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Computação no Edge, Informação Histórica, Informação em Tempo Real

Resumo A evolução dos mecanismos de comunicação sem fios e o aparecimento de
sistemas embebidos com cada vez maior capacidade de computação permitem
a criação de uma infrastrutura que, de forma confiável e distribuída, consiga
agregar a informação proveniente de vários dispositivos móveis ou estáticos.
Comunicação V2X é uma tecnologia emergente e inovadora que permite a troca
de mensagens de cooperação, alerta e multimédia num ambiente veicular sem fios.
Esta tecnologia conecta um veículo, não só a outros veículos, mas também a
infrastruturas e utilizadores rodoviários vulneráveis (motociclos, velocípedes e/ou
peões), cobrindo assim, um número vasto de aplicações desde os tradicionais casos
de infotainement até às funções mais avançadas de condução cooperativa e assis-
tida. Além dos nós moveis referidos, é também possível usufruir de informação
proveniente de nós estáticos, como por exemplo, radares e câmaras que sejam ins-
talados em determinadas zonas da cidade. De forma a complementar os diversos
mecanismos de comunicação sem fios, é também possível a instalação de unidades
de comunicação fixas, posicionadas perto da estrada, cujo objetivo é recolher a
informação proveniente de veículos com comunicação V2X que estejam ao alcance
dos recetores. Este tipo de nó recetor pode também servir como um nó lógico, que
não só encaminha a informação recebida para a infrastrutura, mas também faz um
processamento distribuído (edge computing) desta informação, podendo ele mesmo
determinar se um veículo está a deslocar-se a uma velocidade acima da velocidade
permitida para aquele local, por exemplo, e gerar um aviso se isso acontecer.
Nesta dissertação foram desenvolvidos serviços que permitem a comunicação
V2I e I2V em veículos, usando as normas definidas para os sistemas de trans-
porte inteligentes, e também foram desenvolvidos serviços que permitem à in-
frastrutura receber informação heterogénea e agregá-la num grupo de base
de dados. Esta informação é, também, disponibilizada a serviços de alto
nível tanto sob a forma de informação em tempo real como sob a forma
de informação histórica. A informaçao é recolhida por estações fixas ins-
taladas no testbed do Aveiro Living Lab que estão distribuídas pela cidade.
A solução proposta disponibiliza informação e eventos em tempo real, prontos
a serem consumidos por serviços de alto nível, assim que forem recebidos pelas
estações fixas. Para demonstrar a versatilidade deste tipo de informação, desen-
volvemos a dashboard Aveiro in Real-Time, que pode ser usada por cidadãos ou por
operadores da cidade e permite mostrar aos utilizadores o estado atual da cidade.
Esta solução também disponibiliza informação histórica, que pode ser usada em
diversos casos de uso. Para demonstrar o quão potente e versátil esta solução é, de-
senvolvemos o serviço Incident Replayer, que permite a reprodução da informação
dos veículos que estiveram envolvidos num acidente.





Keywords Internet of Things, V2X communication, Smart cities, Publish-Subscribe, Edge
Computing, Historic information, real-time information

Abstract The evolution of the wireless communication mechanisms and the ap-
pearance of embedded systems with growing computational power allow the
creation of an infrastructure that, in a reliable and distributed way, is
able to aggregate data acquired from multiple static and dynamic devices.
The V2X communication is an emerging and innovative technology that allows
the exchange of cooperative alert and multimedia messages in a wireless vehicular
environment. This technology connects a vehicle, not only to other vehicles, but
also to the infrastructure and to vulnerable road users (motorcycles, bicycles and
pedestrians), covering a vast number of applications from the traditional cases of
infotainment to the most advanced operations of cooperative and assisted driving.
It is also possible to make use of the data acquired from the static nodes, such as,
radars and video cameras, which are installed in certain zones of the city. To better
complement the multiple wireless communication mechanisms, it is also possible
to install roadside units, located near the road, whose main objective is to gather
data from the V2X vehicles that are within range of the receptors. This type of
receptor node can also work as a logic node that, not only routes the received
information to the infrastructure, but also performs distributed computation (edge
computing) on this data, such as detecting if a vehicle is moving at a speed that
is above the speed limit for that road, and generating an alert if that happens.
In this dissertation we developed services that enable V2I and I2V com-
munication in vehicles, making use of the standards for Intelligent Trans-
portation Systems, as well as services that allow the infrastructure to re-
ceive heterogeneous data and aggregate it in a database cluster. We also
make this data available to high level services both as real-time data and
historic data. The data is acquired by roadside units that were installed
in the Aveiro Living Lab testbed and are distributed throughout the city.
The proposed solution leverages real-time data and events, which are ready
to be consumed by services as soon as they are received by the road-
side units. To demonstrate the versatility of this type of information, we
developed, the Aveiro in Real-Time dashboard that can be used by citi-
zens or by city operators that want to visualize the state of their cities.
This solution also leverages historic data, which can also empower multiple use
cases. To show how powerful and versatile our solution is, we have developed the
Incident Replayer service, that allows users to replay the information of the vehicles
that were involved in an accident.
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CHAPTER 1
Introduction

This chapter provides the context and motivations for the development of this dissertation, as
well as its objectives and the contributions that were achieved. After that, it will explain the
structure of this document.

1.1 Context and Motivation

According to [1], in 2018, an estimated 55.3% of the world’s population lived in urban
settlements, and by 2030, it is estimated that this percentage will rise to 60%.

This increase of the urban population leads to a higher percentage of economic growth
generated by cities. According to [2], the most dense areas, not surprisingly, represent the
world’s megacities and each of which represents a very large percentage of national GDP,
thus having efficient infrastructures and smart technology can have a very positive economic
impact[3].

According to Berg Insight’s [4], more than 51% of all new cars sold worldwide in 2019 were
equipped with an OEM embedded telematics system, up from 38% in 2018, and expected to
reach up to 86% by 2025, with companies such as GM, BMW, MercedesBenz and PSA being
the leading adopters of embedded telematics, offering the technology as a standard feature
across models and geographies. The global automotive telematics market size was valued at
$50.4 billion in 2018, and is projected to reach over $100 billion by 2022 and $320.6 billion by
2026, registering a compound annual growth rate (CAGR) of 26.8% from 2019 to 2026. The
OEM segment was the highest revenue contributor in 2018, accounting for $33.7 billion, and
is estimated to reach $225.6 billion by 2026, registering a CAGR of 27.9% during the forecast
period.

There is a clear upward trend toward the inclusion of embedded telematics in every car and
appears to be growing every year. The growing support for the inclusion of this technology
opens up new and interesting possibilities to improve people’s lives, whether it is by providing
new ways of entertainment and social engagement, or by providing new solutions that will
improve driver safety.
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V2X communication has been proven with day-one applications, where data related to
hazardous situations can be transmitted to nearby vehicles and to the infrastructure that will
be able to relay that information to vehicles that are farther away. Still, the full potential of
the V2X technology is yet to be unlocked, as the real amount of data available to the vehicles
is much larger than the data that is exchanged between them.

V2X can be used to get and send data in an automotive environment, both to prevent
problems such as accidents, and also to provide knowledge of what happened when an accident
is in place.

1.2 Objectives

The main objective of this dissertation is to develop services that enable V2X communica-
tions in vehicles, collect data from heterogeneous sources, such as vehicles, radars and cameras,
aggregate it in a centralized way, where they can be later consumed by other high-level
applications. To test the versatility of this platform, this dissertation also proposes and
develops some services that consume the vehicle and sensor data, and make use of both the
V2I and Infrastructure-to-vehicle (I2V) technologies. The V2I communication will allow to
display information in real-time to the user, and will also allow to store historic information
so that it can be used later. The I2V communication will allow to notify drivers of potential
dangerous driving conditions, which may prevent accidents.

Both of these use cases will be developed using existing and well defined standard for-
mats for vehicle data, like the Cooperative Awareness Messages (CAM) and Decentralized
Environmental Notification Message (DENM).

The objectives of this dissertation can be summarized as follows:
• Definition and extension of communication messages between the vehicles and the

infrastructure.
• Development of services that enable V2I and I2V communication in vehicles and in the

infrastructure.
• Development of a data aggregator where all the vehicle and mobility sensor data will be

made available, both as real-time and as historic data.
• Development of a GUI that displays both the real-time and non real-time information

in a clear and concise way.
• Creation of a test suite to test the proposed solution.

1.3 Dissertation Structure

The content of this dissertation is organized into multiple chapters.
Chapter 2 (Background and Related Work) provides the context to this dissertation. It

explains the work that has previously been developed, and also provides an overview of similar
or related solutions in the state of the art.

Chapter 3 (Architecture) lists the necessary requirements that the solution must meet and
proposes a possible architecture for this solution. Then, it provides an in-depth analysis of
the different data flows that this architecture supports.
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Chapter 4 (Implementation) provides an in-depth analysis of all the individual modules,
while explaining their function in the overall architecture. In the end it analyses the develop-
ment, deployment and testing environments that allowed to work fast and efficiently while
mitigating the number of issues in the development, by submitting the software to rigorous
tests and following some of the most well known good practices of software development.

Chapter 5 (Aveiro in Real-Time) provides the first functional results, by presenting a web
app that displays the real-time information about the city, and also to allow the user to send
alerts to the vehicles. In the end we also show a second web app that was developed, the
notification app, that runs in the OBU and whose purpose is to serve as an HMI that visually
notifies the driver after receiving an alert from the infrastructure.

Chapter 6 (Incident Replayer) presents a platform that allows users to replay certain
incidents, by accessing historic data that was received from multiple data sources, like vehicles,
radars, cameras, and others.

Chapter 7 (Results) presents the results obtained after doing performance tests against
the proposed solution. In this chapter we describe our testing environment, the laboratory
testbed and we also present the specifications of the hardware that was used.

Finally, chapter 8 (Conclusion) summarises the work that was developed, how it met our
initial expectations and how it innovates with respect to current platforms. We also present
ideas for future work.
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CHAPTER 2
Background and Related Work

In this chapter, we provide the context in which this dissertation is inserted, and also explain
some background concepts that are necessary to understand it. We will present an overview
of the V2X technology and what it can achieve along with this growing demand for more
telematics in personal vehicles. Then, it presents similar solutions in the related work. Finally,
it presents the Aveiro Tech City Living Lab.

2.1 Vehicular communication

Manned and autonomous vehicles can talk to each other, to pedestrians and the infras-
tructure using direct link communication technology called V2X, or Vehicle-to-everything
communication. V2X is a growing area of communication between vehicles, either directly or
through the so called roadside units, which are, as the name suggests, equipments usually
placed near the side of the road, and may serve to relay vehicle messages to other vehicles or
to relay these messages to a cloud infrastructure. It can prevent road accidents and save lives
and, in addition, improve traffic congestion, enhance mobility and reduce emissions.

If coupled with autonomous vehicles, V2X allows the communication with other unmanned
vehicles, which have a huge amount of applications.

The inverse flow of data is also possible, also known as I2V, where messages are sent from
the infrastructure, not necessarily in the cloud, and are received by the vehicles. As we have
mentioned previously, these messages could be used to give the driver some sort of information
about the current driving conditions.

2.1.1 V2I Communication

Vehicle-to-Infrastructure, or V2I communication, is the wireless exchange of data between
vehicles and the road infrastructure. V2I alone only describes the inward flow of data, i.e.,
from the vehicles to the infrastructure, as can be seen in figure 2.1, but when used with I2V,
it becomes more powerful, because it not only allows the infrastructure to receive data from
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the vehicles, it also allows it to respond. Very generally, this road infrastructure could be used
to process some logic on the received data and help the driver make more educated decisions.

Figure 2.1: Vehicular communication - Vehicle data is sent to the infrastructure

2.1.2 I2V Communication

Infrastructure-to-vehicle communication, or I2V, consists in flow of data from the infras-
tructure to the vehicles, as seen in figure 2.2. I2V communication has a very large amount of
real world applications.

These applications are seen as one of the key challenges to ensure safe and efficient driving
through the glowingly overloaded road infrastructure. This technology enables the creation
of new use cases, now that the infrastructure is able to send messages to the vehicles. It
could be used to provide information to the vehicle drivers, such as the speed limit of the
current road, notify about a possible accident ahead, road works, and many other cases. It
could also be used in more complex ways, like for example, for ensuring the synchronous
communication between vehicles, i.e., it could be used for operations that require coordination
between vehicles like truck platooning [5] or lane merging [6].

6



Figure 2.2: Vehicular communication - Infrastructure data is sent to the vehicles

2.1.3 V2V Communication

Vehicle-to-vehicle communication, or V2V, is another type of V2X technology which allows
vehicles to send messages directly to each other without the need to use a third party to relay
the messages, as seen in figure 2.3. This technology is different from the previous types of
V2X technology that we presented, because of its decentralized nature, which can fully work
without the infrastructure.

This opens up very interesting use cases like the detection of potential collisions with
another vehicle that supports V2V communication. This is interesting because both vehicles
may be out of sight of each other and may be completely unaware of a potential collision.
V2V allows messages to be exchanged between the two, and makes it possible to the vehicles
OBU to calculate if a collision may happen. Like with the I2V, V2V also makes it possible
for vehicles to perform coordinated maneuvers, like the platooning or the lane merging.

Figure 2.3: Vehicular communication - Vehicle data is sent to other vehicles
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2.2 Vehicular-based Messages

Vehicular messages can either be sent periodically or asynchronously. They essentially fall
into two groups:

• Periodic - these messages are usually generated by the vehicles and contain its in-
formation, such as the current speed, heading, identifier or location. These messages
are usually broadcasted to all the listening entities and may be received by both the
infrastructure or by other vehicles. They are often generated as CAM.

• Asynchronous - these messages can be generated by both the infrastructure or by
the vehicles, depending on the situation, and contain information about the origination
station, such as the current speed and heading (if it is a vehicle), identifier or location.
These messages are usually broadcasted to all the listening entities and may be received
by both the infrastructure or by other vehicles. They are often generated as DENM.
Asynchronous messages could effectively be used for the communication between 2
vehicles, between a vehicle and the infrastructure and between the infrastructure and
a vehicle. In order for a DENM to be generated, there must be usually a trigger that
starts the DENM generation process.

The two previously mentioned types of message were defined by ETSI and are meant to be
used in the context of vehicular networks. These message types contain complex but complete
schema, that cover a large set of datapoints that could be extracted from the vehicles.

2.2.1 Cooperative Awareness Messages (CAM)

Vehicle data is periodically broadcasted in the CAM format, which is a standard used
across multiple OEMs. The mass adoption of this type of message mitigates the risk of
incompatibility of the solutions between two different OEM, i.e., if cars that contain a Bosch
OBU transmit data as CAMs, any vehicle that supports ITS technology, independent of its
manufacturer will be able to interpret that message.

Figure 2.4 shows the structure of a CAM as defined by ETSI [7]. The CAM is a very
complex entity, so we will highlight the most important attributes of this message. Note that
the CAMs do not support the inclusion of floating point numbers, so all the attribute values
must be encoded and passed as integers. These attribute values will then be decoded and
converted back to floating point once the message is received.

• Station ID - this is the station’s unique identifier, i.e., each station (vehicle, roadside
unit,etc.) has an integer that uniquely identifies it.

• Station Type - this indicates the station’s type. There is a large amount of data types,
but the most common are:
– 1 - Pedestrian
– 2 - Cyclist
– 5 - Passenger car
– 6 - Bus

• Latitude and Longitude - this is the vehicle’s position represented in the form of the
latitude and the longitude. Both of these values must be represented as integers.
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• Speed - the vehicle’s current speed , in m/s.

Figure 2.4: General structure of a CAM (from [7])

2.2.2 Decentralized Environmental Notification Message (DENM)

As we mentioned previously, some messages can be sent asynchronously, i.e., they are only
sent when something triggers them. These messages are often sent in the DENM format, that
is defined as the standard by ETSI1. Like with CAMs, the mass adoption of this standard
leads to the possibility of cross-platform compatibility, i.e., the vehicle from one manufacturer
may send an alert to a vehicle of a different manufacturer. These messages are aimed to
describe multiple types of events, not only crashes. DENMs are structured as shown in figure
2.6 and are divided into multiple containers. Since they have a very complex structure, we
will just highlight the most important attributes:

• Station ID - this is the station’s unique identifier, i.e., each station (vehicle, roadside
unit,etc.) has an integer that uniquely identifies it.

• Station Type - this indicates the type of the station that generated this message.
• Latitude and Longitude - this corresponds to the coordinates of the epicenter of the

DENM.
• Cause Code - the code that provides the cause/reason of why the event was generated.
• Sub Cause Code - similar to the cause code, but provides the sub type of the event.

Figure 2.5: General structure of a DENM (from [8])

1https://www.etsi.org/deliver/etsi_en/302600_302699/30263703/01.02.01_30/en_
30263703v010201v.pdf

9

https://www.etsi.org/deliver/etsi_en/302600_302699/30263703/01.02.01_30/en_30263703v010201v.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263703/01.02.01_30/en_30263703v010201v.pdf


2.2.3 Collective Perception Messages (CPM)

Besides CAMs and DENMs, there are many other types of messages that are exchanged
between vehicles. One of these types are the Collective Perception Messages (CPM). As
the name suggests, collective perception consists in the concept of sharing the perceived
environment of a station based on perception sensors [9]. Contrary to Cooperative Awareness,
where a station broadcasts information about its current driving environment, the collective
perception offers the possibility to share information about objects in the surroundings, which
have been detected by different sensors, cameras or other information sources. This type of
information is specially beneficial in some use cases:

• Detection of Non-Connected Road Users - Road users that do not communicate
with the system, e.g., drivers of vehicles that do not support V2X technology, pedestrians
or cyclists, can only be detected by the environment perception sensors of stations that
support this type of technology. With the collective perception service, the number of
road users recognized can be increased significantly.

• Detection of Safety-Critical Objects - Some objects may pose a significant risk to
the safety of road users and it is desirable to avoid them. These objects can include,
for example, lost cargo, a tree limb or debris located on the road which may lead to a
puncture in vehicles or even an accident.

It may also make sense to merge sensor data with the information received from CAMs
before generating and sending out a CPM. This allows stations to have increased awareness
about the surrounding environment, which may be specially useful in intersections.

