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Resumo A projecção das redes 5G provocaram uma mudança no paradigma das tecnologias
que são utilizadas para suportar as redes celulares antecedentes. A quinta geração
de redes móveis foi fortemente movida pelos desenvolvimentos tecnológicos na área
das redes baseadas em software, tais como, Funções de Rede Virtualizadas (NFV) e
Redes Definidas por Software (SDN), sendo estas impulsionadoras na mudança da
gestão de insfraestruturas de telecomunicações. Face aos exigentes casos de uso a
nível de Qualidade de Serviço (QoS) e Qualidade de Experiência (QoE), é necessária
uma adaptação da infrastrutura , descentralizando e colocando esta infrastrutura
na extremidade. Aliada ao Cloud Computing, a possibilidade de existência de poder
de computação na extremidade, é denominado por Multi-Access Edge Computing
(MEC). Utilizando o poder conjunto destas tecnologias para a criação de uma
nova geração de redes móveis, é possível desenvolver sistemas adaptados a uma
crescente demanda por consumo de conteúdo multimédia na rede, como é o caso
de Redes de Entrega de Conteúdo Virtuais (vCDN). As vCDN são redes distribuidas
geograficamente com o objectivo de os servidores de acesso às mesmas se situem
mais próximos do utilizador, com o objectivo de fornecer uma alta disponibilidade
de conteúdos com reduzida latência. Também se diferenciam pela sua capacidade
de escalabilidade e flexibilidade, impossível de atingir em sistemas precedentes.
Contudo, estes avanços introduzem novos desafios, nomeadamente na automação
da rede, gestão e orquestração. Para mitigar e resolver estes problemas, várias
plataformas especializadas estão a ser constantemente desenvolvidas e utilizadas,
como o Open Network Automation Platform (ONAP), sendo esta de código fonte
que providencia suporte de gestão e orquestração de serviços e infraestruturas
extremo a extremo. A presente dissertação visa abordar os problemas de QoS de um
serviço vCDN, nomeadamente, recolha de dados a nível de hardware e aplicacionais,
para que, com recurso ao ONAP, seja possível criar politicas baseadas nos dados,
por forma a escalar o serviço de acordo com as necessidades da rede e formar um
ciclo de automação fechado.
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Abstract The projection of 5G networks have caused a paradigm shift in the technologies
that are used to support the preceding cellular networks. The fifth generation
of mobile networks has been strongly driven by technological developments in the
area of software-based networks, such as Virtualized Network Functions (NFV) and
Software Defined Networks (SDN), which are drivers in changing the management
of telecom infrastructures. In the face of demanding Quality of Service (QoS) and
Quality of Experience (QoE) use cases, it is necessary to adapt the infrastructure,
decentralizing and placing it at the edge. Allied to Cloud Computing, the possibil-
ity of having computing power at the edge, is called Multi-Access Edge Computing
(MEC). Using the combined power of these technologies to create a new generation
of mobile networks, it is possible to develop systems adapted to a growing demand
for multimedia content consumption on the network, such as Virtual Content De-
livery Networks (vCDN). The vCDNs are geographically distributed networks with
the goal of having the access servers closer to the end user, in order to provide
high availability of content with reduced latency. They are also differentiated by
their scalability and flexibility, unattainable in previous systems. However, these ad-
vances introduce new challenges, namely in network automation, management and
orchestration. To mitigate and solve these problems, several specialized platforms
are constantly being developed and used, such as the Open Network Automation
Platform (ONAP), an open source project that provides management and orches-
tration support for end-to-end services and infrastructures. This dissertation aims
to address the QoS problems of a vCDN service, namely, hardware and application
level data collection, so that, using ONAP, it is possible to create policies based
on the data, in order to scale the service according to the network needs and form
a closed automation loop.
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CHAPTER 1
Introduction

1.1 Context

Mobile traffic has suffered a huge evolution over the years and has seen a major increase due
to all the new emerging applications and various use cases. In particular, Cisco predicts a
growth in volume in video and social networking traffic, which are the already predominant
traffic in smartphones and tablets[1]. In line with Cisco findings, Ericsson also predicts that
by 2026, 5G networks will carry more than half of the world’s smartphone traffic and of which
77% will be from video traffic alone. According to these predictions, it is of utmost importance
to carry research in the 5G Network Domain and develop solutions to the 5G use cases[2].

New paradigms in networking, such as SDN, NFV and Multi-Access Edge Computing
(MEC) have raised the expectations on future systems built by the Telecom Industry, with
the potential offered by each. Concretely, potential Capital Expenditure (CAPEX) reduction
enabled by the usage of generic equipment, greater scalability, high flexibility unlocked through
network programmability, Operational Expenditure (OPEX)) reduction enabled by automated
operation, quick service deployment and update, and even new monetization sources by means
of disruptive and attractive business models, are just a shortlist of the opportunities provided.

These concepts became of extreme importance for the industry because of their versatility
to help configure and manage networks, which are usually hard tasks to perform due to the
high complexity and rigidity of the underlying infrastructure.

Network operators required simpler ways to configure and manage their networks, since
networks typically involve integration and interconnection of many proprietary integrated
devices, thus causing increased difficulty for operators to specify high-level network-wide
policies using current technologies.

SDN, advocates separating the data plane and the control plane, making network switches
in the data plane simple packet forwarding devices, and leaving a logically centralized software
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program to control the behavior of the entire network, introducing new possibilities for network
management and configuration methods.

Compared to the legacy methods, the benefits are clear. First, it is much easier to
introduce new ideas in the network through a software program, as it is easier to change
and manipulate than using a fixed set of commands in proprietary network devices. Second,
SDN introduces the benefits of a centralized approach to network configuration, opposed to
distributed management: operators do not have to configure all network devices individually to
make changes in network behavior, but instead make network-wide traffic forwarding decisions
in a logically single location, the controller, with a global knowledge of the network state[3].

On the other end, NFV decouples the network hardware and software to allow network
services to run on commodity cloud computing style platforms. Much in the same way it did for
traditional IT, the hope is that virtualization spurs innovation in the network infrastructure
industry by enabling faster deployment of new services with less risk, allowing iterative
improvement of existing services, broadening the developer ecosystem to include new entrants,
and reducing network cost structure through infrastructure sharing and automation[4].

Seeking to maximize the alignment with SDN and NFV, 5G Core follows a Cloud-native
design and introduces a service-based model, where network functions interact with other
network functions as required through the exposure of service-based interfaces, therefore,
shifting from the monolithic architecture models into a microservices architecture[5].
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1.2 Motivation

The future success of mobile networks, namely the presently starting fifth-generation, heavily
depends on the research and development made towards the objective of satisfying the use cases
established by 3rd Generation Partnership Project (3GPP) and European Telecommunications
Standards Institute (ETSI).

With this in mind, network orchestration is one of the fundamental pillars for the en-
ablement of the new generation of mobile networks, and Open Network Automation Plat-
form (ONAP) is a key open-source tool, which relies on a community with members from
around the world, collaborating to refine the platform, to allow for the orchestration and
other functions. As a result, many developments are being constantly made in ONAP, with
an ever-growing community, to satisfy the use cases envisioned by the 5G community, and
continuous research with this tool is required to truly bring to life the full potential of 5G.

Every day, developers are working to provide more ideas for the successful deployment of
5G network use cases, however, there are still many areas that are not fully explored and that
still have a lot of research to do, such as the case of scaling the resources allocated to services
that are in use in the network.

The scaling of resources, as a rule, has the objective of improving the service, in the face of
possible difficulties that it may be encountering, due to a lack of resources resulting from an
overload in the use of the service. This type of strategy is already widely used for traditional
IT systems and is now also an objective for network services, thanks to advances in the areas
of SDN, NFV and MEC.

To this date, 5G is already beginning to emerge in the commercial field. Nevertheless,
there is still a large room for improvement for the solutions that are currently being deployed
and research must be conducted in order to improve the network.

In the case of this dissertation, the goal is, therefore, the development of a scaling solution
for a service that is operating on the 5G mobile network, the Virtual Content Delivery
Network (vCDN).

Given the increasing use of mobile traffic for the consumption of multimedia content, and
with an increase in consumer demand for efficient delivery of this content, it is necessary to
implement these mechanisms to ensure Quality of Service (QoS) to the customer.

The vCDN service was developed to provide its users with multimedia content for a
scenario where the User Equipment (UE) is in motion, more precisely, a moving train.

Since vCDN already makes use of the Open Network Automation Platform, we can then
continue to use this framework and explore its features even further. As already mentioned,
many developers continue to develop new enhancements for this platform, and one of the
expected use cases is precisely the scaling of resources of a running service.

The system, as a proof of concept, was successfully implemented, but the service scaling
functionality was not foreseen.

The implementation of this type of functionality in the vCDN service, is based on a
monitoring system that, after evaluating the workload of the resources being used by the
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system it will, subsequently, possibly detect an overload. It is here that ONAP has an
important role because it will be according to this evaluation of the system that it decides if
the system needs to be scaled or not.

Thus, the presented solution aims at bridging the gap that is left by the absence of this
functionality in the system and use the gathered information, collected with the monitoring
system, to capitalize on ONAP orchestration functionality and improve upon the existing
vCDN service.

1.3 Objectives

The main focus of this thesis is to expand a virtual Content Delivery Network system,
leveraging the power of the ONAP, with a solution that can contribute to maintaining the
Quality of Service when it is deployed on the network.

The end goal is to provide a system capable of monitoring a vCDN service and enable
to scale-out the system, to satisfy the required load needs. The starting point for this thesis
objective is the system that the authors of [6] and [7] developed, where they built a vCDN
capable of instantiating nodes along a train track to serve clients that are using the train.
Although the system already has some mechanisms for quality assurance implemented, it
lacks the ability to scale in computational resources.

To envision and design a proper solution to the proposed problem, first and foremost, an
assessment of the State of the Art in the 5G networks and its enablers, followed by a study
on the monitoring solutions and the available orchestration platforms, must be made, to have
a deep understanding of the technologies used.

The next step will be to study the monitoring framework chosen and ONAP. Once
completed, develop a solution that accomplishes the end goal requirements and evaluate the
results.

1.4 Contributions

The present work explores the possibilities introduced with the advance towards the fifth
generation of mobile networks, more specifically in terms of expanding an existing Virtual
Content Delivery Network system, using the ONAP Framework as the orchestrator, to achieve
a reliable service assurance through the monitoring of metrics from the system and executing
the necessary actions to complete the objective.

From an academic perspective, this work contributes to research that is still fairly new
and unexplored, with a lot of work to be done on the orchestration side for 5G networks.
It provides insight into how to regulate automatically the systems that are embedded into
the networks, using the available features provided by the most recent orchestrators in use.
Althought the practical part of the thesis is more pointed towards the demonstration of the
orchestration capabilities in a system deployed in the network, this document also provides a
theoretical background of the current state of the art on the in topics such as 5G network,
NFV, SDN, MEC, orchestration platforms and monitoring platforms.
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As a consequence of the work developed, there is also a valuable contribution to the
telecommunications industry, in the sense that, the system developed for the execution of the
use cases discussed in this thesis can be considered valid conceptual proofs, in accordance with
the conclusions drawn, and in this way, the concepts can be executed in real world systems,
with the necessary adaptations.

