
Universidade de Aveiro
2021

Manuel Augusto
Capão Estrela Santos

SmartCMD: acesso à Chave Móvel Digital através
de um smartcard virtual

SmartCMD: access to the Digital Mobile Key via a
virtual smartcard

Universidade de Aveiro
2021

Manuel Augusto
Capão Estrela Santos

SmartCMD: acesso à Chave Móvel Digital através
de um smartcard virtual

SmartCMD: access to the Digital Mobile Key via a
virtual smartcard

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requesitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a orientação cient́ıfica de André
Ventura da Cruz Marnôto Zúquete, Professor Auxiliar do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro, e de
João Paulo Silva Barraca, Professor Auxiliar do Departamento de Eletrónica,
Telecomunicações e Informática da Universidade de Aveiro

o júri / the jury

presidente / president Professor Doutor José Luis Guimarães Oliveira
Professor Catedrático da Universidade de Aveiro (por delegação do Reitor da Uni-

versidade de Aveiro)

vogais / examiners committee Professor Doutor Manuel Eduardo Carvalho Duarte Correia
Professor Associado, Universidade do Porto - Faculdade de Ciências

Professor Doutor André Ventura da Cruz Marnoto Zúquete
Professor Auxiliar, Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Agradeço primeiramente ao Prof. André Zúquete e Prof. João Paulo Bar-
raca pela oportunidade, suporte, e disponibilidade no desenvolvimento desta
dissertação.

Gostava de agradecer especialmente ao Prof. André Zúquete que no decor-
rer deste desafio superou qualquer expectativa que pudesse ser imaginável.
Fico muito grato por todos os ensinamentos e mentalidades transmitidas.
Tomou um papel essencial durante toda a extensão deste ano, sempre com
uma palavra amiga e incentivadora.

À minha familia, especialmente ao meu pai e à minha mãe. Sem o apoio e
ajuda deles ao longo destes anos nada disto teria sido posśıvel.

Quero deixar também uma agradecimento especial à minha namorada
Rafaela Patinha pela paciência que teve comigo, pelos momentos de com-
panheirismo, pela motivação incondicional e por todo o suporte me deu
durante todo este processo nunca desistindo de mim, assim como a todos
aqueles que de alguma maneira influenciaram positivamente este resultado.

Palavras Chave CSP, Chave Móvel Digital, SmartCard, Assinatura digital, Chaves privadas,
PKCS#11, SOAP, Interface Standard, API, Algoritmos de hash, Sistemas
cloud

Resumo Hoje em dia, as soluções de assinatura baseadas em cloud estão em cresci-
mento, de modo a oferecer às pessoas uma maneira mais prática de assinar
os seus documentos do dia-a-dia. O Estado português disponibiliza aos seus
cidadãos um serviço chamado CMD, que pode ser usado para criar assinat-
uras digitais sem o uso nem do Cartão de Cidadão nem de um leitor de
cartões.

A CMD tem inúmeras vantagens e constitui um enorme avanço a ńıvel de
usabilidade de operações criptográficas, mas actualmente o uso da CMD
esta extremamente limitado visto que apenas pode ser usada por software
providenciado ou certificado pela AMA como por exemplo a aplicação “aut-
enticação.GOV” para desktop ou a correspondente extensão para o browser
ou então, no caso de um sistema Windows, pode ser usado através da Mi-
crosoft CAPI recorrendo ao CSP providenciado. No caso de um sistema
Unix como é o caso do Linux ou do Mac OS, ou aplicações não nativas
de um sistema Windows, não é posśıvel utilizar a CMD uma vez que a
AMA não providencia nenhuma interface standard dedicada à integração
da mesma. Tal limita a escolha dos consumidores, que muitas vezes pref-
erem utilizar ferramentas alternativas, como é o caso do Adobe Acrobat
Reader, PDF Studio, Mozilla Thunderbird (para assinar emails usando uma
assinatura digital), entre outros.

Nesta tese, e como solução para este problema, irá ser apresentada uma
prova de conceito com o objectivo principal de desenvolver e validar em
Linux um módulo PKCS#11 capaz de usar a CMD para executar assinat-
uras digitais compat́ıveis com aplicações usadas globalmente e desta forma
aumentar o numero de opções oferecidas aos utilizadores desta ferramenta.
Adicionalmente, o modulo PKCS#11 desenvolvido permite explorar em con-
junto as funcionalidades da CMD e do CC.

Keywords CSP, Digital Mobile Key (CMD), SmartCard, PKCS#11, Standard Inter-
face, API, Cloud-based, Digital Signatures, SOAP, Asymmetric Cryptogra-
phy, Hash Algorithms

Abstract Nowadays, cloud-based signing solutions are on the rise to offer people a
more practical way to sign their everyday documents. The Portuguese state
provides its citizens with a service called CMD, which can be used to create
digital signatures without using either a citizen card or a card reader.

CMD has numerous advantages and is a huge advance in the usability of
cryptographic operations, but currently the use of CMD is extremely limited
as it can only be used by software provided or certified by AMA such as
the “authentication.GOV” desktop application or the corresponding browser
extension or, in the case of a Windows system, it can be used via Microsoft
CAPI using the provided CSP. In the case of a Unix system such as Linux or
Mac OS, or applications not native to a Windows system, it is not possible
to use CMD as the AMA does not provide any standard interface dedicated
to its integration. This limits the consumers choice, who often prefer to
use alternative tools, such as Adobe Acrobat Reader, PDF Studio, Mozilla
Thunderbird (to sign emails using a digital signature), among others.

In this thesis, a solution was designed following the lines of a proof of concept
that will be presented in the following chapters, with the main objective of
developing and validating in Linux a PKCS#11 module capable of using
CMD in order to execute digital signatures compatible with applications
used globally, and thus increase the number of options offered to end users.
Additionally, the developed PKCS#11 module allows the use of both CMD
and CC functionalities.

Contents

Contents i

List of Figures iii

List of Tables v

Acronyms vii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem . 2

1.3 Contribution . 2

1.4 Dissertation Structure . 3

2 Context 5

2.1 Asymmetric Cryptography & Cryptographic Tokens 5

2.2 PKCS#11 Standard API . 6

2.3 Portuguese cryptographic devices and middleware 10

2.3.1 Citizen card (CC) . 10

2.3.2 Chave Móvel Digital (CMD) . 11

2.3.3 Middleware and drivers . 12

2.4 Library wrapping . 14

3 Background & Studies 17

3.1 Cloud-based Digital Signatures . 17

3.2 Digital Signature APIs . 18

3.2.1 PKCS#11 API . 18

3.2.2 Microsoft Cryptography API (CAPI) 19

3.2.3 Cryptographic Service Provider (CSP) 19

3.2.4 Microsoft Cryptography API: Next Generation(CNG) 20

3.2.5 Key Storage Provider (KSP) . 21

3.3 Cloud-based product solutions . 22

3.3.1 Austrian Mobile Phone Signature . 22

3.3.2 Crypthomatic Signer and Crypto Service Gateway 23

i

4 Smart CMD 27
4.1 Possible approaches . 27
4.2 Architecture . 27
4.3 Implementation . 33

4.3.1 Installation and configurations . 33
4.3.2 PKCS#11 module . 33
4.3.3 Python module . 37
4.3.4 IPC (Inter-process communication) . 38
4.3.5 GUI (Graphical user interface) . 38

5 Tests & results 41
5.1 OpenSC pkcs11-tool . 42
5.2 Autenticação.GOV application . 43
5.3 MyPDFSigner . 44
5.4 PDFStudio . 45

6 Conclusions 49

Bibliography 51

A CMD: Especificação dos serviços de Assinatura 55

B PKCS#11 Wrapper API 72

ii

List of Figures

2.1 new PKCS#11 application overview [1]. 7
2.2 ”Autenticação.gov” UI, Card menu. 13
2.3 ”Autenticação.gov” UI, Signature menu. 13
2.4 ”Autenticação.gov” UI, Security menu. 14
2.5 Wrapper architecture. 15

3.1 Cloud digital signature operation using a PKCS#11 driver and virtual smart
card [2] . 19

3.2 Cryptography API: Next Generation architecture [3] 21
3.3 Signature operation using a KSP with CNG [3]. 22
3.4 Citizen take-up of Austrian Mobile Phone Signature versus smartcard ‘e-card’

[4] . 23
3.5 Cloud signing vs. Smartcard signing. [5] . 23

4.1 Smart CMD architecture design . 29
4.2 Interaction between applications and the CMD service through PKCS#11. . 29
4.3 Graphical User Interface for SmartCMD. 39
4.4 Detail signature operation using the developed software. 39

5.1 PDFStudio upload PKCS#11 library page. 46
5.2 Signature configuration window. 47
5.3 Result of a valid signature using CMD on PDFStudio app. 48

iii

iv

List of Tables

2.1 AMA available endpoints for CMD services. 12

4.1 PKCS#11 API implemented functions. 31
4.2 Attributes implemented for CMD objects. 32
4.3 Mechanism supported by the CMD token. 36
4.4 Prefixes used supported by the developed python module and PKCS#11 library 38
4.5 Pipe message structure. 38

5.1 Mechanism supported by the CMD token. 42
5.2 PKCS#11 functions tested using pkcs11-tool. 43

v

vi

Acronyms

2FA Two factor authentication. 18

AMA Agência para a Modernização Administrativa. v, 1–3, 11, 12, 20, 27, 28, 37, 38, 41

API Application Programming Interface. i, iii, 2, 3, 6, 8, 11–14, 17–24, 27, 28, 32, 33, 37,
41, 43, 45, 49, 50

BER Basic Encoding Rules. 32

CAdES CMS Advanced Electronic Signatures. 24

CAPI Cryptographic Application Programming Interface. i, 1, 2, 13, 17–21, 24

CC Citizen Card. i, 1–3, 10, 11, 13, 14, 20, 27, 28, 33–36, 43, 44, 48, 49, 72, 81

CKMS Cryptographic Key Management System. 23

CMD Cháve Móvel Digital. i–iii, v, 1–4, 11–14, 18, 20, 22, 23, 27–29, 32–39, 41–50, 55

cms Connection Manager Service. 24

CNG Cryptography Next Generation. i, iii, 18, 20–22, 24

CSC Cloud Signature Consortium. 18

CSG Cryptographic Service Gateway. 23, 24

CSP Cryptographic Service Provider. i, 1, 2, 13, 17, 19–21, 24

DER Distinguished Encoding Rules. 32

DLL Dynamic-link library. 7, 20

eIDAS Electronic Identification, Authentication and trust Services. 17, 44

GUI Graphical User Interface. iii, 4, 27, 28, 33, 38, 39, 45, 50

HSM Hardware Security Module. 1, 6, 18, 24

HTTP Hypertext Transfer Protocol. 3, 12, 22, 27, 28, 33, 37, 50

vii

IPC Inter Process Communication. 36, 38, 50

KSP Key Storage Provider. i, iii, 21, 22

NIF Número de identificação fiscal. 11

OTP One Time Password. 3, 11, 12, 19, 28, 37, 38

PAdES PDF Advanced Electronic Signatures. 24

PDF Portable Document Format. 1, 7, 22, 24, 41, 44–48

PKCS Public Key Cryptography Standards. i–iii, v, 1–8, 10, 13, 14, 17–19, 22–24, 27–29,
33, 34, 36–38, 41–46, 48–50

RIPEMD RIPE Message Digest. 6, 43

RSA Rivest-Shamir-Adleman. 5, 6, 9, 10, 12, 32, 35, 45

SHA Secure Hash Algorithm. 6, 43, 44, 46, 48

SOAP Simple Object Access Protocol. 3, 12, 37

SRP Secure Remote Password protocol. 24

SSCD Secure Signature Creation Device. 7

TLS Transport Layer Security. 7, 24

TSP Trust Service Provider. 7, 17, 18, 20

UI User Interface. iii, 13, 14, 37

USB Universal Serial Bus. 1, 6, 17, 44

XAdES XML Advanced Electronic Signature. 24

XML Extensible Markup Language. 24, 37

viii

Chapter 1

Introduction

1.1 Motivation

Qualified digital signatures and authentication through cryptographic devices plays a very
important role in the world of cyber security and their demand has been growing exponen-
tially in recent years. Over the last decade, people have come to understand the power of
digital security mechanisms in comparison to more traditional methods like a paper signature
or emails and password-based authentication, that most of the time are extremely easy to
discover.

Today, there are two large groups of accessible cryptographic services, personal physical
devices and cloud-based services,the respective service provider’s Hardware Security Modules
(HSM), leading to all the operations being performed on the server side. Regarding personal
physical devices, such as smart cards or USB crypto tokens, these are seen by most people as
safer and more reliable mechanisms, as people feel that by having them in their possession,
they are, somehow, better protected when compared to cloud services. However these physical
equipment bring several limitations for mobile products such as mobile phones or tablets, as
they usually cannot interact with them. Nowadays, and due to advances in the area of
cyber security, the cloud services are starting to being seen as reliable, more convenient and
easily accessible services for all people around the world, and the population are becoming to
surrender to its practicality.

In Portugal, the government and the institutions responsible for the digital transformation,
such as the Administrative Modernization Agency (AMA), have been providing and improving
both services based on physical devices and fully cloud-based services. The Citizen Card (CC)
is the personal physical device offered to citizens, it has a smart card with the functionality
to store deployed cryptographic secrets, such as private keys used for digital signatures and
authentications. On the cloud-based service side exits the ”Chave Móvel Digital” (CMD),
created in 2015 with the aim of exploring digital signatures without CC for both document
signing and personal authentication , and so CMD marks a major step forward in providing
a cloud-based mechanism that is completely free of physical equipment, capable of meeting
the demands of Portuguese citizens and companies, providing a more practical solution over
the CC.

1

1.2 Problem

On these present days there is a wide variety of cryptographic tokens that can be used
by numerous applications and softwares, creating the need to develop a standard integration
solution, independent of the operating system and thus create a global model of how an
application can interact with a cryptographic token. Therefore was created the PKCS#11, a
standard API capable of being internally new to allow the use of any cryptographic device or
service without changing the way applications use these APIs. Therefore, applications that
are familiar with the use of a PKCS#11 module are able to dynamically associate it as long
as it is developed according to the standard interface.

There exists although another way to integrate these devices through the operating system
itself. If a given system provides a service capable of using modules developed particularly by
a cryptographic device, then it is possible to access the crypto tokens and their functionalities
through a high-level interface. One of the most used solutions that offers a wide range of
supported tokens is CAPI, when using a Windows system. This service presents a standard
interface thus facilitating the development of specific software for a given token, being known
as Cryptographic Service Provider (CSP), allowing the use of any cryptographic device on
a Windows system through Microsoft CAPI, as long as it recognizes the presence of its own
CSP for the desired token.

This solution, however, only allows the use of cryptographic operations in native operating
system applications, and so it is still necessary to use a PKCS#11 library for all third-party
applications. It is also relevant to point out that in the case of Unix systems, such as Linux
or Mac OS, doesn’t exist any solution at the operating system level, being thus limited to the
use of standard libraries such as PKCS#11.

Regarding CC, several integration solutions are provided, including both a PKCS#11
library and a CSP itself, to allow the use of the token through Microsoft CAPI in Windows
for native applications of the operating system and allow also the use of it in third-party
applications, such as Thunderbird, or in Unix systems, using the respective PKCS#11 module.

However, the same does not happen with CMD, for which only a CSP is provided, missing
a standard library for using the tool outside of a Windows system. This creates a limitation
on its integration in systems and applications that exclusively depends on the use of these
libraries. AMA also provides its own application, “authentication.GOV”, totally independent
of the system, allowing the user to digitally sign documents using both CMD and CC. In
summary, CMD’s big problem is focus on the fact that its usability is limited to applications
on native Windows, through Microsoft CAPI, and the application “authenticação.GOV” so,
this thesis focus on the develop of a standard solution in order to allow the use of this cloud-
based token in all applications prepared to interact with PKCS#11 libraries.

1.3 Contribution

As discussed earlier, CMD’s main problem is its lack of support for Unix systems, so
in order to solve this problem, a proof of concept will be presented and described using as
an interface between CMD’s applications and services, a PKCS#11 API. Therefore, as a
first step, it was made a detailed study of the entire standard interface and the way in which
applications interact with this library, in order to have the perception of how it will be possible
to change its behavior in order to change the normal interaction with a physical device with

2

a full cloud-based service.

Taking into account all the possible approaches, there were found two possible options
with enormous potential, the first being the development of a virtual smart card, with a
similar behavior to CC, simulated by a device driver, and the second one the building of a
PKCS#11 interface capable of emulating the presence of a smart card in the system (as will
be described later, the presence of a physical card is not mandatory).

After some study and discussion concerning both approaches, it was decided to follow the
path of the PKCS#11 module, as the design of the virtual smart card would be a much more
time-consuming and painful process, as there is no information or documentation regarding
the internal functioning of the CC smart card or how the PKCS#11 interacts with it. Based
on the work developed by Professor João Paulo Barraca in [6], where the objective is to
virtualize the CC, giving the possibility to use in an academic environment this virtual card
over the physical one, this investigation came to the conclusion that this approach would not
be a better solution when compared to a simple new PKCS#11 module.

Having then as the main objective a new library, the first step would be to list all the
necessary methods of the original library, having at the same time a perception of how the
interaction between an application and a device is made during a digital signature operation.
To get around this problem, it was used the PKCS#11 module provided for the CC as a
foundation. From this point it was developed a wrapper, in order to have access not only to
all the interface methods implemented by AMA but also in order to have a solid perception
of the entire sequence of calls made by an application to this library. This wrapper will, in
the final solution, still allow the selection and forwarding of requests to different PKCS#11
interfaces, making it possible to perform digital signatures not only with the CMD but also
with the CC.

