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ABSTRACT 

With the aim of performing a detailed characterisation of the organic and inorganic constituents of 

particulate matter (PM2.5), as well as an estimate of the risks of exposure through inhalation, a 

monitoring campaign was carried out, for the first time, in the vicinity of the industrial chemical pole 

of Estarreja, one of the largest in Portugal. Daily PM2.5 samples were analysed for organic and elemental 

carbon (OC and EC), 47 trace elements and around 150 organic constituents. On average, OC and EC 

accounted for 25.2% and 11.4% of the PM2.5 mass, respectively. Organic compounds comprised 

polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, anhydrosugars, phenolics, aromatic 

ketones, glycerol derivatives, aliphatic alcohols, sterols, and carboxyl groups, including aromatic, 

carboxylic and dicarboxylic acids. Enrichment factors > 100 were obtained for Pb, Cd, Zn, Cu, Sn, B, 

Se, Bi, Sb and Mo, showing the contribution of industrial emissions and nearby major roads. Principal 

component analysis revealed that vehicle, industrial and biomass burning emissions accounted for 66%, 

11% and 9%, respectively, of the total PM2.5-bound PAHs. Some of the detected organic constituents 

are likely associated with plasticiser ingredients and thermal stabilisers used in the manufacture of PVC 

and other plastics in the industrial complex. Photooxidation products of both anthropogenic (e.g., 

toluene) and biogenic (e.g., isoprene and pinenes) precursors were also observed. It was estimated that 

biomass burning accounted for 13.8% of the PM2.5 concentrations and that secondary OC represented 

37.6% of the total OC. The lifetime cancer risk from inhalation exposure to PM2.5-bound PAHs was 

found to be negligible, but it exceeded the threshold of 10-6 for metal(loi)s, mainly due to Cr and As. 
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Introduction 

 

Air pollution leads to premature deaths from heart disease, stroke, and cancer, as well as acute lower 

respiratory infections (Bowe et al., 2019; Sharma et al., 2020; Yin et al., 2020). According to data from 

the World Health Organisation (WHO), it is estimated that indoor and outdoor (ambient) air pollution 

causes every year 7 million deaths globally (WHO, 2016). It is the 4th leading risk factor for mortality 

worldwide, ahead of other well-known risks like alcohol use and physical inactivity (HEI, 2020). In 

Europe, air pollution is the single largest environmental health risk and a major cause of premature 

deaths and diseases (EEA, 2020). The International Agency for Research on Cancer has classified air 

pollution in general, and specifically particulate matter lower than 10 and 2.5 µm (PM10 and PM2.5), as 

carcinogenic. Particulate matter was recognised as the deadliest form of air pollution (IARC, 2013). As 

a result of exposure to PM2.5, about 400,000 premature deaths per year occur in the 39 member countries 

of the European Environmental Agency (EEA, 2020), excluding Turkey. Based on the WHO’s Global 

Burden of Disease Project (GBD 2019 Risk Factors Collaborators, 2020), PM2.5 was pointed out as one 

of the main responsible for the largest increases in risk exposure. Particulate matter pollution burden 

was 44.6% higher in GBD 2019 than in GBD 2017. The rise is mainly due to the inclusion of low 

birthweight and short gestation as risk factors that are themselves affected by PM2.5, as well as increases 

in the relative risk curve for cardiovascular diseases. 

The toxicity, and consequently the health effects, of PM2.5 is highly dependent on its chemical 

composition (Park et al., 2018). So far, most of the works carried out in urban and industrial areas have 

mainly focused on polycyclic aromatic hydrocarbons (PAHs), due to their known carcinogenicity (e.g., 

Alves et al., 2017; Chao et al., 2019; Elzein et al., 2020; Fang et al., 2020, Hu et al., 2017; Liu et al., 

2019; Wang et al., 2015, 2016; Wu et al., 2014; Yan et al., 2017; Zhang et al., 2019; Zhu et al., 2019). 

However, some studies have recently outlined the role of multiple chemical components, such as polar 

organics, in inducing cytotoxicity, genotoxicicity or DNA damage (Besis et al., 2017; Jia et al., 2017; 

Van Den Heuvel et al., 2018). Particulate matter mass concentrations alone are not able to explain the 

health outcomes. Therefore, further research is essential to better understand the chemical specificities 

of the particulate material. 

The town of Estarreja is an interesting area for air quality studies, given the proximity to one of the 

most important industrial areas in Portugal and to some major roadways. The heavy industry is mainly 

located inside the so-called “Estarreja Chemical Complex”. This industrial area of 2 km2 is 1 km away 

from the town. The most significant industrial units, working for many decades, are dedicated to the 

production of: i) nitric acid, aniline and nitrobenzene, ii) sodium and chlorate compounds from rock 

salt through electrolytic cells, iii) synthetic resins, mainly PVC (polyvinyl chloride) from vinyl chloride 

monomer (VCM), and iv) isocyanide polymers of aromatic base. In 2009, the industrial pole was 
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expanded and the so-called “eco-business park” was created, integrating nowadays about 30 companies, 

spread over an area of 290 ha. This park accommodates different economic activities, including 

industrial, commercial, warehousing and services. According to the annual air quality reports of the 

Portuguese Environment Agency, the PM2.5 yearly mean values in Estarreja have been close to or 

exceeded the WHO guideline (10 µg/m3), although remaining within acceptable values set by 

national/European legislation (< 25 µg/m3). A deeper understanding of the impacts of PM2.5 on human 

health is crucial to support policy making and public awareness on air pollution. A previous air quality 

assessment, involving data from 2000 to 2009, was carried in Estarreja, but only traditional pollutants 

from the local station (SO2, NOx, O3 and PM10) were considered (Figueiredo et al., 2013). Despite being 

based on a short-term sampling campaign, the present work is the first carried out in Estarreja covering 

a detailed characterisation of both the organic and inorganic constituents of PM2.5, as well as an estimate 

of the risks associated with inhalation exposure. Thus, it is expected that this preliminary work can 

contribute to a better understanding of the sources and causes of the possible adverse effects, not only 

in Estarreja, but also in other regions impacted by emissions from the chemical industry as well.  

 

Methodologies 

 

Sampling 

 

Sampling took place in the municipality of Estarreja, with about 30,000 inhabitants, from September 

20th to November 9th, 2019. The city itself has a population of approximately 7,000. The municipality 

has developed along the banks of the Antuã river, near the Aveiro lagoon, which is located on the 

Atlantic coast of central Portugal, covering an area of about 75 km2. In parallel with its important 

industrial pole, Estarreja has always been a region with both intensive and extensive farming. The 

municipality is crossed by relevant roadways, such as two motorways that connect Lisbon-Porto and by 

a national road that connects other cities in the central region to Porto. 

Three low volume samplers (TCR Tecora, model 2.004.01), equipped with PM2.5 inlets and operating 

at a flow of 2.3 m3/h, were installed on the rooftop of one of the building of the secondary school of 

Estarreja (lat.: 40.758553; long.: -8.567158), which is approximately 1 km from the industrial complex 

(Fig. S1). One of the instruments was equipped with quartz fibre filters, while the other two were 

deployed with Teflon filters, all from Pall Corporation. Three samples were taken in parallel for 24 h, 

every 2 days, starting at 00:01 and ending at 23:59 (local time). A portable meteorological station (Davis 

Instruments) was also installed on the roof. Temperature, relative humidity, wind direction and speed 

were continuously measured using a Vantage Pro 2 console with the Integrated Sensor Suite (ISS) 

program and the WeatherLink software for data processing. An air quality station, classified as suburban, 

is located at the school. It belongs to the monitoring network of the Portuguese Environmental Agency, 

and provides hourly data of PM10, PM2.5, O3 and NOx.  
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Analytical techniques 

 

PM2.5 filters were weighted in an analytical microbalance with 1 µg readability (Radwag 5/2Y/F). 

