
Universidade de Aveiro
2021

André
Sousa Neves

Ferramenta Colaborativa de Anotação e
Mapeamento de Conceitos Clínicos

Collaborative Annotation and Mapping Tool for
Clinical Concepts

Universidade de Aveiro
2021

André
Sousa Neves

Ferramenta Colaborativa de Anotação e
Mapeamento de Conceitos Clínicos

Collaborative Annotation and Mapping Tool for
Clinical Concepts

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Doutor Sérgio Matos, Professor
Auxiliar do da Universidade de Aveiro.

Texto Apoio financeiro do POCTI
no âmbito do III Quadro Comu-
nitário de Apoio.

Texto Apoio financeiro da FCT e do
FSE no âmbito do III Quadro Comu-
nitário de Apoio.

Dedico este trabalho aos meus pais e irmão por sempre me apoiarem durante
o desenvolvimento da dissertação.

o júri / the jury
presidente / president Prof. Doutor Carlos Manuel Azevedo Costa

Professor Associado com Agregação do Departamento de Eletrónica, Telecomunicações e Infor-
mática da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Paulo Jorge Teixeira Matos
Professor Adjunto da Escola Superior de Tecnologia e Gestão (ESTG), Instituto Politécnico de
Bragança (IPB)

Prof. Doutor Sérgio Matos
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Universi-
dade de Aveiro (orientador)

agradecimentos /
acknowledgements

Gostaria de agradecer em primeiro lugar ao Prof. Doutor Sérgio Matos e ao In-
vestigador João Rafael Almeida pela oportunidade de desenvolver este trabalho,
por todo o apoio prestado e principalmente por me motivarem em alturas menos
produtivas.
Agradeço também aos meus pais e irmão por sempre me apoiarem nesta jornada
e por me fornecerem todas as condições necessárias para concluir esta etapa.
Dedico um agradecimento especial a todos os meus colegas de curso que me acom-
panharam nestes 5 anos e me permitiram desenvolver tanto a nível social como a
nível académico, por sempre se preocuparem e ajudarem incondicionalmente, sem
eles não seria possível.
Por último, gostaria de agradecer aos amigos que passaram comigo horas em
chamadas enquanto fomos supreendidos por uma pandemia, pois foram um su-
porte muito importante para ultrapassar a mesma, no sentido em que a sensação
de confinamento deixava de existir e de alguma forma continuávamos ligados.

Palavras Chave Mineração de Texto Biomédico, Reconhecimento de Entidades Mencionadas, Pro-
cessamento de Linguagem Natural, Recolha de Informação, Extração de Infor-
mação, Mapeamento, Conceitos de Vocabulário Padrão.

Resumo Todos os dias são publicadas novas informações biomédicas sob a forma de ar-
tigos de investigação, livros e relatórios, mas dada a sua forma não-estruturada
não é útil para a aquisição de conhecimento para além da pesquisa por palavras-
chave. Ao longo dos anos tem surgido um interesse significativo na mineração
de texto e a produção de dados estruturados, utilizando técnicas de recuperação
de informação e extração de informação, nomeadamente o reconhecimento de en-
tidades mencionadas. Foram desenvolvidas várias ferramentas de processamento
de linguagem natural com o objetivo principal de auxiliar a tarefa manual inten-
siva realizada por curadores especialistas, implementando pipelines automáticos de
pré-processamento que anotam entidades biomédicas e as relações entre si na lite-
ratura, juntamente com interfaces interativas para as rever e validar. Além disso,
é essencial que os dados sejam harmonizados num padrão comum que todos pos-
sam compreender, independentemente da língua, formato ou codificação em que
foram originalmente registados, a fim de proporcionar um esforço colaborativo en-
tre os investigadores. Algumas ferramentas proporcionam capacidades eficientes de
indexação e pesquisa para mapear conceitos de vários domínios em conceitos de vo-
cabulários padrão, ou por outras palavras, são capazes de padronizar os dados num
formato comum que, por sua vez, permite a realização de estudos colaborativos.
No entanto, ferramentas que permitem realizar tanto a anotação como o mapea-
mento são escassas. Esta dissertação apresenta uma ferramenta web-based com a
intenção de preencher esta lacuna, permitindo aos especialistas realizar cada tarefa
individualmente, mas também formar um pipeline e utilizar as anotações resultan-
tes como input para o processo de mapeamento. Como resultado, a ferramenta
fornece uma interface interativa que permite aos utilizadores carregar documentos
de texto e anotar entidades biomédicas presentes nos mesmos, quer manualmente
selecionando porções de texto ou palavras com duplo clique, quer automaticamente
com os serviços web do Neji e gerir as anotações geradas. Para mapeamento, os
utilizadores podem carregar documentos CSV contendo termos para serem ma-
peados para conceitos de vocabulário padrão, utilizando o código open-source do
Usagi. Além disso, os utilizadores podem rever e validar os mapeamentos sugeridos
com base na pontuação dos mesmos.

Keywords Biomedical Text Mining, Named Entity Recognition, Natural Language Process-
ing, Information Retrieval, Information Extraction, Mapping, Standard Vocabulary
Concepts.

Abstract Every day new biomedical information is published in the form of research articles,
books and reports, but given its unstructured form it is not useful for knowledge
acquisition apart from keyword search. Over the years significant interest has been
generated towards text mining and the production of structured data using in-
formation retrieval and information extraction techniques, namely named entity
recognition. Several natural language processing tools were developed with the
main purpose of aiding the manual labor-intensive task conducted by expert cura-
tors by implementing automatic pre-processing pipelines that annotate biomedical
entities and their relationships in literature, along with interactive interfaces to re-
view and validate them. Moreover, it is essential that the data is harmonized into a
common standard that everyone can understand no matter what language, format
or encoding it was originally recorded in, in order to provide a collaborative effort
among researchers. Some tools provide efficient indexing and searching capabilities
to map concepts from various domains into standard vocabulary concepts, or in
other words are capable of standardize data into a common format which in turn
allow collaborative studies to be conducted. Nevertheless, there is a lack of tools
that allow to perform both annotation and mapping. This dissertation presents a
web-based tool with the intent to fill this gap by allowing experts to still perform
each task individually, but also to form a pipeline and use the output annotations
as input for the mapping process. As a result, the tool provides an interactive
interface that allows the users to upload text documents and annotate biomedical
entities present in them, either manually by selecting portions of text or double
clicking words, or automatically with Neji’s web services and manage those gener-
ated annotations. For mapping, the users can upload CSV documents containing
terms to be mapped to standard vocabulary concepts, using Usagi’s open-source
code. Moreover, the users can review and validate suggested mappings based on
match score.

Contents

Contents i

List of Figures v

List of Tables vii

Acronyms ix

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 1

1.3 Document Structure . 2

2 State of the Art 3

2.1 Mapping Clinical Concepts . 3

2.1.1 Collecting and processing patient-level data 3

2.1.2 Data harmonization . 4

2.1.3 Common Data Model . 4

2.1.4 Standardized Vocabularies . 6

2.1.5 Tools for Mapping Concepts . 8

2.2 Annotating Clinical Concepts . 11

2.2.1 Information Retrieval and Information Extraction 11

2.2.2 NER Approaches . 11

2.2.3 Biomedical NER . 12

2.2.4 Corpora . 12

2.3 NLP Techniques . 14

2.3.1 Sentence Splitting . 14

2.3.2 Tokenization . 14

2.3.3 Stop Word Removal . 14

2.3.4 Stemming and Lemmatization . 14

i

2.3.5 POS Tagging and Parsing . 15

2.3.6 Toolkits for NLP . 15

2.4 NLP Tools for Clinical Text . 16

2.4.1 Selected tools . 17

2.4.2 Other tools . 20

3 Architecture 21

3.1 Problem statement . 21

3.2 Requirements . 21

3.2.1 Project Management . 21

3.2.2 Annotation Interface . 22

3.2.3 Mapping Interface . 22

3.2.4 Database . 22

3.3 Proposed solution . 23

4 Implementation 25

4.1 Database Planning . 25

4.1.1 Requirement Analysis . 25

4.1.2 Entity-Relationship Model . 26

4.1.3 Database Tables . 27

4.2 Back-end . 28

4.2.1 Server Configuration . 29

4.2.2 PostgreSQL Database & Sequelize . 29

4.2.3 Models . 30

4.2.4 Controllers . 32

4.2.5 Routes . 32

4.2.6 Annotation Services . 33

4.2.7 Mapping Services . 37

4.2.8 Handling File Uploads . 41

4.3 Front-end . 44

4.3.1 Components . 45

4.3.2 Services . 45

4.3.3 Views . 46

5 Walkthrough 51

5.1 Manage Projects . 51

5.2 Manage Documents . 53

5.3 Annotation . 56

5.4 Mapping . 60

ii

6 Conclusions 63

6.1 Future work . 64

References 65

iii

List of Figures

2.1 Standard representation of Atrial fibrillation in the OMOP CDM [1] 7

2.2 Concept count distribution by domain . 8

2.3 Mapping source patient data to CDM Person table [1] . 10

2.4 An example text graph encoding syntactic information [21] 15

3.1 Overview of the system’s architecture (adapted from bezkoder) 23

4.1 Entity-Relationship Model . 27

4.2 Back-end project directory tree . 29

4.3 PostgreSQL database configuration . 30

4.4 Automatic annotation process overview . 35

4.5 CORS configuration . 35

4.6 Implementation of Neji’s Web Server annotation endpoint 36

4.7 Example of Neji’s annotation endpoint response . 36

4.8 Entity colors in Hex codes . 37

4.9 Method responsible for building the index . 38

4.10 Method for searching terms using Usagi’s search engine 39

4.11 Mapping Servlet configuration . 40

4.12 Implementation of Mapping Resource . 40

4.13 Implementation of Neji’s Web Server mapping endpoint 41

4.14 Multer implementation . 42

4.15 Back-end endpoint for uploading documents . 42

4.16 Back-end endpoint to delete a project’s directory and its contents 43

4.17 Back-end endpoint to delete a project’s document . 43

4.18 Back-end endpoint to read a file’s content . 44

4.19 Front-end project directory tree . 45

4.20 Axios configuration in http-common.js . 46

4.21 Annotation Data Service Example . 46

4.22 Projects page . 47

4.23 Individual project’s page . 48

v

4.24 Annotation interface . 48

4.25 Mapping interface . 49

5.1 Project creation dialog . 52

5.2 Project creation snackbar . 52

5.3 Project deletion snackbar . 52

5.4 Projects page . 52

5.5 Project deletion dialog . 52

5.6 Annotation tab without uploaded documents . 53

5.7 Informative snackbar on uploaded files . 53

5.8 Dropzone for uploading annotation files . 54

5.9 Individual project’s annotation documents . 54

5.10 Import dialog to map columns . 55

5.11 Uploaded .CSV documents for mapping . 56

5.12 Annotation area with highlighted terms . 57

5.13 Annotations table . 58

5.14 Annotation deleted snackbar . 58

5.15 Dialog to delete every annotation from a document . 59

5.16 Mapping interface . 60

5.17 Code mappings suggested by the search engine . 61

5.18 Source code and target concepts tables for “Hippocampus” 61

5.19 Concept “Hippocampus” with two target concepts . 61

5.20 Search results for the selected concept “Hippocampus” 62

vi

List of Tables

2.1 Standard/Source/Classification concept assignments by domain [1] 7

2.2 List of relevant Gold Standard Corpora (GSC) available for each biomedical entity, pre-

senting the type of documents and its size [14]. 13

2.3 Available toolkits for NLP [16] . 16

4.1 Overview of each entity and their attributes . 28

4.2 REST API exported for Projects . 32

4.3 REST API exported for Members . 33

4.4 REST API exported for Documents . 33

4.5 REST API exported for Annotations . 33

vii

Acronyms

AO Annotation Ontology
API Application Programming Interface
BioTM Biomedical Text Mining
CA Certificate Authority
CSV Comma-separated Values
CDM Common Data Model
CRF Conditional Random Field
CoNLL Conference on Natural Language

Learning
CRUD Create, Read, Update and Delete
CORS Cross-Origin Resource Sharing
DB Database
DOM Document Object Model
EHR Eletronic Health Record
ETL Extract Transform Load
GSC Gold Standard Corpora
GUI Graphical User Interface
HMM Hidden Markov Model
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IE Information Extraction
IR Information Retrieval
ICD International Classification of Disease
JSON JavaScript Object Notation
JSP Java Server Pages
LOINC Logical Observation Identifiers Names

and Codes

ML Machine Learning
ME Maximum Entropy
NER Named Entity Recognition
NLP Natural Language Processing
NPM Node Package Manager
ORM Object-Relational Mapping
OHDSI Observational Health Data Sciences and

Informatics
OMOP Observational Medical Outcomes

Partnership
POS Part-of-Speech
PDF Portable Document Format
PPI Protein-Protein Interaction
PMC PubMed Central
REST Representational State Transfer
RDF Resource Description Framework
SSL Secure Sockets Layer
SSC Silver Standard Corpora
SNOMED Standard Nomenclature of Medicine
SQL Structured Query Language
SVM Support Vector Machine
TM Text Mining
URL Uniform Resource Locator
WHO World Health Organization
WWW World Wide Web
XHTML eXtensible HyperText Markup Language
XML eXtensible Markup Language

ix

CHAPTER 1
Introduction

1.1 Motivation

With the advancement of technology, it is imperative that it becomes a resource. Over the
years, sophisticated IT solutions have been exponentially integrated into the most diverse
areas such as industry, education, and healthcare with several goals in mind: be it automating
or streamlining processes, in order to make them more efficient while reducing man labor,
which is prone to error. In this dissertation, I am interested in contributing to a learning
healthcare system, as many have argued for more than a decade. Every healthcare-related
entity, academic or professional (e.g. academic medical centers, regulatory agencies and
medical product manufacturers, insurance companies and policy centers, etc), face a common
challenge that, when overcome, contributes to a learning healthcare system: “how do we
apply what we’ve learned from the past to make better decisions for the future?”. When a
patient undergoes medical appointments and/or examinations, the captured data is stored
in databases. As such, the motivation and ambition to analyze patient-level data arises to
produce real-world evidence, which in turn could be disseminated across the healthcare system
to inform clinical practice [1].

1.2 Goals

The focus of this dissertation is to provide a tool that allows biomedical experts to contribute
for a richer literature that in turn makes it possible to conduct further research studies,
which may lead to innovative breakthroughs regarding clinical sciences. The experts should
be able to rely on the tool to perform automatically generated annotations over text while
indicating their domain, as well as manually curate biomedical documents. Moreover, in
order to harmonize data towards collaborative clinical research, it should allow them to map
non-standard concepts to standard vocabulary concepts and validate and rectify mappings to
ensure quality.

The tool must support three use cases:

1

• Biomedical experts need text mining services for document annotation and curation;
• Biomedical experts need to harmonize data into standard concepts;
• Biomedical experts need to execute both tasks.

1.3 Document Structure

The remainder of this document is structured as follows. Chapter 2 describes the importance
of mapping medical concepts into standard vocabulary concepts to the biomedical research
and presents a successful approach that revolutionized this domain. In addition, it explores
the state-of-the-art concerning how Named Entity Recognition (NER) has been included as
a major role in Natural Language Processing (NLP) tools and NLP techniques. Chapter 3
provides the requirements needed to build a solution that fulfils the goals listed above and
its architecture. Chapter 4 gives a detailed description of the implementation behind the
proposed solution, followed by a walkthrough of how to use it in Chapter 5. Finally, this
document is concluded in Chapter 6 where are enumerated relevant points for future work.

2

CHAPTER 2
State of the Art

2.1 Mapping Clinical Concepts

Given that patient-level data is captured at several healthcare institutions, it is possible to
conduct observational studies which are useful to clinical research. However, since this data is
quite disparate, it can not be used as it is directly because it hinders a collaborative effort
between healthcare communities that can produce analytics useful for several use cases, such
as population’s statistics about treatments, demographic information, track disease natural
history and so on. A successful approach to this problem was achieved by an open-science
collaborative: Observational Health Data Sciences and Informatics (OHDSI). The main goal
is to improve health by collaboratively generate real evidence that promotes better health
decisions and better care. This section describes their challenges, their data standards and
the tools developed to aid manual processes.

2.1.1 Collecting and processing patient-level data

Clinical research demands a high volume of data from patients, which is captured at medical
appointments and/or examinations and is used to perform observational studies. Observational,
prospective cohort studies, also called registries, evaluate the experience of a group of people
who share a defining characteristic [2], i.e. a group of subjects that experienced a common
event in a selected time period, such as a disease diagnosis, clinical milestone, or initiation
of medical or surgical treatment. These studies rely on regular measurements of clinical
and patient-reported outcomes, since they are useful in evaluating a breadth of data in a
timely fashion that may help predicting and diagnosing patients earlier. For that purpose,
observational databases have been used extensively in clinical research with the main goal
of accumulate and document a large, heterogeneous patient experience over time that may
be gathered by different practitioners [3]. The collection of this kind of information not only
allows to keep records of the patients and track their health, but also to compare treatments
and seek for common characteristics that may improve clinical research studies.