During the development of the practical part of the research, there was also a contribution
towards ONAP, by reporting a bug1 in the Threshold Crossing Analytics (TCA) microservice
that caused a critical malfunction at the time.

The resulting work contributes to a successful deployment of a proof of concept system
capable of scaling up the vCDN based on the hardware load. Finally, this work also contributed
to the Orchestration and Resource Optimization for rEliable and lOw-latency Services (oreos)
Project2.

1.5 Document Structure

The remainder of this document is structured as follows: Chapter 2 presents the State of the
Art and the key enabling technologies of the 5G network and a study on the monitoring and
orchestration frameworks.

Chapter 3 consists of the research methodology used for designing the developed system
architecture, which requirements were necessary for the proposed solution, and its implemen-
tation. A more in-depth assessment of the components at work for the considered use case is
provided in Chapter 4 Chapter 5 explains the system implementation and the configurations
that were use to test it. Chapter 6 presents how the tests were executed and a detailed
analysis of the obtained results.

Finally, the showcase of the conclusions of this master thesis and proposed future work
are in Chapter 7.

1https://lists.onap.org/g/onap-discuss/topic/84607999#23466
2https://www.ipn.pt/laboratorio/LIS/projecto/142
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CHAPTER 2
State of the Art and Key Enablers

The following chapter presents the key technologies and concepts deemed essential for the
execution of this thesis. It is not a comprehensive explanation of all the details involved in
each concept presented but a compilation of all the relevant points that remain inside the scope
of the developed work.

2.1 5G Network

The 5G networks aim to revolutionize mobile networks, providing a highly moving and
fully connected society. Within the 5G System (5GS), End-to-End (E2E) network slicing,
service-based architecture, SDN, and NFV are seen as fundamental pillars to support the
heterogeneous Key Performance Indicators (KPI) of the new use cases in a cost-efficient
way[8].

2.1.1 High-level Requirements and Use Cases

The 5G use cases demand very diverse and sometimes extreme requirements. 5G promises
high speeds and low latency, propelling societies into a new age. The International Telecom-
munication Union (ITU) is one of the entities responsible for standardizing the fifth generation
of mobile networks. The industry stakeholders identified several use cases, and ITU-R has
defined three primary use cases and their respective requirements categories: Enhanced mobile
broadband (eMBB), Massive machine-type communications (mMTC) and Ultra-Reliable and
Low Latency Communications (URLLC) illustrated in Figure 2.1[9].
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Figure 2.1: 5G Usage Scenarios [9]

In [10], 3GPP defined the 5G requirements in terms of new services and markets, depending
on the 5G usage scenario:

• Enhanced Mobile Broadband (Enhanced mobile broadband (eMBB)): Re-
quirements specified for data rates, traffic density, user mobility, etc. Various deploy-
ment and coverage scenarios are considered, addressing different service areas, such as
indoor/outdoor, urban/rural areas, massive gatherings, high user mobility, and many
other scenarios.

• Critical Communications (CC) and Ultra Reliable and Low Latency Com-
munications (URLLC): These are scenarios driven mainly by industrial automation
and require the support of very low latency and very high communications service
availability.

• Massive Internet of Things (mIoT): Scenarios where the 5G system is required
to support very high traffic densities of devices. The Massive Internet of Things
requirements includes the operational aspects that apply to the wide range of IoT
devices and services anticipated in the 5G timeframe.

• Flexible network operations: These are a set of specificities offered by the 5G
system. It covers network slicing, network capability exposure, scalability, diverse
mobility, security, efficient content delivery, and migration and interworking.

For a more in-depth understanding of all the scenarios envisioned and the required network
performance to achieve them, refer to [11].

This diversity of requirements, associated with the different categories of usage described
above, enables the use of the 5G System by other industry sectors, referred to as "verticals".
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2.1.2 5G Architecture

To support the diversity of use cases and requirements in a cost effective manner, the system
design should move away from the 4G monolithic design optimized for mobile broadband
and embrace a structural separation of hardware and software. As such, the 5G Architecture
is a native SDN/NFV architecture covering aspects from devices, infrastructure, network
functions, value enabling capabilities, and all the management functions to orchestrate the
5G System[12].

Figure 2.2: 5G Architecture [12]

As illustrated in figure 2.2, four primary components describe the high-level architecture
of 5G [12]:

• Infrastructure resource layer: consists of the physical resources of a fixed-mobile
converged network, comprising access nodes, cloud nodes, 5G devices, wearables, CPEs,
machine type modules, networking nodes, and associated links. The resources are
exposed to higher layers and the end-to-end management and orchestration entity
through relevant APIs. Performance and status monitoring, as well as configurations,
are an intrinsic part of such an API.

• Business enablement layer: Library of all functions required within a converged
network in the form of modular architecture building blocks, including functions realized
by software modules that can be retrieved from the repository to the desired location
and a set of configuration parameters for certain parts of the network. The orchestration
entity calls the functions and capabilities upon request through relevant APIs.

• Business application layer: contains specific applications and services of the operator,
Enterprise, verticals, or third parties that utilize the 5G network. The end-to-end
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management and orchestration entity interface allows, for example, to build dedicated
network slices for an application or map an application to existing network slices.

• E2E management and orchestration entity: is the contact point to translate the
use cases and business models into actual network functions and slices. It defines the
network slices for a given application scenario, chains the relevant modular network
functions, assigns the appropriate performance configurations, and finally maps all of
this onto the infrastructure resources.

2.1.2.1 Service-based Architecture

The 5G network has some fundamental requirements, as seen in section 2.1.2. Based on those
conditions, virtualization, and service-based mechanisms are of utmost importance for the 5G
ecosystem.

Service-based Architecture (SBA) is the natural step towards empowering 5G network
functionality to become more granular and decoupled. Adopting automation and agile
operational processes translates into improvements in system integration, reduction in delivery
and deployment time, and enhanced operational efficiencies. A service is anatomized capability
in the network, with high cohesion, loose coupling, and independent management from other
services allowing individual services to be updated independently with minimal impact to
other services and deployed on demand [13].

Figure 2.3: Service-based Architecture for 5G Network [13]

The Management and Orchestration (MANO) component, illustrated in 2.3, s the pri-
mary focus for the scope of this thesis, which section 2.2.2 explains in more detail. The
implementation of MANO may leverage some project or organization, for example, the ONAP.

Thus, SBA enables a virtualized deployment, where the elements that constitute the
network will be Network Functions (NFs) rather than monolithic network entities.

10



2.1.3 Management Control Loops

The management control loop, in figure 2.4, consists on the following steps: Monitoring,
Analysis, Decision and Execution. Continuous iteration of the steps in a management control
loop completes the adaptation of the resources used for the service[14].

Figure 2.4: Management Control Loop

A control loop is a building block for managing networks and services. There are two
types of control loops - closed and open. In the scope of the current work, only the closed
control loops are relevant since the decision process will be automated and executed without
human operator interference.

In a closed control loop, there is no human factor associated or other management entity
in the control loop. Thus the process is completely automated.

Illustrated in 2.5, human interaction is not required to control or manage the process
execution inside the control loop itself. Still, it can provide information outside of it, such
as configurations for the control loop goals and autonomous decisions. The human factor or
any management entity is only required to provide an input to the control loop. The output
status also gets forwarded to any other entity.

Figure 2.5: Closed loop entities
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2.2 5G Key Enablers

2.2.1 Software Defined Networks

SDN is an innovative approach to design, implement, and manage networks that separate
the network control (control plane) and the forwarding process (data plane) for a better user
experience[15], allowing to apply the flexibility of software to the entirety of the networking
space. The goal is to enable the development of software, control the connectivity provided by
a set of network resources and the flow of the network traffic, offering real-time performance
and response to high availability requirements, for example, performing load balancing or
fault management for a given system.

It provides limitless options for business relationships, geography spanning the world, and
everything from end-user service negotiation and delivery to planning, installing, provisioning,
and maintaining the network infrastructure. As well as forwarding traffic, an SDN may
process traffic, either as part of added-value services or for service and network maintenance
purposes[16][17].

SDN is based on three architectural principles:

• Decoupling traffic forwarding and processing from control

• Logically Centralized Control

• Programmability of network services

In the SDN architecture, the control and data planes are decoupled, network intelligence
and state are logically centralized, and the underlying network infrastructure is abstracted
from the applications.

The SDN Architecture document [17] provides the architecture derived from this vision
and established principles, illustrated in 2.6.
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Figure 2.6: SDN Architecture Overview
[16]

Three layers constitute the architecture[16]:

• Data Plane: orchestrates the network traffic per the established configuration in the
control plane.

• Control Plane: Contains the SDN Controller that translates the application’s require-
ments and controls the network elements while providing relevant information up to the
SDN applications.

• Application Plane: Stores the SDN applications and communicates their network
requirements toward the Controller Plane via the A-CPI.

The Management layer also plays a vital role in the architecture. Although many man-
agement functions may be bypassed, some are still essential. Management is required to set
up the initial network elements and assign resources to the respective SDN controller. n the
Controller Plane, it is required to configure the controller and the policies. Lastly, on the
application plane configures the contracts and Service Level Agreement (SLA)s, enforced by
the Controller Plane.

2.2.2 Network Functions Virtualization

NFV aims to transform how network operators architect networks by evolving standard IT
virtualization technology to consolidate many network equipment types onto industry-standard
high volume servers, switches, and storage, which could be located in Datacentres, Network
Nodes, and in the end-user premises[18].

ETSI NFV Industry Specification Group (ETSI ISG) vision, illustrated through figure 2.7,
is that network operators recognize NFV as a critical technology enabler for 5G. The evolved
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Figure 2.7: Network Functions Virtualisation Vision [18]

5G network will be characterized by agile resilient converged fixed/mobile networks based on
NFV and SDN technologies and capable of supporting end-to-end service management across
heterogeneous environments [19].

NFV introduces a number of differences, comparing to the current practices [20]:

• Decoupling software from hardware: The network element is a decoupled collection
of the integrated hardware and software entities, allowing for a separate progression of
the two domains.

• Flexible network function deployment: The detachment of the software and hard-
ware domains enables the reassignment and sharing of infrastructure resources, thus,
allowing software and hardware to perform different tasks at various times. The net-
work function software can become more automated, leveraging the different cloud and
network technologies available.

• Dynamic operation: Insatiable software components provide greater flexibility to
scale the Virtual Network Function (VNF) performance more dynamically.

Regarding the high-level architecture of NFV, three main working domains, illustrated in
2.8, can be identified:

• Network Funtions Virtualisation Infrastucture (NFVI): Range of different phys-
ical resources supporting the execution of the Virtual Network Functions (VNFs).

• Virtualised Network Function: Software implementation of a network function over
NFVI.

• NFV Managment and Orchestration (MANO): Addresses the orchestration and
lifecycle management of physical and software resources that support the infrastructure
virtualization and lifecycle management of VNFs.
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Figure 2.8: High-level NFV framework
[20]

Figure 2.9 represents the three domains that constitute the architectural framework, but
also the functional blocks that each domain comprises.

