correct predictions to the total number of input samples, and it is 

measured using the formula in Equation 4.2 [78]. If the data is imbalanced, the number of 

elements in one class is larger than in the other, and accuracy is not an appropriate measure. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.2) 

• Precision identifies how many of the predicted as positive are actually positive, and is expressed 

in Equation 4.3 [78]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.3) 

• Recall/Sensitivity corresponds to the number of correct predicted positives out of all positives, 

and it is calculated with Equation 4.4 [78]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.4) 

• F1-score combines precision and recall into one measure (the harmonic mean), as seen in 

Equation 4.5 [78]. 

𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4.5) 

• Matthews correlation coefficient (MCC) can be calculated by Equation 4.6, and it varies 

between -1, if TP=TN=0, and 1, if FP=FN=0. MCC is a good metric for imbalanced datasets, and 

it indicates that both classes are predictable well if the value is close to 1. Therefore, MCC can 

be used if both classes are of interest [79]. 

                          𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(4.6) 
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4.7.5 Clustering results 

Three case studies will be presented, which will be treated as binary clustering problems. Case 

studies A and B consider the pain scores reported by the patients during the postoperative period. The 

data points were divided accordingly to their intensity to investigate similarities within pain intensities. 

Cases study C analyze the number of mild, moderate, or severe pain reports each patient gives (see 

Table 4.2). The last case study aims to investigate the patient profiles during the postoperative period 

and explore if patients who reported pain more times have physiological alterations different from those 

who reported fewer times and that seem to have pain managed more efficiently. This analysis is done 

independently of the intensity of the pain, meaning that scores corresponding to different intensities 

will belong to the same category. Although a patient may describe different pain intensities, the 

clustering algorithms may find similarities within the different scores. It is also important to refer that 

the number of reports considered in this analysis includes the assessments made before ECG collection. 

Case-study A: “no pain” versus “pain”  

Concerning the pain levels, it was tested if scores of 0 (12 samples) were grouped in a different 

cluster from scores of 1, 2, and 3 (20 samples). The negative class corresponds to the “no pain” condition, 

whereas the positive corresponds to the “pain” state. The goal is to assess if it is possible to discriminate 

between the absence and presence of pain. 

 Figures 4.7 and 4.8 display the performance results of the shorter (5-minutes) and longer (10-

minutes) intervals, respectively, obtained by varying the number of features and the clustering model. 

It is clinically important to accurately group and predict no pain and pain samples. Therefore, accuracy 

is not represented in this case study since this measure can be biased and misdealing when classes are 

imbalanced. That is, accuracy can be high even though the minority class examples are grouped 

incorrectly. 

 
Figure 4.7: Precision, recall, f1-score, and MCC obtained for the study of absence and presence of 

pain using features extracted from 5-minutes intervals. 
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Figure 4.8: Precision, recall, f1-score, and MCC obtained for the study of absence and presence of 

pain using features extracted from 10-minutes intervals. 

  

The bar plots in Figure 4.7 allow concluding that k-means and spectral clusters outputted the best 

overall performance for the smallest subset of features: pNN20 and mean area of heartbeats. Another 

observation is that the precision increases for bigger subsets of features. In some cases, the precision 

reaches the maximum value (precision=1), which means there is no FP. Even though precision improves 

significantly for a higher number of features (≥ 7 features), recall significantly decreases as the FN 

increases. Therefore, even with a higher number of features, the data is still not perfectly separable by 

the two clusters. 

 In Figure 4.8, for the 10-minutes interval, the performance metrics only vary within the subsets with 

two to six features. For the remaining subgroups of features, the metrics remain constant for the three 

algorithms. The selected subset of two features is different from the previous one and comprehends 

two HRV metrics, MedianNN and pNN20, which did not lead to good results. Lastly, the results show 

that the data is not perfectly separable into two clusters, however the three clustering techniques 

demonstrated that the subset of 5 features achieved the highest and the same overall performance than 

subsets of more than 6 features. 