Figure 2.6: General structure of a CPM (from [9])

2.3 Related Work

The rapid increase in the number of vehicles on the roads, as well as the growing urban
populations have worsened existing problems such as traffic congestion and accidents. These
problems along with other factors, such as the increasing adoption of embedded telematics
in vehicles by OEMs, have motivated researchers to develop new smart city concepts and
technologies aiming at providing new and useful solutions for these problems.

Several systems have been proposed to tackle traffic congestion in big cities by making use
of smart city capabilities. The work in [10] proposes a framework to reduce the latency of
emergency services for vehicles such as ambulances and police cars, while trying to minimize
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the disruption to the regular traffic. This framework also supports some security mechanisms
to prevent these functionalities from being exploited by malicious players.

Collision avoidance is also another major problem being addressed by researchers. The
work in [11] aims to address the specific case of a collision between a vehicle and a Vulnerable
Road User (VRU) by using the user’s smartphone as the main communication device between
the user and the infrastructure. Messages containing the position, the heading, along with
many other types of data, are sent to remote servers through edge nodes. Once this information
reaches the collision detectors, i.e., the remote servers, a collision algorithm determines if any
two users are in a collision course, and an alert will be generated and sent.

Tesla [12] has developed its autopilot functionality that allows the vehicle to drive au-
tonomously with minor user interaction. The autopilot contains features like automatic lane
changing that can handle lane merges, exits and overtaking. It also contains an auto-parking
system, traffic lights and stop-sign recognition, and a feature that makes the car navigate out
of the parking space and straight to the driver.

The work in [13] proposes the Cooperative Intersection Collision Avoidance Persistent
(CICAP), a collision avoidance system that aims to prevent collisions between vehicles on
intersections. This system assumes that two vehicles, equipped with automatic actuators, are
able to communicate with each other using V2V technology. The CICAP runs on each vehicle.
Based on information such as the position, the speed and the direction of all neighboring
vehicles, the CICAP calculates if both vehicles are on a collision course. If a collision course
is detected, then the vehicle with the lowest priority will reduce its speed and only increase it
again once the vehicle with the highest priority as passed. This may be specially useful in
scenarios that involve emergency vehicles. This system was not tested in a real environment,
which makes it hard to verify its effective reliability and scalability.

The work in [14] addresses the scenario of vehicle/vehicle collision, more specifically to
prevent rear end collisions, when visibility is limited because a vehicle is present in between
two other vehicles. Assume a chain of vehicles, A, B and C, where vehicle C is at the back,
vehicle B is in the middle and vehicle A is at the front of the queue. If A breaks, then the
proximity sensors of B will detect that breaking action and quickly react by breaking, to
prevent a crash. By similar analysis, when vehicle B breaks, then the proximity sensors of
vehicle C will detect this and break, but [14] proposes a way that allows vehicle C to be
notified of the breaking action of vehicle A faster. This is done by using V2V technology and
allowing vehicle A (at the front of the queue) to exchange messages with vehicle C (at the
back of the queue), allowing vehicle C to have more time to react to the breaking action of
vehicle A.

Several projects have focused on the infrastructure, data collection and aggregation on
smart cities. The work in [15] describes the implementation of CiDAP and its deployment
in a large scale smart city testbed in the city of Santander, Spain. This testbed involved
more than 15,000 sensors attached to 1,200 sensor nodes that have been installed around
an area of approximately 13.4 square miles in the city. These nodes are hidden inside white
boxes and are attached to the street infrastructure. The communication among sensor nodes,
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repeaters and gateways is carried out through IEEE 802.15.4 interface, while gateways use
Wi-Fi, GPRS/UMTS or Ethernet interfaces to connect with the SmartSantander backbone.
CiDAP, a live smart city big data platform, focuses on providing both historic data and
real-time data.

The MLK Smart Corridor [16] is the example of another smart city testbed deployed in
Chattanooga, TN, USA, which aims at gathering data from heterogeneous sources, aggregating
it in a central system and then making it available to the public, so that other researchers can
use it. This work also adopts the concept of edge computing, by distributing multiple edge
nodes throughout the city. These edge nodes are responsible for structuring the data and
sending it off to the central system. This data can be consumed, by high level applications, in
real-time, but it is also stored in a data lake, where it can be used for later analysis.

Much like the works mentioned previously, [17], is a live testbed deployed in the city of
Uppsala, Sweden, which also aims at providing open data to all users. This testbed, including
the open data and open APIs, allow third parties to develop and experiment new sensing
products and services that could be exported to the international market. This testbed uses
the concept of sensor gateways which are devices that receive the data from the sensor network
and send it to the cloud services. The data is then stored centrally where it can be consumed
later by other applications and services.

The work in [18] provides a smart city architecture that focuses on the data ingestion
and aggregation aspects, which collects data from citizens, commuters, social media crawling,
IoT sensors, city operators. It can provide detailed information about the city and its public
services (available parking lots in any specific area, traffic flows and collapsing area, people
flows, triage usage of hospitals, incidents in the streets), allows users (technical and non-
technical) to detect early warnings about specific occurrences through the analysis of historic
data, and also provides use cases for entertainment, such as booking tickets. The smart city
API provides data to mobile, web and third party city operators.

The work in [19] proposes the Core Telematics Platform (CTP), a high-scalable platform
for Intelligent Transport Systems that can optimize the data transmission under linearly
increased time complexity by employing a high-scalable architecture design when a large
number of devices connect to the application servers. The authors also performed simulated
and experimental tests to verify the effectiveness and efficiency of this high-scalable CTP
design. All the data communications and probe information are encrypted using a 128-bit
advanced encryption standard (AES) algorithm, for security concern.

The work in [20] proposes IoTDA, an integrated IoT data service system, that aims to
overcome the heterogeneity of various IoT data to enable them to be integratable and more
useful. IoTDA collects different types of IoT data independently and then merges them
according to the time when the data was acquired. The authors use an example of a car that
is equipped with a camera and takes pictures of the road, so that the AI-based service can
label any peculiar objects on that image. At the same time, other times of data are also being
collected, such as pollution data and the position of the car. After the data is collected, it’s
aggregated into a single table.
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All these works represent platforms developed in the cities. A full vehicular and sensing
platform is much less common. The next section describes the Aveiro Tech City Living Lab.

2.4 Aveiro Tech City Living Lab

The technological lab, Aveiro Tech City Living Lab, is an advanced large scale infrastructure,
spanned all over the city of Aveiro, at the service of researchers, digital industries, start-ups,
scaleups, R&D centres, entrepreneurs and other stakeholders interested in developing, testing
or demonstrating concepts, products or services. This infrastructure integrates people, through
their mobile phones, sensors and vehicles, that support ITS technology, such as automobiles,
bicycles in the city and "moliceiros" in the Aveiro Lagoon, aerial and aquatic drones.

This infrastructure acquires data from vehicles and sensors, through roadside units, which
are special equipments that are usually placed near a road. After the data is received and
processed by the RSUs, it is then aggregated in an MQTT instance, which is a publish-subscribe
system.

2.4.1 On Board Units

In order to send their data, the vehicles must have a module that collects the data from
the vehicle sensors, encodes them into a CAM and sends them to the RSUs of the Aveiro
Living Lab. For this task, special boards, called On Board Units (OBUs) must be installed in
the vehicle for the data to be sent. Note that the concept of an OBU is too generic, and these
boards can be manufactured and configured by different OEMs. The OBUs are computers
that can be placed on any type of vehicle (cars, buses, boats, etc.) and will communicate with
the roadside units when they are in range of the receptors.

These boards contain modules that allow the OBU to communicate with the roadside
units via WAVE but also contain Wi-Fi modules that are used for multiple purposes. Wi-Fi
communication is used to allow the OBU to exchange information with other embedded
system that are located on the vehicle and to provide communication to users inside the
vehicle. Some OBUs can also communicate with the infrastructure directly, via LTE and 5G,
without communicating with a Roadside Unit, but this may not be available in every board.

(a) An OBU placed inside of a car
(b) An OBU without the case protection

Figure 2.7: On Board Unit
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2.4.2 Roadside Units

Unlike the OBUs, the RSUs are small computers that can be placed in strategic locations
throughout the city and are connected by fiber to the datacenter of Instituto de Telecomu-
nicações. RSUs are responsible for collecting data from the OBUs and sending it to the
infrastructure, but in order to accomplish this, both boards must be in range of each other
to communicate via WAVE. In order to maximize the range of RSUs, we have decided to
place these equipments as close to the road as possible. Since we also wanted to make use of
external sensors, such as radars and cameras, we decided to create two types of RSUs: Murals
and Smart Lamp Posts.

Much like the OBUs, the RSUs contain modules that allow the RSU to communicate with
the on board units units via WAVE but also contain Wi-Fi modules that can be used for
other purposes.

Figure 2.8: The board of the RSU without the case protection

Wall Boxes

Wall Boxes are a type of RSU that is placed in a building (or structure), most commonly,
on the roof, and is used to extend the coverage of the network. This equipment offers a
more limited set of functionalities than the Smart Lamp Posts, since it does not support the
integration with other sensors, such as radars. In order to collect data from these sensors,
another type of RSU was created, the Smart Lamp Post.
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Figure 2.9: Wall Boxes. Design and deployment in the city

Smart Lamp Posts

Smart Lamp Posts, a type of RSU, are large lamp posts that contain a set of sensors on
the tip of the post and are, most commonly, placed on the side of the road. Figure 2.10a
contains a diagram with the design of this type of RSU and a picture of a smart lamp post
deployed near Instituto de Telecomunicaçoes in Aveiro.

Figure 2.10b shows a smart lamp post that collects information from a radar, camera and
from WAVE communication. This data is displayed, in real-time, by the City Manager (CM)
web app which will be presented later in this document.

(a) Smart Lamp Post. Design and deployment in the city
(b) Smart Lamp Post location - Ponte

Dubadoura, Aveiro

Figure 2.10: Smart Lamp Post

2.4.3 Infrastructure

There are currently 13 active wall boxes and 8 active smart lamp posts, in the city of
Aveiro, although this testbed is being expanded up to a total of 44 RSUs. Figure 2.11 shows
the location of all active (highlighted markers) and inactive (transparent markers) roadside
units. Wall boxes are represented by a green marker(with the icon of a house) and smart
lamp posts are represented by a purple marker.
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Figure 2.11: Roadside Units in Aveiro

2.5 Summary

In this chapter, we started by providing the context and the motivation for this dissertation.
In section 2.1 we presented the different types of V2X communication along with an

explanation about each one. We also provided examples of potential use cases that could be
developed with each type of communication.

In section 2.2, we presented the ITS message standards and analysed the use cases and the
most important attributes of each message. We also made the distinction between periodic
and asynchronous messages, and explained in what scenarios each one of these is used.

In section 2.3, we presented the related work in the literature and discussed different
approaches to the concept of data aggregation and centralization. Finally, in section 2.4 we
presented the concept of the OBUs and the RSUs in the Aveiro Tech City Living Lab. We
also explained the different types of RSU that were used by the IT. After that, we performed
an analysis about the infrastructure in Aveiro.
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CHAPTER 3
Architecture

Historic information can be used in a plethora of applications and use cases and is commonly
used for data analytics. Storing the historic data of a whole city could provide a better insight
into the behavior of its citizens, for example.
It would also be useful to have access to real-time data which could be used to complement the
historic data. This type of data could be used instead for a more dynamic monitoring of the
city.
In this chapter, we propose the architecture for a platform that gathers real-time and non
real-time data from vehicles and displays it in a dashboard. We will list and explain the main
goal of each service that makes up the infrastructure, using a bottom-up approach, which starts
in the modules that are closer to the vehicles, and then follow the data flow until it finally
reaches the City Manager App (CM). Some modules are very complex and an in-depth analysis
will be provided in the following chapters.

3.1 Requirements

Before proposing an architecture, we need to create a list of well-defined requirements
that we will use to guide the development of this platform. These requirements are directed
towards the creation of a base infrastructure that can be used for multiple use cases. This
must be a more generic system to allow to later expand and implement specific features, such
as, for example, displaying the vehicular data in real-time in a dashboard or by persisting this
data to later perform some computation on it.

3.1.1 Vehicular data acquisition

One of the most important parts of the proposed system is acquiring data from the vehicles.
This data must be retrieved from each vehicle’s system and then aggregated somewhere. For
this to work, these vehicles must contain some computer or board that collects the vehicle
telemetry and possesses a wireless interface that allow it to send data to the platform, either
to the cloud or through a proxy.
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3.1.2 Sensor integration

As mentioned previously, this platform should be made as generic as possible. Another one
of the main features of this system is the possibility of retrieving and aggregating information
from different sensors, and not only from the vehicle’s internal system, such as radar and
video cameras. We could go further and later merge all of this information to get more
accurate data, e.g., for a particular vehicle we could collect its data from a radar and from a
video camera. After merging the information from these two sensors we could calculate the
coordinates of the vehicle with more accuracy. This concrete example is out of the scope of
this dissertation, but we believe that it is important to demonstrate the versatility of the
system that we are proposing.

3.1.3 Access to real-time and historic data

The previous requirements focused on describing the platform’s behaviour regarding the
acquisition of data, but we must also make sure that the system is able to provide the client
with two main interfaces: an interface that allows access to real-time data, and an interface
that allows access to the historic data. There is a countless number of scenarios where it is
useful not only to have access to persisted historic data but also to real-time data. This could
be useful for an app that allows users to see the position of the vehicles, in a map, in real-time.
Persisting this data also creates a lot of new and interesting scenarios. One of these scenarios
could be, for example, allowing users to replay the state of a city on demand. By integrating
these two interfaces, the system becomes more versatile, since it can serve as the support to a
higher number of use cases.

3.1.4 I2V communication

With the previous requirements it is possible to receive data from the vehicles and consume
it, but it is also important for the system to allow the inverse flow of data, I2V communication,
which consists in ensuring that the infrastructure is able to send messages to the vehicles.
This feature makes the proposed system even more versatile, because it allows information
to be sent to the vehicles themselves. This would allow, for example, the development of a
service that notifies OBU of dangerous driving conditions. We could go further and create a
GUI that allows the user to generate and send alerts to the OBUs.
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3.2 Proposed architecture

Figure 3.1: Architecture - Overview

To satisfy the requirements, we designed the architecture, seen in figure 3.1. This
architecture consists of three major components: the on board units, which produce and
send the vehicle data; the edges, which serve as proxies between the data sources and the
core but can also perform some computation on that data; the core, which consumes the data
collected from vehicles and sensors. There are also two types of edges: RSU edges, which can
be deployed near a road, allowing it to acquire data through direct communication with the
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vehicles; and gateway edges which can be located in the cloud. The architecture focuses on
allowing the flow of data from the vehicles to the high level applications like the City Manager,
and also allows messages to be sent from the CM to the OBUs. It is important to mention
that, in this diagram, we present the City Manager Web App as a possible consumer of the
data, but this system also allows other services to consume that same data by subscribing to
topics in the MQTT bridge or querying the TimescaleDB database.

3.2.1 On board unit

As mentioned previously, the OBUs are responsible for sending the vehicle data to the
infrastructure. This can be done by sending the data directly to the cloud via LTE or to the
RSUs that are distributed throughout the city. Figure 3.2 shows the internal modules and
their interaction. These main modules are:

• Vehicle Service - Has access to the vehicle data and generates ITS messages with that
information. Generates CAMs periodically and generates DENMs when certain events
occur.

• ITS Router - Serves as a message router between different services. Responsible for
decoding incoming ITS messages and encoding outgoing ITS messages. Due to the
versatility of this module, we use it in other components of the architecture as well.

• MQTT Service - Serves as the data handler between the ITS Router and the MQTT.
Receives decoded messages from the ITS Router and publishes them in the MQTT, in
the JSON format. Listens for JSON messages in the MQTT and sends them to the ITS
Router. Due to the versatility of this module, we reuse it in other components of the
architecture, much like the ITS Router.

• Eth2Udp - Receives packets on the wireless interface and sends the underlying payload
to a udp port.

• Udp2Eth - Receives udp packets and sends the the packet through the specified network
interface.

• Gateway Service - This service is responsible for listening for messages in the internal
MQTT and sending them via LTE, when available, to a gateway edge. This type of
communication serves as an alternative communication mechanism, other than simply
sending ITS messages through a roadside unit. It can be turned off to prevent unnecessary
data from being sent.

• Notification App - A GUI that allows users to be notified when the OBU receives an
alert, for example. Can be accessed through the browser, on a desktop and on mobile.
This app will listen for alerts that are published in the internal MQTT

• MQTT OBU - The MQTT that runs in the OBU. This module serves as a data
broker between the data producers, MQTT Service, and the data consumers, Gateway
Service and Notification App
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Figure 3.2: Architecture - On board unit

3.2.2 Edges

The edges can receive information from multiple data sources, such as vehicles, radars and
cameras. Because of the diversity of data, we designed a type of RSU that was able to perform
some computations, such as the normalization of that data, for example, before allowing
it to be consumed by the high level services in the core. These edges, called RSU edges,
can communicate via DSRC with nearby vehicles that support ITS technology. Even though
these edge computation capabilities are useful, a vehicle is not going to have connectivity to
RSU edges constantly and may need to communicate with the core even if it does not have
connectivity. To address this limitation, we have developed the gateway edge which receives
vehicle data sent, via LTE, to its MQTT, then decodes it and sends it to the core, where it
will be consumed by the high level services. To sum up, there are two types of edge:

• RSU edge - Receives ITS messages containing the vehicle data, via DSRC, decodes
the messages and sends it to the core. This edge can also receive messages from the
high level services, encode them and send them to the OBUs. For the messages to be
received or sent, the vehicle must be in range of the DSRC communication. To maximize
the connection time between the OBU and the edge, the edge can be placed near a
road. One of the biggest advantages of these types of edges is that they allow an easier
integration with external sensors, like radars and cameras, which require the hardware
to be physically pointing towards the road. Because of these constraints, we decided to
create SLP, which are posts that contain not only the hardware where the RSU software
will run, but also contain the external sensors which will send data to the RSU.