2.2.2.1 NFV Management and Orchestration (MANO)

The Network Functions Virtualisation Management and Orchestration (NFV-MANO) manages
the NFVI and orchestrates the resources needed by the Network Services and VNFs. Such
coordination is necessary now because of the decoupling of the Network Functions software
from the NFVI [21], playing an important role considering service assurance on the 5G
Networks.

Three essential functional blocks form NFV Management and Orchestration domain:

• Virtualised Infrastructure Manager (VIM): Comprises the functionalities used
to control and manage the interaction of VNF with computing, storage, and network
resources. It is also responsible for resource management and analytics.

• VNF Manager: Responsible for the VNF lifecycle management, such as instantiation,
update, query, scaling, termination.

• Orchestrator: Responsible for the orchestration and management of NFV infrastruc-
ture and software resources and realizing network services on the NFVI.
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Figure 2.9: NFV reference architectural framework
[20]

2.2.3 Relationship between SDN and NFV

Network Functions Virtualisation is highly complementary to Software Defined Networking.
If both solutions can be combined, producing a reliable ecosystem, as shown in figure 2.10,
they can generate immense value[18].

Figure 2.10: Relationship between SDN and NFV

The SDN architecture can be integrated with NFV architectural framework by identifying
possible design patterns and associated requirements. There are mainly three SDN components
that can be positioned in the NFV architectural framework[22]:

• SDN resources: Positioned on physical resources, virtual resources, or as a VNF.
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• SDN Controller: Positioned on the VIM, on the NFV Infrastructure, as a VNF, or
as part of the Operating Support System (OSS)/Business Support System (BSS).

• SDN applications: Positioned as part of the VIM, virtualized as a VNF, as part of
an EM or as part of the OSS/BSS.

2.2.4 Multi-Access Edge Computing

Edge computing as an evolution of cloud computing brings application hosting from centralized
datacentres down to the network edge, closer to consumers and the data generated by
applications. Edge computing is acknowledged as one of the key pillars for meeting the
demanding Key Performance Indicators (KPIs) of 5G, especially as far as low latency and
bandwidth efficiency are concerned[23].

Multi-access Edge Computing enables the implementation of MEC applications as software-
only entities that run on top of a Virtualisation infrastructure located in or close to the network
edge. The Multi-access Edge Computing framework shows the general entities involved. These
can be grouped into system, host, and network level entities[24].

The Multi-access Edge Computing framework is illustrated in 2.11.

Figure 2.11: Multi-access Edge Computing Framework [24]

The framework consists mainly on the following components [24]:

• MEC host: Entity that contains a MEC platform and a Virtualisation infrastructure
which provides compute, storage, and network resources, to run MEC applications.

• MEC platform: Collection of essential functionality required to run MEC applications
on a particular Virtualisation infrastructure and enable them to provide and consume
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MEC services and offer them.

• MEC applications: Instantiated on the Virtualisation infrastructure of the MEC host
based on configuration or requests validated by the MEC management.

• MEC system level management: Includes the Multi-access edge orchestrator as its
core component, which has an overview of the complete MEC system.

• MEC host level management: Comprises the MEC platform manager and the
Virtualisation infrastructure manager and handles the control of the MEC specific
functionality of a particular MEC host and the applications running on it.

In addition, 3GPP 5G system specifications define the enablers for edge computing,
allowing a MEC system and a 5G system to interact in traffic routing and policy control
related operations collaboratively. MEC features and these complimentary technical enablers
of the 5G system allow integration of these systems to create a robust environment for edge
computing.

2.3 Orchestration Overview

The telecommunication operator’s service delivery architecture is divided into several layers
and distinguishes between upper and bottom layers. The upper layers will be responsible
for dealing with products and marketing domains, and the bottom ones are related to the
resources needed to support the upper layers. These layers are aggregated in two central
systems[5]:

• BSS: Encompass all the components that are a part of the service provider business
model and define all the interfaces regarding the final consumers. BSS includes order
capture & management, customer relationship management, mediation, charging, and
billing.

• Operating Support System (OSS): Encompass all the components of resource and
service management.

The components in this system cooperate in providing infrastructure management, planning,
service provisioning, monitoring, assurance, and customer care. In the telecommunications
ecosystem, Orchestration refers to the coordinated execution of workflows, consisting of
operations on top of services and resources that may be contained in several domains. The
concept of End-to-End Orchestration was introduced to refer to multi-domain orchestration.
It has a broader scope than the one envisioned by the ETSI ISG MANO specification, which
is related to the NFV Orchestration only, referred to in section 2.2.2.1[5].

End-to-End orchestration encompasses the Legacy Network Controllers for specific and
non-virtualized technologic domains, SDN Controllers for domains where the control plane
is decoupled from the data plane (typically SDN domains), and the Network Funtions
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Virtualisation Orchestrator (NFVO), which is the component for NFV domains following the
ETSI ISG NFV specification. This concept is illustrated in 2.12.

Figure 2.12: End-to-End Orchestration overview [5]

2.3.1 Services and Resources Optimization

As stated in [5], one of the most challenging tasks for network operators is service and
resource optimization. At the OSS level, decision-making is based on a set of static rules,
being the cause of severe constraints to efficiency by not taking into account the operation’s
context. Considering the exponential growth and evolution of the 5G networks, according
to its architecture, and considering the technological paradigms such as SDN and NFV,
if optimization doesn’t occur, is expected an even more significant loss of efficiency. The
5G environment will enable services and resources to be highly customizable, making the
deployments very context-specific.

In this manner, it is required to address the continuous optimization of services and
resources to exploit the benefits acquired by the centralized architecture of the SDN and
the efficiency and dynamicity associated with the NFV model. The OSS needs to evolve in
parallel with the 5G Networks, and in the core of that evolution, the following points need to
be taken into consideration:

• Services model-driven integration: LLanguages for service templates are more
oriented towards recursivity and reuse of component models, allowing for a more
agile approach for service integration and decoupling between service definition and
implementation.

• Analytics driven by AI: Using cognitive mechanisms in analytics strengthens a richer
context-aware characterization of services and resources while fostering learning at the
OSS level.

• Policy-based Management: Policy systems use declarative policies and intents to
enable different teams, ranging from business to engineering, to define policies to govern
autonomous processes at the services and resources management layer.

Open Network Automation Platform (ONAP), approached in 2.5.2.1, is an Orchestration
Framework that takes into consideration all of these aspects and integrates different data
sources, policy systems, and orchestration templates.
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2.3.2 Model-Driven Services

A Model-Driven approach focus on building models. Instead of building monolithic network
services, the model-driven approach focuses on building generic models, that when are put
together, generate the desired network service. The service itself can also be changed since it
is a compilation of models and not a standalone approach of the network service.

Network Services will consist of several VNFs, SDN services, or both. VNFs are comprised
of modules. In turn, modules consist of Virtual Functions (VFs), virtual links, and ports.
One Virtual Function (VF) maps to one virtual machine. SDN services specify underlay
(physical) or overlay (virtual) network connectivity, often pertaining to inter-region or WAN
connectivity.

The next set of items to get modeled is management data. This includes descriptors,
licenses, configurations, and engineering rules[25].

An example of this type of language and one widely used in the ONAP system to define
the behavior of some of its components is the Topology and Orchestration Specification for
Cloud Applications (TOSCA).

TOSCA [26] is a cloud-centric modeling language. The main goal of this language is to
define service templates consisting of different components and the relationships between them,
thus, rendering improvements in the management activities of network and cloud applications.
The metamodel allows the definitions and description of services by building up a topology
and a form to manage it, which is called the Service Template. Figure 2.13 epresents the
main elements of a given TOSCA template.
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Figure 2.13: TOSCA Service Template [26]

Node Types form a fundamental part of the model and describe service components that
can be reused and referred to multiple times when defining the node. The Node Template adds
additional information to Node Types, such as how often components can occur or be reused to
operate correctly. The Relationship types and Relationship Template act very similarly to the
Node Types and Template but represent the dependencies created between Node Types. Node
Templates and Relationship Templates combined to form the Topology Template, creating a
collection of specific nodes and relationships to give all necessary information pertaining to
the described service. Together with the Plans, it generates the full Service Template. Plans
are used to manage service lifecycles and provide data to create a running instance of the
specific service.

In ONAP [27], TOSCA is used by Service Design & Creation (SDC) o describe services,
resources, and their relationships. SDC offers the possibility of adding new TOSCA models to
define new types of resources through APIs, UI, or running custom scripts. After uploading
TOSCA models, SDC stores these new resource types in the Catalog and makes them available
to designers.

2.4 Virtual Content Delivery Network

Content delivery is a breakthrough technology allowing enterprises to distribute a new
generation of scalable, accelerated, rich Web-based content, including TV-quality streaming
media, for e-business and knowledge-sharing solutions. Content delivery replicates content
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to the “edge” of the network, minimizing the distance from the point at which content is
requested and where it is served[28].

Content Delivery Networks (CDN) have evolved to improve user perceived Quality of
Service when accessing Web content. A CDN creates replicas of the original content into
distributed cache servers closer to users, allowing content to be delivered to end-users more
reliable and timely [29].

With these mechanisms in place, CDNs boost overall network performance by improving
accessibility and ensuring content accuracy with replication.

A CDN usual functions are as follows [30]:

• Request redirection and content delivery services: Direct a request to the closest
suitable CDN cache server using mechanisms to bypass congestion.

• Content outsourcing and distribution services: Replicate and cache content from
the origin server to the web servers.

• Content negotiation services: Attend the specific needs of each user.
• Management services: Manage the network components, handle accounting, and

monitor and report content usage.

In figure 2.14, the general architecture CDN is presented.

Figure 2.14: Architectural components of a CDN [30]

The content delivery-component consists of the origin server and a set of replica servers
responsible for delivering the appropriate content copies to the requesting users.

Working in conjunction with the delivery component is the request routing component,
the distribution component, and the accounting component, which are in charge of directing
clients requests to the proper edge servers, moving the content from the origin server to the
edge servers, and ensuring consistency in the caches, and, maintain a log of client accesses
and records the usage of the servers, respectively.

The CDN architecture requires a set of supporting services and capabilities, in addition to
the deployment of replica servers at the network’s edge.
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The edge servers must be installed at various geographically dispersed locations to be
effective for many users and cover broad areas.

The creation of a CDN requires the following key components[31]:

• Replica placement mechanisms: Needed to decide the replica server locations and
adaptively fill them with appropriate content before the customer’s requests arrival,
making the servers pro-actively updated.

• Content update mechanisms: Required to automatically check for changes on the
host site and retrieve updated material for consumption at the network’s edges.

• Active measurement mechanisms: Enables access routers to have immediate access
to a real-time picture of the Internet traffic to recognize the fastest route from the
requesting users to the replica servers in any traffic situation.

• Replica selection mechanisms: Enables access routers to accurately locate the
closest and most available edge server from which the end users can retrieve the required
content.

• Re-routing mechanisms: Provide a way to quickly re-route content requests in
response to traffic bursts and congestion as revealed by the measurement activity.