Figure 4.9 shows the confusion matrices corresponding to the best overall results of both time 

segments. 
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5-minutes interval 

Subset of 2 features 
k-means and spectral clustering 

 10-minutes interval 
Subset of 5 or more features  

agglomerative and spectral clustering 
 

 

 

 

 

 

 
Figure 4.9: Confusion matrices of the best results for clustering analysis between “no pain” and 

“pain” conditions. 

 

For the 5-minutes study, the best overall performance was achieved, with k-means and spectral 

clustering, for the subset of 2 features (pNN20 and the mean area of the heartbeats), obtaining 

accuracy=78.1%, precision=76.0%, recall=95.0%, f1-score=84.4%, and MCC=0.53, which performance is 

superior to the one obtained with the features extracted in the 10 minutes intervals. Accuracy is high, 

but the results of accuracy can be misleading. Although 95% of “pain” are accurately grouped in the same 

cluster, only 50% of “no pain” are placed in the correct group, as we can see in the confusion matrix in 

Figure 4.9 (a). Consequently, half of the negative class would be incorrectly diagnosed, which would 

have resulted in the unnecessary treatment of patients. MCC result shows that the predicted class and 

the true class are weakly correlated, which is attributed to the fact that clustering with the two features 

is not so good at grouping “no pain” reports together. 

In contrast, combinations of a higher number of features could accomplish good discrimination of 

negative class (FP=0) but failed to set apart the positive one (FN=9). Hence, using more features, more 

patients would have remained undiagnosed and potentially undertreated. 

Therefore, a trade-off needs to be accomplished: with a small subset of features, there is an increase 

in the number of false alarms (FP), whereas a greater number of features increase the missed detections 

(FN). 

For the 10-minute analysis in Figure 4.9 (b), the subsets of 5 or more features achieved the same 

results for the three clustering methods. Therefore, with accuracy=75.0%, precision=73.1%, 

recall=95.0%, f1-score=82.6%, and MCC=0.45, the subset of 5 features achieved the highest 

performance, allowing to describe the problem with fewer features and proving that the remaining are 

not relevant to separate both classes. Thus, regardless of the clustering method, the obtained results 

for the subset of five features (pNN20, Mean_Heartbeats_Area, MedianNN, HTI, and 

Mean_Diff_R_peaks) indicate a suitable separation into two clusters. However, less than half of the 

negative class is well predicted. 

 Scatter plots representing the samples in two-dimensional feature space were also determined to 

visualize the relationship between variables. Although the algorithms were tested using multiple 

variables to cluster the data, only scatter plots displaying two variables will be drawn. This tool allows 

us to understand better how the algorithm performs the task of grouping the data points and, since the 

division performed by k-means is also represented in the plots, it also allows observing the scores 

provided in the confusion matrix for this clustering technique. 
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 The scatter plots of HRV_pNN20 and Mean_Heartbeats_Area for both time intervals are 

represented in Figure 4.10. Although this feature set was not selected by backward elimination in the 

10 minutes study, the plot was also drawn to compare it with the data points distribution obtained with 

5 minutes intervals. Each input feature defines an axis, and each point in the plot represents a report 

from a patient. A third variable was added that indicates the categorical values of the patients' reports 

to distinct each point, encoding through color, between “no pain” and “pain” conditions. Figure 4.10 

also contains the cluster centers obtained with k-means for both time segments. For both cases, the 

cluster assigned to the positive class (“pain”) typically had lower values of pNN20 and lower values of 

the heartbeats' mean area, compared with the one assigned to the negative class (“no pain”). A decision 

boundary between the two clusters was created. In k-means, the line represents the equidistant points 

from the two centroids and the two regions separated by the decision surface correspond to the two 

classes generated by the algorithm. Each observation in the space is assigned to one of the classes, and 

this way, it is easier to see how the k-means model divides the data points between the two clusters for 

a two-dimensional feature space. 