Gravimetric concentrations for each sample were obtained from the average of six measurements in a 

temperature and humidity-controlled room (20 ºC and 50%). A portion of each quartz filter was used 

for the determination of the organic (OC) and elemental carbon (EC) by a thermal optical transmission 

technique, according to the protocol already described in previous publications (Alves et al., 2011; Pio 

et al., 2011). The remaining area of each quartz filter was digested with a mixture of acids (2.5 mL 

HNO3: 5 mL HF: 2.5 mL HClO4), following the methodology proposed by Querol et al. (2001) for the 

quantification of elements by inductively coupled plasma atomic mass spectrometry (ICP-MS, Agilent 

7900). The analytical error was estimated by repeated analysis of a certified reference material (NBS-

1633b, fly ash). An accuracy of 5-10% was estimated. For each pair of Teflon filters, one was dedicated 

to the determination of nonpolar organic compounds, while the other was subjected to the analysis of 

polar constituents. Polar organic compounds were extracted by ultrasonication for 10 min using 25 mL 

of ethyl acetate/hexane. After a 5 min rest, the filter was extracted 2 times with 25 mL of formic acid 

(4%) and methanol, with a 5 min stop between extractions. Nonpolar compounds were also extracted 

by ultrasonication using a mixture of hexane and toluene (3 consecutive extractions with 25 mL for 10 

min each, with 5 min stops between them). The final 75 mL volumes of either the polar or nonpolar 

fractions were concentrated to 0.5 mL using a Turbo Vap® II evaporation system (Biotage). The 

extracts were then dried under a gentle nitrogen stream. Nonpolar compounds were analysed in a gas 

chromatographer-mass spectrometer (GC-MS) from Shimadzu (model QP5050A) equipped with a 

TRB-5MS 30 m × 0.25 mm × 0.25 μm column (Vicente et al., 2019). Polar compounds were converted 

to trimethylsilyl derivatives and quantified in a GC-MS from Thermo Scientific (TRACE GC Ultra) 

with a DSQ II detector and equipped with a TRB-5MS 60 m × 0.25 mm × 0.25 μm column, following 

the chromatographic conditions described in Alves et al. (2011). Blank filters were treated in the same 

way as the samples and their concentrations subtracted from those of PM2.5. 

 

Air mass backward trajectories and data analysis 

 

Backward air mass trajectories were calculated at 00:00, 06:00, 12:00 and 18:00 UTC, with a run 

time of 72 h and an arrival height of 100 m above ground level using the HYSPLIT (HYbrid Single-

Particle Lagrangian Integrated Trajectory) model (Draxler and Rolph, 2015), developed by the U.S. 

National Oceanic and Atmospheric Administration (NOAA). The model was run with the National 

Centre for Environmental Prediction's (NCEP) Global Data Assimilation System (GDAS, 1°) dataset. 
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The Openair package, which is available within the statistical software environment R, was used for 

plotting pollution roses. Principal component analysis (PCA), correlations and statistical significance 

levels were obtained through the SPSS software (IBM Statistics software v. 24). 

 

Inhalation risk assessment 

 

One of the most common exposure assessment methods that has been used in epidemiology 

considers that ambient levels are representative of the total population exposure, given the lack of time-

activity patterns for distinct microenvironments (Kazakos et al., 2020). Thus, outdoor levels are 

generally taken as a surrogate of daily 24 h exposure. Following the methodology proposed by the 

United States Environmental Protection Agency (USEPA), and described in Alves et al. (2020), 

noncarcinogenic and carcinogenic risks resulting from inhalation of PM2.5-bound elements and 

polycyclic aromatic hydrocarbons (PAH) were estimated. Target hazard quotients (THQ) and target 

carcinogenic risks (TR) associated with exposure to elements were calculated as follows: 

 
THQ = (EF × ED × ET× C)/(RfC × AT)                                                                                                 (1) 

TR = (EF × ED × ET × C × IUR)/AT                                                                                                     (2) 

 
where THQ and TR are dimensionless, EF is the exposure frequency (365 days per year), ED is the 

exposure duration (70 years), ET is the exposure time (24 h/day), C is the metal(loid) concentration (mg 

m-3), and AT is the averaging time (70 years, i.e. 613,200 h). RfC represents the reference concentration 

(mg m-3) tabulated by USEPA (2017, 2019). For elements that have not yet defined an RfC, values were 

derived from reference doses for oral exposure (RfD, mg/kg/day), as suggested by USEPA (2013): 

 
RfC = (RfD × BW) / IR                                                                                                                            (3) 

 
where IR is the average inhalation rate for an adult (20 m3/day) and BW is the body weight (70 kg). 

The chronic inhalation unit risk (IUR) values for the carcinogenic elements were taken from USEPA 

(2017). A THQ <1 indicates no significant or acceptable risk, a THQ > 1 suggests that noncarcinogenic 

effects are expected to happen, and a THQ > 10 reveals a high chronic risk. A TR < 10−6 suggests that 

exposure by inhalation of carcinogenic metals contributes to negligible risks, but caution is 

recommended to guarantee that the cumulative cancer risk for all potential cancer inducers does not 

surpass 10−4. 

The carcinogenic risk of a PAH mixture is frequently represented by its benzo[a]pyrene equivalent 

concentration (BaPeq), which is calculated by multiplying the levels of individual compounds (PAHi) 

by the respective toxicity equivalent factor (TEFi) (Nisbet and NaGoy, 1992). The lifetime lung cancer 

risk is estimated through eq. (2), where C is BaPeq, and IUR is the inhalation unit risk of respiratory 
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cancer for BaPeq (1.1×10-6 m3/ng). The lifetime cancer risks are classified as very low when values are 

≤10−6. 

 

Results and Discussion 

 

Air quality 

 

During the sampling campaign, the maximum hourly concentration of NO2 (24.0 µg/m3) and 

maximum daily mean (12.8 µg/m3) did not surpass, respectively, the 1-h and 24-h standards of 200 

µg/m3 and 50 µg/m3 imposed by the European Air Quality Directive (2008/50/EU). The maximum daily 

8-h means of O3 ranged from 26.8 to 67.3 µg/m3, never exceeding the threshold of 120 µg/m3. 

Good correlations were observed between the gravimetric concentrations of the 3 samplers, 

presenting Pearson coefficients (r) of 0.913-0.987 (p < 0.001), slopes around 1 and intercepts close to 

0. Correlations between gravimetric concentrations and values from the beta attenuation monitor of the 

air quality station were also statistically significant (r = 0.956-0.963, p < 0.001). On average, the levels 

measured at the air quality station represented approximately 80% of the concentrations obtained by the 

gravimetric reference method. The PM2.5/PM10 ratio obtained from real time measurements was 

0.450.12. Daily PM10 concentrations were always below the threshold of 50 µg/m3 imposed by the air 

quality directive. The daily values of PM2.5 obtained gravimetrically ranged between 5.71 and 26.4 

µg/m3. The guideline value of 25 µg/m3 recommended by WHO (PM2.5 24-h mean) was very slightly 

exceeded in two days of the sampling campaign.  