3

The OHDSI community named this process as “the journey from data to evidence” which
focused on overcome a common challenge in healthcare: “how do we apply what we’ve learned
from the past to make better decisions for the future?”. In other words, what they try
to accomplish is to transform patient-level data into real-world evidence for observational
studies. Even though tremendous progress has been made, they claim to be still far from
their goals. The reason why they fall short is due to the heterogeneity of observational
databases. There are different types of observational databases that capture several kinds of
patient-level data, such as populations (i.e. pediatric vs elderly), care settings that depend
on the patients (inpatient vs outpatient, primary vs secondary care), data capture processes
and health systems. On the other side of the spectrum, there is also different types of
evidence that could be useful to inform decision-making, among them clinical characterization,
population-level effect estimation and patient-level prediction. Moreover, due to the breadth
of clinical, scientific and technical competencies required to trek from data to evidence, this is
an arduous task for a single individual given that is very unlikely to possess such a handful of
skills. Thus, the journey requires collaboration across multiple individuals and organizations
to produce the best evidence possible. It is required a thorough understanding of health
informatics, epidemiologic principals and statistical methods, implementation and execution
of computationally-efficient data science algorithms and clinical knowledge [1].

2.1.2 Data harmonization

Now that we established that observational studies are a collaborative effort from several
institutions with different skilled individuals or, if we think through a higher dimensional
viewpoint, several countries, we realize that the clinical registries, be it observational databases
or Eletronic Health Record (EHR)s, will store data in different formats and encoding. Plus,
different countries will store patient-level data in different languages: in Portugal, a patient’s
sex is defined as homem/mulher, in Spain as hombre/mujer, in England as man/woman.
This presents itself as a problem to clinical research. Due to the large array of data sources
and considering that none of them capture all clinical events equally well, it is necessary to
analyze those data sources concurrently . In order to do that, data need to be harmonized
into a common data standard, which transforms concepts into standard vocabulary concepts
that everyone can understand no matter what language, format or encoding it was originally
recorded in. Otherwise, a Structured Query Language (SQL) query would have issues obtaining
results and would not be possible to extend studies to other countries [1]. This is the reason
why mapping medical concepts to standard definitions is so important. Subsection 2.1.3 is
about a data harmonization solution developed by OHDSI.

2.1.3 Common Data Model

OHDSI paved the way for collaboration by adopting an open-science approach. At first, its
purpose was to monitor drug safety in a public-private partnership between the US Food and
Drug administration, the Foundation for the National Institutes of Health and a consortium of

4

pharmaceutical companies. Soon the Observational Medical Outcomes Partnership (OMOP)
Common Data Model (CDM) was designed to standardize observational data and establish an
institutional collaboration environment that could accommodate several data types, unlocking
a wide array of research areas and computationally-efficient analytics. Such array of research
areas allow: 1) to identify groups of patients that share certain healthcare interventions and
outcomes (i.e. drug exposures, conditions, procedures etc) and 2) generate population’s
statistics about treatments, disease natural history, costs, demographic information and more,
for predicting outcomes in individual patients [1].

In order to achieve those goals, this CDM follows a number of design principles:

Suitability for purpose
The data is organized not for the purpose of healthcare providers or payers, but in a
analysis-friendly way.

Data protection
Patients’ personal information is sensible, therefore protected and not presented. Exceptions
may occur for research purposes.

Design of domains
The domains are modeled in a person-centric relational data model. This means that clinical
events are linked to a person allowing a detailed visualization of a person’s clinical events.

Rationale for domains
Domains are identified and separately defined in an entity-relationship model if they have an
analysis use case (conditions, for example) and the domain has specific attributes that are not
otherwise applicable.

Standardized vocabularies
Source of standardized content, containing all necessary concepts.

Reuse of existing vocabularies
Existing vocabularies from organizations or initiatives are reused.

Maintaining source codes
Source codes are stored after the standardization process, in order to avoid information loss.

Technology neutrality
The CDM is not restricted to a specific relational database.

Scalability

5

The CDM is capable of processing different sized data sources.

Backwards compatibility
All versions of CDM are available in GitHub.

2.1.4 Standardized Vocabularies

Vocabularies are the key for network research. They keep all sorts of information including
terminologies, relations, hierarchies and ontologies spread across a variety of healthcare
domains: Drug, Procedure, Condition etc. Each country or institution tends to have their
own system, which they agree upon with the common goal of capturing and analyzing
patient data. However, it exclusively suits their needs. One example is the World Health
Organization (WHO)’s International Classification of Disease (ICD), which is the reference
for country-specific versions, such as ICD10CM (USA) or ICD10GM (Germany). Hence,
is not possible to work collaboratively if there are multiple data formats. Standardized
Vocabularies are presented as the solution for patient data exchange and standardized research.
Multiple standards have been created by organizations, such as Standard Nomenclature of
Medicine (SNOMED), Logical Observation Identifiers Names and Codes (LOINC), RxNorm,
etc [1].

Building and maintaining a standardized vocabulary is an arduous task due to its com-
plexity and size. It must follow the same common format throughout its length to aid the
researchers. This way, they do not encounter problems understanding and handling different
formats. For this reason, it is infeasible for a healthcare community to build all standardized
vocabularies from scratch, thus a common practice followed by OHDSI is to adopt existing
vocabularies from dedicated organizations, such as those mentioned in the previous paragraph.
Currently they support 111 vocabularies, of which 78 are adopted from external sources [1].

Concepts

The OMOP CDM represents all clinical events as Concepts and stores them in the CONCEPT
table. Each concept is defined by the following fields:

• CONCEPT_ID
• CONCEPT_NAME
• DOMAIN_ID
• VOCABULARY_ID
• CONCEPT_CLASS_ID
• STANDARD_CONCEPT
• CONCEPT_CODE
• VALID_START_DATE
• VALID_END_DATE
• INVALID_REASON

Figure 2.1 shows an example of the standard representation of Atrial fibrillation following
the OMOP CDM standards. The concept ID is used as primary key but is meaningless. On

6

Figure 2.1: Standard representation of Atrial fibrillation in the OMOP CDM [1]

the other hand, the concept code and the domain are what uniquely identify this concept in
the specified vocabulary. For example, Atrial fibrillation is defined in several vocabularies:
MESH, CIEL, SNOMED, ICD9CM and Read. However, only the SNOMED concept is
standard and represents the condition in the data [1]. In this case, the standard concept field
has value “S”. Only the standard concepts are used to represent clinical events in the CDM.
Non-standard concepts or source concepts can be mapped to become standard. There are
also classification concepts, which are not standard either and hence can not represent the
data. The assignment of Standard, Source or Classification depends on the domain, which
can be seen in table 2.1.

Domain for Standard Concepts for Source Concepts for Classification Concepts
Condition SNOMED, ICDO3 SNOMED Veterinary MedDRA

Procedure
SNOMED, CPT4, SNOMED Veterinary,

None at this pointHCPCS, ICD10PCS, HemOnc, NAACCR
ICD9Proc, OPCS4

Measure SNOMED, LOINC
SNOMED Veterinary,

None at this pointNAACCR, CPT4
HCPCS, OPCS4, PPI

Drug RxNorm, RxNorm HCPCS, CPT4, ATCExtension, CVX HemOnc, NAAACCR

Device SNOMED SNOMED & Others, None at this pointcurrently not normalized

Observation SNOMED Others None at this point

Visit CMS Place of Service, SNOMED, HCPCS, None at this pointABMT, NUCC CPT4, UB04

Table 2.1: Standard/Source/Classification concept assignments by domain [1]

7

Domains

The CDM has a total of 30 domains. The concept count distribution is illustrated in Figure
2.2:

Figure 2.2: Concept count distribution by domain

2.1.5 Tools for Mapping Concepts

This section is dedicated to the process responsible for capturing observational data and
converting it into the OMOP CDM. Moreover, is presented a mapping tool developed by the
OHDSI community to automate the process and promote a collaborative effort.

Extract Transform Load

Extract Transform Load (ETL) processes perform a critical role in modern society as the
amount of data sources and its generated data exponentially increases. They are responsible
for extracting data from heterogeneous data sources, their cleansing and customization, their
transformation to fit the businesses’ schemes and their loading into a data warehouse [4].
Data warehousing first appeared in the late 80s as a concept intended for transferring data
from services to decision support environments [5]. It is a collection of decision support
technologies that allow intelligent businesses to make better and faster decisions. Since then,
data warehousing technologies have been deployed on several industries, such as healthcare,
manufacturing, financial services, telecommunications, etc [6]. A good example is in the retail
space where the information gathered can be analysed to study sales flows, customer support
and trends to improve their service, such as what and how much it is being sold so they can
understand if any changes should be applied to meet higher competitive standards relatively
to other retailers. This data is stored into a data warehouse, a non-volatile collection of data
maintained separately from an organization’s operational database. They store consolidated
data from several sources over long periods of time, hence tend to be gigabytes to terabytes, or
even petabytes, in size. Due to its proportions, querying through such amount of records is a

8

very intensive process with mostly ad hoc, complex queries that can access millions of records
and perform a handful of operations [6]. Traditionally, the refreshment of data warehouses
had been performed in an off-line fashion, typically every 24 hours. However, this is not
feasible to every decision support environment. Some businesses (e.g. stock markets) demand
accurate and updated reports based on current data. Consequently, data warehouses evolved
to “active” producers for their users, performing “near real time” transactions, improving
from 24 hour updates to hourly updates [4] [7].

An ETL process is necessary to convert the raw captured data to the OMOP CDM.
In other words, it adds new mappings to the Standardized Vocabularies and is totally
automated. The creation of an ETL process is a difficult task, because it requires knowledge
of both the source data and the desired output format. Its building can be divided in
five steps: 1) understanding the source data, 2) go from source to target output format,
3) create code mappings, 4) implementing the ETL and 5) quality control and maintenance [1].

1) Understanding the source data:
The first step consists of scanning the source data, which can be in Comma-separated
Values (CSV) files or databases, and get a detailed description of its structure. OHDSI has
been using their own software, White Rabbit, which generates an excel report with a list of
all tables, fields in each table, values from each field, data types, maximum length of the
fields, the frequency of each value and more useful contents. These will be of great help for
the next step.

2) From source data to CDM tables:
After scanning the source data and analyzing the White Rabbit report, a team can work
collaboratively to decide how to connect it to the tables and columns of the CDM (see figure
2.3). Also, it is necessary to define the logic for standardizing the concepts. This is done with
the help of Rabbit-In-a-Hat tools that comes with the White Rabbit software. For example,
when converting patient data to the CDM Person table the logic is the following:

if gender ==′ M ′ then
GENDER_CONCEPT_ID = 8507

else if gender ==′ F ′ then
GENDER_CONCEPT_ID = 8532

else
Drop row

end if
3) Create code mappings:

Before creating new code mappings, it is a good practice to check before-hand if the source
codes to be mapped are already recorded as standard concepts. A SQL query is useful to do
so. Otherwise, it is necessary to map the code, which can be executed using a tool to aid the
process: Usagi.

9

Figure 2.3: Mapping source patient data to CDM Person table [1]

4) Implement the ETL:
At this stage, technical individuals work alongside designers and knowledgeable people about
the source and CDM with the common goal of implementing the logic necessary to accomplish
the ETL correct behavior.

5) Quality control and maintenance:
Finally, during and after the ETL process creation, is crucial to ensure high standards of
quality regarding every aspect: documentation, computer code, code mappings and testing.
Also, being an extensive and complex procedure, the ETL requires constant maintenance.

Usagi

Usagi is a mapping tool developed by OHDSI to aid the manual process of creating code
mappings based on concepts from different domains supported by the OMOP CDM. It allows
loading source codes that need to be mapped to standard vocabulary concepts and automates
the process by taking a term similarity approach. Some mappings may be wrong however, so
Usagi offers an interface for human intervention for those situations, allowing a knowledgeable
individual (not mandatory, but preferably) in the coding system and medical terminology to
approve or unapprove mappings, replace or add target concepts, search for a more suitable
concept, among other features. When the manual review meets the expectations, the user
may export the code mappings into a CSV or Excel file [1].

10

2.2 Annotating Clinical Concepts

2.2.1 Information Retrieval and Information Extraction

Every day new information is published in the form of research articles, books and reports,
but given its unstructured form it is not useful for knowledge acquisition apart from keyword
search. Therefore, since the development of the World Wide Web (WWW), significant interest
has been generated towards the text mining problem and the production of useful structured
data, which is then exploited in search, browsing and querying [8]. Text mining leverages
computer power to efficiently and automatically extracting new information from different
written resources [9]. Information Retrieval (IR) complemented by Information Extraction (IE)
are techniques that allow to organize and structure raw data for research purposes. While IR
techniques identify relevant documents from a larger collection based on a query, IE techniques,
namely NER, process documents and seek to locate and classify pre-specified entities and
relationships between them [10].

2.2.2 NER Approaches

The NER task is divided in two sub-tasks: 1) identification and 2) classification of entities.
For a human, this is an intuitively natural and simple process, but for a machine it is very
hard to solve. As of today, an overwhelming variety of named entity recognition systems have
been developed with different approaches: rule-based, machine learning based and hybrid.

Rule-based

A rule-based approach is the most labor-intensive and exhausting of the three before mentioned.
This type of system define a set of patterns to identify entities based on grammatical, syntactic
and orthographic rules, such as nouns, verbs, locations, etc. Allied to the set of rules, typically
they use dictionaries to include a wider span of terms resulting in better results. New nouns
emerge as time passes, hence for this approach to work the dictionary needs to be manually
updated. The best results may be achieved when used on restricted domains, where the
named entities are well defined, unique and usually unambiguous [11].

Machine Learning-based

Machine learning approaches use algorithms that instead of identifying named entities following
a rule set, classify them based on previous data and decisions. There are three types of
machine learning models:

• Supervised learning is usually the chosen method and can use Support Vector Machine
(SVM)s, Maximum Entropy (ME) models, Hidden Markov Model (HMM)s, decision
trees, Conditional Random Field (CRF)s, etc [12]. However, it cannot achieve good
performance without large training datasets [11].

• Semi-supervised learning is similar to supervised methods but use knowledge learned
from a small training dataset.

11

• Unsupervised learning methods do not take feedback, thus are not very popular
choices in NER systems. Generally, they are not domain specific unlike rube-based
approaches [11].

Hybrid

Hybrid NER takes advantage of the strong features from the approaches above, combining rule-
based human-made dictionaries and machine learning algorithms. Therefore, it experiences
the same pitfalls that both have [11].

2.2.3 Biomedical NER

In the biomedical domain, the NER task is an essential step of IE. These systems are a valuable
asset and their integration into larger biomedical IE pipelines is a key piece to accomplish
other tasks. Whereas in domains such as newswire, typically the objective is to identify
names of persons, locations, organizations, etc., the process becomes more challenging in the
biomedical field. The reason for such is the added complexity introduced by the special naming
conventions, as the authors of [13] report. Biomedical NER aims to recognize genes, proteins,
conditions, disorders, among others, and relations between them (e.g. protein-protein). The
identification of those entities is difficult due to several characteristics:

• Most entity names are 2 words long or more (e.g. “normal thymic epithelial cells”).
The system must be capable of identifying those cases as one single entity instead of
multiple.

• Some entities may share nouns, which can be split or joint. Example: “91 and 84 kDa
proteins” consists of two entity names: “91 kDa proteins” and “84 kDa proteins”.

• Several spelling forms: “N-acetylcysteine”, “N-acetyl-cysteine”, and “NAcetylCysteine”.
• Abbreviations are frequently used in the biomedical domain and most times are irregular

and/or ambiguous. “IL2” stands for “Interleukin 2”, “PAL” stands for “palate” and
“TCF” may refer to “T cell Factor” or “Tissue Culture Fluid”.

Thus, Machine Learning (ML)-based approaches are often the selected method for this
domain since they can adapt to the variety of entities, presenting several advantages over
other methods and hence achieving better results.

2.2.4 Corpora

A critical part of ML-based NER systems is the dependency on annotated documents.
Generally, these systems require two essential steps: train and annotate [14]. In order to be
able to annotate a raw document, the ML model must learn how to perform that task. It trains
with annotated documents typically related to the target domain but more structured than
plain text, which are usually referred to as corpora. Building corpora is a very delicate pro-
cess conducted by experts, since errors in the training corpus propagate to the final system [15].

There are two kinds of corpora:

12

Gold Standard Corpora

Gold Standard Corpora (GSC) are manually annotated collections of text belonging to a
specific domain. It is a very laborious and time-consuming process conducted by experts to
ensure that ML models train with the richest structured data possible. Its construction is a
collaborative task because each expert annotates the same text independently, but in the end
they compute an inter-annotator agreement ensuring the consensus of everyone and, most
important, high quality corpora [15].

Silver Standard Corpora

On the other hand, since the construction of a GSC is a very costly process, in order to
minimize costs some opt to attempt to determine the optimal size of a corpus (measured
by the number of sentences) and automatically generate Silver Standard Corpora (SSC) to
substitute gold standard [15]. Evidently, the quality compared to a gold standard is inferior.
Nonetheless, it may be used in some situations.

Just as corpora, NLP tasks also depend on domain and intended results, thus each domain
and task require a high quality and reasonable size corpora. Therefore, we quickly realize
that a proper GSC does not exist for many NLP tasks [15]. Table 2.2 shows a list of GSC for
each biomedical entity.

Entity Corpus Type Size (in sentences)

Gene and Protein

GENETAG Sentences 20000
JNLPBA (from GENIA) Abstracts 22402

FSUPRGE Abstracts 29447
PennBioIE Abstracts 22877

Species OrganismTagger Corpus Full texts 9863
Linnaeus Corpus Full texts 19491

Disorders

SCAI Disease Abstracts 3640
EBI Disease Sentences 600

Arizona Disease (AZDC) Sentences 2500
BioText Abstracts 3655

Chemical SCAI IUPAC Sentences 20300
SCAI General Sentences 914

Anatomy AnEM Sentences 4700

Miscellaneous CellFinder Full texts 2100

Table 2.2: List of relevant Gold Standard Corpora (GSC) available for each biomedical entity,
presenting the type of documents and its size [14].