With the panoply of instrumentation that CDN offers and with help from the MEC
technology when the service is instantiated as a vCDN, it can operate across a range of
virtualized infrastructure, from Core data centers to every single Edge data center. It can fully
support all types of virtualized network function deployment at different operator network
vantage points, further improving the QoS provided by the CDN.

2.5 Technical Tools

In this section, the technical tools chosen for the development of this work are explored, more
precisely, the monitoring tools and the orchestration platforms. It is also presented a study on
other platforms and frameworks that were considered, and a brief explanation on the decision
process behind determining which one to use.

2.5.1 Monitoring Solutions

2.5.1.1 Prometheus

Prometheus is an open-source, metrics-based system used for event monitoring and alerting,
relying on a robust data model and query language for providing the required metrics to
precisely analyze infrastructure and application performance.

The system provides libraries for the most popular coding languages, such as Python, Java,
Go, C#, to develop custom applications. Software such as docker and Kubernetes are already
instrumented in the Prometheus client. For third-party software that exposes metrics in a
data format not recognized by the Prometheus scrapper, exporters are already available and
public to make the necessary conversions to the known structure. These exporters provide
metrics for environments that can possibly be running, for example, applications using MySQL,
PostgreSQL, SNMP, Kafka, et cetera[32].
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The main features of the monitoring tool are the following[32]:
• Multidimensional data model with time series data identified by metric name and

key/value pairs

• Flexible Query Language to leverage dimensionality (PromQL)

• No reliance on distributed storage; single server nodes are autonomous

• Time series collection via a pull model over HTTP

• Pushing time series supported via an intermediary gateway

• Targets discovered via service discovery or static configuration

• Multiple modes of graphing and dashboarding support

Figure 2.15: Architecture of Prometheus and some of its ecosystem components

Prometheus scrapes metrics from instrumented jobs/exporters directly, based on the target
provided by the Service Discovery. For components that cannot be scraped directly, the
Prometheus Pushgateway is used to allow short-lived jobs to be pushed into an intermediary
job, which Prometheus can scrape.

All scraped samples are stored locally, and Prometheus runs rules over this data to either
aggregate and records new time series from existing data or generate alerts. API consumers
can be used to visualize the collected data.

In summary, Prometheus provides the following components for a complete monitoring
solution [32]:
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• Prometheus server to scrape, store and centralize time series data

• Client libraries for instrumenting application code available in programming languages
such as Go, Python, Java/JVM, Ruby, .NET, Node.js, Haskell, Erlang, and Rust, to
allow the developers to define metrics and add the desired instrumentation to the
application code.

• A Service Discovery mechanism, such as Kubernetes, EC2, or Consul, provides the
target system to monitor.

• A Push gateway that scraps metrics from applications and passes on the data to
Prometheus when the pull method is not possible.

• Multiple special-purpose exporters that typically run on the monitored host to export
local metrics, since not always will it be possible to add direct instrumentation to
the monitoring application and Prometheus deals with this problem with the aid of
exporters, which are pieces of software that will run alongside the target application
which the developer wishes to collect metrics.

• An AlertManager tool that receives alerts from Prometheus servers and turns them into
notifications. Related alerts can be aggregated into one notification, throttled to reduce
pager storms, and different routing and notification outputs can be used configured for
each of the different teams monitoring the system.

• A GUI dashboard such as Grafana for reporting purposes facilitates data analysis,
especially when the scope is to assess metrics.

2.5.1.2 Other Solutions

There is a vast panoply of offers concerning monitoring solutions for infrastructures that
enable it. The most common, besides Prometheus, are influxDB 1, Nagios 2, et cetera.

InfluxDB is only a time-series database, while Prometheus is a fully integrated time-series
database and a monitoring system. Similar to Prometheus, it also supports the connection to
specific plugins that allow system monitoring.

Although both projects are very similar in their applicable use cases, both open-source and
have ample community support, there are some differences to consider to mitigate a higher
degree of complexity that the inFluxDB system can introduce. Each Prometheus server runs
independently on the system it is deployed and relies only on their local storage for their core
functionality[33].

The open source version of inFluxDB acts in the same manner, but the commercial version
can make the system management overly complicated because it will have a distributed storage

1https://www.influxdata.com/
2https://www.nagios.org/
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cluster with storage and queries being handled by many nodes at once. It becomes easier to
scale horizontally but adds the complexity of a distributed storage system.

Prometheus ends up being a simpler alternative to run, even needing to shard servers
when scalability is necessary. Independent servers running in parallel offers better reliability
and failure isolation. Prometheus also ends up being a better alternative than inFluxDB,
when the use case is primarily focused on reading metrics, which is the case in this thesis.

Nagios and Prometheus offer different functionalities. The former specifies more on
application network traffic and security and the latter on applications running on the monitored
infrastructure and the infrastructure itself[34].

Prometheus collects data from applications that push metrics to their API endpoints(or
exporters). Nagios uses agents installed on both the network elements and the components it
monitors; they collect data using pull methodology.

While also providing various plugins to monitor a diversified range of applications, Nagios
focuses much more on monitoring the application network traffic and security, which ends up
not suiting the needs of this thesis.

Prometheus is an easier to implement, metrics focused solution. It offers a much wider
variety of exporters while Nagios is very limited. Another point against Nagios is that, in
terms of visualization of the data collected, it doesn’t allow the user to have a custom solution
since it comes pre-built into the Nagios system. In contrast, Prometheus allows choosing the
best case for the developer’s needs, the most common being Grafana.

In the end, Prometheus is a more versatile solution for monitoring with the focus on
collecting metrics, which is one of the core features of the system developed, being lightweight
on the system and allowing greater modularity by only implementing the plugins needed for a
determined solution, easily fitting in most software architectures.

2.5.2 Orchestration Solutions

2.5.2.1 Open Network Automation Platform

ONAP provides a comprehensive platform for real-time, policy-driven orchestration and
automation of physical and virtual network functions that will enable software, network, IT
and cloud providers and developers to rapidly automate new services and support complete
lifecycle management[35].

It also provides a comprehensive design framework to create network services and a
run-time framework. The run-time framework includes the ETSI MANO functionality of
NFVO and VNFM and goes beyond by adding monitoring and service assurance.
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Figure 2.16: ONAP Scope [25]

ONAP primarily interacts with these software systems [25]:

• Operations support systems (OSS):OAM, FCAPS (fault, configuration, accounting,
performance, security).

• Business support systems (BSS): Service provisioning, deployment, service change
management, customer information management, SLA management, billing and cus-
tomer support.

• Big data applications: Analytics applications to gain business insights and intelligence
from data lakes containing network data collected by ONAP.

• E-services: Self-service portals where customers can manage their services.

From 2.16, it is possible to observe that ONAP architecture defines two major systems -
design time and run-time - allowing a clear separation between design and operational roles.

The design time environment, which is supported by Service Design & Creation (SDC), is
responsible for:

• VNF Onboarding/Validation
• Network Service/SDN Service Design
• Policy Creation
• Workflow Design

The run-time environment is responsible for:

• Service orchestration and lifecycle management:
– Service Orchestrator
– SDN Controller (SDN-C)
– Application Controller (APP-C) and Virtual Function Controller (VF-C)
– Infrastructure controller (interface to the VIM).

• Monitoring and service assurance
– Data Collection Analytics and Events (DCAE)
– Catalogue of all active and available inventory (A&AI)
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Figure 2.17: ONAP Architecture (Honolulu Release) [36]

The design-time framework brings forth a comprehensive development environment with
tools, techniques, and repositories for defining and describing resources, services, and products,
including policy design and implementation and an SDK with tools for VNF supplier packaging
and validation. On the other hand, the run-time environment executes the rules and policies
distributed by the design and creation environment and the controllers that manage physical
and virtual networks.

As can be seen on 2.17, ONAP has a significant number of projects that can be instantiated,
but for the scope of this thesis, the following are the most relevant[25]:

• Service Orchestration(SO): Executes the specified processes by automating se-
quences of activities, tasks, rules and policies needed for on-demand creation, modifi-
cation or removal of network, application or infrastructure services and resources, this
includes VNFs, Containerized Network Functions (CNFs) and Physical Network Func-
tions (PNFs). Service Orchestration (SO) gets topologies and configurations through
resource and recipe models via SDC. The SO is invoked through events or APIs from
BSS or manually invoked through Virtual Infrastructure Deployment (VID)3.SO makes
homing (where to place the workload) decisions, resource determination decisions and
triggers management actions via one of the four controllers at its disposal. SO also
handles errors and rollbacks.

• Active and Available Inventory (A&AI): provides real-time views of a system’s
resources, services, products and their relationships with each other, and also retains a
historical view. A&AI not only forms a registry of products, services, and resources, it

3The Virtual Infrastructure Deployment (VID) application enables users to instantiate infrastructure
services from SDC, along with their associated components, and to execute change management operations
such as scaling and software upgrades to existing VNF instances
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also maintains up-to-date views of the relationships between these inventory items. A&AI
tracks relationships by maintaining a graph database, e.g., subscriber → NS → VNFs
→ VMs → compute/storage/networking nodes, while allowing discovery, registration,
and auditing.

In order to achieve the dynamism of SDN/NFV, A&AI is updated in real time by
the controllers as they make changes in the network environment.

• Policy: Framework dedicated to comprehensive policy design, deployment, and execu-
tion environment and the decision making component in an ONAP system. Run-time
policy software module guides the automated system without code - purely through
models that allow for dynamic changes.

• Data Collection, Analytics, and Events (DCAE): Used for closed control-loop
automation, trending, solving chronic problems, capacity planning, service assurance,
reporting, and so on. DCAE orchestrates data collectors, microservices, analytic
applications, and closed control-loops. Given the model and SDK-driven nature of
DCAE, it offers a self-service interface to developers, designers, and operators, interacting
with SDC, Policy, and A&AI.

• Closed Loop Automation Management Platform (CLAMP): Used to create
and configure policies/templates built-in SDC (Service Design and Creation) to create
closed control-loop service assurance loops. Control Loop Automation Management
Platform (CLAMP), Policy and DCAE actively work in conjunction to detect problems in
the network and identify the appropriate remediation, notifying the Service Orchestrator,
in order to take action upon the problem. This component requests from DCAE the
instantiation of microservices to manage the control loop flow. Furthermore, it creates
and updates multiple policies in the Policy Engine that define the closed loop flow.
Illustrated in 2.18 is an example of a template being configured.

Figure 2.18: CLAMP workflow
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2.5.2.2 Other solutions

The chosen solution was ONAP, mainly due to the thesis developed in a collaborative
environment between the University of Aveiro and Capgemini Engineering, where the ONAP
system was already being used. Nevertheless, other options were considered to justify ONAP
as the correct choice.

Another studied solution was Open Source MANO (OSM), the leading competitor of
ONAP. In [37], the author also made a comparison between OSM and ONAP regarding NFV
Management and Orchestration.

OSM is also an open-source project, which ETSI hosts, and it aims to map the ETSI NFV
architecture into its open-source implementation.

Some operations supported by OSM are, similarly to ONAP [37]:

• Orchestration Service for VNFs;
• Support for different VIMs;
• Support for SDN controllers;
• Support for monitoring tools.