Now, having already achieve the concept of how to develop an interface between the
applications and the services intended, the next step would be to access all objects and cryp-
tographic operations of the CMD service. In this way, AMA provides an API containing all
the operations necessary to access the cryptographic information and perform digital signa-
tures, with the aim of developers and programmers being able to implement these services in
third-party solutions and applications. Therefore, this API will be accessed through a python
module launched by our PKCS#11 library, using HTTP requests with a SOAP protocol [7].
This program would also be responsible for encrypting the user’s credentials to be included in
the header of the HTTP request using the public key of the CMD services provided by AMA.
Another one of its responsibilities would also concern the interaction with users through a
simple graphic interface where it will be possible to enter their credentials and the OTP codes
received during the signature process.

It was then intended as a final product, a PKCS#11 module capable of interacting with
various applications correctly and in a standard way, providing the possibility of carrying
out signature operations with both the CMD and the CC, thus allowing users a fluid and
transparent use of CMD’s cloud services.

1.4 Dissertation Structure

Before creating a proper and robust PKCS#11 module, some research and debate were
needed, and so the next chapter will present some of the essential knowledge about asymmetric
encryption and crypto tokens, Portuguese Citizen card structure and its use cases, and finally

3

library wrapping technology. chapter 3 will describe the state-of-the-art made to find existing
functional cloud-based signature mechanisms or well-structured concepts. chapter 4, as the
name implies, will detail all the work done to develop standard support for CMD, including the
new PKCS#11 module, a python module and some basic GUI. Next, in chapter 5, results and
validations are presented, where the PKCS#11 module and all software are tested against
known third-party applications. Finally, the problems faced and possible future work are
inferred at the end of the document.

4

Chapter 2

Context

Digital signatures are in many aspects equivalent to handwritten signatures, but when
implemented properly they become difficult to forge or tamper. They were vastly adopted
in different professional workflows such as for financial transactions, contract management
software, and every other case when it is important to provide a solid proof of the signer’s
identity.

And so, a digital signature consists of a mathematical scheme for verifying the authenticity
of digital messages or documents, and to became valid, it needs to pass on certain authen-
tication and integrity prerequisites, so that the recipient will be confident that the message
was created by a well-known and certified sender and the message content was preserved in
transit. In their basics they rely on asymmetric architecture, so are used a RSA key pair
where the sender can sign the content using the private key and the receiver can verify the
signature using the corresponding public key.

In the following sections will be described all the concepts behind digital signatures and,
more specifically, signatures using Portuguese cryptographic services over standard integration
interfaces, and so will be covered as well the architecture of PKCS#11 interface and the
middleware provided for the Portuguese cryptographic devices and services.

2.1 Asymmetric Cryptography & Cryptographic Tokens

An important concept to understand the process behind a digital signature is asymmetric
cryptography. It is a cryptographic system that uses pairs of keys, where each pair consists of
a public key and private key. The first one can be known by others and is used for encryption
and signature verification operations, while the private key must be always kept secret, since
it is used to decrypt information and generate digital signatures. For key generation, it can
be used a vast number of asymmetric algorithms, depending on the software support and
security level needed.

This system was created to resolve key management on an symmetric system, where both
sender and recipient have the same key and it is used both for encryption and decryption.
This generates a exponential growth of the number of keys in circulation, because for each
new member on the network is necessary to generate n new keys, where n is the actual
number of individuals. In contrast, for an asymmetric architecture, the public key just have
validation and verification capabilities, so it can be used by all the other members in the
network. Therefore, when adding a new member, it just needs to create a new key pair,

5

where the private key stays in the owner’s possession and the public key will be distributed
between all the other individuals.

There are still some more benefits in asymmetric cryptography, for example, it allows for
tampering detection and non-repudiation so the sender cannot deny a sent message, but this
advantage come with a certain setback in performance, so the architecture most adopted is a
hybrid system between asymmetric and symmetric cryptography.

In the case of digital signatures, these also use asymmetric cryptography, where the mes-
sage is signed with the sender’s private key and signature can be verified by anyone who has
access to the corresponding public key. This verification proves that the person sending the
signed message had access to the private key, so there is a high possibility that the key actu-
ally belongs to the person who owns the used key pair. As seen before, this verification can
also prove that the message information has not been altered since the signature generation,
because it is almost exclusive to the original information.

Regarding the entity responsible for ensuring the authenticity of a public key and, thus,
ensuring that the key is correct and belongs to the claiming entity, exists Public Key In-
frastructures (PKI) composed of one or more entities that certify the owner of the key pair,
known as Certification Authorities (CA). Each of these entities is responsible for issuing dig-
ital certificates containing the ownership of a certain public key, ensuring that any signature
created with the private key can be correctly verified by the corresponding public key.

Regarding asymmetric cryptography, it is relevant to talk about the RSA cryptographic
system, emphasizing its impact on digital signatures. As one of the first asymmetric cryptog-
raphy systems, it is nowadays the most used system for digital signature operations due to
its high degree of security.

To implement a signature with RSA, the signer entity will sign the message content using
the following mathematical expression, s = hd mod n, and then the recipient uses, h = se

mod n where h = hash(m), to verify the signature made [8]. A particular step commonly
used regarding the signed information, is ”digesting” the message using a hash algorithm such
as SHA-1 [9] or RIPEMD-160 [10], making the size of the actual data less variable because
the length of a certain digest hash, created with a specific algorithm, is always the same.

For key pair storage are used security tokens (or Cryptographic tokens) present in, for
example, smart cards, Universal Serial Bus key and a mobile device or using cryptographic
hardware security modules (HSMs). These devices are physical and need to be kept private
and protected, and are with them that a user can access their cryptographic credentials (as
keys and certificates) using a valid password or Pin. After, these credentials can be used via
standard programming interfaces, such as PKCS#11, implemented by modules (as libraries)
specifically for a certain device. Regarding cloud-based systems, credentials are stored in the
service provider on-premises HSMs, and they are responsible to maintain data integrity and
ensure that the cryptographic private information are only access by the respective owner.

2.2 PKCS#11 Standard API

The PKCS#11 is one of the Public-Key Cryptography Standards [11] designed to be an
interface between applications and cryptographic devices such as smartcards, HSMs and USB
key tokens. It defines the ‘Cryptoki’ API allowing that applications may access cryptographic
tokens and their functionalities, and due to its robustness and customization possibilities,
it has been widely adopted in the cryptography industry, promoting diversification across

6

multiple platforms. Using a well-developed, PKCS#11 driver offers third-party applications
a mechanism of using security functions without the need of changing neither the application
source code nor the way the user interacts with it.

In an operating system environment, PKCS#11 drivers come in a form of a dynamic-link
library (DLL) in Windows systems or Shared Objects (SO) in Unix-based operating systems.
Applications that work with PKCS#11 offer the user the possibility to load the corresponding
SO/DLL file of a certain crypto token, enabling cryptographic operations with the objects
stored on that device. Some examples of popular applications that use PKCS#11 libraries
are Adobe Acrobat Reader and Mozilla Firefox, allowing users to digitally sign PDF files (in
case of Adobe Reader) with their private keys or performing SSL/TLS client certificate-based
authentication (Mozilla Firefox).

Concerning cloud-based digital signatures, the development of a PKCS#11 module ca-
pable of using such services is a popular discussion in the last years, because of the in-
creased demand for cloud and mobile services. Figure 2.1 presents a possible approach using
a new PKCS#11 library to communicate and make requests to a cloud-based cryptographic
service[1], switching the normal interaction with a physical device with a cloud trust service
provider (TSP) that contains a SSCD.

Figure 2.1: new PKCS#11 application overview [1].

Taking in consideration the internal architecture in a PKCS#11 module, each crypto-
graphic device is represented by a slot, with which applications can interact by establishing
one or more sessions. After a session has been established, the user authenticate their self
with a token using a valid matching PIN, this way gaining access to protected objects within
the token, such as keys, used to perform the cryptographic operations allowed by that spe-
cific cryptographic device [12](authenticated users are the only entity with access to private
objects). Those objects can take many forms and have a vast number of different attributes
and properties. In a session, each object is referenced and managed via a handle that do not
reveal any information about a certain object, being the handle just a volatile reference to
the object.

7

Regarding the PKCS#11 interface, a complete digital signature operation is composed
of five main steps: initialization of communications between the application and the Cryp-
toki API (PKCS#11 API), establishment of sessions between the application and the token,
extraction of all attribute informations needed from objects, such as private keys or public
certificates, performing a signing operation with a private key, and finally closing all sessions
and finalizing all processes. Following, a normal function sequence between an application
and a Cryptoki library will be described regarding a digital signature operation using a crypto
token.

1. Initialize Cryptoki

In this interaction between the application and the PKCS#11 API it will be exchang-
ing some trivial information such as Cryptoki general information or list of functions
supported by this PKCS#11 module, as well as initialize the desired library.

1.1 C Initialize, where Cryptoki library is initialized and are passed as arguments
information on how the library should deal with multi-threaded access.

1.2 C GetInfo, returns general information about Cryptoki library.

1.3 C GetFuntionList, application asks for all Cryptoki functions supported by the
module´s API.

2. Establish sessions with a valid Slot

Here, the application finds the wanted token present in a slot and starts a connection
using Cryptoki sessions.

2.1 C GetSlotList, used for the application to find slots available in the system, is
returned a list of Slot Ids.

2.2 C GetSlotInfo, returns information about a particular slot, passing as argument
the slot identifier (Slot Id). With this information, applications can verify if the
slot has a token or read the slot description, manufacturer identifier and some more
static information.

2.3 C GetTokenInfo, have the similar behavior as the method C GetSlotInfo but fo-
cused just on the token information, such as flags, representing all the crypto-
graphic operations supported by the token (if the token supports digital signing
operations, CKF SIGN flag must be up), PIN lengths, serial number and other
descriptive information.

2.4 C GetMechanismList, applications use this function to find what cryptographic
algorithms are supported by the token. For example, for digital signatures, the ap-
plication will be focus on CKM SHA256 RSA PKCS or CKM SHA512 RSA PKCS
mechanism types.

2.5 C GetMechanismInfo, returns information regarding mechanisms capabilities (how
exactly they can be used) and key lengths. Are passed as arguments the slot ID
and the mechanism identifier.

2.6 C OpenSession, used to open a session with a particular slot. Opening a session
with a slot is mandatory to perform cryptographic operations with the present
token. Are passed as arguments flags to indicate the type of session needed, an

8

application-defined pointer to be passed to the notification callback, the address
of the notification callback function and the slot identifier. One slot can have
multiple open sessions at the same time with multiple applications. Are returned
the session handle.

2.7 C Login, if CKF LOGIN REQUIRED flag is active in the token information vari-
able, this function must be called for the user to perform the authentication process.
Arguments passed are user type, PIN for token authentication and its length. Re-
garding the crypto tokens tested, they use their own middleware for authentication,
so this function was not called by the applications.

3. Extract Objects information

After established the session with a particular token and the user perform the authen-
tication process required, the application needs to acquire more specific information,
particularlyRSA private key attributes. As already discussed in section 2.1, to create a
digital signature we need a private key from a validRSA key pair.

3.1 C FindObjectsInit, first application starts an object search operation, where it
specifies what attributes it is looking for, using a CK ATTRIBUTE data structure
template.

3.2 C FindObjects, after starting a object search (C FindObjectsInit must be called
before), this function is called to return the actual handles of the objects that
match the desired template (passed as argument in C FindObjectsInit). Arguments
are the session handle and the maximum number of objects to be returned. The
method returns a list of object handles.

3.3 C GetAttributeValue, now that we have the object handles, we can call this function
to actually obtain the object attributes needed to perform the signing operation.
For some attributes, the application needs to call this function twice, the first call
to get the attribute length for memory allocation and the second one to acquire
the actual value of the attribute.

3.4 C FindObjectsFinal, this method must be called to stop the search cycle started
with C FindObjectsInit in this session.

4. Signing operation

After finding the desired private key and public key certificate to use in the signing
operation, the application will initiate a signature process. Based on the information
collected above, the application has all the information it needs to start a signature
operation with the corresponding crypto token signing software.

4.1 C SignInit, starts a signing process in a session previously open with a slot. Are
passed as arguments, the signature key handle and the signing mechanism. The ap-
plication after receiving a CKR OK from C SignInit, can choose to do a single-part
signature using just C Sign method or a multi-part signature, calling C SignUpdate
one time for each block of data and calling C SignFinal to finalize the operation
and receive the signature value (in a single part signature operation, C SignFinal
does not need to be called).

9

4.2 C Sign, this method will receive the total data to be signed and will return the
corresponding signature. Are passed as arguments, the session handle and the data
to be signed.

4.3 C SignUpdate, starts a multi-part signature operation where this method will be
called multiple times. Are passed as arguments, the session handle and a data
block.

4.4 C SignFinal, ends a multi-part signature operation. Returns the signature from
all the data received along the multiple C SignUpdate calls.

5. Finalize and close sessions

5.1 C CloseSession or C CloseAllSessions, application closes a session/sessions with
a particular token. Calling this method will shut down all pending operations
between the application and the token (in the specified session).

5.2 C Finalize, is called to indicate that an application is finished with the Cryptoki
library. It should be the last Cryptoki call made by the application

This is a typical interaction between an application and a PKCS#11 module that makes
use of a crypto token for signing operations. In chapter 4 and chapter 5 will be discussed
and presented some examples of multiple applications assembling a digital signature using
the process described above.

2.3 Portuguese cryptographic devices and middleware

2.3.1 Citizen card (CC)

The Portuguese Citizen Card (Cartão de Cidadão) is a personal device that stores relevant
information in order to identify the owner citizen, as well as cryptographic objects such
as authentication and signature digital certificates and asymmetric key pairs. Although in
provided documentation there is no clear information about the presence of private keys [13],
these keys are mandatory to perform operations such as authentications and digital signatures.

There is a set of well-delimited storage capacities of the smart card present in the CC, such
as: store personal information used for validation of the holder’s entity and this information
is made of descriptive elements (biometric references) of user fingerprint; store sensitive and
private information that just can be used by the owner of the card and it should never be
revealed, including one symmetric authentication key, a private key from a RSA asymmetric
key pair used for user authentication and a private key from a RSA asymmetric key pair
used for creating digital signatures; store address information; save public information, more
specifically personal photograph holders and public digital certificates in X.509v3 format used
to authenticate the user and validate digital signatures; and finally store visible information
like the personal photograph, name, birth date, all identity numbers, and CC expiration date
[14].

Some operations need previous user authentication, made with the assist of a secret PIN.
Following this idea, the Portuguese CC comes with 3 PINs, each one of them with different
objectives, being the first one to access the home address, the second one for user authen-
tication and the last one to perform digital signatures. These PINs guarantee a responsible
and individual use of the card, for example in case of loss the person that founds the card

10

cannot use its capabilities. In more extreme cases, for example, in a theft situation, there is
an 8 digit code for disabling all card functionalities.

Regarding the Citizen Card utilization, it can only be used in desktop environment using a
smart card reader and the provided software used to enabling interaction between applications
and the cryptographic token present in the card.

2.3.2 Chave Móvel Digital (CMD)

CMD was implemented in 2015 as a full cloud-based cryptographic technology that allows
authentication and generation of certified digital signatures by the Portuguese Government.
It allows a citizen (not just Portuguese citizens) to associate their identification number
(passport or card of residence in case of foreign citizens) to a cell phone number or email
address [15].

The user can activate the CMD functionalities using their CC, a smart card reader and the
authentication PIN given with the CC, or they can do it through the Portuguese finances with
the NIF and access code. If needed, users can activate CMD in person. For digital signatures,
the user needs to activate personally the Qualified digital signature service present in the CC,
this applies for making digital signatures both with the CC and CMD.

Regarding digital signatures with CMD, authentication and signing operations are secured
via a two-factor authentication process, where the user needs their cell phone number and
the corresponding PIN, next they will receive an OTP via text message to the associated
number and then the user should provide the received code in order to complete the requested
operation.

All operations concerning CMD, from emission and key generation until usage or revoca-
tion, are controlled by a Trustworthy System Supporting Server Signing (TW4S) called CMD
Service Provider [16]. This means that the signing operations and private key storage are
done in the server-side and not in a local physical device, and so, exits a public institution
called “Agência para a Modernização Administrativa” (AMA) responsible for ensure a secure
storage and access of the criptographic information as well as maintain a high availability of
the provided services.

AMA provides several integration components for CMD, including the integrated signature
process within the “autenticação.GOV” application and an API for external systems, giving
programmers and thrid-party software developers access to CMD cryptographic operations.

This API provides digital signature operations and has in its core the following services:

• GetCertificate: called when a user wants to access their certificate files;

• SCMDSign: should be utilized when we wants to sign a single document using the CMD
service;

• SCMDlMultipleSign: has the same functionality as the operation described above but
for multiple documents;

• GetCertificateWithPin: used for acquiring user certificates with the associated CMD
PIN;

• ForceSMS : forces to be send a SMS with a new OTP associated to an operation in
progress;

11

• ValidateOtp: after receive an OTP code via SMS, this operation is used for validation.
Is returned the signature of the document, a list of signatures or the citizen certificate,
following the previous initialized operation;

This service can be used to get user’s certificates or to sign documents. It can be accessed
via HTTP communication with basic-authentication (credentials provided by the service en-
tity) and SOAP messages. Regarding the credentials used to access this service, they need to
be given by AMA.

All the operations described, must use asymmetric cryptography within the HTTP re-
quests, to secure all user credentials (phone number, signature PIN and OTP) and private
data exchanged. The public key used for encrypting this information is given by CMD ser-
vices’ X.509 certificate. On the other side, CMD services will decrypt the information using
their private key from the RSA key pair. AMA provides the following endpoints, including a
test endpoint for all the developing iterations (DEV), a pre-production endpoint (PPR) and
a production endpoint (PRD):

DEV

Service:
https://dev.cmd.autenticacao.gov.pt/Ama.Authentication.Frontend/SCMDService.svc

(just accessible inside AMA’ network)

Certificate: to be defined

PPR

https://preprod.cmd.autenticacao.gov.pt/Ama.Authentication.Frontend/SCMDService.svc

Certificate: to be defined

PRD
https:// cmd.autenticacao.gov.pt/Ama.Authentication.Frontend/SCMDService.svc

Certificate: to be defined

Table 2.1: AMA available endpoints for CMD services.