13

2.3 NLP Techniques

The NLP phase is an utmost pre-processing stage in most NLP solutions. It is conducted
before any NER techniques because it is infeasible for the recognition methods to process raw
input data from the documents. In order to simplify the recognition of entities, there are
some NLP techniques that can be applied, such as sentence splitting, tokenization, stop word
removal, stemming, lemmatization, chunking and POS tagging.

2.3.1 Sentence Splitting

Typically, the first step of pre-processing is sentence splitting. As the name indicates, this
task divides a text document into sentences by punctuation marks like periods, commas,
semicolons and so on.

2.3.2 Tokenization

After splitting the text into sentences, an additional step named tokenization takes place
consisting in further breaking. It is important to note that tokenization is not restricted to
words, i.e. if we consider a token to be a phrase then it is applied to a full-text instead of
split sentences. For consistency purposes, let us define a token as a word. This time, the goal
is to split the sentences into words. In english, usually a whitespace regex rule is applied. In
other words, the sentences are split by spaces [16].

2.3.3 Stop Word Removal

This technique is usually performed along with tokenization. Romance languages, i.e. Latin
languages such as English, Spanish, Italian, Portuguese, French, etc. [17], use a large number
of non-informative words such as articles, prepositions and conjunctions, called stop words
[18]. There are different approaches for dealing with stop words: one can loop over the
tokens and exclude those that are shorter than a number of characters, say three or four, for
example. Although, usually a stop-list is built with words that should be removed, which
can be prepositions like “and”, “or”, “the”, but also language and task dependent words [18].
This technique is very useful for dimension reduction allowing for better performance.

2.3.4 Stemming and Lemmatization

Another commonly used methods are stemming and lemmatization. A given token can have
several morphological variants, which in turn may be equivalent. For instance, “computes”,
“computing” and “computer” derive from the same term, thus can be analyzed as a single
item. The basic idea of stemming is to map these variations to a stem, hence in the previous
example they are mapped to “comput”. On the other hand, lemmatization is a more robust
method because it returns the base or dictionary form of a word (e.g. the lemma of “was”
is “be” and of “industrialized” is “industry” or “industrious”) [18] [14]. Both stemming and
lemmatization increase relevance and recall capabilities of a retrieval system [19].

14

2.3.5 POS Tagging and Parsing

Part-of-Speech (POS) tagging essentially associates each token with a particular grammatical
category, namely noun, verb, participle, article, pronoun, preposition, adverb and conjunction
and assigns them the respective tag [20] providing lexical information. On the other hand,
parsing produces syntactic information represented in a tree, providing richer structured
information [16] (see figure 2.4).

Figure 2.4: An example text graph encoding syntactic information [21]

2.3.6 Toolkits for NLP

In order to perform the above-mentioned techniques, several toolkits are commonly used. An
overview can be seen in table 2.3.

15

Toolkit Language Description
NLTK [22] Python Natural Language Toolkit (NLTK) is an open source platform for performing

NLP tasks including tokenization, stemming, POS tagging, parsing, and
semantic reasoning. It provides interfaces for many corpora and lexicons which
are useful for opinion mining and sentiment analysis. http://www.nltk.org/

OpenNLP Java The Apache OpenNLP is a JAVA library for the processing of natural language
texts, which supports common tasks including tokenization, sentence
segmentation, POS tagging, named entity recognition, parsing, and coreference
resolution. https://opennlp.apache.org

CoreNLP [23] Java Stanford CoreNLP is a framework which supports not only basic NLP task, such
as POS tagging, named entity recognization, parsing, coreference resolution,
but also advanced sentiment analysis [24].
http://stanfordnlp.github.io/CoreNLP/

Gensim [25] Python Gensim is an open source library for topic modeling which includes online
Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), Random
Projection, Hierarchical Dirichlet Process and word2vec. All implemented
algorithms support large scale corpora. LSA and LDA have distributed parallel
versions. http://radimrehurek.com/gensim/

FudanNLP [26] Java FudanNLP is an open source toolkit for Chinese NLP, which supports word
segmentation, POS tagging, named entity recognition, dependency parsing,
coreference resolution and so on.
https://code.google.com/archive/p/fudannlp/

LTP [27] C++/Python The Language Technology Platform (LTP) is an open source NLP system for
Chinese, including lexical analysis (word segmentation, POS tagging, named
entity recognition), syntactic parsing and semantic parsing (word sense
disambiguation, semantic role labeling) modules. http://www.ltp-cloud.com/intro/en/

NiuParser [28] C++ NiuParser is a Chinese Syntactic and Semantic Analysis Toolkit, which supports
word segmentation, POS tagging, named entity recognition, constituent
parsing, dependency parsing and semantic role labeling.
http://www.niuparser.com/index.en.html

Table 2.3: Available toolkits for NLP [16]

2.4 NLP Tools for Clinical Text

Bearing in mind that the creation of GSC is a very time-consuming task, it makes sense to
support it by computational tools capable of a set of features [29]:

• Graphical interfaces for highlighting and tagging texts
• Management of text collections
• Assignment of texts to annotators
• Definition of annotation schemes
• Export results into various formats

As of today, multiple annotation tools have been developed to aid the creation of GSC,
most being domain or task specific. This section is dedicated to explore and compare NLP
tools developed, mostly, for annotating biomedical entities. At first, the research for these
tools was only restricted to the annotation task, i.e. every annotation tool that could be
useful for annotating texts, independently of their domain or task, would be of interest. For
this purpose, [30] was used as a starting point for studying existing tools. Recently, the
authors published an extensive review [31] following a set of criteria and comparing these
tools. Essentially, [30] is a GitHub repository with an extensive list of annotation tools and

16

also a web application [32] that allows to search through the list and filter those that fulfill
specific criteria defined by the user, such as:

• Data format regarding annotations, documents and schema
• Functional aspects (e.g. highlighting, inter-annotator agreement, pre-annotations, on-

tologies, etc.)
• Type of instalation (i.e. desktop, web-based, plugin), if is available and workable
• Technical aspects (e.g. free or not, difficulty when installing, etc.)

However, we focused on tools capable of annotating biomedical documents semi or fully
automatically or that are collaborative in some way. For this reason, from an initial list of 74
tools, only 15 fulfill one or both requirements.

2.4.1 Selected tools

The selected tools are capable of annotating biomedical documents, although some are general-
purpose, and perform it in a semi-automated or automated fashion taking advantage of
pre-processing NLP techniques (see section 2.3) and NER approaches (see subsection 2.2.2).
The type of installation can be of three types: desktop, web-based or plugin. Concerning input
and output there are variations, as some accept text, Portable Document Format (PDF), BioC,
HyperText Markup Language (HTML), eXtensible HyperText Markup Language (XHTML),
eXtensible Markup Language (XML) or Database (DB) formats and, as output, can generate
the previous mentioned plus CSV, Resource Description Framework (RDF) Annotation
Ontology (AO), A1, JavaScript Object Notation (JSON) and Conference on Natural Language
Learning (CoNLL) [33]. In total, we identified 15 tools matching these criteria:

@Note

@Note [34] is a desktop Biomedical Text Mining (BioTM) platform developed to support
three different roles: 1) biologists can use it for biomedical document retrieval, annotation and
curation; 2) text miners may analyse biological text relying on text engineering techniques
and 3) software developers contribute to BioTM research by including new modules and
algorithms. Takes abstracts and full-texts in TXT and PDF formats as input, allows for
PubMed search and journal crawling and converts PDF to text. @Note outputs the results in
XML format.

Argo

Argo [35] is a web-based collaborative workbench with a Graphical User Interface (GUI)
to ease manual and automatic annotations, and boost productivity. Two annotators work
individually and their job is to verify the annotations’ correctness. Also, they can identify
interactions between words or phrases.

BioNotate

BioNotate [36] is a web-based annotation tool focused on extracting relationships between
biomedical entities, such as interactions between genes and proteins or associations between

17

genes and diseases. It was developed with the objective of representing a benchmark dataset
built through disease studies data, i.e. a distributed creation of a large corpus.

BioQRator

BioQRator [37] is a general-purpose web-based user interface built for assisting manual
literature curation. It is used for annotation of biomedical entities and Protein-Protein
Interaction (PPI)s, capable of handling documents created by users or by querying the
PubMed search engine, creating entities and relation types, and managing collections of
documents. BioQRator also focuses on a document ranking task which has proven to be more
efficient than PubMed’s, when retrieving PPI information such as protein names and general
topic queries.

Brat

Brat [38] is one of the most popular web-based general-purpose annotation tools. Supports
high-quality annotation visualisation that helps users to understand complex annotations
from different semantic types or sometimes overlapping text, as well as connections between
annotations. Moreover, their intuitive annotation interface allows for annotation editing
with mouse events (e.g. clicking or dragging). Given that it is general-purpose, users may
accomplish most text annotation tasks with fully configurable options.

Djangology

Djangology [39] is also a web-based application for highly distributed annotation projects
involving many participants. Thus, this tool has a project-oriented vision, in the sense that
project administrators are in charge of uploading data (i.e. documents), defining schemas,
assigning annotators to specific projects and monitor their progress. Finally, they are able
to review inter-annotator agreement statistics. It has been used in the biomedical domain,
namely in medical studies of trauma, shock and sepsis conditions.

Domeo

Domeo [40] is a web-based software framework for online semantic annotation of HTML,
XHTML and XML documents. It takes advantage of using web services that provide annotation
resources such as vocabularies and entity recognition services. Thus, it becomes a very flexible
tool for different domains and can adapt to technology improvements over time.

Egas

Egas [41] is a web-based platform for BioTM and assisted curation that allows automatic
in-line annotations of both biomedical entities and its relations. It is built on a project-oriented
vision similar to Djangology, so annotators can only work in projects they have been assigned
to. The concept recognition task is made through Representational State Transfer (REST)
web-services, which can be implemented as long as they abide the input and output formats
required: text and A1 or BioC, respectively. In turn, given that none existing PPI services
available were fast enough for real-time usage, the authors report to have built their own

18

service on top of other existing solutions. Finally, a key feature presented by Egas is real-time
collaboration between annotators, enabling detail discussion.

ezTag

ezTag [42] is a web-based annotation tool for biological concepts. By standardizing text
into BioC format, it supports PubMed abstracts and PubMed Central (PMC) articles. Like
other tools aforementioned, allows for customized tagging modules from RESTful Application
Programming Interface (API)s for annotating bio-entities. Offers multiple ways of annotation,
among them pre-trained taggers, such as TaggerOne [43], GNormPlus [44] and tmVar [45], a
dictionary-based tagger and customized taggers.

GATE Teamware

GATE Teamware [46] is a web-based, collaborative annotation framework that allows complex
projects with distributed annotator teams. It is based on GATE [47], a very well known
platform used for NLP tasks. This new version is meant to allow non-expert annotators to
work on curation projects as it pre-annotates entities, which contributes to their training and
involvement. For this reason, GATE Teamware is yet another tool with roles, i.e. there are
project managers or administrators and annotators.

MyMiner

MyMiner [48] is a web-based tool designed for expert biologists without programming expertise,
providing features such as document classification, classification efficiencies comparison,
annotation of entities and binary relationships. Another interesting feature is the possibility
to link articles to entities. For instance, for each gene or protein name, MyMiner suggests a
ranked list of UniProt identifiers. UniProt is a free database of protein sequence and functional
information derived from the research literature [49]. Thus, it provides a short description to
help annotators on manual curation.

OntoGene

OntoGene [50] is a Text Mining (TM) system specialized in annotating biomedical entities and
relationships between them. A web-based platform named OntoGene Document INspector
(ODIN) was developed for assisted curation while also providing RESTful web services so
other works can implement their system’s text mining components. It accepts XML files
based on the BioC specifications and the same format is applied at the output. In case an
annotator wishes to export the results, he may choose between CSV or RDF.

PubTator

PubTator [51] is a web-based application developed for assisting biocurators who have limited
TM experience. It allows to search for articles either by search queries or by a list of PubMed
articles input by its users. Support for automatic annotation is achieved using a hybrid
approach, i.e. for annotating genes, diseases, species and mutations they use ML-based entity
recognition tools (GeneTUKit [52] and GenNorm [53] for gene mention and normalization,

19

SR4GN [54] for species, DNorm [55] for diseases and tmVar [45] for mutations) and for
chemicals a dictionary-based approach [56]. Apart from automatic and manual bio-entities
annotation, PubTator provides document triage and relationship annotation such as PPIs or
others.

TeamTat

TeamTat [57] is a web-based tool for wide annotation projects, due to its role architecture
similar to some previously described tools. It was developed by the same team from ezTag, and
provides features that were not found on it, mainly a collaborative environment for concurrent
annotation. Moreover, supports full-text along with figures, integration with PubMed and
PMC through BioC format and quality assessment performed by project administrators.
TeamTat allows for configuring annotation schemas for entities and relations, thus is capable
of a wide range of annotation tasks.

Neji

Neji [58] is an open source framework highly specialized for biomedical concept recognition,
through a hybrid approach, i.e. combines dictionary matching and machine learning methods
to achieve the best results possible. It was built on top of four ideas: 1) modularity (i.e.
independent modules perform unique processing tasks), 2) allows for dictionary and ML models
configuration which makes it scalable, 3) provides fast and multi-threaded data processing
and 4) is developer-friendly in the sense that developers and researchers are capable of easily
implement new modules or using pre-defined pipelines. It supports overlapped concept names
and disambiguation techniques due to a concept tree implementation. Recently, a web services
branch was developed so it is possible to take advantage of its RESTful API to annotate
either text files or PubMed articles and export the results into well-known output formats
(e.g. A1, BioC, CoNLL, JSON, XML, etc.).

2.4.2 Other tools

Manual annotation tools such as ANALEC [59], Anotatornia [60], Glozz [61], KAFnotator [62]
and SALTO [63] were excluded. Nevertheless, they present features that the selected tools
may not have. For instance, Glozz can represent annotations over the text and annotations
as a graph, which can prove to be very useful. Some tools were not considered for being
designed for specific tasks or different domains other than the biomedical. Examples of those
are AWOCATo [64], designed for a sentiment annotation task; EasyRef [65] performs syntactic
annotation by splitting sentences and identifying subjects, verbs, nouns, complements, etc;
EULIA [66] provides an environment for consulting, visualizing and modifying documents
processed by other tools; GraPAT [67] builds graphs over text like Glozz and its main use
case is sentiment analysis; PDFAnno [68], as the name suggests, is an annotation tool for
PDF documents.

20

CHAPTER 3
Architecture

This chapter provides an overview of the challenges of developing a state-of-the-art tool.
Section 3.1 starts by addressing the problem statement. Next, in section 3.2 we define the
requirements necessary to ensure that the solution developed fulfills all the expectations and
finally we propose a solution along with an overview of its architecture in section 3.3.

3.1 Problem statement

After reviewing the state of the art concerning the mapping and annotation of medical concepts,
we understand that there are several tools that fulfill the requirements to perform each task.
However, there is a lack of tools that implement both functionalities simultaneously. Usually,
an expert’s modus operandi takes, at least, six steps from start to finish: 1) automatically
annotate a document using an NLP tool; 2) perform manual curation in order to fix errors;
3) export annotated results; 4) import those into a mapping tool; 5) review and validate
mappings and, finally, 6) export mapped results. Therefore, this process sometimes may
become tedious and more complex given that an user must learn how to use and possibly
configure two tools in order to complete the full pipeline, starting at a document and ending
with standard definitions.

For this reason, we believe that a complete tool, providing it is able to satisfy both ends
of the spectrum, would be a great asset for biomedical experts. The next section presents the
requirements necessary to create a state-of-the-art tool that fulfills them.

3.2 Requirements

3.2.1 Project Management

In chapter 2, the term “collaborative” is present repeatedly because it is a crucial aspect in the
biomedical domain. On one hand, the task of mapping medical concepts requires collaboration
between healthcare communities that can produce analytics useful for different use cases, which
in turn promote better health decisions and better care. Also, it is important to harmonize

21

health data into standard vocabularies that will allow to conduct broad studies involving
multiple countries and organizations worldwide. On the other hand, NLP tools demand rich
structured data so that the ML models learn how to annotate biomedical documents. This
can only be done by providing a collaborative environment giving the ability for experts to
combine efforts and share knowledge between each other.

Therefore, the tool should be built based on the idea of projects. A project should have at
least a name and description at creation, as a way of identifying what task it is focused on.
Concerning the project’s structure, it consists of a team of experts that will work on one or
multiple documents. The individual who creates the project is nominated project manager
while the rest of the members, which should be invited, perform the role of annotators. Despite
the project managers’ skills, he/she should be able to contribute by annotating documents
and/or mapping terms. If possible, develop a review system where project managers evaluate
the project’s progress, analyse inter-annotator agreement and other kind of statistics. In
regard to annotation and mapping documents, the application must support file uploads from
local storage, restricting its format and size.