OSM also includes a monitoring collector, which collects metrics at the infrastructure level
and per VNF and can automate network service orchestration. However, it does not have a
module dedicated to monitoring like ONAP provides DCAE. ONAP has every feature existing
in OSM and includes a TOSCA and YANG supporting a unified design framework, which
helps with end-to-end services orchestration and automation. There are even more solutions
that compete against ONAP and OSM. Some are proprietary and lack the advantages of
open-source. Others are just less known and, therefore, less used to address these problems.

In table 2.1, it is shown a comparison between ONAP, OSM and other available platforms.

Framework Leader VNF Definition SDN NFV Legacy VIM Multiple Domains
ONAP Linux Foundation TOSCA, YANG X X X X X
OSM ETSI YANG X X X In recent versions
OpenBaton Fraunhofer Institute Technical U. Berlin TOSCA X X
Cloudify GigaSpace TOSCA X

Table 2.1: Comparison between Orchestration Platforms (adapted from [35])

Ultimately, ONAP is a complete solution, as seen in 2.1. Although not every feature is
going to be used for the present work, it opens the possibility for future work.

2.6 Related Work

Some work on the End-to-End network Orchestration has already been made and studied. In
[38], the authors proposed a 5G network slices management solution.

A network slice is established via negotiation between the customer and the network
operator. The customer specifies the needs of connectivity, interconnection, cloud resources,
and network functions. The network operator is in charge of implementing those functions
and network resources to offer the desired network service according to a given SLA.
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For automating the network slices management, the authors were highly motivated by
the need to monitor these slices and implement rules that would depend on the monitoring
results to maintain and avoid degradation of the negotiated SLA with the consumer. The
proposed solution also uses the various components available on the ONAP system, more
specifically the DCAE and VNF Event Streaming Collector (VES), used specifically for VNFs
monitoring. In case of slice degradation detected through the KPIs sent to DCAE, the Policy
Framework, also in ONAP, would then enforce various actions, for instance, allocating more
cloud or network resources, terminating tasks, scaling up or down slice components, etc. This
actions will assure that the slice could return to its expected performance. The authors also
use the CLAMP component for policy enforcement automation to complete the solution.

The authors of [6] and [7], as mentioned in section 1.3, developed a solution to provide the
vCDN service an orchestration solution using the ONAP system. This thesis aims to expand
upon this service by implementing the necessary components to accomplish a monitoring
solution for the system to provide the required scaling, in terms of infrastructure, according
to the monitored KPIs. The current work also expands on the ONAP usage. The vCDN only
utilises ONAP to deploy the nodes with the desired network configurations to properly serve
the clients.

Although the service itself is already integrated with policy-driven orchestration, it can only
adjust its content distribution strategy and still needs infrastructure scaling for a real-world
scenario.

ONAP offers the capability of not only automating the deployment of network services but
also assuring that they maintain the quality of the service throughout their lifecycle, requiring
the use of more components in the ONAP system, which is the main focus for the mentioned
expansion of the ONAP system, allowing for a scaling solution to the vCDN. The ONAP
functionalities extension and the monitoring solution are the main research gap between this
work and the studies in [6] and [7].

The work developed in [38], in the monitoring aspect, proves that the solution envisioned
and later detailed in Chapter 5, will enable monitoring and infrastructure scaling in [6].
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CHAPTER 3
Research Methodology

The following chapter presents the research methodology applied to develop this thesis. The
main focus is to understand how the research influenced the choices made in the framework
design and how the data should be interpreted both for the monitoring solution of the vCDN
system and the closed-loop automation with the Open Network Automation Platform.

As previously stated in 1.3, the main goal is to provide a monitoring system for the vCDN
Service and successfully achieve closed-loop automation with the aid of the ONAP platform,
focusing on validating the control loop to be used as an automation tool to manage the
service assurance of the vCDN. The main objective of the research is to understand if the
implementation of an automation control loop is viable and achievable in a real-world scenario,
thus, solving the scalability problem of the vCDN that may happen during the overload of
the service nodes applying the concept of applied research.

To successfully evaluate the system, it is required to gather and analyze precise values from
the monitoring system that was instantiated in the vCDN Node intended to monitor. The
data will then be used to feed the ONAP platform, more precisely, the collector belonging to
the DCAE component, to be further processed by the platform itself and execute the defined
control loop.

Having this in mind, the implemented solution needs to provide quantitative values that
are agnostic to the observer’s view, and it is only dependent on the vCDN Node. Also, all the
metrics used to produce the statistical results for posterior evaluation were collected for this
sole purpose, and no other data source was used.

Figure 3.1 illustrates the various steps that represents the research methodology.
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Figure 3.1: Research Methodology

There were essentially four steps for the methodology execution:

• Research Phase: It consisted in the study of the enabling technologies such as 5G,
NFV, SDN and MEC, as well as the orchestration and monitoring solutions available,
and also a compilation of the related work, which were addressed in Chapter 2.

• Implementation Phase: Development of the monitoring solution with the Prometheus
Framework and the Control Loop with the ONAP system, and this phase ended with
the integration of both solutions to be able to execute the required use case properly.

• Testing Phase: Phase dedicated to testing the implemented solutions. The main
objective was to validate the systems built during the Implementation Phase. After
successfully testing the solutions, the required quantitative data was extracted for
analysis.

• Results Analysis Phase: Final phase and logical consequence of the previous stage,
in which the goal was to analyze the previously extracted data from the Testing Phase.

The data used is entirely quantitative, as already briefly said previously. The data
collection consisted in using the Prometheus Framework to collect the different hardware
metrics from the nodes. Those metrics were gathered from the CPU, RAM, Disk I/O, and
Network Interfaces every 10 seconds, and they are a calculation of the mean values of the last
10 seconds to prevent detection of false positives that could happen with load spikes in the
nodes.

In a usual scenario, Prometheus would feed the metrics directly to the ONAP collector.
Still, the messages that needed to be sent to the platform were manipulated to cause the
desired event for testing purposes.

Although monitoring is essential for evaluating if the solution is manageable in a real-world
scenario, manipulating the value allows a more controlled experimental environment. Also, it
will enable testing the condition where the control loop is triggered by an event caused by an
overload on the system.

The connectivity to the collector was tested separately. In this case, a script was in charge
of collecting the values from Prometheus by querying his HTTP API and converting the
information to the VES Collector format.
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The script converts information and establishes the link between Prometheus and the
DCAE collector. If this connection was achieved, the connectivity between these components
was validated and assumed to work on the real-world scenario.

The next step to validate the solution was to guarantee that the control loop was functional
and scale the service when the right conditions were met. The conditions defined for a control
loop to be triggered were: CPU or RAM values above 80%.

It is worth mentioning that various delays existed from Capgemini Engineering in supplying
the materials that would serve as the infrastructure for the ONAP deployment. Consequently,
a delay also occurred in the validation and testing of the solution, causing the work to be
postponed.

Due to this slow down on the development, validation and, testing, other planned work
was not possible to execute, for example, stress test the vCDN nodes to precisely discover the
maximum bandwidth for the network interfaces and the bottleneck for disk I/O operations.
Although those values are being extracted from the Prometheus Framework, they are not used
in the control loop policy. A message was forged with these values exceeding the established
thresholds to trigger these referred conditions, which the VES Collector will receive.

Regarding the vCDN service, not all the desired data was collected due to the service
itself not having a load balancer. However, the missing results were not detrimental to the
final conclusion or the resolution of the research question. To evaluate this stage, the collected
data was based only on instantiation time, and the only data used was when a new node
deployment was successful. This was collected by a script that filtered the results so that only
valid instantiation times were used for the final calculations.

The instantiation times for deploying vCDN nodes were the most relevant data to collect
for the objective established. The number of collected tests was significant to try to make
the posterior calculations of the statistical values less error-prone. A total of a hundred and
eighteen tests were successfully completed, and those were the times used to calculate the
mean value and standard deviation. There is no reason for the high number of tests other
than the need to attenuate the results of the calculations.

The approach was beneficial because all the collected metrics during the experiment were
quantitative, answering whether the instantiation times were acceptable to provide successful
service assurance or if the monitoring system and the control loop required further refinement.

The results, although they prove that the closed-loop automation is possible and within
adequate time to replace human interaction in the process, lack the evaluation of the vCDN
node in terms of the system load after the instantiation of a new node. Still, the main
question was answered, making the outcome outweigh this limitation that was faced during
the development of the system.
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CHAPTER 4
ONAP and vCDN Components

Assessment for Scenarios
Implementation

The present chapter introduces the proposed scenario for the implemented solution. The goal
is to explain the components involved in constructing the solution with ONAP, to address the
needs of the envisioned use case. The chapter also presents the technologies and frameworks
used to achieve the final result.

4.1 Proposed Scenario

The 5G networks aim to improve the way customers use mobile networks, and because of
the demanding use cases, systems that operate on the network must also evolve to meet the
requirements. With the increased accessibility and high speeds associated with 5G, the data
consumption, more specifically, video streaming, will be at an all-time high, as previously
stated in Chapter 1, section 1.1.

Having this in mind, the services delivered by the network providers must have mechanisms
that allow dealing with the traffic increase to meet the demands of today’s mobile networks.
These mechanisms will be essential in scenarios where a significant accumulation of people
occurs, like metropolitan areas where people consume the most of this type of data.

A very likely location where this might happen is at public transportation, such as bus
stations or train stations, at the end of the working hours, where people will be on their
way home and start to consume multimedia content to be kept entertained. The amount of
traffic generated at these locations can be overwhelming for systems that were not designed
to handle the increase in volume.

Such is the case of the vCDN service, that, although it supports the placement of new
nodes based on the predicted location of the users, along a train track, it can’t scale itself in
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the proportion of the resources overload caused on the system components, such as CPU or
RAM.

The focus is to, despite the demanding increases in computational resources due to the
higher traffic generation, the service maintains the same quality when delivering the content
to the consumers and avoid its disruption or degradation.

Figure 4.1 represents a high level implementation illustration of this scenario.

Figure 4.1: High Level Architecture for vCDN Scaling

The designed system aims to address the issue that will come with this growth in network
flow by leveraging the capabilities of ONAP and providing network automation through the
means of control loops.

The control loop is a mechanism that will be triggered at a certain point in time and
will provide the necessary signals and actions inside the ONAP framework to execute the
adjustments in the service successfully.

The deployed framework will focus on the constant monitoring of the vCDN service and
analyze the collected data. The data will be forwarded to the ONAP infrastructure. The
platform will treat it and trigger the necessary mechanisms to enable the service scaling, thus
providing the resources for quality assurance.

4.2 System Requirements

To successfully implement the described in section 4.1, several components must work in
conjunction.

The first required component will be the monitoring system. As stated earlier in this
document, the advance on the development was heavily dependant on the monitoring imple-
mentation.

As it was studied in Chapter 2, the monitor solution uses the Prometheus Framework.
Prometheus represents a significant role in the architecture since it is the single source of
VNFs measurements. Since the VNFs of the vCDN are Virtual Machine Instances running on
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the OpenStack platform, it is only needed to run the Prometheus exporters on these VMs,
and each of them also runs a server to scrape the metrics. The VMs are instantiated by the
ONAP and based on specific TOSCA templates already pre-defined. They have support for
Python 3.8, which is a requirement to run the script that will collect the metrics from the
Prometheus servers send them over to the ONAP collector.