To use this service, it is first needed to contact the AMA resource service to ask for
credentials to access their services (Application ID and a password) and a public key to
encrypt data when making requests through an insecure channel. Following, it is required to
establish a valid connection to one of their endpoints using HTTP with basic authentication
and SOAP message format. In chapter 4, when presenting our solution, we will discuss some of
the requests used to perform a qualified digital signature using this service. More information
regarding AMA API for CMD services can be found in [7].

2.3.3 Middleware and drivers

To give access to the functionalities provided by the Portuguese cryptographic systems,
users can use a desktop application, ”Autenticação.gov”. The application is available for a
variety of operating systems, including Microsoft Windows, Linux and Mac OS. Concerning
application interface, its composed by three menu options: card, signature and security.

12

In the Card page, the users can have access to their personal information stored on the
card, such as name, age, birth date and address. This last one is PIN protected. The
Signature menu allows to digitally sign documents with both CC and CMD. The last menu,
Security, allows the user to check information regarding digital certificates, such as the chain
of trust and also download them as files. ”Autenticação.gov” application does not have any
signature verification mechanism, what is major disadvantage compared to other third-party
applications.

To extended usability, are also provided PKCS#11 modules to use the Portuguese CC with
third-party applications that make use of that standard API. However, no PKCS#11 module
is provided to use CMD services The only way of signing documents with CMD is through
”Autenticação.gov” application or using the provided CSP for Microsoft Cryptographic API
(Microsoft CAPI) in a Windows operation system.

Notably, the ”Autenticação.Gov” application does not make use of the CC’sPKCS#11
module, which is somewhat strange.

Figure 2.2: ”Autenticação.gov” UI, Card menu.

Figure 2.3: ”Autenticação.gov” UI, Signature menu.

13

Figure 2.4: ”Autenticação.gov” UI, Security menu.

2.4 Library wrapping

Sometimes standard APIs do not have enough flexibility, or Libraries are too big to be
changed for a hand full of alterations. To face this problem can be use wrapping technologies.
Library wrappers consist of a layer of new code implemented between applications and the
wrapped libraries. They allow a flexible way to, for example, refine a poorly designed interface,
upgrade compatibility or enable cross-language and/or runtime interoperability [17].

Wrapping technologies bring programmers tools capable of suit their needs of scalability
without too much effort. For example, a certain library is important for a given number of
applications, but there are some methods, or parts of the code, that are outdated and need
some intervention. Therefore, using a wrapper there is no need to know the code behind
the already compiled Shared Object (in Linux systems), we just need to implement a layer
between the applications and the original library with the following logic: if some changed
method is called, the request goes to the new library; if not, the request is forwarded to the
old library (it is a very simple example, in practice the work is sometimes more complex).
Wrappers can also be used for simple tasks, as debuggers or logging systems, because it is
an easy way of catching requests to a certain library interface without changing the way
applications use that library.

This technology was first used in the project to in understand the communication between
different applications and the CC PKCS#11 module, next, we used the wrapper as a thin
layer of code to suit as a ”front-end” API that communicate with applications, forwarding
the requests to the appropriated library (CMD developed PKCS#11 library or CC provided
PKCS#11 module).

14

Figure 2.5: Wrapper architecture.

15

16

Chapter 3

Background & Studies

During the last decade, the migration from physical or on-premises to cloud services is
increasing in a extreme rate given its vast advantages in cost, scalability and availability.
Concerning digital signatures, the gains are mainly in usability and convenience for the end
user.

In July first of 2016, cloud qualified digital signatures were made available for the global
consumer, since the eIDAS Regulation [18] was approved. With this regulation, its not
mandatory that the signer own the secure digital signature device, and so this devices can
also be managed by the authority that issues the cloud qualified digital certificates, giving
that the trust service provider (TSP) can also assure the sole control of the signer over the
signature creation data (namely the private keys).

In order to create a grounded solution, first it is necessary to analyze some existing
solutions or theories, so that can be followed the footsteps of many experienced organizations
in this service transformation, since remote signatures solutions are available and already in
use by well-known software companies and EU Governments [19].

Therefore, it is important to understand the differences between cloud-based signatures,
where services and certificates are stored server-side, and digital signatures through physical
devices that contain the respective certificates and keys, and where the cryptographic opera-
tions are made using local middleware. Regarding on how it is possible to offer applications
the possibility to use cryptographic services in the cloud, it is relevant to mention and describe
the way the integration of these services can be done through cryptographic APIs such as
PKCS#11 or the adaptation of CSPs for its use through Microsoft CAPI.

3.1 Cloud-based Digital Signatures

A cloud signature or “remote signature” is a type of certificate-based digital signature
that uses standard protocols to generate an e-signature using digital identity certificates that
are provided as-a-service in the cloud from an certified TSP. Compared to cryptographic
methods based on physical devices such as smart cards or USB tokens, a cloud signature
service allows significantly more flexibility and availability, as they can be used easily across
desktop applications, web browsers, and mobile devices.

The main principle behind cloud-based digital signatures is that the private key is hosted
server-side, and not in a physical device. This implies that the actual signing operations need
to be done in the server-side, but at the same time maintaining its use under the main control

17

of the user with his private key [20, 21]. Regarding the smart cards and other physical devices,
they are not mandatory to perform a qualified digital signature, as described and proved in
[22].

Concerning cryptographic information, namely private keys, they are stored and managed
in the service provider HSMs and can only be used by the respective owner. In this way, and
as a way to ensure a permissive use of such information, entities that provide cloud digital
signature services, adopt 2FA (two factor authentication) as the default security scheme.

3.2 Digital Signature APIs

The following section presents the most used cryptographic APIs and how they can in-
tegrate digital signatures for cloud providers: PKCS#11 (platform independent), Microsoft
Cryptography API (CAPI) and Microsoft Cryptography API: Next Generation (CNG) (only
for Microsoft Windows operating systems).

Since this thesis focus on integration of a cloud-based digital signature provider (CMD)
throught a PKCS#11 API, will be more intensely described the solutions regarding the ones
that use PKCS#11 as cryptographic API, but will be also briefly mention solutions that can
integrate cloud providers in a restrict environment (namely Microsoft CAPI and CNG for
Windows operating systems).

3.2.1 PKCS#11 API

In order to offer a wide range of compatibility applications with digital signatures in the
cloud, a good initiative would be the development of a PKCS#11 module, changing the use
of direct communication with a physical device with the connection to a TSP service to carry
out the cryptographic operations.

Regarding private keys and digital certificates stored on the server side, these are securely
generated and managed through the HSMs of the TSP, in this way a PKCS#11 module can
offer transparently to applications that do not know how to work with signatures on the
server-side with a mechanism capable of providing these cryptographic operations. When
using such a PKCS#11 module, there is no need for either the applications to change the
source code or how the user interacts with these services.

Likewise, the HSMs producers of each TSP would be responsible for providing their own
PKCS#11 module, enabling their clients to use the cryptographic information issued in the
cloud with any application that can integrate the PKCS#11 module.

In [2] is described a possible way of implementing a cloud PKCS#11 driver using a software
token (virtual smart card) to store all objects and perform cryptographic operations. More
specifically, the PKCS#11 driver communicates with a generic signing web service exposed by
the server-side signature provider, preferably one running according to the Cloud Signature
Consortium Standard (CSC) [23].

Regarding sessions, virtual slots, users and objects, they are managed using specified im-
plemented classes. Regarding the signature operation, the application that integrates the
PKCS#11 driver starts a signature operation calling the function C SignInit passing as argu-
ments the session handle, the algorithm used to perform the message digest and the signature
key handle (private key), obtained after a object search operation. Next, it is called the
function C Sign twice, the first call to get the signature length computed using the private
key modulus, and the second call to receive the signature, for that the driver sends a request

18

to the signing service provider containing the signature password, the OTP and the message
digest.

Figure 3.1: Cloud digital signature operation using a PKCS#11 driver and virtual smart card
[2]

3.2.2 Microsoft Cryptography API (CAPI)

The Cryptographic Application Programming Interface (CAPI), also known as Microsoft
CryptoAPI, is a cryptographic API native to the Windows operating system, that offers to
applications directly provided with the system an interface to access cryptographic operations
of various security devices and services.

Microsoft CryptoAPI is not dependent of any algorithm or operation since specific crypto-
graphic functions and algorithms are not directly attached to the API [24]. They are instead
performed by independent modules known as Cryptographic Service Providers (CSP). The
cryptographic functions, instead, rely in the different CSPs to provide the necessary crypto-
graphic algorithms and secure storage for any cryptographic session or keys that may be gen-
erated. All application-to-CSP communications must be done via the exposed cryptographic
functions in the CryptoAPI, and each of these cryptographic functions, that communicate
with a CSP, has a parameter that describes which CSP will be used.

CSPs modules need to be properly installed in the system, and these can be specifically
developed not only for physical devices but also for a cloud-based digital signature service.
Therefore, Microsoft CAPI can be a viable alternative to PKCS#11 regarding enabling cloud-
based digital signatures, only in Windows systems, limiting its use to native operating system
applications made available by Microsoft. This API does not solve the problem described in
this thesis, and so the search for a solution proceed.

3.2.3 Cryptographic Service Provider (CSP)

In Microsoft Windows, a Cryptographic Service Provider (CSP) is a software library that
is design based on the Microsoft CryptoAPI (CAPI). An CSP abstracts from the applications
the entire internal process used by a cryptographic operation, thus offering a completely

19

transparent support solution. Each CSP module is independent and can be used by any
application prepared for its integration.

Each CSP provides a different implementation of the cryptographic operations that it
provides to the CryptoAPI and may be implemented in hardware with a software interface
library or exclusively in software. Microsoft is always encouraging independent developers to
write CSPs, this way providing support to other algorithms.

Regarding CSP, consists of a set of functions made available to CryptoAPI attached to
a library file. As this library is available at runtime to applications through the CryptoAPI,
the library is provided in the form a dynamic-link library (DLL). Some CSPs may, in specific
situations, communicate with users directly, such as when a digital signatures are performed
using the user’s signature private key. In order to ensure that the DLL is not tampered
during the time it is in use by the application, the CSP includes itself a digital signature in
a signature file. This signature is checked in regular intervals by the CryptoAPI while the
CSP is in use. Currently only Microsoft is able to generate valid signatures for each CSP. As
Microsoft will only sign CSPs in the United States, these would have to be shipped to the US
first to be signed.

The CryptoAPI programming model takes its philosophy from traditional multi-user op-
erating system design, where access to a hardware device by a user’s application is provided
through well defined operating system calls. Just as well-behaved applications are not allowed
to communicate directly with device drivers and hardware, well-behaved applications cannot
directly access the CSPs and cryptographic hardware.

Regarding cloud-based digital signatures, a remote CSP would integrate the call to the
cloud-based digital signature service using a TSP, offering the cloud service cryptographic
functionalities to the applications. Generally, any existing application that is compatible with
Microsoft CryptoAPI would thus work with cloud digital certificates and so is not required to
perform any changes. An example of a cloud-based digital signature tool, besides Portuguese
CMD, that provides a CSP, is Cryptomatic Signer [19].

AMA provides a CSP both for the CC and CMD within the middleware package available,
in this way consumers can access the Portuguese cryptographic services through Microsoft
CAPI. In order to enable the CMD service, the user needs to download the corresponding
digital certificate using the ”Autenticação.gov” application and store it along side the re-
maining user certificates (in Microsoft Windows exists a special directory exclusively to store
them). When using a CC, this certificates are extracted directly from the smart card and
stored in the user certificates directory, and when the card is removed, the certificates are
also deleted from the directory. Finally, when using a signature application that supports
Microsoft CAPI, it will be present a option to use CMD and CC to digitally sign documents
using the provided CSP, and this CSP will use the digital certificate, previously downloaded
or extracted (for the CC), to access CMD cloud service or the CC cryptographic service.

3.2.4 Microsoft Cryptography API: Next Generation(CNG)

This tool was developed in order to solve Microsoft CAPI flexibility problems regarding
the implementation of new or modified algorithms and cryptographic operations. Having this
in mind, Microsoft decided to create CNG, as a cryptographic solution prepared to support
changes in existing functions or even creating new ones.

When programmers need to support a new cryptography algorithm or function, they only
need to implement these new functions and add the result to the existing library. This design

20

concept is called the plug-in model [25], which has as its main advantage the possibility of
reusing common parts and thus alleviating the complexity of integrating new interfaces.

Even though CAPI has a similar component, a CSP, developers need to implement indi-
vidual CSPs and the results require a certification of signature to verify its feasibility after
implementing the new CSPs, which causes lack of agility. CNG uses KSP instead of CSP. As
Microsoft CAPI, CNG could be implemented for cloud-based digital signatures [3], however
is not a viable approach for our solution because it only works in a Windows machine as well
(same as CAPI).

Figure 3.2: Cryptography API: Next Generation architecture [3]

3.2.5 Key Storage Provider (KSP)

KSPs are used in CNG and are equivalent to CSPs in Microsoft CryptoAPI. The main
role of the key storage provider is to handle the private keys storage (including private keys
encryption), but it has also a role in many cryptographic operations that include the use of
the private key, like digital signatures. Therefore, as CSPs, KSPs can be used for digital
signatures using a cloud-based solution, without the need of any alteration in comparison
with physical cryptographic solutions.

In Figure 3.3 is described the complete process regarding a digital signature using a KSP
that implements a cloud service, where the user starts with a login in the respective web
application from the cloud service enabling the digital signature capabilities for that user.
Then, using a signing application (for example, Adobe Acrobat) that supports CNG, the user
will start a document signature operation. In this way, the application will use the respective
KSP (developed for that cloud service) to request the signature, sending the corresponding
document hash. Once the KSP have all the information necessary, it will send it to the cloud
service where it will be generated the signature value. Finally, the KSP receive the signature
and send it back to the application.

21

Figure 3.3: Signature operation using a KSP with CNG [3].

3.3 Cloud-based product solutions

Regarding cloud-based solutions already used and commercialized, there were found sev-
eral solutions including government authentication tools and commercial frameworks. After
all this analysis, and after all the aggregated solutions, it was concluded that only two of them
have a similar architecture and behavior to CMD. In this way, only those two are going to be
addressed in the elapse of this thesis. The first one was implemented by the Austrian Gov-
ernment and presents the same limitations of the Portuguese CMD and a second with a vast
number of integration options, such as standard APIs developed by Crypthomatic Software.

3.3.1 Austrian Mobile Phone Signature

The Austrian Mobile Phone Signature service provides users with a digital signature
service based on Austria’s official eID. This service meets the requirements for the creation
of qualified electronic signatures, listed in the EU Signature Directive [19].

This service can be used by any web application since it is not necessary to have any other
software installed in the client devices. To start a signature operation, the web application
makes a signing request to a Security Layer, and in this request holds the document to be
signed and some other information needed. After, the signature server presents a web page
where the user can select the key he wants to use, then the user authenticates itself in order
to authorizes the signing process. Being a service designed just for web services or web
applications, the user cannot use this service to sign something on, for example, a desktop
application, since it is not provided a integration mechanism such as a PKCS#11 module,
which represents a lack of versatility and usability. As for CMD, the Austrian Government
offers a pdf-signer tool for creating PDF signatures using this remote digital signature service.

Additionally, the PDF signature tool web application can be accessed using a HTTP
interface. Through this, third-party applications can send files to be signed by the Austrian

22

service [26].

Regarding the Austrian signature service, it is an easy-to-use signing tool for Austrian
citizens but with serious integration limitations because, to use it, are only available a web-
application interface and pdf-signer tool (mobile and desktop application); there is no interface
developed to integrate this remote service with industry-standard APIs. In conclusion, this
service has the same limitations as Portuguese CMD since it cannot be used in third-party
applications that use, for instance, PKCS#11 as cryptographic API.

Figure 3.4: Citizen take-up of Austrian Mobile Phone Signature versus smartcard ‘e-card’ [4]

3.3.2 Crypthomatic Signer and Crypto Service Gateway

Crypthomatic company is a global provider of server solutions including cryptography
services. They focus on delivering a well secure and flexible product to their customers,
offering cloud cryptographic solutions for cloud-based signing and authentication operations
like Crypthomatic Signer and CSG. In [5] are shown advantages and scalability of cloud-based
digital signatures mechanisms over physical smartcard devices.

Figure 3.5: Cloud signing vs. Smartcard signing. [5]

First, they offer a Cryptographic Key Management System (CKMS) which is used to
assists its users in handling their keys. Next for signing operations, they provide a signer

23

service enabling web-based signing capabilitie. Finally, they provide a crypto service gateway
service to give the possibility to use a managed HSM.

Regarding the CSG, it is a platform that simplifies application integration while ensuring
HSMs availability and utilization, acting as an abstraction layer between applications and
the HSMs. CSG needs to guarantee a high-performance service with minimal latency and
any interruption, ensuring a quality user experience. So, in sum, CSG provides the following
benefits:

• Reduces costs through shared infrastructure, and so increasing HSM utilization;

• Uses a centralized policy and control over all cryptographic operations and key man-
agement, assigning this to the security team and this way facilitating crypto-agility;

• Enables complete central management and monitoring over the entire HSM infrastruc-
ture;

• Provides proof of compliance with easy-to-read audit logs;

• Offers simple-to-use APIs for increased software readiness and consequently reduced
time to market.