• Gateway RSU - Receives ITS messages containing the vehicle data, via LTE, decodes
the messages and sends it to the core. This edge does not allow messages to be sent
via LTE to the vehicles, but this could be added in the future as an improvement to
the system. For the messages to be sent, the vehicle must allow LTE communication.
Unlike the RSU, this edge does not need to be physically located near a road. It can
instead be deployed to the cloud.

Figure 3.3 shows the internal modules of both types of edges and their interactions. Notice
that some modules are used in both edges and in the OBUs. These services, the Vehicle
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Service, ITS Router and MQTT Service, are used to generate, encode and decode ITS messages.
Because of the importance of these modules, we have developed an extensive test suite for
them that extends the tests that were already developed by the authors of the original version
of the ITS Router. This test suite contains unit, integration and end-to-end tests but also
contains performance tests. These tests allow to test each module separately. Most of these
modules have already been explained previously, so we will provide an explanation for the
modules that are exclusively used in the edges.

• MQTT edge - Each edge contains a MQTT edge, which aggregates the data received
by that edge, i.e., the data received from the sensors that are connected to it and data
from nearby vehicles. The data that is published in this module will be fetched by the
MQTT bridge and made available to the high level applications.

• Gateway - Relays all messages published in the MQTT edge to the MQTT bridge in
the core. We decided to chose this approach instead of configuring the MQTT Bridge to
fetch all messages from the MQTT edge automatically, like in the RSU edges, because
we wanted to be able to filter confidential data and prevent it from being sent to the
MQTT Bridge.

(a) Gateway edge

(b) RSU edge

Figure 3.3: Architecture - Edges

These edges can receive data directly from the vehicles via DSRC when the OBUs are in
range, or via LTE, as we have explained previously. For this reason, RSU edges should be
placed in a location that maximizes the connection time, to allow the OBUs to send as much
data as possible to the infrastructure, and that minimizes the number of obstacles between
the OBU and the RSU, which would allow a higher number of OBUs to have connection with
the RSU.

RSUs can also receive data from external sensors, such as radars and cameras, for example.
The data from these sensors is published to the MQTT edge, where it will be collected by the
MQTT bridge and made available for the CM.
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3.2.3 Core

We have explained how the data is generated by the OBUs and collected by the edges,
but it is also important to explain how that data is aggregated and how it can be used. For
this process, we designed the core, which is located in the cloud, and is responsible, among
other things, for making both real-time and historic data available to high level applications
and services. Figure 3.4 shows the inner modules of the core.

• MQTT Bridge - The MQTT bridge allows to connect multiple MQTT edges together,
i.e., it fetches information from all the existing MQTT edges and makes this data
available in one place. The high level apps like the CM only need to subscribe to the
topics of the bridge, instead of individually subscribing to the topics of each MQTT
edge.

• TimescaleDB - A database that contains the historic data from CVs, sensors and
VRUs. When the data is published in the bridge, a process fetches it and adds it to the
database.

• Mapping Service - This module routes the DENMs that are sent from the infrastruc-
ture to the vehicles, called target DENMs. It contains the logic that will determine, the
best RSUs to receive the target DENM. Since this is a complex module, we will provide
a more detailed explanation later on.

• City Manager Backend - The backend contains a RESTful API and a websocket
server. When the data is published in the bridge, it is immediately sent to the dashboard
via websocket. The API allows the client side to fetch the historic data, as well as static
information, such as the list of RSUs and their respective information (name,geographic
location,etc.).

• Dashboard - The dashboard is a GUI that allows users to visualize the real-time data
as well as the historic information. A more detailed explanation will be provided later
on.

Figure 3.4: Architecture - Core
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3.3 Module communication

In section 3.2, we presented three major components of the architecture - the core, the
edges and the OBUs - and their inner modules. In this section we will analyse the message
types, message formats and later we will list and explain the different data flows.

3.3.1 Message types

Different types of messages are used to exchange data between the OBUs, the edges and
the core: vehicle data, sensor data and event notification messages.

• Vehicle data - These messages contain information about the current state of the
vehicle, such as its id, type, speed, heading, along with many more attributes. This
information is usually represented as either a CAM or a JSON, depending on the service
that is processing it.

• Sensor data - The information contained on these messages can vary depending on
which sensor is producing it. Radars periodically publish message containing information
about the entities that they detect, such as their position, speed or heading. Much like
radars, cameras also periodically publish messages containing information about the
object that they detect, but these messages contain a more limited array of attributes.
They do not contain the speed or heading of the object, but instead contain information
about the type, or label, the confidence level and an estimated geographic location of
the objects. This information is published in the MQTT edge.

• Event notification messages - These messages are used to notify drivers of potential
dangers on the road. They are often represented as DENMs, but can also be represented
in the JSON format. These messages can be generated by the CM and sent to the
vehicles, through the RSU edges, or directly generated in the RSU edges. Sending
DENMs to vehicles via LTE is out of the scope of this dissertation, but could be
implemented in the future, which would allow drivers from vehicles that do not have
direct connection with the RSUs to be notified as well.

Regardless of their type, all messages end up being published to the Message Queuing
Telemetry Transport (MQTT) bridge, and will be used by the core services. It is important
to include some mechanisms that allow these services to uniquely identify the type of data
and its source. To address this we decided to include metadata in the messages and include
the source of the data in the topic. In sum, the data must respect these properties:

• Each topic must only contain one and only one type of data.
• It must be possible to identify the source of the data.
• It must be possible to identify the exact time when the messages arrived at the source.
Now, that we have listed the main requirements that the data must meet, we will explain

how the proposed solution addresses them.
One important requirement that was taken into account when developing this architecture

is that each MQTT topic must not contain different types of data, e.g., topic p3/apu/cam
cannot contain messages received from a radar and messages received from a vehicle. We use
clearly defined names for each topic according to the type of data in it. This is done to ensure
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that each topic contains only one type of information, and it makes it easier for high level
application to access that data.

It is also important to identify from which source (edge) the information was received
from. This is done by using the topic prefix notation, i.e., messages that are received from
the edge P3 - Ponte Dobadoura must have the prefix p3/. For example, in the MQTT bridge,
topic p3/apu/cam could be used to store vehicle data received in the edge P3.

Finally, it is important to be able to include the timestamp when the messages arrive on
the edge (notice that this timestamp is different from the timestamp generated by the vehicle
or sensor). When the vehicle data arrives in the RSU, the E2U appends the timestamp to the
packet. This timestamp is later interpreted by the ITS router and included in the message
itself, where it can be used by other services.

3.3.2 Message formats

There are different types of messages, but these messages can have multiple formats
depending on which services process them at any given moment, as we have previously seen.
We will list and explain each format that the messages can have. This will allow to easily
explain the data flows later on. These main message formats are:

• Simple ITS Message - this type of message is composed of the ItsPduHeader and the
payload of the message. It can be divided into two sub types. This messages doesn’t
contain any additional headers.
– Simple CAM - Simple ITS messages that contain the ItsPduHeader and the

payload of a Cooperative Awareness Messages.
– Simple DENM - Simple ITS messages that contain the ItsPduHeader and the

payload of a Decentralized Environmental Notification Messages
• Proper ITS message - ITS messages that contain contain the BTP header1 and the

Geonetworking header2. It can also be divided into two subtypes.
– Proper CAM - Proper ITS messages that contain a simple CAM.
– Proper DENM - Proper ITS messages that contain a simple acsdenm.

• Full ITS Message - Proper ITS messages that are ready to be sent from the wireless
interface. It can also be divided into two subtypes.
– Full CAM - Full ITS Message that contains a proper CAM.
– Full DENM - Full ITS Message that contains a proper DENM.

• Json ITS Message - Simple ITS Message in the JSON format. It can also be divided
into two subtypes.
– Json CAM - Simple CAM in the JSON format.
– Json DENM - Simple DENM in the JSON format.

1https://www.etsi.org/deliver/etsi_ts/102600_102699/1026360501/01.01.01_60/ts_
1026360501v010101p.pdf

2https://www.etsi.org/deliver/etsi_en/302600_302699/3026360401/01.02.01_30/en_
3026360401v010201v.pdf
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Note that some message types may include other message types. For example, a proper CAM
contains a simple CAM. Another important aspect to point out is that ITS messages, like
CAMs and DENMs, can easily be interpreted and displayed in packet-analyser tools such as
Wireshark, since its format is well known and well defined. Figure 3.5 contains a wireshark
capture of a full CAM. The fields of the simple CAM are represented in green, the attributes
of the proper CAM are represented in blue and finally the attributes of the full CAM are
represented in red. Note that the full CAM is the most extensive subtype and includes the
attributes of all other subtypes of CAM.

Figure 3.5: Wireshark capture of a CAM

3.3.3 Sending CAMs and DENMs through an RSU edge

To send the vehicle data through a roadside unit, the messages must be generated, encoded
and then sent via DSRC. The OBUs can generate two types of messages: CAMs, which are
generated and broadcasted periodically and contain the vehicle’s telemetry, and DENMs,
which are only generated when certain events occur, such as an accident, for example.

Figure 3.6 shows the data flow from CAMs and DENMs. Both of these messages are
generated by the Vehicle Service, which has direct access to the vehicle data, such as the GPS
data, in the Simple ITS format. They are then sent to the ITS Router, which is responsible
for upgrading them to Full ITS messages, encoding and routing these messages to the U2E,
where they will be broadcasted, via DSRC.

Once these messages are received by the RSU, via DSRC, they are processed by the E2U,
which captures the packets in the wireless interface and sends them to the ITS router, via
UDP. The messages are then decoded, interpreted, converted into the JSON format and then
sent to the MQTT service, which will publish them in the MQTT edge.
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Figure 3.6: OBU/RSU Edge connection

3.3.4 Sending CAMs through a gateway edge

This data flow was created for OBUs that only publish CAMs in the proper CAM format.
This was the case of the OBU used for testing at Bosch, whose inner modules are unknown to us.
Note that we did not have control over these OBUs, and so we were unable to change the format
in which CAMs were published, thus we needed to adapt our design to allow these messages to
be decoded and interpreted. Figure 3.7 contains a diagram of this flow, where proper CAMs
are generated and published directly to topic geral/cams of the MQTT edge, via LTE. These
messages are then fetched by the MQTT service and sent to the ITS router to be decoded.
they are then published back to another topic, boschBraga/cam_decoded, in the MQTT edge.
After this, the gateway simply relays the messages published in a pre-selected list of topics,
i.e., the gateway only relays the messages published in topic boschBraga/cam_decoded and
not message published in topic geral/cams. The gateway allows to implement these types
of mechanisms, which prevent sensitive data from being relayed to the MQTT bridge. For
this dissertation, this data flow is only used with the OBUs from Bosch which are predefined
to publish CAMs in the Proper CAM format. It is also important to mention that this data
flow does not support DENMs, because the OBUs from Bosch did not generate these types of
messages, but could be added in the future.

Figure 3.7: OBU/Gateway Edge connection

3.3.5 Sending CAMs from the OBU to the MQTT Bridge directly

Our goal is to make the core architecture flexible and capable of receiving information
directly from the OBUs, so we adapted the architecture of the OBU to include the Gateway
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Service. Note that the author of this dissertation did not develop the Gateway Service, and
this service was added after the other inner modules of the OBU were implemented. Similar
to the data flow 3.3.3, the CAMs are generated in the Vehicle Service and sent to the ITS
router, where they are decoded and interpreted. After this, they are published in the MQTT,
fetched by the Gateway Service and published directly to the MQTT bridge via LTE.

This approach is aimed to be an alternative to sending CAMs via DSRC, because it allows
OBUs to transmit data even if they are not in range of a RSU.

Another important aspect to note is that no security protocol is being used to ensure the
validity and authenticity of the data published in the MQTT bridge, since this is out of the
scope of this dissertation, but this could be a potential improvement in the proposed system.

Figure 3.8: OBU/MQTT Bridge connection

3.3.6 Sending CAMs and DENMs to the core

We have previously seen that data, whatever its source, is ultimately published to the
MQTT bridge in the JSON format, which allows the high level services to consume this data
from one place. Note that this data flow alone does not describe the entire flow of data from
the OBUs until they reach the core. Instead it should be seen as the last part of the process
until the data is ready to be consumed.

In figure 3.9, it is possible to observe that, after the data is published to the MQTT bridge,
it is persisted in the TimescaleDB database and is consumed by the CM backend which then
sends it to the dashboard via websocket. This allows the CM to have access to both real-time
and historic data.

It is also important to mention that the CM is used as one possible consumer, but the
data in the MQTT bridge can be consumed by other services as well.

Figure 3.9: Core connections
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3.3.7 Sending DENMs from the core to the RSUs

One of the most important requirements of the system is its support for I2V communication.
Figure 3.10 contains a diagram of the proposed data flow. This architecture allows users to
send alerts to the vehicles, through a web app, the CM, that generates a DENM and publishes
it on topic target/denm, on the MQTT bridge. Once the DENM is published in the bridge,
we must decide to which RSU(s) it will be sent. To solve this problem, we developed the
Mapping Service which computes the list of target RSUs, i.e., the RSUs to where the incoming
DENM will be sent, based on a set of metrics, such as the geographic location of the RSUs
and the real-time connections between RSUs and OBUs. Since this module is very complex,
we will provide a more in-depth explanation later on. Once the Mapping Service has chosen
the target RSUs, it will publish the target DENM to the topic RID/target/denm, in the
MQTT bridge, where RID is the ID of the RSU, e.g., for the target DENM to be published
in the RSU P3 - Ponte Dobadoura, it must be published in the topic p3/target/denm of the
MQTT bridge. After this, they are relayed to the MQTT edge of their respective RSU.

Figure 3.10: Data flow between the core and the RSUs

3.3.8 Sending DENMs from the RSUs to the OBUs

The developed architecture only supports sending DENM from the infrastructure to the
vehicles through RSUs, although as a future improvement it could be adapted to support
sending DENMs to OBUs, via LTE, for example.

As previously explained, the target DENMs are published in the MQTT edge of each
target RSU. After this, they are read by the MQTT service and routed to the ITS router,
which will interpret them in the JSON format, encode them and send them to the E2U module.
This module will take the Full DENM generated and broadcast it via DSRC. These messages
will be captured by the OBUs of nearby vehicles. The U2E will listen for the packets in its
wireless interface and redirect them to the ITS router, which will decode, interpret and sent
the target DENM to the MQTT service. The MQTT service will publish this message in the
local MQTT of the onboard unit, where it will be fetched by the Notification App and finally
displayed in the Notification dashboard.
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Figure 3.11: Data flow between the RSU an the OBU

3.4 Summary

This chapter started with the description of the requirements, followed by a presentation of
the high level components of the architecture - OBUs, edges and core - and later provided an
analysis of the communication between modules and the flows of data. We will now summarise
everything that has been previously explained and we will discuss how the requirements are
addressed by the proposed architecture.

The vehicular data is collected by the OBU of the vehicle and can be sent to the infras-
tructure through a RSU edge via DSRC, through a gateway edge via LTE or directly to the
MQTT bridge via LTE.

The sensor data is collected by the sensors themselves and is published in the MQTT edge
of the RSU, where it is then relayed to the MQTT bridge.

After the data reaches the MQTT bridge, it can be consumed by the high level applications
and services. This data is automatically persisted in the TimescaleDB database, where it can
be accessed later. This allows the data to be consumed in real-time directly from the bridge
or as historic data by accessing the database.

The proposed architecture supports I2V communication by allowing the user to generate
an alert through a dashboard. This alert is generated in the form of a DENM and sent to the
MQTT bridge, where the Mapping Service will compute the target RSUs that will receive
this message. When the message reaches each RSU, it will be encoded and broadcasted via
DSRC to nearby vehicles.

Overall, the architecture that we propose is able to meet all of the requirements presented
in the start of this chapter. In the next chapter, we will dive deep into the implementation of
the major modules.
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CHAPTER 4
Implementation

To implement the proposed solution, we needed to first approach the problem from a high level
perspective and abstract from the complexity the individual modules. After that, we started
defining the responsibility and functionalities of each module. In this chapter, we describe the
implementation of the system proposed in the previous chapter.
We will start by documenting the implementation of the ITS modules, which are used repeatedly
throughout the architecture and are considered the most important parts of the system. After
this, we will provide an in-depth analysis to all the core’s inner modules, followed by the
implementation of the edges’ inner modules and the implementation of the OBU’s inner
modules. Note that some modules may be omitted because they are trivial to understand, like
the gateway. After this, we will introduce the test environment that we developed to validate
the system’s most important features.

4.1 ITS modules

The communication between the OBUs and the core can be performed either directly or
through a RSU. In this section we will analyse the specific case, where this communication is
done via a roadside unit, where these entities exchange ITS messages like CAMs and DENMs.

These messages contain multiple headers that must be interpreted and removed before the
payload itself can be interpreted by the infrastructure. In order to address this problem we
developed a central module that is responsible for encoding, decoding these messages and
routing them from one port to another, the ITS router. We also developed a service that
is responsible for generating ITS messages from the vehicle’s telemetry, the Vehicle Service,
and a service that publishes any messages received from the router in an MQTT broker and
vice-versa, the MQTT service. In order for the generated ITS messages to be broadcasted
from a vehicle and received by it, it was necessary to inject these messages into the wireless
interface of the on board unit, and it was also necessary to packets that are received by the
wireless interface of the board. To solve this task, we extended the modules E2U and U2E
which support the described behavior.
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The set of modules that were just described are designated as the ITS modules and
together they perform the core ITS operations, which allow OBUs to send and receive CAMs
and DENMs to and from RSUs.

4.1.1 ITS Router

One of the most important modules of this architecture, the ITS router, written in Java,
encodes and decodes CAMs and DENMs and forwards them to other services. Note that the
scope of this dissertation only covers these two types of ITS messages, but the ITS router was
developed with the aim to easily allow the support of additional types of messages.