North-western, western and south-western Atlantic advections accounted for 24%, 36% and 11% of 

the air mass trajectories arriving at Estarreja (Fig. 1). The highest PM2.5 concentrations were associated 

with north Atlantic air masses, which, upon entering Portugal through the Leiria district, shifted their 

direction. On the way to the sampling site, these air masses crossed densely populated areas. 

 

 

Fig. 1. Clusters of air mass backward trajectories and associated PM2.5 concentrations. 
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The annual limit values for the protection of human health set by the European Union Directive 

2004/107/EC for arsenic, cadmium and nickel (6, 5, and 20 ng/m3 for As, Cd, and Ni, respectively) and 

by the Directive 2008/50/EC for lead (500 ng/m3) in ambient air were not exceeded. 

 

Carbonaceous and elemental composition of PM2.5 

 

OC and EC represented 25.214.6% and 11.47.2% of the PM2.5 mass, respectively. A strong and 

significant correlation was found between OC and EC (r = 0.941, p < 0.001), indicating common sources, 

such as road traffic and biomass burning. The OC/EC minimum ratio method was used to estimate the 

secondary organic carbon (SOC) content (Pio et al., 2011). It was observed that SOC accounted for 

37.617.5% of total OC. Thus, on average, about 10% of the PM2.5 was composed of SOC. If a 

multiplying factor of 2 is taken to convert organic carbon into organic matter (Gao et al., 2015; Xie et 

al., 2013), this means that around 20% of the aerosol mass was photochemically produced. In Xiamen, 

a port city on the south-eastern coastal line of China suffering from rapid urbanisation and 

industrialisation, the carbonaceous aerosol represented 42.8-47.3% of the PM2.5 mass. On average, SOC 

accounted for approximately 56% of OC (Zhang et al., 2011). Benetello et al. (2017) collected daily 

PM2.5 samples in a large industrial area (Porto Marghera, Venice, Italy) during a 1-year-long sampling 

campaign. OC constituted 28% and 14% of PM2.5 during the cold and warm periods, respectively, while 

the contributions of EC, for the same seasons, were 7.8% and around 9%.  

In the present study, 47 elements were quantified in the PM2.5 samples (Table 1) with total 

concentrations ranging from 24.2 to 133 ng/m3. Altogether these elements constituted 0.230 - 1.26% of 

the PM2.5 mass.  

 

Table 1. Concentrations (ng/m3) of trace elements detected in PM2.5. 

 
Minimum Maximum Average 

Li <0.01 0.701 0.137 

B  <0.01 28.1 8.12 

Sc nd 0.0753 <0.01 

V <0.01 8.89 2.13 

Cr <0.01 5.74 0.800 

Co <0.01 0.0830 0.0193 

Ni <0.01 2.11 0.534 

Cu 1.06 15.3 4.66 

Zn 4.11 44.5 21.2 

Ga <0.01 0.110 0.0205 

Ge nd 0.091 <0.01 

As <0.01 0.609 0.105 

Se <0.01 0.148 0.0586 

Rb <0.01 1.04 0.421 
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Sr 0.115 1.41 0.538 

Y <0.01 0.0706 0.0136 

Zr <0.01 2.46 0.447 

Nb nd 0.0665 <0.01 

Mo <0.01 51.1 17.3 

Cd      <0.01 0.321 0.0604 

Sn      0.0357 5.37 2.24 

Sb      0.0318 6.25 0.845 

Ba      0.289 5.10 2.40 

REE nd 1.46 0.181 

Hf      nd 0.0100 <0.01 

W       <0.01 0.924 0.109 

Pb      0.320 9.07 3.78 

Bi      <0.01 0.733 0.175 

Th      nd 0.0388 <0.01 

U       nd 0.0120 <0.01 
<0.01: below detection limit. Elements always below the 
detection limit for all samples: Be, Cs, Eu, Tb, Ho, Tm, 
Yb, Lu, Ta, Tl. nd – not detected. ∑REE: sum of Rare 
Earth Elements (from La to Er). 

 

Among them, Zn, Mo and B were the most abundant. The chemical industrial complex of Estarreja 

includes a plastic (mainly PVC) manufacturing plant. Furthermore, the adjacent eco- business park also 

integrates various plastic and rubber product manufacturing companies. Thermal stabilisers, lubricant, 

and plasticisers are three crucial additives for processing PVC. Common thermal stabilisers of PVC 

include lead salts, organotin, rare earth, calcium and zinc soap salts (especially calcium and zinc 

stearates). Calcium stearate (CaSt2) and zinc stearate (ZnSt2) stabilisers are widely used since they have 

good lubricating properties and are relatively easy to process (Han et al., 2019). Besides, Zn is also 

related to traffic emissions (exhaust and non-exhaust). Zinc can be released from the engine exhaust 

deriving from the fuel, friction and wear of engine components, and lubricant oil additives (Agarwal et 

al., 2018). Additionally, the presence of zinc in particles resulting from brake and tyre wear is well 

documented (Penkała et al., 2018; Piscitello et al., 2021). The dual origin is proven by the pollution 

rose (Fig. 2), in which higher Zn concentrations can be seen when winds with higher speeds blow from 

the 4th quadrant, where the industrial complex is located, but also from other quadrants that cover the 

extensive road network of Estarreja. 

Molybdenum sources include brake wear since molybdenum trioxide is used to prevent thermal fade 

and cracking of friction lining under high-temperature conditions (Adamiec, 2017; Valotto et al., 2015). 

This element is also used as an additive to improve the lubricant oil properties and to prevent oxidation 

and corrosion (Valotto et al., 2015). Mo is also used in the preparation of ceramic glazes and in the 

manufacture of steel alloys. The highest levels were recorded for winds from the W-N sector, suggesting 

an origin mostly in the industrial complex. Boron is mainly employed by the glass-ceramic industry. 

Additionally, this element is also used in the production of detergents, metal alloys, fire retardants, and 
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chemical fertilisers (Kot, 2009). The highest boron concentrations were observed in samples impacted 

by winds from the 4th quadrant, as well as from the NW direction. It should be borne in mind that 

Estarreja is surrounded by agricultural areas. In addition, the industrial park integrates a manufacturing 

unit dedicated to the production of metal parts for various sectors, whose capabilities comprise stamping, 

welding, as well as tube bending and forming. Factories producing home appliances (e.g., freezers and 

refrigerators) and equipment for clinical, rehabilitation and geriatric health (e.g., beds and cabinets), 

and a unit dedicated to the manufacture of fine stoneware products are also based in the eco-business 

park and may contribute to the emission of metal(loi)s.  
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Fig. 2. Pollution roses for the most abundant metals. Wind speeds and concentrations are given in m/s and ng/m3, respectively. 
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To identify the input of anthropogenic sources to the levels of a specific element in airborne particles, 

enrichment factors (EF) were determined (Fig. 3). Lithium was used as reference element since it is an 

abundant element of the Earth's upper continental crust (Moreno et al., 2006). The calculations were 

based on the average chemical composition of the upper continental crust given by Wedepohl (1995), 

according to the following equation: 

 
EF = (CEi/CLi)air/(CEi /CLi)crust                                                                                                                 (4)  

 
where CEi represents the concentrations of the element under analysis and CLi is the concentration of 

lithium in the air or in the crust as indicated in the subscript. Enrichment factors above 10 indicate that 

the element arises mainly from anthropogenic sources while for lower EFs the element is considered to 

have mostly a mineral origin (crustal) (Acciai et al., 2017; Zhang et al., 2018).  