3.2.2 Annotation Interface

The user interface dedicated for annotation should be user-friendly, simple and easy to use.
Annotation projects usually deal with very extensive documents that despite being oriented
to a single domain, may have a high number of entity types. In the biomedical domain, that
number is specially large (e.g. disease, anatomy, species, cellular component, etc.). Thus,
the user should be able to distinguish and identify entity types once they are annotated.
State-of-the-art NLP tools such as those described in section 2.4 use highlighting techniques
to facilitate the annotators’ work.

As a state-of-the-art tool, automatic pre-annotation is a sought-after feature by experts
as it spares them from manual annotation, which is a labor-expensive and time-consuming
task. Consequently, manual curation is necessary due to the NER methods’ limitations,
i.e. ambiguity and unrecognized entities. Moreover, some kind of information should be
made available to the user about a given annotation. Several NLP tools are also capable of
annotating relationships between entities.

3.2.3 Mapping Interface

On the other side of the spectrum, a mapping user interface is required. It should be able
to work with two data sources: 1) the resulting annotated terms previously worked on by
the annotators, thus following a complete pipeline starting with a biomedical document and
finishing with terms mapped to standard definitions and 2) terms that were uploaded by the
user. In this scenario, the user previously annotated a document and only needs to map the
terms, hence skipping the annotation stage. Allowing this behaviour implies that the tool
must be in some way modular.

3.2.4 Database

Finally, the database is where all the project-related information will be stored.

22

3.3 Proposed solution

Taking into consideration the requirements described above, we propose a web-based annotation
and mapping tool, based on the idea of projects. As a starting point, we followed a simple
tutorial 1 from bezkoder on how to build a Create, Read, Update and Delete (CRUD) app
with React.js 2, Node.js 3, Express.js 4 and PostgreSQL 5. Figure 3.1 shows an overview
of the system’s architecture.

Figure 3.1: Overview of the system’s architecture (adapted from bezkoder)

Front-end

The front-end is an user interface that will interact with the users while displaying all the
information needed. We opted to develop this component using React.js, a well known and
widely adopted JavaScript library for building user interfaces that benefits from a component-
based architecture. In addition, it is a very efficient and light-weight library.

Back-end

The back-end is essentially the server-side of the application that handles the requests triggered
by users’ actions and returns information from the database or other services. It is based on
Node.js, which is a JavaScript runtime together with Express.js, a framework that provides a
set of features for web applications, which is responsible for configuring the server and defining
endpoints.

Database

The database itself is responsible for storing important information including projects, members,
documents and annotations and is a PostgreSQL relational database.

1https://www.bezkoder.com/react-node-express-postgresql/
2https://reactjs.org
3https://nodejs.org/en/
4https://expressjs.com
5https://www.postgresql.org

23

CHAPTER 4
Implementation

This chapter describes the development that was undertaken with the purpose of implementing
the proposed solution described in chapter 3, taking into consideration the requirements
outlined. Section 4.1 starts by analysing database-related requirements, such as identifying
relevant entities that will play a part in the overall process, understand the relationships
between them and what they consist of. Section 4.2 describes in depth how the back-end
was built in order to achieve the desired functionality, as well as how some challenges were
overcome. Section 4.3 defines the front-end structure, in the sense that it provides an overview
of what users might expect from the user interface.

4.1 Database Planning

Before we take any step towards the implementation itself, it is a good practice to draft a
plan of what will be required. This section describes the database planning which usually
takes at least three steps: requirement analysis, construction of an entity-relationship model
and administration of the database. These steps are further described in the next subsections.

4.1.1 Requirement Analysis

The first step of planning is figuring out all the requirements that the tool demands, in other
words identify entities and their attributes. As mentioned in section 3.3, our solution is based
on the idea of projects. Therefore, a project is the main entity, so let us start by describing it.
A project is identified in the database by an unique number that will match the order of
creation, i.e. the first project will be number one, the second is number two and so forth. In
order to distinguish projects and to promote a user-friendly interface, each project should
have a name and description. At the time of its creation, the user who created the project is
automatically its manager and the project’s status becomes “Open”. A member is identified
by a first name and last name, but throughout the interface is presented to others by a
username. Also, for registration purposes a member may also define an email and password.
The database must store documents for both tasks (i.e. annotation and mapping) uploaded

25

by users. A document is identified by a number which is auto-incremented following every
upload, similar to projects, and a title that is the name of the document itself, including
its extension. Additionally, there are four fields that will be better described later in this
document, namely location, mapping, annotated and rows. Finally, annotations performed on
documents must be stored as well. An annotation consists of a meaningless auto-incremental
identification number, an annotation ID that follows a specific format hence stored as a
string, the actual term that was annotated, its offset representing the starting position in the
document and a biomedical type, for instance anatomy, disease, etc.

4.1.2 Entity-Relationship Model

With all the entities and their attributes identified, the next step is to build an entity-
relationship model depicting an image of how the entities are connected, what is their
relationship, key attributes and cardinalities. This step is very important because it allows for
better understanding of how we need to configure the database tables, but most importantly
it provides hidden information that otherwise we may not recognize. The attributes that we
identified for each entity do not represent the complete tables in the database, as we are going
to witness next.

First of all, for each entity we must define a key attribute that will represent the entity’s
primary key in the database. It must be an unique property that defines the entity, for
instance for the entity Project we have chosen the project’s ID, for Member its username, for
Document the document’s ID and for Annotation the internal ID.

Another aspect to take into consideration is the relationships. How are members and
documents related to a project? How are annotations related to a document? The degree
of relationships, also known as cardinality, will be represented using Chen Notation which
uses the characters “1”, “N” or “M” and can be of three types: one-to-one (1:1), one-to-many
(1:N) or many-to-many (N:M). When users perform annotations on a document there is a
“one-to-many” kind of relation, i.e. one document has multiple annotations associated to it.
Furthermore, projects are task oriented and very extensive, thus a single project can support
a large number of documents, thus forming a one-to-many relationship. Finally, a project is
made up of a team of experts and an expert is allowed to work on multiple projects, implying
a many-to-many relationship between project and member.

At this point we are able to draw a diagram representing the entity-relationship model.
Figure 4.1 presents the entities as green rectangles, attributes as blue oval shapes and
relationships as pink rhombus (diamonds). Key attributes are distinguished from the others
by having their text underlined and a thicker outline, whereas relationships have two types:
strong relationships are single rhombus and are used when an entity is existence-independent
from the other, which is the case of “Participates” between Member and Project. However,
this is not the case with the remaining relationships between Project and Document and
Document and Annotation. Those are weak relationships represented by double rhombus,
because a document does not exist (in the database context) without the existence of a project
and the same happens with an annotation belonging to a document.

26

Figure 4.1: Entity-Relationship Model

4.1.3 Database Tables

The last step is to convert the entity-relationship model into tables that later will be defined
in the database to store the information. Each entity represents a table and starts with all its
attributes. However, we must pay attention and follow some rules in order to properly configure
the database. For instance, due to the dependency of Document concerning Project, the
primary key from the stronger entity becomes a foreign key of the weaker one. Consequently,
“Proj_ID” will also belong to the Document table as a foreign key, thus allowing to associate
documents to projects. Likewise, the Annotation table defines “Doc_ID” (Document’s primary
key) as its foreign key. This mechanism allows to execute SQL search queries that return a
set of all annotations recorded for a given document, for example. Table 4.1 gives an overview
of each entity, their attributes and a short description.

27

Entity Attribute Type Description
Project Proj_ID Integer Project ID

Title String Title of the project
Description String Brief description of the project
Manager String Member assigned as project manager. FK referencing Project’s “username”
Status String Indicates if an project is open or closed

Member First Name String First name
Last Name String Last name
Username String Username used across the interface
Email String Email
Password String Password

Document Doc_ID Integer Document identification number
Title String Name of the document
Location String Absolute path where the document is located
Annotated Boolean Flag representing the document’s annotation status
Mapping Boolean Flag to differentiate mapping documents from annotation documents
Rows Integer Number of rows, in case the document is for mapping
Proj_ID Integer FK referencing Project’s project ID

Annotation ID Integer Internal ID
Annotation_ID String Specific format returned by annotation tool
Term String The term that was annotated
Offset Integer Starting position of the term relative to the document
Type String Biomedical entity type
Doc_ID Integer FK referencing Document’s document ID

Table 4.1: Overview of each entity and their attributes

4.2 Back-end

The back-end consists of a Node.js Express server with the main purpose of establishing
a connection between the front-end and the database. As such, it acts as an intermediate
responsible of processing user-triggered requests, fetching the requested data from the database
and returning it back. That is essentially the big picture that depicts the role of a back-end
server. For a better understanding, Express.js is a Node.js framework that simplifies the
development of REST APIs when compared to plain Node.js, which in turn requires to
parse payloads, cookies, storing sessions and routes based on regular expressions. For that
reason, Express allowed for a much easier and faster development of the server and it also
interacts with PostgreSQL as we will explain shortly. Figure 4.2 represents the back-end
project structure and as we can see it is divided into four main components: Configuration,
Controllers, Models and Routes. The subsections from 4.2.1 to 4.2.5 further describe their
roles.

28

nodejs-server/
App/

Config/
db.config.js

Controllers/
annotation.controller.js
document.controller.js
member.controller.js
project.controller.js

Models/
annotation.model.js
document.model.js
member.model.js
project.model.js
index.js

Routes/
annotation.routes.js
document.routes.js
member.routes.js
project.routes.js

server.js

Figure 4.2: Back-end project directory tree

4.2.1 Server Configuration

Starting with the server configuration, this is what will allow to perform CRUD operations.
The server.js file is where the Express web server is setup, starting by importing three
modules: Express for building the API, body-parser to parse requests and cors which acts as a
middleware to enable CORS with various options. In addition, it is also where the endpoints
from the Routes component and the Models will be instantiated.

4.2.2 PostgreSQL Database & Sequelize

The file db.config.js is a simple configuration file for the PostgreSQL database, which defines
five parameters for PostgreSQL connection and one parameter for Sequelize 1. It is important
to note that for this configuration to work, one must create beforehand a PostgreSQL server and
the database. In this case, we have used pgAdmin 2 to create them, which is an administration
and development platform that provides useful statistics and features. The configuration is
shown in figure 4.3:

• Host: IP address (e.g. localhost)
• User: username defined at creation
• Password: password defined at creation
• DB: the database to connect to
• Dialect: in this case is postgres
1https://sequelize.org
2https://www.pgadmin.org

29

1 module . exports = {
2 HOST: " localhost ",
3 USER: " postgres ",
4 PASSWORD : "neji",
5 DB: " nejidb ",
6 dialect : " postgres ",
7 pool: {
8 max: 5,
9 min: 0,

10 acquire : 30000 ,
11 idle: 10000
12 }
13 };

Figure 4.3: PostgreSQL database configuration

• Pool: Sequelize parameter
– max: maximum number of connections in pool
– min: minimum number of connections in pool
– acquire: maximum time for trying connection before throwing an error
– idle: maximum time until a connection is released

Sequelize is an open-source Node.js module commonly used for Object-Relational Mapping
(ORM) operations, which consists in converting data between relational databases and objects.
This way, we are able to build database tables described by objects that later are converted to
relational tables by Sequelize. Thefore, the previous configuration is then used for initializing
Sequelize in the index.js file under the Models component as well as “importing” the models we
have defined. After that, the last step is to add Sequelize’s sync() method into the server.js
file in order to instruct Sequelize to search for those models and generate SQL queries to
create them in the database, in case they do not exist yet.

4.2.3 Models

A model defines a table in a relational database but thanks to Sequelize ORM we are able
to represent it using JavaScript notation as an object. Hence, for each entity from our
entity-relationship model (see figure 4.1) we must describe all of its attributes including
their inherited foreign keys. There is a collection of integrity restrictions that we can apply
to attributes, apart from their type, such as null, unique, primary key, foreign key and a
few extra. They are very important and should be used to achieve a robust database. The
requirement analysis in subsection 4.1.1 gives a good overview of each entity’s attributes and
their types, which makes this stage easier by visiting table 4.1 and adding the foreign keys to
the correct entities.

Project

The primary key of Project is its ID, so automatically it is unique and can not be null. Its
type is integer and since it follows the project creation we define it as auto-incremented. The
project’s title is a string, should not be empty and we consider that it should also be unique

30

to better distinguish projects. A description is not mandatory, therefore we allow it to be null
on the user’s side but actually we define a default value which is triggered in that case, so
it will never be null as well. The project’s status can be either “Open” or “Closed” hence
it is a string. The default value is “Open” at its creation and that way will never be null.
Finally, the manager is represented by the username, thus is a string. However, this is a
special case given it is a foreign key. Consequently, we must tell Sequelize which attribute it
references from another table. In this case, the manager references the attribute “username”
from Member. Moreover, let us say that the manager is deleted from the database. This
operation can be rejected because it modifies the Project table as well, so we need to define
an on delete restriction that sets that attribute to null.

Member

A member’s first name and last name are both strings and can not be null. But as mentioned
before, what identifies a member is its username and for that reason is the primary key of
type string. No special additional restrictions were configured for this column. The email
usually is large in length, so is also a string and can not be null. In this case, we are able to
verify if the input has, at least, the form of an email with the restrictions validate and isEmail.

Document

The document’s ID is the primary key of this table and also was configured to be auto-
incremented integer. Both title and location are strings that should not be null, since their
values come directly from the uploaded document itself. Annotated and Mapping are two
boolean flags as described before. The former does not require a value from the client-side,
although we defined it to be “false” as default and it is toggled after annotation. The latter
can not be null, so the client-side must include this field when uploading a document for
mapping. The column “rows” is only used for mapping documents representing the number
of annotations that are going to be mapped, thus is an integer and we allow it to be null for
“non-mapping” documents. Finally, Document has a foreign key inherited from Project which
is the project ID in order to link a document as being uploaded to a given project. Therefore,
we define “proj_id” as an integer foreign key but this time we want to delete the document if
the project it references is deleted. In order to do that we define the on delete resctriction to
cascade.

Annotation

The annotation table uses the internal ID as its primary key, which is an auto-incremented
integer. The annotation ID follows a specific format and is stored as a string, is not unique
since the same term can be recognized multiple times in the same document generating
multiple entries with equal annotation ID but with different offsets. The terms are words
from the text thus defined as strings that should not be null nor unique. On the other hand,
the offset is an unique integer and should not be null. We must store the biomedical type of
each annotation which is represented by a string, not null nor unique. Finally, the Annotation

31

table references Document’s primary key (document ID) and, like Document’s foreign key
constraint, also defines on delete action as cascade.

4.2.4 Controllers

We need to configure a controller for each entity, similar to the Models component. The
controllers are responsible for setting up the REST API that will execute all the CRUD
operations that manipulate objects such as: create new objects, retrieve multiple objects
that match certain conditions, retrieve single objects, update objects, delete single object
and delete all objects. All these operations (and more) are supported and implemented by
Sequelize and work directly with the models’ instances, i.e. the controllers require the models
to execute the operations since they represent the database tables.

4.2.5 Routes

The last step is to expose the necessary endpoints, which in turn require the controllers for
associating an Uniform Resource Locator (URL) pattern with a CRUD operation. The routes
define the endpoints for each Hypertext Transfer Protocol (HTTP) request (GET, POST,
PUT, DELETE) and essentially instruct the server what operation must be executed from the
ones defined by the controllers. The tables below from 4.2 to 4.5 summarize all the endpoints
exported to interact with the database. Later they will be used by the client-side.

Project Routes
Method URL Action
POST /api/projects Create a new project
GET /api/projects Get all projects from the database
GET /api/projects/:proj_id Get project by ID
PUT /api/projects/:proj_id Update project by ID
PUT /api/projects?proj_name=[name] Update project by title
DELETE /api/projects/:proj_id Delete project by ID
DELETE /api/projects?proj_name=[name] Delete project by title
DELETE /api/projects Delete all projects

Table 4.2: REST API exported for Projects

32

Member Routes
Method URL Action
POST /api/members Create a new member
GET /api/members Get all members from the database
GET /api/members/:username Get member by username
PUT /api/members/:username Update member by username
DELETE /api/members/:username Delete member by username
DELETE /api/members Delete all members

Table 4.3: REST API exported for Members

Document Routes
Method URL Action
POST /api/documents Create a new document
GET /api/documents Get all documents from the database
GET /api/documents/:doc_id Get document by ID
PUT /api/documents/:doc_id Update document by ID
PUT /api/documents?title=[title] Update document by title
DELETE /api/documents/:doc_id Delete document by ID
DELETE /api/documents Delete all documents

Table 4.4: REST API exported for Documents

Annotation Routes
Method URL Action
POST /api/annotations Create a new annotation
GET /api/annotations?doc_id=[doc_id] Get all annotations from a document
GET /api/annotations?term=[term]&type=[type] Get annotation by term, type and offset&offset=[offset]
GET /api/annotations Get all annotations from the database
GET /api/annotations/:annotation_id Get annotation by ID
PUT /api/annotations/:annotation_id Update annotation by ID
DELETE /api/annotations?annotation_id=[annotation_id] Delete annotation by ID, type and offset&type=[type]&offset=[offset]
DELETE /api/annotations?doc_id=[doc_id] Delete all annotations from a document

Table 4.5: REST API exported for Annotations

4.2.6 Annotation Services

Up to this point we described the back-end implementation regarding database planning
and preparing its interaction with the front-end. One of the main goals is to be able to
annotate biomedical text documents, thus next we will explain how the annotation was
implemented. There are two ways the user can perform annotation: either automatically
through a high performance biomedical framework or manually using a node package for
interactively highlighting parts of text.