In terms of the ONAP itself, since it is a very modular platform, not all the components
are required to be running to execute the desired solution. The necessary parts are the
following:

• Service Design and Creation (SDC)
• Service Orchestrator (SO)
• Active and Available Inventory (A&AI)
• Application Controller (APPC)
• Data Movement as a Platform (DMaaP)
• Data Collection Analytics and Events (DCAE)
• Policy Framework

These are the main components required to deploy the control loop associated with the
vCDN service and meet the requirements of the defined use-cases.

There are other components that ONAP uses to properly function, for instance, the Appli-
cation Authorisation Framework (AAF), Multi VIM/Cloud, Virtual Function Controller(VF-
C), and SDN Controller (SDN-C). Still, since these are secondary for understanding the
implementation of the use case, they will not be addressed in further detail.

4.2.1 Service Design & Creation

SDC [25] is the unified tool, for the ONAP system, for design-time activities such as onboarding
VNFs, creating services, creating policies, creating workflows, onboarding data collectors,
onboarding analytic apps and testing them, approving and distributing artifacts to run time.
This component manages the content catalog and logical assemblies of the catalog items to
define how and when VNFs are realized in a target environment.

The SDC manages two levels of assets [39]:

• Resource: Fundamental capability implemented either in software alone or as software
interacting with a hardware device. Each Resource combines one or more Virtual
Function Components (VFCs), along with all the information necessary to instantiate,
update, delete, and manage the Resource. A Resource also includes license-related
information. There are three kinds of Resource:
– Infrastructure (the Cloud resources, e.g., Compute, Storage)
– Network (network connectivity functions & elements); example: a Virtual Network

Function (VNF)
– Application (features and capabilities of a software application); example: a load-

balancing function
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• Service: A well formed object comprising one or more Resources. Service Designers
create Services from Resources, and include all of the information about the Service
needed to instantiate, update, delete, and manage the Service

There are four major components of SDC which are:
• Catalog: The repository of assets at the Resource and Service levels.
• Design Studio: Used to create, modify and add Resource and Service definitions on

the Catalog.
• Certification Studio: Used to test new assets at all levels.
• Distribution Studio: Used to deploy certified assets. From the Distribution Studio,

new Services, including their underlying Resources, are deployed to lab environments
for testing purposes and into production after certification is complete..

Once assets are on-boarded, the information provided by the vendor is translated into
SDC internal resource models. The service provider will use SDC to enrich the resource model
further to meet the provider’s environment and compose resources into service models. The
model includes the description of the asset and references to SDC functions needed for the
lifecycle management of the asset. The tested models will then be distributed to the ONAP
execution environment as Deployment Artifacts.

The Deployment Artifacts include the asset definition with instructions to ONAP for the
creation and management of an instance of the asset in the network. Currently, SDC imports
and retains information from Heat Templates for cloud infrastructure creation, YANG XML
files for state data manipulated by the Network Configuration Protocol, TOSCA files for
specifying cloud infrastructure, and specific vendor provided scripts[39].

4.2.2 Service Orchestrator

The Master Service Orchestrator (MSO) [40], commonly known as SO manages orchestration
at the top level and facilitates additional orchestration that takes place within underlying
controllers. It also marshals data between the various controllers so that the process steps and
components required for the execution of a task or service are available when needed. The
MSO’s primary function is to automate end-to-end service instance provisioning activities.
MSO is responsible for the instantiation and release and subsequent migration and relocation
of VNFs to support overall end-to-end service instantiation, operations, and management.
The procedure which the MSO needs to run is obtained from the Service Design and Creation
(SDC) component of ONAP. Controllers (Network and Application) participate in service
instantiation and are the primary layers in ongoing service management; for example, control
loop actions, service migration and scaling, service configuration, and service management
activities.
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Figure 4.2: Orchestration

Figure 4.2 represents the two major domains that use the orchestration: Service Orches-
tration and Service Control, embodied by the MSO and the Application/Network Controllers,
respectively. Each major domain, will perform orchestration for:

• Service delivery or changes to an existing service
• Service scaling, optimization, or migration
• Controller instantiation
• Capacity management

ONAP interfaces with the cloud provider’s infrastructure control interface for infrastructure
orchestration. Regardless of the focus of the orchestration, all workflows must include steps
to update A&AI with configuration information, identifiers, and IP Addresses.

Regarding the Application and Network Controller orchestration, for the former, MSO
sends requests to Application Controllers to obtain the application-specific component of the
service procedure from SDC and execute the orchestration workflow. MSO ensures that the
Application Controller completes its resource configuration as defined by the procedure. For
the latter, MSO obtains compatible Network Controller information from A&AI and requests
LAN or WAN connectivity to be established and configured. This may be done by asking
the Network Controller to receive its resource procedure from SDC. It is the responsibility of
MSO to request (virtual) network connectivity between the components and ensure that the
selected Network Controller completes the network configuration workflow[40].
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Figure 4.3: Service Orchestrator High Level Architecture

4.2.3 Active and Available Inventory (A&AI)

It provides real-time views of a system’s resources, services, products, and relationships with
each other and retains a historical standpoint. A&AI not only forms a registry of products,
services, and resources. It also maintains up-to-date views of the relationships between these
inventory items. To achieve the dynamism of SDN/NFV, A&AI is updated in real-time by
the controllers as they make changes in the network environment[41].

The functional diagram of this component is show in Figure 4.4.

Figure 4.4: Active and Available Inventory (A&AI) functional diagram

To execute inventory and topology management, A&AI uses a central registry to create a
global view of inventory and network topology. A&AI receives updates from various inventory
masters distributed throughout the ONAP infrastructure and persists enough to maintain the
global outlook. As transactions occur, A&AI persists asset attributes and relationships into
the federated view based on configurable metadata definitions for each activity that determine
what is relevant to the A&AI inventory. A&AI provides standard APIs to enable queries from
various clients regarding inventory and topology. The A&AI global view of relationships is
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necessary for forming aggregate views of detailed inventory across the distributed master data
sources.

In addition to inventory and topology management, A&AI provides the ability to do
inventory administration, meaning it doesn’t require a system shutdown to perform functions
on the metadata models stored, such as updating and dynamically version them, as requested
by the system. Data in A&AI is continually updated in real-time as changes are made within
the cloud. Because A&AI is metadata-driven, new resources and services can be added quickly
with SDC catalog definitions, using the A&AI model loader, thus eliminating the need for
lengthy development cycles. In addition, new inventory item types can be added quickly
through schema configuration files.

The A&AI subsystem uses graph data technology to store relationships between inventory
items. Graph traversals can then be used to identify chains of dependencies between items.

A&AI data views can be used by homing logic during real-time service delivery, root cause
analysis of problems, impact analysis, et cetera[42].

4.2.4 Application Controller (APPC)

Application controllers, such as APPC, receive orchestrated requests from the MSO, obtain-
ing application-specific components and attributes from SDC. The MSO continues to be
responsible for ensuring that the Application Controller completes its Resource configuration
as defined by the workflow[43].

The APPC is one of the components of the Open Enhanced Control, Orchestration,
Management, and Policy platform, and is responsible for handling the Life Cycle Management
(LCM) of VNFs.

ONAP includes a generic Application Controller that receives commands from ONAP
components, such as MSO, DCAE, or the Portal, and uses these commands to manage the
life cycle of Services, Resources (virtual applications and Virtual Network Functions), and
their components[44].

4.2.5 Data Movement as a Platform (DMAAP)

DMaaP is a premier platform for high performing and cost effective data movement services
that transports and processes data from any source to any target with the format, quality,
security, and concurrency required to serve the business and customer needs.

The component consists of three major functional areas (illustrated in 4.5) [45]:

• Data Filtering: Data preprocessing at the edge via data analytics and compression to
reduce the data size needed to be processed.

• Data Transport: Transport of data intra and inter data centers. The transport
will support both file based and message based data movement. The Data Transport
process needs to provide the ability to move data from any system to any system with
minimal latency, guaranteed delivery and highly available solution that supports a
self-subscription model that lowers initial cost and improves time to market.
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• Data Processing: Low latency and high throughput data transformation, aggregation,
and analysis. The processing will be elastically scalable and fault-tolerant across data
centers. The Data processing needs to provide the ability to process both batch and
near real-time data.

Figure 4.5: DMaaP

4.2.6 Policy Framework

The Policy Framework is the decision making component in an ONAP system. It allows to
specify, deploy, and execute the governance of the features and functions in your ONAP system,
be they closed loop, orchestration, or more traditional open loop use case implementations.

The ONAP Policy Framework architecture separates policies from the platform supporting
them. The framework supports the development, deployment, and execution of any policy
in ONAP. The Policy Framework is metadata (model) driven to make policy development,
deployment, and execution as flexible as possible and can support rapid development. It also
complies with the TOSCA modeling approach for policies.

This framework has five essential capabilities [46]:

• Capable of being triggered by an event or invoked, and making decisions at run time.
• Capable of managing policies for various Policy Decision Points (PDP) or policy engines.
• Metadata driven, allowing policies to be deployed, modified, upgraded, and removed as

the system executes.
• Flexible model driven policy design approach for policy type programming and specifi-

cation of policies.
• Extensible, allowing straightforward integration of new PDP, policy formats, and policy

development environments.
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Figure 4.6: Policy Framework Architecture

The Policy Development component implements the functionality for development of
policy types and policies.

The Policy Development component implements the functionality for developing policy
types and policies. Policy Administration is responsible for the deployment life cycle of policies
and interworking with the mechanisms required to orchestrate the nodes and containers on
which policies run. Policy Administration is also responsible for the administration of policies
at run time, ensuring that policies are available to users, executing correctly, and monitoring
the state and status of policies.

Policy Execution is the set of PDP running in the ONAP system. It is responsible for
making policy decisions and for managing the administrative state of the PDP as directed by
Policy Administration[46].

4.2.7 DCAE

DCAE [47] is the data collection and analysis subsystem of ONAP. Its tasks include collecting
measurement, fault, status, configuration, and other types of data from network entities
and infrastructure that ONAP interacts with, applying analytics on collected data, and
generating intelligence for other ONAP components such as Policy, APPC, and SDNC to
operate upon, completing the ONAP’s close control loop for managing network services and
applications. DCAE Platform supports the functions to deploy, host, and perform Life Cycle
Management applications of Service components. It uses the TOSCA model of the control
loop, specified by a triggering call, and then interacts with the underlying networking and
computing infrastructure to deploy and configure the virtual apparatus needed to form the
control loop. DCAE Service components are the functional entities that realize the collection
and analytics needs of ONAP control loops.

4.2.7.1 VNF Event Streaming Collector

VES Collector is one of the various services ONAP DCAE offers, and it is the service for
metics collection that will be used on the scope of this project.

VES Collector is a RESTful collector for processing JSON messages into DCAE. The
collector supports individual events or event batches posted to collector end-point(s) and
publishes them to interface/bus for other applications to subscribe. The collector verifies the
source and validates the events against the VES schema before distributing to DMaaP Message

45



Router (MR) topics for downstream systems to subscribe. The VES Collector also supports
configurable event transformation functions and distribution to DMaaP MR topics[48].