 

  

Fig. 3. Average enrichment factors of selected elements in PM2.5. 
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metallurgical industry. In the present study, significant positive correlations were found between these 

two elements (r = 0.606, p = 0.003) pointing to a similar source. Average EFs between 100 and 1000 

were observed for Pb, Cd, Zn, Cu, Sn and B. Cadmium was used for a long time as stabiliser in PVC. 

However, with the restrictions on the use of Cd compounds in plastics, it started to be used mainly in 

decorative pigments in the ceramic industry (Turner, 2019). Similarly to Zn, other elements such as Pb, 

Cd, Cu and Sn have been related to non-exhaust emissions from traffic (Grigoratos and Martini, 2015; 

Penkała et al., 2018; Piscitello et al., 2021). In the present study, significant correlations were found 

between Zn and Pb (r = 0.601, p = 0.003) and Zn and Cd (r = 0.443, p = 0.039), suggesting common 

sources. Additionally, Zn was also found to be significantly correlated with Ba (r = 0.580, p = 0.005). 

Barium has been used as tracer for brake wear since it is used as filler, in the form of BaSO4, to reduce 

manufacturing costs and to improve manufacturability of the brake lining (Grigoratos and Martini, 2015; 

Valotto et al., 2015). Higher EFs (> 1000) were found for Se, Bi, Sb and Mo. With regard to Bi, this 

element is mainly associated with refuse incineration, fossil fuel combustion, ferromanganese alloys 

and aluminium production (Ferrari et al., 2000). Additionally, it is worthwhile to note that bismuth 

molybdate catalysts are employed in the manufacture of acrylonitrile by the selective oxidation of 

propylene with ammonia (Brazdil, 2017; Ojebuoboh, 1992). Antimony is used in the manufacture of 

brake linings (Sb2S3) to reduce vibration and improve friction stability, and for that reason it is 

commonly used as tracer for brake wear (Valotto et al., 2015). Significant correlations were found 

between Sb and Cu (r = 0.756, p < 0.001) and between Sb and As (r = 0.758, p < 0.001). In previous 

studies, levels of Sb in association with Cu have been linked to brake abrasion from road traffic (Querol 

et al., 2007). The EFs obtained for the remaining elements were below 10, suggesting a crustal origin. 

 

Polycyclic aromatic hydrocarbons 

 

Total concentrations of PAHs ranged from 0.051 to 15.2 ng/m3, averaging 4.69 ng/m3. Phenanthrene, 

anthracene, fluoranthene and pyrene were absent from the samples. In general, the most abundant PAH 

was benzo[e]pyrene (Fig. 4). It occurs as a result of incomplete combustion and is found in coal, oil, 

gas, automobile exhaust, grilling emissions and biomass burning smoke. Some alkylated PAHs were 

also detected: C1 to C3-naphthalenes, C1- and C2-fluorenes, C1- and C3-fluoranthenes, C1-pyrenes, 

C1-chrysenes, and C3- and C4-dibenzothiophenes. It has been described that these compounds are more 

persistent and often more toxic than the non-alkylated PAHs, the toxicity increases with the number of 

alkyl substitutions on the aromatic ring, and diesel/biodiesel makes a significant contribution to their 

formation (Casal et al., 2014). The total mean concentration of alkylated PAHs was 0.809 ng/m3, 

ranging from 0.071 to 2.13 ng/m3.  

Following the detailed descriptions provided by Xie et al. (2013) and Gao et al. (2015), the 

concentrations of PAHs in the gas phase were estimated by the gas/particle partitioning theory (Pankow, 

1994a,b). The calculation was only possible for those compounds for which vapour pressures and 
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enthalpies of vaporisation are tabulated in the literature. It was observed that the 2-3 ring PAHs were 

almost totally in the gas phase, the 4 ring compounds were partitioned between the gas phase (54%) 

and the particulate phase (46%), while the heavier congeners were mostly in the condensed form (Fig. 

5).
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Fig. 4. Concentrations of PAHs in the particulate phase.
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Fig. 5. Partition of PAHs between the gas and particle phases. 

 

To identify the main sources of PM2.5-bound PAHs, principal component analysis was carried out 

(Table 2). The PAH profile was determined by normalising the individual levels by the total PAH 

concentrations. Factor 1, which accounted for 66.1% of the total variance, was associated with high 

loadings on heavier PAHs emitted by gasoline exhausts, such as benzo[g,h,i]perylene, but also on lower 

molecular weight members (e.g., fluorene and benzo[b+k]fluoranthene) that are produced by diesel 

engines (Alves et al., 2017). This result is not surprising, given the proximity of the sampling site to 

important main traffic routes. Factor 2 described 10.8% of the total variance, exhibiting a high loading 

for perylene. Nowadays, perylenes are used as high-performance dyes and pigments in several chemical 

industries (Greene, 2009). Factor 3 explained 9.14% of the total variance, with high contributions from 

chrysene and benzo[a]anthracene, which are dominant PAHs in biomass burning emissions (Gonçalves 

et al., 2011). 

 

Table 2. Factor loadings of principal component analysis applied to the dataset of PM2.5-bound PAHs. 

 Component 
 1 2 3 

Naphthalene 0.64 0.64 -0.07 

Acenaphthylene 0.32 0.59 0.19 
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Acenaphthene 0.54 0.64 0.53 

Fluorene 0.92 0.29 0.13 

Chrysene 0.09 0.01 0.97 

Benzo[a]anthracene 0.64 0.28 0.66 

Benzo[b]fluoranthene 0.80 0.48 0.16 

Benzo[k]fluoranthene 0.91 -0.01 0.31 

Benzo[e]pyrene 0.91 0.19 0.20 

Benzo[a]pyrene 0.85 0.37 0.21 

Perylene -0.31 0.71 0.02 

Indeno[1,2,3-cd]pyrene 0.84 0.15 0.47 

Dibenzo[a,h]anthracene 0.88 0.29 0.20 

Benzo[g,h,i]perylene 0.92 -0.13 -0.01 

Variance (%) 66.1 10.8 9.14 

Source Vehicle emissions Industry Biomass burning 

Principal components with factor loading higher than 0.6 are shown in bold 

Extraction method: principal component analysis 

Rotation method: varimax with Kaiser normalisation 

 

Oxygenated organic compounds 

 

In addition to PAHs, many other organic constituents were detected, including anhydrosugars, 

phenolic compounds, aromatic ketones, glycerol derivatives, aliphatic alcohols, sterols, and aromatic, 

carboxylic and dicarboxylic acids (Table 3). The complete list can be found in the supplementary 

material (Table S1). Homologous series of n-alkanols (C10-C30) and n-alkanoic acids (C8-C28) with a 

dominance of even carbon numbers were detected in the aerosol samples. Plant waxes are characterised 

by even-over-odd carbon number preference for high molecular weight n-alkanes (⩾20), whereas low 

molecular weight homologues are mainly produced by anthropogenic emissions, although microbial 

contributions can also be considered. The distributions of n-alkanoic acids peaked at C18, followed by 

C16, which displayed and excellent interrelationship (r = 0.973, p < 0.001), suggesting common origins. 