33

Automatic Annotation

In order to implement automatic annotation in our tool, we resorted to a NLP tool briefly
described in chapter 2 as one of the selected tools that fit our requirements of annotating
biomedical entities semi or fully automatically. That being said, we have chosen Neji which
is an open-source framework highly specialized for biomedical concept recognition. Besides,
Neji provides a web server that allow the users to manage annotation services by adding
or removing dictionaries and ML models, meaning that its performance is dependent of the
configuration, and an interactive user interface for annotation. We started by forking Neji’s
GitHub repository 3 and followed the documentation to create our local web server. Because
it is a Maven 4 project, is strictly mandatory that we meet all the dependencies before we
build the project, otherwise it will not work. In addition, it is important to note that the
web server only works with a specific Java 5 version, in this case 8u77 as indicated in Neji’s
documentation. Once everything is configured correctly and the project has built without
errors, using a script we may start a web server with default configurations, running an
Hypertext Transfer Protocol Secure (HTTPS) server at port 8010, which in turn provides two
interaction points:

• Service: annotation service accessible through an interactive interface or through a
REST API;

• Administration: an administration interface for managing services.

We have indeed used the administration interface to upload dictionaries and ML models
so Neji could recognize biomedical entities. Although, we are not interested in using the
interactive interface provided by the service since we want to build our own. Therefore, we
took advantage of the service’s REST API that exposes two endpoints:

• Annotation: https://localhost:8010/annotate/<service_name>/annotate
• Exportation: https://localhost:8010/annotate/<service_name>/export

At this point, we tested those endpoints through Postman 6, an API platform for building
and using APIs, to check if they were working correctly and returning information, which they
were. Although, we ran into a problem: when sending HTTP requests from the front-end
directly to the endpoints, the browser did not allow that origin to fetch content from it due
to security reasons, returning an XMLHttpRequest error which is related to Access-Control-
Allow-Origin, i.e. a Cross-Origin Resource Sharing (CORS) header. In short, when site A
tries to fetch content from site B, if they are in the same domain the browser will allow it.
However, in a cross-domain situation the request is only successful if B indicates that A is
allowed to do so. Consequently, our solution was to use the back-end Node.js server as a
proxy by sending a request from the front-end to the back-end followed by a request from the
back-end to the web server. The information is then returned following the same logic but
backwards. Figure 4.4 illustrates an overview of the automatic annotation process.

3https://github.com/BMDSoftware/neji
4https://maven.apache.org
5www.java.com
6https://www.postman.com

34

Figure 4.4: Automatic annotation process overview

Figure 4.5 shows how the back-end Node.js server configured CORS, starting by defining
itself as the CORS origin since it will be the entity requesting content from the web server.
Next, we allow the front-end (http://localhost:3000) to send HTTP requests of type GET,
POST, PUT, DELETE and OPTIONS.

1 const express = require (" express ");
2 const cors = require ("cors");
3 const axios = require ("axios");
4 const app = express ();
5 var corsOptions = {
6 origin : "http :// localhost :8081" // the back -end server itself
7 };
8
9 // https :// enable -cors.org/ server_expressjs .html
10 app.use(function (req , res , next) {
11 res. header ("Access -Control -Allow - Origin ", "http :// localhost :3000");
12 res. header ("Access -Control -Allow - Headers ", "Origin , X-Requested -With ,

Content -Type , Accept ");
13 res. header ("Access -Control -Allow - Methods ", "GET , POST , PUT , DELETE ,

OPTIONS ");
14 next ();
15 });

Figure 4.5: CORS configuration

Then, in order to implement the connection for the annotation endpoint we use axios 7

which is a promise-based HTTP client that uses XMLHttpRequests on the client-side and
native Node.js http module on the server-side. The endpoint takes two arguments, one with
the text to be annotated and one with the groups representing the biomedical entities to
recognize, displayed in figure 4.6.

After this we came across another problem, this time concerning Secure Sockets Layer (SSL)
certificates. Neji’s web server runs with HTTPS protocol and has a self-signed certificate,
which is a security certificate that is not signed by a Certificate Authority (CA). What this
means is that this certificate was signed using a private key instead of requesting it from a CA.
Self-signed certificates provide less security properties than the ones signed from a CA and are
prone to attacks. Although is not the appropriate solution to this problem, we disabled the
Node.js verification for unauthorized certificates by defining an environment variable before
starting the server: “export NODE_TLS_REJECT_UNAUTHORIZED=0”.

7https://www.npmjs.com/package/axios

35

1 // Neji 's Web Server Annotation Endpoint
2 app.post (`/ annotate `, function (req , res) {
3 var data;
4 try {
5 axios.post("https :// localhost :8010/ annotate / default / annotate ", {
6 "text": req.body.text ,
7 " groups ": req.body. groups
8 }, {
9 headers : {

10 'Content -Type ': 'application /json '
11 }
12 })
13 .then(response => {
14 // console .log(response .data);
15 data = response .data;
16 return res. status (200).send(data);
17 })
18 . catch(error => {
19 console .error(error);
20 });
21 } catch(err) {
22 console .error(err);
23 return res. status (500).send("[SERVER] Could not annotate that

document .");
24 }
25 });

Figure 4.6: Implementation of Neji’s Web Server annotation endpoint

As such, the front-end after this point was able to fetch content from Neji’s web server. It
returns a JSON object with three keys, as shown in figure 4.7:

• entities: array of strings divided by vertical bars. The first section is the term
recognized, the second an annotation ID following a specific format and the third is the
index representing where the term is located in the text.

• ids: array of strings containing the annotation IDs of the recognized terms
• text: the text requested to be annotated

1 {
2 " entities ": [
3 DMD|UMLS: C0013264 :T047:DISO |32,
4 blood vessel |UMLS: C0005847 :T023:ANAT |679,
5 ...,
6],
7 "ids": [
8 UMLS: C0013264 :T047:DISO,
9 UMLS: C0005847 :T023:ANAT,

10 ...
11],
12 "text": "In Duchenne muscular dystrophy (DMD), ..."
13 }

Figure 4.7: Example of Neji’s annotation endpoint response

36

Manual Annotation

Another type of annotation that we decided to implement is manual annotation. It is not
relevant if a given document has been pre-annotated automatically with Neji or not, as
manual annotation can be performed anytime. We implemented this functionality with a
React component provided by Node Package Manager (NPM), named “react-text-annotate”
8, that allows for interactively highlighting parts of text. This component provides two modes
of operation which differ in the way the text is entered, either split into tokens or a full string,
the latter being what we chose to work with. It allows to drag or double click to select text
which in turn is highlighted depending on the selected tag, i.e. biomedical entity. Therefore,
we define an object associating each biomedical entity to a color coded in hexadecimal (see
figure 4.8). Without this component we would need to implement mouse events as well as
manually manipulate the HTML Document Object Model (DOM) objects in order to highlight
them. However, the manual annotation when compared to the automatic process has a few
disadvantages. The most noticeable is that it is a very time-consuming and labor-expensive
task, but in particular it will not provide annotation IDs like Neji does.

1 const TAG_COLORS = {
2 'PATH ' : '#D9EDF7 ',
3 'DISO ' : '#BBD3E6 ',
4 'FUNC ' : '#F2DEDE ',
5 'PRGE ' : '#FEE4BD ',
6 'ENZY ' : '#E8CE9A ',
7 'COMP ' : '#EEFFEC ',
8 'PROC_FUNC ' : '#DFF0D8 ',
9 'PROC ' : '#BADDBC ',

10 'CHED ' : '#E3D7FF ',
11 'MRNA ' : '#CED4B4 ',
12 'CELL ' : '#E7E7E7 ',
13 'SPEC ' : '#74d3ed ',
14 'ANAT ' : '#8EC3ED ',
15 }

Figure 4.8: Entity colors in Hex codes

4.2.7 Mapping Services

For the task of mapping terms to standard vocabulary concepts we used OHDSI’s open-source
tool Usagi (see subsection 2.1.5). Unlike Neji, Usagi does not provide a REST API. For this
reason, we devised an alternative strategy that allowed us to exploit its functionalities in our
tool: we included Usagi’s code as a module inside Neji. However, this is not enough because
there is no way to access it through the front-end, given that they are two completely separate
projects. For instance, for annotating texts the front-end requests it through the back-end
server, which in turn executes the request to Neji’s web server. Thus, our goal is to follow the
same logic of the annotation process.

8https://www.npmjs.com/package/react-text-annotate

37

Usagi Search Engine

Before breaking down the mapping endpoint implementation, we will explain how we used
Usagi’s search engine in order to search and map terms to standard vocabulary concepts.
The index must be built beforehand because it is where all the information related to the
vocabularies is stored. Later, Usagi will use the index to process the searched terms, by
using the method search(String searchTerm, boolean useMtl, Collection<Integer>

filterConceptIds, ...) from its search engine which takes eight arguments:

• searchTerm: term to map
• useMlt: boolean flag that sets filter heuristics
• filterConceptIds: collection of concept IDs
• filterDomains: vector of domains
• filterConceptClasses: vector of concept classes
• filterVocabularies: vector of vocabularies
• filterStandard: boolean flag to filter standard concepts
• includeSourceConcepts: boolean flag to include source concepts

Concerning the index building process, a contributor who developed Usagi stated 9 that
they used Apache Lucene 10 to perform this operation, due to its powerful indexing and
search feature, as well as spellcheking, allowing for fast comparison between millions of terms.
Moreover, they used BerkeleyDB 11 to store concept-related information such as IDs, ancestors,
relationships and the concepts themselves. With access to this key feature, we created a
simple class that starts by checking if the index is built, as shown in figure 4.9. If not, we
build it after indicating where the vocabulary folder is located. After that, we implemented a
method named searchTerms(List<String> termsList, boolean useMlt, ...) with the
same arguments as the original method, except that the first one is a list of strings instead
of a single term. Inside it we loop through that list where we invoke the original method in
order to map multiple annotations output by Neji or imported terms (see figure 4.10).

1 private void configureIndex () {
2 if(! Global . usagiSearchEngine . mainIndexExists ()) {
3 IndexBuildCoordinator buildIndex = new IndexBuildCoordinator ();
4 String vocabFolder = Global . folder + "/ vocabulary ";
5 String loincFolder = null;
6 buildIndex . buildIndexes (vocabFolder , loincFolder);
7 } else {
8 Global . usagiSearchEngine . openIndexForSearching (false);
9 Global . dbEngine . openForReading ();

10 }
11 }

Figure 4.9: Method responsible for building the index

9https://forums.ohdsi.org/t/mapping-concepts-in-usagi-snomed-vocabulary/1439/6
10http://lucene.apache.org
11https://www.oracle.com/pt/database/technologies/related/berkeleydb.html

38

1 public HashMap <String , Object > searchTerms (List <String > termsList ,
boolean useMlt , Collection <Integer > filterConceptIds , ...) {

2
3 List <List < ScoredConcept >> usagiOutput = new ArrayList <>();
4 HashMap <String , Object > results = new HashMap <String , Object >();
5 for (String term : termsList) {
6 List < ScoredConcept > concepts =

Global . usagiSearchEngine . search (term , useMlt ,
filterConceptIds , filterDomains , filterConceptClasses ,
filterVocabularies , filterStandard , includeSourceConcepts);

7
8 usagiOutput .add(concepts);
9 results .put(term , concepts);
10 }
11 return results ;
12 }

Figure 4.10: Method for searching terms using Usagi’s search engine

Creating a Mapping Endpoint

The easier and most sensible solution to expose a mapping endpoint was to implement it
inside Neji’s web server, since it already provides the infrastructure and allows us to use
the Usagi module. Therefore, the first step was to understand how the web services worked
in Neji and how to implement a new one. They are implemented with a Servlet and Java
Server Pages (JSP). Servlets are Java-based server-side programs that implement the Servlet
interface and process all client requests directed to that server. In turn, the Servlet interface
is an intermediate layer that sits between client requests and server-side programs. JSP on
the other hand, is a web application development technology that is related to Servlets and is
used to develop web pages using HTML code inside Java classes.

When the web server starts, it creates a Servlet container that will host each Servlet.
Therefore, the first step is to configure a Servlet dedicated to the mapping task in an XML
file, indicating various attributes such as name, class, packages, a resource and a URL pattern.
In this case, we named it “Usagi Mapping” belonging to the class ServletContainer which will
look for a resource inside the package pt.ua.tm.neji.web.mapping when the URL pattern
matches “/mapping/*”. The configuration is shown in figure 4.11.

For each endpoint, Neji defines a resource that is responsible to execute its code (e.g.
annotation or managing services). Hence, we created a mapping resource that allows the
web server to use Usagi’s module code. Figure 4.12 shows a snippet of the relevant code
that implements it. This class will be invoked on a POST action matching the path “/map-
ping/search”, consuming parameters encoded in x-www-form-urlencoded which correspond
to the same arguments as our method searchTerms(...). However, this time the terms are
in a comma-separated string which is then split into a list of strings and the “useMlt” boolean
is always set to true. The results are then converted to JSON and returned in that format.

39

1 <servlet >
2 <servlet -name >Usagi Mapping </servlet -name >
3 <servlet -class >com.sun. jersey .spi. container . servlet . ServletContainer <

/servlet -class >
4 <init -param >
5 <param -name >com.sun. jersey . config . property . packages </param -name >
6 <param -value >pt.ua.tm.neji.web. mapping </param -value >
7 </init -param >
8 <init -param >
9 <param -name >com.sun. jersey .api.json. POJOMappingFeature </param -

name >
10 <param -value >true </param -value >
11 </init -param >
12 <load -on - startup >1</load -on - startup >
13 </ servlet >
14 <servlet - mapping >
15 <servlet -name >Usagi Mapping </servlet -name >
16 <url - pattern >/ mapping /*</url - pattern >
17 </servlet - mapping >

Figure 4.11: Mapping Servlet configuration

1 @Path("/")
2 public class MappingResource {
3 /**
4 * Invoked on POST call to map Neji output annotations or imported

terms
5 * @param annotations comma separated annotations
6 */
7 @POST
8 @Path("/ search ")
9 @Consumes (" application /x-www -form - urlencoded ")

10 @Produces (MediaType . APPLICATION_JSON)
11 public Response search (@FormParam (" annotations ") final String

annotations , @FormParam (" filterConceptIds ") final boolean
filterConceptIds , @FormParam (" filterStandardConcepts ") final
boolean filterStandardConcepts , ...) {

12
13 Object responseToReturn ;
14 ...
15 String [] splitAnnotations = annotations .split(",");
16 List <String > annotationsList = Arrays . asList (splitAnnotations);
17 if(annotationsList .size () == 0) {
18 responseToReturn = "There are no annotations to map.";
19 } else {
20 ...
21 HashMap <String , Object > results =

usagi. searchTerms (annotationsList , useMlt , null , domains ,
conceptClasses , vocabularies , filterStandard ,
includeSourceConcepts);

22 return Response .ok(new Gson (). toJson (results)).build ();
23 }
24 return Response .ok(responseToReturn).build ();
25 }
26 }

Figure 4.12: Implementation of Mapping Resource

40

Back-end server endpoint

With the endpoint created at Neji’s web server, we must complete the “pipeline” and implement
the logic inside the back-end server so it acts as a proxy between Neji and the front-end,
similar to what we did for the annotation. The only difference is how the parameters are
added to the request, due to the x-www-form-urlencoded format, as shown in figure 4.13.

1 app.post("/ mapping ", function (req , res) {
2 var data;
3
4 // https :// axios -http.com/docs/ urlencoded
5 const params = new URLSearchParams ();
6 params . append ('annotations ', req.body. annotations);
7 params . append ('filterConceptIds ', req.body. filterConceptIds);
8 params . append ('filterSelectedConcepts ', req.body.

filterSelectedConcepts);
9 params . append ('filterStandardConcepts ', req.body.

filterStandardConcepts);
10 params . append ('filterIncludeSourceTerms ', req.body.

filterIncludeSourceTerms);
11 params . append ('filterConceptClass ', req.body. filterConceptClass);
12 params . append ('filterVocabulary ', req.body. filterVocabulary);
13 params . append ('filterDomain ', req.body. filterDomain);
14
15 try {
16 axios.post("https :// localhost :8010/ mapping / search ", params)
17 .then(response => {
18 data = response .data;
19 return res. status (200).send(data);
20 })
21 . catch(error => {
22 console .error(error);
23 });
24 } catch (err) {
25 console .error(err);
26 return res. status (500).send("[SERVER] Could not map the requested

annotations .");
27 }
28 })

Figure 4.13: Implementation of Neji’s Web Server mapping endpoint

4.2.8 Handling File Uploads

Finally, we still need to describe how the back-end Node.js server handles file uploads. The idea
is to allow users to upload text files for annotation and/or CSV files for mapping, originating
from local storage. To that end, we used Multer 12 which is an NPM package primarily used
for uploading files. In terms of storage, Multer provides two options: disk or memory. The
memory storage engine stores the files in memory as buffer objects, but we want to store
them locally organized by projects, so we used disk storage. Thus, we create a directory for
uploads that is divided in sub-directories for each project, which in turn store the uploaded
files. Figure 4.14 shows how Multer is configured: first we resolve the user’s absolute path

12https://www.npmjs.com/package/multer

41

as the root upload path, ending in “/uploads/projects”. Afterwards, we use that absolute
path and merge a section indicating the project ID, resulting in the final destination of the
file(s) uploaded. At this stage, we use the Node.js fs module 13 to access and interact with
the file system. In this case, the method mkdirSync(path[, options]) recursively creates
the directory when var upload is used, as we will explain next.