Communication between applications and the cryptographic services is secured by stan-
dard methods, such as the use of the Secure Remote Password protocol (SRP) [27], TLS
[28] and others. Concerning the formats supported by the provided services, are offered inte-
gration with the more common ones, such as XAdES [29], PAdES [30], and CAdES [31] for
digital signatures [32].

Cryptomathics Signer, as well as their Crypto Service Gateway (CSG), offer well-known
and standard cryptographic methods and primitives. For instance, in advanced Electronic
Signature are available schemes for XML, PDF and cms formats regarding the Signer product.
For the CSG is offered a wide range of primitives and methods as well, by using high quality
HSMs (like AEP, SafeNet, Thales, and Ultimaco).

For authentication, Cryptomathic products also offer a great range of methods. For in-
stance, the Signer product offers multi-factor authentication methods as default, and so the
service can be considered as well-protected and secured. In the other hand, Cryptomathics
CSG offers a smaller set of authentication methods, since are just available Username/pass-
word as well as LDAP- and RADIUS-based authentication methods, missing the option of
multi-factor authentication. As for key storage, Cryptomathic uses third-party HSMs build
by AEP, SafeNet, Thales, and Ultimaco among others [33]. Therefore the physical protection
level depends on the HSM in use.

Cryptomathics provides a variety of integration options for CSG and Signer both in terms
of applications interfaces and HSM to applications and services. Developers can use a set
of well-known APIs to send requests to CSG [33] such as, a PKCS#11 interface, a JCE, a
Microsoft CAPI CSP and a CNG.

Doing a complete review of the services offered by Cryptomathic, they can be reasonably
secure and easy-to-use. They offer a vast range of authentication methods, as well as a wide
selection of integration interfaces, and feature professional HSMs to ensure the key protection.
The Signer service offers all major signature formats and therefore seems to meet a wide
range of use cases. Even so, if a special use case cannot be met with the Signer product,
Cryptomathic also offers its Crypto Service Gateway.

24

This way, Cryptomathic Signer is a strong solution for large organizations concerning their
digitalization strategies.According to [32], ”It is the only zero-footprint signing technology
that can offer an appropriate security assurance level while being compatible with all types
of devices”.

25

26

Chapter 4

Smart CMD

4.1 Possible approaches

Here, the main objective was to enable CMD capabilities for applications that use PKCS#11
as a cryptographic API. To solve this issue and after studying some possibilities, it was found
two promising approaches. The first approach consists on the development of a virtual smart
card capable of replicating the Portuguese CC functionalities and cryptographic operations
with capabilities of working with the already provided CC middleware while exchanging the
default communication of the physical smart card with the CMD cloud service. The second
approach concerns the development of a new PKCS#11 module capable of emulate a pres-
ence of a virtual CMD token in the system that could be detected by applications and use an
external HTTP client to make requests to the CMD service API.

After some research and discussion about both approaches, the conclusion was that im-
plementing a virtual smart card would not be a superior solution when compared with the
development of a new PKCS#11 module, with the aggravation of having a greater implemen-
tation effort, since the lack of information regarding the Portuguese CC internal architecture
and software leads to a thorough process in understanding how the CC works internally and
how it interacts with its cryptographic services.

In this way, the method chosen was the development of a new PKCS#11 module extending
the Portuguese CC module, adding all the software needed to establish a connection to the
CMD cloud service, as well as to implement a GUI for authentication inputs.

4.2 Architecture

The Smart CMD uses a set of developed software to properly generate a qualified digital
signature using a cloud-based service. The architecture was design with the objective of
offering users the capabilities of access both the CMD and the CC cryptographic operations.
In this way, was created a wrapper to serve as a front-end shared object with the objective
of redirect the application requests to the appropriated library.

Going a step below the front-end layer, was developed two workflows, the first one to
handle CMD requests and another one to support the CC capabilities using the middleware
already provided by AMA. For the CMD service was created a new PKCS#11 library contain-
ing all the functions necessary to perform a digital signature, a python module to communicate
with the cloud CMD service provider and lastly, a GUI designed to interact with the user

27

when authentication is necessary (for credentials) and to show some operations feedback. Ad-
ditionally, is used a pre-defined directory and a folder containing all the software, that will be
used for the PKCS#11 library to confirm the presence of a virtual CMD token and offering it
as a valid slot when C GetSlotList is called by applications. Since was used a wrapper to offer
the possibility two work with both the Portuguese cryptographic services, when applications
call C GetSlotList, and if the user connect a CC via smartcard reader, the PKCS#11 module
will return a list with not just the CMD slot but also the one with the CC.

After implementing the wrapper, we could list all the implemented PKCS#11 functions
for the CC, in this way was possible to filter just the necessary functions to perform a actual
signature operation. In Table 4.1 is listed all the implemented functions for both the CMD
and CC libraries. In addition, Table 4.2 describe all the cryptoki attributes implemented for
CMD used in a signature operation. This attributes will be retrieved to applications when
they call C GetAttributeValue.

Regarding the communication process, was chosen a python module because it can be
launch just when needed and run exclusively in background, this way giving the perfect
solution to interact with the CMD cloud service. This process has three main functionalities,
that is, to make HTTP requests to CMD API based on the application requests to the
new PKCS#11 API, to receive user credentials over a Qt design GUI and finally to encrypt
credentials using AMA provided public key.

The interaction between the python module and the CMD service is done using a set
of HTTP requests to the corresponding API. In this way, after receive a signature request
from the new PKCS#11 library, the python module will created a HTTP client and call the
CCMovelSign service, sending the data to be sign (and some more information that will be
described in the following sections). After receive a valid response, the user will receive a
text message containing the OTP value, and with which the python module will validate
and request the signature value, calling the ValidateOTP service. The response from this
last service, contains the signature value that the python module will then forward to the
PKCS#11 library. Concerning the python module life cycle, after sending the signature value,
this process is closed, together with the Linux pipes previously created.

In the CC workflow, was used the already provided middleware, and so, if the crypto
token in use matches a Portuguese CC, the front-end layer will forward the application calls
to the correct PKCS#11 library.

Concerning applications library integration, the new module is used in the exact same
way as it was working with a common smart card PKCS#11 API, since was guaranteed a
transparent and seamless interaction. More details about every component can be found more
ahead as they will be discussed in section 4.3. Figure 4.1 provides a visual representation where
the implemented solution was based on. Additionally, in Figure 4.2, is visually described a
full interaction between the application and the CMD, when performed a digital signature
operation, through the new PKCS#11 module.

28

Figure 4.1: Smart CMD architecture design

Figure 4.2: Interaction between applications and the CMD service through PKCS#11.

29

PKCS#11 implemented API Functions Chave Móvel Digital Cartão de Cidadão

C CancelFunction 6 4

C CloseAllSessions 4 4

C CloseSession 4 4

C CopyObject 6 4

C CreateObject 6 4

C Decrypt 6 4

C DecryptDigestUpdate 6 4

C DecryptFinal 6 4

C DecryptInit 6 4

C DecryptUpdate 6 4

C DecryptVerifyUpdate 6 4

C DeriveKey 6 4

C DestroyObject 6 4

C Digest 6 4

C DigestEncryptUpdate 6 4

C DigestFinal 6 4

C DigestInit 6 4

C DigestKey 6 4

C DigestUpdate 6 4

C Encrypt 6 4

C EncryptFinal 6 4

C EncryptInit 6 4

C EncryptUpdate 6 4

C Finalize 4 4

C FindObjects 4 4

C FindObjectsFinal 4 4

C FindObjectsInit 4 4

C GenerateKey 6 4

C GenerateKeyPair 6 4

C GenerateRandom 6 4

C GetAttributeValue 4 4

C GetFunctionList 4 4

C GetFunctionStatus 6 4

C GetInfo 4 4

30

PKCS#11 implemented API Functions Chave Móvel Digital Cartão de Cidadão

C GetMechanismInfo 4 4

C GetMechanismList 4 4

C GetObjectSize 6 4

C GetOperationState 6 4

C GetSessionInfo 4 4

C GetSlotInfo 4 4

C GetSlotList 4 4

C GetTokenInfo; 4 4

C Initialize 4 4

C InitPIN 6 4

C InitToken 6 4

C Login 6 4

C Logout 6 4

C OpenSession 4 4

C SeedRandom 6 4

C SetAttributeValue 6 4

C SetOperationState 6 4

C SetPIN 6 4

C Sign 4 4

C SignEncryptUpdate 6 4

C SignFinal 4 4

C SignInit 4 4

C SignRecover 6 4

C SignRecoverInit 6 4

C SignUpdate 4 4

C UnwrapKey 6 4

C Verify 6 4

C VerifyFinal 6 4

C VerifyInit 6 4

C VerifyRecover 6 4

C VerifyRecoverInit 6 4

C VerifyUpdate 6 4

Table 4.1: PKCS#11 API implemented functions.

31

Attribute Value Description

CKA CLASS
CKO CERTIFICATE,
CKO PUBLIC KEY or
CKO PRIVATE KEY

Identifies the object class,
was used CKO CERTIFICATE value for the X509 certificates
and CKO PUBLIC KEY and
CKO PRIVATE KEY for the public and private key

CKA SUBJECT Value presented in the user CMD certificate Includes the certificate subject name, encoded in DER format;

CKA TRUSTED CK TRUE Flag indicating that an object can be trusted by the applications;

G
lo

ba
l

at
tr

ib
u

te
s

CKA ISSUER Value presented in the user CMD certificate Describes the issuer entity, encoded in DER format;

CKA LABEL e.g. ”Signature Private key” Brief object description;

CKA ID 1221 (could be any number)

Identifier value for a certain key.
Considering a certificate object,
this field corresponds to the key pair ID associated with the certificate.
Within a key pair,
both the public and private key should have the same CKA ID value;

CKA TOKEN CK TRUE indicates that a certain object is a token object;

CKA CERTIFICATE TYPE CKC X 509

In a PKCS#11 API exists different certificate types,
and so this value is used to identifify them.
In the PKCS#11 module developed,
the CMD certificates have this attribute with CKC X 509 value,
indicating that they correspond to a X.509 public key certificates;

C
er

ti
fi

ca
te

at
tr

ib
u

te
s

CKA VALUE Complete value of the certificate in a byte-array The complete value of the certificate, encoded in BER format;

CKA SERIAL NUMBER Serial number present in the user certificate
Certificate serial number (present in the digital certificate),
encoded in DER format;

CKA KEY TYPE CKK RSA
Specifies the key type.
Was used CKK RSA value for the key objects available for signature operations;

CKA MODULUS BITS Number of bits of the key modulus Number of bits of the RSA private key modulus;

CKA MODULUS
Modulus value of the key,
could be extracted from the certificate

Modulus n of the RSA private key;

CKA PUBLIC EXPONENT
Public exponent value of the key,
could be extracted from the certificate

value of the public exponent e of the RSA keypair;

CKA VERIFY CK TRUE
Specific public key flag for signature verification.
Takes the value true for the CMD public key object;

CKA SENSITIVE CK TRUE

Flag specifying if the key is sensitive.
Sensitive means that the actual value of the key is not exposed and
so applications cannot extract the key value using
its correponding CKA VALUE attribute.
This value is true for the private key object used;

CKA SIGN CK TRUE
Flag indicating that a certain key can be used to signature operations.
This value is true for the CMD private key object used;

CKA EXTRACTABLE CK FALSE
Basically is used for the same purpose of the CKA SENSITIVE attribute,
is false the key value could not be extracted.
This value is false for the CMD private key object;

CKA ALWAYS AUTHENTICATE CK FALSE

Attribute used to force user authentication.
This attribute was set to false in the key objects used,
since we used an external authentication mechanism and so,
the function C Login do not need to be used;

K
ey

s
at

tr
ib

u
te

s

CKA DERIVE CK FALSE CK TRUE if key supports key derivation

CKA LOCAL CK FALSE

CK TRUE only if key was either:
1. generated locally (i.e., on the token)
with a C GenerateKey or C GenerateKeyPair call, or
2. created with a C CopyObject call as a copy of a key
which had its CKA LOCAL attribute set to CK TRUE

CKA ENCRYPT CK FALSE CMD private key was not used to encrypt data

CKA VERIFY RECOVER CK FALSE
CK TRUE if key supports verification
where the data is recovered from the signature

CKA WRAP CK FALSE
CK TRUE if key supports wrapping (i.e., can be used to wrap other keys),
is not the case of CMD key

CKA SIGN RECOVER CK FALSE CK TRUE if key supports signatures where the data can be recovered from the signature

CKA UNWRAP CK FALSE CK TRUE if key supports unwrapping (i.e., can be used to unwrap other keys)

CKA ALWAYS SENSITIVE CK TRUE The attribute CKA SENSITIVE from the private key object, is always the value CK TRUE

CKA NEVER EXTRACTABLE CK TRUE The private key content cannot be extracted, at any time

CKA WRAP WITH TRUSTED CK FALSE
CK TRUE if the key can only be wrapped with a wrapping key that has CKA TRUSTED
set to CK TRUE.
Even with trusted value true, the key cannot be used to wrap operations

Table 4.2: Attributes implemented for CMD objects.

32

4.3 Implementation

4.3.1 Installation and configurations

Regarding the detection of a CMD token by the PKCS#11 library, some pre-installations
were mandatory. First, the user needs to download and install the packages that includes the
new PKCS#11 library, a configuration python module and all the software developed used
to enable the communication with the CMD signature service. After this, it is necessary to
run the configuration script that will be used to download the user certificates to a default
directory in the Linux file system. For this, the configuration file will create a HTTP client
and call the GetCertificateWithPin service from the CMD API.

Additionally, if the user do not run the configuration file and the directory used to store
certificates is empty (users can download the certificates them self’s and put them manually
in the directory), when the new PKCS#11 validates a presence of a CMD token (when
applications call C GetSlotList), it will be opened the GUI for credentials input in order to
give the user the possibility to enable the CMD capabilities, downloading the corresponding
user certificates.

4.3.2 PKCS#11 module

The first challenge in the development of this robust and well-structured PKCS#11 library
was to find what functions of that API had been implemented and used by the CC PKCS#11
module. To face this problem it was developed a script capable of generate a clone API
of the libpteidpkcs11.so library functions, this way creating a wrapper for the CC library.
Additionally, wrapping enabled the possibility of maintaining all the previous functionalities
to work with the CC in parallel with CMD.

In the presented solution, the focus was to find all the PKCS#11 methods used specifically
for digital signatures operations and do the proper changes to enable the CMD services. Tak-
ing into consideration the methods implemented by the final library, every one are available
when is used a CC smart card, but only a restricted list works with the CMD. This validation
mechanism is done internally by the wrapper, so when the application calls a method that
is not implemented for the CMD services, the value CKR FUNCTION NOT SUPPORTED
will be returned.

The library keeps a record of all sessions created with each slot as well as their actual state,
used as validation when certain asserts are mandatory. For example, in order to guarantee that
only the token supported operations are used and all the operations are properly initialized
(using, for example, C Initialize, C FindObjectsInit or C SignInit in the correct order).

For a complete step-by-step validation, it was keeped a set of structures storing all open
sessions for each token, a list of all CMD cryptoki objects handles and a list with all cryp-
tographic mechanisms allowed. Each session object, regarding the structure used in the
PKCS#11 module, is composed by a handle used to identify a certain open session, a session
state describing the last function where this session was used, and specifically in a signature
operation it will also have a hash value storing the digest value of the information to be
signed, the hash mechanism to be used and lastly the signature value updated in the end of a
signature process. Regarding all the handles used in the PKCS#11 library, they are unique
identification numbers and both the application and the library will use them to refer to, for
example, token objects or cryptoki sessions.

33

In chapter 2 was discussed all the PKCS#11 methods called in a normal digital signature
operation using a smart card. Next, it will be given an in-depth description of all the dif-
ferences in each one of them to ensure a full support for CMD cloud services. Additionally
for debugging purposes, it was made use of a log file directly updated within the PKCS#11
module functions, providing important information about the complete interaction between
an application and the PKCS#11 module regarding a signature operation.

1. Initialize Cryptoki
This step of the process has the same behavior as the one described in the chapter 3
section 2.2. All the information about the Cryptoki library used and the list of functions
implemented can be collected using the default CC library since at this stage there is
no verification needed for a presence of a smart card in the system, so it can be used
the wrapper to forward the request to the default PKCS#11 module.

The initializing process include C Initialize, C GetInfo and C GetFuntionList.

2. Establish sessions with CMD slot
At this time, assuming that the user has already performed all the installations and
configurations needed, will be given a slot option with the CMD token. The token and
slot information is then stored along side the digital certificates as well as the signing
mechanisms supported by the CMD (but not including the private information). The
new PKCS#11 module will also show all the Portuguese CC smart cards connected via
a smart card reader. In the following section will be described the functions used to list
the available slots and establish sessions with them.

2.1 C GetSlotList : when called, the library will validate the presence of the CMD
directory created, containing all certificates and general information needed such
as slot description, and present the CMD slot as a option. After, the wrapper will
forward the request to the CC default PKCS#11 module for smart card detection.
The list with all available slot identifiers will be returned to the application.

2.2 C GetSlotInfo: method used to get slot information, and if the provided handle,
within the arguments, corresponds to the CMD slot, the information from the
general file will be returned to the application. In case that the handle coincide
with a smart card slot, the request is forwarded to the CC PKCS#11 library.

2.3 C GetMechanismList : this function will return the list of signing mechanisms sup-
ported by CMD services (there is no official list of mechanisms in the manual
provided or in any online documentation, so we tested some of the most used
ones). The list in Table 4.3 contains the supported mechanisms.

2.4 C OpenSession: used to open sessions between a slot and an application. Appli-
cations normally use one session for an entire interaction with a certain token or
use one session for each operation needed (e.g. one session for searching objects,
one session for the signing process and another one for signature verification). The
session handle will be saved in the corresponding token structure with an open
state.

2.5 C Login, called to authenticate the user, but since that was created an external
authentication process, this function does nothing.