Initially this module was implemented as a simple python script, which listened for
incoming ITS messages in the wireless interface and ignored the BTP and geonetworking
headers by removing every byte before the byte sequence b′\x07\xd1\x00\x00′, thus retrieving
only the payload, i.e., the ITS message itself. This solution proved to be unreliable, since
all data contained in the headers was being discarded and this script could only be used to
decode messages and not to encode and send them. An alternative solution would be to
develop an encoder and decoder from scratch, but this would be too time-consuming and
require manually implementing basic features and them adapting it to our use cases. Instead,
we decided to use the Rendits Geonetworking library 1 which was developed from a previous
library 2, and contains an extensive tool set that allows basic operations to be performed
on ITS message, such as encoding and decoding, but also allows more complex operations
as well. Note that this library is quite extensive and contains features that were not used in
this dissertation, but it makes it easier to implement more complex operations in the ITS
router in the future. The geonetworking library allows the interpretation of ITS messages but
it requires high level modules to invoke it and use its methods and classes. For this reason,
we decided to use and extend the Rendits Router3, which is an open-source module that
already implements some of the basic routing features required for receiving and sending ITS
messages. Both of these modules together create a more complex module, the ITS router,
that is able to receive ITS messages, decode them and route them to the service that will use
this data.

Apache Maven

The Apache Maven 4 is a software project management and comprehension tool. It makes
the build process easier for developers, by providing a uniform build system and encourages
better development practices. One of the most important features of the maven apache is
that it streamlines the build process, as mentioned, and this allows tests to be performed on
the modules.

1https://github.com/rendits/geonetworking
2https://github.com/alexvoronov/geonetworking
3https://github.com/rendits/router
4https://maven.apache.org
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Compilation

Before being able to run on the hardware (OBUs, RSUs, etc.), the ITS router must be
compiled. Since the ITS router uses an external submodule, the geonetworking library, this
library must be compiled first as an ad-hoc module, and later included in the compilation
of the ITS router. Maven is used to compile the module and it produces an output .jar file
containing the binaries that can be executed in the respective hardware. Since each RSU and
OBU runs the ITS router, and it would be very time consuming to compile this module in
each one of them, we have decided to have a dedicated board that compiles it. The binaries
are then sent to the remaining boards, allowing new changes to be deployed in the whole
system.

Configuration

The ITS router can adopt different behaviours according to the values of its input
parameters. Table 4.1 contains the full list of input parameters, their respective default
value along with a brief description about each parameter.

This set of parameters can be loaded from a configuration file. Since the router reads
these parameters on startup, it allows to change the behavior of the router without having to
recompile, which is a time consuming task. Code 1 shows the content of the router.properties
file which contains the main input parameters of the ITS router. If one of these parameters is
omitted from the configuration file, that parameter will assume the default value.

The parameters can be divided into 3 groups: the input ports, the output ports and the
state parameters, which contain identifying information about the board and will be included
in the generated messages. Note that, for convenience, we have decided to assign input ports
values in the range 4000-4999 and output ports values in the range 5000-5999.

1 localPortForUdpLinkLayer=4000
2 localPortForUdpLinkLayerNoEther=4011
3 portRawCam=4002
4 portRawDenm=4003
5 portRcvFromVehicle=4005
6
7 portLinkLayer=5000
8 portSendCamJson=5002
9 portSendDenmJson=5003

10 SDNCamPort=5004
11 vehicleCamPort=5009
12 vehicleDenmPort=5010
13
14 macAddress=6e:06:e0:01:00:70
15 stationType=15
16 additionalFieldsEnabled=1
17 sendToSDNService=1

Code 1: ITS Router - Configuration file
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Table 4.1: ITS Router - Configuration parameters

Parameter Type Default Description

localPortForUdpLink-

Layer

integer 4000 Port that receives full ITS messages

localPortForUdpLink-

LayerNoEther

integer 4011 Port that receives proper ITS mes-
sages

portRawCam integer 4002 Port that receives JSON CAMs

portRawDenm integer 4003 Port that receives JSON DENMs

portRcvFromVehicle integer 4005 Port that receives simple its messages

portLinkLayer integer 5000 Output port to where the full ITS
messages will be sent

portSendCamJson integer 5002 Output port to where JSON CAMs
will be sent

portSendDenmJson integer 5003 Output port to where JSON DENMs
will be sent

SDNCamPort integer 5004 Output port to where JSON CAMs
will be sent. Used for the SDN ser-
vice. Works as a secondary port of
portSendCamJson.
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Parameter Type Default Description

vehicleCamPort integer 5009 Output port to where simple CAMs
will be sent. Used to sent messages to
the Vehicle Service.

vehicleDenmPort integer 5010 Output port to where simple DENMs
will be sent. Used to sent messages to
the Vehicle Service.

macAddress string 12:34:56:78 Mac address of the machine that is
running the ITS router

stationType integer 15 Type of the station as defined by
ETSI 5. Has value 15 if the current
board is used as an RSU or 5 if the
board is used in a passenger car, for
example.

additionalFieldsEnabled integer 1 Has value 1 if the received timestamp
and RSSI are included as the last
bytes of the payload and 0 otherwise.

sendToSDNService integer 1 Will send JSON CAM to port SD-
NCamPort if it has value 1 and will
not send anything otherwise.

Port mapping

The ITS router has input ports which receive ITS messages in different formats, and output
ports to where the converted messages will be sent. Its main goal is to route the messages
from the input ports to the appropriate output ports. Table 4.2 contains the mapping of the
input and output ports. Each row contains the input port where the messages are received and

5https://www.etsi.org/deliver/etsi_en/302600_302699/3026360401/01.02.01_30/en_
3026360401v010201v.pdf
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the respective format, and the output port to where the messages are sent and the respective
format, e.g., it is possible to observe that the router receives full CAMs in UDP port 4000,
decodes them, converts them into the JSON format and sends them to UDP port 5002.

Default input port Input format Default output port Output format

4000 Full DENM 5003 JSON DENM

4000 Full CAM 5002 JSON CAM

4002 JSON CAM 5000 Full CAM

4003 JSON DENM 5000 Full DENM

4005 Simple CAM 5000 Full CAM

4005 Simple DENM 5000 Full DENM

4011 Proper CAM 5002 JSON CAM

Table 4.2: ITS Router - Input and output port mapping

4.1.2 MQTT Service

The MQTT service, part of the ITS module set, is a simple module that works as the
interface between the ITS router and a mosquitto instance. This modules listens for incoming
JSON messages in the input topics for CAMs and DENMs, converts them to a byte stream
and sends CAMs to portRawCam and DENMs to portRawDenm, as seen in table 4.1.

This module was developed from scratch, i.e., it is not an extension of a previously
implemented module. It does not contain any logic related to the encoding or decoding of ITS
messages and, for this reason, it does not depend on the geonetworking library, so we had the
flexibility to choose the programming language that we wanted to use to develop it. We chose
to develop this module in Java since it is faster than interpreted languages like Python 6, and
this is a low-level module and will handle the exchange of CAM messages with a frequency of
10hz for each vehicle, which can become a bottleneck for a large number of vehicles.

6https://medium.com/swlh/a-performance-comparison-between-c-java-and-python-df3890545f6d
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Compilation

The MQTT service needs to be compiled with Maven before being run on the hardware.
Unliked the ITS router, this module does not contain any logic to handle ITS messages; in
fact, the concept of an ITS message in unknown in the context of the MQTT service. Without
this dependency, this service can be compiled without including the geonetworking module
and works as a standalone module whose only two main tasks are to read JSON messages,
whatever their content is, and route them to a UDP port and vice-versa.

After the compilation, the generated .jar file can be sent to the board where it will be run.
Since the compilation is a time consuming task and the generated binaries are compatible
with all RSUs and OBUs, we use a dedicated board that compiles the MQTT service and
sends the generated binaries to the remaining boards, effectively deploying changes to the
whole system.

Configuration

Much like the ITS router, the MQTT service adopts different behaviors according to its
input parameters. Table 4.3 contains the full list of input parameters, their respective default
values along with a brief description about each parameter.

This set of parameters is loaded from a configuration file when the module is executed,
allowing to change its behavior without having to recompile the code, which is a time
consuming task. Code 2 shows the content of the mqttservice.properties file which contains
the parameters of this service. Since this module is connected to both the ITS router and the
mosquitto instance, we can divide these parameters into 2 separate groups: the ports that
are connected to the router’s input and output ports, and the input and output topics of the
mosquitto instance. If one of these parameters is omitted from the configuration file, that
parameter will assume the default value.

It is also worth pointing out that a certain port may be an output port of the MQTT
service and an input port for the ITS router, which is the case of the routerInputPortWith-
GeonetHeader.

1 routerInputPortWithGeonetHeader=4011
2 routerInputPortCam=4002
3 routerInputPortDenm=4003
4 routerOutputPortCam=5002
5 routerOutputPortDenm=5003
6
7 mqttBrokerUrl=tcp://127.0.0.1:1883
8 inEncodeWithGeonetCamsTopic=geral/cams
9 inEncodeDenmsTopic=lab/target/denm

10
11 outEncodeCamsTopic=cam_decoded
12 outEncodeDenmsTopic=denm_decoded

Code 2: MQTT Service - Configuration file
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Table 4.3: MQTT Service - Configuration parameters

Parameter Type Default Description

routerInputPortWith-

GeonetHeader

integer 4011 Port to where proper ITS
messages will be sent, once
they are published as a byte
stream in the mosquitto in-
stance

routerInputPortCam integer 4002 Port to where the JSON
CAMs will be sent once they
are received in the input
CAM topic

routerInputPortDenm integer 4003 Port to where the JSON
DENMs will be sent once
they are received in the in-
put DENM topic

routerOutputPortCam integer 5002 Port where the JSON CAMs
will be received from. These
messages will then be pub-
lished in the output CAM
topic

routerOutputPortDenm integer 5003 Port where the JSON
DENMs will be received
from. These messages will
then be published in the
output DENM topic
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Parameter Type Default Description

inEncodeWithGeonet-

CamsTopic

string geral/cams Topic where the proper
CAMs will be received

inEncodeDenmsTopic string target/denm Topic where the target
DENMs are received. These
messages are used to warn
vehicles about potential dan-
gers in their environment

outEncodeCamsTopic string cam_decoded Topic to where the decoded
JSON CAMs will be pub-
lished

outEncodeDenmsTopic string denm_decoded Topic to where the decoded
JSON DENMs will be pub-
lished

Port mapping

The MQTT service serves as an interface between the ITS router and the MQTT. Its
main goal is to route the messages from the router ports to the appropriate MQTT topics
and vice-versa. Table 4.4 contains the mapping of the ports and topics. Each row contains
the input where the messages are received and the output to where the messages are sent.
Note that the MQTT service, not only contains input ports, but also contains input topics, so
we will treat both of these simply as inputs. We will likewise treat output ports and output
topics simply as outputs. Ports are represented as integers, e.g., port 5002 and topics are
represented as string, e.g., geral/cams.
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Default input Default output Message format

geral/cams 4011 Proper CAM

target/denm 4003 Simple DENM

5002 cam_decoded JSON CAM

5003 denm_decoded JSON DENM

Table 4.4: MQTT Service - Input and output port mapping

Data flow

Figure 4.1 shows the flow of data of the MQTT service module, when integrated with
other ITS modules. By analysing the figure we can observe that, in data flow (1) both JSON
CAMs and JSON DENMs are sent to the ITS router, where they will be decoded and sent to
the wireless interface through U2E.

It is also possible to observe that a different flow exists on port 4011, data flow (2), where
proper ITS messages are received on the MQTT instance and are sent to the ITS router,
where they will be properly decoded and then republished in the MQTT instance, through
the MQTT service.

Finally, there is one remaining flow, data flow (3), which occurs, when ITS messages are
received by the ITS router, on port 4001, are decoded, interpreted, and then published in the
respective topic, i.e., one topic for CAMs and another topic for DENMs.
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Figure 4.1: MQTT Service data flow

4.1.3 Vehicle Service

The Vehicle Service, part of the set of ITS modules, is used to generate ITS messages. It
will generate CAMs periodically with a frequency of 10Hz, if the device where it is being
executed is an OBU, and with a maximum frequency of 1Hz if the device where it is being
executed is a RSU. DENMs are generated when a trigger message is received by the Vehicle
Service. This service is based on a test suite that was developed previously to test the Rendits
Router. This test suite generated CAMs in a simpler format than the one that we present in
this dissertation. These messages only contained a small subset of attributes. The remaining
attributes would later be added by the rendits router to make them ETSI compliant. We
decided to completely eliminate this simplified version of CAMs, and delegated the CAM
generation process fully to the Vehicle Service. CAMs are then sent to the ITS router where
they will be encoded and broadcasted through the wireless interface of the board.

This module can be used in OBUs, which will allow the vehicle to send its telemetry
and generate alerts, but it can also be used in RSUs for the same purpose. At the time of
writing of this dissertation, the CAMs generated by the RSUs are discarded by the high level
applications, since they do not provide additional information about the roadside unit, but
the DENMs generated are broadcasted via the wireless interface and are received by the
vehicle’s OBU. This message can then be displayed as an alert to the user, in the Notification
App that runs in the OBU itself. In the current implementation of the infrastructure, the
DENMs generated by RSUs are not sent to the MQTT bridge via the ITS router, because it
does not currently support this. Instead, these DENMs must be published directly in topic
px/denm_decoded, where px is the ID of the RSU that generated the DENM. A new route
could be added to the ITS router that received Simple DENMs, converted them to JSON
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DENMs and sent them to the MQTT service that would publish them in the edge MQTT.
These messages would later be fetched by the MQTT bridge and made available for the high
level applications.

Configuration

The Vehicle Service can adopt different behaviors depending on the values of its input
parameters, which can be loaded from a configuration file, like the other ITS modules. Table
4.5 contains the full list of input parameters, their respective default values along with a brief
description about each parameter.

This set of parameters is loaded from a configuration file when the module is executed,
allowing us to change its behavior without having to recompile the code, which is a time
consuming task. Code 3 shows the content of the vehicleservice.properties file which contains
the parameters of this service.

Another important thing to note is that ports portRcvFromRouterCam and portRcvFrom-
RouterDenm allow the Vehicle Service to receive CAMs and DENMs, respectively, from the
router and be processed by this service at runtime, but they aren’t being used at the time
of writing of this dissertation. Even though they are not used now, this makes the Vehicle
Service more flexible, since this feature may be useful in the future.

As mentioned previously, this service can be used in both OBUs, which change their
position in real-time, and RSU, which cannot change their position in real-time. Because
roadside units cannot move, thus their coordinates will not change, we have decided to include
their coordinates - latitude and longitude - in their configuration file. Note that the latitude
and longitude configuration parameters may only be included in the configuration file of RSUs.

1 portRcvFromRouterCam=5009
2 portRcvFromRouterDenm=5010
3 portSendCam=4005
4 portSendDenm=4005
5 portToListenAccident=9999
6
7 stationId=15
8 stationType=5
9 frequency=10

10
11 latitude=40.63476
12 longitude=-8.66038

Code 3: Vehicle Service - Configuration file
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Table 4.5: Vehicle Service - Configuration parameters

Parameter Type Default Description

portRcvFromRouterCam integer 5009 Port from where incoming
decoded CAMs are received.
This port is connected to the
ITS router.

portRcvFromRouterDenminteger 5010 Port from where incoming
decoded DENMs are re-
ceived. This port is con-
nected to the ITS router.

portSendCam integer 4005 Port to where generated
CAMs will be sent. This
port is connected to the ITS
router.

portSendDenm integer 4005 Port to where generated
CAMs will be sent. This
port is connected to the ITS
router.

portToListenAccident integer 9999 Port to where messages can
be sent to trigger the gen-
eration of a DENM by this
service.

stationId integer No
default

The ID of the current sta-
tion. This ID uniquely
identifies a station (OBUs,
RSUs,etc.).
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Parameter Type Default Description

stationType integer 15 Type of the station as de-
fined by ETSI 7. Has value
15 if the current board is
used as a RSU or 5 if the
board is used in a passenger
car, for example.

frequency integer 10 Frequency, in Hz, of the gen-
eration of CAMs, e.g., if it
has value 10, then the Vehi-
cle Service will generate 10
CAMs per second.

Data flow

Figure 4.2 shows the different flows of data of the Vehicle Service.
It is possible to observe data flow (1), where the vehicle data is generated by the Vehicle

Service and is then sent to the ITS router, through port 4005, where it will be decoded and
then sent to the wireless interface through U2E. This flow of data is triggered, when the
Vehicle Service generates a CAM, for example.

It is also possible to observe another flow of data, data flow (2), where ITS messages are
received by the ITS router, are decoded and then sent to the Vehicle Service. This data flow
is not currently being used but opens up the possibility for future extension.

7https://www.etsi.org/deliver/etsi_en/302600_302699/3026360401/01.02.01_30/en_
3026360401v010201v.pdf
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Figure 4.2: Vehicle Service data flow

4.1.4 Eth2Udp & Udp2Eth

These two low level modules, also known as the utoepy module (E2U+U2E), are responsible
for routing packets received on the wireless interface of the board to a UDP port, E2U, and
routing messages received in a UDP port and transmit them via the wireless interface. These
modules are the extension of previously developed open-source code 8. The original utoepy
required its dependencies to be installed with easy_install, which is deprecated. Furthermore,
this module can only be executed using python2 which has also been deprecated and, while it
is possible to install python2, it is a complex and time-consuming task. For this reason we
decided to rewrite the utoepy in python3 instead, using the scapy library.

Since the utoepy module will handle a load as big as the ITS router, it would be important
to implement this module using a well performing (fast) compiled programming language, like
C or C++, but since the module was already implemented in Python we decided to develop it
in this language to save some time, but it could be rewritten in C++ for better performance
in the future.

Since this module was developed in Python and this is an interpreted language, it is not
required to be compiled before being executed. For this reason, we must only send the .py file
to the boards and execute it.

Configuration

Much like the other ITS modules, the utoepy loads multiple input parameters from a
configuration file, which can be passed as a program argument. Since the configuration files
are in the INI format, both the E2U and the U2E can read their input parameters from the
same configuration file. Code 4 contains the example of a configuration file that contains the
parameters of both of these modules. Table 4.6 contains the name, type, default value and
description of the utoepy parameters.