1 var uploadsRelPath = " uploads / projects ";
2 var uploadsAbsPath = resolve (uploadsRelPath);
3
4 var storage = multer . diskStorage ({
5 destination : function (req , file , cb) {
6 var projId = req.url.split("/")[2];
7 var path = `${ uploadsRelPath }/${ projId }`;
8 fs. mkdirSync (path , { recursive : true });
9 cb(null , path)

10 },
11 filename : function (req , file , cb) {
12 cb(null , file. originalname)
13 }
14 });
15
16 // allow multiple files to be uploaded
17 var upload = multer ({ storage : storage }).array('file ');

Figure 4.14: Multer implementation

In order to actually use the Multer instance, we must use the var upload which from
a user’s perspective is used when an upload is requested. As such, the front-end sends an
HTTP request through axios to the back-end server. The endpoint defined for this purpose is
shown in figure 4.15.

1 // API endpoint to upload files and store them in local storage
2 app.post('/ upload /: projId ', function (req , res) {
3 upload (req , res , function (err) {
4 if (err instanceof multer . MulterError) {
5 return res. status (500).json(err);
6 } else if (err) {
7 return res. status (500).json(err);
8 }
9 return res. status (200).send(uploadsAbsPath);

10 })
11 });

Figure 4.15: Back-end endpoint for uploading documents

In addition to the upload endpoint, we defined three more endpoints: one when a project
is deleted, another for when a single file is deleted from a project and one for reading files’
content. Each project owns its directory in the uploads folder that is created without files, at
first. When a given project is deleted, we must delete that directory and its contents. For this
reason, we use Node.js fs method rmdirSync(path[, options)] with the recursive option
after checking if it exists with existsSync(path), as shown in figure 4.16.

13https://nodejs.org/api/fs.html

42

1 // API endpoint to delete a project directory and its contents from the
local storage

2 app. delete ('/ deleteProject ', function (req , res) {
3 var projDirectory = `${ uploadsAbsPath }/${req.body. projId }`;
4 try {
5 if(fs. existsSync (projDirectory)) {
6 fs. rmdirSync (projDirectory , { recursive : true });
7 }
8 } catch(err) {
9 console .error(err);
10 return res. status (500).send (`[SERVER] Could not delete project

directory ${ projDirectory }.`);
11 }
12 return res. status (200).send (`[SERVER] Project directory deleted : ${

projDirectory }`);
13 });

Figure 4.16: Back-end endpoint to delete a project’s directory and its contents

Next, to handle with single-file deletion the Node.js fs module provides a method defined
as unlinkSync(path) to delete a file located at the target path. Its implementation is as
shown in figure 4.17.

1 // API endpoint to delete a single file from the local storage
2 app. delete ('/ deleteFile ', function (req , res) {
3 var path = req.body.path;
4 try {
5 fs. unlinkSync (path);
6 } catch(err) {
7 console .error(err);
8 return res. status (500).send (`[SERVER] Could not delete document $

{path }. `);
9 }
10 return res. status (200).send (`[SERVER] Document deleted : ${path }`);
11 });

Figure 4.17: Back-end endpoint to delete a project’s document

Finally, to end the back-end implementation section, we defined an endpoint dedicated to
feed the front-end with a given project files’ contents that are loaded when the user navigates
to the annotation or mapping interface. It is as simple and straightforward as the previous
described, in this case we took advantage of the method readFileSync(path[, options])

that returns the contents of a file located in the target path in the format of a string because
we specify the encoding to be “utf8”. This endpoint is shown in figure 4.18.

43

1 // Read a file and send its contents
2 app.get('/ readFile ', function (req , res) {
3 var path = req.query.path;
4 try {
5 var content = fs. readFileSync (path , 'utf8 ');
6 } catch(err) {
7 console .error(err);
8 return res. status (500).send (`[SERVER] Could not read the document

at ${path }.`);
9 }

10
11 return res. status (200).send(content);
12 });

Figure 4.18: Back-end endpoint to read a file’s content

4.3 Front-end

The front-end or client-side of the tool is developed with React.js as mentioned in chapter
3. Its structure is divided into four parts: Components, Layouts, Services and Views.
Before delving into them, we will start by explaining how the pages or views are loaded and
switched to provide navigation. The entry-point of the application is defined in the index.js file
by instructing React that it should render the App.js layout when starting. The layout defines
the main structure of the application (e.g. header, main, footer) and all the styles that will
be applied to the components, thus it can be compared to a main class in programming. For
enabling navigation between pages we used React Router 14, that allows to define multiple
routes and when the URL path matches any of them it redirects the user to a specific view
rendered by that route. In turn, the routes are defined in routes.js where, for each view that
we want to render, it is defined its path, name and layout.

14https://reactrouter.com

44

frontend/
public/
src/

Components/
Copyright.js
Header.js
Nav.js
Navigator.js

Layouts/
App.js

Services/
annotation.service.js
document.service.js
mapping.service.js
project.service.js

Views/
AnnotateProject.js
Mapping.js
Project.js
ProjectsPage.js

http-common.js
index.js
routes.js

Figure 4.19: Front-end project directory tree

4.3.1 Components

The components are independent and simple modules with very specific purposes. Usually
they are pieces of the front-end that are necessary on multiple occasions or present at all
times. For instance, most websites that we visit daily have a header showing perhaps a
logo, a search bar or menus for navigation, a footer with contacts and social media links, etc.
Those are static elements in some way because do not require updates throughout the user
experience and one may think that they should be instantiated in every page. However, we
only instantiate them once in the layout.

4.3.2 Services

The data services are the bridge between the front-end and the back-end, sending HTTP
requests for any endpoint exported at the back-end, described in subsection 4.2.5. We
accomplish that by using axios which is promise-based as aforementioned. A promise represents
an asynchronous operation and its resulting value and can be in one of three states: pending,
fulfilled or rejected. Every action that requires database interaction starts by creating a new
promise, such as creating new projects, uploading documents to projects, deleting something
or retrieving information. The file http-common.js is responsible for that task by using axios’
create() method which takes two arguments: the baseURL that should match the URL
configured at the back-end server and headers that allow to define the content type of the

45

data exchanged, in this case JSON (see figure 4.20).

1 import axios from "axios";
2
3 export default axios. create ({
4 baseURL : "http :// localhost :8080/ api",
5 headers : {
6 "Content -type": " application /json"
7 }
8 });

Figure 4.20: Axios configuration in http-common.js

Alike the back-end structure, it is necessary to create a data service for each entity that
will be interacting with the database, for instance projects, documents and annotations. We
did not implement it for members, because they were not used. Nevertheless, it is very
straightforward to do it in the future, as the back-end and the database are indeed ready for it.
They are quite simple as it is only necessary to implement functions for each endpoint. The
figure 4.21 demonstrates two examples: the first retrieves an annotation by its ID represented
by a param, because it is explicitly part of the URL after a forward slash; the second deletes
all the annotations from a document by the document’s ID passed through a query, which is
represented by a match after a question mark.

1 import http from "../ http - common ";
2
3 class AnnotationDataService {
4 ...
5 // Get annotation by ID
6 getByAnnotationID (annotation_id) {
7 return http.get (`/ annotations /${ annotation_id }`);
8 }
9

10 // Delete all annotations from a document
11 deleteAll (doc_id) {
12 return http. delete (`/ annotations ? doc_id =${ doc_id }`);
13 }
14 ...
15 }

Figure 4.21: Annotation Data Service Example

4.3.3 Views

The user interfaces that users engage with are called views or pages. They carry all the
information that users see and interact with, such as tables, buttons, containers and many
more React components. In order to make things easier, every component used for the
application is imported from Material UI 15, MUI for short, which is a simple and flexible
library for creating quicker, customizable and accessible React applications by providing
ready-to-use components. They allow customization through props with pre-defined values

15https://v4.mui.com/pt/

46

available, but it is also possible to override specific attributes using in-line styles which is
very useful. Our annotation and mapping tool has four views: a general projects’ page, an
individual project’s page, an annotation page and finally a mapping page.

Projects Page

The projects page is the starting point of the user experience. Since our solution is based on
the idea of projects, this page provides information on a table about every project stored in
the database, including information related to it such as title, manager, number of documents,
number of members and status. In this page the user is able to create new projects and delete
existing ones.

Figure 4.22: Projects page

Individual Project Page

Each project can be accessed by selecting its title from the table of projects on the projects page.
This page is divided into two separate tabs, one for annotation and another for mapping. These
are not the actual interfaces for that tasks, but rather the place for documents’ management
where the users are allowed to upload text documents for annotation and CSV documents
with terms to be mapped into standard vocabulary concepts. Therefore, in this view we
present simple tables with document-related information. For annotation documents, the
table is populated with the documents’ titles, number of annotations and the time elapsed
since the last update. On the other hand, the mapping documents’ table shows a list with
their titles, number of rows (i.e. equivalent to the number of terms to map) and also the last
update. Concerning the upload of documents, both types are restricted to 2MB and text
and CSV format accordingly. Figure 4.23 shows this view on the annotation tab with five
documents uploaded.

47

Figure 4.23: Individual project’s page

Annotation Interface

The annotation interface is where the process of annotation takes place. It is intended to
work for an entire project, which means that it must provide easy navigation between the
project’s documents. Moreover, the user interface design is very important in the sense that
an annotator’s performance will be directly influenced by how the tool works, i.e. it should
be fast, simple to use and intuitive to a point that there is no need to teach users how to
use it. Therefore, we designed this page divided into two vertical sections: the left column
holds an annotation area where a document’s text is loaded and highlighted with annotations.
Plus, is where the experts will work with manual annotations by adding new ones or deleting
existing ones. The right column is reserved to a table populated with the existing annotations
belonging to that document, allowing the annotators to easily monitor their work. Each
annotation in the table is displayed with the term underlined with the color of its type, the
annotation ID, its type with background color, its offset in the text and a delete button icon.

Figure 4.24: Annotation interface

48

Mapping Interface

The mapping interface aims to aid the manual process of mapping terms to standard vocabulary
concepts, by automatically searching and comparing them with millions of concepts and
associate the results to a match score representing its degree of confidence. As stated before,
we used OHDSI’s open-source tool Usagi, which in turn uses Apache Lucene, for the task
of searching and indexing. The mapping interface is more complex than the annotation’s,
due to the vast amount of information output by Usagi. Thus, it is vertically divided into 3
components that span the entire width of the screen: at the top is an overview of the current
mapped concepts which are the suggested cope mappings based on search filters set at import
stage and term similarity, or in other words, achieved by comparing the terms to concept
names and synonyms. Each automatically generated mapping has a match score associated
to it, ranging from 0 to 1 with 1 being a confident match. When a match score is low, then
an intervention is needed to replace that mapping for another concept with a higher score. At
the bottom section, the user can search for a more suitable concept and choose to replace the
target concept present at the middle section or add another one, as well as define a set of
filters. The middle section displays a larger view of the selected mapping. In case a mapping
is correct, the user can simply hit the approve button and continue his work [69].

Figure 4.25: Mapping interface

49

CHAPTER 5
Walkthrough

In this chapter, we describe a walkthrough of our tool explaining step-by-step how the users
can exploit its functionalities in order to perform domain-oriented tasks, either related to
automatically recognized biomedical entities through NLP techniques or mapping non-standard
concepts to standard vocabulary concepts or both tasks. We start at section 5.1 which is the
“home page” of the application where the creation of projects take place, followed by uploading
documents at section 5.2 which are then ready to be annotated or mapped, as described in
sections 5.3 and 5.4, respectively.

5.1 Manage Projects

The first page that the user interacts with is the projects’ management page, as aforementioned
in subsection 4.3.3, providing information about every project stored in the database. It serves
two purposes, the main one being the management of projects, i.e. creating and deleting, and
allow accessing the next page. If there are no records of projects this page will be empty, so
in order to create one the user must click the blue button "New Project" which will prompt
a creation dialog as figure 5.1 shows, where at least a title must be input and an optional
description. After pressing "Create" the dialog closes and the project is stored in the database
simultaneously. Moreover, a snackbar (also known as a toast) is rendered at the bottom
center of the screen to inform the user that the operation was successful and disappears after
six seconds without any user’s mouse clicks (see figure 5.2). After this, the projects page
has information to display on a table, thus will look like figure 5.4, showing the project’s ID
which is meaningless but we decided to include it as a way of better identifying the project if
the list is extensive, the title (name), manager, number of documents and members and its
status. In order to delete it, the user may press the red bin icon, which alike the creation, will
prompt a dialog to confirm this action (see figure 5.5). In case of confirmation, a snackbar
is rendered informing that the operation was executed (see figure 5.3), deleting the project
from the database. To continue navigating the user must click on the title which is a link
that routes the application to the next page.

51

Figure 5.1: Project creation dialog

Figure 5.2: Project creation snackbar Figure 5.3: Project deletion snackbar

Figure 5.4: Projects page

Figure 5.5: Project deletion dialog

52

5.2 Manage Documents

Now the user is looking at a dedicated page belonging to the project that he/she clicked
earlier. This page is shared between annotation and mapping separated into tabs, allowing
for managing their related documents. If there are none, each tab will look like figure 5.6,
informing the user to upload documents to start annotating/mapping.

Figure 5.6: Annotation tab without uploaded documents

That said, when clicking the “Upload” button a dialog is prompt (see figure 5.8) with a
dropzone that allows to select one or multiple files from local storage or simply drag them
into the dropzone. They must comply with the restrictions imposed, which are relative to
their format and size: for annotation is only allowed text files (.TXT) and for mapping CSV
files, weighing both a maximum of 2MB. Dragged files that do not comply will trigger a red
dotted line leading to rejection, while those who comply are accepted with a green dotted line,
which in turn form the list of accepted files below. Concerning the annotation tab, the upload
process ends when the user confirms it while the dialog closes and a table is rendered with
annotation documents’ information, such as ID, title, number of annotations, time elapsed
since the last update, which goes back to zero when a document’s annotations are modified,
and a delete icon button. At the same time, during six seconds a snackbar informs how many
files were uploaded, as shown in figure 5.7. Figure 5.9 shows what the interface looks like after
this process.

Figure 5.7: Informative snackbar on uploaded files

53

Figure 5.8: Dropzone for uploading annotation files

Figure 5.9: Individual project’s annotation documents

As for the mapping tab, the process has an extra step. The interface when empty looks the
same as figure 5.6 and the same dropzone dialog shown in figure 5.8 is prompt when pressing
“Upload”, but only allows CSV files to be selected or dragged and instead of a “Confirm” there
is a “Next” button. This time, when hitting “Next” an additional dialog is prompt to map
the CSV columns, because we need to indicate which column represents what, in order to
map those imported terms. In that dialog displayed in figure 5.10, the user may configure
five parameters by associating each one to a column, including source code, source name,
source frequency, auto concept ID and additional info. It is not mandatory nor required to
map every single one, even because not every CSV file will hold all the columns, as the figure

54

itself shows. Nevertheless, at least one column is strictly mandatory to be able to finish the
upload/import process, which is the source name column because it holds the list of terms to
map to standard vocabulary concepts. After clicking “Import” the same behaviour is expected
as the annotation tab by rendering the same informative snackbar in figure 5.7 and a table
showing the documents’ ID, title, number of rows and a delete button icon (see figure 5.11).
The delete button presents and triggers the same components and behaviour as the others
already described, i.e. prompt a dialog to confirm followed by a snackbar if confirmed. In
order to map these imported concepts, the users just need to press the yellow rectangle button
“Map Concepts”, which will redirect them to the mapping page.

Figure 5.10: Import dialog to map columns

55

Figure 5.11: Uploaded .CSV documents for mapping

5.3 Annotation

In order to start annotating, the user can choose two modes of operation: either manually by
clicking the yellow “Manual Curation” button with a hand icon or automatically by hitting the
green “Auto Annotation” button, which will lead to the annotation interface. It is important
to note that the automatic annotation is only executed once on documents that have not
been annotated yet, or in other words, if they have zero annotations recorded in database.
The annotation interface is divided into two vertical sections as mentioned in subsection 4.3.3.
Figure 5.12 presents an interactive area with highlighted terms as well as their type (e.g.
disorder [DISO], species [SPEC], anatomy [ANAT], and so on), where the users add new ones
or delete existing ones. To annotate a term the user must choose its type from the dropdown
menu, followed by double-clicking a word or selecting a portion of text. Above the annotation
area, the user is able to change between documents with navigation arrows which will also
change the typography at their right stating which one is selected. In addition, we placed
a blue button on the far right of this column in order to allow the users to execute both
annotation and mapping as a “pipeline”. It allows for mapping the whole project, i.e. gathers
all the annotations from all the project’s documents, filters duplicate entries and maps the
resultant unique terms.

On the right column, we render a table with the selected document’s annotations as seen
in figure 5.13. When a term is manually annotated it is stored in the database which will
trigger the table on the right column to update its content. Notice that some terms have an
“undefined” ID, unlike others with actual value, meaning that they were manually annotated
thus do not have access to an annotation ID, because that information is output by the
automatic procedure. If the users wish to delete an annotation they may do it by clicking on
the red bin icon, without prompting a confirmation dialog to make it less intrusive. However,
a snackbar is rendered telling which annotation has been deleted and provides an “Undo”
option (see figure 5.14, which will last for six seconds. After that period, that annotation can

56

Figure 5.12: Annotation area with highlighted terms

not be retrieved and must be manually added again, if needed.
There is also an option to delete a document’s annotations all at once by clicking the red

rectangular “Delete All” button on the top right corner, which will prompt a dialog to confirm
this action (see figure 5.15). After confirmation, the given document becomes “un-annotated”
and automatic annotation is available again.

