
Universidade de Aveiro
2021

João Pedro
Dias Ventuzelos

Aprendizagem Automática para Classificação de
Distúrbios da Marcha Humana

Machine Learning Classification of Human Gait
Disorders

Universidade de Aveiro
2021

João Pedro
Dias Ventuzelos

Aprendizagem Automática para Classificação de
Distúrbios da Marcha Humana

Machine Learning Classification of Human Gait
Disorders

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requesitos necessários à obtenção do grau de Mestrado em Engenharia
Eletrónica e Telecomunicações, realizada sob a orientação cient́ıfica do
Doutor Filipe Miguel Teixeira Pereira da Silva, Professor Auxiliar do De-
partamento de Eletrónica, Telecomunicações e Informática da Universidade
de Aveiro, e do Doutor João Paulo Morais Ferreira, Professor Adjunto do
Departamento de Engenharia Eletrotécnica do Instituto Superior de Engen-
haria de Coimbra

o júri / the jury

presidente / president Professora Doutora Pétia Georgieva Georgieva
Professora Associada do Departamento de Eletrónica, Telecomunicações e In-

formática da Universidade de Aveiro

vogais / examiners committee Professor Doutor Paulo Luis Serras Lobato Correia
Professor Associado do Departamento de Engenharia Eletrotécnica e de Computa-

dores do Instituto Superior Técnico (Arguente Principal)

Professor Doutor Filipe Miguel Teixeira Pereira da Silva
Professor Auxiliar do Departamento de de Eletrónica, Telecomunicações e In-

formática da Universidade de Aveiro (Orientador)

agradecimentos Aos meus pais, por todo o amor, atenção, disponibilidade e carinho em
toda a minha vida. Sempre me ajudaram em tudo e apoiaram. Foi devido a
eles que consegui seguir os meus objetivos, sem que nunca me faltasse nada.

À minha irmã, pelo carinho e pela alegria que sempre me transmi-
tiu, ajudando-me a nunca desanimar.

À minha namorada, Helena, pelo carinho, presença e força em todos
os momentos. Foi sem dúvida um dos maiores pilares na minha caminhada
universitária.

A todos os meus amigos, por todos os momentos proporcionados e
pela amizade e companhia em todas as fases da minha vida.

Ao meu orientador e co-orientador, Prof. Filipe Silva e Prof. João
Ferreira, por estarem sempre dispońıveis e presentes para ajudar. Sempre
foram muito prestáveis e graças a eles aprendi muito nesta última fase
universitária.

Ao IrisLab da Universidade de Aveiro e ao Eurico Pedrosa, por terem
disponibilizado os servidores e ajudado em qualquer problema, para que
todo o trabalho pudesse ser feito da melhor maneira.

Palavras-Chave Distúrbios da Marcha Humana, Forças de Reação no Solo, Classificação
de Séries Temporais, Perceptron de Múltiplas Camadas, Redes Neuronais
Convolucionais

Resumo A análise computadorizada da marcha humana é normalmente usada por
investigadores e médicos para detectar distúrbios, avaliar o progresso da
terapia ou melhorar o desempenho atlético. Os avanços da tecnologia e dos
instrumentos de medidas têm permitido a quantificação das caracteŕısticas
da marcha humana, como parâmetros cinemáticos e cinéticos, atividade
eletromiográfica e consumo de energia. Em particular, a quantificação das
forças de reação do solo (FRS) têm se revelado uma ferramenta importante
no contexto da saúde. No entanto, a extração de caracteŕısticas significa-
tivos e a sua interpretação a partir de grandes quantidades de dados ainda
é uma tarefa desafiadora. Consequentemente, os métodos de aprendizagem
automática estão a tornar-se populares para lidar com a alta dimensionali-
dade, dependências temporais, grande variabilidade e relações não lineares
presentes nos dados de marcha humana. Esta dissertação tem como objetivo
estudar a aplicação de técnicas de aprendizagem automática na classificação
de distúrbios da marcha humana, utilizando o dataset anotado GaitRec. O
dataset contém dados bilaterais 3D-FRS de indiv́ıduos saudáveis, bem como
de pacientes com lesões musculoesqueléticas no quadril, joelho, tornozelo
e calcanhar. Este trabalho aborda o desenvolvimento de modelos de clas-
sificação capazes de diferenciar padrões de marcha normais vs. anormais
(problema binário), bem como classificar distúrbios patológicos da marcha
(problema multiclasse). O estudo está centrado na comparação entre os
modelos clássicos totalmente conetados e as redes neurais convolucionais
(CNNs). Adicionalmente, as séries temporais são pré-processadas e conver-
tidas numa imagem bidimensional que é aplicada a uma rede convolucional
2D para explorar assimetrias nas FRS bilaterais. Os resultados obtidos
mostram que a rede com múltiplas camadas totalmente conetadas supera
em 1% a rede convolucional. O classificador binário alcançou uma precisão
em torno de 99,0%, enquanto a precisão do modelo multiclasse é de cerca
de 97,2%. Os resultados preliminares obtidos com a rede convolucional 2-D
baseada em imagens são inferiores, o que pode indicar que são necessários
esforços adicionais para tirar proveito dessa abordagem.

Keywords Human Gait Disorders, Ground Reaction Forces, Time Series Classification,
Multilayer Perceptron, Convolutional Neural Networks

Abstract Computerized human gait analysis is commonly used by researchers and
physicians to detect disorders, evaluate therapy progress, or improve athletic
performance. Advances in instrument and measurement technology has al-
lowed the quantification of human gait characteristics, such as kinematic
and kinetic parameters, electromyographic activity and energy consumption.
In particular, the quantification of ground reaction forces (GRFs) has proved
to be an important tool in the healthcare context. However, the extraction
of meaningful features and their interpretation from the amount of complex
data is still a challenging task. Consequently, machine learning methods are
becoming popular to deal with the high-dimensionality, temporal dependen-
cies, strong variability, and non-linear relationships present in human gait
data. This dissertation aims to study the application of machine learning
techniques for the classification of human gait disorders, using the anno-
tated GaitRec dataset. The dataset contains bi-lateral 3D-GRF data from
healthy individuals, as well from patients with musculoskeletal impairments
at the hip, knee, ankle and calcaneus. This work addresses the custom
development of classification models capable of differentiating normal vs.
abnormal gait patterns (binary problem), as well as classifying pathologi-
cal gait disorders (multi-class problem). The focus is on the comparison
between classical fully-connected models and 1D convolutional neural net-
works (CNNs), in terms of prediction accuracy. Additionally, pre-processed
time series are converted into a two-dimensional input image, which is ap-
plied to a 2D-CNN to explore asymmetries in bilateral GRFs. The results
obtained show that the fully-connected model outperforms in 1% the 1D-
CNN model. The binary classifier achieved a prediction accuracy around
99.0%, while the multi-class accuracy score is around 97.2%. The prelimi-
nary results achieved with the image-based 2-D CNN are much lower which
may indicate that additional efforts will be needed to take advantage of this
approach.

Contents

Contents i

List of Figures iii

List of Tables v

Acronyms vii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Dissertation Outline . 2

2 Literature Review 5

2.1 Human Gait Characterization . 5

2.2 Data Acquisition for Human Gait . 7

2.2.1 Wearable and Non-wearable Sensors 8

2.2.2 Force and Pressure Sensors . 12

2.2.3 Wearable vs. Non-Wearable Sensors 13

2.3 Machine Learning for Time Series Classification 14

2.3.1 Artificial Neural Networks (ANN) . 15

2.3.2 Convolutional Neural Networks (CNN) 20

2.3.3 Support Vector Machines (SVMs) . 23

2.4 An Overview of Gait Disorders Classification 23

3 Materials and Methods 29

3.1 Experimental Setup . 29

3.2 GaitRec Dataset . 30

3.3 Overall Framework of the Study . 34

3.3.1 Selected Architectures . 35

3.3.2 Model Development . 37

3.3.3 Performance Measures . 38

3.4 Description of the Experiments . 38

4 Neural Network Binary Classification 41

4.1 Dataset Preparation . 41

4.1.1 Dataset balance . 41

i

4.1.2 Selection of other relevant inputs . 43
4.1.3 Final dataset . 43

4.2 Parameter Tuning . 45
4.2.1 ANN . 45
4.2.2 CNN . 49

4.3 Results . 53

5 Neural Network Multi-class Classification 57
5.1 Dataset Preparation . 57

5.1.1 Selection of relevant inputs . 57
5.1.2 Final dataset . 58

5.2 Parameter Tuning . 59
5.2.1 ANN . 59
5.2.2 CNN . 63

5.3 Results . 67

6 Image-Based Convolutional Neural Network Classification 71
6.1 Binary Classification . 71

6.1.1 Dataset Preparation . 71
6.1.2 Parameter Tuning . 72

6.2 Multi-class Classification . 74
6.2.1 Dataset Preparation . 74
6.2.2 Parameter Tuning . 74

6.3 Results . 76

7 Conclusions 77
7.1 Final Discussion . 77
7.2 Future Work . 78

References 81

ii

List of Figures

2.1 Motion phases in a healthy gait cycle . 6

2.2 Types of human gait analysis . 8

2.3 Example of a goniometer . 9

2.4 Example of an ultrasonic sensor system . 10

2.5 Example of a gait EMG system . 10

2.6 Example of a computer vision extraction method 11

2.7 Example of a simple computer vision system 11

2.8 Example of a Tekscan FlexiForce pressure sensor (piezoresistive) 12

2.9 Example of an instrumented shoe prototype 13

2.10 Example of a floor sensor . 13

2.11 Comparison between wearable and non-wearable systems 14

2.12 Nodes, edges/weights and sum/activation function 16

2.13 Example of an artificial neural network . 17

2.14 Convolutional layers . 21

2.15 Example of a max pooling layer . 22

2.16 Common convolutional neural network architecture 22

2.17 Overview of the prediction accuracy (SVM) - 2017 Slijepcevic et al. article . 26

2.18 Overview of the prediction accuracy (SVM) - 2018 Slijepcevic et al. article . 26

2.19 Overview of the prediction accuracy (CNN, SVM, MLP) - 2020 Slijepcevic et
al. article . 28

3.1 Hierarchical class structure of the GaitRec dataset relevant to this study:
Healthy Controls (HC), Gait Disorders (GD), Hip (H), Knee (K), Ankle (A),
and Calcaneus (C) . 31

3.2 GaitRec database overview . 31

3.3 GaitRec .csv file description . 32

3.4 GaitRec data visualization (plot) . 33

3.5 GaitRec metadata file description . 34

3.6 Overall framework of the work . 35

3.7 Schematic diagram of the MLP neural network. 36

3.8 Schematic diagram of the CNN model. 36

3.9 Model development workflow . 37

3.10 Binary confusion matrix . 38

4.1 GaitRec multi-class split . 42

4.2 GaitRec Binary Split. 42

iii

4.3 GaitRec Balanced Binary Train-Val-Test Split. 44
4.4 GaitRec Balanced Binary Class Split. 44
4.5 Binary ANN batch size comparison. 47
4.6 Binary ANN epoch size comparison. 47
4.7 Binary ANN learning rate comparison. 48
4.8 Binary ANN learning rate accuracy comparison. 48
4.9 Binary ANN dropout comparison. 49
4.10 Binary CNN batch size comparison. 51
4.11 Binary CNN epoch size comparison. 51
4.12 Binary CNN learning rate comparison. 52
4.13 Binary CNN learning rate accuracy comparison. 52
4.14 Binary CNN dropout comparison. 53
4.15 Binary ANN and 1-D CNN model accuracy and loss. 54
4.16 Binary ANN and 1-D CNN confusion-matrices. 55

5.1 GaitRec database overview (Remember) . 57
5.2 GaitRec balanced multi-class train-val-test split. 58
5.3 GaitRec balanced multi-class class split. 59
5.4 Multi-class ANN batch size comparison. 61
5.5 Multi-class ANN epoch size comparison. 61
5.6 Multi-class ANN learning rate comparison. 62
5.7 Multi-class ANN learning rate accuracy comparison. 62
5.8 Multi-class ANN dropout comparison. 63
5.9 Multi-class CNN batch size comparison. 65
5.10 Multi-class CNN epoch size comparison. 65
5.11 Multi-class CNN learning rate comparison. 66
5.12 Multi-class CNN learning rate accuracy comparison. 66
5.13 Multi-class CNN dropout comparison. 67
5.14 Multi-class ANN and 1-D CNN model accuracy/loss. 68
5.15 Multi-class ANN and 1D-CNN confusion matrices. 68

6.1 Binary 2-D generated image (Healthy vs. Gait Disorder) 72
6.2 Multi-class 2-D generated images (Healthy, Ankle, Hip, Knee, Calcaneus). . . 75

iv

List of Tables

2.1 Example of some machine learning types of algorithms. 15
2.2 Most known activation functions. 18
2.3 Different types of CNNs. 23
2.4 Advantages and disadvantages of using SVMs. 24
2.5 Studies about the classification of gait disorders with machine learning and

GRFs. 25
2.6 Best performance of the previously presented human gait disorder articles. . . 27

4.1 ANN Binary tuning best parameters/score and layers. 46
4.2 CNN Binary tuning best parameters/score and layers. 50
4.3 CNN Binary tuning best parameters/score with dense layers. 50
4.4 Results comparison of the ANN vs. 1D-CNN models. 54

5.1 ANN Multi-class tuning best parameters/score and layers. 60
5.2 CNN Multi-class tuning best parameters/score and layers. 64
5.3 CNN Multi-class tuning best parameters/score with dense layers. 64
5.4 Multi-class ANN vs. 1-D CNN comparison. 69

6.1 CNN 2D Binary tuning best parameters/score and layers. 73
6.2 CNN 2D Binary tuning best parameters/score with dense layers. 73
6.3 CNN 2D Multi-class tuning best parameters/score and layers. 76
6.4 CNN 2D Multi-class tuning best parameters/score with dense layers. 76
6.5 Binary and multi-class 2-D CNN comparison. 76

7.1 Comparison of results of the binary and multiclass classification using a MLP
model, a 1D-CNN and an image-based 2D-CNN. 77

7.2 Best binary and multi-class classification accuraccies of human gait disorders. 78

v

vi

Acronyms

A Ankle

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

BM Boltzmann Machine

C Calcaneus

CNN Convolutional Neural Network

COP Center of Pressure

DBN Deep Belief Networks

EMG Electromyography

FDN Feedforward Deep Networks

FN False Negatives

FP False Positives

GAN Generative Adversarial Networks

GD Gait Disorder

GRF Ground Reaction Force

H Hip

HC Healthy Control

K Knee

KNN K-Nearest Neighbor

LSTM Long-short Term Memory

ML Machine Learning

MLP Multilayer Perceptron

vii

NWS Non-Wearable Sensors

PCA Principal Component Analysis

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SOM Self-Organizing Map

SVM Support Vector Machine

Tanh Hyperbolic Tangent

TN True Negatives

TP True Positives

WS Wearable Sensors

ZRB Zero Rule Baseline

viii

Chapter 1

Introduction

Machine Learning (ML) is a branch of Artificial Intelligence (AI) dedicated to studying
how to grant computer programs the ability to automatically learn and improve from data
[1] [2]. Keeping in mind the developments of recent years, this field of investigation promises
to have a noticeable impact on many sectors of the society. In particular, artificial neural
networks and deep learning models are inspired by the network of neurons in the human
brain, aiming to imitate humans in how they think and learn [2].

Currently, machine learning is used in several areas such as image classification [3], health-
care [2], self-driving cars [4], fraud detection [5], web-searches (Google RankBrain), games [6],
among many others. Focusing on the healthcare field, convolutional neural networks (CNNs)
are being applied with success in medical imaging for different purposes, such as organ seg-
mentation, lesion detection or tumor classification. One of the benefits of machine learning is
that it can manipulate and optimize very complex data sets located in very complex systems
[2]. Healthcare needs a lot of attention and control and is constantly dealing with many
variables. While tracking numerous variables is challenging for humans, it is something that
computers deal very well with.

The primary objective of the work developed in this dissertation is to explore novel com-
putational algorithms that can be used to automate the analysis of human gait patterns. The
perspective is that these emerging technologies can be transferred into clinical practices and
patient benefits in the near future.

1.1 Motivation

There are numerous examples of research studies combining higher computer processing
and learning methods applied in the healthcare sector in order to solve, assist or automate
problems [7] [8] [9] [10] [11]. Most of them implement the same pipeline: they use the
information gathered by professionals, process that information and, then, use computer
vision or machine learning methods to generate helpful tools and solutions for the healthcare
sector.

Computerized human gait analysis is commonly used by researchers and clinicians to
detect disorders, evaluate therapy progress, or improve athletic performance. Advances in
instrument and measurement technology has allowed the quantification of human gait char-
acteristics, such as kinematic and kinetic parameters, electromyographic activity and energy
consumption [12]. In particular, the quantification of ground reaction forces (GRFs) has

1

proved to be an important tool in the healthcare context. However, the extraction of mean-
ingful features and their interpretation from the amount of complex data is still a challenging
task. Consequently, machine learning methods are becoming popular to deal with the high-
dimensionality, temporal dependencies, strong variability, and non-linear relationships present
in human gait data [13].

The recently created GaitRec-dataset [14] was one of the main reasons that motivated this
work. GaitRec is a ground reaction force dataset, built over the years, containing complete
information about the data recording process and protocol from a total of 2295 patients. It
includes completely annotated 75,732 bi-lateral trials of 3D GRFs measurements correspond-
ing to healthy and impaired patients, as well other relevant patients data such as, for example,
about the sex, age and body mass. Fully-connected artificial neural networks (ANNs) and sup-
port vector machines (SVM) are well-established for gait classification [15] [16]. In contrast,
relatively little work has explored convolutional neural networks for time series classification
of gait patterns. Bearing this in mind, the major motivation for this work is to compare the
performance of custom developed classifiers based on artificial neural networks applied to the
GaitRec dataset.

1.2 Objectives

This dissertation proposes a machine learning framework for human gait classification
based on the GaitRec dataset [14]. The study carried out addresses the custom development
of classification models capable of differentiating normal vs. abnormal gait patterns (binary
problem), as well as classifying pathological gait disorders (multi-class problem). The main
goal is to compare the performance of classical multilayer perceptron models against convolu-
tional neural networks, in terms of prediction accuracy and model robustness. Additionally,
pre-processed time series are converted into a two-dimensional input image, which is applied
to a 2D-CNN to explore asymmetries in bilateral GRFs. The intention is to explore a way
to encode time series into an image, aiming to take advantage of CNNs for learning features
and identifying data structures.

The study was developed from the GaitRec dataset considering the data source and po-
tential biases which may affect the generalization ability of the models. The data preparation
stage played a preponderant role in the performance of the supervised learning models. For
example, the use of balanced datasets, preventing over representation of data from one class,
and the appropriate choice of sub-sets of the larger dataset will be considered.

1.3 Dissertation Outline

The remainder of the dissertation is organized as follows:

• Chapter 2 reviews related work and the main concepts with relevance for this study. It
starts with the human gait characterization and proceeds to the several ways of acquire
human gait data. Machine learning methods for time series classification are reviewed.
Finally, a brief literature review is provided.