8https://github.com/alexvoronov/utoepy
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1 [eth2udp]
2 address = 127.0.0.1:4000
3 interface = wlan0
4 mode = raw
5 keep_own_frames = no
6 include_extra_fields = yes
7 station_type = rsu
8
9 [udp2eth]

10 port = 5000
11 interface = wlan0
12 mode = raw

Code 4: UTOEPY - Configuration file

Table 4.6: E2U - Configuration parameters

Parameter Used by Type Default Description

address Eth2Udp string 127.0.0.1:4000 The UDP message received
in the wireless interface will
be sent to this ip and port

interface Eth2Udp string wlan0 The name of the wireless
interface where the packets
will be received

mode Eth2Udp string raw Cooked packet mode pre-
pares the incoming packet
to be sent to a UDP port.
Raw packet mode assumes
that UDP payload is already
ready to be sent to the UDP
port.
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Parameter Used by Type Default Description

keep_own_frames Eth2Udp string no If it has value ’yes’ keeps
frames originating from the
wireless interface and dis-
cards them otherwise

include_extra-

_fields

Eth2Udp string yes If it as value ’yes’, the times-
tamp and the rssi of arrival
will be appended to the end
of the payload, otherwise the
packet will be forwarded as
is.

station_type Eth2Udp string rsu Used to chose the mac ad-
dress of the hardware. It will
append a different mac ad-
dress in the incoming pack-
ets according to the type of
hardware being used: RSU
or OBU

port Udp2Eth integer 5000 UDP port from where the
outgoing messages will be
read. These messages will
then be transmitted through
the wireless interface.

interface Udp2Eth string wlan0 The name of the wireless
interface where the packets
will be received
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Parameter Used by Type Default Description

mode Eth2Udp string raw Cooked packet mode pre-
pares the incoming packet
to be sent to a UDP port.
Raw packet mode assumes
that UDP payload is already
ready to be sent to the UDP
port.

mode Udp2Eth string raw Cooked packet mode pre-
pares the incoming UDP
packet to be sent from the
wireless interface. Raw
packet mode assumes that
UDP payload is already
ready to be sent.

4.2 Message Queuing Telemetry Transport

As explained previously, each edge contains a MQTT instance, which stores the local data
of the edge, and the MQTT bridge which aggregates the data contained in all of the RSUs.
In this section we will explain why we chose to use this approach instead of just having the
MQTT edge instances.

4.2.1 MQTT Edge

Each RSU has a local Message Queuing Telemetry Transport (MQTT) instance running,
that contains topics where the data from vehicles and sensors (radar, camera, etc.) is published.
The data from the MQTT edges is then fetched by the MQTT bridge.

For this dissertation, we used Eclipse Mosquitto 9 which provides an open source MQTT
broker. Its lightweight MQTT protocol implementation makes it suitable for full power
machines, as well as for the low power and embedded ones, like the OBUs and RSUs.

In order to explain why we chose to create a MQTT instance for each edge and aggregate
that data in the MQTT bridge, let us consider a set of local MQTT instances, P1, P2, ..., PN ,
where Pi is the ith MQTT instance and N is the total number of RSUs (assuming that each
RSU has one MQTT instance).

9https://mosquitto.org
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Consider also that we chose not to aggregate the data in the bridge. If, for example, the
CM wanted to collect data from all N RSUs, then it would have to perform K*N subscriptions,
where K is the number of subscriptions done to each MQTT instance. Every time a new RSU
was added, the CM would have to be changed to include K new subscriptions.

Consider a set of services that make use of this data, S1, S2, ..., SX , where Si is the ith
service that uses the data from the RSUs and X is the number of available services. If every
service (CM, VRU Safety App, etc.) requires the information available on all these RSUs,
there would be a total of X ∗N ∗K active subscription. This approach would quickly become
very difficult to manage when the number of services and RSUs increases.

4.2.2 MQTT Bridge

MQTT Bridge is a MQTT instance whose main purpose is to subscribe to all of the topics
from all the RSUs, thus allowing to gather all the available data in one place. This process
can be visualized in figure 4.3. Consider the example used in 4.2.1. Using the bridge approach,
every time a new RSU is added, we just need to change its configuration to also fetch data from
the new RSU. The services only perform K subscriptions to the bridge and they do not have to
be changed when new RSUs are added. If, like in the previous example, every service, requires
the data available on these RSUs, there would be a total of X ∗K + K ∗N = K ∗ (N + X)
subscriptions, which is a significant reduction from the number of active subscriptions in
the previous approach, and also makes the system much more manageable. Note that this
solution does not decrease the amount of messages exchanged between RSUs and services, it
simply allows an easier management of the active subscriptions.

Code 5 shows a possible configuration file for the MQTT bridge. In this file it is possible
to observe that the bridge will be running on port 1883 on the machine where it is hosted, and
will fetch information from the MQTT instance running on atcll-p1-jetson.nap.av.it.pt:1883,
and will make it available in topics with the prefix p1/, i.e., if a message is published on
topic denm_decoded of the instance running in atcll-p1-jetson.nap.av.it.pt:1883, then that
mmessage can be accessed by subscribing topic p1/denm_decoded of the bridge. We can
also observe that this configuration file allows the bridge to fecth information from instances
atcll-p2-jetson.nap.av.it.pt:1883 and atcll-testbed-rsu.nap.av.it.pt:1883.

Apart from fetching information, the bridge also allows to propagate messages to and from
the core to the edges. It is possible to observe that the configuration of bridge-lab contains
additional logic for outgoing messages, i.e., all messages published to topic lab/target/denm
of the bridge will be published in topic lab/target/denm of the MQTT instance running on
atcll-testbed-rsu.nap.av.it.pt:1883.

For this dissertation we only used a small subset of configurations for the bridge, but there
are many more available. The full list of commands can be found online 10.

10http://www.steves-internet-guide.com/mosquitto-bridge-configuration
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Figure 4.3: MQTT Bridge fetches information from all RSUs, which the services can then collect

1 port 1883
2
3 connection bridge-1
4 address atcll-p1-jetson.nap.av.it.pt:1883
5 topic # in 0 p1/ ""
6
7 connection bridge-2
8 address atcll-p2-jetson.nap.av.it.pt:1883
9 topic # in 0 p2/ ""

10
11 connection bridge-lab
12 address atcll-testbed-rsu.nap.av.it.pt:1883
13 topic # in 0 lab/ ""
14 topic lab/target/denm out "" ""

Code 5: MQTT Bridge - Configuration file

4.3 Core

As previously hinted, the core hosts an eco-system of services, such as the mapping service,
high level applications, like the city manager and the main data aggregator, the MQTT bridge.

The data is fetched from the RSUs by the MQTT bridge, which makes the data available
for consumption by the high level applications and services. The core is located in the cloud
and, for this dissertation, we chose to implement it in a virtual machine in the IT data center,
but it can easily be hosted in another data center, like the Bosch data center.

Note that the core contains a large number of services and some of them were not
implemented by the author of this dissertation. The ones developed by the author are the CM
and the Mapping Service. The data aggregator service, that fetches data from the MQTT
bridge and persists it in the database cluster was not developed by the author.
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4.3.1 City Manager

The City Manager is a high level application that consumes the vehicle and sensor data
available in the MQTT bridge. The CM consumes this data in two ways, by listening for
real-time data and presenting it in a dashboard, the Aveiro in Real-Time (ART) and by
querying historic information and replaying that data through a GUI, the Incident Replayer
(IR).

The CM includes a backend application that serves information for both frontend applica-
tion - the ART and the IR. These frontend applications are add-ons to the already existing
frontend app Aveiro Open Lab11.

We wanted to use this web app to showcase other projects as well, not only internally, but
also to the public. Our goal was to make the app accessible for everyone, independently of the
equipment, operating system or specifications that they were using, so we decided to adopt a
user driven testing methodology from the beginning, by asking feedback from non-technical
users, that would still allow to have the flexibility of making fast changes whenever we needed
to. In order to achieve this, we focused more on non-functional tests, while performing
functional tests whenever possible.

The backend of the City Manager contains a Node.js server that exposes a REST API,
that allows the client side to make HTTP requests in order to fetch historic information, for
example. The backend also contains a websocket server which is used to send data in real-time
to the client. Figure 4.4 shows the architecture of the CM. The frontend was developed in
Nuxt.js, which is a free and open source web application framework based on Vue.js, Node.js,
Webpack and Babel.js. Nuxt.js offers development features such as server side rendering,
automatically generated routes, search engine optimization (SEO) improvement and is, in our
opinion, easier to learn when compared to other alternatives such as Angular or React.

11https://aveiro-open-lab.pt
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Figure 4.4: City Manager - Architecture

4.3.2 Mapping Service

Intelligent Transportation System (ITS) messages (CAM,DENM,etc.) can be sent from
a service through the infrastructure to either a specific OBU or to an area of effect (AOE),
where all OBUs within that area will receive and interpret the message. In order to send an
ITS message from the infrastructure to the target OBU, the infrastructure must be able to
route these messages to an RSU first, which will then transmit the messages via WAVE to
the OBU itself.
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Figure 4.5: Area of effect - Car 33, Bus 60 and Bus 50 received the DENM, since they were within
the area of effect.

One of the main challenges of this process is to determine which RSU candidates will
maximize the probability of the messages reaching the destination OBU. Since there are many
algorithms that could be used to determine this, we chose to delegate this decision making
responsibility to a single entity, the Mapping Service.

Selection of the algorithm

Because different algorithms can be used, we have decided to adopt the abstract concept
of a Mapping Strategy and implement it in different ways. Figure 4.6 illustrates this. We
could also see MappingStrategy as the equivalent of an interface in a programming language
such as Java, for example, and GeographicMappingStrategy and LastSeenMappingStrategy
as classes that implement that interface. This abstraction allows to quickly test different
mapping strategies with minimal code changes, making the development process less prone to
bugs.

Mapping Strategy

DENMs contain the coordinates and the radius of their Area of Effect (AOE), which
means that we could consider sending messages to RSUs that are geographically closer to the
coordinates of the center of this area of effect, the epicenter. But this would not work for
every ITS message, because, for example, CAMs, do not have such fields. Another strategy
that could be used, could be routing the messages to the RSUs that have recently received
messages from the destination OBU. While it is not guaranteed that both the RSU and OBU
will still have a connection between each other, there is some probability that this will be the
case. This last strategy would only work in the case where we only want to send messages
to a specific OBU and not to an AOE, so we must make sure that the Mapping Service has
different behaviours according to the input message.

The code for the MappingStrategy interface/class is presented bellow.
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Listing 4.1: MappingStrategy class

class MappingStrategy :

def best_connect ions ( s e l f , top ic , message ) :
pass

This is a simple class that defines the method best_connections, which will be implemented
by sub classes of the MappingStrategy class. This method will be responsible for the decision
making and heuristics selection process that will determine the best destination RSUs, in
order to maximize the probability of the DENM reaching the destination OBUs.

Figure 4.6: Geographic Mapping Strategy and Last Seen Mapping Strategy implement specific
algorithms for routing the ITS message

Geographic Mapping Strategy

This strategy chooses to send the messages through RSUs that are within a certain
distance, MAX_DISTANCE_FROM_TARGET, represented in meters from the center of the
coordinates specified by the DENM. It also fetches the location of all the available RSUs by
performing an HTTP GET request to an Airtable API that contains this and more information
about the RSUs available in the city of Aveiro. This information is fetched periodically, which
allows the strategy to automatically be aware of new RSUs and requiring no code changes. It
is also aware of which RSUs are active, i.e., which RSU locations have equipment installed
and are able to receive messages, and which are inactive.

This algorithm can be implemented with the following pseudo code. Note that some
methods were omitted for simplification purposes.

Listing 4.2: GeographicMappingStrategy class

class GeographicMappingStrategy (MappingStrategy ) :

f unc t i on best_connect ions ( top ic , message ) :
t a rg e t_pos i t i on = message . get_event_pos it ion ( )
ta rge t_coord inate s = (

ta rg e t_pos i t i on . l a t i t u d e ( ) ,
t a r g e t_pos i t i on . l ong i tude ( )

)
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best_rsu_connect ions = [ ]
for rsu_id in road_side_units :

r su_info = road_side_units [ rsu_id ]
r su_coord inates = (

rsu_info . l a t i t u d e ( ) ,
r su_info . l ong i tude ( )

)
distance_between_rsu_and_target = ca l cu l a t e_d i s t anc e (

target_coord inates ,
r su_coord inates

)
i f distance_between_rsu_and_target <=

MAX_DISTANCE_FROM_TARGET:
best_rsu_connect ions . append ( rsu_id )

return best_rsu_connect ions

Note that with this strategy, the Mapping Service fetches the information about all the
available RSUs, every 5 minutes using a daemon thread. This is done to ensure that the
Mapping Service is able to make calculations with the most up to date information available
without requiring a manual restart every time a new RSU is added.

In order to compare the performance of this strategy to other strategies, is it important to
perform the time and space complexity analysis of this approach. For simplification purposes,
we will consider that the time and space complexity of the computation of the geographic
distance between two points is O(1). Consider N to be the total number of active roadside
units.

We will now present the time and space complexity analysis of this algorithm:
• Worst case - In the worst case, the time complexity is O(N), since the algorithm

calculates the distance between the epicenter of the alert and each RSU. The space
complexity is O(N), since, in this case, all RSUs are at a distance of less or equal to
MAX_DISTANCE_FROM_TARGET meters, therefore the algorithm would have to
keep track of all the N RSUs in the final list. In sum:
– Time complexity - O(N)
– Space complexity - O(N)

• Best case - In the best case, the time complexity is O(N), since it will still have to
calculate the distance for all RSUs, and there is no condition that would allow it to
exit early. The space complexity is O(1), since, in this case, all RSUs would be at a
distance of more than MAX_DISTANCE_FROM_TARGET meters from the target
coordinates and no elements would be added to the list. In sum:
– Time complexity - O(N)
– Space complexity - O(1)

55



Figure 4.7 illustrates an example where this strategy was used. For this example the strategy
was provided with the location of the RSUs, a MAX_DISTANCE_FROM_TARGET=300
(meters) and the coordinates of the DENM, which is represented by the purple circle in the
middle (close to P6). It is possible to observe from the figure that, for this example, RSUs
P16, P17, P5, P6, P20 are considered the best candidates and the messages will be routed to
them. It is worth mentioning that P7, P42 and P14 are within range, but were not selected
because these are considered to be inactive and are thus unable to receive any message. It
is also worth mentioning that P8 was not selected because the RSU is not inside the circle,
since its coordinates are located in the middle of the icon displayed (green circle with a house
in the middle).

Figure 4.7: Active RSUs within 300 meters of the epicenter of the DENM were chosen

Implementation

The Mapping Service is divided into two main sections: the updater and the trigger. The
updater section is composed by a MQTT Client and a Mapper module, which are responsible
for keeping track of all connections between RSUs and OBUs. The trigger section is composed
by a MQTT Client and the Mapping Strategy, which send the incoming DENM to the
destination RSUs.

Updater section

As previously mentioned, the updater section keeps track of the connections between
RSUs and OBUs. Every time an ITS message, that was sent from an OBU, is received in
the central MQTT bridge, the Mapper module is updated with that connection. Note that,
even though the Mapping Service only allows DENMs to be routed, we keep track of both
incoming CAMs and DENMs, because the main objective of the Mapper module is to keep
track of all available connections. Other modules can lookup all connections at any point in
time, by fetching this information from the Mapper module.
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Trigger section

This section allows the Mapping Service to trigger the computation of the best candidates
and the subsequent propagation of the incoming DENM. This process is triggered when a
DENM is published in the topic target/denm. After the target RSUs are found, the incoming
DENM is routed to the destination topics pi/target/denm, where pi is the ID of ith roadside
unit.

Figure 4.8: Mapping Service - Data Flow Diagram

4.4 Notification App

The proposed architecture allows the user to generate DENMs and send them to the OBUs
of vehicles that are inside the DENM’s AOE, but the only way to know if an alert reached a
vehicle was to listen to the MQTT on the OBU itself. For this reason, we decided to create
the Notification App, which is a web app, accessible through a browser, that allows users to
be notified when the vehicle receives an alert, whether this alert came from the infrastructure
or not.

The Notification App runs in the OBU of each vehicle and is divided into two submodules:
the Notification Server and the Obu Alert Web App:

• Notification Server - Consists of a simple Node.js server that listens for incoming
DENMs in topic denm_decoded on the OBU MQTT instance. It also contains a
websocket server that sends an alert to the frontend whenever a DENM is received
in the MQTT. This alert contains the information of the DENM (coordinates of the
epicenter, timestamp of its creation, etc.).

• Obu Alert Web App - Consists in a frontend application that contains a websocket
client that is connected to the backend websocket server. When an alert is receive, its
information is displayed is a GUI.
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It is possible to access the Notification App through a browser, on a mobile and on a
desktop. Since this app was also developed for mobile, this opens up the possibility to have
a tablet that displays this GUI to the driver. This is possible because the OBU was also
configured as an access point, so that the tablet would be able to connect to it. Once this
connection is established, the user can simply connect to the web app via the browser.

4.5 Development, deployment & testing

During the development of this dissertation, the CM was publicly accessible, which allowed
users to interact with the most stable and up-to-date version of the CM. Since the architecture
of the core is quite complex, we decided to implement the DevOps best practices and implement
these services as docker containers. We also decided to use Gitlab CI/CD to create one pipeline
for each service, i.e., one pipeline for the frontend, one pipeline for the backend of the CM,
and one pipeline for the Mapping Service.

We also decided to follow the 5 SOLID principles of Object Oriented Design: Single-
responsibility, open-close, liskov substitution, interface segregation and dependency inversion.
The use of these principles allowed to greatly mitigate the number of bugs in the code, and
also allowed to implement new features much faster.

Because of our choice to follow the SOLID principles, this allowed to separate the code
into different contexts, by using classes, which allowed to easily produce unit, integration and
end-to-end tests.

Figure 4.9 shows the pipeline of the ITS router that contains the build stage, which consists
in the compilation of the geonetworking library and then the compilation of the ITS router,
the test stage which performs the unit tests, implemented with JUnit, and the deployment
stage, which deploys the MQTT service and the ITS. Note that this pipeline is only used
for gateway edges, since it does not deploy the vehicle service. This pipeline also contains a
downstream that triggers the pipeline of the geonetworking library.