57

Figure 5.13: Annotations table

Figure 5.14: Annotation deleted snackbar

58

Figure 5.15: Dialog to delete every annotation from a document

59

5.4 Mapping

Regarding the mapping page, we have seen two distinct ways of navigating towards it. One
is by following a “pipeline” that includes both annotation and mapping, which is intended
to map annotated concepts from the annotation page. The other one consists of mapping
imported concepts without going through the annotation process. As such, the difference
is only the input method so we will explain how this interface works for both use cases.
Mapping non-standard concepts to standard vocabulary concepts is a computation-intensive
task because it is necessary to search and compare concepts with millions of names and
synonyms and the majority are irrelevant. Therefore, given that the first step is to search
each individual concept, the user must wait a few seconds to see results while everything is
processed in the background. As soon as it finishes, the page is rendered and populated with
the results separated into three sections (see figure 5.16), as they are described individually
below.

Figure 5.16: Mapping interface

Starting at the top, there is a table that displays a scrollable list of the suggested code
mappings for each concept. For each concept the tool retrieves dozens or hundreds of results
ordered by a match score which represents the confidence, ranging from 0 to 1 with 1 being a
confident match. Thus, in this table we display the best results with various informations
including status, source code, source term, concept ID, domain, concept class, vocabulary,
concept code, standard, number of parents and children, which are all output by the search
engine. The user may approve concepts by clicking the “Approve” button, which turns that
concept approved and its row changes color to green. This table is very important for other
functionalities that influence the rest of the page, for instance it supports mouse click events
represented by a blue colored row. This event will change the other sections’ information.

60

Figure 5.17 shows a closer look at the suggested code mappings.

Figure 5.17: Code mappings suggested by the search engine

Directly below that table, in the middle section there are two small tables presenting an
overview of the selected concept. The first one contains three columns regarding the source
code, source term and frequency of the selected concept from the first table at the top. Notice
that only imported CSV files may contain source codes, otherwise that column will be empty
at all times and the same applies to the first table. The frequency represents the number of
occurrences of the selected concept, either in the annotated documents or in the imported file.
The second table usually shows one target concept, which represents the mapping for that
concept. However, the user may remove it hitting the red “Remove” button and that concept
will become unmapped, or replace it by another or even add a target concept, which will be
explained next. Figure 5.18 shows an example of these two tables when “Hippocampus” is
selected.

Figure 5.18: Source code and target concepts tables for “Hippocampus”

The last section of the mapping interface is a search facility that is subdivided into two
portions: one for defining a set of filters and input search queries and a table with results (see
figure 5.20). As default, the table shows results relative to the selected concept and contains
the same columns as the suggested mappings table at the top. It is also possible to search for
specific terms rather than searching the selected concept, by selecting the “Query” option and
input the desired term. After hitting the “Search” button, the results are updated. Moreover,
the user may filter them by selected concepts, standard concepts, including source terms,
concept class, vocabulary or domain, in order to narrow them down. Finally, the user may
replace the target concept for a concept from the results or add new ones. Figure 5.19 shows
a situation where “Hippocampus” has two target concepts, both with match score of 1.

Figure 5.19: Concept “Hippocampus” with two target concepts

61

Figure 5.20: Search results for the selected concept “Hippocampus”

62

CHAPTER 6
Conclusions

The focus of this dissertation was to build a state-of-the-art tool to aid the labor-intensive
and time-consuming manual tasks of annotation and curation of biomedical literature, as
well as provide the ability to convert clinical concepts into a standard format. Several
state-of-the-art NLP solutions and techniques were studied to acquire knowledge concerning
biomedical TM and how it played a very important role to build GSC. On the other side
of the spectrum, it was described the importance of harmonizing data into a common data
standard and a successful approach by the open-science collaborative OHDSI, which remains
active with different-skilled contributors working collaboratively allowing to improve research
and promoting better healthcare.

Taking that into consideration, this work contributes to the community by combining
annotation and mapping in a single tool, which allows experts to still perform each operation
individually but also to form a pipeline and use the annotation stage output as input for
the mapping stage. An overview of the architecture and its detailed implementation were
described, including the database planning and configuration using PostgreSQL and Sequelize
ORM, the back-end development through Node.js and Express.js that allowed to create a
server which handles the operations between the client-side and the database, as well as
external services for annotation and mapping, while establishing communications throughout
the different components with Axios. The relevant information is displayed in a simple and
easy-to-use user interface developed with well-known technologies provided by React.js.

As a result, the tool allows the users to upload text documents and annotate biomedical
entities present in them, either manually by selecting portions of text or double clicking
words, or automatically with Neji’s web services and manage those generated annotations.
For “independent” mapping, the users can upload CSV documents containing terms to be
mapped to standard vocabulary concepts, using Usagi’s open-source code developed by OHDSI
which allows to build an index from a vocabulary and search terms on it. Moreover, the
users can review and validate suggested mappings based on match score. However, not every
requirement was implemented, for instance user registration would be essential to implement

63

the necessary components in order to provide collaboration among experts. Moreover, some
operations are not as efficient as expected, due to less orthodox methodologies, namely the
mapping search feature because the processing time is directly proportional to the number
of terms to search, adding the overhead caused by the React user interface itself which also
processes and stores variables in the background. Nevertheless, the solution developed meets
most of the objectives that were planned.

6.1 Future work

Regarding future work there are several points that would add value to this dissertation,
which are enumerated below:

• Currently the users are able to upload text files for annotation, but it would be very
useful to implement PDF and even PMC articles directly to promote versatility;

• Give more control over the tool’s configuration to the users by creating new interfaces
for managing annotation resources, for instance dictionaries and ML models, instead of
using Neji’s and then return to the tool;

• Export code mappings after the users are finished reviewing and validated all suggested
mappings, as well as save their work and continue later on another time;

• Improve the overall efficiency by implementing better algorithms, methodologies and
technologies, for example use an in-memory database as cache which would decrease the
loading times and responsiveness;

• Implement user registration which in turn would allow to develop collaborative features,
such as real-time collaboration between annotators, assuming that the system is deployed
so users do not execute it locally.

64

References

[1] OHDSI, The Book of OHDSI: Observational Health Data Sciences and Informatics. OHDSI, 2021, isbn:
9781088855195. [Online]. Available: https://ohdsi.github.io/TheBookOfOhdsi/.

[2] Wikipedia contributors, Cohort (statistics) — Wikipedia, the free encyclopedia, [Online; accessed 26-
March-2021], 2020. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Cohort_
(statistics)&oldid=959136074.

[3] D. P. Lubeck, “Use of observational databases (registries) in research,” in Clinical Research Methods
for Surgeons, Humana Press, pp. 95–104. doi: 10.1007/978-1-59745-230-4_6. [Online]. Available:
https://doi.org/10.1007/978-1-59745-230-4_6.

[4] P. Vassiliadis and A. Simitsis, “Near real time etl,” Annals of Information Systems New Trends in Data
Warehousing and Data Analysis, pp. 1–31, 2008. doi: 10.1007/978-0-387-87431-9_2.

[5] Data warehouse, Sep. 2021. [Online]. Available: https://en.wikipedia.org/wiki/Data_warehouse.

[6] S. Chaudhuri and U. Dayal, “An overview of data warehousing and olap technology,” ACM SIGMOD
Record, vol. 26, no. 1, pp. 65–74, 1997. doi: 10.1145/248603.248616.

[7] T. Suzumura, T. Yasue, and T. Onodera, “Scalable performance of system s for extract-transform-load
processing,” Proceedings of the 3rd Annual Haifa Experimental Systems Conference on - SYSTOR 10,
2010. doi: 10.1145/1815695.1815704.

[8] A. D. U. o. Illinois, A. Doan, U. o. Illinois, U. o. I. Profile, R. R. U. o. Wisconsin, R. Ramakrishnan,
U. o. Wisconsin, U. o. W. Profile, S. V. I. R. at Almaden, S. Vaithyanathan, and et al., Managing
information extraction: State of the art and research directions, Jun. 2006. [Online]. Available: https:
//dl.acm.org/doi/abs/10.1145/1142473.1142595.

[9] M. Hearst, “What is text mining,” SIMS, UC Berkeley, vol. 5, 2003.

[10] R. J. Gaizauskas and A. M. Robertson, “Coupling information retrieval and information extraction: A
new text technology for gathering information from the web.,” Citeseer.

[11] A. Mansouri, L. S. Affendey, and A. Mamat, “Named entity recognition approaches,” International
Journal of Computer Science and Network Security, vol. 8, no. 2, pp. 339–344, 2008.

[12] H. Shelar, G. Kaur, N. Heda, and P. Agrawal, “Named entity recognition approaches and their comparison
for custom ner model,” Science & Technology Libraries, vol. 39, no. 3, pp. 324–337, 2020. doi: 10.
1080/0194262X.2020.1759479. eprint: https://doi.org/10.1080/0194262X.2020.1759479. [Online].
Available: https://doi.org/10.1080/0194262X.2020.1759479.

[13] G. Zhou, J. Zhang, J. Su, D. Shen, and C. Tan, “Recognizing names in biomedical texts: a machine
learning approach,” Bioinformatics, vol. 20, no. 7, pp. 1178–1190, Feb. 2004, issn: 1367-4803. doi:
10.1093/bioinformatics/bth060. eprint: https://academic.oup.com/bioinformatics/article-
pdf/20/7/1178/679155/bth060.pdf. [Online]. Available: https://doi.org/10.1093/bioinformatics/
bth060.

[14] D. Campos, S. Matos, and J. Luis, “Biomedical named entity recognition: A survey of machine-learning
tools,” Theory and Applications for Advanced Text Mining, 2012. doi: 10.5772/51066.

[15] L. Wissler, M. Almashraee, D. Monett, and A. Paschke, “The gold standard in corpus annotation,” Jun.
2014. doi: 10.13140/2.1.4316.3523.

65

https://ohdsi.github.io/TheBookOfOhdsi/
https://en.wikipedia.org/w/index.php?title=Cohort_(statistics)&oldid=959136074
https://en.wikipedia.org/w/index.php?title=Cohort_(statistics)&oldid=959136074
https://doi.org/10.1007/978-1-59745-230-4_6
https://doi.org/10.1007/978-1-59745-230-4_6
https://doi.org/10.1007/978-0-387-87431-9_2
https://en.wikipedia.org/wiki/Data_warehouse
https://doi.org/10.1145/248603.248616
https://doi.org/10.1145/1815695.1815704
https://dl.acm.org/doi/abs/10.1145/1142473.1142595
https://dl.acm.org/doi/abs/10.1145/1142473.1142595
https://doi.org/10.1080/0194262X.2020.1759479
https://doi.org/10.1080/0194262X.2020.1759479
https://doi.org/10.1080/0194262X.2020.1759479
https://doi.org/10.1080/0194262X.2020.1759479
https://doi.org/10.1093/bioinformatics/bth060
https://academic.oup.com/bioinformatics/article-pdf/20/7/1178/679155/bth060.pdf
https://academic.oup.com/bioinformatics/article-pdf/20/7/1178/679155/bth060.pdf
https://doi.org/10.1093/bioinformatics/bth060
https://doi.org/10.1093/bioinformatics/bth060
https://doi.org/10.5772/51066
https://doi.org/10.13140/2.1.4316.3523

[16] S. Sun, C. Luo, and J. Chen, “A review of natural language processing techniques for opinion mining
systems,” Information Fusion, vol. 36, pp. 10–25, 2017, issn: 1566-2535. doi: https://doi.org/
10.1016/j.inffus.2016.10.004. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1566253516301117.

[17] Romance languages, Oct. 2021. [Online]. Available: https://en.wikipedia.org/wiki/Romance_
languages.

[18] C. Silva and B. Ribeiro, “The importance of stop word removal on recall values in text categorization,”
in Proceedings of the International Joint Conference on Neural Networks, 2003., vol. 3, Jul. 2003,
1661–1666 vol.3. doi: 10.1109/IJCNN.2003.1223656.

[19] V. Balakrishnan and L.-Y. Ethel, “Stemming and lemmatization: A comparison of retrieval perfor-
mances,” Lecture Notes on Software Engineering, vol. 2, no. 3, pp. 262–267, 2014. doi: 10.7763/lnse.
2014.v2.134.

[20] A. Voutilainen, “Part-of-speech tagging,” The Oxford handbook of computational linguistics, pp. 219–232,
2003.

[21] B. Rink, C. A. Bejan, and S. Harabagiu, “Learning textual graph patterns to detect causal event
relations,” in Twenty-Third International FLAIRS Conference, 2010.

[22] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing text with the natural
language toolkit. " O’Reilly Media, Inc.", 2009.

[23] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky, “The stanford
corenlp natural language processing toolkit,” in Proceedings of 52nd annual meeting of the association
for computational linguistics: system demonstrations, 2014, pp. 55–60.

[24] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts, “Recursive deep
models for semantic compositionality over a sentiment treebank,” in Proceedings of the 2013 conference
on empirical methods in natural language processing, 2013, pp. 1631–1642.

[25] R. Řehůřek and P. Sojka, “Software framework for topic modelling with large corpora. english,” in
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50.

[26] X. Qiu, Q. Zhang, and X.-J. Huang, “Fudannlp: A toolkit for chinese natural language processing,”
in Proceedings of the 51st annual meeting of the association for computational linguistics: system
demonstrations, 2013, pp. 49–54.

[27] W. Che, Z. Li, and T. Liu, “Ltp: A chinese language technology platform,” in Coling 2010: Demonstrations,
2010, pp. 13–16.

[28] J. Zhu, M. Zhu, Q. Wang, and T. Xiao, “Niuparser: A chinese syntactic and semantic parsing toolkit,”
in Proceedings of ACL-IJCNLP 2015 System Demonstrations, 2015, pp. 145–150.

[29] M. Neves and U. Leser, “A survey on annotation tools for the biomedical literature,” Briefings in
Bioinformatics, vol. 15, no. 2, pp. 327–340, Dec. 2012, issn: 1467-5463. doi: 10.1093/bib/bbs084. eprint:
https://academic.oup.com/bib/article-pdf/15/2/327/555100/bbs084.pdf. [Online]. Available:
https://doi.org/10.1093/bib/bbs084.

[30] Mariananeves,Mariananeves/annotation-tools. [Online]. Available: https://github.com/mariananeves/
annotation-tools.

[31] M. Neves and J. Ševa, “An extensive review of tools for manual annotation of documents,” Briefings
in Bioinformatics, vol. 22, no. 1, pp. 146–163, Dec. 2019, issn: 1477-4054. doi: 10.1093/bib/bbz130.
eprint: https://academic.oup.com/bib/article-pdf/22/1/146/35934686/bbz130.pdf. [Online].
Available: https://doi.org/10.1093/bib/bbz130.

[32] M. Neves and J. Seva, Annotationsaurus: A searchable directory of annotation tools, 2020. arXiv:
2010.06251 [cs.CL].

[33] E. F. Sang and F. De Meulder, “Introduction to the conll-2003 shared task: Language-independent
named entity recognition,” arXiv preprint cs/0306050, 2003.

66

https://doi.org/https://doi.org/10.1016/j.inffus.2016.10.004
https://doi.org/https://doi.org/10.1016/j.inffus.2016.10.004
https://www.sciencedirect.com/science/article/pii/S1566253516301117
https://www.sciencedirect.com/science/article/pii/S1566253516301117
https://en.wikipedia.org/wiki/Romance_languages
https://en.wikipedia.org/wiki/Romance_languages
https://doi.org/10.1109/IJCNN.2003.1223656
https://doi.org/10.7763/lnse.2014.v2.134
https://doi.org/10.7763/lnse.2014.v2.134
https://doi.org/10.1093/bib/bbs084
https://academic.oup.com/bib/article-pdf/15/2/327/555100/bbs084.pdf
https://doi.org/10.1093/bib/bbs084
https://github.com/mariananeves/annotation-tools
https://github.com/mariananeves/annotation-tools
https://doi.org/10.1093/bib/bbz130
https://academic.oup.com/bib/article-pdf/22/1/146/35934686/bbz130.pdf
https://doi.org/10.1093/bib/bbz130
https://arxiv.org/abs/2010.06251

[34] A. Lourenço, R. Carreira, S. Carneiro, P. Maia, D. Glez-Peña, F. Fdez-Riverola, E. C. Ferreira, I. Rocha,
and M. Rocha, “@note: A workbench for biomedical text mining,” Journal of Biomedical Informatics,
vol. 42, no. 4, pp. 710–720, 2009, issn: 1532-0464. doi: https://doi.org/10.1016/j.jbi.2009.04.002.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S1532046409000537.

[35] R. Rak, A. Rowley, W. Black, and S. Ananiadou, “Argo: an integrative, interactive, text mining-
based workbench supporting curation,” Database, vol. 2012, Feb. 2012, bas010, issn: 1758-0463. doi:
10.1093/database/bas010. eprint: https://academic.oup.com/database/article- pdf/doi/10.
1093/database/bas010/1192080/bas010.pdf. [Online]. Available: https://doi.org/10.1093/
database/bas010.