• Chapter 3 starts by introducing the hardware and software tools used throughout the
work, and a detailed description of the GaitRec dataset. The overall framework of the

2

present study is considered here, as well a description of the experiments to be carried
out in the following chapters.

• Chapter 4 is dedicated to the development and evaluation of neural network models to
solve the binary classification problem, including the dataset preparation, parameter
tuning, and discussion of the main results.

• Chapter 5 follows a similar structure to the previous chapter, but it addresses a multi-
class classification problem.

• Chapter 6 presents the study concerning the novel representation of the time series by
an image that will be the input data of a 2-D convolutional neural network. It considers
both the binary classification and the multi-class classification problems.

• Chapter 7 concludes the dissertation by providing a final discussion of the most relevant
results and suggesting several points of future work.

3

4

Chapter 2

Literature Review

This chapter provides a review of the literature around the topics and context of the
dissertation. Section 2.1 provides the fundamental concepts of the human gait and the general
characteristics of a healthy and impaired patterns. Section 2.2 presents the most common
methods and equipment used to acquire human gait data. It considers wearable and non-
wearable sensors, how they work and their benefits. Section 2.3 provides an introduction
to machine learning concepts and architectures, with particular emphasis on the multilayer
perceptron, convolutional neural networks and support vector machines. Section 2.4 presents
a review of some related works using machine learning techniques for human gait classification
based on Ground Reaction Force (GRF) measurements.

2.1 Human Gait Characterization

Human bipedal motion is classified as one of the greatest changes in evolution because
it allowed the human being for free use of the hands [17]. Normally, at around one year old
that ability is obtained and, in most of the cases, is preserved throughout life. It seems to be
a basic, instinctive ability that we perform calmly every day, but it is a remarkably complex
and unique motor behavior. It is one of the principal characteristics that mostly involves both
motor ability and adaptability. Consists of three primary components: locomotion, balance,
and capacity to adapt to the environment [17].

Human gait depends on a cooperation of several human systems, such as the nervous,
musculoskeletal and cardiorespiratory. It is impacted by age, personality, mood and sociocul-
tural factors [18]. Almost all of the muscles of the human body are required to walk, as well as
different cortical and subcortical structures. The previous sentence explains the reason for the
extended learning phase in infancy and the generally difficult re-learning phase after injury
[19]. In short, it involves the combination of sensory information within the nervous system,
leading in motor commands to control muscle contraction and subsequent joint movement.

In order to perform a healthy gait it is necessary strength, balance, sensation and coordi-
nation. The period between successive points at which the heel of the same foot strikes the
ground is characterized as the gait cycle. It is divided into two phases, the stance phase and
the swing phase [20]. The complete gait cycle contains several subdivisions as described in
the literature articles [17][18][20][21].

The human gait is characterized by alternating movements of the lower extremities in a
rhythmic motion that results in the forward progression of the body. Considering the gait

5

Figure 2.1: Motion phases in a healthy gait cycle (taken from [18]).

cycle depicted in Figure 2.1, we first have the heel strike, also known as initial contact. The
sub-phase is included in the stance phase and marks the moment when the heel hits the
ground. In addition, it marks the start of the joint loading response pattern. Moving next
inside the stance phase, the loading response. The loading response phase is characterized
by the flat foot floor contact. When the opposite foot is raised for the swing the loading
phase ends and the mid stance begins. In this phase, to support the forward foot propulsion,
the shank advances. Continuing on with the motion, when the body weight is aligned to the
forefoot, the mid stance phase ends and we the terminal stance starts. The terminal stance is
defined by the moment where the heel leaves the ground and it is extended until the opposite
foot touches the ground.

Following the terminal stance sub-phase, to end the stance phase, the pre-swing part
arrives. This sub-phase serves as a transition between the stance and swing phase, beginning
with the initial contact of the opposite limb and ending with the toe leaving the ground.
When the foot leaves the ground, the swing phase starts with the toe-off sub-phase (also
known as initial swing). The initial swing causes a flexion in the knee and ankle and lasts
until the swing foot is opposite to the stance foot. Following the initial swing, the mid swing
starts. In this phase, the thigh hits its maximum advancement and remains until the hip and
knee flexion postures become equal. To end the gait cycle and the swing phase, the terminal
swing. This phase concludes the limb progression through knee extension. After the terminal
swing, the foot returns to the stance phase and to the heel strike sub-phase [20]. There is
a period in the cycle where both feet are in contact with the ground that is called double
support. This period can be omitted (during running), enlarged (during cautious/senile gait,
weakness, or disequilibrium) or asymmetric (during limping gait) [17].

The analysis of the parameters of the human gait requires the use of several sensors and
data processing methods. Among the most important gait parameters are the stride length,
walking speed, support time and ground reaction forces. An understanding of the gait cycle
and the various phases of the gait cycle is required to to assess and treat patients with different
conditions, pathologies or injuries affecting their ability to walk.

Most of motion disorders are effortlessly identified to the naked eye. Hip, knee, ankle or
calcaneus are an example of some parts of the human body that are connected to gait disor-

6

ders. They are commonly manifested due to joint replacements, fractures, ligament ruptures
along with others. A person with a gait disorder generally has one of the subsequent sys-
tems or functions damaged: locomotor function, balance, postural reflexes, sensory function
and sensorimotor integration, motor control the musculoskeletal apparatus and cardiopul-
monary functions [18]. The previous sentence means that in order to have a healthy gait it is
mandatory to have flawless all these functions and systems.

At the same time, gait disorders are one of the most frequent problems that neurologic
patients experience. Existent in more than half of all bedridden subjects admitted to a
neurologic service, they conduct to a privation of personal freedom and have overwhelming
consequences, being the most popular reduced mobility and falls, with subsequent reduction
in the quality of life and lifetime[17]. A study performed stated that the predominance of
gait disorders rises from 10% in people aged 60-69 years to more than 60% in subjects aged
over 80 years [22]. Other gait impairments are associated closely with poor quality of life and
increased chance of mortality [17]. Falls are considered the most frequent cause to serious
injuries in the elderly [23]. Since gait is particularly susceptible to any taunt to the nervous
system, its judgement should be performed conscientiously in routine clinical practice.

2.2 Data Acquisition for Human Gait

Actually, evaluating and examining gait characteristics has a large importance in several
areas, such as sports or clinical field. It exposes essential information about various gait
parameters and prior diagnosis of diverse disorders. If meticulously acquired, spatial and
temporal parameters of gait grant valuable diagnostic and therapeutical data [24]. Studying
gait generally includes the measurement of kinetic and gait parameters, kinematic analysis
and Electromyography (EMG) [25].

Sensors, wearable or not, are an effective way of gathering information nowadays. They
capture and measure information in order to next evaluate efficiently the different gait param-
eters. The accessories used for the analysis can be divided into three categories: accessories
that depend on Wearable Sensors (WS), accessories that depend on Non-Wearable Sensors
(NWS) and accessories that combine the previous two [12].

Wearable sensors involve the placement of measuring devices on several parts of the body,
such as feet, waist, knees, among others. Inertial sensors, electromyography, extensometers,
force sensors, goniometers, gyroscopic sensors, accelerometers, magnetometers are some ex-
amples of wearable sensors. As stated before, their objective is to collect indicators related
to kinematics, kinetics, and EMG. The kinematics characterize the movements of the main
joints and segments of the lower extremity in the human gait process. The kinetics exam-
ine the forces and moments resulted from the movement. For that is regularly demanded
the orientation of all the leg segments gathered from gait kinematics. An electromyography
reveals the electric reaction produced from the muscles activity during the motion process.
Most of the gait methods based on wearable sensors have been considered and presented as
an affordable and and less complicated way to manage, by the laboratories, the patients in
their everyday activities [25].

Non wearable sensors systems depend upon the utilization of controlled accommodations.
There is where the sensors are placed and gather information about gait while the patient
walks on a marked walkaway. They can be divided into two, the sensors based on floor sensors
and the ones based on computer vision methods [12]. The floor sensor systems depends on

7

sensors placed along the floor on the commonly named ”force platforms”. The gait data is
obtained through pressure sensors and ground reaction force sensors that measure the force
exerted by the subject’s feet on the floor when walking. The computer vision systems compile
information on the gait through optic sensors and capture precise measurements of the distinct
parameters through digital image processing.

Figure 2.2 displays the human gait analysis approaches accordingly to Prakash, C. et al.
[26]. The ones used in this work are the sensor based on force platforms. It is important to
mention that, as observable in Figure 2.2, there are several methodologies and sensors that
can be applied to classify human gait disorders which are different from the ones used in this
work. A general presentation of them will be made in the next sub-section.

Figure 2.2: Types of human gait analysis (taken from [26]).

2.2.1 Wearable and Non-wearable Sensors

Goniometers are wearable sensors that measure angles of the lower human articulations,
such as ankles, knees, among others. They determine the variation in the physical signal
emanating from angular alterations. There are several types of goniometers, such as strain
gauge-based, mechanical flexible, among others [27]. The first mentioned type, strain gauge-
based, has a resistance that depends on how flexed the instrument is. The mechanical system
obtains the angular variation by determining the longitudinal displacement of two parallel
wires bent in the plane of rotation, i.e., manifested by measuring the knee joint during motion
[27].

Nowadays, there are already electrogoniometers available in the market that quantify the
flexibility. This type contains a potentiometer instead, introduced over the centre of rotation

8

Figure 2.3: Example of a goniometer (taken from [28]).

of the joint in observation [29]. When there is motion, the potentiometer returns an electrical
output that can be analysed.

Ultrasonic sensors are wearable instruments that are used to study the propagation of
waves in relation to an object. Knowing the speed of a signal, they can measure the time
between the send and reception of a wave. The reception wave is a wave that is produced
and reflected at the time that the sending one reaches the desired object. Knowing the time
it is possible to know the distance between the two points.

Ultrasonic sensors are utilized to acquire short step and stride length and the separation
distance between feet or between foot and floor [30]. Their range is in the interval of 1.7
cm and 450 cm [25]. Figure 2.4 represents an ultrasonic sensor system [31]. It comprises a
micro-controller and ultrasonic sensors on separate boards. The sensor that transmits the
information is attached to the heel of the patient.

Inertial sensors are one of the most generally used type of wearable sensors in gait
analysis. They are electronic accessories used to determine angular velocity, acceleration,
orientation, and gravitational forces for the considered body [12]. Inertial sensors are com-
monly formed by a junction of accelerometers and gyroscopes, but, occasionally, they also
have magnetometers [25]. Initially, inertial sensors were used to study vibration and impact
or movements at low velocities such as gait and running [25]. Actually, they evolved and have
lots of different applications. Small, low-powered electromechanical sensors (MEMS technol-
ogy) may be able to bridge the current gap between large laboratory systems and clinical
systems, providing dynamic three-dimensional motion analysis.

Gyroscopes are active sensors that rely on a property which insinuates that all bodies
that spin around an axis develop rotational inertia [12]. They are an angular velocity sensor

9

Figure 2.4: Example of an ultrasonic sensor system (taken from [31]).

included in numerous devices to measure motion and posture in subjects by gathering the
angular rate [27]. Accelerometers are instruments that measure the acceleration forces that act
on an object in relation to gravity, with the purpose of designate and supervise it’s location and
acceleration/velocity in space. Gyroscopes and accelerometers have always been commonly
incorporated to produce a complete initial sensing system [32] [33]. At last, magnetometers
are instruments used to measure the intensity, direction and orientation of magnetic fields.

Electromyography measures muscle contraction as an electrical reaction. This type
of wearable sensor marked an important advance in gait analysis, since it allowed a better
management of patients with neuromuscular disorders [25]. EMG is a proper technique to
evaluates the walking performance by detecting the gait phase and interpreting variations in
function.

Figure 2.5: Example of a gait EMG system (taken from [34]).

Computer Vision / Image Processing are one of the most known methods used
to categorize and analyse gait, inside the non wearable sensors. Computer vision has a lot
of impact on the society because provides a majority of methods/alternatives that help to
facilitate daily processes. The most common image processing system is composed by several
cameras that are used to collect gait-related data with their lens. Methods like threshold
filtering that transforms images into black and white, the pixel count that obtains the number
of light or dark pixels, or background segmentation that discards the background of an image,
are a few of the many existent ways to gather data to measure the gait variables [12].

One of the most relevant techniques used in gait are the ones based on depth measurement.
In general they calculate and obtain a map of distances from a viewpoint [35]. Stereoscopic

10

vision is a method utilized to measure the depth of points in a scene. Firstly, it is necessary
to obtain corresponding points in different images in order to obtain accurate measurements.
For that it is necessary to calculate the similar triangles between the optical sensor, the
light-emitter and the body, in order to create a model. Several images in multiple plane are
required to be acquired to obtain a calibrated system.

Time-of-Flight systems, structure light or infrared thermography are some of another
techniques used. The first, Time-of-Flight, depends on cameras that use a signal modulation.
That signal measures the distance based on the phase-shift principle [36]. Structured Light is
the projection of a light pattern under geometric calibration on an object whose shape is to
be recovered. Three-dimensional information is acquired by examining the deformation of the
projection of the pattern onto the scene with respect to the original projected pattern [12]. A
known device that uses this is the Kinect sensor. Infrared thermography creates visual images
based on surface temperatures [12]. The capacity to correctly obtain the infrared thermal
intensity of the human body is possible due to the human body skin’s properties.

Two very well known motion capture systems are the Optitrack [37] and Vicon [38]. They
work with a variety of areas, from games to science. Figure 2.6 and 2.7 represent an example
of a computer vision extraction method and an example of a computer vision system.

Figure 2.6: Example of a computer vision extraction method (adapted from [39]).

Figure 2.7: Example of a simple computer vision system (taken from [40]).

11

2.2.2 Force and Pressure Sensors

Force and Pressure Sensors can be associated to wearable or non-wearable sensors.
Force sensors measure the ground reaction forces existent under the foot when moving. They
send back a voltage that is proportional to the pressure obtained [25]. Pressure sensors are
most of the times appropriate to measure the pressure distribution of the plantar foot and
to detect step and gait phase [41] [42]. Generally, the most frequent wearable models are
resistive, piezoelectric, capacitive and piezoresistive and the most frequent non-wearable ones
are the ones present in the floor sensors. Ground reaction forces are defined by the force that
the ground applies on a body that is touching it [43]. When the body is not in movement,
the GRF coincides to its weight. Otherwise, the GRF increments thanks to the acceleration
forces.

Figure 2.8: Example of a Tekscan FlexiForce pressure sensor (piezoresistive) (taken from
[44]).

Considering the wearable ones, each is implemented depending on different factors, like
range of pressure or sensitivity [25]. This type of sensors belong to both sensor types (wearable
and non-wearable) because they are not only integrated to instrumented shoes or baropodo-
metric insoles to measure the ground reaction forces but also are applied on the floor in ”force
platforms” or instrumented walkways [12].

When on the floor, gait is acquired by pressure or force sensors and moment transducers
at the moment that the subject walks on them. There are two types of floor sensors, the force
platforms and pressure measurement systems. They are different because, even if the force
platforms quantify also the center of pressure, they don’t measure instantaneously the force
vector applied. In the other hand, despite pressure measurement systems are effective quan-
tifying the pressure patterns existent under a foot over time, they cannot measure horizontal
or shear elements of the applied forces [12].

Figure 2.9 represents an example of an instrumented shoe that aims to gather ground re-
action forces. It is displayed the outside and inside picture of the shoe. Figure 2.10 represents
an example of a floor sensor that uses pressure sensing technology to determine key variables
for gait or balance [45]. The information gathered to build the database mentioned and used
in this dissertation was obtained with this type of sensors, more properly gathered with the
Kistler type 9281B12 force plates [46].

12

Figure 2.9: Example of an instrumented shoe prototype (adapted from [10]).

Figure 2.10: Example of a floor sensor (taken from [45]).

2.2.3 Wearable vs. Non-Wearable Sensors

Considering all existing systems and comparing them by area, some are better than others
in some situations and worse in others. Therefore the previous sentence is also applied to
the gait sensor systems. In the next figure is shown a comparison between wearable and
non-wearable systems in regard to its advantages and disadvantages.

13

Figure 2.11: Comparison between wearable and non-wearable systems (taken from [12]).

2.3 Machine Learning for Time Series Classification

As mentioned before, ML is the study of how it is possible to grant computer programs the
ability to automatically learn and improve from data. The purpose is to teach a computer,
defined as a mere machine without self thinking, how to learn and make decisions just like
a human [47]. ML algorithms can be classified into three types: supervised, unsupervised,
and reinforcement [47]. Table 2.1 provides examples of learning techniques and their usage.
Supervised learning algorithms contain a dataset where each sample has a corresponding
label or target. Unsupervised learning algorithms also have a dataset with features, but
without any corresponding label. The algorithm must learn from the given unlabeled data
the important and useful properties that can be gathered. Between them, semisupervised
learning algorithms deal with partially labeled data [47]. Reinforcement learning algorithms
learn from interactions with the environment and with their own experience. Generally it
helps to take decisions sequentially.

In the context of supervised methods, there is a distinction between shallow learning
and deep learning [7]. Shallow learning rely on learning from data described by pre-defined
features. Linear Regression, Decision Tree, Support Vector Machine (SVM), Random Forest,
Näıve Bayes, and K-Nearest Neighbor (KNN) are examples of shallow learning. Deep learning
is influenced by the biological neural networks’ architecture and behavior. Relies on the notion
of multi-layer Artificial Neural Network (ANN) with the principal objective of learning data
representations automatically. Normally, the term ’deep’ is related to the number of layers
of the several existing network structures [7]. Some of the most known structures are the
Deep Belief Networks (DBN), Feedforward Deep Networks (FDN), Boltzmann Machine (BM),
Generative Adversarial Networks (GAN), Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), and Long-short Term Memory (LSTM).

14

Supervised Unsupervised Reinforcement
Learning Learning Learning

Artificial Neural Networks Self-Organizing Maps Markov Decision Process
- - -

Classification and Regression Feature Detection Control and Automation
and Grouping

Convolutional Neural Networks Boltzmann Machines Q-Learning
- - -

Computer Vision Recommendation Systems Autonomous driving
(lane changing)

Recurrent Neural Networks Auto Encoders
- - -

Time Series Analysis Recommendation Systems

Table 2.1: Example of some machine learning types of algorithms.

Time series are common in many real-world applications ranging from health care, au-
tomated disease detection, human activity recognition, cyber-security, and finance. The in-
creasing availability of temporal data has contributed to interest on new applications and
algorithms based on time series. This section provides a brief description of machine learning
techniques for time series classification problems, namely the multilayer perceptron, convolu-
tional neural networks and support vector machines. Except the algorithms based on deep
learning, all the others require feature engineering as a separate task before the classification
is performed. This can result in loss of some relevant information and the increase of the
development time. On the contrary, deep learning models already incorporate, internally,
this kind of feature engineering.