34

3. Objects search

When is detected a CMD token, the new library software will create 5 cryptoki objects
based on the certificate information (stored in the directory described above), provid-
ing the necessary data for signing and signature verification operations. The number
of objects created is based on information presented in the CC smart card for digital
signatures. In this way, are present three digital X.509 Certificates (a user certificate,
a CA certificate and a ROOT certificate), an RSA public key and an RSA private key.
Usually, in a signing process, the application starts with a certificate chain verifica-
tion (using the three certificates provided) and then tries to validate the RSA key pair
provided before initiate any signature operation, to guarantee that the public key pro-
vided to the application matches the correspondent private key used in the signature
operation.

3.1 C FindObjectsInit : when this function is called by applications, the library vali-
dates the object search template and compares it to all the CMD objects created
within the CMD slot. If there is a match, is returned a CKR OK value. The
session search type value is updated with the corresponding object type that the
application is looking for.

3.2 C FindObjects: when called, returns the object handles for the corresponding
objects that match the template used in C FindObjectsInit.

3.3 C FindObjectsFinal : used to end an object search operation for the session within
the function argument.

4. Extract attribute information from objects

The application will start a attribute search in order to extract all the information
necessary to perform a digital signature, including attributes from both the certificates
and the RSA keypair.

Regarding the attributes of this private object, the application can only access at-
tributes provided by the public key and the provided certificates, as all the other
ones are unavailable. All attributes necessary for signing operations returned by the
consecutive C GetAttributeValue calls are according to the user certificates retrieved
from the CMD service, every other attribute search (not used for signatures) returns
a CK UNAVAILABLE INFORMATION value. In Table 4.2 is described all attributes
implemented for CMD objects regarding the necessary ones to perform a digital signa-
ture (detail attribute description in [11]).

5. Signing operation

After requesting all CMD private key object attributes needed to perform a signature
operation, the application will then call the C SignInit method in order to start the
signing process. As previously described, the application can choose a single or multi-
part signing processes, using C Sign or C SignUpdate respectively.

5.1 C SignInit : function used to start a signature operation, where the application
provide, as arguments, the session handle, the private key object handle and the

35

signing mechanism to be used. In order to properly initialize a signature process,
the object handle provided need to match one of the private key objects handle,
either the CMD private key or, after forwarding the request, the private key present
in the CC smartcard. Additionally, is initialized a digest variable accordingly
with the mechanism passed in the function arguments (using OpenSSL library
functions). All this information is stored within the respective session structure.

5.2 C Sign: after initializing a signature operation, the application will call this method,
where it receives the data to sign. First, is generated the data hash using di-
gest functions from the OpenSSL library (https: //www.openssl.org), next
the python module will be launched and are created two Linux pipes for Inter
Process Communication. Now with the python module running, are passed the
signature request including the hashed data, the hash length and the hashing
mechanism used. The python module will return the signature value after receiv-
ing it from the CMD cloud service. The signature and corresponding length are
returned to the application. Concerning the python module life cycle, after sending
the signature value, this process is closed, together with the Linux pipes previously
created.

5.3 C SignUpdate, starts or continues a multi-part signature operation where this
method will be called multiple times. Are passed as arguments a data block and
its size. Are updated the hash value in every iteration until C SignFinal is called.

5.4 C SignFinal, ends a multi-part signature operation and launch the python module
(equal process as the one described in C Sign). Returns the matching signature
from all the data received in the multiple C SignUpdate calls. Regarding the python
module life cycle, after sending the signature value, this process is closed, together
with the Linux pipes previously created.

6. Finalize and close sessions

6.1 C CloseSession or C CloseAllSessions: called when application want to close a
session/sessions with the CMD token. Calling this method will shut down all
pending operations between the application and the token (in the specified session)
and all the cryptoki objects created. Sessions are removed from the stored session
handle list created by the new library.

6.2 C Finalize: the default CC library is used for this function, since was also used
C Initialize for the cryptoki initialization.

Mechanisms
CKM SHA1 RSA PKCS
CKM SHA256 RSA PKCS
CKM SHA384 RSA PKCS
CKM SHA512 RSA PKCS
CKM RIPEMD160 RSA PKCS

Table 4.3: Mechanism supported by the CMD token.

36

4.3.3 Python module

For the signature assemble step and in order to communicate with the CMD services, it
was develop a mechanism capable of connect the local PKCS#11 module with a cloud API,
and for that, it was chosen a python module, capable of doing secure requests to CMD test
API using SOAP messages through a SOAP client. This protocol is used in web services to
specify the message structure as a XML document, this way SOAP allows clients to invoke
web services and receive responses independent of languages and platforms, and it can operate
over all the communication protocols used.

In this way, this script can be launched by the new PKCS#11 module using a execl(3)
command (Linux command used to launch a process), when any CMD service is needed, being
responsible for all HTTP requests, data encryption and UI manipulation.

When launched, the python module starts listening to the created Linux pipes waiting for
any requests from the PKCS#11 library. And so, after receiving one request, the information
is divided, creating a dictionary composed by the message digest, message digest length and
signature mechanism. If any of these three parameters are missing from the original message
read from the pipe, the operation is canceled since every part is mandatory.

After the request validation, the python module will open a Qt UI window for the user
to submit his CMD credentials (phone number and signature PIN)and the document name,
and encrypt them using the provided AMA public key. After gathering all information fields
necessary, it is opened a SOAP client session with HTTP basic authentication using a user-
name and password supplied by AMA for testing purposes. Before moving on, the hash type
prefix is added to the received document hash from the PKCS#11 module. More information
regarding the hash prefix is described in Table 4.4.

Following that, the client will call CCMovelSign service from the pre-production URl 1,
passing in the SOAP message structure, the Application Id (also provided by AMA, unique for
this project), the document name (acquired with user input), the document hash with hash
type prefix, encrypted user phone number and encrypted CMD signature PIN. Is returned a
response from the CMD service with the process id, a status code (with value 200 if valid)
and a description message. As a following step, the user will receive a text message (to the
phone number passed in the signing request) with the OTP and the document name for
the initialized signature operation. Than, it will be open a new Qt UI window where the
user should input the OTP value received and then the python module will call ValidateOtp
service passing the application id, the process id (received in the response from CCMovelSign
service) and the OTP value encrypted with AMA public key. The response from this service
will be a status message validating the signature operation and the actual signature value.
More information regarding CMD services responses and requests structure is described in
[7].

In the last step, our python module will send the signature back to the PKCS#11 module
using the Linux pipes previously created, along with the status value (SUCCESS or ERROR)
and the signature length.

1https://preprod.cmd.autenticacao.gov.pt/Ama.Authentication.Frontend/SCMDServicesvc?wsdl

37

Hash Algorithm Hash Prefix

SHA-1 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14

SHA-256 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20

SHA-384 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30

SHA-512 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40

RIPEMD-160 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x24, 0x03, 0x02, 0x01, 0x05, 0x00, 0x04, 0x14

Table 4.4: Prefixes used supported by the developed python module and PKCS#11 library

4.3.4 IPC (Inter-process communication)

In order to establish a communication channel between the PKCS#11 module and the
python module process an IPC infrastructure was implemented.

The IPC chosen for this project was Linux Pipes for its simplicity and easy integration in
multiple programming languages, and with Pipes we can guarantee a private communication
channel between the two process that can be opened or closed at any instance, since they
depend exclusively from the processes that we control. Regarding the definition of an Linux
Pipe, it is an unidirectional communication channel between two or more programs used in
Linux systems.

To create a bidirectional IPC we created two pipes within the PKCS#11 library just
before launch the python module process. One starting at the PKCS#11 module and ending
in the python module, and another one in the opposite direction. The first one is used to
send signing requests to the python module and the second one sends back the signature value
from the python module. In table 4.5 is described the message format used in each one of the
implemented Pipes.

Pipe Direction Message format

1 PKCS#11 ->python module
Format: [request] | [data hash] | [hash length] | [hash algorithm]

e.g. ”SignatureRequest | uqphfquwiefbeqwp | 20 | SHA1”.

2 python module ->PKCS#11
Format: [status] | [signature] | [signature length]

e.g. ”SUCCESS | qeroghrçiugbqrçigubef... | 384”.

Table 4.5: Pipe message structure.

4.3.5 GUI (Graphical user interface)

Qt for python was the programming tool used to develop the Graphical User Interface
for user credential inputs. Since the interface was not an important feature of the presented
project, was prioritized to find an easy and rapid way [34] to design a basic set of windows
capable of receiving user inputs and give a brief description of the operation actual status.

The approach regarding the GUI design, was chosen following the solution implemented
for the middleware provided by AMA. In this way, the developed GUI is formed by two
windows, the first one with a phone number, a CMD PIN and document name submission
fields and the other one to the user submit the OTP received by text message after a valid
signature request.

38

(a) PIN and phone number input window. (b) OTP input window.

Figure 4.3: Graphical User Interface for SmartCMD.

Figure 4.4: Detail signature operation using the developed software.

39

40

Chapter 5

Tests & results

In order to test the implemented modules, including the PKCS#11 library and the python
module, was picked a set of tools and applications that can work with a PKCS#11 API and
with which we could perform digital signatures. Before start the PKCS#11 module tests, we
need to guarantee that the python module was well implemented and all of the calls made
to the CMD service API have the expected result. Additionally, and in order to assemble a
list of algorithms supported by CMD, we performed a set of tests making signature requests
with numerous distinct hash algorithms. The final algorithm list is described in Table 5.1.

After conclusion of the python module tests, we chosen the pkcs11-tool application to
start testing the PKCS#11, since it provides the perfect set of individual tests. In this way,
offering us the possibility to ensure that every implemented function was well developed and
can handle a hand full of different workflows.

Once we had a complete implementation of the API, we tried to find some test suites
capable of do a overall run including all the developed functions. But since we could not
find any suitable script and even AMA could not provide us any testing tool, we decided to
move directly to tests using another applications that could provide us a more complete and
demanding interaction.

And so, as the next step, we take the solution forward and test it against more rigid and
commercial applications. For this, the first option was the Portuguese ”autenticação.gov” ap-
plication, but unfortunately, it does not use a PKCS#11 module for cryptographic operations,
and so we could not test the implemented solution.

The research for an appropriate application continues, and after some search, we encoun-
tered two applications that could use PKCS#11 and had digital signature capabilities. In
one hand, MyPDFSigner as command-line tool that can actually sign PDF documents, and
in the other hand, in the first instance, it was picked the Adobe Acrobat Reader application
to test our module, but due to the lack of support for Linux (the last update was in 2013),
it cannot perform a viable signature using the native application, therefore it was exchanged
by PDFStudio, developed by Qoppa Software [35], that is a very similar high-end application
also used worldwide and with excellent support for Linux systems. With this last one, since
the proof of concept was achieve and the solution was well tested, we decide to end the test
section for this project. In the following sections will be present a extensive description of all
the tests performed.

41

Hash functions CMD service

SHA 1 4

SHA 224 4

SHA 256 4

SHA 384 4

SHA 512 4

MD5 4

RIPEMD 160 4

Table 5.1: Mechanism supported by the CMD token.

5.1 OpenSC pkcs11-tool

The PKCS#11 module was initially tested using pkcs11-tool from OpenSC [36]. This tool
is a command-line application used to manage and use PKCS#11 security tokens, having a
built-in capability to perform tests on tokens and reports if the operation was carried out
successfully. Table 5.2 depicts a list of tested PKCS#11 functionalities.

With pkcs11-tool the new module functions can be tested almost individually outputting
the perfect control over the tests performed. These PKCS#11 tests were used to validate the
functionality of CMD services and all software developed. Additionally this tool contains a
predefined test suite (script with multiple individual operation tests) containing the expected
outputs for each cryptographic operation.

Tests can be run through PKCS#11 interface using CMD for cryptographic operations.
Running pkcs11-tool command against the implemented new PKCS#11 library uses the exact
same function interfaces as an high-end application would use.

Starting with the individual tests, it was used the pkcs11-tool to test all the functions
within a signature operation, this includes not just the actual signature process (functions
C SignInit, C Sign, C SignUpdate and C SignFinal) but also operations such as acquiring
information regarding the slot and respective token, opening the cryptoki sessions, object
search and fetching of object attributes.

It is relevant to take in consideration that this tool performs just basic validations over
the implemented functions, and if the module had been design just with this small step of
asserts, it would certainly rise future problems when testing it with other applications. In this
way, and as previously specified, this tool acts only as an entry point for testing the library
before moving forward to a more restrict and demanding application.

After testing all the operations individually with unitary tests, it was used the predefined
pkcs11-tool test suite to perform an overall run over the implemented operations, giving a
more overall view of the module capabilities and its robustness. As can be seen in Table 5.2,
the function C Login was implemented and tested, but this function is not used in a normal
signature operation since we guarantee that the flag CKF LOGIN REQUIRED from the

42

token is set to false. However, when using the pkcs11-tool test suite, this function is used and
so we implemented a empty function that returns CKR OK, just to surpass this iteration.

As expected, and after some changes, all unitary tests perform perfectly with the new
module giving the pretended outputs, and the test suite was completed with no errors (take
in account that many operations may not work since they were not implemented for the CMD
token). These results gave the confidence needed to take the developed solution to a more
advanced and complex environment.

Additionally, pkcs11-tool offered us the possibility to test the python module individually,
this way running a hand full of hashing algorithms tests to gather a reasonably among of
them, in order to provide some algorithms diversification on the developed software. In total,
were tested the following algorithms: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, and
RIPEMD-160. As all of them work using the CMD service API, we offered every one as a
hash algorithm possibility in the new PKCS#11 module.

PKCS#11 implemented functions Interface tests

C Initialize 4

C Finalize 4

C GetInfo 4

C GetFunctionsList 4

C GetSlotList 4

C GetSlotInfo 4

C GetTokenInfo 4

C GetMechanismList 4

C GetMechanismInfo 4

C OpenSession 4

C CloseSession 4

C CloseAllSessions 4

C Login 4

C GetSessionInfo 4

C GetAttributeValue 4

C FindObjectsInit 4

C FindObjects 4

C FindObjectsFinal 4

C SignInit 4

C SignUpdate 4

C Sign 4

S SignFinal 4

Table 5.2: PKCS#11 functions tested using pkcs11-tool.

5.2 Autenticação.GOV application

After completing the development of the PKCS#11 module and performing all the re-
quested tests with the pkcs11-tool, the first choice as a high-level application for library
integration was the “authentication.Gov”, as it integrates correctly all the digital signature
functionality of both CC and CMD. In this way, we replaced the original PKCS#11 module
of CC by the new library, in order to also integrate the CMD services through PKCS#11.

43

However, after some verifications on the libraries used by the application, it was concluded
that it does not use directly any PKCS#11 module to perform cryptographic operations. Ad-
ditionally, and in order to ensure that the application does not actually use the CC PKCS#11
module, as it could dynamically load the library, this module was completely removed from
the original directory. Even so, the application worked normally, in this way can be affirmed
that it does not use a PKCS#11 module at all to perform the digital signatures with the CC.
Consequently, it cannot use CMD through our PKCS#11 module.

5.3 MyPDFSigner

MyPDFSigner 1 is a command-line tool to digitally sign PDF documents using tokens
stored in a security device, such as a smart card, like a citizen card issued by many govern-
ments in Europe, or a USB token.

This tool has also an option to use a PKCS#12 file (a *.pfx or *.p12 file) and supports
Time Stamping (RFC 3161), encryption, bulk signing and signature verification. Additionally,
it supports cloud digital signature providers, since it works with providers certified by eIDAS
(EU regulation 910/2014). Regarding the visualization of signed PDF documents, is currently
available using, for example, Adobe Acrobat application.

To use a PKCS#11 security device in Linux, we need to configure a file in a specific
directory within the application installation folder 2 containing the following parameters [37]:

• signerpem, being the path to a file with the certificate associated with the token private
key in PEM format. We used the certificates previously downloaded when the Smart
CMD tool was installed.

• capem, being the path to a file containing the certificates of the chain of trust from
the Root CA certificate down to the certificate of the authority that issued the signer
certificate. The certificates should be in PEM format again.

• engine, being the path to the PKCS#11 engine, the module that allows OpenSSL to
interact with the token through its own PKCS#11 driver (OpenSSL Ö Engine Ö

Driver Ö Token). In Linux it is generally in /usr/lib/engines/engine pkcs11.so or /us-
r/lib64/openssl/engines/pkcs11.so.

• p11url, being the URL of the token private key. Can be obtained using the p11tool
command, “p11tool –provider /path/to/pkcs11-module –list-keys”;

• library, being the path to the PKCS#11 module associated with the token.

• hashalgo, being the algorithm to be used. By default MyPDFSigner uses SHA256 but
that can be replaced by SHA1, SHA224, SHA384 or SHA512, with this entry.

• embedcrl, being used in situations where an OCSP status is not available, either because
the OCSP end point is not present in the signer certificate or for any other reason (like
being unable to reach the OCSP server). There is the option of embedding a CRL file,
if available.

1https://www.kryptokoder.com/download.html
2/usr/local/mypdfsigner/tests/testconfiguration.conf

44

The application starts then with the cryptoki API initialization (calling C Initialize), gets
all implemented functions (C GetFunctionsList) and checks the available slot with a valid
token(C GetSlotList and C GetSlotInto to verify the CKF TOKEN PRESENT flag within
the token information).

In the following step, using the configuration file information, the application will perform
a certificate chain validation and save all the information needed to sign the document using
the provided token private key. Usually, the applications make several C GetAttributeValue
calls to acquire all the information, but MyPDFSigner gets this information by reading the
certificates directly. C OpenSession will be called to establish a new session between the
application and the CMD token, being this session used to get a valid private key object
handle.