 
Figure 4.10: Scatter plot representing pNN20 and mean heartbeats area, under the presence and 

absence of pain. (a) Data points for the features extracted from 5-minutes intervals. (b) Data points 
for the features extracted from 10-minutes intervals. 

 
 Firstly, by checking the results in Figure 4.10, it is observed that the behavior of the pair of features 

is identical in both time segments. However, the performance of the k-means algorithm decreases for 

the 10-minutes interval because the number of FN is superior due to a data point close to the boundary 

in the 5-minutes graph that was assigned to the opposite class. 

Secondly, for both time segments, it is possible to notice that the data points are dispersed and do 

not seem to resemble any pattern to group into the two different conditions. Additionally, the majority 

of the data points are placed in the same group, as the clustering algorithms acted poorly at grouping 

the negative class. The plots display how scores corresponding to the “no pain” category were evenly 

divided between the two clusters. These results lead to believe the physiological characteristics exposed 

by pNN20 and mean area of heartbeats of some patients who referred not feeling pain may be similar 

to physiological alterations of patients that reported the presence of pain. It may be related to the 

(a) (b) 
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subject’s pain perception, which depends on several variables. For instance, a person may be under pain, 

and however, due to past painful events, they may perceive and underestimate the postoperative pain 

as discomfort.  

Additionally, we can also see an extreme value, with a high value of pNN20 and mean heartbeats 

area, that corresponds to the one FN identified in the confusion matrix in Figure 4.9 (a), which could be 

an outlier as it falls outside the other examples of the positive class. This observation, marked as “pain” 

condition, should be closer to the positive class centroid in the plot's blue region. This data point belongs 

to a patient who informed that he was not feeling pain in the two previous assessments, and at the time 

of this report, he may have been under low pain sensation.  

Furthermore, it was possible to see that the performance metrics results dramatically changed from 

the 5 minutes to the 10 minutes analysis for the smaller subsets of features, which shows that the 

correct selection of features dramatically influences the results in terms of performance. For example, 

in the case of 10 minutes, the set of two features that the model selected conduced to lower 

performance than the features represented in the scatter plot in Figure 4.10 (b), which revealed that 

pNN20 and mean heartbeats behaved better in the 10 minutes and outputted greater results than the 

two features selected by backward elimination (pNN20 and MedianNN). Hence, the performance can 

increase by performing manual feature selection and testing other combinations of features.  

 In summary, the best overall performance for positive prediction in the study of “no pain” versus 

“pain” was obtained using the smallest time window and only two features, implementing k-means and 

spectral clustering algorithms. The clustering techniques are successful in group non-zero pain scores in 

the same cluster (high recall values), and, even though these results suggest that the two features could 

be used as a positive predictor for pain, no pattern of grouping apart the two classes are recognized 

when looking at the scatter plots. In addition, this set of two features proved not to be enough to 

discriminate zero pain scores as 50% of the examples were grouped along with the examples of non-

zero pain scores. Finally, the overall performance of the clustering models indicates that as the number 

of features increases, the algorithms still fail to form two distinct groups accordingly to the pain scores 

reported by the patients. 

 Finally, it is also critical to acknowledge that the data consists of only 32 samples. In a small dataset, 

as is the case, the impact of an outlier can be much greater. Moreover, as there are very few examples 

in the dataset, finding feature characteristics for different pain conditions is even more challenging. In 

addition, the distribution of examples across the classes is not equal. The samples of the negative class 

(n=12 samples) correspond to 37.5% of the data points. Because there are so few total examples, the 

imbalance becomes more significant even if the distribution of examples is uneven by a small amount. 

For this reason, the results need to be carefully interpreted, and further study is necessary using a 

substantially larger dataset. 