2.3.1 Artificial Neural Networks (ANN)

Artificial Neural Networks are a machine learning method that aims to mimic the human
neural networks in the learning process. The human brain contains neurons and axons. The
neurons are what the brain uses to process information and the axons are what establishes
the connection, transmitting signals between them (electric signals, synapses). Chemical
substances are released from the synapses and enter the neurons dendrites, increasing or
decreasing the electrical potential of the neurons cell body. The neuron activates or deactivates
whenever the input is greater than a defined value.

The architecture of an artificial neural network is similar to the previous description.
They are formed by interconnected neurons, known also as nodes, that interact with each
other through axons, known as edges. When providing an input value to a neural network, it
processes it and returns a response. The neuron is activated only if that value is higher than
a given threshold.

Figure 2.12 represents the nodes, edges/weights and sum/activation function of a neural
network. The nodes send information to the next layer of nodes through edges. Each edge
has an associated weight that can be adjusted based on experience plus a different weight
named as bias. The previous sentence describes the parameters of the network. If the sum
of the connected edges satisfies a defined threshold, known as the activation function, it will

15

trigger a neuron at the next layer. However, if not, the activation will not be performed.
All the weights are unique to make sure that the nodes do not all return the same outcome.
Equation 2.1 provides the mathematical representation of the artificial neuron’s operation, as
defined previously:

y(x) = a(
n∑
i

xiwi + b) (2.1)

where ”x” represents the inputs, ”w” the weights, ”b” the bias function and finally ”a” the
activation function. If the result of the expression is bigger than 0 it is returned 1, otherwise
0 [48].

Figure 2.12: Illustrative example of nodes, edges/weights and sum/activation function (taken
from [49]).

Neural networks, in a general way, are composed by three major layers, the input, the
hidden and the output. The input layer gets all the data that contains all the features to be
used, the hidden layer analyses and treats that same data and the output layer presents the
results. The hidden layer can be composed by only one or in the other hand by multiple rows
that will process the data. Actually, there are several ways to assemble the neural network
nodes. Figure 2.13 represents an example of a feed-forward artificial neural network with 3
hidden layers.

Training a network means comparing the model’s predicted output to the actual one. By
measuring their difference it is obtained the cost value. The aim of training is to decrease that
cost continuously till the prediction nearly matches the appropriate output. Adjusting the
network’s weights until the lowest possible cost value is achieved through the back-propagation
algorithm. Instead of only operate from left to right, back-propagation works in reverse, from
the output to the input layer. The process cycles through the training data several times
(referred to as an epoch). Normally, it is advised to randomize the order of the presentation
of the data each time [48]. The following subsections discuss various components of every
neural architecture that are at the core of its performance, namely, activation functions,
weight initialization and nonlinear optimizers.

16

Figure 2.13: Example of an artificial neural network (taken from [50]).

Activation Functions

An activation function is meant to define, within a neural network, the activation of a
neuron, depending on his input and weight. If activation functions did not exist, a layer were
only be expressed by two linear operations, as represented in the following expression:

y(x) = (
n∑
i

xiwi + b) (2.2)

where ”y” represents the output, ”x” the inputs, ”w” the weights and ”b” the bias function.
Therefore, it would only be able to learn linear transformations coming from the input

data. In consequence, the hypothesis space of the layer would be the set of all possible
linear transformations of the input data into a 16-dimensional space, as stated in [51]. The
previous defined hypothesis space is very limited and would not benefit from multiple layers,
considering that a deep stack of linear layers would still implement a linear operation. This
means that, with the addiction of more layers, the hypothesis space would not increase.
Thereby, with the purpose of achieve a valuable hypothesis space that could be favoured from
deep representations, it is necessary an activation function. Table 2.2 describes some of the
existent activation functions and their functions and way of working.

Weight Initialization

An important characteristic in this type of network is to set the weights correctly and the
in the best possible way. An easy and simple way is to set them all to zero. The problem
with this implementation is that every neuron will have identical activations and consequently
gradients and therefore the same parameter update. The previous sentence emphasizes that
is necessary to came up with a solution of how to distribute the initial weights.

The most known layer weight initializers are the random normal, random uniform, Glorot
normal, Glorot uniform, He normal and He uniform. The normal ones generate a normal
distribution and the uniform ones a uniform one. Depending on the problem, each one of
them should be studied in order to encounter the one that fits the best.

17

Activation Function General Explanation
Function

Provides a gradient in the range of 0 to 1.
Sigmoid y(x) = 1

1+exp−x As a downside it is associated with computational

problems such as the vanishing gradient.

Tanh It is similar to the sigmoid function

(Hyperbolic y(x) = ex−e−x

ez+e−z but its range is from -1 to 1.

Tangent)

The most popular activation function when
working with deep neural networks.

ReLU It transforms the negatives values into 0 and
(Rectified y(x) = max(0, x) maintains the positive ones with their respective

Linear Unit) value. It has better gradient propagation and faster
convergence compared to other activation functions.
It still can suffer from vanishing gradient problems.

Commonly adopted as output layer in

Softmax y(x) = exp(zi)∑
j exp(zj)

classification neural networks with several classes.

It outputs the probability of each class.

Table 2.2: Most known activation functions.

Nonlinear Optimizers

As stated before, neural networks have weights that contain the information acquired from
the exhibit to training data. In the beginning, all the weight matrices have random values,
process known as random initialization. After the initialization it is then necessary to gradu-
ally adjust the previous weights, having into account a feedback signal. The previous gradual
adjustment is also known as training. In general, optimizers define how neural networks learn.
They find the values of parameters such that a loss function is at its lowest. It is important to
mention that the optimizers have no perception of the loss, so they need to find the minimum
point of its associated function without any knowledge. In machine learning, an algorithm
needs to know if it is necessary to change the value of the weights and, if yes, how much.

Gradient descent consists in taking small steps iteratively until the correct weights are
found and defined. A problem appears since the weights are only updated once after the
observation of the entire dataset [52]. The gradient is typically large and data can only make
large ”jumps”. For that reason, it may just approach its optimal value without being able to
reach it. One solution to that problem is to update the parameters more frequently like in
the case of the stochastic gradient descent. For every epoch, the gradient descent algorithm
uses the function:

θi+1 = θi − α · ∇θJ(θ) (2.3)

, where ”θi+1” represents the next position, ”θi” the current position, ”α” the waiting factor,
”∇θ” the gradient term and ”J(θ)” the loss function.

Stochastic Gradient Descent (SGD) updates the weights after observing each data
point instead of the entire dataset [52]. Despite that, a problem emerges here too. The

18

gradient can make many ”noisy” jumps that move away from the optimal values and it is
influenced by every sample. It uses the same function as the gradient descent and applies it
to every sample in every epoch [52]. To solve that it emerges the mini-batch gradient descent
that only updates the parameters after a few samples.

Stochastic Gradient Descent + Momentum introduces another way to reduce the
noise of stochastic gradient descent, including the concept of momentum. The parameters
of a model may have the tendency to change in one direction. Generally, if examples follow
a similar pattern with the momentum, the model can learn faster by paying little attention
to the few examples that throw it off time to time [52]. A problem appears here too, since
choosing to ignore samples simply because it isn’t typical it may be a costly mistake. Adding
an acceleration term solves that problem. For every sample in every epoch, it uses the
functions:

υi = γ · υi−1 + η · ∇θJ(θ)

θ = θ − αυi
(2.4)

, where ”υi” is the actual sequence, ”γ” is an hyper-parameter that takes values from zero
to one, ”υi−1” is the previous sequence, ”η” is a simplification for ”1−γ”, ”∇θ” the gradient,
”J(θ)” the loss function and ”α” the learning rate.

Stochastic Gradient Descent + Momentum + Acceleration represents an evolu-
tion to the previous algorithm [52]. The model is training gaining momentum and the weights
are becoming larger. It reaches a time where it finds an odd sample and, due to momentum,
it deliberates very little of it but discarding it leads to a loss decrease that is not drastic [52].
This is the point where the model decelerates the weight updates, making them smaller again
and allowing future samples to fine-tune the current model. For every sample in every epoch,
it uses the functions:

υi = γ · υi−1 + α · ∇θJ(θ − γ · υi−1)

θ = θ − υi
(2.5)

, where ”υi” is the actual sequence, ”γ” is an hyper-parameter that takes values from zero
to one, ”υi−1” is the previous sequence, ”∇θ” the gradient, ”J(θ)” the loss function and ”α”
the learning rate. The learning rate, here, needs to be scaled by a ”1− γ” factor due to the
omission of that variable.

Adaptive learning rate optimizers are able to learn more along one direction than
another. With an adaptive loss there are more degrees of freedom to increase the learning
rate in one direction and decrease in another [52].

AdaGrad, AdaDelta, Adam and RMSProp are some examples of adaptive learning rate
optimizers. Starting with adagrad, for every parameter θi in every epoch t:

θt+1,i = θt,i −
η√

Gt,ii + ϵ
∇θt,iJ(θt,i) (2.6)

In the optimizer update, the Gt,ii is the sum of squares of the gradients with respect to θi
parameter until that point. The previous formula is Gt,ii = Gt−1,ii+∇2

θt,i
J(θt,i). The problem

with this is that the G term is monotonically increasing over iterations so the learning will
decay to a point where the parameter will no longer update and there is no learning [52]. The
previous sentence means that η√

Gt,ii+ϵ
will tend to 0. As the iterations go on, it learns slower

and slower even though the optimal trajectory is quite clear.

19

To solve the previous problem appears Adadelta. In adadelta, for every parameter θi in
every epoch t:

θt+1,i = θt,i −
η√

E[Gt,ii] + ϵ
∇θt,iJ(θt,i) (2.7)

It reduces the influence of past squared gradients by introducing a gamma weight to all
of those gradients, reducing their effect by an exponential factor:

Gt,ii = γGt−1,ii + (1− γ)∇2
θt,i

J(θt,i) (2.8)

The η√
E[Gt,ii]+ϵ

does not ”explode” which prevents the learning rate from tending to 0. With

this, adadelta has learning rate updates for every single parameter [52].
Adding a momentum to improve adadelta, gives rise to Adam [53]. The only necessary

change is to add the expected value of past gradients. This means that initially it starts
slow but over time it gains speed, which is similar to momentum. In Adam [53], for every
parameter θi in every epoch t:

θt+1,i = θt,i −
η√

E[Gt,ii] + ϵ
∇θt,iJ(θt,i)× E[gt,i] (2.9)

where,
Gt,ii = γGt−1,ii + (1− γ)∇2

θt,i
J(θt,i)

E[gt,i] = βE[gt−1,i] + (1− β)∇θt,iJ(θt,i)
The momentum part is the E[gt,i]. Adam can take different size steps for different pa-

rameters. With momentum for every parameter it can also lead to faster convergence. If
acceleration is added to Adam it originates Nadam.

RMSProp tunes the learning rate for each parameter in a similar way to AdaGrad but
uses a moving average of gradients to make the optimization more suitable for optimizing
non-convex cost functions [52].

2.3.2 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) are a particular type of neural network that pro-
cesses grid-like topology data [47]. They are commonly used for computational vision, the
area that is concerned with the image and video processing. Some of its applications are
autonomous cars, pedestrian detection, digit classification etc.

As mentioned before, convolutional neural networks are very efficient processing data
with a grid-like topology, handling 1-D, 2-D and 3-D data [54]. They are able to gather, from
large datasets, solid levels of abstraction and features by implementing to the input data a
convolution operation. As stated in [55], convolutional networks are simply neural networks
that use convolution in place of general matrix multiplication in at least one of their layers.

Generally, convolutional neural networks are composed of convolution layers, pooling lay-
ers and normalization layers [7]. All these layers have a group of filters and weights associated.
The convolutional layers generate a feature map automatically from the input data. The pool-
ing layers decrease the size of representation and conceive a more robust convolution layer
output [56].

Frequently, two types of pooling layers are utilized, the max pooling and the average
pooling. The previous layers, convolution and pooling, all have activation functions that, as
stated, will decide when a neuron is activated or not [57].

20

Convolution Layers

Convolution is a mathematical operation which slips one function over another and de-
termine the integral of their point-by-point multiplication [47]. In general, the convolutional
layer is considered as the crucial building block of a CNN [47]. Figure 2.14 represents a CNN
layer example with the receptive fields marked. It is observable that neurons in the layer 1
are not connected to each one of all the pixels in the input layer and that neurons in the
layer 2 are also not connected to all of the layer 1. Instead, they are only connected to the
receptive fields of each layer. That happens because, in that manner, the network is capable of
detecting the small low-level features, in order to gather them into larger higher-level features
in the consequent layer. The previous process occurs continuously and is frequent in images
of the real-world.

The receptive field denotes a small image that represents the neuron’s weights. The sets
of weights represent the filters, or convolution kernels, and act as a mask in order to detect
only what is desired. Everything else located in the neuron’s receptive field will be ignored.
A layer that has the same filter in all neurons outputs a feature map that emphasises the
region of the image in where the filter is activated most. The filters are defined automatically
during the training process. The convolutional layer learns the suitable filters for its task and
the subsequent layers learn how to merge them towards more complex patterns.

Figure 2.14: Convolutional layers (taken from [47]).

Pooling Layers

Pooling layers reduce the input image with the aim of having a better computer processing
performance and a decrease number of parameters. Identically to the convolutional layers,
each neuron only interacts with a restricted number of neurons in a small receptive field of
the past layer. It is also necessary to define all of its parameters such as size, stride or the
padding type in order to create a pooling layer that will gather the most important aspects
of an image. A pooling neuron aggregates the inputs using an aggregation function and does
not have weights.

Figure 2.15 represents one of the most frequent pooling types, the max pooling layer. It
has a 2x2 pooling kernel with stride equal to 2 and no padding. In the max pooling layer,
the max input value in each receptive field is gathered and proceeds to the next layer. The
remaining values are dropped.

21

Figure 2.15: Example of a max pooling layer (taken from [47]).

A different pooling that can be considered is the average pooling: it takes all the values
from the pooling kernel and makes an average value from them. While the max pooling
chooses from all values the maximum one to pass to the next layer, the average pooling
performs an average of them all and it sends to the next layer the average value. A general
CNN is composed by an input layer that receives an image, convolutional layers, where each
one of them is commonly proceeded by a Rectified Linear Unit (ReLU) layer, a pooling layer,
a fully connected layer and a final output layer (see Figure 2.16). In the convolutional/pooling
processes, the image is reduced in size while the algorithm obtains more and more feature
maps. After that, a feedforward neural network with various fully connected layers will
process what comes from the previous layers, producing a prediction at the final layer.

The standard Convolution Neural Network is the 2D CNN. As stated previously, is com-
monly used on image data [58]. In this type of CNN the kernel moves on the data along
two dimensions. CNN acquire spatial features from data using a kernel, feature that other
networks cannot do. However, 1D and 3D CNNs find application with time-series data and
3D volumetric data [58], respectively. A 1D convolutional layer works similarly as a 2-D one,
where a layer slides multiple kernels over a sequence, generating a 1-D feature map for each
kernel. After that, the kernels will be able to recognize a single sequential pattern. Activity
recognition, sensory data, audio and text data are examples of their applications since the
data is represented by a time-series. The 3-D convolutional neural networks operates in three
dimensions since the kernel moves along them. Like 2D CNN it is commonly used on im-
age data, but in this case on 3-D volumetric data [58]. Medical data and video are some of
its many usages. Table 2.3 summarizes the operation and typical application of each of the
convolutional models.

Figure 2.16: Common convolutional neural network architecture (taken from [47]).

22

1-D CNN 2-D CNN 3-D CNN

Kernel Moves in 1 dimension Moves in 2 dimensions Moves in 3 dimensions

Input and Output 2 3 4
Data Dimensional Dimensional Dimensional

Usages Time-Series data Image data 3-D Image data

Table 2.3: Different types of CNNs.

2.3.3 Support Vector Machines (SVMs)

Support Vector Machines (SVM) are machine learning models commonly used to perform
classification and regression [47]. In addiction to the two previous examples, they can also
perform outlier detection. Further, fully-connected ANNs and support vector machines are
well-established for gait classification [15] [16]. SVM looks at the extremes of a given dataset
and chooses a decision boundary, also known as a hyperplane, close to the extreme points in
the dataset. If an algorithm has an unoptimized decision boundary it could result in greater
misclassifications on new data, so for that reason, it is important to have the best decision
boundary.

Support vectors are data points that the margin pushes up against all points that are
close to the opposing class. Therefore, the algorithm indicates that only support vectors are
significant whereas other training examples can be ignored. If the classes are linear separable,
that is, they can be separated through a straight line, they represent a Linear SVM. If
the classes are not linear, in other words, it is not possible to separate the classes with a
single line, it is necessary to implement a Non-linear SVM. Thereby, it is required to use a
function to transform the data into an higher dimensional space. One of the existent problems
that this SVM has, is that transforming the data into an higher dimensional space, is very
computational expensive. There are some kernel tricks to reduce these costs. A function that
gathers as input vectors in the original space and give back the dot product of the vectors in
the feature space is denominated a kernel function. Using that it is possible to implement the
dot product between two vectors in order to map every point into a high dimensional space
via some transformation. The most known kernel types are the polynomial kernel, the radial
basis function kernel and the sigmoid kernel. The aim of the Non-linear SVM is to transform
a non linear space into a linear one. Choosing the best kernel is a non-trivial task and may
depend on a specific task at hand, no matter which kernel is chosen. It is necessary to tune
the kernel parameters to get good performance from a classifier. A popular technique for that
is the k -fold cross-validation.

2.4 An Overview of Gait Disorders Classification

As stated before, it is difficult to analyze and interpret the data produced from recordings
during clinical gait analysis due to their high-dimensionality, temporal dependencies, vari-
ability, non-linear relationships and correlations within the data [13]. Over the last years,
various approaches based on machine learning were proposed and published, in order to help
clinicians in fix these problems [7]. In the human gait context, there are also a relevant lit-
erature applying different methodologies [10] [11]. They are useful to assist in the process of
identification and categorization of specific gait patterns. The most common machine learn-

23

Advantages Disadvantages

Effective in high dimensional spaces Do not provide probability estimates

Effective in cases where the number of Poor performance when the number of
dimensions is greater than the number of features is bigger than the number of

samples (it is memory efficient) samples

Different kernel functions for various decision
functions

Possibility to add kernel functions together
to achieve even more complex hyperplanes

Table 2.4: Advantages and disadvantages of using SVMs.

ing methods applied to solve gait problems are neural networks, support vector machines,
nearest neighbor classifier and different clustering solutions. The way the data is organized
and represented affects heavily on how the previous methods behave [59]. Table 2.5 presents
some studies about machine learning classification of human gait disorders using GRFs.

One of the most common way that clinicians use to follow a patient in his recuperation
is the combination of simple visual inspection or 2-D video records with ground reaction
forces [61] [66]. There are lots of studies based only on the vertical ground reaction force
for classification purposes for a better and precise analysis of the gait pattern. The reason
for that is that all the datasets were very small, with less than 50 people. Most of the
classification attempts were aiming on the distinction between particular diseases instead of
drawing a distinction between functional gait disorders [66]. With this, to classify properly
a gait disease it is necessary a large, informative and organized dataset, in order to make a
robust and reliable algorithm that can be applied in real-world scenarios. In this work, are
used three-dimensional ground reaction forces of the affected and unaffected side as input. In
the next paragraphs are presented some articles that approach the gait classification. They
mention the articles that are present at the table 2.5.