In this way, the application starts the object search using C FindObjectInit and and a
template with private key attributes, following a call to C FindObjects to return the private
key handle and finally ends the search operation using C FindObjectFinal. As previously
described, applications can use just one session for the entire set of operations or use multiple
ones, MyPDFSigner uses the second option since the session used to perform the object search
is closed and a new one will be open to perform the signature operation.

Starting the signature operation, the C SignInit is called with the private key handle and
the signature algorithm to be used, this application uses a multi-part signature mechanism
(as described in the chapter 2, PKCS#11 module section). The python module will be called
after calling the C SignFinal function to communicate with the CMD signature service and
acquire the actual signature value.

After receiving the signature, MyPDFSigner will try to use the OCSP URL present in
the certificate to verify the certificates revocation status. Since the CMD user certificates
provided by the developer do not have OCSP information, so the embedcrl option was used in
the configuration file. In the last step, the application will apply the signature to the pretended
PDF document. Even with the problems with the OCSP link, all the tests performed using
the MyPDFSigner tool were positive and well accomplished.

After some research and discussion, it was concluded that this application was not a very
good example of a default interaction with a PKCS#11 module because of the active use of
the configuration file and the direct access to the certificate files. In this way it was decided to
take a step forward and test this module with the Adobe Acrobat Reader direct concurrent,
the PDFStudio desktop application.

5.4 PDFStudio

A lot of challenges were faced regarding all the numerous interactions between the PDF-
Studio application and the PKCS#11 new module, in comparison with the applications pre-
viously used. The first one was the debugging operations because now it would be used a
graphical application instead of a command-line tool. To face this was created various log
files to record all the functions called as well as all the information exchanged. In second
place, this application, in comparison with the ones previously tested, perform a considerable
number of object validations, including for all the certificates and RSA keys, leading to the
addition of new attributes (not implemented until the tests performed with this application).

The initialization process is similar to the ones previously described but using the applica-
tion GUI where, using a ”config.cfg” file, can be chosen the PKCS#11 library and, optionally,

45

the slot ID that we want to use. In the following step, and after cryptoki initialization, it
is opened a session with the present CMD token, and then the application starts an object
search operation. In Figure 5.1 it can be visualized the detection of the private key object
created for the CMD token.

Figure 5.1: PDFStudio upload PKCS#11 library page.

Regarding the objects that the application looks for, we can assume that it tries to validate
the certificate chain, since it starts to search certificates issuer and subject multiple times.
At this point, and after the applications gather all the information it needs, regarding the
different object attributes, it is ready to start a signature operation. For that, it is necessary
to choose the pretended PDF document to be signed and the signature configurations as
presented in Figure 5.2. On this page can be select the signature type, the information
showed in the signature field and finally review the certificate issuer information.

Regarding the signature customization, do not exist the possibility to choose the pretended
hash algorithm to use in the signing operation and there is no accessible documentation
regarding this information. In this way, after contacting the PDFStudio support team about
this topic, we were told that, by default PDFStudio selects the most secure hash algorithm
supported accordingly with the PDF version (the application tries to use the most secure
one first) of the uploaded document, so for versions below 1.6 just can work with SHA1, for
version 1.6, can be used SHA256 and SHA1 and for version 1.7, SHA512, SHA384, SHA256,
and SHA1 are supported.

46

Figure 5.2: Signature configuration window.

After confirming the signing operation (clicking in the Sign button), the application will
start a single part signing operation calling C SignInit, passing as arguments the private
key handle and the most secure algorithm supported (both by the document version and by
the CMD token) and next calling C Sign. The PDFStudio application, after receiving the
signature value, will verify and add it to the desired PDF document, as displayed in Figure
5.3.

All the tests done with this application were successful in every part of the process,
starting with object detection and certificate information, all the way down to the actual
signing operation and signature verification.

47

Figure 5.3: Result of a valid signature using CMD on PDFStudio app.

We also test the signature operations using the CC and everything worked just fine until
we tried to sign a PDF with version 1.7. As referenced above, PDFStudio tries to use the
most secure algorithm supported both by the PDF version and the token, and for a 1.7
PDF, SHA 512 is the algorithm used by default. But the Portuguese CC smartcard do not
support SHA512 (this hash algorithm does not appear in the supported algorithms list for
the smartcard), so the application should use SHA 384 instead.

However, this is not the actual application behavior, since in the list of supported mech-
anisms for the CC smartcard is present the CKM RSA PKCS mechanism (this mechanism
is used when the application sends a already digested and prefixed information to be sign),
and the application will tried to use this mechanism to sign the document using SHA 512
algorithm.

Unfortunately, the CC smartcard throws a ”Device Error” message and the application
cancels the signature operation. With this we can conclude that the CC PKCS#11 module is
coherent since it neither support the SHA 512 algorithm internally nor support that algorithm
via an already digested information (external digest done by the application). This test could
also found an error in the PDFStudio application, because it should have a fallback behavior
if anything wrong happens in a signature operation, as the situation previously described.

48

Chapter 6

Conclusions

In this thesis, we pretended to achieve a viable solution in order to use the Portuguese
CMD services with an industry-standard cryptographic API, filling the lack of support for
Linux applications. In this way, we developed a mechanism that offers the possibility to
generate a valid digital signature using a cloud-based service through a PKCS#11 library.
Regarding library versatility, we performed numerous validations across all the developed
software, in order to ensure a proper integration with existing third-party applications that
can work with a PKCS#11 library, and make sure that all the code and scripts are redundant
and generalized in order to fulfill all use cases within multiple Linux devices (and not just in
the tested system).

The new PKCS#11 module, as well as all the external software, has passed all proposed
tests, where we used both command-line tools and with different Linux commercial appli-
cations with a graphic interface targeted to document manipulation. Therefore it can be
concluded that this proof of concept has a high versatility regarding its integration with dif-
ferent Linux applications. With this project the main objective was accomplished, that is, to
assemble a robust API with a behavior similar to the default CC provided library, changing
the traditional smart-card cryptographic operations with a cloud-based service.

The developed solution can be used side-by-side with the CC library offering the full
package for the Portuguese cryptographic signature services. And so, it can be used with
applications that already support CC PKCS#11 module, like the ones described in chapter 5.

Some setbacks were encountered during the project implementation regarding all the doc-
umentation provided for the CC and CMD cryptographic services. There is no detailed
information about the inside work developed for the CC PKCS#11 library, and since the
“autenticação.gov” application does not use this library, makes all the perception process
much harder and nearly impossible. This information, if available, could provide us the nec-
essary help in developing the PKCS#11 module, more specifically regarding how the CC
module handles all the necessary validations (e.g. validate the operations initialization) or
how it deals with applications requests, such as in a attribute search operation. In this way,
the lack of information, lead us to develop a wrapper in order to, in a first instance, study
the CC PKCS#11 library behavior when interacting with applications.

Regarding CMD and its API services, it exists some setbacks mainly in availability which is
derived from the nonexistence of a public and accessible manual about the integration process.
Consequently, if some information is needed, the only solution is contacting the CMD support
team, which delays the project considerably. Additionally, in the provided manual exists a

49

lack of information about the supported hash algorithms as well as the possible signature
customization.

Regarding the tremendous quantity of real-world applications that this project enables,
there is still a lot of features and use cases that can be added in the future, regarding fault-
tolerance and interoperability across different operating systems.

In order to take this project to the next level, will be necessary some work scaling the
PKCS#11 module usability. The first step would be to extend integration across different op-
erating systems, not just for the PKCS#11 module but for all the developed complementary
software (python module, IPC and GUI). The second update would be a fault-tolerance mech-
anism both in the API module and on the python module, allowing the possibility to recover
from bad request errors or HTTP connection problems. The final step, and the most ambi-
tious, would be decoupling the different developed modules, granting that the final PKCS#11
API could work not just with the CMD services but with any cloud-based signature service
by attaching a custom drive for a cloud signature service capable of communicating with the
pretended cloud service provider. This solution would open a vast number of possibilities for
exploring cryptographic cloud-based signature services all around the world.

50

Bibliography

[1] Elena-Cristina Ruica, Mihai-Lica Pura, and Iulian Aciobanitei. Implementing Cloud
Qualified Electronic Signatures for Documents using Available Cryptographic Libraries:
A Survey. In 2020 13th International Conference on Communications (COMM), pages
113–118, 2020.

[2] Iulian Aciobanitei, Lorena Leahu, and Mihai Pura. A PKCS#11 Driver for Cryptography
in the Cloud. In 2018 10th International Conference on Electronics, Computers and
Artificial Intelligence (ECAI), pages 1–4, 2018.

[3] Iulian Aciobanitei, Paul Danut Urian, and Mihai Pura. A Cryptography API: Next
Generation Key Storage Provider for Cryptography in the Cloud. In 2018 10th Interna-
tional Conference on Electronics, Computers and Artificial Intelligence (ECAI), pages
1–4, 2018.

[4] Leitold Herbert and Daniel Konrad. Qualified remote signatures – solutions, its certifi-
cation, and use. In Smartcard Workshop Tagungsband, pages 219–231, feb 2019.

[5] Cryptomatic. Cloud Signing vs. Smartcard Signing. In [online] Available:
https://www.cryptomathic.com/hubfs/Documents/White Papers. Accessed: 2021-09-29,
2015.

[6] João Paulo Barraca. WIP: Support for Portuguese Electronic ID Cards . In [online]
Available: https://github.com/frankmorgner/vsmartcard/pull/208. Accessed: 2021-10-
16, 2021.

[7] Filipe Leitão, Jorge Baśılio, Adriano Pires, André Vasconcelos, Bruno Teixeira, and
Ricardo Conceição. Chave Móvel Digital - Especificação dos serviços de Assinatura.
Manual de utilização dos serviços CMD, 3 2020.

[8] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. 26, 1983.

[9] D. Eastlake and P. Jones. RFC3174: US Secure Hash Algorithm 1 (SHA1), 2001.

[10] Bart Preneel, Antoon Bosselaers, and Hans Dobbertin. The cryptographic hash function
RIPEMD-160, 1997.

[11] OASIS Standard. PKCS#11 Cryptographic Token Interface Profiles Version 3.0. In
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.0/pkcs11-profiles-v3.0.html, 2020.

51

[12] Stéphanie Delaune, Steve Kremer, and Graham Steel. Formal Analysis of PKCS#11. In
2008 21st IEEE Computer Security Foundations Symposium, pages 331–344, 2008.

[13] Agência para a Modernização Administrativa. Guia prático de utilização do cartão de
cidadão. In [online] Available: https://www. autenticacao.gov.pt/web/guest/documentos,
2007.

[14] André Zúquete. Segurança em Redes Informáticas. FCA, 4ª edition, 2013.

[15] Agência para a Modernização Administrativa. Autenticação.gov , 2007.

[16] Maria Teresa Queiroz Machado Urbano Ferreira. Portuguese Citizen Card and Digital
Mobile Key: the trust required of the citizen. 2021.

[17] C. Landauer and K.L. Bellman. Wrappings for software development. In Proceedings of
the Thirty-First Hawaii International Conference on System Sciences, volume 3, pages
420–429 vol.3, 1998.

[18] European Union. Regulation (EU) No 910/2014 of the European Parliament and of
the Council of 23 July 2014 on electronic identification and trust services for electronic
transactions in the internal market and repealing Directive 1999/93/EC. In eIDAS
Regulation, 2014.

[19] Florian Reimair. Cloud-based signature solutions: a survey. In Technical report Secure
Information Technology Center Austria, 2014.

[20] Christof Rath, Simon Roth, Harald Bratko, and Thomas Zefferer. Encryption-Based
Second Authentication Factor Solutions for Qualified Server-Side Signature Creation. In
Andrea Kő and Enrico Francesconi, editors, Electronic Government and the Information
Systems Perspective, pages 71–85, Cham, 2015. Springer International Publishing.

[21] Christof Rath, Simon Roth, Manuel Schallar, and Thomas Zefferer. A Secure and Flexible
Server-Based Mobile eID and e-Signature Solution. In 2014 The Eighth International
Conference on Digital Society IARIA, 2014.

[22] Clemens Orthacker, Martin Centner, and Christian Kittl. A Qualified Mobile Server
Signature. In Kai Rannenberg, Vijay Varadharajan, and Christian Weber, editors, Secu-
rity and Privacy – Silver Linings in the Cloud, pages 103–111, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[23] Cloud Signature Consortium. Cloud Signature Consortium Standard Architectures Pro-
tocols and API Specifications for Remote Signature Applications public pre-release ver-
sion 0.1.7.9. In [online] Available: http://www.cloudsignatureconsortium.org/., pages
1–4, 2017.

[24] Andreas Fuchsberger. Microsoft CryptoAPI. Information Security Technical Report,
2(2):74–77, 1997.

[25] Kyungroul Lee, Youngjun Lee, Junyoung Park, Kangbin Yim, and Ilsun You. Security
Issues on the CNG Cryptography Library (Cryptography API: Next Generation). In
2013 Seventh International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing, pages 709–713, 2013.

52

[26] Thomas Zefferer, Arne Tauber, Bernd Zwattendorfer, and Klaus Stranacher. Qualified
PDF signatures on mobile phones. 2012.

[27] Amir Sayegh and Mahmoud El-Hadidi. A Modified Secure Remote Password (SRP)
Protocol for Key Initialization and Exchange in Bluetooth Systems. volume 2005, pages
261–269, 01 2005.

[28] Ahmed Alqattaa and Andreas Aßmuth. Analysis of the Internet Security Protocol TLS
Version 1.3. 01 2019.

[29] Martin Centner. XML Advanced Electronic Signatures (XAdES). Dipl.-Ing. Dr.techn.
Reinhard Posch Supervisor: Ass.-Prof. Dipl.-Ing. Dr.techn. Peter Lipp, 10 2003.

[30] Hrvoje Brzica, Boris Herceg, and Hrvoje Stančić. Long-term Preservation of Validity of
Electronically Signed Records. 11 2013.

[31] Mehran Alidoost Nia, Ali Sajedi, and Aryo Jamshidpey. An Introduction to Digital
Signature Schemes. 04 2014.

[32] Cryptomatic. eIDAS Compliant Remote eSigning. In [online] Available:
https://www.cryptomathic.com/hubfs/Documents/White Papers. Accessed: 2021-09-29,
2017.

[33] Cryptomatic. Achieving Real-World Crypto-Agility: a Guide
for Banks and Financial Institutions . In [online] Available:
https://www.cryptomathic.com/hubfs/Documents/White Papers. Accessed: 2021-09-29,
2021.

[34] Mark Summerfield. Rapid GUI programming with Python and Qt: the definitive guide
to PyQt programming. 01 2007.

[35] Qoppa Software. PDFStudio application page . In [online] Available:
https://www.qoppa.com/pdfstudio/. Accessed: 2021-10-16, 2021.

[36] Olaf Kirch. pkcs11-tool(1) - Linux man page . In [online] Available:
https://linux.die.net/man/1/pkcs11-tool. Accessed: 2021-10-16, 2021.

[37] KryptoKoder. Mypdfsigner use manual. In [online] Available:
https://www.kryptokoder.com/manual.html. Accessed: 2021-10-16, 2021.

53

54

Appendix A

CMD: Especificação dos serviços de
Assinatura

The CMD service can be used through a API described in the following pages. In this
project the API was accessed using a SOAP client in a python program.

Take in considerations that the documentation provided may not include specific descrip-
tions, such as the signature algorithms supported by the CMD service, an so in order to get
this information, is mandatory to contact directly the responsible entity (AMA).

55

Chave Móvel Digital

Especificação dos serviços de Assinatura

Versão <V1.12>

Agência para a Modernização Administrativa I.P.

56

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 2

Referências a outros Documentos

Ref. Descrição Autor

Registo de Revisões

Data Versão Descrição Autor

10-05-2016 V0.1 Versão Inicial Filipe Leitão

11-11-2016 V0.2 Versão Inicial Jorge Basílio

28-03-2017 V0.3 Versão Inicial Jorge Basílio

09-11-2017 V0.4 Atualização dos Serviços Adriano Pires

13-04-2018 V0.9 Revisão e atualização do WSDL

Adição de informação de autenticação

Adriano Pires

16-04-2018 V1.0 Revisão documento André Vasconcelos

08-05-2018 V1.1 Alteração da especificação de assinatura

de múltiplos documentos

Atualização do WSDL

Bruno Teixeira

08-05-2018 V1.2 Esclarecimento, na introdução, da ordem

de invocação das operações do serviço

Bruno Teixeira

24-05-2018 V1.3 Atualização de lista de erros Adriano Pires

05-06-2018 V1.4 Atualização Serviço CCMovelMultipleSign

Atualização ficheiro wsdl

Adriano Pires

57

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 3

Data Versão Descrição Autor

24-07-2008 V1.5 Alteração do tipo do campo Pin Bruno Teixeira

29-09-2008 V1.6 Alteração da ordem dos campos no tipo

SignRequest, de forma estarem

coerentes com o WSDL

Bruno Teixeira

20-12-2018 V1.7 Novo serviço para receber os valores do

PIN, UserId e OTP encriptados

Filipe Leitão

26-03-2019 V1.8 Atualização ficheiro WSDL

Alteração do tipo dos campos cifrados

Ricardo Conceição

17-09-2019 V1.9 Esclarecimentos sobre a geração de hash Bruno Teixeira

23-09-2019 V1.10 Melhoramento códigos erro Ricardo Conceição

11-12-2019 V1.11 Atualização ficheiro WSDL

Atualização de métodos existentes

Introdução de novos métodos

Ricardo Conceição

06-03-2020 V1.12 Adicionada secção informações úteis Ricardo Conceição

Lista de Distribuição

Nome Organização email

André Vasconcelos AMA I.P. andre.vasconcelos@ama.pt

58

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 4

Índice

1 INTRODUÇÃO .. 6

2 SERVIÇOS .. 7

2.1 SCMDSERVICE - SERVIÇO DE ASSINATURA QUALIFICADA .. 8

2.1.1 SCMDSign - Assinatura de Hash ... 8

2.1.1.1 SignRequest .. 8

2.1.1.2 SignStatus ... 9

2.1.2 GetCertificate – Obtém certificado do cidadão ... 10

2.1.3 ValidateOtp – Validação de código enviado para o cidadão ... 10

2.1.3.1 SignResponse ... 10

2.1.3.2 HashStructure .. 11

2.1.4 SCMDMultipleSign - Assinatura de múltiplos Hash ... 11

2.1.4.1 MultipleSignRequest .. 11

2.1.4.2 HashStructure .. 12

2.1.4.3 SignStatus ... 12

2.1.5 GetCertificateWithPin – Obtém certificado do cidadão com o PIN de assinatura 12

2.1.6 ForceSMS – Reenvia um SMS com o código de validação para o utilizador 13

3 GERAÇÃO DO HASH DO DOCUMENTO .. 14

4 INFORMAÇÕES ÚTEIS ... 15

5 ANEXOS ... 16

5.1 CÓDIGOS DE ERRO .. 16

59

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 5

5.2 WSDL .. 16

60

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 6

1 Introdução

A Chave Móvel Digital vem massificar o processo de autenticação e assinatura eletrónica qualificada

do Cidadão.