Figure 4.7: VES Collector in DCAE Architecture

4.2.7.2 Closed Loop Automation Management Platform (CLAMP)

CLAMP is a platform for designing and managing control loops. It is used to visualize a
control loop, configure it with specific parameters for a particular network service, then deploy
or undeploy it[49]. The policies that CLAMP will configure are created on SDC to produce
the closed-loop service assurance. Once deployed, the user can also update the loop with new
parameters during runtime and suspend and restart it. It interacts with other systems to
deploy and execute the control loop.

The closed loop paradigm can be seen in Figure 4.8 [50]:

Figure 4.8: Closed Loop Paradigm

Design and execution is illustrated in Figure 4.9.
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Figure 4.9: Closed Loop Execution

4.3 vCDN Service

The vCDN service is where the solution was implemented and tested. The service itself
considers that users will connect to the Video on Demand service the operator provides via a
5G network in a high-speed mobility scenario.

The vCDN system is composed of the vCDN Nodes and the vCDN Engine. The vCDN
Nodes are the data plane components of the vCDN system, which are placed in the MEC and
thus closer to the end-user. They hold video content and deliver it to end-users. These nodes,
which can be considered distributed caches, are connected to a central controller (vCDN
Engine), which controls the cache contents of each node, having an overall view of the vCDN
topology. The vCDN Engine can communicate with the infrastructure’s MANO to deploy
non-existent nodes in available MEC hosts along the path of movement of users[51].
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Figure 4.10: vCDN High-Level architecture

Although the vCDN service is reasonably complex and has many components that allow
for a complete functioning system, the purpose of this thesis will not focus on all of these
components. For the scope of the present document, only the vCDN Nodes were considered,
more specifically the vCDN Node Streamer and the vCDN Node Storage, which are detailed
further ahead.

4.3.1 vCDN Node

The vCDN node is a key element within a CDN infrastructure and comprises the distributed
elements that enable the use of edge DCs to optimize the transmission of VR/AR content to
UE. Herein, it is composed of the following elements [51]:

• vCDN Node Streamer: Component that establishes an HTTP session with video or
VR/AR applications in the UE to deliver the video or VR/AR content to be displayed.

• vCDN Node Storage: Component that enables the local persistence of VR/AR
content to be consumed by the streamer application.

4.3.1.1 vCDN Node Streamer

Component that establishes an HTTP session with video or VR/AR applications in the UE
to deliver the video or VR/AR content to be displayed. Its main functions are:
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• Handle client requests. It intercepts the request if it is a request for a video chunk
triggering a cache search. If there is a cache miss, it forwards the request to the video
origin in order to obtain the missing chunk.

• It has an internal cache, in RAM, to load the next chunk that will probably be requested.
The chunk for this load can only come from the vCDN Node Storage.

• Request video chunks to the video origin and send them to the vCDN Node Storage.
• Send monitoring data regarding connected clients, video information, cache status and

viewing status to the Monitoring Manager (MM).
• Load video chunks to the storage upon request from an external entity (using the APIs)
• Influence the traffic in the MEC dataplane via the Mp1 interface.
• Load video chunks in bulk, in response to an API request, from either the video origin

or a peer cache.

Figure 4.11: vCDN Node Streamer internal architecture

The vCDN Node Streamer, whose internal architecture is presented in figure 4.11, is
composed by four essential modules: HTTP Endpoints that implement methods to deliver
data or to be controlled by other entities, Cache agent that treats all the cache related functions,
Video Origin Client that provides communication with the video origin and Monitoring Agent,
which can send and receive monitoring data to and from the MM.

4.3.1.2 vCDN Node Storage

Component that enables the local persistence of VR/AR content to be consumed by the
streamer application. Its features include [51]:

• The ability to receive video chunks from the streamer and store them in a key-value
manner.
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• Provides chunks to the streamer also using a key-value manner.

Since the vCDN Node uses a remote storage to cache content, the response time of the
CDN node will increase. To counter this situation the CDN node uses an internal RAM cache
where the next chunk of the video that the user is likely to consume is stored before-hand.

Figure 4.12: vCDN Node Storage internal architecture

The vCDN Node Storage, with its internal architecture presented in figure 4.12, is the
entity capable of persistently holding content. Similarly to the Streamer, this entity also
implements HTTP endpoints that enable it to communicate with the streamer. It also
implements a storage agent that handles content storage.
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CHAPTER 5
Implementation

This chapter explores the implementation of the scenario presented in section 4.1. Throughout
the chapter, it is shown the envisioned architecture for the scenario and an explanation about
the configurations used for some of the components that were introduced in section 4.2. The
implementation of the system also reflects the final system used to test and gather results that
are addressed in Chapter 6.

Taking into account the study made in section 4.2, for each of the required ONAP
components, to understand at a deeper level, it was possible to conceive the lower-level system
architectures for the system to successfully deploy the closed-loop for a fully automated
scale-out operation.

The following sections will explain the architectural implementation of the solution.

5.1 Monitoring

The monitoring system for the vCDN service was developed to scan only the nodes mentioned
in section 4.3 - vCDN Node Streamer and vCDN Node Storage - since these nodes are the
vital ones to maintain a service assurance to the customers connected to the service.

Having this in mind, these nodes are deployed in the form of Virtual Machines on the
OpenStack1 Platform. The monitoring solution focuses on collecting the hardware measures
from each of the virtual machines, including CPU, RAM, Network Interfaces traffic, and Disk
I/O.

The solution is focused on using the Prometheus framework and an available official
exporter that works in conjunction with it - Node Exporter - to implement the collection of
metrics from the virtual machines.

The Node Exporter actively collects metrics on the system it is deployed in, and the
Prometheus Server pulls those metrics at a timed interval between each pull, thus, providing
all the necessary metrics to be later analyzed inside the ONAP system.

1https://www.openstack.org/
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On the virtual machines, a script (converter) was running, on a local machine, to collect
the metrics from the server and send them over to ONAP, more specifically the VES Collector,
which belongs to the DCAE component. To avoid reading possible load spikes in each node,
the sent metrics are already a calculated average of the last 10 seconds of readings, minimizing
the risk of these events causing a control loop trigger.

This script has the responsibility of not only querying and gathering the collected metrics
but also translating them to the appropriate format that is supported by the VES Collector.
There are various formats that the collector accepts, but for the implementation, the Common
Event Format v28.3 (CEF v28.3) 2 was used, defined in the VES 5.4 Specification 3, because
it is the only acceptable format by the TCA Microservice.

By the end of this conversion, the script will then send the formatted message via HTTP
Request to the exposed API of the VES Collector.

The VES Collector will receive and process the information to further be processed by the
TCA microservice instantiated inside of DCAE. TCA will be addressed in section 5.2.

In figure 5.1 it is illustrated the architectural representation of the monitoring section of
the system.

Figure 5.1: Monitoring System Architecture

For the designed architecture, the converter was deployed on a local computer with access
to the Capgemini Engineering network using a VPN, due to the fact that the ONAP framework
was deployed inside the company’s private network, but it is also possible to deploy them
directly inside the vCDN nodes and make the proper adjustments to be able to route the
HTTP Requests to the VES Collector API.

The full code and for the python script and the file for Prometheus configuration are
available in Appendix A.

2https://github.com/onap/dcaegen2-collectors-ves/blob/master/dpo/data-formats/VES-5.28.
3-dataformat.json

3https://docs.onap.org/projects/onap-vnfrqts-requirements/en/latest/Chapter8/ves_5_4_1/
VESEventListener.html
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5.2 Data Analysis and Decision

To analyze the data sent by the Prometheus Server into the VES Collector, ONAP provides a
microservice, ready to be instantiated for these purposes, which is the already referred TCA
Microservice.

After VES Collector receives a message that is compliant with the defined specification, as
previously stated, it is in charge of constructing the message to TCA. It is now that DMaaP
takes action and receives the message in a specific topic utilized by the collector, and TCA
listens for incoming messages on that same topic.

TCA will periodically probe the topic for new messages. Once it reads a message, it will
begin comparing the values delivered in the message with the thresholds that were previously
defined in its policies. If any of the thresholds were crossed, an ONSET or ABATED message
is generated.

The purpose of this generated message is to notify the Policy Framework that a specific
limit has been crossed, and it is now time to activate the policy related to that crossing if one
is defined.

These two components communicate the same way as the collector and TCA communicate
between them. TCA will publish the message to a specific DMaaP topic, and Policy Framework
constantly monitors that channel for possible incoming messages.

After the Policy Framework is requested to take action, it will call the actors and, in this
project’s case, trigger the steps required to execute a successful scale-out operation without
the need for human intervention.

The configurations for the relevant components will be detailed in the next section.
In figure 5.2 is illustrated the high-level architecture and interaction between monitoring

system and the ONAP, since the reception of metrics to the trigger of the control loop from
the Policy Framework and afterward calling the necessary actors for the defined use case.
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Figure 5.2: Monitoring, Analytics and Decision System Architecture

5.3 ONAP Components

The current section explains the configurations made in some of the ONAP components to
deploy the control loop for the presented used case.

The main components that need specific configurations are the Service Design & Creation
Configuration, the Policy Framework that will be configured through CLAMP to distribute
the policies for the TCA microservice, which requires the Policy XACML PDP Engine, and
the operational policy that requires a different PDP - Policy Drools PDP - both using TOSCA
modeling language to define the policies, as already stated in section 4.2. The following
sections will explain how these components work together to deploy the control loop.

5.3.1 Service Design & Creation Configuration

The Service Design & Creation is the design-time component of the ONAP Framework. To
instantiate a control loop, the first step is to design a service, which will later be used by
CLAMP.

To design it, Virtual Functions must be instantiated to assign it to a determined service.
In this case, the used VFs are relative to the previously developed system, outside of this
thesis scope, the vCDN service nodes.

To instantiate these nodes, a HEAT4 template was provided by the Capgemini Engineering
team, and they also handled the VF creation process.

After creating the VF, the next step is to create a service that incorporates the desired
VF. The creation of this service will enable the direct attachment of the artifacts needed for
the control loop to operate correctly on that service. For this project, only one artifact must
be attached, which is the Threshold Crossing Analytics microservice.

4https://docs.openstack.org/heat/rocky/template_guide/hot_spec.html
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The blueprint for this DCAE microservice can be found in the ONAP public repository5,
although this version of TCA, 1.2.1, had a bug that was reported6 to the ONAP team, during
the development of this thesis.

The bug was resolved by a member of the ONAP community, upgrading the TCA to
version 1.2.2, which caused the blueprint to change.

This will allow deploying policies in CLAMP to this specific TCA instance, which is a
requirement for defining which thresholds will trigger the control loop. This configuration will
be addressed in section 5.3.2.

After the service is created and has all the necessary requirements, the SDC will distribute
it to the ONAP system, making it available for use in other components. In this case, the
service will be available in CLAMP for further configuration.

In figure 5.3 it’s represented the process of deploying the service in the SDC.