Lozano-Ortiz et al. [60] studied the human gait classification after lower limb fracture
using ANN and Principal Component Analysis (PCA). Their study contained 51 subjects,
38 with normal pattern and 13 with abnormal (binary). The database had information with
GRFs. Their classifier compared the Artificial Neural Network algorithm versus the Self-
Organizing Map (SOM). The ANN obtained an accuracy of 92% and the SOM 96%.

Alaqtash et al. [61] studied the automated classification of pathological gait patterns
from healthy walking. Their study comprised 20 participants, 12 healthy, 4 with cerebral
palsy and 4 with multiple sclerosis. The database has 19 features based on amplitude and
temporal parameters of GRFs. Their classifier compared the KNN and ANN algorithms. As
result, the KNN obtained an accuracy of 85% and the ANN 80%.

Slijepcevic et al. [62] studied the effects of different principal component analysis based
representations on ground reaction force measurements for gait classification tasks. Their
study intended to discover what was the best practice for the previous stated problem. The
dataset used comprised 440 patients, 279 with gait disorders and 161 healthy. The patients
were classified into four categories, namely calcaneus, ankle, knee, and hip. The four categories
had 82, 62, 69, 66 patients respectively. The dataset had information of the bilateral GRF
and center of pressure. All the data was pre-processed earlier and the classifier chosen was a

24

Reference Study Goal Classifier

Lozano-Ortiz et al. [60] Human Gait Classification ANN and SOM
after Lower Limb Fracture
using Artificial Neural
Networks and Principal
Component Analysis

Alaqtash et al. [61] Automatic classification of KNN and ANN
pathological gait patterns
from healthy walking

Slijepcevic et al. [62] Ground Reaction force SVM
measurements for gait
classification tasks

Slijepcevic et al. [63] Automatic classification SVM
of functional gait

disorders

Slijepcevic et al. [64] Optimal combination of SVM
input signals and derived

representations for
automatic gait classification,

based on GRF

Slijepcevic et al. [65] Automatic classification CNN, SVM
and explanation of machine and MLP

learning predictions
in clinical gait analysis

Table 2.5: Studies about the classification of gait disorders with machine learning and GRFs.

support vector machine. Two classification were proposed, the first healthy vs. gait disorders
(binary) and the second healthy vs. all four categories. Figure 2.17 shows the results obtained
for the two different classifications. The first one had an acceptable result but the second
one, due to its complexity, resulted in a lower accuracy.

Slijepcevic et al. [63] studied the automatic classification of functional gait disorders.
The study was based on ground reaction force measurements. The study comprised two
objectives, the examination of the suitability of the GRF parameterization techniques for the
study of gait disorders and the creation of a baseline for the automated classification of gait
disorders. The dataset used was the same used on [62], with 440 patients divided into four
classes. All the data was pre-processed and the classifier was also an SVM algorithm with
two classification problems (Healthy Control (HC) vs. Gait Disorder (GD) and HC vs. four
GD classes). Figure 2.18 demonstrates the results obtained.

Slijepcevic et al. [64] studied what was the optimal combination of input signals and
derived representations for gait classification based on GRFs. The study intended to answer
the question of which input signals, derived representations, and combinations were the most
effective for gait classification. The dataset used comprised 728 patients, 546 with gait dis-
orders and 182 healthy. The patients with gait disorders were divided into three categories,
calcaneus, knee and hip with 182 patients each. All the data was pre-processed like the two

25

Figure 2.17: Overview of the prediction accuracy (SVM) - 2017 Slijepcevic et al. article
(taken from [62]).

Figure 2.18: Overview of the prediction accuracy (SVM) - 2018 Slijepcevic et al. article
(taken from [63]).

previous studies and the chosen algorithm was also the SVM. The study had only one task,
the classification of healthy vs. the three gait disorders. The best result was obtained on the
GRF + COP (center of pressure) with an accuracy of 67.8%.

Djordje Slijepcevic et al. [65] approach three machine learning methods, the Support
Vector Machine, Multilayer Perceptron (MLP) and Convolutional Neural Networks. They
were all compared in terms of prediction accuracy and learned input relevance patterns.
Since this work will be focused on the ANN and CNN, these two will be the ones that will be
focused. This is the most recent article and also the one that focus also the GaitRec dataset
(only a subset). Thus, it will be the one that this work will be most compared to [65].

The MLP contained three consecutive fully connected layers with ReLU as activation
function and, after them, there was a SoftMax activation function in the output layer. The
size of the hidden layers and output was 768 and c, respectively. The value of the output
is c because it can comprise different numbers of the target classes, depending on the study.
The CNN comprised three consecutive convolutional layers, with a <filter size>-<stride>-
<output channel>configuration of 8-2-24, 8-2-24 and 6-3-48. In addition, they all had ReLU
as neuron activation function. The previous configuration results in a 48x48 feature map that
is subsequently unrolled into a 2304-dimensional vector. After that, the data reaches a fully-

26

connected layer, that leads to the model output. The fully-connected layer has a SoftMax
activation function in the output layer, that acts as a multi-class predictor in relation to
the c target classes. The two methods stated before were trained via standard error back-
propagation with stochastic gradient descent and a mean absolute loss function.

The training process incorporated 3∗104 iteration of mini batches of five randomly selected
training samples and an initial learning rate of 5 ∗ 10−3. It is important to refer that the
learning rate was gradually decreased after every 10−4-th training iteration by a factor of 0.2
and subsequently to 5 ∗ 10−4 by a factor of 0.5. All the model weights were initialized with
random values related to a normal distribution from 0 to m−1/2, with m equal to the number
of inputs of each neuron layer. The CNN receives an input of 1x606-dimensional vector and,
because of that, the convolution operations are 1-dimensional, moving only over the time.

An additional information that was concluded and has some relevance is that there were
negligible differences between 1-D and 2-D CNNs. All the accuracies were reported over a
stratified ten-fold cross-validation, where eight partitions of data were used for training, one
for validation and one for testing. The results were reported as mean with standard deviation.
It was also calculated the Zero Rule Baseline (ZRB) for each classification, that is a theoretical
accuracy obtained assigning class labels according to the prior probabilities of the classes. The
results were presented also with min-max normalization and with no-normalization.

Figure 2.19 represents an overview of the prediction accuracy of the related article. As
observable, Six classification approaches were made, such as healthy vs gait disorder in general
(binary classification), healthy vs hip, healthy vs knee, healthy vs ankle, healthy vs knee vs
ankle and finally healthy vs hip vs knee vs ankle. Moving on to the results obtained, it was
concluded that the mean prediction was superior in relation to the ZRB. Finally, Table 2.6
presents the best results obtained in the previous presented gait classification articles.

Reference Binary Multi-class
Performance Performance

Lozano-Ortiz et al. [60] ANN: 92% -
SOM: 96%

Alaqtash et al. [61] KNN: 85% -
ANN: 80%

Slijepcevic et al. [62] SVM: 90% SVM: 53.3%

Slijepcevic et al. [63] SVM: 90.8% SVM: 54.3%

Slijepcevic et al. [64] - SVM: 67.8%

Slijepcevic et al. [65] CNN CNN
Best: 97% Best: 72%
Mean: 89% Mean: 53%

SVM SVM
Best: 95% Best: 62%
Mean: 89% Mean: 52%

ANN ANN
Best: 97% Best: 63%
Mean: 90% Mean: 50%

Table 2.6: Best performance of the previously presented human gait disorder articles.

27

Figure 2.19: Overview of the prediction accuracy (CNN, SVM, MLP) - 2020 Slijepcevic et al.
article (taken from [65]).

28

Chapter 3

Materials and Methods

As stated previously, this dissertation addresses the application of supervised machine
learning techniques for the classification of human gait disorders using the annotated GaitRec
dataset. The dataset contains bi-lateral 3D-GRF data from healthy individuals, as well
from patients with musculoskeletal impairments at the hip, knee, ankle and calcaneus. This
chapter aims to clarify the objectives of this dissertation and its delimiting boundaries, being
followed by a description of the methodological approaches used to face the key challenges
of the work. Section 3.1 describes the computational resources used to perform the research.
Section 3.2 provides a detailed description of the GaitRec dataset used throughout the work.
Section 3.3 presents the overall framework of the study, including the architectures selected
for comparison, as well as the model development strategy and the performance measures to
be considered. Section 3.4 summarizes the set of scenarios and experiments to be evaluated.

3.1 Experimental Setup

Training the neural network models on the GaitRec dataset can be very resource and
time-consuming in terms of processor and memory. Accordingly, most of the experiments
performed in this work were conducted in a high-performance dedicated server available in the
IRIS-LAB (IEETA). The server contains three GPU, where only two of them were provided
for this work, and is composed by the following components:

• CPU: 2x Intel Xeon 2.1 GHz

• GPU: 2x NVIDIA GEFORCE RTX 3080

• RAM: 64 GB

The host computer runs on a JupyterLab server. To manage the train and test environ-
ment are available several frameworks such as pip, virtualenv, or anaconda. The server has
installed a Miniconda version due to the fact that has an ease use, fits the general purposes
of the majority of the users in terms of packages and occupies less memory in the CPU. Ana-
conda and Miniconda differ only in the pre-installed packages, in where Miniconda contains
a smaller number of packages compared to Anaconda. The necessary libraries were installed
in the provided user account. Commonly, to interact with NVIDIA GPUs for parallel com-
puting it is used an Application Programming Interface (API) called CUDA. The server has
installed the 11.2.2 CUDA version. In addition, in case of working with deep neural networks,

29

NVIDIA provides a library called cuDNN that allows high-level frameworks to benefit of the
high computing power of GPUs. The version 8.1.0 is utilized in the server. All the code was
written in Python 3.7, which was also already available. The following packages were used to
create the files of the work:

• Tensorflow 2.5.0 (Utilized as a backend of Keras framework, integrated in tf.keras)

• NumPy 1.19.5

• Pandas 1.2.5

• scikit-learn 0.24.2

• Jupyter 1.0.0

• matplotlib 3.0.2

• Microsoft Excel

• Matlab R2021a

3.2 GaitRec Dataset

As mentioned previously, one of the standard tools that the clinicians use to evaluate and
study in detail the human locomotion are the ground reaction forces. Remembering, ground
reaction force is the force applied by the ground on a body in contact with it. One disadvan-
tage of the GRF application is that the results obtained are very complex and challenging to
interpret. Machine Learning methods, such as neural networks, are a promising way to assist
clinicians in the diagnose and classification of gait patterns [15]. In order to obtain reliable
results, it is necessary a large, organized and informative quantity of data to train the neural
network model.

The GaitRec dataset, managed by an Austrian rehabilitation center, contains anonymized
GRF measurements from 2295 patients, where 2085 of them represent subjects with different
musculoskeletal impairments and the remaining 211 represent the healthy controls. It provides
75,732 bi-lateral trials distributed across five categories, as depicted in Figure 3.1:

• Healthy Controls (HC) - represents the top layer class of the dataset containing the
data from healthy people. In this case, healthy subjects are the ones free of pain and
complaints at the lower extremity and spine and did not have any orthotics or orthopedic
insoles. People with history of surgery or trauma at the spine or lower extremities were
excluded.

• Gait Disorders (GD) - represents the top layer class containing the data from patients
with musculoskeletal impairments at the hip, knee, ankle and calcaneus. The data was
gathered from a rehabilitation center and comprises an entire rehabilitation process.

• Hip (H) – the hip class contains several injuries such as fractures of the pelvis and thigh
along with luxation of the hip joint, coxarthrosis, and total hip replacement.

• Knee (K) - the knee class contains patients after patella, femur or tibia fractures, rup-
tures of the cruciate or collateral ligaments or the meniscus, and total knee replacements.

30

Figure 3.1: Hierarchical class structure of the GaitRec dataset relevant to this study: Healthy
Controls (HC), Gait Disorders (GD), Hip (H), Knee (K), Ankle (A), and Calcaneus (C)
(adapted from [14]).

• Ankle (A) - the ankle class comprises patients after fractures of the malleoli, talus, tibia,
or lower leg, and ruptures of ligaments or the achilles tendon.

• Calcaneus (C) - the calcaneus class includes patients after calcaneus fractures or ankle
fusion surgery.

Although there are additional lower-level layers in the original dataset, this work only
considers the HC vs. GD (binary classification) and HC vs. H vs. A vs. C vs. K (multi-class
classification). The multi-level hierarchical categorization permits grouping the data into a
dataset with four classes associated to gait disorders and one healthy controls class. The
dataset was manually labeled by a professional and experienced therapist [14]. Figure 3.2
contains an overview of the data present in the GaitRec database, including the classes, the
number of patients in each, their mean age and body mass, sex and the number of bi-lateral
trials per class.

All subjects follow the same recording protocol based on two centrally embedded force
plates (Kistler, Type 9281B12 [46]), being submitted to a 10 m walkway. During a session,
they usually walked until ten valid records were obtained. Subjects with a gait perturbation
walked in a unassisted way at a self-selected speed. The healthy subjects walked either
barefoot or with their normal shoes at three different speeds, such as slow, fast and self-
selected. The patients either walked barefoot, with their orthopedic or normal shoes, and
with or without orthopedic insoles.

Figure 3.2: GaitRec database overview (taken from [14]).

31

The GRF measurements included the vertical, the anterior-posterior and the medio-lateral
force components. In addition, the Center of Pressure (COP) was also recorded. The data
available in the GRF files contains separate files for the left and right foot and for each one
of the three GRF forces, as can be seen in Figure 3.3. All the data used was the processed
one (center of pressure data was not used). The next sentences describe the authors’ data
processing work [14]. They started by converting the three analog GRF signals to digital
signals using a sampling rate of 2000 Hz and a 12-bit analog-digital converter (DT3010, Data
Translation Incorporation) with a signal input range of ±10V . The GRF was registered in the
local force plate coordinate system (reaction-orientated) and to facilitate, the orientation of
all the medio-lateral and anterior-posterior signals were uniformed, in order to always express
the medial and anterior forces as positive values.

Given the internal standards of the rehabilitation centre, raw signals were only available
down-sampled to 250 Hz. Noise and signal peaks were avoided at the beginning and end of the
signals, by applying a threshold of 25 N to all force data. At this point, the data is referred as
unprocessed (raw) GRF signals. In addition, the authors have generated processed “ready to
use” data (the data used in this dissertation). The processed force signals were filtered using
a 2nd order low-pass Butterworth filter with a cut-off frequency of 20 Hz to reduce noise and
were time-normalized to 100% stance (i.e., 101 points).

The dataset contains twenty files with GRF data (raw and processed). In addition to
the GRF left/right foot information exists also a file with all the additional information
about the subjects and their trials. Figure 3.3 shows the contents of the .csv files and its
detailed description. It is possible to observe that the associated file contains an ”*” that
is a placeholder for ”left” and ”right” (foot). In order to better understand the available
data, several graphs were made available with the information of the 3D GRFs of the affected
side. Figure 3.4 illustrates all the five classes, along the mean and standard deviation. More
information about the data processing work is available in [14].

Figure 3.3: GaitRec .csv file description (taken from [14]).

32

Figure 3.4: GaitRec data visualization (plot) (taken from [14]).

The values that made up the graphics are the ones that are submitted to the neural net-
works. A concatenation of the 1-D left and right foot GRF (medio-lateral, anterior-posterior
and vertical) represent the input information to all 1-D models. At this point, we have a
1×606 vector that represents both feet, each 101 samples for each GRF’s component. Addi-
tional metadata information is also concatenated to the previous one, including sex, age and
walking speed. Therefore, the input data for each subject’s trial is a 1×609 vector. Figure
3.5 describes what are the fields contained in that file, more precisely the categories/variables
of each subject/trial, the format of the information, the units and the description. It is
important to refer that all the data is anonymous.

33

Figure 3.5: GaitRec metadata file description (taken from [14]).

3.3 Overall Framework of the Study

The integration of machine learning techniques for analysis of gait data has proved to
be a promising solution to deal with the difficult interpretation of ground reaction forces
[60] [61] [64]. Fully-connected ANNs and support vector machines are well-established for
gait classification [15] [16]. The main goals of this study are two-fold: First, to compare
the performance of fully connected vs. convolutional neural networks in terms of prediction
accuracy and model robustness. Second, following recent work with the GaitRec dataset [64]
[65], to address two classification problems using neural networks. On the one hand, a binary
classification problem focused on classifying healthy (normal) against pathological (impaired)
gait is addressed. On the other hand, the second problem concerns gait classification across
five classes of disorders affecting the hip, knee, ankle, and calcaneus, according the GaitRec
dataset. The multiclass classification problem still has a considerable margin for improvement
as shown by the work carried out in [65].

34

Figure 3.6: Overall framework of the work.

The study was developed from the GaitRec dataset considering the data source and po-
tential biases which may affect the generalization ability of the models. The data preparation
stage played a preponderant role in the performance of the supervised learning models. For
example, unbalanced datasets (over representation of data from one class) and use of a sub-set
of the larger dataset were considered to improve the prediction accuracy. In line with this,
the following subsections aim to describe the architectures chosen in the study, as well as the
model development strategy and the metrics used to assess their performance.

3.3.1 Selected Architectures

Ground reaction force records, saved in time series form, can be used to find out various
gait disorders. Distinguishing patterns of a normal gait from the one with a disorder, and
recognizing the disorder, is a Time Series Classification problem. This study proposes to
compare the performance of multilayer feedforward neural networks against convolutional
neural networks, when dealing with time series data of GRFs during walking (see Figure
3.6). The application of CNNs considers both univariate and multivariate time series. The
univariate time series is an ordered set of real values, while the M-dimensional multivariate
time series consists of M different univariate time series with the same length.

The first building block for time series classification is the multi-layer perceptron. This
class of feedforward neural networks consists of several layers of nodes: one input layer, one
or more hidden layers, and one output layer (see Figure 3.7). This is a fully connected model
where every node is connected to all the nodes of the previous layer and of the next layer.
Given a dataset consisting of a collection of pairs (input, class), it can be fitted to compute
the probability of any new input to belong to each possible class. To do this, first of all we
need to represent the pairs (input, class) in the dataset in a more suitable way. First, every
object must be flattened and then represented with a vector, that will be the input vector for
training (i.e., taking the whole multivariate time series as input). Second, every class in the
dataset must be represented with its one-hot label vector.

35

Figure 3.7: Schematic diagram of the MLP neural network.

A natural question addressed in the study was related to the need (or not) to proceed
with a reduction of dimensionality on the input vector to reach good classification results.
Given the dimension of input vector, the alternative would be to extract the relevant features
of the input time series and use them as input of a classification algorithm.