Figure 4.9: Pipeline of the ITS Router that contains the build, test and deployment stages

4.6 Summary

We successfully implemented the features of the architecture proposed in chapter 3. The
current platform allows to display vehicle and sensor data in real-time in a dashboard, ART,
allows to generate alerts and notify the drivers of nearby vehicles, and also allows to replay
incidents.
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In this chapter, we started by performing an in-depth analysis of the ITS modules, followed
by an analysis of the MQTT instances and the bridge. We also explained why using the
MQTT bridge is a better approach than only using the MQTT edges. The first approach
allows an easier management of the subscriptions when the number of RSUs increases.

After that, we explained the implementation of the City Manager App, as well as performed
an in-depth analysis of the complex Mapping Service. Note that the Mapping Service was
implemented using the strategy design pattern, which makes it easier to extend this module,
if for example, in the future we want to add a new way of choosing the best candidate RSUs.

We also explained the need for a GUI that allowed the driver to be notified when an alert
was sent to the vehicle, and also explained how the Notification App fits that purpose.

Finally, we explained the development, deployment and testing methodologies that were
used in the implementation of this infrastructure, which allowed to mitigate the number of
bugs in the code, which greatly improved the project efficiency.
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CHAPTER 5
Aveiro in Real-Time

This work considers the visualization of the mobility data available in the "living lab" in the
city of Aveiro. The City Manager web app (CM) has been developed in the framework of this
dissertation, and is composed of two services: the Aveiro in Real-Time service (ART) and the
Incident Replayer service (IR).
This chapter describes the context and implementation of the Aveiro in Real-Time App. We
will start by analysing the existing testbed in Aveiro, and then the GUI of the app. In the end,
we will explain the architecture of this app and how it integrates with the architecture of the
whole system.

5.1 State of the city in real-time

The Aveiro Living Lab integrates data from people, through their mobile phones, sensors
and vehicles. The data collected by the living lab infrastructure can be accessed through a
web app 1 that exposes multiple features to the user. This web app allows a user to visualize
the position of all RSUs that are installed in Aveiro in a map, and also allows the user to
fetch the sensor and vehicular data gathered in the past. Although it is possible to access the
historic information, this task is not performed by the ART, instead it is performed by the
IR, as we will explain in the next chapter. The ART displays the data received from vehicles
in a clear and concise way, and allows users to have an overview of the state of the city of
Aveiro in real-time.

5.2 Dashboard

Figure 5.1 shows the ART dashboard. The dashboard contains three main sections: the
left side menu, the map and the entity page.

1https://aveiro-open-lab.pt/
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Figure 5.1: Aveiro in Real-Time - Dashboard

5.2.1 Side Menu

The ART side menu displays the list of entities that are currently active in the map. An
active entity is an entity that is transmitting or receiving information. This menu is divided
into 4 main categories: Communication Vehicles (CV), Vulnerable Road Users (VRU), Smart
Lamp Posts (SLP) and Murals. Figure 5.2 shows that, at the moment of capture, there were
4 CV (1 test device and 3 buses), 1 VRU (1 pedestrian), 8 active SLP and 12 active murals.
Note that only the active RSUs appear in the side menu, so there may exist more.

Figure 5.2: ART - Side Menu
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5.2.2 The map

The ART map displays the vehicles as markers. Each source type is represented by a
different color, for example, radar vehicles are presented by blue markers. Each entity type is
represented by a different icon, for example, buses are represented by a bus icon. In figure 5.3
it is possible to observe that, at the moment of capture, there were 2 buses, 5 radar vehicles
and 1 pedestrian. We will provide a more in-depth analysis, in section 5.3, of all the different
color codes and icons that the ART supports. Note that the RSUs that appear transparent
in the map are inactive, which means that they are not receiving information from vehicles.

Figure 5.3: ART - Map

5.2.3 The entity page

The entity page is displayed when a user clicks on a marker. All the information about
that entity will be displayed in the interface. Figure 5.4 shows the entity page of Bus 120. It
is possible to observe information, such as the speed and the heading of the bus, the RSSI
of the communication, the RSU that is receiving this information, the timestamp of the last
received message and also the delays in the infrastructure, i.e., the time elapsed since the
message was received by the RSU until it is displayed in the front-end. A more in-depth
analysis of these fields will be provided in the next sections.
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Figure 5.4: ART - Entity Page

5.3 Entities

As previously mentioned, the ART dashboard displays 4 different source types. These
types are color coded, which means that, for example, VRUs are displayed as orange icons on
the map and are also displayed as orange items in the left menu. We found out, based on the
feedback of the designers at Bosch as well as some technical and non-technical users, that this
approach is the most intuitive for the end user to understand how to interpret information in
the ART.

5.3.1 Communication Vehicles

Communication vehicles are vehicles that transmit CAMs that are received by at least
one of the RSU distributed throughout the city. These communication vehicles can be of
different types. These types include the station types specified by ETSI 2 along with some
extra types that were added to the project to address specific use cases, like the Moliceiro
type. For example, 5.1 displays three CVs: two buses, of station type 6 (specified by ETSI),
and one test on board unit, of station type 18 (non standard type). The main difference
between normal vehicles and CVs is that CVs support ITS technology and transmit CAMs
periodically, which allow to have access to a vast array of information, while the information
about other vehicles can only be extracted by sensors, which collect much less information
than CVs.

Table 5.1 contains the list of currently supported types of CVs. Note that ETSI defines
more types, but we chose to add support to these because they are the most common types
of vehicle, although it is possible to easily add support for more types. Each time a vehicle
contains an unsupported station type, the ART will display the Unknown type.

2https://www.etsi.org/deliver/etsi_ts/102800_102899/10289402/01.02.01_60/ts_
10289402v010201p.pdf
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The pink lines drawn in figure 5.5, represent an active connection between the vehicle and
the respective RSU, e.g., it is possible to observe that the passenger car was, at the moment
of capture, sending CAMs to two different roadside units.

We will now provide a description of the supported station types. Note that some types
may be omitted because they are trivial to understand.

Figure 5.5: Communication Vehicles with lines drawn
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Name Station Type Selected Icon Unselected Icon

Unknown 0

Motorcycle 4

Passenger Car 5

Bus 6

Light Truck 7

Heavy Truck 8

Ambulance 10

Moliceiro 17

Test 18

Table 5.1: Communication Vehicle types

Unknown

Unknown devices, with station type 0, are devices whose type is unknown. The ART will
display icons of this type when a vehicle transmits CAMs with an unsupported station type,
i.e., a station type that is not listed in 5.1.

Passenger Car

Passenger cars, with station type 5, as the name suggests, are light vehicles that allow the
transportation of passengers, that support ITS technology. This type of vehicles frequently
appears in Aveiro, but is less frequent than the buses. Some vehicles support ITS technology,
but it is possible to make a non-ITS vehicle support ITS technology by placing an OBUs
inside of the vehicle. During testing, it was quite often for us to place our OBUs inside of a
vehicle, since we had control over the information that was sent in the CAMs, i.e., we could
easily change the station type of the vehicle from 5 to 10, and make that vehicle appear as an
emergency vehicle.
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Figure 5.6: Passenger Car (5) displayed in the dashboard

Bus

Buses, with station type 6, are road vehicle that can carry multiple passengers. ITS
support has been added to some buses in Aveiro, by placing OBUs inside of them. These
OBUs, transmit CAMs periodically, which allows their telemetry to be transmitted to the
infrastructure. This information is then displayed in the dashboard in real-time and can be
visualized by the user.

Figure 5.7: Buses (6) displayed in the dashboard

Light Truck

Light truck, with station type 7, commonly are goods vehicle class. A vehicle of this type
that supports ITS technology is very rare and has never appeared in the app, but the type is
supported by the ART.

Heavy Truck

Heavy truck, with station type 8, is usually used to transport heavy loads. During the
development of this dissertation, we only used one OBU of this type, which is located in the
installations of Bosch Braga and was sending CAM to a gateway edge via LTE.
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Ambulance

Ambulance, with station type 10, is a vehicle that transports patients to treatment facilities
and are equipped with medical equipment. According to the ETSI definition, all vehicles with
station type 10 must be Special Vehicles, but in the scope of this dissertation, we decided to
associate this station type with an ambulance, exclusively.

Moliceiro

Moliceiros, with station type 17, are a special type of boat that sail in the Ria de Aveiro.
They were originally used to harvest moliço, but currently they are more commonly used for
tourist purposes. This type has been added to the ART because during the development of
this dissertation, we placed three different OBUs inside of real moliceiros and tracked their
information in real-time.

Figure 5.8: Two moliceiros sailing side by side in Ria de Aveiro

Test devices

Test devices, with station type 18, are a special type of OBU, used for testing purposes.

5.3.2 Vulnerable Road Users

Vulnerable Road Users (VRU) are road users that, in the event of a crash, would have
little to no protection from crash forces. They are generally considered to include pedestrians,
bike riders, motorbike riders and in the case of the CM, we also include some passenger car
drivers. The data from the VRU is sent by a mobile app which must be installed in the
smartphone of the users. This app will periodically send this data to the CM infrastructure,
where it will be both persisted and displayed in real-time in the ART dashboard.

Table 5.2 contains the list of currently supported types of VRUs. Note that ETSI defines
more types, but we chose to add support to these because they are the most common
types, although it is possible to easily add support for more. Each time a VRU contains an
unsupported station type, the ART will display the Unknown type.

Unlike CV, VRUs do not have lines drawn between the VRU and the RSU, since these
entities don’t communicate using DSRC. Instead the data from the smartphones of the VRU
is sent directly to the infrastructure via either wifi or cellular data, thus skipping the edges.
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Figure 5.9 shows multiple VRUs near Ponte Dubadoura.

Figure 5.9: Vulnerable Road Users near P3 - Ponte Dubadoura

Name Station Type Selected Icon Unselected Icon

Unknown 0

Pedestrian 1

Cyclist 2

Passenger Car 5

Table 5.2: Communication Vehicle types

5.3.3 Road Side Units

As previously mentioned, there are RSUs distributed throughout the city whose main goal
is to acquire information from sensors and vehicles. In section 2 we presented both types of
RSUs, the SLP and the Murals, and performed a detailed analysis on these types, but now
we will explain how these entities are represented in the ART and how the user can interact
with them.

The ART dashboard allows users to see these RSUs represented in a map, but it also
allows them to see more details about the roadside units, such as the equipment that they
support. The ART supports four types of equipment: ITS-G5, cameras, radars and lidars.

• ITS-G5 - The RSU supports ITS technology and is able to send and receive CAMs and
DENMs. This is the most simple type of equipment, and if the RSU does not support
this equipment, it is considered to be inactive. It is also important to note that this
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equipment allows to acquire the most amount of information about a vehicle, when
compared to the other equipments.

• Video Camera - Collects a video feed, normally from a point of interest (park, road,etc.)
which is then analysed by an artificial intelligence algorithm that is able to detect and
label different objects from this feed, i.e., it can detect how many people, cars, bicycles
are present in the video feed.

• Radar - Detects three types of vehicles: small, medium and large. It is able to
acquire some information about these vehicles, like their speed and heading, without
communicating with the vehicles themselves.

• Lidar - Detects the number people that are near this sensor.
It is possible to see the list of equipments of a certain RSU by pressing on its marker.

In figure 5.3, we can observe the entity page of the SLP P3 - Ponte Dubadoura. This RSU
contains ITS-G5, a radar and a camera. Furthermore, it is also possible to observe the cone
of vision of the radar, which is divided into 3 distinct areas of confidence. The innermost area
has the highest level of confidence,i.e., data received from vehicles that are located in the
innermost area is more accurate than data received from vehicles in the outermost area. Note
that these areas of confidence are approximations and not exact values. The confidence levels
may be affected by multiple factors, like the presence of obstacles inside of these areas.

Table 5.4 contains the list of equipments and their respective icons as they appear in the
ART dashboard, while table 5.5 contains the types of supported roadside units and their
respective icons. It is possible to notice that figure 5.1 contains 8 active SLPs and 12 Murals.

Table 5.3: RSU selected menu
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Name Icon

Cameras

Lidar

Radar

ITS-G5

Table 5.4: Roadside Unit types

Name Selected Icon Unselected Icon

Smart Lamp Post

Mural

Table 5.5: Roadside Unit types

5.3.4 Radar Vehicles

Some RSUs have a radar installed on them which gathers information about the vehicles
that are in its range. Figure 5.10 shows the RSU P3 selected. The left side menu of the
dashboard displays the list of vehicles detected by the radar. The radar is responsible for
assigning an ID to each vehicle and by gathering data such as the speed, length and heading of
the vehicles. The algorithm used to get this information is out of the scope of this dissertation.
Table 5.6 contains the types of radar vehicles that the ART dashboard supports.

Figure 5.10: Radar Vehicles detected in P3 - Ponte Dubadoura
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Name Selected Icon Unselected Icon

Large

Medium

Small

Table 5.6: Radar Vehicle types

5.4 Data flows

In section 4.3.1, we provided a high level overview of the architecture of the CM, which
consists in both the real-time and non real-time flows. We also provided an explanation of how
the modules communicated with each other. In this section we will analyse the architecture
of the ART, which is part of the architecture of the CM but does not contain the IR modules.
We will analyse the data flows that allow to populate the ART dashboard.

Figure 5.11 represents the architecture of the ART. This diagram contains the modules
responsible for fetching data synchronously and asynchronously.

72



Figure 5.11: Aveiro in Real-Time - Architecture

5.4.1 Dynamic data

Dynamic data, or real-time data, is information that needs to be updated when new data
is received, no matter what the frequency is, it must be in the most up-to-date state. Types of
dynamic data are the speed and heading of a vehicle which may or may not change depending
on whether the vehicle increases its speed or not.

In order to get information from multiple data sources, the ART subscribes to specific
topics in the MQTT bridge. Each topic contains messages of one and only one type. There
cannot be more than one type of message, for a single topic.
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The MQTT driver subscribes to this list of topics and the message parser parses these
input messages, according to their input topic, i.e., a different schema is applied to each topic,
which allows the message parser to convert the input message, which was published in the
bridge, into the output message, which will be sent to the websocket client. The MQTT driver
also contains a blacklist of topics and station types, which are ignored when the message is
processed, e.g., CAMs from roadside units are received by the MQTT driver but are ignored,
since they do not contain relevant information for the ART and their locations are already
statically defined in the dashboard. The available topics and the corresponding message types
are:

• apu/cam - these messages are very similar to CAMs but only contain a subset of fields.
Additionally, they also contain the RSSI and the source RSU.

• cam_decoded - these are JSON CAMs that are received in their raw format by the
bridge. This format has been analysed in 3.3.2.

• denm_decoded - these are JSON DENMs that are received in their raw format by
the bridge. This format has been analysed in 3.3.2.

• vam_decoded - VAMs are standard messages for VRU, which contain information
that can be acquired from the smartphones, such as the position, the station type
(car, pedestrian,etc.), heading, sizeClass, along with many other attributes. VAMs are
received in their raw format by the bridge.

• jetson/camera/count - each message contains the label and the number of occurrences
of that label, along with more information. Each message contains only one type of
label,i.e., one message will contain the count of detected people and another message
will contain the count of detected cars. These messages are published only when an
object of a certain label type is detected, otherwise, no message will be published in the
bridge.

• jetson/lidar/count - similar to the camera count messages, the lidar count message
contains the count of only one label type, but this type of message is published periodically
and not only when an object is detected.

• jetson/radar - radar messages contain the information that the radar is able to acquire
abou the vehicles. This message contains the class (small, medium or large), the position,
the speed, the heading and the length of the vehicle as well as the timestamp of reception.

5.4.2 Static data

Some information does not need to be updated in real-time, like the position of the
RSUs, because this information is likely not to change over time, since RSUs contain complex
equipment and are installed in fixed points throughout the city. Because of this, some data
is fetched and updated periodically, which means that temporary inconsistency in the data
is tolerated in these cases, where outdated data is displayed in the ART dashboard. For
this reason, it is very important to determine which types of information do not need to be
updated in real-time.
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We have decided to use Airtable 3 to store the static information, because it allows to
easily change this information by using a GUI. This gives the flexibility to quickly change
the data, but it also allows to change the format of the table, i.e., it allows to quickly add
more columns, since it does not enforce a schema validation on the data. Another important
aspect and maybe the most important, is that Airtable allows to make the data on each table
accessible via an API, i.e., in order for us to access the table data, we just need to perform a
GET request to this API and the data will be returned in the response body.

Figure 5.11 shows the entities involved in the non real-time data flow. The CM backend
periodically fetches static information from the Airtable API and stores it in cache. The client
side can then access this information, when the page is loaded, by performing a GET request
to the defined endpoint in the API exposed by the backend. As previously mentioned, the
client side may eventually fetch outdated information from the backend, but consistency will
eventually be reached when the backend performs its next fetch from the Airtable API.

The static information can be divided into the following categories:
• Event Types - list of ETSI defined values for the causeCode and subCauseCode fields

of the DENM, i.e., contains a map between the value of the causeCode and their full
description, e.g., causeCode of value 2, represents an accident. The full description is
provided to make it easier for the user to understand its meaning.

• Station Types - list of ETSI defined values for the stationType field of the CAM, i.e.,
maps the value of stationType to its full name. These values are passed as dynamic
data, since this allows us to add custom stationTypes, like the moliceiro type. This way
no code changes are necessary for the ART to support a new custom stationType.

• Structures - full list of existing roadside units. It contains the type (Mural or SLP),
description, position, supported equipments and the active status of each RSU.

• Cameras - information about the existing cameras. Contains the RSUs where the
cameras are installed, the heading, the spread and length of the cone of vision.

• Radars - information about the existing radars. Contains the RSUs where the radars
are installed, the heading, the spread and length of the cone of vision.

• Lidar - information about the existing lidars. Contains the RSUs where the lidars are
installed, the heading, the spread and length of the cone of vision. Note that lidars have
a 360º cone of vision, but their vision might be impaired by certain obstacles.

5.5 Sending alerts to vehicles

As mentioned in chapter 3, one of the main requirements of this system was the ability
to support I2V communication which would allow drivers to be notified of possible dangers
on the road. We then explained that the users could send alerts to the vehicles through the
CM. In this section we will analyse the GUI that the user interacts with in order to generate
DENMs that will later reach the vehicles. We will also present and explain the GUI of the
notification app that runs in the OBU and displays the alert to the driver of the vehicle
through a web app.