Case study B: “tolerable pain” versus “intense pain” 

Following the previous case study, an exploration of how the clustering performs to separate 

“tolerable pain”, reported as no or mild pain, (16 samples) from “intense pain”, reported as moderate 

or severe pain, (16 samples) will be performed. In this case, the observations are evenly divided across 

the two classes. The negative corresponds to the “tolerable pain” condition, whereas the positive class 

corresponds to “intense pain”. 

 Figure 4.11 and Figure 4.12 display the performance metrics obtained by varying the features and 

the clustering algorithm for 5 and 10 minutes segments, respectively. 
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Figure 4.11: Accuracy, precision, recall, f1-score, and MCC obtained for the study of “tolerable pain” 

versus “intense pain” using features extracted from 5-minutes intervals. 

 

 

 
Figure 4.12: Accuracy, precision, recall, f1-score, and MCC obtained for the study of “tolerable pain” 

versus “intense pain” using features extracted from 10-minutes intervals. 

 

Comparing the results of the two figures, it is observed that the features selected in the 10-minutes 

analysis provided inferior results and that the best result for this case study was obtained in the 5-

minutes analysis, using two features and the three clustering algorithms. The two selected features by 

the backward elimination technique were a non-linear HRV feature, the sample entropy (HRV_SampEn), 

and the difference between the maximum and minimum heart rate (MaxMinHR). Even though this 

subset obtains the best result among the various subsets of selected features, f1-score and MCC are 
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low. Regarding the 10-minutes analysis, the best performance is respective to the k-means clustering 

with four features, including pNN20, LnHF, Mean_Heartbeats_Area, and Median_Amplitude_T_waves. 

 Figure 4.13 presents the two confusion matrices corresponding to the best results for each time 

analysis.  

 

 
5-minutes interval 

Subset of 2 features 
k-means, agglomerative and 

spectral clustering 

10-minutes interval 
Subset of 4 features 
k-means clustering 

 

 

  

 

 
Figure 4.13: Confusion matrices of the best results for clustering analysis between 

“tolerable pain” and “intense pain”. 

On the left, for the 5-minutes analysis, the matrix resulted in accuracy=75.0%, precision=83.3%, 

recall=62.5%, f1-score=71.4%, and MCC=0.52. The recall is low, as several “intense pain” samples fall 

incorrectly in the “tolerable pain” group (FN=6), which would correspond to undertreatment. On the 

right, the best result for the 10-minutes analysis has accuracy=65.6%, precision=60.0%, recall=93.7%, 

f1-score=73.2%, and MCC=0.38. Here, oppositely, the precision is low since most negative class samples 

are placed in the group of “intense pain” (FP=10). Those examples would be incorrectly diagnosed with 

“intense pain”, and correspond to overtreatment. To sum up, although the 5-minutes intervals achieved 

feasible results, in neither of the cases, it was possible to separate the two groups perfectly. 

 The data points corresponding to the two features extracted from 5 minutes intervals are distributed 

in the scatterplot in Figure 4.14. As in the previous analysis, the plot is divided into two regions of each 

cluster. The centroid of “intense pain” has lower HRV_SampEn and higher MaxMinHR than the centroid 

correspondent to “tolerable pain”. As we can see, there are several observations from both classes, six 

“intense pain” reports and fourteen “tolerable pain” reports, concentrated in lower MaxMinHR values, 

that were placed in the “tolerable pain” group. The other data points in the opposite cluster have higher 

MaxMinHR values. The majority of them (10) correspond to “intense pain” reports, which indicates that 

a wider range between extremes in the HR could be characteristic of more acute pain. Even though 

these differences are detected among the data points, there are very few examples. In addition, the way 

the “intense pain” cluster observations are dispersed through the cluster region makes it more difficult 

to identify a distinct group from the other cluster when observing the plot, using the two features 

information. Therefore, these results need to be tested with more examples to corroborate what has 

been observed. 
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Figure 4.14: Scatter plot representing sample entropy of HRV and the difference between the 
maximum and minimum HR to study the differences between “tolerable pain” and “intense pain”. 