The second approach to be considered is to take advantage of deep learning algorithms
since the relevant features are learned during the training and not handcrafted. The main goal
is to evaluate how a custom CNN model can improve the accuracy of the results, when dealing
with uni- and multivariate time series at the input of the network (see Figure 3.8). CNN
models are particularly efficient to capture the spatial and temporal patterns. Additionally,
pre-processed time series are converted into a two-dimensional input image, which is applied
to a 2D-CNN to explore asymmetries in bilateral GRFs. The intention is to explore a way
to encode time series into an image and, consequently, to take advantage of the CNNs to
learning features and identifying structure in the data.

Figure 3.8: Schematic diagram of the CNN model.

36

3.3.2 Model Development

The model development process consists of two-phases. The first phase comprises training
and validation, while the second phase is the test of the trained model with an unseen dataset.
Figure 3.9 describes the process that will be applied to this work, following the training,
validation and test approach. The objective is to divide the whole dataset into three subsets.
The training set will be used to train the model, the validation set will provide an unbiased
evaluation of the model fit on the training set and to tune the model parameters and, finally,
the test set is applied to evaluate the model. The test set contains data that was never seen
by the model (including its hyperparameters) in order to get an unbiased final estimate. The
training and the test set are assumed to be obtained from the same probability distribution.

Two factors determine the performance of the neural network model [55]. First, the ability
to make the training error small. Second, the ability to perform well on previously unseen
inputs (generatization), i.e., to make the gap between training and test error small. These
two factors are related to the underfitting and overfitting challenges that may occur when
developing a custom model from scratch. Underfitting takes place when the model is not able
to achieve a reasonable low error on the training set. In other words, the model is too basic
to learn the hidden structure of the data. On the other hand, overfitting happens when there
is a large gap between the training and test error, performing well on train set but not on
test set [47]. Using a mini-batch gradient descent algorithm, that splits the training set into
small batches, the overfitting will be detected by comparing the accuracy in the training and
validation sets after each epoch.

Model development and learning algorithms have several hyper-parameters whose choice
affects the behaviour of the learning process. The validation set of examples, that the training
algorithm does not observe, will be used to parameter tuning. The batch size specifies the
number of training samples that pass through one network information flow, more properly
one forward and backward. It is defined by the Equation (3.1).

FlowperEpoch =
NrSamples

BatchSize
(3.1)

where one flow is one forward and backward pass. An epoch represents the ending of a cycle,
when all training examples passed forward and backward across the network.

Figure 3.9: Model development workflow (taken from [67]).

37

3.3.3 Performance Measures

The metrics chosen to evaluate the performance of the neural models are the accuracy and
the confusion matrix. The prediction accuracy is the proportion of samples correctly classified
[68]. Some examples are the binary accuracy, the categorical accuracy, among others. Another
alternative is by measuring the error rate. They differ only at the output, where the error
rate presents the incorrect outputs and the accuracy the correct ones [68].

The confusion matrix is also a common measure [69]: it is a table that contains the
number of correct and incorrect classified predictions for each class. The table comprises
True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN)
classification incidences. In a binary problem, one class is the negative and the other is the
positive. The true negatives and positives represent the correctly classified samples. The
false negatives and positives, on the other hand, represent the samples of one class that were
mistakenly classified as another class [68]. Is is very useful since it allows easily to identify the
decision confusions, thus concluding on the quality of the model and data involved [7]. Figure
3.10 displays the binary confusion matrix table division. A confusion matrix can be applied
also in a multi-class problems. The values can be presented with or without normalization.

Figure 3.10: Binary confusion matrix (taken from [68]).

3.4 Description of the Experiments

According to previous ideas, the three scenarios to be implemented and the selected ar-
chitectures for processing the GRFs are summarized as follows:

Binary classification (Chapter 4)

Chapter 4 addresses the binary classification problem. As it is a binary problem, its
objective is only to distinguish an healthy subject from one with a gait disorder (unspecified).
It is intended to compare the performance of a multilayer perceptron and a convolutional
neural network to solving the same problem.

Multi-class classification (Chapter 5)

Chapter 5 addresses the multi-class classification problem. The objective is to distinguish
healthy subjects from those with an hip, knee, ankle, and calcaneus gait disorder. The models
to be studied are the same as the previous point.

38

Binary and multi-class classification with a 2-D CNN (Chapter 6)

Chapter 6 studies the viability of the classification of the binary and the multi-class gait
disorders using a 2-D convolutional network. The image to encode from the GRF measure-
ments is a plot where in the x-axis are the GRF of the left foot and in the y-axis the ones from
the right foot. It is important to refer that this is just one way of representing the image.
The global objective of the chapter is to analyse the performance of the 2-D convolutional
neural networks on both classification problems.

39

40

Chapter 4

Neural Network Binary
Classification

This chapter aims to compare the performance of two neural networks when dealing with
the binary classification of human gait disorders: multi-layer perceptron and convolutional
neural network. It covers all the steps performed during the implementation of the binary
classification, starting with the dataset preparation, moving to the parameter tuning and
concluding with the final evaluation results. The dataset used in this work is the GaitRec,
currently, the most complete GRFs record [14].

4.1 Dataset Preparation

The GaitRec dataset contains information about the subjects and their GRF measure-
ments. The authors [14] provide information about the dataset and assists anyone who needs
to use it for research purposes. It contains all the dataset background/summary, the methods
like the data recording and test protocol or the dataset and annotation, the data records,
the technical validation, the usage notes and finally the references, author contributions,
acknowledgments, competing interests and additional information.

The metadata file already contains a train-test split of the dataset labeled as TRAIN and
TEST. It also has a balanced training set labeled as TRAIN BALANCED due to the fact
that the training set contains an unbalanced number of classes that can affect negatively the
optimization of the machine learning models [14]. The previous is formed by at least five
trials for each body side per session and only by data from initial assessments (first session
of the subject) [14]. The TEST subset was not balanced.

The unbalanced set contains a train-test split of 70%-30% with 52745 samples of training
and 22987 samples of test and the balanced one a split of 22%-78% with 6308 samples of
training and 22987 samples of test. Figure 4.1 shows the division of the GaitRec dataset
proposed by the article authors.

4.1.1 Dataset balance

The first problem was the binary classification that, like the name implies, only contains
two classes (Healthy Controls and Gait Disorders). For this case, it is necessary to transform
the Knee, Ankle, Calcaneus and Hip classes into only one class, the Gait Disorders.

41

Figure 4.1: GaitRec multi-class (Healthy Controls (HC), Hip (H), Knee (K), Ankle (A), and
Calcaneus (C)) split (taken from [14]).

Figure 4.2: GaitRec Binary Split.

42

Figure 4.2 represents the result of the transformation of the original dataset into a binary
one. As it is possible to observe there is no balance in both training and testing sets. In
machine learning it is very important to have a balanced dataset since the class discrepancy
might affect negatively the performance and optimization of the machine learning methods.
In addition, it is also crucial to prepare the dataset in advance. For that, the first approach
for a possible final training dataset was to gather the Healthy Controls from the unbalanced
training set (5563 trials) and join them with the Gait Disorders from the balanced training
set (4874 trials). In this way it is granted that the binary class contains practically the same
number of trials for each existent disorders and nearly the same number of healthy controls.
The same number of trials within the disorder class ensures that in the future the algorithm
learns all the possibilities in the same way, making it as general as possible, thus covering
all the possibilities. The test dataset was cut randomly to 5000 trials, maintaining the 2192
trials from the healthy controls and reducing the gait disorders to 2808 trials.

After some tests it was added a validation set, created with some trials of the training
one. This new dataset contained 2609 trials (25% of training set).

4.1.2 Selection of other relevant inputs

Again, after some tests, it was concluded that the metadata file contained information that
could be very important to the learning process and so it was necessary to make changes to
the train-validation-test sets. The four most important fields to consider were sex, age, speed
and session type. As it is known, men and women walk differently, the age influences the walk,
the speed affects the GRF measures and the best session to compare all the subjects is the
initial measurement. In the metadata file, the sex field represents women (female) with 0 and
men (male) with 1. The age field is represented in years and expresses the age of the subject
at the recording date. The speed field contains three types of walking speed, in which slow
is 1, self-selected is 2 and fast is 3. Lastly, the session type has three different classifications,
in where initial measurement is 1, control measurement is 2 and initial measurement after
readmission is 3. With this, a new training, validation and test set were created with all the
relevant information to this problem.

For this second approach, the training and test sets that were already available were not
used. All the information was processed first with all the data together (75732 trials) and
only then divided randomly into train-validation-test sets. As mentioned previously, there are
3 different speed categories in the metadata file, slow, self-selected and fast. The approached
problem involves comparing a healthy subject that can walk perfectly at many different speeds
(in this context 1,2 and 3) with a subject with a gait disorder that, at the most, only can
walk at a slow/self-selected speed (1 and 2). With this, using the fast walking speed makes no
sense in the context of the problem, in which its objective is to classify human gait disorders.
In addiction, it is also important to consider the different session types. In this context, the
control measurement and the readmission could mess up the classifications and so, were also
excluded. The sex and the age will be later explained in more detail.

4.1.3 Final dataset

At this point, where in the beginning there were 75732 trials, only 20130 remain. Of
these 20130, 5021 are from healthy controls and 15109 are from gait disorders (4545 from
knee disorders, 4365 from ankle disorders, 2867 from calcaneus disorders and 3332 from hip

43

disorders). To obtain a good performance, both classes need to have approximately the same
number of trials. With this, 5020 trials from the gait disorders were chosen in order to
equalize the number of healthy controls. It is important to refer that these 5020 gait disorder
trials contain 1255 samples for each previous classes (knee, ankle, calcaneus and hip) and
were chosen randomly. To remember, as stated before, the same number of trials within the
disorder class ensures that the algorithm learns all the possibilities in the same way, making
it as general as possible, thus covering all the possibilities.

Now that the dataset information is adapted to the problem it is necessary to divide, as
stated previously, in train, validation and test sets. After some discussion, a division of 60%
for training, 20% for validation and 20% for test was reached containing 6024, 2008 and 2009
trials for each respectively. The division was performed with sklearn train test split. Figure
4.3 and 4.4 represent the class distribution for each set of the new binary dataset.

Figure 4.3: GaitRec Balanced Binary Train-Val-Test Split.

Figure 4.4: GaitRec Balanced Binary Class Split.

All the data was processed with Python3. Later in this work and with the purpose of
building a neural network, the information of each train-validation-test trial will be handled

44

as predictors and classes. In this case, predictors can be seen as the ”hints” provided to the
model so it can establish what class variable it needs to be assigned to each trial. The classes
are labels/targets of the data that categorize the predictors information. In a classification
problem, the predictors contain information that points to one of the classes.

4.2 Parameter Tuning

One of the major difficulties of machine learning is that learning algorithms require to
set parameters before the usage of the models. These parameters are for example the loss
function, the optimizer, the activation function, etc. They have lots of options, each of which
has its applicability depending on the problem. One way to find the best parameters for a
model is to perform the tuning. The tuning chooses, amongst several possibilities, the most
favourable parameters that allow to finish a learning task in the best possible manner.

Both neural networks receive as input a 1x609-dimensional input vector that represents the
horizontal concatenation of the left and right foot ground reaction forces and the important
previously stated metadata information (sex, speed and age). The medio-lateral, anterior-
posterior and vertical components of the GRFs contain, in its respective file, time-normalized
vectors of 101 points. The order of the concatenation is left foot first and then right foot.
So, more specifically, the input information is left medio-lateral, left anterior-posterior, left
vertical, right medio-lateral, right anterior-posterior, right vertical, sex, age, speed. These
represent the input predictors. The classes are two, healthy controls or gait disorders, since
this is a binary problem. All the experiments realized in the next subsections were performed
with a train and validation set. The metric was binary accuracy for this binary classification.
All graphics are presented to corroborate the tuning result/accuracy.

4.2.1 ANN

The authors of the dataset performed some experiments with a mini dataset before cre-
ating GaitRec [65]. They built an ANN (Multilayer Perceptron) with three consecutive fully
connected layers that lead to a final output layer. The size of each hidden layer was 768
whereas the size of the output layer was 1, the number of classes (0 for healthy and 1 for
gait). The output activation was a sigmoid due to the fact that the problem was a binary one.
Additionally, the batch size and the epoch number were 512 and 750, respectively. The start-
ing point and a good practice is to mimic their neural network most important parameters.
In addition, some other parameters are added to perform the tuning.

Starting with the tuning process, it was decided that the parameters submitted to the
tuning should be tuned in an ”automatic” way with sklearn GridSearchCV, writing all the
possibilities and letting the computer define what are the best parameters. The activation
function, the kernel initializer, the optimizer and the loss function were the first parameters
that were tuned. The terms compared for the activation function were ReLU vs. Hyperbolic
Tangent (Tanh). For the kernel initializer, the Random vs. He vs. Glorot (Normal and Uni-
form), for the optimizer the Adam vs. SGD and for the loss function the binary crossentropy
vs. hinge vs. poisson. The results of the tuning, in other words the best parameters, were
ReLU for the activation, Adam for the optimizer, binary crossentropy for the loss function
and random uniform to the kernel initializer. It is important to consider that the value of
the neurons, layers, batch size, epochs, learning rate and dropout will be studied in the sub-
sequent sub sections. The study will be more ”manual” since the training and validation of

45

the model will be repeated several times to find the best parameters.

Neurons and Dense Layers

The neurons in a neural network aim to mimic those in human ones. They can be seen as
nodes through which data flows. A layer is made up of nodes. It normally receives a weighted
input, transforms it with a set of functions and then send these values as output to the next
layer. Creating a viable neural network involves using the right amount of layers and neurons.
It is important to study the influence of each layer and the number of neurons in order to have
a proper result in the end. The objective was to compare the number of neurons and layers.
Starting with 2 layers, the objective was to compare the number of neurons (305, 384, 450,
600, 768, 880, 1000, 1200, 1500). After that, add another layer on and on and compare the
same number of neurons till reach the max accuracy and low loss. The value of the learning
rate, decay, epochs and batch size was a fixed value amongst all the tests. Table 4.1 presents
the results of the performed tuning and their best parameters/scores.

Dense Layers Best Result

Neurons: 1200
2

Acc: 95.9%

Neurons: 1500
3

Acc: 96.8%

Neurons: 1200
4

Acc: 97.43%

Neurons: 1500
5

Acc: 97.6%

Neurons: 1000
6

Acc: 97.4%

Table 4.1: ANN Binary tuning best parameters/score and layers.

As it is possible to observe, the best accuracy was obtained with 5 layers with 1500 neurons
each. Another tuning was made, increasing even further the number to 1700 and subsequently
2000. 1700 neurons obtained an accuracy of 97.7%, this being the best value obtained.

Batch Size

Four batch sizes were compared, more precisely 128, 256, 512 and 1024. After the tuning
process, the best batch size was 512 with 97.7% accuracy. Figure 4.5 represents the binary
comparison (train and validation) of the ANN batch size. The size 512, the best one, is
represented by the black colour. Blue, green and red represent 128, 256 and 1024, respectively.
Note that this is a binary problem with a good amount of data so the discrepancy is not very
watchable.

46

Figure 4.5: Binary ANN batch size comparison.

Number of Epochs

In this case, the number of epochs represents how many times each trial is examined by the
network. Four epoch sizes were set side by side, more properly 500, 750, 1000, 1250. The best
epoch number was 750 with an accuracy of 97.7%. Figure 4.6 represents the binary comparison
(train and validation) of the ANN epoch size. The size 750, the best one, is represented by
the black colour. Red, blue and green represent 500, 1000 and 1250, respectively.

Figure 4.6: Binary ANN epoch size comparison.

Learning Rate

The learning rate is one of the most important parameters to optimize. It handles the
step size for model weight updates regarding the loss function. It has a small positive value
and controls how fast the model is adapted to the problem. Different values for the learning

47

rate and decay were submitted to the tuning process, 0.00005, 0.0001, 0.0005, 0.001, 0.005.
The best learning rate was 0.0005 and the decay 0.0001 with an accuracy of 98.4%. Figure
4.7 and 4.8 represent the binary comparison (train and validation) of the ANN learning rate.
The 0.0005 learning rate, the best one, is represented by the black colour. Red, green and
blue represent 0.0001, 0.001 and 0.005, respectively.

Figure 4.7: Binary ANN learning rate comparison.

Figure 4.8: Binary ANN learning rate accuracy comparison.

Dropout

The dropout, like the name implies, drops out some random neurons in a neural network
during an iteration in the training phase. The dropout plays a major role in preventing a
model from overfitting. In this case it is essential to analyze if an addition of dropout will
increase the performance of the model, and if yes analyse the one that most benefits the model.
The dropouts were added after each dense layer. Five values for the dropout were used in

48

the tuning process, 0 (no dropout), 0.1 (10%), 0.2 (20%), 0.3 (30%), 0.4 (40%). The best
dropout was 0.1 (10%) with an accuracy of 98.5%. After that, another tuning was performed
with 0.05, 0.1 and 0.15 and the best one was 0.15 (15%) with 98.8%. Figure 4.9 represents
the binary comparison (train and validation) of the ANN dropout. The 10% dropout, the
best one, is represented by the black colour. Red, yellow, green and blue represent 0%, 20%,
30% and 40%, respectively.

Figure 4.9: Binary ANN dropout comparison.

With this, the ANN parameter tuning is concluded. The best parameters were ReLU for
the activation, Adam for the optimizer, binary crossentropy for the loss function, random
uniform for the kernel initializer, 5 dense layers with 1700 neurons each, 512 for the batch
size, 750 epochs, 0.0005 for the learning rate and 0.15 for the dropout.

4.2.2 CNN

Just like on ANN, the starting point was to mimic the authors neural network parameters
and merge them with other ones. The CNN (1-Dimension CNN) had three consecutive
convolutional layers that led to a final output layer [65]. The convolutional layers had as filter
size for the first, second and third convolution layer 8, 8 and 6, respectively, as stride 2, 2
and 3 and for the output channel 24, 24, 48. Between the convolution layers there was always
a 1-D max pooling layer with a pool size of 2. After the third convolution, the resulting
information was flattened. It was subsequently fed into a fully connected layer with only a
binary output layer. In the same way as the ANN, the output activation was a sigmoid.

The batch size and the epoch number were 512 and 750, respectively. As stated above,
it is important to consider that the value of the batch size, layers, epochs, learning rate and
dropout will be studied in the subsequent sub sections like the ANN approach. The results
of the tuning, in other words the best parameters, were ReLU for the activation, Adam for
the optimizer and binary crossentropy for the loss function.

49

Number of Convolutional and Dense Layers

In order to create a viable neural network, it is necessary to use the right amount of layers
and neurons. Additionally, it is important to study the influence of each layer and the number
of neurons in order to have a proper result in the end. Starting with 2 convolutional layers
several values for the filter were submitted to the tuning, 24, 32, 48, 64, 128 and 256. After
that, the process was to increase on and on by 1 the number of convolutional layers and to
do the tuning again. Table 4.2 presents the results of the performed tuning and their best
parameters/scores. Filters represent the the number of output filters in the convolution.