3https://www.airtable.com
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5.5.1 Generating DENMs

Figure 5.12 shows the ART dashboard that includes a right side menu that allows users
to generate DENMs. The users must first specify the alert’s cause code, sub cause code and
epicenter. After this, they can generate the alert by pressing the Generate Alert button.

Figure 5.12 shows the state of the ART dashboard moments after this button has been
pressed. As we can observe, the user generated a DENM with cause code 2 and sub cause code
92, which has been detected by the ART. A notification message has been generated by the
platform and displayed in the top right corner showing this same information. Furthermore, a
red circle has appeared in the map, in the coordinates that were specified by the user and
represents the AOE of the generated DENM. In order to prevent the abuse of the system, we
provide this feature only to administrators,i.e., to use this feature, users must be logged in an
administrator account.

Figure 5.12: DENM generated from the Aveiro in Real-Time dashboard

When a DENM is generated, it will traverse the whole infrastructure until it reaches
the vehicle’s OBU. This DENM will then be decoded, converted to the JSON format and
published in the local MQTT instance, where it will be fetched by the Notification Server
and then sent to the client side via websocket. Finally, the alert is displayed to the user in
the GUI, along with its attributes, such as the cause code and sub cause code.

Figure 5.13 shows the GUI of the notification app, that displays the information from the
DENM generated in the previous example. The driver is able to see that an accident has
been detected near him and might adopt a different driving behavior. This alert contains
cause code 2, sub cause code 92 and was generated by the station with id 900, which is the
ID of the CM.

76



Figure 5.13: Alert displayed in the notification app

5.6 Receiving data using V2V communication and LTE/5G

As we have previously mentioned, it is possible to receive information in the infrastructure,
from a vehicle that does not have an internet connection. This is possible only if that vehicle
is able to communicate with another vehicle that has an internet connection and that vehicle
serves as a proxy. We have tested this scenario in our live testbed.

Figure 5.14 shows two buses, bus 118 and bus 114 (selected in the image). Bus 118 has
LTE/5G connection and has V2V connectivity with bus 114. Bus 114, on the other hand,
does not have internet connectivity, but also has V2V connectivity with bus 118.

We can observe that bus 114 sends its vehicle data to the infrastructure through bus 118,
which works as a "moving RSU". In figure 5.14 it is also possible to observe that the data
source of bus 114 is obu50, which is a field that commonly displays the ID of the RSU, but in
this case it displays the ID of the OBU of bus 118.
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Figure 5.14: Bus with 5G sends vehicle data of bus with no internet connection

5.7 Summary

In this chapter we started by providing the context about the CM and the living lab. We
then explained the difference between the ART and the IR, and finally presented the main
features of the ART.

In section 5.2 we presented the different sections of the ART dashboard: the side menu,
that contains a list of the active entities, grouped by their types, the map, which displays the
location of these entities and contains color coded markers for all of them and the entity page,
which is activated when a user presses an entity and displays detailed information about the
selected entity.

In section 5.3 we listed all the currently supported entity types: CVs, VRUs, RSUs and
radar vehicles. Note that camera objects and lidar objects are not considered different entities,
since they provide a very limited amount of data compared to the other entities.

In section 5.4 we explained how the ART supports both real-time and non real-time flows
of data and the interaction between their inner modules. We analysed the different types of
messages that are published in the MQTT bridge and are later used to populate the ART
dashboard. We also explained the advantages of storing the static information in cache and
listed all the different types of static information that is stored by the CM backend: event
types, station types, structures, cameras, lidars and radars.

In section 5.5 we presented the GUI that allows users to notify vehicle drivers, by generating
DENMs and sending them to the OBUs. We also presented the GUI of the notification app
that allows the drivers to be notified and to have access to the type of alert that was generated.
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CHAPTER 6
Incident Replayer

This chapter describes the context and implementation of the Incident Replayer. We will start
by explaining the old replay system that was used for testing and how the Incident Replayer
was inspired by it. We will then present the GUI of this app and later explain the data flows
and how this app integrates in the architecture of the whole system.

6.1 Replaying data

In chapter 3 we defined the requirements of the system and explained how the proposed
architecture addresses them. In chapter 5 we presented the ART platform, which is one
of the results of the implementation of this architecture. The ART addresses the real-time
data requirements, by displaying sensor and vehicle data in real-time, but it does not allow
users to have access to any kind of historic information. The received data is displayed in a
dashboard where users can observe the state of the city in real-time. This means that the
data is displayed, with minor latencies, as soon as it is received by RSUs, without requiring
the user to refresh the page. This creates a very dynamic vision of the city.

During the development of the ART platform, we created a replay system that allowed
us to repopulate the ART dashboard for testing, based on previously received messages in
the MQTT. This was done because sometimes we needed to test if radar vehicles were being
correctly displayed, but at that moment there were no radar vehicles physically detected in
the city, thus the need to create a more efficient way to test the dashboard.

This system consisted in two different components: the message sniffer and the message
generator.

6.1.1 Message sniffer

The message sniffer consists in a script that subscribes to all topics of a MQTT instance
and stores each message received and the respective topic, in each line of an output file. The
messages and the respective topics are stored in the ASCII format.
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Code 6 shows a portion of the content of a file generated by the message sniffer. Note that
the content of the messages is too big, so some information was omitted. It is possible to observe
that each row corresponds to a message that was published in the MQTT instance. Each row
contains the topic where the message was published and the content of the message, e.g., we
can observe that a vehicle was moving at 11.9 m/s and was detected by the radar located at
P3 - Ponte Dobadoura, which lead to a message being published in topic Jetson/Radar of
the MQTT located in the edge and subsequently published in topic p3/Jetson/Radar of the
MQTT bridge, where it was read by the message sniffer and stored in this file. Lastly, it is
also possible to observe that the topic format contains the ID of the source as a prefix, i.e., a
message that was published in topic p3/Jetson/Radar was received in the RSU with ID p3.
Notice that some messages were received from a source with ID obu50. This is the case where
messages were received by a "moving RSU" (obu50 in this case), as seen in 5.6.

Note that, while this approach works for testing purposes, it is not viable to use it to
store historic information because of the amount of disk storage that is required. The amount
of data stored in the file depends on the amount of messages being published in the MQTT
bridge at any given moment, but we were able to observe that, on average, a 30 second sample
leads to 13.7MB of storage used.

1 obu50/cam_decoded {"rssi": -65535, "timestamp": 1632763187.660123, "others": {...}}
2 obu50/cam_decoded {"rssi": -65535, "timestamp": 1632763187.660123, "others": {...}}
3 p1/Jetson/Camara/Objects/People {"detectedPerson": "True", "listOfPeople": [...]}
4 p3/Jetson/Radar {"long": -8.65730527, "lat": 40.64107383, "speed": 11.9, ...}
5 p3/jetson/radar {"longitude": -8.6573052, "latitude": 40.641073, "speed":11, ...}
6 p3/Jetson/Radar {"long": -8.65765386, "lat": 40.641468, "speed": 10.70000, ...}
7 p3/Jetson/Radar_new {"long": -8.65765386, "lat": 40.641468, "speed": 10.7000, ...}

Code 6: Incident Replayer - Message sniffer file format

6.1.2 Message generator

The message generator consists in a script that reads from an input file and publishes in
the MQTT instance, the messages in their respective topic, effectively replaying the messages
and populating the ART dashboard.

Figure 6.1 shows the flow of data from the moment when the message is published in the
MQTT bridge to the moment when the data arrives in the City Manager. We can observe
that, as seen previously, the data is published in the bridge, and it is immediately consumed
by the City Manager, which allows to display that information in real-time, but there is also
another data flow. As we have seen before, the message sniffer is responsible for reading the
data from the bridge and storing it in a file. The message generator will, when triggered by
the user, read all the messages stored in the file and publish them in the input topic, but in a
different MQTT instance, in this case we used the MQTT Bridge for Replays which is similar
to the main MQTT bridge but runs in a different port. This way we do nt interfere with the
production data flow.
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This system was initially intended to be used for testing purposes only, but we quickly
realised its potential. It was possible to replay historic data but we wanted to extend this
solution in order for it to be used not only by developers but also by non technical users.

Figure 6.1: Message sniffer and generator flow

6.2 Requirements

We wanted to create a way for users to be able to replay the state of the city, in certain
points in time. Since this appeared to be a complex system and we did not find a similar
solution, we had to develop it from the start, so it was important to define the requirements
first.

6.2.1 Allow users to replay incidents

As we mentioned previously, the main goal of this platform was to replay historic informa-
tion, but we wanted to extend this concept and to develop a solution that allows the state of
the city to be replayed, i.e., it must be possible for a user to observe all sensor and vehicle data
at a given point in time. Since this is a complex solution, we decided to focus on replaying
specific incidents, rather than allowing the user to choose a time window to replay, although
this could be a future improvement. For this dissertation we decided to replay 3 minutes
before and after the incident alert is generated.
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The state of the city must then be displayed to the user through, for example, a GUI
similar to the ART dashboard, but would have to include the list of incidents and allow the
user to select the one that they want to replay.

6.2.2 Allow the user to control the replay

After selecting the incident that they want to replay, the user should be able to perform
standard control operations on the replay, such as starting or stopping the replay, skipping to
any point in time or changing the replay speed. The user must also be able to keep track of
the current time of replay, i.e., the date that is being replayed should be displayed to the user
at all times. Finally, the user should be able to interact with all the entities in order to get
their detailed information, by pressing the markers, for example.

6.2.3 Store the historic data in an efficient way

The replay system that was previously explained had one big flaw. Storing all the messages
and topics in ASCII format in a file is very inefficient and takes up a lot of space in disk.
For large replays, the size of the file can increase very rapidly, thus it is necessary to create
another solution to this problem.

6.2.4 Access the historic data in an efficient way

Now that we have stated the need to create a solution to store information in an efficient
way, it is also important to consider that the solution must also allow the easy and efficient
access of historic data.

The previously implemented replay system contains a very simple solution, which consists
in republishing the messages in the MQTT, which on its own appears to be efficient. This is
not to say that it is efficient to store messages in the file, but republishing them in the broker
again may be a good starting point to find the most efficient solution.

6.3 Graphical User Interface

Now that we have defined the requirements, we will present the functional results that
were achieved by the development of this platform.

Figure 6.2 shows the IR GUI, which is divided into three main parts: the map, the incident
menu and the replay menu. Since the IR map is very similar to the ART map, which was
presented in 5.2.2, we will not be analysing it. Instead we will focus on analysing the other
two parts.

It is possible to observe that, at the time of capture, the user was replaying the V2V
video demo 1 replay, that involved a passenger car and an emergency vehicle. It is also
possible to observe that this figure shows that the replay was paused on the date 15/10/2021
15:10:22 and had the x4 speed selected.
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Figure 6.2: Replay of the approach of an emergency vehicle on 15-10-2021 15:10:22

6.3.1 Incident menu

The incident menu displays a list of incidents that were detected by the IR platform.
It displays all the highlights and the 15 most recent alerts, which are then divided into
two different categories: the accidents and the incidents. In sum, the interface displays the
following alert types:

• Highlights - Used to bookmark special incidents and display them at the top of the
list to make it easier to find and replay them later. They are often used to bookmark
special demonstrations, like the ones performed for Aveiro Tech Week 1. These replays
must be specified in the code, but this could be extended in the future by specifying
and loading the timestamps of these incidents from the Airtable API.

• Incidents - Less severe occurrences. These may be used to alert the driver about
potentially dangerous events like road works ahead, obstacles on the road or approaching
emergency vehicle.

• Accidents - Severe occurrences. May be used to alert the drivers about nearby vehicle
crashes.

1https://techweek.aveirotechcity.pt/pt
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Figure 6.3: IR - Incident Menu

6.3.2 Replay menu

One of the requirements that was presented in section 6.2, was that the IR platform
should allow the user to perform standard control operations on the replay, such as starting or
stopping the replay, skipping to any point in time, or changing the replay speed. To address
this, we decided to implement a replay menu, shown in figure 6.4, that allows the user to
perform these operations. In sum, the full list of operations is:

• Play - Starts or resumes the replay
• Pause - Pauses the replay at a given point in time. If the play button is pressed after,

the replay will be resumed in that point.
• Stop - Resets replay, i.e., moves the progress bar to the start of the replay.
• Skipping - Allows the user to skip to a point in time by pressing te progress bar.
• Speed - Allows the user to increase or decrease the speed of the replay. A replay that

is played at x2 speed will take half of the time to be reproduced. The IR supports x1,
x2, x4 and x8 speeds.

Figure 6.4: IR - Replay menu
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6.4 Data flow

In section 4.3.1, we provided a high level overview of the architecture of the CM, which
contained both the real-time and non real-time flow of data. Contrary to the ART, the IR
only accesses the historic information and does not provide any kind of real-time information.

The IR is composed of two asynchronous data flows:
• Data acquisition - The data acquisition part consists of the data sources, which

produce the data, the edges, that receive the data and relay it to the core, and the
database cluster, where the data is persisted.

• Data replay - The data replay part consists in a frontend application, that the user
uses to selected and control replays, the CM backend, which exposes an API and is
responsible for accessing the databases when an HTTP request is received and the
database cluster, where the data is has been stored.

Note that both of these data flows are completely independent of each other, i.e., data
can be produced and stored without being accessed, and data can be accessed without being
produced. Note that even though this modularity is a good approach, there is still one possible
point of failure, the database cluster. If the cluster is offline, then the data can neither be
accessed nor produced. This problem could be solved by creating multiple replicas of the
databases, which would bring their own problems, such as data duplication and a performance
impact, but this would mitigate the risk of bringing the whole system offline.

6.4.1 Storing historic data

Figure 6.5a represents the complete flow of data. This data is produced by the data
sources, like pedestrians, vehicle and sensors and is sent to the edges. After this, it is persisted
in a cluster of databases. This data is grouped by type and distributed throughout multiple
TimescaleDB 2 databases, e.g., the CAM data is stored in the CAM database, the DENM
data is stored in the DENM database, etc.

Note that we decided to use the previously implemented database cluster, which the author
of this dissertation did not create. All of the databases are run in a single machine. While we
took this approach, we recognize that there is room for improvement and this solution would
greatly benefit from having a distributed database system which would allow a larger number
of users to access this information at the same time. Since the focus of this dissertation was
not to create a distributed database system, we focused instead on developing a base concept
for the replay platform.

6.4.2 Accessing historic data

As we have seen before, the data is persisted in a cluster of databases so that it can be
later used.

When a user selects a replay from the incident menu, as seen in 6.3.1, an HTTP GET
request is sent to the CM backend which will return the historic data, from 3 minutes before to
3 minutes after the generated incident, to the frontend. Even though we chose this approach,

2https://www.timescale.com

85

https://www.timescale.com


we recognize that there are other possible solutions, which cache the database response in the
backend and only send the data gradually.

Figure 4.4 demonstrates the interaction between the inner modules of the IR. When the
user requests the historic data, the PostgreSQL Driver will fetch the data from the database,
which will be parsed by the Historic Data Parser, into the relevant format and finally the data
is sent to the client side, where it is replayed for the user.

(a) IR - Acquiring data, storing it and replaying it

(b) IR - Entity diagram

Figure 6.5: Incident Replayer - Data Flow

6.5 Summary

In this chapter we started by presenting how the ART’s replay system served as the
starting point to the development of a more complex solution that allowed users to replay the
state of the city in a given point in time.

In section 6.3 we presented the GUI of the IR and analysed its parts: the incident menu
and the replay menu. The incident menu allows the user to select the replay and the replay
menu allows the user to control the replay by performing some operations, such as play, pause,
change speed or skipping. In section 6.2, we presented the requirements that the proposed
platform must have. The platform must allow users to replay an incident and must allow the
user to control this replay. The platform must also have an efficient way to store the data,
instead of storing it in a file in ASCII format like in the original replay system and must also
have an efficient way of replaying the data. Finally, in section 6.4 we presented the two main
data flows of this system: the data acquisition flow and the data replay flow. To acquire data,
the edges will receive information from the data sources and persist this data in a cluster of
databases TimescaleDB. To replay the data, the CM backend will query these databases and
send the data to the client side, where it will be replayed.
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CHAPTER 7
Results

In chapters 5 and 6 we presented the functional results of this dissertation, by explaining the
main functionalities that were implemented in both the ART and the IR.
In this chapter we will provide the performance results gathered from executing a group of
stress tests on both of these platforms. We will start by defining some scenarios and will later
provide the performance results of the platform when tested against those scenarios. We will
test the infrastructures, including the OBUs, the edges and the core, and later we will focus
on performing stress tests of the CM platform.

7.1 Use cases

As we have previously mentioned, the proposed system is able to perform V2I, which
allows vehicles to send their information to the infrastructure, so that it can be consumed
by high level application, but it is also able to perform I2V communication, by allowing an
operator to send an alert to the drivers, through the infrastructure. For this reason, we have
decided to test the infrastructure against some possible scenarios in which both of these types
of communication occur.

7.1.1 Scenario 1 - Sending vehicle data to the infrastructure via DSRC

In this first scenario the vehicle periodically generates the vehicle data, in the form of
a CAM, and sends it through a RSU edge via DSRC. After this the data is relayed to the
infrastructure core where it will be consumed by the CM and displayed in the ART dashboard.
Figure 7.1 shows multiple vehicles sending their data to the infrastructure through an RSU,
represented by a black antenna.

87



Figure 7.1: V2I - Sending vehicle data to infrastructure

7.1.2 Scenario 2 - Sending alerts to the vehicles

Contrary to the scenario presented in 7.1.1, in this scenario the user generates an alert,
which will be sent by the CM to the mapping service. This service will then compute the edges
that have the highest probability of being able to reach the vehicles. Note that the generated
DENM may not reach the vehicles, so it is up to the Mapping service to determine the edges
that have more likely to have a connection with the target vehicles. After the DENM reaches
the respective edges, it will be broadcasted and received by the vehicles, which will display its
information in the GUI of the notification app, as seen in figure 7.2.
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Figure 7.2: I2V - Sending alerts to the vehicles

7.2 Testing environment

To test the concepts described earlier, we created a laboratory testbed. This testbed is
composed by one RSU and one OBU. Even though the proposed system allows DENMs to
be sent through multiple RSUs, we decided to use only one RSU to make the it easier to test
our solution.