 As final remarks on this case study, the reports are not perfectly divided between the two groups. 

Especially, several reports of “intense pain” expose physiological behaviors similar to the ones found on 

patients who reported “tolerable pain”. The pain induced by the surgical procedure may not have an 

effect on some patients, and, therefore, the features’ behavior will not be similar to patients in which 

pain had a bigger impact. The type of surgery could create more variability within the patients, and as 

each person has very distinct characteristics, patients reporting the same pain intensity may present 

similar or very different reactions from each other. 

Case study C: Number of pain levels reported 

Next, the clustering analysis was based on the number of reports of mild, moderate, or severe pain 

given by each patient. It was tested if the unsupervised learning algorithms can distinguish between 

assessments of patients who reported less than four times a non-zero level of pain (23 samples) and the 

reports of patients who stated that they felt pain four or more times (9 samples). The positive class 

corresponds to the inferior number of reports (no. assessments < 4), whereas the negative corresponds 

to the higher number of reports (no. assessments ≥ 4). 

 Figure 4.15 and Figure 4.16 represent the performance metrics for the 5-minutes interval and the 

10-minutes interval analysis, respectively, obtained by varying the number of features and the clustering 

algorithm. As in case study A, accuracy will not be represented since the classes are imbalanced.  

Figure 4.17 exhibits the confusion matrices corresponding to the highest f1-score and MCC values. 
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Figure 4.15: Precision, recall, f1-score, and MCC obtained for the study between 

“no. assessments < 4” and “no. assessments ≥ 4” using features extracted from 5-
minutes intervals. 

 

 
Figure 4.16: Precision, recall, f1-score, and MCC obtained for the study between 

“no. assessments < 4” and “no. assessments ≥ 4” using features extracted from 10-
minutes intervals. 
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5-minutes interval 
Subset of 2 features 
spectral clustering 

5-minutes interval 
Subset of 8 features 

agglomerative clustering 

10-minutes interval 
Subset of 2 features 

agglomerative clustering 

   

 
Figure 4.17: Confusion matrices of the best results for clustering analysis between “no. assessments 

< 4” and “no. assessments ≥ 4”. 

 In Figure 4.15, three performance results can be remarked. Firstly, the performance of the spectral 

technique had good results using only two features of the 5-minutes HR signal, the standard deviation 

(StdevHR) and the maximum value (MaxHR). The corresponding confusion matrix is in Figure 4.17 (a). 

The performance metrics are accuracy=90.6%, precision=88.5%, recall=100.0%, f1-score=93.9%, and 

MCC=0.77. Secondly, the subset of three features, with StdevHR, MaxHR, and Mean_Heartbeats_Area, 

worked well in the three clustering models, achieving the same confusion matrix. Finally, the 

performance of the agglomerative algorithm is increased with eight features as input. In addition to the 

last three listed features, the set of eight also includes Mean_Amplitude_S_waves, Mean_Diff_R_peaks, 

Mean_Amplitude_R_waves, ECG_ApproxEn, and HRV_HTI. The matrix in Figure 4.17 (b) corresponds to 

the results of agglomerative clustering with eight features, having accuracy=93.8%, precision=92.0%, 

recall=100.0%, f1-score=95.8%, and MCC=0.85.  

Figure 4.16 shows that, for the 10-minutes analysis, the agglomerative model behaved better. The 

best result belongs to agglomerative clustering using two features (StdevHR and 

Mean_Amplitude_R_waves), with the respective confusion matrix in Figure 4.17 (c), with 

accuracy=87.5%, precision=88.0%, recall=95.7%, f1-score=91.7%, and MCC=0.68. These results are 

equal to the performance using two features in the 5-minute analysis, for the same clustering algorithm 

and k-means. 