Conv Layers Best Result

Filters: 64 - 256
2

Acc: 89.8%

Filters: 64 - 128 - 256
3

Acc: 92.92%

Filters: 64 - 256 - 128 - 256
4

Acc: 92.8%

Table 4.2: CNN Binary tuning best parameters/score and layers.

As it is possible to observe, the best choice is 3 convolutional layers with an accuracy
of 92.92%. The next step is to assess whether or not it is worth putting a fully connected
network after the flattening process. Table 4.3 displays the results of the performed tuning
with 3 convolutional layers with the best one being 4 dense layers with 768 neurons.

Dense Layers Best Result

Neurons: 1700
1

Acc: 93.94%

Neurons: 1500
2

Acc: 94.25%

Neurons: 1000
3

Acc: 94.44%

Neurons: 768
4

Acc: 94.6%

Neurons: 1000
5

Acc: 94.49%

Table 4.3: CNN Binary tuning best parameters/score with dense layers.

50

Batch Size

Four different values for the batch size were used in the tuning process, 128, 256, 512 and
1024. The best batch size was 256 with 95.43%. 512 also presented notable results.

Figure 4.10 represents the binary comparison (train and validation) of the CNN batch
size. The size 256, the best one, is represented by the black colour. Red, green and blue
represent 128, 512 and 1024, respectively.

Figure 4.10: Binary CNN batch size comparison.

Number of Epochs

The number of epochs used in the tuning process were 750, 1000, 1250 and 1500. The
best number of epochs was 1000 with 95.43%.

Figure 4.11: Binary CNN epoch size comparison.

Figure 4.11 represents the binary comparison (train and validation) of the CNN epoch
size. The size 1000, the best one, is represented by the black colour. Red, green and blue
represent 750, 1250 and 1500, respectively.

51

Learning Rate

Different values for the learning rate and decay were submitted to the tuning process,
0.001, 0.0001 and 0.0005. The best ones were 0.0005 for the learning rate and 0.0001 for the
decay. The best accuracy was 96.42%.

Figure 4.12 and 4.13 represents the binary comparison (train and validation) of the CNN
learning rate. The 0.0005 learning rate, the best one, is represented by the black colour. Red
and blue represent 0.0001 and 0.001, respectively.

Figure 4.12: Binary CNN learning rate comparison.

Figure 4.13: Binary CNN learning rate accuracy comparison.

Dropout

Different values for the dropout were used, 0 (no dropout), 0.1 (10%), 0.2 (20%), 0.3
(30%), 0.4 (40%). The best dropout value was 0.2 (20%) with an accuracy of 97,36%.

Figure 4.14 represents the binary comparison (train and validation) of the CNN dropout.

52

The 20% dropout, the best one, is represented by the black colour. Red, blue, green and
yellow represent 0%, 10%, 30% and 40%, respectively.

Figure 4.14: Binary CNN dropout comparison.

With this last step, the parameter tuning of the 1-D convolutional model is concluded.
The best model parameters were three convolutional layers followed by four dense layers with
768 neurons in each dense and the ReLU activation function. The best learning parameters
are the Adam optimizer, binary crossentropy loss function, a batch size of 256 and 1000
epochs, a learning rate of 0.0005 and 20% dropout.

4.3 Results

After the tuning process for finding the best parameters, this section provides the results
of comparing the performance of the feedforward neural network against the 1D-CNN. Figure
4.15 represents the learning curves over time. The model is evaluated on the training dataset
and by an hold out validation dataset during the iterative learning process. The analysis of
these curves indicates that the training and validation datasets are suitably representative
and the models did not overfit. Anyway, the convolutional model shows a greater gap between
the training and the validation learning curves, which may indicate less generalization ability.

The prediction on the test dataset is evaluated using two metrics: the accuracy and the
confusion matrix. In addition to the results obtained on the test dataset, a cross-validation
process is performed in order to evaluate the estimators predictive power and how well they
generalize. At the end, the performance results are represented as a function of a mean value
and a standard deviation. The cross-validation approach allows to evaluate the estimators for
predictive power and how well they generalize across different test (validation) sets. The cross-
validation was performed with the KerasClassifier, StratifiedKFold and CrossValScore. The
CrossValScore returns the result of the cross-validation: when all the k -folds are concluded,
the mean of them all and the standard deviation of the quality measure are performed. A
high mean and low standard deviation means that the modelling technique is doing well. The
cross-validation is in charge of dividing randomly the dataset. In this study, it was chosen
a stratified 10-fold cross-validation to evaluate the predictive power and the generalization
ability of the neural models.

53

(a) ANN model accuracy and loss.

(b) 1-D CNN model accuracy and loss.

Figure 4.15: Binary ANN and 1-D CNN model accuracy and loss.

Table 4.4 compares the two models in study, the multilayer perceptron (ANN model) and
the convolutional network (1D-CNN model). The ANN model obtained a cross-validation
accuracy of 98.42%. This result shows that the model generalizes well, showing a good
predictive ability. The model obtained an accuracy of 99% on the test dataset, only failing to
classify correctly 20 trials of a total of 2009 (1%). After cross validation, the mean is 0.9842
(98.42%) with a standard deviation of 0.0053. Further, this model proved to be the one with
the best results in all the experiments performed.

Neural Train Val Test Conf.Matrix 10-fold
Network Correct/Wrong Cross-val

GD - 1037 / 11 (98.95%)
ANN 99.7% 98.8% 99% 98.42%

HC - 952 / 9 (99.06%)

GD - 1021 / 27 (97.42%)
1-D CNN 99.68% 97.21% 97.96% 97.17%

HC - 947 / 14 (98.54%)

Table 4.4: Results comparison of the ANN vs. 1D-CNN models.

54

(a) ANN Confusion Matrix. (b) 1-D CNN Confusion Matrix.

Figure 4.16: Binary ANN and 1-D CNN confusion-matrices.

The application of 1-D CNN models to the binary human gait classification demonstrated
to be also very effective with a cross-validation accuracy of 97.92%. The model achieved an
accuracy of 97.96% on the test set, only failing to classify correctly 41 trials of a total of 2009
(2.04%). In this case, the mean of all results is 0.9717 (97.17%) with a standard deviation of
0.0091. Figure 4.16 depicts the confusion matrices generated for the ANN and the models.
On one hand, the ANN model was able to correctly identify 1037 (98.95%) gait disorders out
of 1048 and 952 (99.06%) healthy controls out of 961. It only failed to classify 20 trials out of
2009. On the other hand, CNN model was able to identify 1021 (97.42%) gait disorders out
of 1048 and 947 (98.54%) healthy controls out of 961. It only failed to classify 41 trials out
of 2009.

55

56

Chapter 5

Neural Network Multi-class
Classification

This chapter discusses the comparison and performance of two neural networks, artificial
and convolutional, when dealing with the multi-class classification of human gait disorders.
It covers all the steps performed in the multi-class classification, starting with the dataset
preparation, moving to the parameter tuning and ending with the final results. As stated
previously, 1-D convolutions are compared to ANN in order to ensure a proper comparability.
The dataset used in this work is the GaitRec, currently the most complete GRFs dataset [14].

5.1 Dataset Preparation

The dataset preparation for the multi-class problem is different from the binary one.
Figure 5.1 represents the GaitRec dataset overview. As its possible to observe, there is not a
balanced number of trials for each class. Taking into account the binary classification case,
it is possible to foresee that the division given by the authors of the article it is not adapted
for all problems, being important to manipulate the dataset according to the specific needs.
With this in mind, a new division of train-validation-test set needs to be done.

Figure 5.1: GaitRec Database Overview (Remember) (taken from [14]).

5.1.1 Selection of relevant inputs

Similarly to the binary dataset preparation, the metadata file contains information that is
relevant and helps to make a proper dataset division. The most relevant fields to consider are

57

sex, age, speed and session type. As explained before, men and women walk differently, the
age influences the walk, the speed affects the GRF measures and the best session to compare
all the subjects is the initial measurement. To manipulate the dataset only the speed and
session type were factors of exclusion, more properly trials with fast speed and trials that
were not initial measurement. With this, a new training, validation and test set were created
with all the information.

Identically the binary dataset preparation, all the information was processed first with
all the data together (75732 trials) and only then divided randomly into train-validation-test
sets. There are 3 different speed categories in the metadata file, slow, self-selected and fast.
The multi-class problem implicates comparing a healthy subject that can walk perfectly at
many different speeds with a subject with a gait disorder that, at the most, only can walk at a
slow/self-selected speed. With this, using the fast walking speed makes no sense in the context
of the problem, in which its objective is to classify human gait disorders. Additionally, it is
also necessary to consider the different session types. In this context, the control measurement
and the readmission could mess up the classifications and so, were also excluded. The sex and
the age are also relevant and are included in the predictors set, in the subsequent subsections.

5.1.2 Final dataset

At this point only 20130 trials are left. Of these 20130, 5021 are from healthy controls,
4545 from knee disorders, 4365 from ankle disorders, 2867 from calcaneus disorders and 3332
from hip disorders. To achieve a proper result, all classes need to have approximately the
same number of trials to ensure that the algorithm learns all the possibilities in the same
way, making it as general as possible, thus covering all the possibilities. With this, it was
decided to reduce healthy, knee, ankle and hip classes to 2867 trials, the number of trials of
the calcaneus, the smallest class. It is relevant to refer that the trials were chosen randomly.
Reducing the number of trials made the number 20130 pass to 14335. Now that the dataset
information is adapted to the problem it is necessary to divide in train, validation and test
sets. Figure 5.2 represents the train-validation-test division. A division of 70% for training,

Figure 5.2: GaitRec balanced multi-class train-val-test split.

15% for validation and 15% for test was reached containing 9990, 2194 and 2151 trials for each
respectively. The division was performed with sklearn train test split. Figure 5.3 represents
the class distribution for each set of the new multi-class dataset. All the data was processed

58

Figure 5.3: GaitRec balanced multi-class class split.

with Python3. In the next sections and with the purpose of building a neural network, the
information of each train-validation-test trial will be handled as predictors and classes. In
this case and to remember, predictors can be seen as the ”hints” provided to the model
so it can establish what class variable it needs to be assigned to each trial. The classes
are labels/targets of the data that categorize the predictors information. In a classification
problem, the predictors contain information that points to one of the classes.

5.2 Parameter Tuning

The tuning process is one way to find the best parameters for a model. The tuning
chooses, among several possibilities, the most favourable parameters that allow to finish a
learning task in the best possible manner.

The input for both neural networks is a 1x609-dimensional vector that represents the
horizontal concatenation of the left and right foot ground reaction forces and the relevant
metadata information (e.g., sex, speed and age). The order of the concatenation is left foot
first and then right foot. So, to elucidate better, the input information is left medio-lateral,
left anterior-posterior, left vertical, right medio-lateral, right anterior-posterior, right vertical,
sex, age, speed. These represent the input predictors. The classes are five, healthy controls,
ankle disorder, knee disorder, hip disorder, calcaneus disorder and are represented in the
model by 3, 0, 4, 2 and 1, respectively.

All the experiments realized in the next subsections were performed with the train and
validation sets. The metric was accuracy for this multi-class classification. All graphics are
presented to corroborate the tuning result.

5.2.1 ANN

The starting ANN (Multilayer Perceptron), similar to the binary problem, contains three
consecutive fully connected layers that lead to a final output layer. The size of each hidden
layer was 768 whereas the size of the output layer was 5, the number of classes (healthy, ankle
disorder, knee disorder, hip disorder, calcaneus disorder). The output activation was softmax
due to the fact that the problem is a multi-class one. Additionally, the size of the batch
size and epochs was random and was 512 and 750, respectively. It is important to consider
that the value of the neurons, layers, batch size, epochs, learning rate and dropout will be
studied in the subsequent sub sections. The parameters submitted to the first tuning, like in

59

the binary model, were the activation function, the kernel initializer, the optimizer and the
loss function. For the activation, the compared functions were ReLU vs. Tanh, for the kernel
initializer the Random vs. He vs. Glorot (Normal and Uniform), for the optimizer the Adam
vs. SGD and for the loss function the sparse categorical crossentropy vs. hinge vs. poisson.

The results of the tuning, in other words the best parameters, were Tanh for the activation,
Adam for the optimizer, sparse categorical crossentropy for the loss function and random
normal to the kernel initializer.

Neurons and Dense Layers

Creating a viable neural network involves using the right amount of layers and neurons.
It is important to study the influence of each layer and the number of neurons in order to
have a proper result in the end. The objective is to compare the number of neurons and
layers. Starting with 2 layers, the objective is to compare the number of neurons (384, 450,
600, 768, 880, 1000, 1200, 1500). After that, add another layer on and on and compare the
same number of neurons till reach the max accuracy and low loss. The value of the learning
rate, decay, epochs and batch size is a fixed value (default for the learning rate and decay)
and 750 and 512 for the other 2 parameters.

Table 5.1 presents the results of the performed tuning and their best parameters/scores.

Dense Layers Best Result

Neurons: 1000
2

Acc: 93.71%

Neurons: 768
3

Acc: 94.33%

Neurons: 1000
4

Acc: 93.52%

Neurons: 768
5

Acc: 92.8%

Table 5.1: ANN Multi-class tuning best parameters/score and layers.

As it is possible to observe, the best accuracy was obtained with 3 layers, each with 768
neurons, with an accuracy of 94.33%.

Batch Size

Four batch sizes were compared, more precisely 128, 256, 512 and 1024. The best batch
size was 1024 with an accuracy of 95.2%. After that was tested the 1024 vs. 2048 and the
1024 obtained the best accuracy.

Figure 5.4 represents the multi-class comparison (train and validation) of the ANN batch
size. The 1024 batch, the best one, is represented by the black colour. Red, green and blue
represent 512, 256 and 128, respectively.

60

Figure 5.4: Multi-class ANN batch size comparison.

Number of Epochs

Four epoch sizes were set side by side, more properly 750, 1000, 1250 and 1500. The best
epoch number was 1200 with an accuracy of 95.2%.

Figure 5.5 represents the multi-class comparison (train and validation) of the ANN epoch
size. The 1250 epoch size, the best one, is represented by the black colour. Blue, red and
green represent 750, 1000 and 1500, respectively.

Figure 5.5: Multi-class ANN epoch size comparison.

Learning Rate

The learning rate is one of the most important parameters to optimize. It handles the
step size for model weight updates regarding the loss function. It has a small positive value

61

and controls how fastly the model is adapted to the problem. Different values for the learning
rate and decay were submitted to the tuning process, 0.0001, 0.0005 and 0.001. The best
learning rate was 0.0005 and the decay 0.0001 with an accuracy of 95,8%.

Figure 5.7 and Figure 5.6 represent the multi-class comparison (train and validation) of
the ANN learning rate. The 0.0005, the best one, is represented by the black colour. Red,
blue and green represent 0.0001, 0.001 and 0.005, respectively.

Figure 5.6: Multi-class ANN learning rate comparison.

Figure 5.7: Multi-class ANN learning rate accuracy comparison.

Dropout

The dropout, like the name implies, drops out some random neurons in a neural network
during an iteration in the training phase. The dropout plays a major role in preventing a
model from overfitting. In this case it is essential to analyze if an addition of dropout will
increase the performance of the model, and if yes analyse the one that most benefits the
model. The dropouts were added after each dense layer. Five values for the dropout were

62

used in the tuning process, 0 (no dropout), 0.1 (10%), 0.2 (20%), 0.3 (30%), 0.4 (40%). The
best dropout was 0.2 (20%) with an accuracy of 96.4%. In addition, 0.3 (30%) also presented
decent results.

Figure 5.8 represents the multi-class comparison (train and validation) of the ANN dropout.
The 0.2 (20%), the best one, is represented by the black colour. Red, blue, green and orange
represent 0 (without dropout), 0.1 (10%), 0.3 (30%) and 0.4 (40%), respectively.

Figure 5.8: Multi-class ANN dropout comparison.

After that, more tests were made and it was concluded that the best choice was to insert
a 0.25 (25%) dropout only in the first two layers, with an accuracy of 97%.

With this, the ANN parameter tuning is concluded. The best parameters were Tanh for
the activation, Adam for the optimizer, sparse categorical crossentropy for the loss function,
random normal for the kernel initializer, 3 dense layers with 768 neurons each, 1024 for the
batch size, 1250 epochs, 0.0005 for the learning rate and 0.25 for the dropout.

5.2.2 CNN

To start, it was also used as reference the binary CNN model. The output activation was
a softmax due to the fact that the problem was a multi-class one. The batch size and epochs
value was random and was 512 and 750, respectively. The parameters submitted to the tuning
were the activation function, the optimizer and the loss function. Specifically, the parameters
were the same as the multi ANN ones. The results of the tuning, the best parameters, were
also ReLU for the activation, Adam for the optimizer and sparse categorical crossentropy for
the loss function.

Number of Convolutional and Dense Layers

Like in the ANN, in order to create a viable neural network it is necessary to use the right
amount of layers and neurons. Additionally, it is important to study the influence of each
layer and the number of neurons in order to have a proper result in the end.

Starting with 3 convolutional layers several values for the filter were submitted to the
tuning, 24, 32, 48, 64, 128 and 256. After that, the process was to increase on and on by 1
the number of convolutional layers and to do the tuning again. Table 5.2 presents the results

63

of the performed tuning and their best parameters/scores. Filters represent the the number
of output filters in the convolution.

Conv Layers Best Result

Filters: 64 - 256 - 512
3

Acc: 76.5%

Filters: 64 - 64 - 128 - 256
4

Acc: 84.24%

Filters: 64 - 64 - 128 - 256 - 512
5

Acc: 65.8%

Table 5.2: CNN Multi-class tuning best parameters/score and layers.

As it is possible to observe, the best choice is 4 convolutional layers with an accuracy
of 84.24%. The next step is to assess whether or not it is worth putting a fully connected
network after the flattening process.

Dense Layers Best Result

Neurons: 768
1

Acc: 85.9%

Neurons: 1250
2

Acc: 86%

Neurons: 1250
3

Acc: 89.3%

Neurons: 1250
4

Acc: 90.58%

Neurons: 1000
5

Acc: 91.34%

Neurons: 1250
6

Acc: 90.59%

Table 5.3: CNN Multi-class tuning best parameters/score with dense layers.

Table 5.3 displays the results of the performed tuning with 4 convolutional layers. The
best accuracy was obtained with more 5 dense layers, each with 1000 neurons, with 91.34%.

64

Batch Size

Five different values for the batch size were used in the tuning process, 128, 256, 512, 1024
and 2048. The best batch size was 1024 with an accuracy of 93.23%.

Figure 5.9 represents the multi-class comparison (train and validation) of the CNN batch
size. The 1024 batch, the best one, is represented by the black colour. Orange, blue, red,
green represent 128, 256, 512 and 2048, respectively.

Figure 5.9: Multi-class CNN batch size comparison.

Number of Epochs

The number of epochs used in the tuning process were 750, 1000, 1250 and 1500. The
best epoch number was 1250 with an accuracy of 93.23%. 1500 has also presented decent
results.

Figure 5.10: Multi-class CNN epoch size comparison.

Figure 5.10 represents the multi-class comparison (train and validation) of the CNN epoch

65

size. The 1250 epoch value, the best one, is represented by the black colour. Red, blue and
green represent 750, 1000 and 1500, respectively.