7.2.1 V2I communication

Figure 7.3a shows the setup that was used to test scenario 1. This figure shows the flow of
data from the vehicle service, where the CAMs are generated, until it reaches the CM, where
it will be displayed to the user by the ART dashboard. We also created 6 checkpoints along
this flow, where we measured the timestamp and compared it to the other checkpoints. This
allowed us to calculate the latency, i.e., the time elapsed between one checkpoint and another.
In order to better explain the time of measurement in each checkpoint, we will proceed to
provide a description about each one.

• Point 1 - Timestamp is measured after the CAM is generated and before it’s sent to
the ITS router.

• Point 2 - Measured after the CAM is encoded and before it is sent to the U2E where
it will be broadcasted.
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• Point 3 - Measured as soon as the eth2udp receives the packet in the wireless interface
of the RSU and before its sent to the router.

• Point 4 - Measured after being decoded by the ITS router and before being converted
to the JSON format.

• Point 5 - Measured before publishing the JSON CAM in the MQTT edge.
• Point 6 - Measured when the CM receives the CAM from the MQTT bridge.

7.2.2 I2V communication

Figure 7.3b shows the setup that was used to test scenario 2. This figure shows the I2V
data flow, that is triggered when the user generates an alert in the ART dashboard. This test
case covers the complete V2X data flow from the CM to the notification app in the OBU.
Note that a DENM may not reach its intended target vehicle, as we have previously explained.
To eliminate the risk of this happening, we configured the mapping service to send the DENM
to the testbed RSU at all times.

For this test case we performed measurements in 8 checkpoints along the flow, which we
will proceed to explain.

• Point 1 - Measured after the CM generates the DENM and before it sends it to the
mapping service.

• Point 2 - Measured after the mapping service receives the DENM and computes the
best RSU candidates. This measurement is taken before the DENM is published back
into the MQTT bridge.

• Point 3 - Measured after the DENM is read from the MQTT edge and before it is sent
to the ITS router.

• Point 4 - Measured after the DENM is received from the MQTT service and before it
is decoded.

• Point 5 - Measured as soon as the eth2udp receives the packet in the wireless interface
of the RSU and before its sent to the router.

• Point 6 - Measured after being decoded by the ITS router and before being converted
to the JSON format.

• Point 7 -Measured before publishing the JSON DENM in the MQTT edge.
• Point 8 - Timestamp is measured when the notification app receives a DENM. This hap-

pens after the DENMs is published in the MQTT obu and then read by the notification
app’s subscriber.
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(a) V2I - Data flow

(b) I2V - Data flow

Figure 7.3: Both V2I and I2V data flows

7.3 Equipment

Both the RSU and the OBU used run in two boards with similiar characteristics. Their
characteristics can be observed in table 7.1. These boards were prepared in advance and their
remote access was made available.

The core services were split across two different virtual machines, with similar characteris-
tics, running in the IT data center. These characteristics can be seen in table 7.2.

RSU and OBU board specifications
CPU AMD G series gx-412T 1GHz quad Jaguar core with 64bits
RAM 4GB
Storage 30GB SSD
OS Debian 10

Linux kernel 5.7.10

Table 7.1: RSU/OBU - Hardware specifications
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Core virtual machine specification
CPU Intel(R) Xeon(R) Silver 4215 CPU @ 2.50GHz
RAM 16GB
Storage 240GB HDD
OS Ubuntu 18.04.4

Table 7.2: Core - Hardware specifications

7.4 Results

In this section we will present the performance results obtained by running end-to-end tests
on the infrastructure, for each scenario described above. We will also present the performance
results obtained from running stress tests on the most time consuming API endpoints of the
CM backend. These two types of tests will allow to have a good idea of the overall performance
of the infrastructure, but will also provide some details about the performance of the CM as
a standalone unit.

7.4.1 Scenario 1 - Sending vehicle data to the infrastructure via DSRC

As mentioned previously, the vehicle data is generated periodically and sent to the
infrastructure. In order to simulate that process, we configured the OBU to generate a total of
500 CAMs with a frequency of 10Hz. Every time a CAM was sent, we captured the timestamp
in each checkpoint of the flow. Table 7.3 shows the results that were obtained from this
process.

First, we started by measuring the timestamps in each point. After that, we computed
the difference between the timestamp of one point and the timestamp of the previous point,
which corresponds to the elapsed time between one point and the other, or also known as the
latency. Note that because of this approach, there is no latency for point 1 because there is
no point that comes before it.

The average latency corresponds to the average value between the 500 latencies, that were
previously calculated, for each point. The average latency between point 3 and point 2 is
25.86 ms, which means that the message took on average 25.86 ms to go from point 2 to point
3.

After this, we calculated the average cumulative latency, by computing the running sum
of the latencies, e.g., point 5 has an average cumulative latency of 38.46ms, which means that
the message took that amount of time to go from point 1 to point 5.

Finally, in order to have a better understanding of the performance of the infrastructure
and to make it easier to identify bottlenecks, we computed the percentage of the total latency
by point. This was achieved by simply dividing the average latency of each point by the
average cumulative latency in point 6, i.e., the average total amount of time that it takes for
the message to go from the vehicle service to the CM. These results were then inserted in a
pie chart, like the one seen in figure 7.4b .
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From these results, it is possible to conclude that, sending the CAM from the OBU, via
DSRC, and receiving it on the RSU is the longest step in the process, takes 25.86 ms and
corresponds to 53.93% of the total latency.

We also decided to plot the total cumulative latency, as seen in 7.4a, which allows to have
a better understanding of the performance of the infrastructure over time. As we can see, the
performance of the whole system stays constant over time, and we were able to find that the
total latency of the infrastructure reached a minimum of 27.00 ms and a maximum of 83.00
ms.

Point Average latency Average cumulative latency (ms) Percentage of total latency (%)
2 6.95 6.95 14.50
3 25.86 32.81 53.93
4 4.11 36.92 8.57
5 1.53 38.46 3.20
6 9.49 47.95 19.80

Table 7.3: Scenario 1 - Results

(a) Scenario 1 - Relation between total cumulative
latency and the number of generated CAMs

(b) Scenario 1 - Percentage of total latency by
point

Figure 7.4: Scenario 1 - Analysis

7.4.2 Scenario 2 - Sending alerts to the vehicles

As mentioned previously, the user can generate alerts, in the form of DENMs, and send
them to the vehicles, but in order for this to happen the message needs to be processed by
several different services. Unlike the previous scenario, these messages are not generated
periodically, instead they are triggered by the user. In this subsection, we will provide the
results of the three tests that were performed to test the performance of the infrastructure
when generating DENMs: the module latency tests, which measures the latency between the
modules along the data flow; the end-to-end test 1, which focuses on testing the performance of
the whole system, instead of the individual modules; and end-to-end test 2, which is designed
to put the CM backend under a lot of stress.
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Module latency test

In order to simulate this behaviour, we automated the process of generating a DENM by
using Postman 1, which achieved this by performing POST requests to the POST /gener-
ateDENM endpoint of the CM. For this test we generated 500 DENMs and measured the
timestamps of the 8 checkpoints along the data flow, explained in 7.2.2. Table 7.4 shows the
results obtained from these tests. Much like in 7.4.1, we computed the average latency, the
average cumulative latency and then the percentage of total latency. We can observe that
the average total amount of latency, i.e., the total amount of time that it takes to generate
a DENM and to send it to the vehicle is, on average, 49.82 ms and it reached a maximum
value of 76.99 ms and a minimum of 23.99 ms. Figure 7.5a demonstrates the evolution of the
performance of the infrastructure over time. This performance stays constant, which means
that there are no degradations over time.

Figure 7.5b shows the percentage of total latency by checkpoint. It is possible to observe
that point 2 and point 5 took the longest to be reached. Point 2 corresponds to the time
that the mapping service took to compute the best RSU candidates, and point 5 corresponds
to the time that it took to send and receive the DENM via DSRC. Note that the mapping
service is implemented in Python, an interpreted language, which is slower than compiled
languages. This may justify the latency of point 2.

Point Average latency Average cumulative latency (ms) Percentage of total latency (%)
2 12.87 12.87 25.83
3 3.24 16.11 6.51
4 2.90 19.01 5.81
5 14.82 33.82 29.74
6 5.02 38.84 10.08
7 1.86 40.70 3.73
8 9.12 49.82 18.30

Table 7.4: Scenario 2 - Results

(a) Scenario 2 - Relation between total cumulative
latency and the number of generated DENMs

(b) Scenario 2 - Percentage of total latency by
point

Figure 7.5: Scenario 2 - Analysis

1https://www.postman.com
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End-to-end test 1

In subsection we analysed the latency between individual modules of the infrastructure,
but now we will provide an overview of the performance of the system as a whole.

For this test, we used JMeter 2, which allowed to automate the process of sending HTTP
POST requests to th /generateDENM endpoint of the CM backend. Besides this, JMeter also
plotted the results in a chart and also provided additional statistics of the test.

JMeter is a very versatile testing program and provided multiple input parameters that
could be adjusted in order to change the behavior of the test suite. The most important
parameters that were used are:

• Number of threads - The number of threads, or virtual users, that will perform
HTTP requests to the API.

• Loop count - The number of requests that each virtual user will make. A user can
only send a request, after a response has been returned to the previous one.

• Ramp up period - The total amount of time, in seconds, that it will take to activate
the full number of virtual users, e.g., if the test suite has 5 threads and a ramp up
period of 10, it means that the test suite will take 10 seconds to turn create 5 virtual
users and make them send HTTP requests.

This test is used to test the performance of the CM when the number of active concurrent
users is less than the number of cores in the CPU of the machine that is hosting the CM. The
input parameters of this test can be seen in table 7.5. Note that there may be a maximum of
2 concurrent users.

Figure 7.6 shows the results of this test. We can see that, for the 700 requests that were
performed, the average amount of time that it took to get a response was 636 ms and a
median of 514 ms. Notice that in the previous test, the maximum amount of time that it
took to generate a DENM and send it to the vehicle was 76.99 ms, which is much lower than
the 636 ms that we measured. This is due to the authentication operations performed by the
Nginx 3 proxy that is responsible for performing the intermediate operations, such as routing
the requests to the authentication service to check if the user has the right permissions to
generate a DENM. In the previous test we skipped this proxy and made the requests directly
to the machine that is running the CM.

Finally, we can conclude that, with this workload, the CM’s performance stays constant
over time and does not degrade.

E2E test 1
NUM_THREADS 2
LOOP_COUNT 350

RAMP_UP_PERIOD 0

Table 7.5: E2E test 1 - Input parameters

2https://jmeter.apache.org
3https://www.nginx.com
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Figure 7.6: E2E test 1 - Performance

End-to-end test 2

Now that we have explained the scope of these end-to-end tests and their difference when
compared to the module latency test, we will perform a test that is more computationally
heavy than the previous ones.

Table 7.6 contains the input parameters of this test. Notice that this time, the test will
launch 20 virtual users which is far greater than the number of cores of the CPU, so there
may be a maximum of 20 concurrent users which is far beyond the capability of the machine
where the CM backend is hosted.

The results of this test can be observed in figure 7.7. We can see that, for the first few
requests, the backend is able to return the response in a reasonable amount of time, but the
performance quickly degrades when more virtual users are activated, until it converges to
nearly 2000 ms. This degradation happens when the number of concurrent requests surpasses
the number of cores in the CPU.

There are multiple ways to solve this degradation in performance. In this case, we are
only using one instance of the CM backend, but we could implement multiple instances and
control the traffic so that requests are evenly balanced between these instances, using a load
balancer. This is known as horizontal scaling. We could, alternatively, improve the resources
of the machine that is hosting the CM, like getting a CPU with more cores, for example. This
is known as vertical scaling.
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E2E test 2
NUM_THREADS 20
LOOP_COUNT 35

RAMP_UP_PERIOD 0

Table 7.6: E2E test 2 - Input parameters

Figure 7.7: E2E test 2 - Performance

7.5 Summary

We started this chapter by introducing two scenarios that were made possible by the
implementation of this infrastructure. The first scenario consisted in sending vehicle data,
in the form of CAMs, to the CM, through the infrastructure, and display it in the ART
dashboard. The second scenario tested the inverse data flow, where an alert was generated,
in the form of a DENM, by the user and was sent to the vehicle, through the infrastructure.
This alert was then displayed to the driver using the notification app GUI.

In section 7.2 we analysed our testing environment and explained that we used one RSU
and one OBU to simulate the connection between a vehicle that is driving on the road and
comes near a RSU. We also explained that the mapping service was specially configured
to redirect all DENMs to the RSU of this testbed, which allowed to more easily perform
these tests. We also went into detail and explained the checkpoints where the timestamps
are measured. In section 7.3 we presented the hardware specifications of the boards that
were used to run the RSU and the OBU software and also presented the specification of the
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machine that hosts the core services, like the mapping service and the CM backend. Finally,
in section 7.4 we explained our testing methodology and provided the results of the tests.
These results showed the latency between individual modules in the infrastructure, but also
showed the performance of the CM app when placed under a high workload.
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CHAPTER 8
Conclusion and Future Work

In previous chapters we presented the requirements of the system, proposed an architecture
that addresses them, analysed its implementation and presented our testing methodology as
well as the results to these tests. In this chapter we will present the final conclusions that were
made throughout the this dissertation, and suggest future improvements to the work developed.

8.1 Conclusion

The main objective of this dissertation was to developed services that enable V2I and I2V
communication in vehicles, making use of the standards for Intelligent Transportation Systems,
as well as services that allow the infrastructure to receive heterogeneous data, transform it
into uniform data and store it in a database cluster. This data could then be accessed by
high level services as real-time data or as historic data.

This concept opened up the possibility for new and interesting use cases, like the creation
of a dashboard that displayed real-time information about the state of a city, which ranges
from data acquired directly from vehicles to data acquired by other sensors, like radars or
lidars. The modularity provided by this approach allows to simplify and isolate the complexity
of some tasks, like developing an algorithm to acquire data from a radar, or developing an
algorithm that analyses a video feed from a camera and detects how many people there are.
Another interesting use for this system is the possibility to store and later access historic
information, which leads to the interesting case of the Incident Replayer, which is able to
replay the state of the city in any point in time, based on the persisted information. Notice
that, before this data is stored, it is displayed in real-time in the ART, which demonstrates the
true versatility of this solution. Replaying the state of a city can be particularly interesting if
our goal is to analyse a crash, for example, because it gives access to detailed data that we
would not have access to otherwise, which opens up the possibility for it to have a real and
direct commercial value for companies, such as insurance companies.

Besides supporting the upward flow of information, i.e., from the vehicles to the infrastruc-
ture, V2I, this dissertation also focused on providing a system that supported the downward
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flow of information, i.e., from the infrastructure itself to the vehicles, I2V. While there are
large number of use cases that can take advantage of the downward flow of data, we decided
to implement a notification system, that allows users to send alerts to vehicles, through their
interaction with the ART dashboard. This alert is propagated through the infrastructure until
it finally arrives in the vehicle and is displayed to the driver. This alert provides information
to the driver that he may not have had access to otherwise, which has commercial value for
companies that specialize in driver safety.

In conclusion, we presented an efficient and well performing solution that allows the
generation of vehicle data in the vehicles themselves, allowed data acquisition and persistence
by the infrastructure. This solution also made this data available in the form of real-time
and historic data, which lead to interesting use cases, that have a real impact on changing
driver behavior and improving driver safety. To demonstrate the versatility of the solution,
we developed a dashboard that displays real-time data to the user, that allows city operators
to monitor their cities more efficiently. This solution also leverages historic data, which allows
for interesting use cases such as the IR that allows users to replay the data of vehicles that
were involved in an accident.

8.2 Future Work

The emergent field of intelligent transportation systems is quite vast, and this dissertation
covers only some of the possible use cases. Throughout this dissertation, we have mentioned
and suggested ways where this work could be improved and extended in the future, but we
will introduce them once again, for discussion.

• Adding security mechanisms - While the current solution supports authentication
in its high level applications, it does not support any kind of authentication in its low
level modules. The CAMs that are currently being generated contain all the vehicle
information in clear text, which may not be desired.

• Test V2V support more extensively - The ITS modules are so versatile that we
ended up implementing V2V communication, but since this was out of the scope of this
dissertation we decided not to test this mechanism thoroughly, although this could be
done in the future.

• Integrate cooperative V2V communication - The system currently supports V2V
communication, but no logic is processed on the messages that are exchanged between
vehicles. V2V has great potential and it could be used to address many use cases, such
as lane merge and intersection crossing.

• Allow DENMs to be relayed using V2V communication - The current system
allows V2V communication between vehicles, but it does not allow a vehicle to relay the
DENM sent by another vehicle to the infrastructure, i.e., currently the vehicles receive
ITS messages sent by neighbouring vehicles and interpret them, but this functionality
could be extended to allow a vehicle to receive a DENM from another vehicle and send
it to the infrastructure. This could be useful in the case of a vehicle that had an accident
but did not have connectivity to the infrastructure. This way, the vehicle would be able
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to notify a city operator, for example, which could dispatch emergency services to its
location.

• Sending DENMs through the platform using different technologies - While
messages are sent to and from the vehicles in different technologies, the transmission of
them through the platform is only performed through DSRC. This may lead to undesired
situations; for example, an operator wanting to warn the driver of potential dangerous
driving conditions ahead, but is not able to send the warning because the OBU does
not have this connection. The platform shall allow to communicate alerts through other
technologies.

• Scaling this solution - As it currently stands, the solution is limited to only one
instance of the CM backend and to a database cluster that is hosted in a single machine.
The performance of the system can be greatly improved by deploying the CM backend
in multiple instances, and redirecting the traffic evenly between them using a load
balancer. Furthermore, it is also possible to improve the performance of the database
system, by using well known strategies, like sharding, horizontal partitioning or vertical
partitioning.

• Allow users to choose a time window to replay - If the efficiency of the system
is improved, as previously suggested, new use cases become viable. Allowing users to
choose a time window is a very time consuming operation if the user chooses a very
large time window. This would give the user more freedom with the information that is
acquired by the infrastructure, since it is not limited to replaying certain incidents.
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