Both compounds have similar pollution roses, pointing to sources spread across the various sectors (Fig. 

6). Minor amounts of odd chain length homologues were registered. It has been argued that leaf litter 

with abundant fatty acids can undergo selective degradation by microorganisms on the soil surfaces, 

such as microbial α-oxidation of even-carbon numbered homologues, leading to the production of odd-

chained relatives (Matsumoto et al., 2007). Since the sampling campaign of this study was carried out 

in the fall, microbial oxidative processes of leaf litter may, in fact, have contributed to the detection of 

odd-chain fatty acids. n-Alkanols presented maxima at C18 and C26, which did not correlate with each 

other.  

 

Table 3. Concentrations (ng/m3) of some oxygenated organic compounds detected in PM2.5. 
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 Minimum Maximum Average 

Fatty alcohols and acids    

1-Octadecanol 0.674 26.0 5.62 

1-Hexacosanol bdl 24.6 6.29 

Hexadecanoic acid (palmitic) 31.9 406 84.9 

Octadecanoic acid (stearic) 48.3 774 158 

cis-9-Octadecenoic acid (oleic) bdl 8.56 1.30 

Monoglycerides    

Monopalmitin 3.97 29.7 14.1 

Monostearin 1.95 7.81 4.58 

Glycol compounds    

Ethylene glycol 8.87 92.5 22.6 

Diethylene glycol 0.374 35.6 10.2 

Triethylene glycol 1.28 11.3 60.9 

Tetraethylene glycol 1.24 5.73 3.35 

Anhydrosugars    

Levoglucosan 29.5 1368 302 

Mannosan  1.64 197 41.1 

Galactosan 0.725 64.5 15.6 

Lignin products    

Vanillin bdl 5.75 1.45 

Vanillic acid bdl 8.25 1.78 

Syringic acid bdl 14.5 3.20 

o-Coumaric acid 1.86 11.4 5.08 

p-Coumaric acid bdl 10.7 3.45 

Cinnamic acid bdl 29.9 2.64 

Other biomass burning tracers    

-Sitosterol bdl 4.66 1.08 

Dehydroabietic acid bdl 69.1 17.4 

Plastic precursors or additives    

Terephthalic acid 1.12 181 54.6 

Oxidised Irgafos 168 91.6 1710 327 

Aromatic ketones    

2,6-Di-tert-butyl-1,4-benzoquinone 10.8 1231 115 

7,9-Di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione bdl 231 27.6 

SOA products    

2-Methylglyceric acid oligomers 2.09 1697 241 

Pinonic acid bdl 2.37 0.433 

Pinic acid bdl 57.7 6.61 

Pinanediol bdl 7.72 2.25 
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Glycerol 10.3 157 39.6 

Meso-erythritol 0.701 30.3 8.53 

Short chain aliphatic, aromatic, hydroxy-, dihydroxy- and diacids    

4-Hydroxybenzoic acid 0.171 15.1 3.06 

Benzoic acid 0.0594 3.05 1.00 

Levulinic acid (oxopentanoic) bdl 26.9 9.62 

Hydracrylic acid (3-hydroxypropanoic) 0.323 17.2 3.65 

Glyceric acid (2,3-dihydroxypropanoic) 0.578 10.4 3.62 

Glycolic acid (2-hydroxyethanoic) bdl 217 46.7 

4-Deoxy-erythronic acid (2,3-dihydroxybutanoic) 6.33 74.2 17.6 

Succinic acid (butanedioic) bdl 139 33.8 

Oxalic acid (ethanedioic) 9.56 312 83.1 

Malic acid (hydroxybutanedioic) bdl 19.9 3.99 

Azelaic acid (nonanedioic) bdl 37.4 10.8 

bdl – below detection limit 

 

Monopalmitin and monostearin, present in all PM2.5 samples, have been described as abundant 

compounds in fumes from food cooking, especially meat (Alves et al., 2021a). These glyceridic 

compounds showed weak correlations with palmitic and oleic acids, also referred to as cooking markers, 

indicating different emission processes. These two unsaturated acids can originate from other sources, 

such as biomass combustion (Alves et al., 2011; Gonçalves et al., 2011) and traffic (Alves et al., 2021b). 

Monopalmitin and monostearin, on the other hand, can also be found in the composition of particles 

from brake wear (Alves et al., 2021b). Oleic acid is simultaneously emitted with its saturated homologue, 

stearic acid. The oleic-to-stearic acid ratio documented for several sources (cooking, road dust, wood 

combustion) range from 0.11 to 13 (Robinson et al., 2006, and references therein). In the present study, 

much lower ratios were obtained (0.001-0.088, avg = 0.033), suggesting other sources and/or 

photochemical depletion of oleic acid. When oleic acid is attacked by ozone, nonanoic acid is one of 

the products. However, a weak correlation between C18:1 and C9 was observed, pointing to biogenic 

sources of nonanoic acid. Among alkanoic acids, the dominance of stearic acid may be related to the 

manufacture of PVC or other plastics in the industrial complex. Currently, the most common metal 

soaps used as thermal stabilisers for PVC include Zn and Ca stearates, which are produced by heating 

stearic acid. Oleic acid may also have an industrial origin, as suggested by its pollution rose. It is used 

as emulsifier in metalworking fluids and surface coatings, as rubber processing agent and as PVC heat 

costabiliser (Ashford, 1994).  

Ethylene glycol (EG) was present in all PM2.5 samples, together with its related oligomers (di-, tri-

and tetra-EG). Because of their polar and hygroscopic characteristics, these synthetic organic 

compounds are rapidly absorbed after entering the upper respiratory passages, exerting acute toxicity 

characterised by central nervous system depression and metabolic acidosis in humans (Fowles et al., 
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2017). EGs are commonly added as plasticiser ingredients in the manufacture of PVC and other 

thermoplastic polymers. Thus, their detection in fine inhalable particles is, at least in part, linked to 

these industrial processes. However, this compound can also be emitted by traffic. Although most 

vehicular organic compounds are from evaporation and incomplete combustion of fuels and lubricating 

oils, engine coolants represent another possible vehicular emission source. EG is the most common 

engine coolant. EG emissions from on-road vehicles have been previously measured in the Caldecott 

Tunnel near San Francisco (Wood et al., 2015). According to the pollution rose, in Estarreja, the EG 

compounds seem to originate in all quadrants from which the winds blow, indicating contributions not 

only from the industrial complex, but also from the road network. 

Another organic compound detected at relatively high concentrations with a probable origin in the 

industrial pole is terephthalic acid. It is a commodity chemical, mainly used as a precursor to 

polyethylene terephthalate (PET), one of the products synthesised in the complex. Oxidised Irgafos 168 

(tris(2,4-ditert-butylphenyl) phosphate), also detected at relatively high concentrations, is one of the 

common antioxidants widely used in the industry to protect polymers from aging and oxidation. Besides 

originating in the industrial complex, this organophosphorus compound may be associated with non-

exhaust emissions, as it was recently detected as a component of brake wear particles (Alves et al., 

2021b). In addition to the industrial source, this origin in traffic is proven by the high concentrations 

spread across the various sectors of the pollution rose, according to the extensive road network that 

covers Estarreja.  