Learning Rate

Four different values for the learning rate and decay were submitted to the tuning process,
0.001, 0.005, 0.0001, 0.0005. The best learning rate was 0.001 and the decay 0.0001 with an
accuracy of 93.8%.

Figure 5.12 and Figure 5.11 represent the multi-class comparison (train and validation)
of the CNN learning rate. The 0.001, the best one, is represented by the black colour. Blue,
red and green represent 0.0001, 0.0005 and 0.005, respectively.

Figure 5.11: Multi-class CNN learning rate comparison.

Figure 5.12: Multi-class CNN learning rate accuracy comparison.

66

Dropout

Different values for the dropout were used, 0 (no dropout), 0.1 (10%), 0.2 (20%), 0.3
(30%), 0.4 (40%). The best dropout value was 0.3 (30%) with an accuracy of 95.6%.

Figure 5.13 represents the multi-class comparison (train and validation) of the CNN
dropout. The 0.3 (30%), the best one, is represented by the black colour. Red, blue, orange
and green represent 0 (without dropout), 0.1 (10%), 0.2 (20%) and 0.4 (40%), respectively.

Figure 5.13: Multi-class CNN dropout comparison.

After that more tests were performed in order to find where the dropout was more valuable.
With a dropout in the second and fourth convolutional layer and also with one in every dense
layer was obtained an accuracy of 95.9%. With this, the 1-D CNN parameter tuning is
concluded. The best parameters were ReLU for the activation, Adam for the optimizer,
sparse categorical crossentropy for the loss function, 4 convolutional layers followed by 5
dense layers with 1000 neurons in each dense, 1024 for the batch size, 1250 epochs, 0.001 for
the learning rate and 0.3 for the dropout.

5.3 Results

As in the binary classifier, the results are concentrated on the analysis of learning curves
and the evaluation of the prediction accuracy on the test dataset and the confusion matrices.
Figure 5.14 represents the learning curves, including the evolution of the model accuracy and
the loss function over several iterations. Once again, the fully-connected ANN model shows
a good behavior, being more likely the model generalizes correctly from the test data.

The results achieved on the test dataset are depicted in the form of prediction accuracy
(see Table 5.4) and confusion matrices (see Figure 5.15). The ANN model achieves a slightly
higher value of test accuracy (97.16% against 96.23% for the CNN). At the same time, the
confusion matrices provide a better idea of the predictions failures and successes for each
class.

67

(a) ANN model accuracy and loss.

(b) 1-D CNN model accuracy and loss.

Figure 5.14: Multi-class ANN and 1-D CNN model accuracy/loss.

(a) ANN confusion matrix. (b) 1-D CNN confusion matrix.

Figure 5.15: Multi-class ANN and 1D-CNN confusion matrices.

68

Neural Train Val Test Conf.Matrix 10-fold
Network Correct/Wrong Cross-val

A - 398 / 14 (96.6%)
C - 434 / 6 (98.6%)

ANN 99.9% 96.8% 97.16% H - 392 / 17 (95.8%) 97.6%
HC - 407 / 5 (98.8%)
K - 459 / 19 (96%)

A - 387 / 25 (93.9%)
C - 429 / 11 (97.5%)

1-D CNN 99.05% 96.3% 96.23% H - 389 / 20 (95.1%) 96.31%
HC - 408 / 4 (99%)
K - 457 / 21 (95.6%)

Table 5.4: Multi-class ANN vs. 1-D CNN comparison.

On one hand, the ANN model succeeded in identifying 2090 test classes out of 2151
(97.16%). More precisely, 398 of 412 ankle disorders (96.6%), 434 of 440 calcaneus disorders
(98.6%), 392 of 409 hip disorders (95.8%), 407 of 412 healthy controls (98.8%) and 459 of
478 knee disorders (96%). On the other hand, the 1D-CNN model was able to identify 2070
test classes out of 2151 (96.23%): 387 of 412 ankle disorders (93.9%), 429 of 440 calcaneus
disorders (97.5%), 389 of 409 hip disorders (95.1%), 408 of 412 healthy controls (99%) and 457
of 478 knee disorders (95.6%). The results obtained with the cross-validation process confirm
that the ANN network produces better average results than the 1D-CNN. More concretely,
the ANN attains a mean accuracy of 0.9760 (97.60%) with standard deviation of 0.0049, while
the 1D-CNN performance stands at 0.9631 (96.31%) for a deviation of 0.0051.

69

70

Chapter 6

Image-Based Convolutional Neural
Network Classification

As a new approach to the problem, the creation of 2-D images emerged. This appeared
as a new proposal for the CNN approach and it was not known if it would give good results.
The goal was to transform the 1-D GRF into an image. Due to the fact that in the early
stages of the problem the results were not so good, two solutions were proposed based on their
frequent use in similar problems. One was to generate an image with a 2-D line plot where
on the x-axis were the GRF of the left foot and on the y-axis those of the right foot. The
other one consisted also on an image with a 2-D line plot where on the x-axis were the GRF
of the left foot and right foot concatenated and on the y-axis the derivative of the x-axis.
The two represent valid solutions and after some discussion the first one was the chosen one.
The second one was not discarded because it also represents a possibility in a future work.
Again, the binary and the multi-class classification will be performed using the final dataset
of Chapter 4 and 5, respectively.

6.1 Binary Classification

This section approaches the binary classification of human gait disorders using 2-D con-
volutional neural network. The input of the network will be an image, created with the final
GRF dataset of the Chapter 4. It covers all the steps performed in the binary classification,
starting with the dataset preparation, moving to the parameter tuning and ending with the
final results. The next subsection describes the dataset preparation and how the images were
generated.

6.1.1 Dataset Preparation

A Matlab script was created to process the data. The dataset with all the train-validation-
test data from the 1-D binary section was applied to this one. All left and right foot GRF
were analysed (anterior-posterior, medio-lateral and vertical) in order to find the min and the
max for each and to define the overall limits separately.

The values defined were -0.4 and 0.4 for the anterior-posterior, -0.15 and 0.15 for the
medio-lateral and 0.015 and 1.45 for the vertical. Then, all the data were normalized between
-1 and 1. Consequently, a color for each GRF was chosen to differentiate them. The colors

71

were black for the vertical, green for the anterior-posterior and red for the medio-lateral. The
size of all images is 224x224. Figure 6.1 represents an example of a generated healthy image
(left) and disorder one (right). It is important to refer that the information about the sex,
age and speed is not present in the 2-D CNN.

Figure 6.1: Binary 2-D generated image (Healthy vs. Gait Disorder)

Again, the colors of the Figure 6.1 are black for the vertical GRF, green for the anterior-
posterior GRF and red for the medio-lateral GRF.

6.1.2 Parameter Tuning

One way to find the best parameters for a model is to perform the tuning. The tuning
chooses, amongst several possibilities, the most favourable parameters that allow to finish a
learning task in the best possible manner. The input vector will be the images generated
with the left and right GRF. The classes are two, healthy control and gait disorder. The
metric is binary accuracy since we are dealing with a binary problem. Just like on CNN
1-D, the starting point was to mimic the authors neural network parameters and merge them
with other ones. The CNN contained three consecutive convolutional layers that lead to a
final output layer. The convolutional layers had as filter size for the first, second and third
convolution layer 8, 8 and 6, respectively, as stride 2, 2 and 3 and for the output channel 24,
24, 48. Between the convolution layers there was always a 1-D max pooling layer with a pool
size of 2.

After the third convolution, the resulting information was flattened. It was subsequently
fed into a fully connected layer with only a binary output layer. The output activation was
a sigmoid. With this and to start, the architecture of the 2-D Binary CNN will be the same.
The size of the batch size and epochs was random and was 32 and 500, respectively. As stated
above, it is important to consider that the value of the batch size, layers, epochs, learning
rate and dropout will be studied in the subsequent sub sections. The results of the tuning, in
other words the best parameters, were ReLU for the activation, Adam for the optimizer and
binary cross-entropy for the loss function.

Number of Convolutional and Dense Layers

In order to create a viable neural network it is necessary to use the right amount of layers
and neurons. Additionally, it is important to study the influence of each layer and the number

72

of neurons in order to have a proper result in the end.
Starting with 4 convolutional layers several values for the filter were submitted to the

tuning, 48, 64, 128 and 256. After that, the process was to increase on and on by 1 the
number of convolutional layers and to do the tuning again. Table 6.1 presents the results of
the performed tuning and their best parameters/scores. Filters represent the the number of
output filters in the convolution.

Conv Layers Best Result

Filters: 64 - 64 - 128 - 256
4

Acc: 82.11%

Filters: 64 - 64 - 128 - 128 - 256
5

Acc: 83.01%

Filters: 64 - 64 - 128 - 128 - 256 - 512
6

Acc: 81.17%

Table 6.1: CNN 2D Binary tuning best parameters/score and layers.

As it is possible to observe, the best choice is 5 convolutional layers with a mean accuracy
of 83.01%. The next step is to assess whether or not it is worth putting a fully connected
network after the flattening process. Table 6.2 displays the results of the performed tuning
with 5 convolutional layers. The best accuracy was obtained with two more dense layers, with
an accuracy of 83.4%.

Dense Layers Best Result

Neurons: 768
1

Acc: 82.96%

Neurons: 768
2

Acc: 83.4%

Neurons: 768
3

Acc: 82.11%

Table 6.2: CNN 2D Binary tuning best parameters/score with dense layers.

Batch Size, Number of Epochs, Learning Rate and Dropout

Three different values (8, 16 and 32) for the batch size were used in the tuning process,
the best batch size being 16. The number of epochs used in the tuning process were 500,
750 and 1000, resulting in 750 epochs. Four different values for the learning rate and decay
were submitted to the tuning process: 0.001, 0.005, 0.0001 and 0.0005. The best value after

73

tuning was 0.0001. The best percentage of dropout was 20%, when considering a range from
no dropout to 40% dropout.

The optimization of the model performance on the validation set led to five convolutional
layers followed by two dense layers, with 768 neurons in each dense. At the same time,
the best parameters were ReLU for the activation function, Adam for the optimizer, binary
crossentropy for the loss function. A batch size of 16 for 750 epochs, a learning of 0.0001 and
20% dropout were the results after parameter tuning.

6.2 Multi-class Classification

This section approaches the multi-class classification of human gait disorders using 2-D
convolutional neural network. The input of the network will be an image, created with the
final GRF dataset of the Chapter 5. It covers all the steps performed in the multi-class
classification, starting with the dataset preparation, moving to the parameter tuning and
ending with the final results. The next subsection describes the dataset preparation and how
the images were generated.

6.2.1 Dataset Preparation

The dataset used for this study was generated with the 14332 trials that resulted from the
filtered 1-D task. The chosen train-validation-test division was 60%-20%-20% and, like so,
contains 8600 train trials, 2865 validation trials and 2867 test trials. The train set contains
1752 healthy trials, 1705 ankle disorders, 1717 knee disorders, 1711 hip disorders and 1716
calcaneus disorders. The validation set contains 545 healthy trials, 569 ankle disorders, 559
knee disorders, 591 hip disorders and 603 calcaneus disorders. The test set contains 570
healthy trials, 593 ankle disorders, 591 knee disorders, 565 hip disorders and 548 calcaneus
disorders.

A Matlab script was created to process the data. All left and right foot GRF were
analyzed (anterior-posterior, medio-lateral and vertical) in order to find the min and the max
for each and to define the overall limits separately. The values defined were -0.4 and 0.4 for
the anterior-posterior, -0.15 and 0.15 for the medio-lateral and 0.015 and 1.5 for the vertical.
Then, all the data were normalized between -1 and 1. Consequently, a color for each GRF
was chosen to differentiate them. The colors were black for the vertical GRF, green for the
anterior-posterior GRF and red for the medio-lateral GRF. The size of all images is 224x224.
Figure 6.2 represents an example of a generated image. It is important to refer that the
information about the sex, age and speed is not present in the 2-D CNN.

6.2.2 Parameter Tuning

The tuning process is one way to find the best parameters for a model. The tuning
chooses, among several possibilities, the most favourable parameters that allow to finish a
learning task in the best possible manner. To elucidate better, the input information was left
and right medio-lateral, anterior-posterior and vertical GRF as an image. These represent
the input predictors. The classes were five, healthy controls, ankle disorder, knee disorder,
hip disorder, calcaneus disorder. The metric was accuracy for this multi-class classification.

To start, it was also used as reference the binary CNN model. The output activation
was a softmax due to the fact that the problem was a multi-class one. The batch size and

74

Figure 6.2: Multi-class 2-D generated images (Healthy, Ankle, Hip, Knee, Calcaneus).

epochs value was random and was 512 and 750, respectively. The parameters submitted to
the tuning were the activation function, the optimizer and the loss function. Specifically, the
parameters are the same as the CNN ones. The results of the tuning, more specifically the
best parameters, were ReLU for the activation, Adam for the optimizer, sparse categorical
crossentropy for the loss function.

Number of Convolutional and Dense Layers

In order to create a viable neural network it is necessary to use the right amount of layers
and neurons. Additionally, it is important to study the influence of each layer and the number
of neurons in order to have a proper result in the end. Starting with 3 convolutional layers
several values for the filter were submitted to the tuning, 32, 48, 64, 128 and 256. After
that, the process was to increase on and on by 1 the number of convolutional layers and to
do the tuning again. Table 6.3 presents the results of the performed tuning and their best
parameters/scores. Filters represent the the number of output filters in the convolution.

As it is possible to observe, the best choice is 4 convolutional layers with a mean accuracy
of 53%. The next step is to assess whether or not it is worth putting a fully connected network
after the flattening process. Table 6.4 displays the results of the performed tuning with 4
convolutional layers. The best accuracy, 54.4%, was obtained with only one dense layer. It is
watchable that by increasing the number of layers the model performance decreases.

Batch Size, Number of Epochs, Learning Rate and Dropout

The previous results are very unsatisfactory and the tuning process has been simplified
at this point. The results described below were obtained with the following set of parameter
values: 16 batch size, 0.0001 learning rate, and 10% dropout.

75

Conv Layers Best Result

Filters: 48 - 64 - 128:
3

Acc: 48%

Filters: 48 - 64 - 128 - 256
4

Acc: 53%

Filters: 32 - 48 - 64 - 128 - 256
5

Acc: 50%

Table 6.3: CNN 2D Multi-class tuning best parameters/score and layers.

Dense Layers Best Result

Neurons: 256
1

Acc: 54.4%

Neurons: 128
2

Acc: 52%

Neurons: 256
3

Acc: 40%

Table 6.4: CNN 2D Multi-class tuning best parameters/score with dense layers.

6.3 Results

Table 6.5 displays the preliminary results of the image-based CNN model. The overall
performance is 85.00% for the binary classification problem and 55.25% for the multi-class
model. The binary classifier has a much lower performance than previous models, although
there still seems to be some space for improvement. However, the multi-class classifier shows
unsatisfactory results and additional efforts will be needed in other to understand how to take
advantage of these approach.

Type Neural Network Train Val Test

Binary 2-D CNN 92.5% 85.71% 85%

Multi 2-D CNN 75.69% 56.82% 55.25%

Table 6.5: Binary and multi-class 2-D CNN comparison.

76

Chapter 7

Conclusions

7.1 Final Discussion

The main focus of this dissertation was the application of supervised machine learning
techniques for the classification of human gait disorders using the annotated GaitRec dataset.
The study addressed two classification problems solved using neural networks. First, a binary
classification problem associated to classifying normal against impaired gait. Second, the
problem of gait classification across five classes of disorders affecting the hip, knee, ankle,
and calcaneus. The main goal was to compare the performance of feedforward multilayer
perceptrons against convolutional neural networks in terms of prediction accuracy.

Table 7.1 summarizes the results obtained by the binary and multi-class models in terms of
prediction accuracy. For the binary classification, the MLP yielded an accuracy of 99.00%, the
1D-CNN 97.96% and the image-based CNN 85.00%. The multi-class classifiers follow the same
trend, with an accuracy of 97.16% for the MLP network, 96.23% for the 1D convolutional
network and 55.25% for the image-based convolutional network. The results of the study
show that neural network models are reliable in classifying both healthy vs. pathological gait
and different gait disorders. The MLP model shows consistently slightly higher prediction
accuracy on the same test dataset. However, this result must be analyzed in perspective
taking into account the many optimizations that could have been made. The preliminary
results obtained with image-based 2D-CNN are much lower and even unsatisfactory in the
case of the multi-class problem. Additional efforts will be needed in other to understand how
to take advantage of these approach.

Type Neural Test
Network Accuracy

Binary ANN 99.00%

Binary 1-D CNN 97.96%

Binary 2-D CNN 85.00%

Multi-class ANN 97.16%

Multi-class 1-D CNN 96.23%

Multi-class 2-D CNN 55.25%

Table 7.1: Comparison of results of the binary and multiclass classification using a MLP
model, a 1D-CNN and an image-based 2D-CNN.

77

Reference Binary Multi-class
Performance Performance

Lozano-Ortiz et al. [60] ANN: 92% -
SOM: 96%

Alaqtash et al. [61] KNN: 85% -
ANN: 80%

Slijepcevic et al. [62] SVM: 90% SVM: 53.3%

Slijepcevic et al. [63] SVM: 90.8% SVM: 54.3%

Slijepcevic et al. [64] - SVM: 67.8%

Slijepcevic et al. [65] CNN CNN
Best: 97% Best: 72%
Mean: 89% Mean: 53%

SVM SVM
Best: 95% Best: 62%
Mean: 89% Mean: 52%

ANN ANN
Best: 97% Best: 63%
Mean: 90% Mean: 50%

Table 7.2: Best binary and multi-class classification accuraccies of human gait disorders.

Table 7.2 presents the best results obtained in related works using GRFs, including re-
cent studies of the authors of the GaitRec dataset. These works report as the best results
values around the 97% for the binary classification and 72% for the multi-class problem.
The proposed framework outperforms the state-of-the-art, achieving a classification accu-
racy of 99.00% for the binary problem and 97.16% for the multi-class problem. The study
was developed from the GaitRec dataset considering potential biases which may affect the
generalization ability of the models. In line with this, the data preparation stage played a pre-
ponderant role in the performance of the learning models. In particular, the use of a sub-set
appropriate to the problem in question was decisive to improve the prediction accuracy.

7.2 Future Work

Although the results are promising, many different adaptations, tests, and experiments
can be performed as future work. The following points summarize some aspects related to
the improvements of the work and others related to new directions of research:

• While training the different models on the GaitRec dataset produced promising results
in the test set, this is a proof-of-concept stage that requires validation with clinical
data. The experiments with real data are usually very time consuming, and it was not
possible to achieve this within the scope of this work.

• The results obtained when converting the GRF time series into an 2D image suggest
the need for further study that should explore alternative ways of encoding the data.
For example, a coordinate plane with axes being the values of the derivative of the GRF
variables as a function of the GRFs. The generation of QR codes for each trial of the
GRF dataset is an alternative that could be investigated.