[36] C. Cano, T. Monaghan, A. Blanco, D. Wall, and L. Peshkin, “Collaborative text-annotation resource
for disease-centered relation extraction from biomedical text,” Journal of Biomedical Informatics,
vol. 42, no. 5, pp. 967–977, 2009, Biomedical Natural Language Processing, issn: 1532-0464. doi:
https://doi.org/10.1016/j.jbi.2009.02.001. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1532046409000215.

[37] D. Kwon, S. Kim, S.-Y. Shin, A. Chatr-aryamontri, and W. J. Wilbur, “Assisting manual literature
curation for protein–protein interactions using BioQRator,” Database, vol. 2014, Jul. 2014, bau067, issn:
1758-0463. doi: 10.1093/database/bau067. eprint: https://academic.oup.com/database/article-
pdf/doi/10.1093/database/bau067/8246754/bau067.pdf. [Online]. Available: https://doi.org/10.
1093/database/bau067.

[38] P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, and J. Tsujii, “Brat: A web-based tool for NLP-
assisted text annotation,” in Proceedings of the Demonstrations at the 13th Conference of the European
Chapter of the Association for Computational Linguistics, Avignon, France: Association for Computational
Linguistics, Apr. 2012, pp. 102–107. [Online]. Available: https://aclanthology.org/E12-2021.

[39] E. Apostolova, S. Neilan, G. An, N. Tomuro, and S. Lytinen, “Djangology: A light-weight web-based tool
for distributed collaborative text annotation,” in Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10), Valletta, Malta: European Language Resources
Association (ELRA), May 2010. [Online]. Available: http://www.lrec- conf.org/proceedings/
lrec2010/pdf/543_Paper.pdf.

[40] P. Ciccarese, M. Ocana, and T. Clark, “Open semantic annotation of scientific publications using
domeo,” Journal of Biomedical Semantics, vol. 3, no. S1, 2012. doi: 10.1186/2041-1480-3-s1-s1.

[41] D. Campos, J. Lourenço, S. Matos, and J. L. Oliveira, “Egas: a collaborative and interactive document
curation platform,” Database, vol. 2014, Jun. 2014, bau048, issn: 1758-0463. doi: 10.1093/database/
bau048. eprint: https://academic.oup.com/database/article-pdf/doi/10.1093/database/bau048/
8245970/bau048.pdf. [Online]. Available: https://doi.org/10.1093/database/bau048.

[42] D. Kwon, S. Kim, C.-H. Wei, R. Leaman, and Z. Lu, “ezTag: tagging biomedical concepts via interactive
learning,” Nucleic Acids Research, vol. 46, no. W1, W523–W529, May 2018, issn: 0305-1048. doi:
10.1093/nar/gky428. eprint: https://academic.oup.com/nar/article-pdf/46/W1/W523/25110520/
gky428.pdf. [Online]. Available: https://doi.org/10.1093/nar/gky428.

[43] R. Leaman and Z. Lu, “TaggerOne: joint named entity recognition and normalization with semi-Markov
Models,” Bioinformatics, vol. 32, no. 18, pp. 2839–2846, Jun. 2016, issn: 1367-4803. doi: 10.1093/
bioinformatics/btw343. eprint: https://academic.oup.com/bioinformatics/article-pdf/32/18/
2839/24406872/btw343.pdf. [Online]. Available: https://doi.org/10.1093/bioinformatics/btw343.

[44] C.-H. Wei, H.-Y. Kao, and Z. Lu, “Gnormplus: An integrative approach for tagging genes, gene families,
and protein domains,” BioMed research international, vol. 2015, 2015.

[45] C.-H. Wei, B. R. Harris, H.-Y. Kao, and Z. Lu, “tmVar: a text mining approach for extracting sequence
variants in biomedical literature,” Bioinformatics, vol. 29, no. 11, pp. 1433–1439, Apr. 2013, issn: 1367-
4803. doi: 10.1093/bioinformatics/btt156. eprint: https://academic.oup.com/bioinformatics/
article- pdf/29/11/1433/587543/btt156.pdf. [Online]. Available: https://doi.org/10.1093/
bioinformatics/btt156.

[46] K. Bontcheva, H. Cunningham, I. Roberts, A. Roberts, V. Tablan, N. Aswani, and G. Gorrell, “Gate
teamware: A web-based, collaborative text annotation framework,” Language Resources and Evaluation,
vol. 47, no. 4, pp. 1007–1029, 2013. doi: 10.1007/s10579-013-9215-6.

67

https://doi.org/https://doi.org/10.1016/j.jbi.2009.04.002
https://www.sciencedirect.com/science/article/pii/S1532046409000537
https://doi.org/10.1093/database/bas010
https://academic.oup.com/database/article-pdf/doi/10.1093/database/bas010/1192080/bas010.pdf
https://academic.oup.com/database/article-pdf/doi/10.1093/database/bas010/1192080/bas010.pdf
https://doi.org/10.1093/database/bas010
https://doi.org/10.1093/database/bas010
https://doi.org/https://doi.org/10.1016/j.jbi.2009.02.001
https://www.sciencedirect.com/science/article/pii/S1532046409000215
https://www.sciencedirect.com/science/article/pii/S1532046409000215
https://doi.org/10.1093/database/bau067
https://academic.oup.com/database/article-pdf/doi/10.1093/database/bau067/8246754/bau067.pdf
https://academic.oup.com/database/article-pdf/doi/10.1093/database/bau067/8246754/bau067.pdf
https://doi.org/10.1093/database/bau067
https://doi.org/10.1093/database/bau067
https://aclanthology.org/E12-2021
http://www.lrec-conf.org/proceedings/lrec2010/pdf/543_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/543_Paper.pdf
https://doi.org/10.1186/2041-1480-3-s1-s1
https://doi.org/10.1093/database/bau048
https://doi.org/10.1093/database/bau048
https://academic.oup.com/database/article-pdf/doi/10.1093/database/bau048/8245970/bau048.pdf
https://academic.oup.com/database/article-pdf/doi/10.1093/database/bau048/8245970/bau048.pdf
https://doi.org/10.1093/database/bau048
https://doi.org/10.1093/nar/gky428
https://academic.oup.com/nar/article-pdf/46/W1/W523/25110520/gky428.pdf
https://academic.oup.com/nar/article-pdf/46/W1/W523/25110520/gky428.pdf
https://doi.org/10.1093/nar/gky428
https://doi.org/10.1093/bioinformatics/btw343
https://doi.org/10.1093/bioinformatics/btw343
https://academic.oup.com/bioinformatics/article-pdf/32/18/2839/24406872/btw343.pdf
https://academic.oup.com/bioinformatics/article-pdf/32/18/2839/24406872/btw343.pdf
https://doi.org/10.1093/bioinformatics/btw343
https://doi.org/10.1093/bioinformatics/btt156
https://academic.oup.com/bioinformatics/article-pdf/29/11/1433/587543/btt156.pdf
https://academic.oup.com/bioinformatics/article-pdf/29/11/1433/587543/btt156.pdf
https://doi.org/10.1093/bioinformatics/btt156
https://doi.org/10.1093/bioinformatics/btt156
https://doi.org/10.1007/s10579-013-9215-6

[47] H. Cunningham, D. Maynard, and K. Bontcheva, Text Processing with GATE. Gateway Press CA, 2011,
isbn: 0956599311.

[48] D. Salgado, M. Krallinger, M. Depaule, E. Drula, A. V. Tendulkar, F. Leitner, A. Valencia, and
C. Marcelle, “MyMiner: a web application for computer-assisted biocuration and text annotation,”
Bioinformatics, vol. 28, no. 17, pp. 2285–2287, Jul. 2012, issn: 1367-4803. doi: 10.1093/bioinformatics/
bts435. eprint: https://academic.oup.com/bioinformatics/article-pdf/28/17/2285/16905276/
bts435.pdf. [Online]. Available: https://doi.org/10.1093/bioinformatics/bts435.

[49] Uniprot, Oct. 2021. [Online]. Available: https://en.wikipedia.org/wiki/UniProt.

[50] F. Rinaldi, S. Clematide, H. Marques, T. Ellendorff, M. Romacker, and R. Rodriguez-Esteban, “Ontogene
web services for biomedical text mining,” BMC Bioinformatics, vol. 15, no. S14, 2014. doi: 10.1186/1471-
2105-15-s14-s6.

[51] C.-H. Wei, H.-Y. Kao, and Z. Lu, “PubTator: a web-based text mining tool for assisting biocuration,”
Nucleic Acids Research, vol. 41, no. W1, W518–W522, May 2013, issn: 0305-1048. doi: 10.1093/nar/
gkt441. eprint: https://academic.oup.com/nar/article-pdf/41/W1/W518/3859973/gkt441.pdf.
[Online]. Available: https://doi.org/10.1093/nar/gkt441.

[52] M. Huang, J. Liu, and X. Zhu, “Genetukit: A software for document-level gene normalization,” Bioin-
formatics, vol. 27, no. 7, pp. 1032–1033, 2011.

[53] C.-H. Wei and H.-Y. Kao, “Cross-species gene normalization by species inference,” BMC bioinformatics,
vol. 12, no. 8, pp. 1–11, 2011.

[54] C.-H. Wei, H.-Y. Kao, and Z. Lu, “Sr4gn: A species recognition software tool for gene normalization,”
PloS one, vol. 7, no. 6, e38460, 2012.

[55] R. Leaman, R. Islamaj Doğan, and Z. Lu, “DNorm: disease name normalization with pairwise learning
to rank,” Bioinformatics, vol. 29, no. 22, pp. 2909–2917, Aug. 2013, issn: 1367-4803. doi: 10.1093/
bioinformatics/btt474. eprint: https://academic.oup.com/bioinformatics/article-pdf/29/22/
2909/888873/btt474.pdf. [Online]. Available: https://doi.org/10.1093/bioinformatics/btt474.

[56] T. C. Wiegers, A. P. Davis, and C. J. Mattingly, “Collaborative biocuration—text-mining development
task for document prioritization for curation,” Database, vol. 2012, Nov. 2012, bas037, issn: 1758-
0463. doi: 10.1093/database/bas037. eprint: https://academic.oup.com/database/article-
pdf/doi/10.1093/database/bas037/1202655/bas037.pdf. [Online]. Available: https://doi.org/10.
1093/database/bas037.

[57] R. Islamaj, D. Kwon, S. Kim, and Z. Lu, “TeamTat: a collaborative text annotation tool,” Nucleic Acids
Research, vol. 48, no. W1, W5–W11, May 2020, issn: 0305-1048. doi: 10.1093/nar/gkaa333. eprint:
https://academic.oup.com/nar/article-pdf/48/W1/W5/33433452/gkaa333.pdf. [Online]. Available:
https://doi.org/10.1093/nar/gkaa333.

[58] D. Campos, S. Matos, and J. L. Oliveira, “A modular framework for biomedical concept recognition,”
BMC Bioinformatics, vol. 14, no. 1, 2013. doi: 10.1186/1471-2105-14-281.

[59] F. Landragin, T. Poibeau, and B. Victorri, “ANALEC: a New Tool for the Dynamic Annotation of Textual
Data,” in International Conference on Language Resources and Evaluation (LREC 2012), E. L. R. A.
(ELRA), Ed., Istanbul, Turkey, May 2012, pp. 357–362. [Online]. Available: https://halshs.archives-
ouvertes.fr/halshs-00698971.

[60] A. Przepiórkowski and G. Murzynowski, “Manual annotation of the National Corpus of Polish with
Anotatornia,” in The proceedings of Practical Applications in Language and Computers PALC 2009,
S. Goźdź-Roszkowski, Ed., Forthcoming, Frankfurt am Main: Peter Lang, 2009.

[61] A. Widlöcher and Y. Mathet, “The glozz platform: A corpus annotation and mining tool,” in Proceedings
of the 2012 ACM Symposium on Document Engineering, ser. DocEng ’12, Paris, France: Association
for Computing Machinery, 2012, pp. 171–180, isbn: 9781450311168. doi: 10.1145/2361354.2361394.
[Online]. Available: https://doi.org/10.1145/2361354.2361394.

[62] M. Tesconi, F. Ronzano, S. Minutoli, C. Aliprandi, and A. Marchetti, “Kafnotator: A multilingual
semantic text annotation tool,” in The Second International Conference on Global Interoperability for
Language Resources, vol. 1, 2010.

68

https://doi.org/10.1093/bioinformatics/bts435
https://doi.org/10.1093/bioinformatics/bts435
https://academic.oup.com/bioinformatics/article-pdf/28/17/2285/16905276/bts435.pdf
https://academic.oup.com/bioinformatics/article-pdf/28/17/2285/16905276/bts435.pdf
https://doi.org/10.1093/bioinformatics/bts435
https://en.wikipedia.org/wiki/UniProt
https://doi.org/10.1186/1471-2105-15-s14-s6
https://doi.org/10.1186/1471-2105-15-s14-s6
https://doi.org/10.1093/nar/gkt441
https://doi.org/10.1093/nar/gkt441
https://academic.oup.com/nar/article-pdf/41/W1/W518/3859973/gkt441.pdf
https://doi.org/10.1093/nar/gkt441
https://doi.org/10.1093/bioinformatics/btt474
https://doi.org/10.1093/bioinformatics/btt474
https://academic.oup.com/bioinformatics/article-pdf/29/22/2909/888873/btt474.pdf
https://academic.oup.com/bioinformatics/article-pdf/29/22/2909/888873/btt474.pdf
https://doi.org/10.1093/bioinformatics/btt474
https://doi.org/10.1093/database/bas037
https://academic.oup.com/database/article-pdf/doi/10.1093/database/bas037/1202655/bas037.pdf
https://academic.oup.com/database/article-pdf/doi/10.1093/database/bas037/1202655/bas037.pdf
https://doi.org/10.1093/database/bas037
https://doi.org/10.1093/database/bas037
https://doi.org/10.1093/nar/gkaa333
https://academic.oup.com/nar/article-pdf/48/W1/W5/33433452/gkaa333.pdf
https://doi.org/10.1093/nar/gkaa333
https://doi.org/10.1186/1471-2105-14-281
https://halshs.archives-ouvertes.fr/halshs-00698971
https://halshs.archives-ouvertes.fr/halshs-00698971
https://doi.org/10.1145/2361354.2361394
https://doi.org/10.1145/2361354.2361394

[63] A. Burchardt, K. Erk, A. Frank, A. Kowalski, and S. Pado, “SALTO - a versatile multi-level annotation
tool,” in Proceedings of the Fifth International Conference on Language Resources and Evaluation
(LREC’06), Genoa, Italy: European Language Resources Association (ELRA), May 2006. [Online].
Available: http://www.lrec-conf.org/proceedings/lrec2006/pdf/341_pdf.pdf.

[64] T. Daudert, “A web-based collaborative annotation and consolidation tool,” English, in Proceedings
of the 12th Language Resources and Evaluation Conference, Marseille, France: European Language
Resources Association, May 2020, pp. 7053–7059, isbn: 979-10-95546-34-4. [Online]. Available: https:
//aclanthology.org/2020.lrec-1.872.

[65] É. V. de La Clergerie, “A collaborative infrastructure for handling syntactic annotations,” in proc. of
The First Workshop on Automated Syntactic Annotations for Interoperable Language Resources, 2008.

[66] X. Artola, A. D. D. Ilarraza, N. Ezeiza, K. Gojenola, A. Sologaistoa, and A. Soroa, Eulia: A graphical
web interface for creating, browsing and editing linguistically annotated corpora, 2004.

[67] J. Sonntag and M. Stede, “GraPAT: A tool for graph annotations,” in Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland: Euro-
pean Language Resources Association (ELRA), May 2014, pp. 4147–4151. [Online]. Available: http:
//www.lrec-conf.org/proceedings/lrec2014/pdf/824_Paper.pdf.

[68] H. Shindo, Y. Munesada, and Y. Matsumoto, “Pdfanno: A web-based linguistic annotation tool for
pdf documents,” in Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), 2018.

[69] Using the application functions. [Online]. Available: http://ohdsi.github.io/Usagi/usage.html.

69

http://www.lrec-conf.org/proceedings/lrec2006/pdf/341_pdf.pdf
https://aclanthology.org/2020.lrec-1.872
https://aclanthology.org/2020.lrec-1.872
http://www.lrec-conf.org/proceedings/lrec2014/pdf/824_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/824_Paper.pdf
http://ohdsi.github.io/Usagi/usage.html

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Goals
	Document Structure

	State of the Art
	Mapping Clinical Concepts
	Collecting and processing patient-level data
	Data harmonization
	Common Data Model
	Standardized Vocabularies
	Tools for Mapping Concepts

	Annotating Clinical Concepts
	Information Retrieval and Information Extraction
	NER Approaches
	Biomedical NER
	Corpora

	NLP Techniques
	Sentence Splitting
	Tokenization
	Stop Word Removal
	Stemming and Lemmatization
	POS Tagging and Parsing
	Toolkits for NLP

	NLP Tools for Clinical Text
	Selected tools
	Other tools

	Architecture
	Problem statement
	Requirements
	Project Management
	Annotation Interface
	Mapping Interface
	Database

	Proposed solution

	Implementation
	Database Planning
	Requirement Analysis
	Entity-Relationship Model
	Database Tables

	Back-end
	Server Configuration
	PostgreSQL Database & Sequelize
	Models
	Controllers
	Routes
	Annotation Services
	Mapping Services
	Handling File Uploads

	Front-end
	Components
	Services
	Views

	Walkthrough
	Manage Projects
	Manage Documents
	Annotation
	Mapping

	Conclusions
	Future work

	References