Some aromatic ketones were present in the PM2.5 samples. Due to its abundance, 2,6-di-tert-butyl-

1,4-benzoquinone stands out. It has been reported that PAH quinone derivatives are more toxic than 

their parent PAHs, as they do not require enzymatic activation, thus acting as direct mutagens and/or 

carcinogens. Like their parent PAHs, quinones may be released into the atmosphere through incomplete 

combustion processes. Gaseous and heterogeneous atmospheric processing of PAHs can yield further 

quinone products through photochemical reactions involving atmospheric oxidants (OH, NO3 and O3) 

or through biological transformations (Delgado-Saborit et al., 2013, and references therein). This 

quinone was previously observed in particulate matter samples collected at a trafficked roadside in 

Birmingham (Delgado-Saborit et al., 2013). Given that the average concentration (1900 pg/m3) at the 

British site was significantly lower than those of the present study, it is assumed that other emission 

sources and more active photochemical processes have taken place in Estarreja. An origin in the 

industrial complex should not be overlooked, since this quinone was recently described as a synthetic 

phenolic antioxidant widely used in various industrial and commercial products to retard oxidative 

reactions and lengthen product shelf life (Liu and Mabury, 2020). In fact, the highest concentrations 

were registered for winds emanating from the NW sector, in which the industrial complex is located. 

7,9-Di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione was another aromatic ketone present in 

almost all samples. Although it can be extracted from marine algae and some plant species, the presence 

in the atmosphere is mainly due to its use in the manufacture of plastic materials. It was previously 
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observed in aerosol particles from Raipur by Giri et al. (2013), who pointed out an origin in plastic 

burning and fugitive emissions. The mean value of the present study (18.5 ng/m3) is higher than that 

obtained in that industrial city of India (5.2 ng/m3).  

Levoglucosan (L), accompanied by its stereoisomers, mannosan (M) and galactosan (G), were 

detected in all samples. These anhydrosugars originate from thermal depolymerisation of cellulose and 

hemicelluloses to monosaccharides, followed by a dehydrolysis reaction. Levoglucosan has been 

widely used as a marker for biomass burning processes (Vicente and Alves, 2018). The pollution rose 

showed higher levoglucosan concentrations for lower wind speeds across all sectors, indicating that 

biomass burning is a widespread phenomenon at the local level. An average value of 18 was obtained 

for the L/M ratio, suggesting combustion processes involving predominantly angiosperms, a group 

often referred to as hardwoods (e.g., eucalypt). Gonçalves et al. (2010) reported ratios in the range from 

10 to 35 for hardwoods and a value of 3 for softwood in PM10 emissions from woodstove combustion 

of logs from trees representative of the Portuguese forest. Considering that the nearby forest is mainly 

composed of eucalypt, the levoglucosan fraction in PM2.5 of 0.173 reported by Gonçalves et al. (2011) 

for the residential combustion of this wood species was taken to roughly estimate the contribution of 

biomass burning. Thus, the following relationship was used:  

 
PM2.5 from biomass burning = levoglucosan × 5.8                                                                                  (5) 

 
It was estimated that, on average, biomass burning accounted for 13.8% of the PM2.5 concentrations. 

Due to the extensive use of residential wood combustion appliances for heating, much higher 

contributions have been reported for other regions in Portugal for the winter period (Amato et al., 2016; 

Gonçalves et al., 2021). Levoglucosan was negatively correlated with temperature (r = -0.740, p < 

0.001), indicating that there is more need to burn biofuels for home heating with colder weather. It is 

necessary to take into account that the small town is surrounded by agricultural areas, so field burning 

of crop and pruning residues may have also contributed to the PM2.5 levels. 

Lignin is a biopolymer derived from three main aromatic alcohols: p-coumaryl, coniferyl and sinapyl. 

The pyrolysis products of these aromatic alcohols are denominated as coumaryl, vanillyl, and syringyl 

moieties. Hardwood (angiosperms) burning mainly generates syringyl and vanillyl moieties because 

their lignin is enriched in sinapyl alcohol precursors. Combustion of softwoods (gymnosperms) instead 

produces primarily vanillyl moieties since these species have high proportions of coniferyl alcohol 

products and minor amounts of sinapyl alcohol. In grasses (Gramineae), p-coumaryl alcohol is the 

dominant lignin unit. Several phenolic compounds from lignin combustion were detected, including 

vanillin, vanillic acid, syringic acid, coumaric acid and cinnamic acid. These compounds correlated 

well with levoglucosan (r = 0.849-0.875, p < 0.001). ‐Sitosterol, a general biomass burning tracer 

present in smoke from a variety of vegetation types (Vicente and Alves, 2018), was also found in most 
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of the aerosol samples. Other biomass burning products with good correlation with levoglucosan were 

4-hydroxybenzoic acid (r = 0.866, p < 0.001) and dehydroabietic acid (r = 0.915, p < 0.001). 

The two most abundant biogenic volatile organic compounds (VOC) emitted into the atmosphere 

are isoprene and methane. Isoprene reacts with OH, NO3 and O3 leading to the formation of less volatile 

secondary organic aerosol (SOA) via condensation or uptake onto particulates through cascading 

oxidative pathways (Carlton et al., 2009). Isoprene-derived SOA are broadly produced in highly 

forested regions. Eucalyptus spp., one of the dominant trees in the Estarreja region, are among the 

highest isoprene emitting plants (Loreto and Delfine, 2000). In this study, several 2-methylglyceric acid 

oligomers formed from the photooxidation of isoprene were detected (Szmigielski et al., 2007). The 

mass spectra of TMS ethyl ester derivatives of 2-methylglyceric acid are characterised by a dominant 

ion at m/z 219. Other SOA constituents present in PM2.5 included /‐pinene photooxidation products, 

such as pinonic and pinic acids and pinanediol (Bilde and Pandis, 2001). Glycerol and meso-erythritol, 

which have been described as photodecomposition products of 1,3-butadiene in air containing nitric 

oxide (Angove et al., 2006), were also observed in the aerosol samples. This VOC precursor is emitted 

by traffic and industrial processes.  

Short chain aliphatic, aromatic, hydroxy-, dihydroxy- and diacids are emitted in small amounts as 

primary constituents by many sources, but a large part of the concentrations in particulate matter is due 

to secondary formation. Some of these acids (e.g., suberic) presented higher concentrations when the 

PM2.5 samples were impacted by winds from the 4th quadrant, suggesting the contribution from 

industrial processes. Benzoic acid was one of the aromatic acids encountered in all samples. Although 

it can be emitted in the combustion of biomass, the fact that it did not correlate with levoglucosan is 

indicative of other formation processes. It has been reported as a secondary product of photochemical 

degradation of toluene emitted from anthropogenic sources. Besides road traffic, in Estarreja, the 

chemical industrial complex is a known source of toluene and other aromatic VOCs. Other aerosol 

compounds that have been described from the photooxidation of toluene and NOx in smog chamber 

experiments (White et al., 2014), also observed in the present study, included levulinic, glyceric, 

succinic, oxalic and malic acids. Glycolic acid was one of the most abundant hydroxyacids. It has been 

documented as either anthropogenic or biogenic SOA product from ethylene oxidation (Huang et al., 

2011) or isoprene through in-cloud processing (Lim et al., 2005), respectively. Hydracrylic acid (3-

hydroxypropanoic acid) was also found in all samples. Possible precursors of this acid include (Z)-3-

hexen-1-ol (also known as leaf alcohol), which is emitted by vegetation, simpler unsaturated alcohols 

(e.g., 3-buten-1-ol), as well as 1,3-propanediol (Pun et al., 2000). Another ever-present constituent was 