O presente documento visa especificar o serviço para integração de sistemas externos para realização

de assinaturas qualificadas através da Chave Móvel Digital (CMD). Este serviço irá disponibilizar as

seguintes operações, que devem ser invocados pela ordem indicada abaixo:

1. GetCertificate: obtém certificado do cidadão;

2. SCMDSign: quando se pretende assinar um único documento, deve ser utilizada esta operação

que recebe o hash do documento a assinar;

2. SCMDlMultipleSign: quando se pretende assinar vários documentos, deve ser utilizada esta

operação que recebe a lista dos hash dos documentos a assinar;

3. GetCertificateWithPin: obtém o certificado do cidadão com o pin de assinatura associado.

4. ForceSMS: força o envio de um SMS com um novo código OTP, associada a uma operação em

processo.

5. ValidateOtp: último passo do processo, que valida o código de segurança enviado e devolve o

hash assinado, uma lista de hash assinados ou o certificado do cidadão, conforme ter sido

invocada anteriormente a operação SCMDSign, SCMDMultipleSign ou GetCertificateWithPin.

61

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 7

2 Serviços

Nesta secção é descrita a especificação do serviço SCMDService. Os sistemas externos que desejem

efetuar a integração com este serviço devem implementar os seguintes protocolos para a

comunicação:

• Comunicação HTTPS com basic authentication;

• Mensagem SOAP;

As credenciais para a autenticação serão disponibilizadas pela AMA aquando dos trabalhos de

integração.

As operações descritas, irão implementar criptografia assimétrica para encriptação e desencriptação

dos dados sensíveis introduzidos pelo Cidadão (nº de Telemóvel, PIN de Assinatura e OTP). A CMD irá

disponibilizar a chave pública através de um certificado X.509 para que os sistemas externos efetuem

a encriptação da informação, com RSA, que será desencriptada pela CMD com a chave privada.

Endpoints

DEV

Serviço: https://dev.cmd.autenticacao.gov.pt/Ama.Authentication.Frontend/SCMDService.svc

Certificado: a definir

 (apenas acessível dentro da rede da AMA)

PPR https://preprod.cmd.autenticacao.gov.pt/Ama.Authentication.Frontend/SCMDService.svc

Certificado: a definir

PRD https:// cmd.autenticacao.gov.pt/Ama.Authentication.Frontend/SCMDService.svc

Certificado: a definir

62

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 8

2.1 SCMDService - Serviço de Assinatura Qualificada

O serviço SCMDService irá disponibilizar 6 operações, a operação de assinatura de hash de 1

documento, a operação de assinatura de várias hash, a operação de validação de código de segurança

OTP (One Time Password), a operação de obter o certificado do cidadão, a operação de obter o

certificado do cidadão com recurso a PIN, e a operação de forçar um SMS para um processo em curso.

Para mais informações sobre os dados do serviço consulte a secção 4 deste documento.

2.1.1 SCMDSign - Assinatura de Hash

Operação SCMDSign

Parâmetro de Entrada SignRequest (2.1.1.1)

Parâmetro de Saída SignStatus (0)

2.1.1.1 SignRequest

Parâmetros Tipo Obrigatório? Descrição

ApplicationId byte[] Sim Identificador da aplicação que efetua

o request

DocName string Não Nome do Documento ou identificador

para permitir ao Cidadão identificar o

ato que vai originar a assiantura

Hash byte[] Sim Hash da informação sobre a qual vai

ser gerada a assinatura

Pin base64String(cifrado) Sim Código PIN do utilizador

UserId base64String(cifrado) Sim Indentificador da conta do utilizador

(ex.: Nº de Telemóvel:

“+351 966666666”)

63

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 9

2.1.1.2 SignStatus

Parâmetros Tipo

ProcessId string

Code string

Message string

Field string

FieldValue string

64

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 10

2.1.2 GetCertificate – Obtém certificado do cidadão

Operação GetCertificate

Parâmetro de Entrada byte[] applicationId

base64String userId (cifrado)

Parâmetro de Saída string certificate

2.1.3 ValidateOtp – Validação de código enviado para o cidadão

Operação ValidateOtp

Parâmetro de Entrada base64String code (cifrado)

string processId

byte[] applicationId

Parâmetro de Saída SignResponse (2.1.3.1)

2.1.3.1 SignResponse

Parâmetros Tipo

Signature Byte[]

ArrayOfHashStructure

List<HashStructure>

SignStatus Objecto referido no ponto 2.1.1.2

certificate String

65

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 11

2.1.3.2HashStructure

Parâmetros Tipo Obrigatório? Descrição

Signature byte[] Sim Assinatura do documento

Name string Sim Nome do documento

id string Sim Indentificador do documento

2.1.4 SCMDMultipleSign - Assinatura de múltiplos Hash

Operação CCMovelMultipleSign

Parâmetro de Entrada MultipleSignRequest

List<HashStructure>

Parâmetro de Saída SignStatus (0)

2.1.4.1 MultipleSignRequest

Parâmetros Tipo Obrigatório? Descrição

ApplicationId byte[] Sim Identificador da aplicação que efetua o request

Pin base64String

(cifrado)

Sim Código PIN do utilizador

UserId base64String

(cifrado)

Sim Indentificador da conta do utilizador (Nº

Telemóvel: “+351 966666666”)

66

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 12

2.1.4.2 HashStructure

Parâmetros Tipo Obrigatório? Descrição

Hash byte[] Sim Hash da informação sobre a qual vai

ser gerada a assinatura

Name String Sim Nome do documento

id String Sim Indentificador do documento

2.1.4.3 SignStatus

Parâmetros Tipo

ProcessId string

Code string

Message string

Field string

FieldValue string

2.1.5 GetCertificateWithPin – Obtém certificado do cidadão com o PIN de assinatura

Operação GetCertificateWithPin

Parâmetro de Entrada byte[] applicationId

base64String userId (cifrado)

Base64String pin (cifrado)

Parâmetro de Saída SignStatus (0)

67

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 13

2.1.6 ForceSMS – Reenvia um SMS com o código de validação para o utilizador

Operação ForceSMS

Parâmetro de Entrada byte[] applicationId

base64String userId (cifrado)

String processId

Parâmetro de Saída SignStatus (0)

68

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 14

3 Geração do Hash do documento

A geração do hash deve ser feita conforme o “PKCS #1: RSA Cryptography Specifications Version 2.2”,

ponto 9.2 até ao passo 2:

• https://tools.ietf.org/html/rfc8017#page-45

A título de exemplo, o AlgorithmIdentifier para um hash SHA-256 seria o seguinte:

unsigned char[] sha256SigPrefix =

 { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,

 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,

 0x05, 0x00, 0x04, 0x20};

O hash enviado para os serviços deve ser o prefixo seguido do hash do documento.

69

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 15

4 Informações úteis

Esta secção serve para proceder ao esclarecimento sobre os tipos de dados do serviço de assinatura

qualificada.

Base64String (cifrado) – Cifrar informação com a chave pública do certificado disponibilizado pela AMA

e converter o resultado dessa cifra numa string base64.

Byte[] (Byte Array) – Informação convertida em Byte Array.

70

CMD - Especificação dos serviços de Assinatura

AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

PRESIDÊNCIA DO CONSELHO DE MINISTROS

RUA ABRANCHES FERRÃO Nº10 3º | 1600-001 LISBOA – PORTUGAL | + 351 217 231 200

www.ama.pt/ | facebook.com/ama.gov.pt

PÁGINA 16

5 Anexos

5.1 Códigos de Erro

5.2 WSDL

SCMDService.wsdl

Código Descrição

200 OK

500’s Erros de sistema

800’s Parâmetros inválidos

801 Pins não correspondem

802 OTP inválido

817 Ocorre quando o serviço de assinatura do SCMD está inativo. O cidadão não

recebe o OTP.

900 Erro genérico

71

Appendix B

PKCS#11 Wrapper API

As described in the previous sections, was used a PKCS#11 wrapper for the CC library
provided, in order to, in a first instance use it as a study tool to understand the interaction
between the applications and the PKCS#11 API.

In this appendix chapter is presented the code for the PKCS#11 wrapper used in a early
stage of the project.

1 #include "bootstrap.c"

2 #include "logger.h"

3

4 void

5 resolve ()

6 {

7 _funcs.C_CancelFunction = C_CancelFunction;

8 _funcs.C_CloseAllSessions = C_CloseAllSessions;

9 _funcs.C_CloseSession = C_CloseSession;

10 _funcs.C_CopyObject = C_CopyObject;

11 _funcs.C_CreateObject = C_CreateObject;

12 _funcs.C_Decrypt = C_Decrypt;

13 _funcs.C_DecryptDigestUpdate = C_DecryptDigestUpdate;

14 _funcs.C_DecryptFinal = C_DecryptFinal;

15 _funcs.C_DecryptInit = C_DecryptInit;

16 _funcs.C_DecryptUpdate = C_DecryptUpdate;

17 _funcs.C_DecryptVerifyUpdate = C_DecryptVerifyUpdate;

18 _funcs.C_DeriveKey = C_DeriveKey;

19 _funcs.C_DestroyObject = C_DestroyObject;

20 _funcs.C_Digest = C_Digest;

21 _funcs.C_DigestEncryptUpdate = C_DigestEncryptUpdate;

22 _funcs.C_DigestFinal = C_DigestFinal;

23 _funcs.C_DigestInit = C_DigestInit;

24 _funcs.C_DigestKey = C_DigestKey;

25 _funcs.C_DigestUpdate = C_DigestUpdate;

26 _funcs.C_Encrypt = C_Encrypt;

27 _funcs.C_EncryptFinal = C_EncryptFinal;

28 _funcs.C_EncryptInit = C_EncryptInit;

29 _funcs.C_EncryptUpdate = C_EncryptUpdate;

30 _funcs.C_Finalize = C_Finalize;

31 _funcs.C_FindObjects = C_FindObjects;

32 _funcs.C_FindObjectsFinal = C_FindObjectsFinal;

33 _funcs.C_FindObjectsInit = C_FindObjectsInit;

34 _funcs.C_GenerateKey = C_GenerateKey;

35 _funcs.C_GenerateKeyPair = C_GenerateKeyPair;

72

36 _funcs.C_GenerateRandom = C_GenerateRandom;

37 _funcs.C_GetAttributeValue = C_GetAttributeValue;

38 _funcs.C_GetFunctionList = C_GetFunctionList;

39 _funcs.C_GetFunctionStatus = C_GetFunctionStatus;

40 _funcs.C_GetInfo = C_GetInfo;

41 _funcs.C_GetMechanismInfo = C_GetMechanismInfo;

42 _funcs.C_GetMechanismList = C_GetMechanismList;

43 _funcs.C_GetObjectSize = C_GetObjectSize;

44 _funcs.C_GetOperationState = C_GetOperationState;

45 _funcs.C_GetSessionInfo = C_GetSessionInfo;

46 _funcs.C_GetSlotInfo = C_GetSlotInfo;

47 _funcs.C_GetSlotList = C_GetSlotList;

48 _funcs.C_GetTokenInfo = C_GetTokenInfo;

49 _funcs.C_Initialize = C_Initialize;

50 _funcs.C_InitPIN = C_InitPIN;

51 _funcs.C_InitToken = C_InitToken;

52 _funcs.C_Login = C_Login;

53 _funcs.C_Logout = C_Logout;

54 _funcs.C_OpenSession = C_OpenSession;

55 _funcs.C_SeedRandom = C_SeedRandom;

56 _funcs.C_SetAttributeValue = C_SetAttributeValue;

57 _funcs.C_SetOperationState = C_SetOperationState;

58 _funcs.C_SetPIN = C_SetPIN;

59 _funcs.C_Sign = C_Sign;

60 _funcs.C_SignEncryptUpdate = C_SignEncryptUpdate;

61 _funcs.C_SignFinal = C_SignFinal;

62 _funcs.C_SignInit = C_SignInit;

63 _funcs.C_SignRecover = C_SignRecover;

64 _funcs.C_SignRecoverInit = C_SignRecoverInit;

65 _funcs.C_SignUpdate = C_SignUpdate;

66 _funcs.C_UnwrapKey = C_UnwrapKey;

67 _funcs.C_Verify = C_Verify;

68 _funcs.C_VerifyFinal = C_VerifyFinal;

69 _funcs.C_VerifyInit = C_VerifyInit;

70 _funcs.C_VerifyRecover = C_VerifyRecover;

71 _funcs.C_VerifyRecoverInit = C_VerifyRecoverInit;

72 _funcs.C_VerifyUpdate = C_VerifyUpdate;

73 _funcs.C_WaitForSlotEvent = C_WaitForSlotEvent;

74 _funcs.C_WrapKey = C_WrapKey;

75 }

76

77

78 CK_RV C_CancelFunction (CK_SESSION_HANDLE p1)

79 {

80 bootstrap ();

81 LOG(C_CancelFunction);

82 return funcs ->C_CancelFunction(p1);

83 }

84 CK_RV C_CloseAllSessions (CK_SLOT_ID p1)

85 {

86 bootstrap ();

87 LOG(C_CloseAllSessions);

88 return funcs ->C_CloseAllSessions(p1);

89 }

90 CK_RV C_CloseSession (CK_SESSION_HANDLE p1)

91 {

92 bootstrap ();

73

93 LOG(C_CloseSession);

94 return funcs ->C_CloseSession(p1);

95 }

96 CK_RV C_CopyObject (CK_SESSION_HANDLE p1 , CK_OBJECT_HANDLE p2 ,

CK_ATTRIBUTE_PTR p3 , CK_ULONG p4 , CK_OBJECT_HANDLE_PTR p5)

97 {

98 bootstrap ();

99 LOG(C_CopyObject);

100 return funcs ->C_CopyObject(p1, p2, p3, p4, p5);

101 }

102 CK_RV C_CreateObject (CK_SESSION_HANDLE p1 , CK_ATTRIBUTE_PTR p2 , CK_ULONG p3 ,

CK_OBJECT_HANDLE_PTR p4)

103 {

104 bootstrap ();

105 LOG(C_CreateObject);

106 return funcs ->C_CreateObject(p1, p2, p3, p4);

107 }

108 CK_RV C_Decrypt (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3 ,

CK_BYTE_PTR p4, CK_ULONG_PTR p5)

109 {

110 bootstrap ();

111 LOG(C_Decrypt);

112 return funcs ->C_Decrypt(p1, p2, p3, p4, p5);

113 }

114 CK_RV C_DecryptDigestUpdate (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG

p3, CK_BYTE_PTR p4 , CK_ULONG_PTR p5)

115 {

116 bootstrap ();

117 LOG(C_DecryptDigestUpdate);

118 return funcs ->C_DecryptDigestUpdate(p1, p2, p3, p4, p5);

119 }

120 CK_RV C_DecryptFinal (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG_PTR p3)

121 {

122 bootstrap ();

123 LOG(C_DecryptFinal);

124 return funcs ->C_DecryptFinal(p1, p2, p3);

125 }

126 CK_RV C_DecryptInit (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2 ,

CK_OBJECT_HANDLE p3)

127 {

128 bootstrap ();

129 LOG(C_DecryptInit);

130 return funcs ->C_DecryptInit(p1, p2, p3);

131 }

132 CK_RV C_DecryptUpdate (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3 ,

CK_BYTE_PTR p4, CK_ULONG_PTR p5)

133 {

134 bootstrap ();

135 LOG(C_DecryptUpdate);

136 return funcs ->C_DecryptUpdate(p1, p2, p3, p4, p5);

137 }

138 CK_RV C_DecryptVerifyUpdate (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG

p3, CK_BYTE_PTR p4 , CK_ULONG_PTR p5)

139 {

140 bootstrap ();

141 LOG(C_DecryptVerifyUpdate);

142 return funcs ->C_DecryptVerifyUpdate(p1, p2, p3, p4, p5);

74

143 }

144 CK_RV C_DeriveKey (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2 ,

CK_OBJECT_HANDLE p3 , CK_ATTRIBUTE_PTR p4 , CK_ULONG p5 ,

CK_OBJECT_HANDLE_PTR p6)

145 {

146 bootstrap ();

147 LOG(C_DeriveKey);

148 return funcs ->C_DeriveKey(p1, p2, p3, p4, p5, p6);

149 }

150 CK_RV C_DestroyObject (CK_SESSION_HANDLE p1 , CK_OBJECT_HANDLE p2)

151 {

152 bootstrap ();

153 LOG(C_DestroyObject);

154 return funcs ->C_DestroyObject(p1, p2);

155 }

156 CK_RV C_Digest (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3 ,

CK_BYTE_PTR p4, CK_ULONG_PTR p5)