78

• It could be interesting to explore recently introduced deep architectures such as a CNN
called Inception Time or Echo State Networks. In the former, the convolutional layers
and the pooling layers are replaced with inception modules. The later architecture are
able to reduce the problems of Recurrent Neural Networks by eliminating the need to
compute the gradient for the hidden layers, reducing the training time and avoiding the
vanishing gradient problem.

• The proposed algorithms ignore additional information beyond the input data. Recent
methodologies are used to understand deep structures (model interpretation), i.e., ex-
plaining the classifier’s decisions by measuring the contribution of each input variable
to the overall prediction.

79

80

References

[1] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.

[2] Stefano A. Bini. Artificial intelligence, machine learning, deep learning, and cognitive
computing: What do these terms mean and how will they impact health care? The
Journal of Arthroplasty, 33(8):2358–2361, August 2018. DOI: 10.1016/j.arth.2018.02.067.

[3] Pin Wang, En Fan, and Peng Wang. Comparative analysis of image classification al-
gorithms based on traditional machine learning and deep learning. Pattern Recognition
Letters, 141:61–67, January 2021. DOI: 10.1016/j.patrec.2020.07.042.

[4] Jianqiang Wang, Heye Huang, Keqiang Li, and Jun Li. Towards the unified principles for
level 5 autonomous vehicles. Engineering, January 2021. DOI: 10.1016/j.eng.2020.10.018.

[5] N Kousika, G Vishali, S Sunandhana, and M Arvind Vijay. Machine learning based fraud
analysis and detection system. Journal of Physics: Conference Series, 1916(1):012115,
May 2021. DOI: 10.1088/1742-6596/1916/1/012115.

[6] Yilei Zeng, Aayush Shah, Jameson Thai, and Michael Zyda. Applied machine learning
for games: A graduate school course, 2020. arXiv: 2012.01148.

[7] Abdullah S. Alharthi, Syed U. Yunas, and Krikor B. Ozanyan. Deep learning for mon-
itoring of human gait: A review. IEEE Sensors Journal, 19(21):9575–9591, November
2019. DOI: 10.1109/jsen.2019.2928777.

[8] Jianqiao Tian, Glenn Smith, Han Guo, Boya Liu, Zehua Pan, Zijie Wang, Shuangyu
Xiong, and Ruogu Fang. Modular machine learning for alzheimer's disease classification
from retinal vasculature. 11(1), January 2021. DOI: 10.1038/s41598-020-80312-2.

[9] Ebru Aydındag Bayrak, Pınar Kırcı, and Tolga Ensari. Comparison of machine learn-
ing methods for breast cancer diagnosis. In 2019 Scientific Meeting on Electrical-
Electronics Biomedical Engineering and Computer Science (EBBT), pages 1–3, 2019.
DOI: 10.1109/EBBT.2019.8741990.

[10] João P. Santos, João P. Ferreira, Manuel Crisóstomo, and A. Paulo Coimbra. Instru-
mented shoes for 3d GRF analysis and characterization of human gait. In Bioinformatics
and Biomedical Engineering, pages 51–62. Springer International Publishing, 2019. DOI:
10.1007/978-3-030-17935-9 6.

[11] Tanmay Tulsidas Verlekar, Paulo Lobato Correia, and Luis Ducla Soares. Using
transfer learning for classification of gait pathologies. IEEE, December 2018. DOI:
10.1109/bibm.2018.8621302.

81

[12] Alvaro Muro de-la Herran, Begonya Garcia-Zapirain, and Amaia Mendez-Zorrilla. Gait
analysis methods: An overview of wearable and non-wearable systems, highlighting clin-
ical applications. Sensors, 14(2):3362–3394, February 2014. DOI: 10.3390/s140203362.

[13] Tom Chau. A review of analytical techniques for gait data. part 1: fuzzy, statistical
and fractal methods. Gait & Posture, 13(1):49–66, February 2001. DOI: 10.1016/s0966-
6362(00)00094-1.

[14] Brian Horsak, Djordje Slijepcevic, Anna-Maria Raberger, Caterine Schwab, Marianne
Worisch, and Matthias Zeppelzauer. GaitRec, a large-scale ground reaction force dataset
of healthy and impaired gait. Scientific Data, 7(1), May 2020. DOI: 10.1038/s41597-
020-0481-z.

[15] Joana Figueiredo, Cristina P. Santos, and Juan C. Moreno. Automatic recognition of
gait patterns in human motor disorders using machine learning: A review. Medical
Engineering & Physics, 53:1–12, March 2018. DOI: 10.1016/j.medengphy.2017.12.006.

[16] Angkoon Phinyomark, Giovanni Petri, Esther Ibáñez-Marcelo, Sean T. Osis, and Reed
Ferber. Analysis of big data in gait biomechanics: Current trends and future direc-
tions. Journal of Medical and Biological Engineering, 38(2):244–260, July 2017. DOI:
10.1007/s40846-017-0297-2.

[17] Alfonso Fasano and Bastiaan R. Bloem. Gait disorders. CONTIN-
UUM: Lifelong Learning in Neurology, 19:1344–1382, October 2013. DOI:
10.1212/01.con.0000436159.33447.69.

[18] Walter Pirker and Regina Katzenschlager. Gait disorders in adults and the elderly.
Wiener klinische Wochenschrift, 129(3-4):81–95, October 2016. DOI: 10.1007/s00508-
016-1096-4.

[19] Éric Watelain. Human gait: From clinical gait analysis to diagnosis assistance. Movement
& Sport Sciences, n° 98(4):3, 2017. DOI: 10.3917/sm.098.0003.

[20] Abdul Saboor, Triin Kask, Alar Kuusik, Muhammad Mahtab Alam, Yannick Le Moullec,
Imran Khan Niazi, Ahmed Zoha, and Rizwan Ahmad. Latest research trends in gait
analysis using wearable sensors and machine learning: A systematic review. IEEE Access,
8:167830–167864, 2020. DOI: 10.1109/access.2020.3022818.

[21] Ziad O. Abu-Faraj, Gerald F. Harris, Peter A. Smith, and Sahar Hassani. Human gait
and Clinical Movement Analysis, pages 1–34. American Cancer Society, 2015. DOI:
10.1002/047134608X.W6606.pub2.

[22] Philipp Mahlknecht, Stefan Kiechl, Bastiaan R. Bloem, Johann Willeit, Christoph Scher-
fler, Arno Gasperi, Gregorio Rungger, Werner Poewe, and Klaus Seppi. Prevalence and
burden of gait disorders in elderly men and women aged 60–97 years: A population-based
study. PLoS ONE, 8(7):e69627, July 2013. DOI: 10.1371/journal.pone.0069627.

[23] L Sudarsky. Gait disorders: prevalence, morbidity, and etiology. Adv. Neurol., 87:111–
117, 2001. PMID: 11347214.

82

[24] R. K. Begg, R. Wytch, and R. E. Major. Instrumentation used in clinical gait studies:
A review. Journal of Medical Engineering & Technology, 13(6):290–295, January 1989.
DOI: 10.3109/03091908909016204.

[25] D. TarniŢă. Wearable sensors used for human gait analysis. Rom J Morphol Embryol,
57(2):373–382, 2016. PMID: 27516008.

[26] Chandra Prakash, Rajesh Kumar, and Namita Mittal. Recent developments in hu-
man gait research: parameters, approaches, applications, machine learning techniques,
datasets and challenges. Artificial Intelligence Review, 49(1):1–40, September 2016. DOI:
10.1007/s10462-016-9514-6.

[27] Weijun Tao, Tao Liu, Rencheng Zheng, and Hutian Feng. Gait analysis using wearable
sensors. Sensors, 12(2):2255–2283, February 2012. DOI: 10.3390/s120202255.

[28] Scottmark Communications. Biometrics goniometers and torsiometers. http://www.

nexgenergo.com/ergonomics/biosensors.html.

[29] Michael Kent. The Oxford dictionary of sports science & medicine. Oxford University
Press, Oxford New York, 2006. ISBN: 9780191727788.

[30] Sangram Redkar. A review on wearable inertial tracking based human gait analysis
and control strategies of lower-limb exoskeletons. International Robotics & Automation
Journal, 3(7), December 2017. DOI: 10.15406/iratj.2017.03.00080.

[31] Yongbin Qi, Cheong Boon Soh, Erry Gunawan, Kay-Soon Low, and Rijil Thomas. As-
sessment of foot trajectory for human gait phase detection using wireless ultrasonic
sensor network. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
24(1):88–97, January 2016. DOI: 10.1109/tnsre.2015.2409123.

[32] R.I. Spain, R.J. St. George, A. Salarian, M. Mancini, J.M. Wagner, F.B. Horak, and
D. Bourdette. Body-worn motion sensors detect balance and gait deficits in people with
multiple sclerosis who have normal walking speed. Gait & Posture, 35(4):573–578, April
2012. DOI: 10.1016/j.gaitpost.2011.11.026.

[33] A.L. Adkin, B.R. Bloem, and J.H.J. Allum. Trunk sway measurements during stance
and gait tasks in parkinson's disease. Gait & Posture, 22(3):240–249, November 2005.
DOI: 10.1016/j.gaitpost.2004.09.009.

[34] Shimmer. Shimmer3 emg unit. https://www.shimmersensing.com/products/

shimmer3-emg-sensor.

[35] Ramesh Jain. Machine vision. McGraw-Hill, New York, 1995. ISBN: 0-07-032018-7.

[36] Andreas Kolb, Erhardt Barth, Reinhard Koch, and Rasmus Larsen. Time-of-Flight
Sensors in Computer Graphics. In M. Pauly and G. Greiner, editors, Eurograph-
ics 2009 - State of the Art Reports. The Eurographics Association, 2009. DOI:
10.2312/egst.20091064.

[37] Optitrack. Motion capture systems. https://optitrack.com/.

[38] Vicon. Award winning motion capture systems, Sep 2021. https://www.vicon.com/.

83

http://www.nexgenergo.com/ergonomics/biosensors.html
http://www.nexgenergo.com/ergonomics/biosensors.html
https://www.shimmersensing.com/products/shimmer3-emg-sensor
https://www.shimmersensing.com/products/shimmer3-emg-sensor
https://optitrack.com/
https://www.vicon.com/

[39] J.P. Ferreira, M.M. Crisostomo, and A.P. Coimbra. Human gait acquisition and charac-
terization. IEEE Transactions on Instrumentation and Measurement, 58(9):2979–2988,
September 2009. DOI: 10.1109/tim.2009.2016801.

[40] João P. Ferreira, Alexandra Vieira, Paulo Ferreira, Manuel Crisóstomo, and A. Paulo
Coimbra. Human knee joint walking pattern generation using computational intelligence
techniques. Neural Computing and Applications, 30(6):1701–1713, March 2018. DOI:
10.1007/s00521-018-3458-5.

[41] Filippo Casamassima, Alberto Ferrari, Bojan Milosevic, Pieter Ginis, Elisabetta Farella,
and Laura Rocchi. A wearable system for gait training in subjects with parkinson’s
disease. Sensors, 14(4):6229–6246, March 2014. DOI: 10.3390/s140406229.

[42] Gang Ge, Wei Huang, Jinjun Shao, and Xiaochen Dong. Recent progress of flexible
and wearable strain sensors for human-motion monitoring. Journal of Semiconductors,
39(1):011012, January 2018. DOI: 10.1088/1674-4926/39/1/011012.

[43] Kistler. Ground reaction force (grf). https://www.kistler.com/en/glossary/term/

ground-reaction-force-grf/.

[44] Tekscan. Pressure mapping, force measurement, & tactile sensors. https://www.

tekscan.com/.

[45] ProtoKinetics. Improve patient outcomes with protokinetics zeno
walkway and pkmas software. https://www.protokinetics.com/

improve-patient-outcomes-with-protokinetics-zeno-walkway-and-pkmas-software/.

[46] Kistler. Sistemas de medição e sensores. https://www.kistler.com/pt/.

[47] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow
: concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Inc, Se-
bastopol, CA, 2019. ISBN: 9781492032649.

[48] Eugene Charniak. Introduction to deep learning. The MIT Press, Cambridge, Mas-
sachusetts, 2018. ISBN: 9780262039512.

[49] Oliver Theobald. Machine learning for absolute beginners : a plain English introduction.
The author, United States, 2017. ISBN: 9781549617218.

[50] Michael A. Nielsen. Neural networks and deep learning, 2018. http://

neuralnetworksanddeeplearning.com/.

[51] Francois Chollet. Deep Learning with Python. Manning Publications, dec 2017. ISBN:
9781617294433.

[52] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016. arXiv:
1609.04747.

[53] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
arXiv: 1412.6980.

[54] Nikhil Ketkar. Deep learning with Python : a hands-on introduction. Apress, United
States, 2017. ISBN: 978-1-4842-2766-4.

84

https://www.kistler.com/en/glossary/term/ground-reaction-force-grf/
https://www.kistler.com/en/glossary/term/ground-reaction-force-grf/
https://www.tekscan.com/
https://www.tekscan.com/
https://www.protokinetics.com/improve-patient-outcomes-with-protokinetics-zeno-walkway-and-pkmas-software/
https://www.protokinetics.com/improve-patient-outcomes-with-protokinetics-zeno-walkway-and-pkmas-software/
https://www.kistler.com/pt/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

[55] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
Cambridge, MA, USA, 2016. http://www.deeplearningbook.org.

[56] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, may 2015. DOI: 10.1038/nature14539.

[57] Ningning Yi, Chunfang Li, Xin Feng, and Minyong Shi. Research and improve-
ment of convolutional neural network. In 2018 IEEE/ACIS 17th International Con-
ference on Computer and Information Science (ICIS). IEEE, June 2018. DOI:
10.1109/icis.2018.8466474.

[58] Shiva Verma. Understanding 1d and 3d convolution neural net-
work: Keras, Jul 2020. https://towardsdatascience.com/

understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610.

[59] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new per-
spectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–
1828, August 2013. DOI: 10.1109/tpami.2013.50.

[60] C A Lozano-Ortiz, A M S Muniz, and J Nadal. Human gait classification after lower limb
fracture using artificial neural networks and principal component analysis. In 2010 An-
nual International Conference of the IEEE Engineering in Medicine and Biology. IEEE,
August 2010. DOI: 10.1109/iembs.2010.5626715.

[61] Murad Alaqtash, Thompson Sarkodie-Gyan, Huiying Yu, Olac Fuentes, Richard Brower,
and Amr Abdelgawad. Automatic classification of pathological gait patterns using ground
reaction forces and machine learning algorithms. In 2011 Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society, pages 453–457, 2011.
DOI: 10.1109/IEMBS.2011.6090063.

[62] Djordje Slijepcevic, Brian Horsak, Caterine Schwab, Anna-Maria Gorgas, Michael
Schüller, Arnold Baca, Christian Breiteneder, and Matthias Zeppelzauer. Ground
reaction force measurements for gait classification tasks: Effects of different
PCA-based representations. Gait & Posture, 57:4–5, September 2017. DOI:
10.1016/j.gaitpost.2017.07.009.

[63] Djordje Slijepcevic, Matthias Zeppelzauer, Anna-Maria Gorgas, Caterine Schwab,
Michael Schuller, Arnold Baca, Christian Breiteneder, and Brian Horsak. Automatic
classification of functional gait disorders. IEEE Journal of Biomedical and Health Infor-
matics, 22(5):1653–1661, September 2018. DOI: 10.1109/jbhi.2017.2785682.

[64] D. Slijepcevic, M. Zeppelzauer, C. Schwab, A.-M. Raberger, B. Dumphart, A. Baca,
C. Breiteneder, and B. Horsak. P 011—towards an optimal combination of in-
put signals and derived representations for gait classification based on ground re-
action force measurements. Gait & Posture, 65:249–250, September 2018. DOI:
10.1016/j.gaitpost.2018.06.155.

[65] Djordje Slijepcevic, Fabian Horst, Sebastian Lapuschkin, Anna-Maria Raberger,
Matthias Zeppelzauer, Wojciech Samek, Christian Breiteneder, Wolfgang I. Schöllhorn,
and Brian Horsak. On the explanation of machine learning predictions in clinical gait
analysis, 2019. arXiv: 1912.07737.

85

http://www.deeplearningbook.org
https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610
https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610

[66] D. Slijepcevic, M. Zeppelzauer, A. M. Gorgas, C. Schwab, M. Schüller, A. Baca,
C. Breiteneder, and B. Horsak. Automatic classification of functional gait disorders.
IEEE Journal of Biomedical and Health Informatics, 22(5):1653–1661, 2018. DOI:
10.1109/JBHI.2017.2785682.

[67] Sagar Patel. Data science essentials: Why train-validation-
test data?, Sep 2018. https://medium.datadriveninvestor.com/

data-science-essentials-why-train-validation-test-data-b7f7d472dc1f.

[68] Andreas ller. Introduction to machine learning with Python : a guide for data scientists.
O’Reilly Media, Inc, Sebastopol, CA, 2017. ISBN: 9781449369415.

[69] Salla Ruuska, Wilhelmiina Hämäläinen, Sari Kajava, Mikaela Mughal, Pekka Matilainen,
and Jaakko Mononen. Evaluation of the confusion matrix method in the validation of
an automated system for measuring feeding behaviour of cattle. Behavioural Processes,
148:56–62, March 2018. DOI: 10.1016/j.beproc.2018.01.004.

[70] George Fisher (grfiv4). Plot a confusion matrix, Apr 2017. https://www.kaggle.com/
grfiv4/plot-a-confusion-matrix.

86

https://medium.datadriveninvestor.com/data-science-essentials-why-train-validation-test-data-b7f7d472dc1f
https://medium.datadriveninvestor.com/data-science-essentials-why-train-validation-test-data-b7f7d472dc1f
https://www.kaggle.com/grfiv4/plot-a-confusion-matrix
https://www.kaggle.com/grfiv4/plot-a-confusion-matrix

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Dissertation Outline

	Literature Review
	Human Gait Characterization
	Data Acquisition for Human Gait
	Wearable and Non-wearable Sensors
	Force and Pressure Sensors
	Wearable vs. Non-Wearable Sensors

	Machine Learning for Time Series Classification
	Artificial Neural Networks (ANN)
	Convolutional Neural Networks (CNN)
	Support Vector Machines (SVMs)

	An Overview of Gait Disorders Classification

	Materials and Methods
	Experimental Setup
	GaitRec Dataset
	Overall Framework of the Study
	Selected Architectures
	Model Development
	Performance Measures

	Description of the Experiments

	Neural Network Binary Classification
	Dataset Preparation
	Dataset balance
	Selection of other relevant inputs
	Final dataset

	Parameter Tuning
	ANN
	CNN

	Results

	Neural Network Multi-class Classification
	Dataset Preparation
	Selection of relevant inputs
	Final dataset

	Parameter Tuning
	ANN
	CNN

	Results

	Image-Based Convolutional Neural Network Classification
	Binary Classification
	Dataset Preparation
	Parameter Tuning

	Multi-class Classification
	Dataset Preparation
	Parameter Tuning

	Results

	Conclusions
	Final Discussion
	Future Work

	References