2,3-dihydroxybutanoic acid. It can be formed by oxidation of the double bond of crotonaldehyde, a 

VOC with many biogenic and anthropogenic sources, to a dihydroxy derivative (Shalamzari et al., 

2013). 
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Fig. 6. Pollution roses for some oxygenated organic compounds detected in PM2.5. Wind speeds and concentrations are given in m/s and ng/m3, respectively. 
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Noncarcinogenic and carcinogenic risks by inhalation 

 

Carcinogenic risks (average and ranges) associated with exposure to PM2.5-bound elements are 

presented in Table 4. Negligible risks (<1×10-6) were found for all the individual elements studied, apart 

from hexavalent chromium, whose risks ranged from 0.00 to 6.89×10-5. The average cumulative 

carcinogenic risks of PM2.5-bound metals exceeded the USEPA threshold of 1×10-6. The major 

contributors to carcinogenic risks of the population exposed in the city of Estarreja were Cr(VI) (average 

contribution of 56%) and As (average contribution of 16%). However, it is necessary to keep in mind 

that the risks are expected to be higher if other exposure pathways (dermal absorption and ingestion) 

are taken into account. 

 

Table 4. Incremental lifetime cancer risk of inhalation exposure to carcinogenic PM2.5-bound metals. 

Element Average Range (min - max) 

Cr(VI) 9.60×10-6 0.00 - 6.89×10-5 

As 4.53×10-7 0.00 - 2.62×10-6 

Pb 4.54×10-8 3.84×10-9 - 1.09×10-7 

Co 1.73×10-7 0.00 - 7.47×10-7 

Cd 1.09×10-7 0.00 - 5.77×10-7 

Ni 1.77×10-7 0.00 - 6.97×10-7 

 1.06×10-5 1.65×10-8 - 6.95×10-5 

IUR: arsenic (4.3×10-3 (μg m-3)-1), lead (1.2×10-5 (μg m-3)-1), chromium (VI) (8.4×10-2 (μg m-3)-1), cobalt (9×10-3 

(μg m-3)-1), cadmium (1.8×10-3 (μg m-3)-1) and nickel (2.6×10-4 (μg m-3)-1). 

 

In the present study, the noncarcinogenic risks were estimated based on the concentrations of thirteen 

elements. The additive noncarcinogenic risk was below the USEPA threshold of 1 (Table 5), indicating 

that adverse effects are not likely to occur. Nevertheless, it should not be forgotten that some major 

elements, possibly present in the particles, have not been analysed, so the risk may be higher. 

 

Table 5. Non-carcinogenic risks via inhalation exposure to PM2.5-bound elements.  

Element Average Range (min - max) 

Ni 1.07×10-11 0.00 – 4.21×10-11 

Cd 1.21×10-12 0.00 – 6.41×10-12 

Co 1.16×10-13 0.00 – 4.98×10-13 

Cr 8.00×10-11 0.00 – 5.74×10-10 
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As 1.58×10-12 0.00 – 9.14×10-12 

Pb 7.56×10-10 6.40×10-11 – 1.81×10-9 

V 2.13×10-10 0.00 – 8.89×10-10 

Cu 6.53×10-7 1.48×10-7 – 2.14×10-6 

Zn 2.22×10-5 4.32×10-6 – 4.67×10-5 

Se 1.17×10-9 0.00 – 2.96×10-9 

Sr 1.13×10-6 2.42×10-7 – 2.96×10-6 

Zr 1.25×10-10 0.00 – 6.89×10-10 

Ba 1.20×10-9 1.44×10-10 – 2.55×10-9 

HQ 2.40×10-5 6.56×10-6 – 4.91×10-5 

RfC: Nickel oxide (2.00×10-5 mg m-3), cadmium (2.00×10-5 mg m-3), cobalt (6.00×10-6 mg m-3), chromium 

(1.00×10-4 mg m-3), arsenic (1.50×10-5 mg m-3), lead (2.00×10-4 mg m-3), vanadium (1.00×10-4 mg m-3), copper 

(1.40×10-1 mg m-3), zinc (1.05×100 mg m-3), selenium (2.00×10-2 mg m-3), strontium (2.00×100 mg m-3), zirconium 

(2.80×10-4 mg m-3) and barium (5.00×10-4 mg m-3). 

 

The lifetime cancer risk associated with exposure to PM2.5-bound PAHs through the inhalation 

pathway was estimated to range from 5.6×10-11 to 3.4×10-6, averaging 6.7×10-7, which represents a 

negligible CR. Higher cancer risks have been reported for other industrialised areas around the world.  

A cancer risk of 2.8×10-5 was obtained for PM2.5-bound PAHs in an urban-industrial area in Pretoria, 

South Africa, composed of several facilities, including small boilers, two power plants and metallurgies 

(Morakinyo et al., 2020). A cancer risk of 2.8×10-5 was reported for PM10-bound PAHs collected in the 

vicinity of a heavily industrialised site in Greece, where large crude oil refineries and over 300 industrial 

plants are located, comprising metallurgical processes, cement, chemical and food production, 

shipyards, etc. (Koukoulakis et al., 2020). Using the global high-resolution PKU-FUEL-2007 inventory 

and the Community Multiscale Air Quality (CMAQ) model, Han et al. (2020) simulated the 

concentrations of PAHs in China and estimated the associated health risks. The incremental lifetime 

cancer risk was found to be > 5×10-4 in many urban and industrial areas, especially those where coal 

combustion, oil and gas related activities are concentrated.  

 

Conclusions 

 

The composition of PM2.5 sampled in a small town in the vicinity of a large industrial complex was 

investigated. Most of the mass was composed of carbonaceous material (25.2% OC and 11.4% EC), 

which included a wide range of organic compounds of different polarities. Multiple compounds known 

for their toxicity (e.g., PAHs, alkyl-PAHs, aromatic ketones, ethylene glycol, etc.) were detected. It was 
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estimated that 2-3 ring PAHs were almost entirely in the gas phase, while 4 ring congeners were 

partitioned between the gas (54%) and the particulate phase (46%), and 5-6-membered rings were 

mainly in the particulate form. PM2.5-bound PAHs originated in traffic (66%), industrial (11%) and 

biomass burning (9%) emissions. The latter source was estimated to contribute to 14% of PM2.5 

concentrations, while 20% of the aerosol mass was secondarily formed from both biogenic and 

anthropogenic precursors. Very or extremely high enrichment factors suggested anthropogenic origins 

for Pb, Cd, Zn, Cu, Sn, B, Se, Bi, Sb and Mo. The pollution roses indicated that some constituents, 

especially those related to metallurgical processes and the production of plastics and glass-ceramics, 

peaked their concentrations when the winds blew from the 4th quadrant, in which the industrial complex 

is located. However, many PM2.5-bound components revealed sources spread across the various sectors, 

pointing to traffic emissions due to the high density of motorways and main roads passing through the 

municipality. 