Figure 4.18 represents the distribution of data points for the sets of two features extracted for each 

time window. In this study, the categorical variable in the scatterplot corresponds to the number of non-

zero pain score reports of the patients, in accordance with being less than 4 reports and equal or greater 

than 4 pain assessments. For the 5-minute intervals, in Figure 4.18 (a), the cluster center assigned to the 

positive class has lower StdevHR and lower MaxHR values than the cluster centroid assigned to the 

negative class. Same as in case study A, clustering successfully groups the class with more examples in 

the same cluster. However, one-third of the negative class is also in that cluster. In this case study, the 

data is even more imbalanced than in case study A, which can compromise the results. Furthermore, 

one possible outlier is visible, which corresponds to a FN as represented in the confusion matrix in Figure 

4.17 (c). In Figure 4.18 (b), the data points seem more dispersed. Six examples of patients who reported 

pain four or more times are located in higher values of the standard deviation of HR and mean amplitude 

of R waves, although the other three examples (one-third of the total sample of the negative class) have 
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lower StdevHR values. Comparing the results of both time intervals, two different sets of features were 

selected, but both provided satisfactory results.  

  

Figure 4.18: Scatter plot representing the two selected features to study the differences between 
“no. assessments < 4” and “no. assessments ≥ 4”. (a) For the 5-minutes analysis. (b) For the 10-

minutes analysis. 
 

4.7.6 Discussion  

As final remarks, after the exposition and discussion of the results of the three presented case studies 

analyzed through unsupervised learning, regarding the three conditions evaluated, the length of the 

time window of physiological data (5 and 10 minutes), the number of selected features of interest and 

the clustering algorithm, the following observations can be perceived: 

• The dataset comprehend a significantly small amount of examples; 

• Two case studies have imbalanced classes, which poses additional challenges to the cluster task; 

• For each case study, different features were selected when comparing both time analyses; 

• The features selected in the study of pain intensity in case studies A and B were different between 

them, and also different from the case study C while evaluating the number of pain assessments; 

• Case study A: the best overall performance for positive prediction in the study of “no pain” versus 

“pain” was obtained using a 5-minutes time window and only two features (HRV_pNN20 and 

Mean_Heartbeats_Area), implementing k-means and spectral clustering algorithms 

(precision=76.0%, recall=95.0%, f1-score=84.4%, and MCC=0.53); 

• Case study B: the best result for the study between “tolerable pain” and “intense pain” was 

obtained in the 5-minutes interval using two features (HRV_SampEn and MaxMinHR) and 

implementing any of the three clustering algorithms (accuracy=75.0%, precision=83.3%, and 

recall=62.5%); 

• Case study C: the best result was obtained in the 5-minutes analysis with eight features as input to 

the agglomerative algorithm (precision=92.0%, recall=100.0%, f1-score=95.8%, and MCC=0.85).  

The eight features are StdevHR, MaxHR, Mean_Heartbeats_Area, Mean_Amplitude_S_waves, 

(a) (b) 
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Mean_Diff_R_peaks, Mean_Amplitude_R_waves, ECG_ApproxEn, and HRV_HTI. However, the 

problem can be described using only two features (StdevHR and MaxHR), with high performance 

values as well (precision=88.5%, recall=100%, f1-score=93.9%, and MCC=0.77). 
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Chapter 5  Conclusions and Further Research 

Conclusions and Further Research 

This chapter presents some conclusions drawn during this dissertation and the limitations encountered 

related to the complexity of postoperative pain experience and on the available dataset. Lastly, to finish 

this chapter, some topics are addressed related to future work that can be performed for further 

investigation on this topic. 

5.1 Discussion 

 Patients commonly manifest postoperative pain after surgery. It consists of an unpleasant 

experience that needs to be treated effectively. Considering that the choice of analgesic technique for 

pain treatment depends on assessing the pain intensity, adequate assessment is mandatory. Besides, 

the need to develop an objective measure also emerged from the inability of some patients to self-

report pain. In these situations, current scales require a third-person perspective from those observing 

the person experiencing pain and, therefore, produce an even more subjective report of pain. 