157 {

158 bootstrap ();

159 LOG(C_Digest);

160 return funcs ->C_Digest(p1, p2, p3, p4, p5);

161 }

162 CK_RV C_DigestEncryptUpdate (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG

p3, CK_BYTE_PTR p4 , CK_ULONG_PTR p5)

163 {

164 bootstrap ();

165 LOG(C_DigestEncryptUpdate);

166 return funcs ->C_DigestEncryptUpdate(p1, p2, p3, p4, p5);

167 }

168 CK_RV C_DigestFinal (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG_PTR p3)

169 {

170 bootstrap ();

171 LOG(C_DigestFinal);

172 return funcs ->C_DigestFinal(p1, p2, p3);

173 }

174 CK_RV C_DigestInit (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2)

175 {

176 bootstrap ();

177 LOG(C_DigestInit);

178 return funcs ->C_DigestInit(p1, p2);

179 }

180 CK_RV C_DigestKey (CK_SESSION_HANDLE p1 , CK_OBJECT_HANDLE p2)

181 {

182 bootstrap ();

183 LOG(C_DigestKey);

184 return funcs ->C_DigestKey(p1, p2);

185 }

186 CK_RV C_DigestUpdate (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3)

187 {

188 bootstrap ();

189 LOG(C_DigestUpdate);

190 return funcs ->C_DigestUpdate(p1, p2, p3);

191 }

192 CK_RV C_Encrypt (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3 ,

CK_BYTE_PTR p4, CK_ULONG_PTR p5)

193 {

194 bootstrap ();

75

195 LOG(C_Encrypt);

196 return funcs ->C_Encrypt(p1, p2, p3, p4, p5);

197 }

198 CK_RV C_EncryptFinal (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG_PTR p3)

199 {

200 bootstrap ();

201 LOG(C_EncryptFinal);

202 return funcs ->C_EncryptFinal(p1, p2, p3);

203 }

204 CK_RV C_EncryptInit (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2 ,

CK_OBJECT_HANDLE p3)

205 {

206 bootstrap ();

207 LOG(C_EncryptInit);

208 return funcs ->C_EncryptInit(p1, p2, p3);

209 }

210 CK_RV C_EncryptUpdate (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3 ,

CK_BYTE_PTR p4, CK_ULONG_PTR p5)

211 {

212 bootstrap ();

213 LOG(C_EncryptUpdate);

214 return funcs ->C_EncryptUpdate(p1, p2, p3, p4, p5);

215 }

216 CK_RV C_Finalize (CK_VOID_PTR p1)

217 {

218 bootstrap ();

219 LOG(C_Finalize);

220 return funcs ->C_Finalize(p1);

221 }

222 CK_RV C_FindObjects (CK_SESSION_HANDLE p1 , CK_OBJECT_HANDLE_PTR p2 , CK_ULONG

p3, CK_ULONG_PTR p4)

223 {

224 bootstrap ();

225 LOG(C_FindObjects);

226 return funcs ->C_FindObjects(p1, p2, p3, p4);

227 }

228 CK_RV C_FindObjectsFinal (CK_SESSION_HANDLE p1)

229 {

230 bootstrap ();

231 LOG(C_FindObjectsFinal);

232 return funcs ->C_FindObjectsFinal(p1);

233 }

234 CK_RV C_FindObjectsInit (CK_SESSION_HANDLE p1 , CK_ATTRIBUTE_PTR p2 , CK_ULONG

p3)

235 {

236 bootstrap ();

237 LOG(C_FindObjectsInit);

238 return funcs ->C_FindObjectsInit(p1, p2, p3);

239 }

240 CK_RV C_GenerateKey (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2 ,

CK_ATTRIBUTE_PTR p3 , CK_ULONG p4 , CK_OBJECT_HANDLE_PTR p5)

241 {

242 bootstrap ();

243 LOG(C_GenerateKey);

244 return funcs ->C_GenerateKey(p1, p2, p3, p4, p5);

245 }

246 CK_RV C_GenerateKeyPair (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2 ,

76

CK_ATTRIBUTE_PTR p3 , CK_ULONG p4 , CK_ATTRIBUTE_PTR p5 , CK_ULONG p6 ,

CK_OBJECT_HANDLE_PTR p7, CK_OBJECT_HANDLE_PTR p8)

247 {

248 bootstrap ();

249 LOG(C_GenerateKeyPair);

250 return funcs ->C_GenerateKeyPair(p1, p2, p3, p4, p5, p6, p7, p8);

251 }

252 CK_RV C_GenerateRandom (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3)

253 {

254 bootstrap ();

255 LOG(C_GenerateRandom);

256 return funcs ->C_GenerateRandom(p1, p2, p3);

257 }

258 CK_RV C_GetAttributeValue (CK_SESSION_HANDLE p1 , CK_OBJECT_HANDLE p2 ,

CK_ATTRIBUTE_PTR p3 , CK_ULONG p4)

259 {

260 bootstrap ();

261 LOG(C_GetAttributeValue);

262 return funcs ->C_GetAttributeValue(p1, p2, p3, p4);

263 }

264 CK_RV C_GetFunctionList (CK_FUNCTION_LIST_PTR_PTR p1)

265 {

266 bootstrap ();

267 LOG(C_GetFunctionList);

268 return funcs ->C_GetFunctionList(p1);

269 }

270 CK_RV C_GetFunctionStatus (CK_SESSION_HANDLE p1)

271 {

272 bootstrap ();

273 LOG(C_GetFunctionStatus);

274 return funcs ->C_GetFunctionStatus(p1);

275 }

276 CK_RV C_GetInfo (CK_INFO_PTR p1)

277 {

278 bootstrap ();

279 LOG(C_GetInfo);

280 return funcs ->C_GetInfo(p1);

281 }

282 CK_RV C_GetMechanismInfo (CK_SLOT_ID p1 , CK_MECHANISM_TYPE p2 ,

CK_MECHANISM_INFO_PTR p3)

283 {

284 bootstrap ();

285 LOG(C_GetMechanismInfo);

286 return funcs ->C_GetMechanismInfo(p1, p2, p3);

287 }

288 CK_RV C_GetMechanismList (CK_SLOT_ID p1 , CK_MECHANISM_TYPE_PTR p2 ,

CK_ULONG_PTR p3)

289 {

290 // ao criar o slot , especificar quais os mecanismos que a CMD implementa

291 bootstrap ();

292 LOG(C_GetMechanismList);

293 return funcs ->C_GetMechanismList(p1, p2, p3);

294 }

295 CK_RV C_GetObjectSize (CK_SESSION_HANDLE p1 , CK_OBJECT_HANDLE p2 ,

CK_ULONG_PTR p3)

296 {

297 bootstrap ();

77

298 LOG(C_GetObjectSize);

299 return funcs ->C_GetObjectSize(p1, p2, p3);

300 }

301 CK_RV C_GetOperationState (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG_PTR

p3)

302 {

303 bootstrap ();

304 LOG(C_GetOperationState);

305 return funcs ->C_GetOperationState(p1, p2, p3);

306 }

307 CK_RV C_GetSessionInfo (CK_SESSION_HANDLE p1 , CK_SESSION_INFO_PTR p2)

308 {

309 bootstrap ();

310 LOG(C_GetSessionInfo);

311 return funcs ->C_GetSessionInfo(p1, p2);

312 }

313 CK_RV C_GetSlotInfo (CK_SLOT_ID p1 , CK_SLOT_INFO_PTR p2)

314 {

315 bootstrap ();

316 LOG(C_GetSlotInfo);

317 return funcs ->C_GetSlotInfo(p1, p2);

318

319 }

320 CK_RV C_GetSlotList (CK_BBOOL p1 , CK_SLOT_ID_PTR p2 , CK_ULONG_PTR p3)

321 {

322 bootstrap ();

323 LOG(C_GetSlotList);

324 return funcs ->C_GetSlotList(p1, p2, p3);

325

326 }

327 CK_RV C_GetTokenInfo (CK_SLOT_ID p1 , CK_TOKEN_INFO_PTR p2)

328 {

329 bootstrap ();

330 LOG(C_GetTokenInfo);

331 return _C_GetTokenInfo(p1,p2);

332 }

333 CK_RV C_Initialize (CK_VOID_PTR p1)

334 {

335 bootstrap ();

336 LOG(C_Initialize);

337 return funcs ->C_Initialize(p1);

338

339

340 }

341 CK_RV C_InitPIN (CK_SESSION_HANDLE p1 , CK_CHAR_PTR p2 , CK_ULONG p3)

342 {

343 bootstrap ();

344 LOG(C_InitPIN);

345 return funcs ->C_InitPIN(p1, p2, p3);

346 }

347 CK_RV C_InitToken (CK_SLOT_ID p1 , CK_CHAR_PTR p2 , CK_ULONG p3 , CK_CHAR_PTR p4

)

348 {

349 bootstrap ();

350 LOG(C_InitToken);

351 return funcs ->C_InitToken(p1, p2, p3, p4);

352 }

78

353 CK_RV C_Login (CK_SESSION_HANDLE p1 , CK_USER_TYPE p2 , CK_CHAR_PTR p3 ,

CK_ULONG p4)

354 {

355 bootstrap ();

356 LOG(C_Login);

357 return funcs ->C_Login(p1, p2, p3, p4);

358 }

359 CK_RV C_Logout (CK_SESSION_HANDLE p1)

360 {

361 bootstrap ();

362 LOG(C_Logout);

363 return funcs ->C_Logout(p1);

364 }

365 CK_RV C_OpenSession (CK_SLOT_ID p1 , CK_FLAGS p2 , CK_VOID_PTR p3 , CK_NOTIFY p4

, CK_SESSION_HANDLE_PTR p5)

366 {

367 bootstrap ();

368 LOG(C_OpenSession);

369 return funcs ->C_OpenSession(p1,p2,p3,p4,p5);

370 }

371 CK_RV C_SeedRandom (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3)

372 {

373 bootstrap ();

374 LOG(C_SeedRandom);

375 return funcs ->C_SeedRandom(p1, p2, p3);

376 }

377 CK_RV C_SetAttributeValue (CK_SESSION_HANDLE p1 , CK_OBJECT_HANDLE p2 ,

CK_ATTRIBUTE_PTR p3 , CK_ULONG p4)

378 {

379 bootstrap ();

380 LOG(C_SetAttributeValue);

381 return funcs ->C_SetAttributeValue(p1, p2, p3, p4);

382 }

383 CK_RV C_SetOperationState (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3 ,

CK_OBJECT_HANDLE p4 , CK_OBJECT_HANDLE p5)

384 {

385 bootstrap ();

386 LOG(C_SetOperationState);

387 return funcs ->C_SetOperationState(p1, p2, p3, p4, p5);

388 }

389 CK_RV C_SetPIN (CK_SESSION_HANDLE p1 , CK_CHAR_PTR p2 , CK_ULONG p3 ,

CK_CHAR_PTR p4, CK_ULONG p5)

390 {

391 bootstrap ();

392 LOG(C_SetPIN);

393 return funcs ->C_SetPIN(p1, p2, p3, p4, p5);

394 }

395 CK_RV C_Sign (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3 , CK_BYTE_PTR

p4, CK_ULONG_PTR p5)

396 {

397 bootstrap ();

398 LOG(C_Sign);

399 return _C_Sign(p1, p2, p3, p4, p5);

400 // return funcs ->C_Sign(p1, p2, p3, p4, p5);

401 }

402 CK_RV C_SignEncryptUpdate (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3 ,

CK_BYTE_PTR p4, CK_ULONG_PTR p5)

79

403 {

404 bootstrap ();

405 LOG(C_SignEncryptUpdate);

406 return funcs ->C_SignEncryptUpdate(p1, p2, p3, p4, p5);

407 }

408 CK_RV C_SignFinal (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG_PTR p3)

409 {

410 bootstrap ();

411 LOG(C_SignFinal);

412 return funcs ->C_SignFinal(p1, p2, p3);

413 }

414 CK_RV C_SignInit (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2 , CK_OBJECT_HANDLE

p3)

415 {

416 bootstrap ();

417 LOG(C_SignInit);

418 return funcs ->C_SignInit(p1, p2, p3);

419 }

420 CK_RV C_SignRecover (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3 ,

CK_BYTE_PTR p4, CK_ULONG_PTR p5)

421 {

422 bootstrap ();

423 LOG(C_SignRecover);

424 return funcs ->C_SignRecover(p1, p2, p3, p4, p5);

425 }

426 CK_RV C_SignRecoverInit (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2 ,

CK_OBJECT_HANDLE p3)

427 {

428 bootstrap ();

429 LOG(C_SignRecoverInit);

430 return funcs ->C_SignRecoverInit(p1, p2, p3);

431 }

432 CK_RV C_SignUpdate (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3)

433 {

434 bootstrap ();

435 LOG(C_SignUpdate);

436 return funcs ->C_SignUpdate(p1, p2, p3);

437 }

438 CK_RV C_UnwrapKey (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2 ,

CK_OBJECT_HANDLE p3 , CK_BYTE_PTR p4 , CK_ULONG p5 , CK_ATTRIBUTE_PTR p6 ,

CK_ULONG p7, CK_OBJECT_HANDLE_PTR p8)

439 {

440 bootstrap ();

441 LOG(C_UnwrapKey);

442 return funcs ->C_UnwrapKey(p1, p2, p3, p4, p5, p6, p7, p8);

443 }

444 CK_RV C_Verify (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3 ,

CK_BYTE_PTR p4, CK_ULONG p5)

445 {

446 bootstrap ();

447 LOG(C_Verify);

448 return funcs ->C_Verify(p1, p2, p3, p4, p5);

449 }

450 CK_RV C_VerifyFinal (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3)

451 {

452 bootstrap ();

453 LOG(C_VerifyFinal);

80

454 return funcs ->C_VerifyFinal(p1, p2, p3);

455 }

456 CK_RV C_VerifyInit (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2 ,

CK_OBJECT_HANDLE p3)

457 {

458 bootstrap ();

459 LOG(C_VerifyInit);

460 return funcs ->C_VerifyInit(p1, p2, p3);

461 }

462 CK_RV C_VerifyRecover (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3 ,

CK_BYTE_PTR p4, CK_ULONG_PTR p5)

463 {

464 bootstrap ();

465 LOG(C_VerifyRecover);

466 return funcs ->C_VerifyRecover(p1, p2, p3, p4, p5);

467 }

468 CK_RV C_VerifyRecoverInit (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2 ,

CK_OBJECT_HANDLE p3)

469 {

470 bootstrap ();

471 LOG(C_VerifyRecoverInit);

472 return funcs ->C_VerifyRecoverInit(p1, p2, p3);

473 }

474 CK_RV C_VerifyUpdate (CK_SESSION_HANDLE p1 , CK_BYTE_PTR p2 , CK_ULONG p3)

475 {

476 bootstrap ();

477 LOG(C_VerifyUpdate);

478 return funcs ->C_VerifyUpdate(p1, p2, p3);

479 }

480 CK_RV C_WaitForSlotEvent (CK_FLAGS p1 , CK_SLOT_ID_PTR p2 , CK_VOID_PTR p3)

481 {

482 bootstrap ();

483 LOG(C_WaitForSlotEvent);

484 return funcs ->C_WaitForSlotEvent(p1, p2, p3);

485 }

486 CK_RV C_WrapKey (CK_SESSION_HANDLE p1 , CK_MECHANISM_PTR p2 , CK_OBJECT_HANDLE

p3, CK_OBJECT_HANDLE p4 , CK_BYTE_PTR p5 , CK_ULONG_PTR p6)

487 {

488 bootstrap ();

489 LOG(C_WrapKey);

490 return funcs ->C_WrapKey(p1, p2, p3, p4, p5, p6);

491 }

To complete the wrapping functionality was used the function bootstrap() described below
to load the functions from the default CC PKCS#11 API.

1 #define ENV_LIB_PATH "PTEIDPKCS11_WRAPPER"

2 #define DEFAULT_LIB_PATH "/usr/local/lib/libpteidpkcs11.so"

3

4 static void

5 bootstrap ()

6 {

7 void * handle;

8 char * libname;

9

10 CK_RV (*gfl) (CK_FUNCTION_LIST_PTR_PTR);

11

12 if (funcs) return;

81

13

14

15 libname = getenv(ENV_LIB_PATH);

16 if (libname == 0) {

17 libname = DEFAULT_LIB_PATH;

18 }

19 handle = dlopen(libname , RTLD_NOW);

20 gfl = dlsym(handle , "C_GetFunctionList");

21 gfl(&funcs);

22

23 resolve ();

24 funcs ->C_GetFunctionList = _C_GetFunctionList;

25

26 printf("Bootstrap done!\n");

27 }

82

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Problem
	Contribution
	Dissertation Structure

	Context
	Asymmetric Cryptography & Cryptographic Tokens
	pkcs#11 Standard api
	Portuguese cryptographic devices and middleware
	Citizen card (cc)
	Chave Móvel Digital (cmd)
	Middleware and drivers

	Library wrapping

	Background & Studies
	Cloud-based Digital Signatures
	Digital Signature apis
	PKCS#11 api
	Microsoft Cryptography api (capi)
	Cryptographic Service Provider (csp)
	Microsoft Cryptography api: Next Generation(cng)
	Key Storage Provider (ksp)

	Cloud-based product solutions
	Austrian Mobile Phone Signature
	Crypthomatic Signer and Crypto Service Gateway

	Smart cmd
	Possible approaches
	Architecture
	Implementation
	Installation and configurations
	pkcs#11 module
	Python module
	IPC (Inter-process communication)
	GUI (Graphical user interface)

	Tests & results
	OpenSC pkcs11-tool
	Autenticação.GOV application
	MyPDFSigner
	PDFStudio

	Conclusions
	Bibliography
	CMD: Especificação dos serviços de Assinatura
	PKCS#11 Wrapper API