The cancer and noncancer risks from inhalation of PM2.5-bound PAHs and elements, respectively, 

were found to be negligible, but the cumulative cancer risk for metals, especially due to chromium and 

arsenic, was beyond the acceptable guideline. This risk, together with the detection of various organic 

substances with recognised toxicity, lead to recommend the adoption of mitigation measures focused 

on the main emission sources. The industry is a very heterogeneous sector comprising many sub-sectors, 

which should require specific carbon footprint assessments and the adoption of the best available 

technologies to reduce upstream, downstream and in-process emissions. The European Pollutant 

Release and Transfer Register (E-PRTR) emission data, as well as the permit conditions and 

environmental inspections set by the Industrial Emissions Directive should be revised with the inclusion 

of new pollutants. It is also necessary to implement regulatory and voluntary programmes to reduce 

emissions from burning biomass, including incentives for replacing old and inefficient combustion 

equipment, education and outreach tools, air quality forecasting and public notification systems, among 

others. Agricultural burning must be replaced by other waste management practices, namely 

composting or crushing and incorporation of leftovers into the soil. Although the problem of road traffic 

is difficult to solve in the short term, in the future, in this and other regions, territorial planning policies 

with a better spatial distribution of industrial conurbations and road networks are needed.  

Although PM2.5 levels in the vicinity of the industrial complex reasonably comply with legislation, 

as the toxicity may depend more on the composition, to complement this chemical characterisation, the 

phenotypic and metabolic effects of the constituents extracted from PM2.5 will be assessed through in 

vitro cellular assays, including the investigation of cellular metabolic activity, secretion of 

proinflammatory mediators, and expression/secretion of proinflammatory cytokines/chemokines and 

matrix metalloproteinases. 
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Table S1. Concentrations of oxygenated organic compounds (ng/m3) in PM2.5. 

 Minimum Maximum Average 

n-Alkanols    

1-Decanol bdl 0.624 0.0500 

1-Dodecanol 0.00442 2.12 0.161 

1-Tetradecanol bdl 4.72 0.522 

1-Pentadecanol bdl 1.69 0.354 

1-Hexadecanol 0.135 5.24 1.25 

1-Octadecanol  0.674 26.0 5.62 

1-Docosanol  bdl 5.95 1.22 

1-Tricosanol 0.0543 0.836 0.192 

1-Tetracosanol bdl 26.7 5.10 

1-Pentacosanol bdl 12.8 1.04 

1-Hexacosanol bdl 24.6 6.29 

1-Heptacosanol bdl 0.870 0.137 

1-Octacosanol bdl 10.6 1.68 

1-Triacontanol bdl 5.16 0.597 

n-Alkanoic and alkenoic acids    

Octanoic acid 0.127 1.58 0.651 

Nonanoic acid 0.721 7.10 2.76 

Decanoic acid bdl 1.90 0.529 

Undecanoic acid bdl 0.987 0.265 

Dodecanoic acid 0.453 6.61 1.23 

Tridecanoic acid bdl 3.85 0.490 

Tetradecanoic acid 1.26 21.9 4.04 

Pentadecanoic acid 0.437 5.61 1.09 

Hexadecanoic acid 31.9 406 84.9 

cis-9-Hexadecenoic acid bdl 0.964 0.292 

Heptadecanoic acid 1.14 12.2 2.51 

Octadecanoic acid 48.3 774 158 

cis-9-Octadecenoic acid  bdl 8.56 1.30 

Nonadecanoic acid bdl 2.61 0.552 

Eicosanoic acid 0.175 22.3 5.17 

Heneicosanoic acid bdl 105 8.54 

Docosanoic acid 0.679 28.2 6.35 

Tricosanoic bdl 35.7 6.62 

Tetracosanoic acid bdl 63.1 9.00 

Hexacosanoic acid bdl 13.5 3.46 

Octadecanoic acid bdl 18.1 3.35 

Di- and tricarboxylic acids    
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Ethanedioic acid (oxalic) 9.56 312 83.1 

Butanedioic acid (succinic) bdl 139 33.8 

2-Ethylpropanedioic acid (ethylmalonic) bdl 46.6 8.67 

1,5-Pentanedioic acid (glutaric) bdl 45.1 9.96 

Hydroxybutanedioic acid (malic) bdl 19.9 3.99 

Hexanedioic acid (adipic) bdl 6.62 2.50 

3-Hydroxyhexanedioic acid (3-hydroxyadipic) bdl 18.2 4.45 

Heptanedioic acid (pimelic) bdl 8.10 1.57 

Octanedioic acid (suberic) bdl 20.8 3.09 

Nonanedioic acid (azelaic) bdl 37.4 10.7 

Decanedioic acid (sebacic) bdl 3.51 0.827 

2-Hydroxypropane-1,2,3-tricarboxylic acid (citric) bdl 12.4 2.61 

Hydroxy-, dihydroxy- and oxo-acids    

Glycolic acid (hydroxyethanoic) bdl 217 46.7 

Levulinic acid (4-oxopentanoic) bdl 26.9 9.62 

Hydracrylic acid (3-hydroxypropionic) 0.323 17.2 3.65 

3-Hydroxybutyric acid (3-hydroxybutanoic) bdl 22.2 4.46 

4-Deoxyerythronic acid (2,3-dihydroxybutanoic) 6.33 74.2 17.6 

Glyceric acid (2,3-Dihydroxypropanoic acid) 0.578 10.4 3.62 

Resin acids    

Isopimaric acid bdl 1.79 0.197 

Dehydroabietic acid bdl 69.1 17.4 

Other acids    

γ-Aminobutyric acid (4-aminobutanoic) bdl 1.58 0.143 

2-Furoic acid bdl 0.941 0.247 

Benzoic acid 0.0594 3.05 1.00 

Hydroxybenzoic acid 0.171 15.1 3.06 

Phthalic acid bdl 23.5 7.11 

Terephthalic acid 1.12 181 54.6 

Pinene and isoprene oxidation products    

Pinonic acid bdl 2.37 0.433 

Pinic acid bdl 57.7 6.61 

Pinanediol bdl 7.72 2.25 

2-Methylglyceric acid oligomers 2.09 1697 241 

Sterols    

Cholesterol bdl 1.30 0.167 

-Sitosterol bdl 4.66 1.08 

Glyceridic compounds    

Glycerol 10.3 157 39.6 
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Monopalmitin 3.97 29.7 14.1 

Monostearin 1.95 7.81 4.58 

Anhydrosugars and polyols    

Levoglucosan 29.5 1368 302 

Mannosan  1.64 197 41.1 

Galactosan 0.725 64.5 15.6 

Unidentified sugars 9.18 174 62.3 

Meso-Erythritol 0.701 30.3 8.53 

Quebrachitol bdl 0.392 0.0901 

Phenolic compounds from lignin    

Vanillin bdl 5.75 1.45 

Vanillic acid bdl 8.25 1.78 

Syringic acid bdl 14.5 3.20 

Cinnamic acid bdl 29.9 2.64 

o-Hydroxycinnamic acid (o-coumaric) 1.86 11.4 5.08 

p-Hydroxycinnamic acid (p-coumaric) bdl 10.7 3.45 

Glycol compounds    

Ethylene glycol 8.87 92.5 22.6 

Diethylene glycol 0.374 35.6 10.2 

Triethylene glycol 1.28 11.3 60.9 

Tetraethylene glycol 1.24 5.73 3.35 

Aromatic ketones    

7,9-Di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione bdl 231 27.6 

2,6-Di-tert-butyl-1,4-benzoquinone 10.8 1231 115 

Benzoquinone derivative bdl 110 31.0 

Other compounds    

Unidentified phthalates 9.71 90.1 31.5 

Hydrocinnamic acid methyl ester 2.93 13.1 7.57 

Oxidised Irgafos 168 91.6 1710 327 

2,4-Di-tert-butylphenol bdl 291 51.2 

bdl – below detection limit 

 