Consequently, in recent years, many tools have been proposed to investigate objective assessment 

aiming to improve clinical care.  

The study conducted in this dissertation investigated the potentiality of using physiological ECG 

signals as an assessment tool by performing an exploratory work in which physiological alterations 

evoked by postoperative pain were addressed. The work consisted of univariate and multivariate 

analyses on how the features extracted from the ECG signals, collected during patients’ stay in the 

recovery room, are related to postoperative pain processes. 

The goal of the univariate procedure was to examine the individual behavior of each feature. It was 

explored the differences of the features within pain intensity to perceive if it is possible to detect pain 

presence and how ECG features react to pain management by studying the behavior of each feature in 

detecting alterations after administration of analgesia. Although some features revealed differences in 

pain presence compared to no pain reports, none of the features exposed pain reduction after 

treatment. Nonetheless, the individual features may not provide the complete description of the pain 

response, but a combination of features may improve pain description as the physiological information 

could be complemented.  

The second approach investigated behaviors and patterns of sets of features through clustering and 

visual analysis. It first aimed to discover feature combinations that could distinguish patients’ reports 

within pain intensities through binary discrimination. After, clustering intended to explore pain 

prevalence during the immediate postoperative period through a study on how the reports were 

grouped according to the number of non-zero levels of pain reported by the patients. Although the 

univariate approach did not achieve satisfactory results, a multivariate approach proved to be promising 

in studying pain behaviors described by physiological changes of ECG signals. The results suggest that 

combinations of different features may be helpful and produce improved results, but more research is 

needed to address this issue.  

The goal is to find a reliable and valid measure that correlates and is sensitive and specific to pain. 

Ideally, this tool would be more accurate and less time-consuming to assess by the healthcare 

professionals and should allow continuous monitoring and, thus, assist pain management, whether by 
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providing a measure for those who cannot communicate or alerting when the patient is experiencing 

pain. One of the identified strategies for this purpose corresponds to physiological parameters that can 

be collected non-invasively, which was investigated in this work. The concept is that a painful stimulus 

will induce autonomic or behavioral responses that can be measured and employed as physiological 

markers of nociception. By continuously monitoring physiological alterations during patients’ stay in the 

recovery room, it would be possible to evaluate the intensity, manage analgesic delivery, and verify the 

efficacy of the pain treatment to adjust accordingly. Nonetheless, several challenges were encountered. 

 Firstly, in this work, and in accordance with some of the studies reviewed in this document, patients 

self-reported the pain they were feeling, and these assessments were used to validate the tools. 

However, pain corresponds to a conscious response involving psychological and social components to a 

nociceptive stimulus. Hence, the patient may be neglecting pain when he compares it to more painful 

experiences in the past, or due to fears about adverse effects or dependency, or even exacerbating it 

due to expectation. In addition, gender expectations of pain may also play a role in the subjective 

response. Therefore, profound differences within similar or identical procedures create doubt if the 

patient is reporting extremely high or low pain improperly. These concerns may compromise the 

validation through self-reports of the developed tools. 

 In general, the physiological variables studied as indirect measures of pain are affected by multiple 

factors. As most correspond to autonomic responses to nociception, sympathetic activators could alter 

the physiological outcome. These include drugs, nausea, and vomiting. In addition, common 

psychological activators correspond to stress and anxiety, and the pathological changes resulting from 

diseases can also affect the physiological response. It leads to uncertainty about whether the changes 

are related to pain or pharmacological, pathological, and psychological factors, and, ultimately, it could 

compromise the specificity of these indicators to postoperative pain. 

Pain itself is complex due to inter-individual variability. However, during the course of this 

dissertation, it became evident that postoperative pain is an elaborated process to study. When pain is 

induced by a stimulus, which intensity and duration can be controlled, in an awake subject, that 

experiences and reacts to it at the moment, the results are easier to study since the experimental 

conditions are the same for all participants. However, postoperative pain, being derived from a surgical 

procedure, is more complex. Firstly, the pain reaction is derived from a past stimulation that caused 

tissue trauma during which patients are under a state of unconsciousness, and no reflex movement and 

conscious recall or awareness of the noxious stimulation occur. Secondly, the anesthesia protocol and 

residual effects may influence the experience at arrival in the recovery room. In addition, the stimulus, 

that is, the type of surgery, can vary between individuals, which can lead to an increase in variability in 

the pain experience. Different surgical procedures could cause different pain states and, therefore, 

produce a procedure-specific pain state. As some surgical procedures are more invasive than others, the 

painful intensity felt by the patient may be superior.  

Moreover, it is essential to acknowledge the limitations of this study and interpret the findings 

carefully. Several limitations regarding the available dataset to accomplish the work discussed in this 

document and the nature of physiological measures were encountered. The study comprehends a 

limited number of participants, with only 19 subjects. Additionally, the number of samples (n=32) is also 

significantly small, and some of them belong to the same patient. Moreover, the patient’s baseline 

corresponds to a signal segment collected after the postoperative period. Although being stated in this 

work that the signal segment used as baseline corresponded to a period of minimal pain influence, 

acquisition of the baseline before the surgical procedure would be a better strategy. Lastly, some 

measures show high inter-individual differences, not allowing immediate inter-individual comparison of 
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values as they need to be normalized regarding patient baseline state, which is slightly compromised 

due to the period of acquisition. 

5.2 Future Work 

The exploration of physiological alterations during the postoperative period proved to be a great 

challenge, since postoperative pain is a complex and multidimensional problem in which physiological 

reaction manifests from autonomic, psychological, and behavioral responses. Therefore, some topics 

are suggested for future research. 

Firstly, combinations of more than one physiological signal may be valuable. The human body and 

inherent mechanisms make up a complex system, so a multisignal pain description could be more 

informative about pain experience during the postoperative period. In addition to the ECG signal, EDA 

and sEMG signals, which have shown promising results on the topic, can also be collected. Hence, it is 

proposed the study of different signals and a multisignal approach built with parameters from different 

physiological signals. 

Furthermore, the surgical procedure and the anesthesia protocol are variables that change among 

patients and their impact should be analyzed in future work. In addition, the elimination of the 

anesthetic drugs by the human body may be altered in patients with extremely high body weight and 

the remaining effects could mask pain sensation at the beginning of data collection. To study this, since 

extremes of body weight are commonly evaluated by BMI in clinical settings, the weight and height of 

patients should be added to the data collection instrument in the following study. Therefore, the effects 

caused by the variation in the relationship between weight and height (given by BMI) can be explored 

in the early postoperative period. The proposal is to check for inter-individual differences, by examining 

if patients with excess adipose tissue have different pain ratings from patients with lower fat tissue at 

the arrival in the recovery room.  

Individual differences in sensory experiences are important in the treatment of pain, and, therefore, 

the contributors and the magnitude of their influence on inter-individual differences of pain experience 

could also be investigated. In specific, it is suggested the investigation of age and gender differences in 

postoperative pain phenomenon. 

In addition, an evaluation within the participant itself, and not grouped, can also be performed. It 

would be interesting to evaluate the differences between a state of no pain and a state of pain within 

the same patient and discover if differences are detected, and if those differences are more prominent 

or pronounced in patients who report superior pain levels. Secondly, reports of a non-zero level of pain 

in which the patient was given a pharmacological pain treatment can be followed up to determine if the 

pharmacological intervention was effective. That is, assess pain relief by asking the patients to compare 

pain after medication. 

 Finally, it is crucial to collect a bigger sample of patients, more representative of age groups and 

gender, to explore pain variations and pain treatment over the time of the stay of the patients in the 

recovery room until discharge. 
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