(a) Add Service Option (b) Fill mandatory input parameters

(c) Drag & Drop the desired VF for the service (d) Add artifact to the VF node

(e) Distribute the service

Figure 5.3: Sequence of actions to create a Service

5https://git.onap.org/integration/tree/docs/files/scaleout/latest-tca-guilin.yaml
6https://lists.onap.org/g/onap-discuss/topic/84607999#23466
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At this point, the service is ready to be manipulated in CLAMP and create the necessary
policies.

5.3.2 Policy Framework (CLAMP) Configuration

The Policy Framework has the objective of storing all the created policies, relying on many
other components to achieve it. Some of those components are required to design the control
loop, the policies, and load them to the respective engine. The CLAMP project is used for
designing, while the Policy Drools PDP Engine and Policy XACML PDP will be used to
load those policies. Since both engines are TOSCA compliant, CLAMP will create TOSCA
compliant policies that each engine will translate to the respective format.

Before beginning the implementation, the service must be distributed by SDC to the
rest of the ONAP components, including CLAMP, becoming possible to proceed with the
configuration and instantiation of the control loop.

CLAMP provides the users with a user interface to declare the intended policies in each
component. For the proposed use case, two distinct policies are required, one for TCA, which
will be in charge of detecting the threshold crossings for the metrics received from the VES
Collector and, an operational policy that will decide how the control loop will behave once a
crossing is detected.

As mentioned in section 5.2, the TCA will generate an ONSET message every time a
crossing is detected, triggering the operational policy, thus, performing the control loop.

Figure 5.4 represents the first stage of the process, the creation of the control loop. The
relevant fields are all highlighted in red.

(a) Create Option (b) Fill the form with required parameters

(c) Loop Created

Figure 5.4: Sequence of actions to create a Control Loop

In section a) and b) of Figure 5.4 we can see the creation of the control loop. More
specifically, on b), the service previously distributed to CLAMP will appear in the templates
available to modify. This action is possible due to the artifact for the TCA microservice
being uploaded on the service creation phase. Otherwise, the service would not be eligible for
serving as a template for the control loop.
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At this point, the control loop was created, connecting the VES Collector and the TCA
instantiated on the service. With the TCA now available, it is possible to configure it as
represented in Figure 5.5 The menu for inputting the parameters will appear after clicking on
the TCA block in the diagram.

(a) Event Names (b) Memory Threshold

(c) CPU Threshold

Figure 5.5: TCA Configuration

As it is possible to see in Figure 5.5, there are many relevant parameters to be filled in
each field.

In 5.5a), the most relevant fields are the domain and eventName that must be matched
with the fields sent by the VES collector in order to properly function. Also, the controlLoop-
SchemaType must be set to VM type to be able to fetch the correct information from the
reporting entity, which is registered as a vServer on the A&AI. If the type is set to VNF, the
A&AI will try to search for a VNF name that does not exist in Inventory and fail to produce
a successful result for the control loop.

In 5.5b) and 5.5c) is the configuration for which thresholds the TCA will generate ONSET
messages. The most relevant field here is the closedloopControlName that must match the
name given to the control loop at creation, with LOOP_ as prefix.
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For the control loop to be complete, it requires the operational policy. The illustration of
the process on how to add the operational policy to the control loop is in Figure 5.6

(a) Modify Option (b) Operational Policy

(c) Control Loop Completed

Figure 5.6: Adding an operational policy to the control loop

The last step for the configuration process of the control loop is to modify the default
operational Drools policy design. The same process applies to opening the policy configuration
window as before with TCA. Process illustrated in Figure 5.7.
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(a) Operational Policy Header

(b) Operational Policy Operations

(c) Operational Policy Actor

Figure 5.7: Operational Policy Configuration

To properly define the operational policy, it also must be considered that the value of
some fields must be correctly defined to link each policy and operation defined in it. The
field trigger in the policy header (Figure 5.7a)) must match the id in Figure 5.7b) in order to
execute the correct operation when the control loop is triggered.

In Figure 5.7c), it shows the configuration of the correct actor and the correct reference
for the VF Module that needs to be instantiated when the control loop activates.

With the configuration for each policy ready, they now need to be deployed into their
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respective engines. TCA policy will be deployed into the Policy XACML PDP Engine and
the operational Drools policy into Policy Drools PDP Engine.

CLAMP also provides a mechanism to create and submit the policies in each engine. This
deployment can be done manually by accessing each one through their offered APIs7, which is,
essentially, the same process CLAMP does but automates it in a more user-friendly approach.

After submitting each policy, there is only one last step to complete the instantiation of
the control loop, which is deploying the microservice to DCAE. Once again, CLAMP provides
an easy and intuitive way to perform this action with a menu option that automatically
executes all the intermediary deployment steps.

Both the submission of the policies and the deployment are illustrated in Figure 5.8.

Figure 5.8: Policies submission and DCAE deployment

A simplified version of the entire process can be visualized in Figure 5.9.

Figure 5.9: CLAMP configuration sequence

Finally, the control loop is ready to be used by the ONAP framework and provides
automation for scale-out operations. The tests and results made on the control loop will be
explained in Chapter 6.

7https://docs.onap.org/projects/onap-policy-parent/en/latest/offeredapis.html
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All the policies configurations are available for consulting in Appendix B. The figures
relative to the implementation are also provided in Appendix C for better resolution.
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CHAPTER 6
Validation and Analysis

This chapter presents the tests executed for the implemented solution. The main focus of this
chapter is to explain how the tests operate and how they validate the envisioned scenario for
the vCDN scale out with the execution of a control loop defined in the ONAP framework.
The tests are divided into different phases, first, validating the monitoring solution for the
vCDN service, and the other validating the correctness and effectiveness of the control loop.

The tests were divided into two stages to evaluate if the presented solution was viable.
First of all, the proposed system focused heavily on providing a monitoring solution to

the vCDN system, and validation of the ONAP components was dependant on the metrics
that the monitoring could provide, so it was of utmost importance to have a reliable and solid
system monitoring.

We can then separate the tests into the following two phases:

• Validation of the monitoring system
• Validation of the control loop

The testing was addressed in this manner because it was not possible to stress test the
vCDN nodes. Thus, to test its functionality, the message that would trigger a response from
the control loop was forged.

Each one of these phases are detailed in the following sections of this chapter.

6.1 Monitoring System Testbed and Validation

The monitoring system had essentially two requirements: Extract metrics from the target
system and send them over to the VES Collector.

The first approach to validating this solution was to deploy the Prometheus Framework
with the node exporter and configure it to collect metrics.

The Virtual Machine that was used did not belong to the vCDN system. For this test, the
infrastructure provided was an Openstack instance with 2 vCPUs, 4GB RAM, and 40GB of
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disk space. In terms of computational power, it is the same resources that the vCDN nodes
use after being instanced except for disk space which is only 20GB for each node.

After Prometheus is set up, the script is deployed on the Virtual Machine and starts
reading and converting the values to the format accepted by VES Collector.

Since, to validate the monitoring system, the entire ONAP system is not required, it was
used a standalone1 version of the VES Collector.

Once the conversion is made, and a new message is constructed, it is validated against the
schema by the script itself and sends the message to the collector if all is valid.

If all these components are functioning correctly, it is safe to assume that the connection
between the three essential elements - VM, Monitoring System, and ONAP - is fully functional
and ready to be deployed on the vCDN nodes. Note that it is possible to input a custom
endpoint for the VES Collector before running the script, so it’s only needed to change from
the standalone VES Collector to the ONAP endpoint.

Finally, the commands to deploy Prometheus Framework and the script were added to
the HEAT template to instantiate the vCDN service. Once again tested, now on the vCDN
nodes, to check the connectivity between all the components, and it succeeded, validating the
monitoring system deployment.

6.2 Control Loop Validation

The validation of the control loop is the second essential part of the entire system and what
executes the vCDN service action per the use case scenario.

As previously stated, to test this part of the system, the messages to trigger the policies
in the control loop had to be forged.

To simulate the message, the monitoring script was used to generate one with the actual
metrics being collected from the testing Virtual Machine. Only the values that would cause a
threshold crossing in the TCA microservice were altered. This step also helped to validate
the correctness of the generated messages from the script once again. The next step was to
trigger the control loop with the altered message.

To do this, Postman 2 was used to send the message, with the altered value to trigger the
control loop, to the VES Collector endpoint in the ONAP Framework.

From this point, after sending the message, the control loop testing begins.
The first component to monitor is the VES Collector, which already returns a response to

Postman indicating if the action was successful or not. If the VES accepts the message, it
will forward it to the DMaaP topic where TCA is listening to incoming messages.

When TCA finally reads the message, the following message is presented (Figure 6.1):
1https://docs.onap.org/en/elalto/submodules/dcaegen2.git/docs/sections/services/ves-http/

installation.html
2https://www.postman.com/
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Figure 6.1: TCA information after successfully receiving the message from VES

TCA generates the ONSET message to send to the Policy Framework. Once it is received,
it will trigger the policy involved in executing the control loop, as it is shown in Figure 6.2.

Figure 6.2: Policy message after receiving the ONSET event from TCA

The Policy Framework then proceeds with a series of intermediate steps to acquire all
the necessary information for the request and send it to the Service Orchestrator for further
processing.

When the Policy finishes gathering all the data, the Service Orchestrator will receive the
message from Policy and start to execute the workflow associated with the scale-out command.

SO will send a message reporting the success of the operation, as demonstrated in Figure
6.3.

Figure 6.3: SO reporting the successful operation "VF Module Create"

Once SO reports this to Policy, the operation completes and, Policy Framework also
declares it as a successful operation (Figure 6.4).
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Figure 6.4: Policy success notification

In Figure 6.5 it is possible to see a simplified sequence diagram illustrating the control
loop interaction.

Figure 6.5: Control Loop Sequence

Having validated the control loop, tests were run afterward to measure the time instanti-
ating a new vCDN node would take from the moment the control loop was triggered.

6.3 Testing and Evaluation

After validating both the monitoring system and the control loop, a testing phase for the
control loop was carried out. The objective was to measure the time it would take to instantiate
a new node after detecting an anomaly.

For this, a script was built in Python. It had the function of sending the anomaly message,
measuring the time it took to instantiate the new node, delete the newly deployed VM after
stopping the timer, and repeating the process.

To accurately measure this, the timer would start as soon as the anomaly was sent from
the VM and then continuously probe the A&AI via its API to verify when the new instance
was in the state Active. The results were then parsed to a CSV file.

A total of hundred and eighteen tests were executed, always with the same logic to measure
the elapsed time. To better analyze these values, Table 6.1 shows the minimum, maximum,
average, and standard deviation of all the tests performed.
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Min Max Avg SD
Elapsed Time (s) 69.93 236.4 146.5 48.94

Table 6.1: Elapsed time for node instantiation

As we can see from the results, there were very low times and some spikes up to a maximum
o 236.4 seconds, but the average time was acceptable. Something that could lead to the higher
times is that the Openstack environment was not used exclusively for the testing. Other
instances were active and performing activities, which could lead to some delays in Openstack.

Overall, with 146.5 seconds for average time for instantiation, it shows that the quality
of service can be maintained in a fast and automated way, without the need for the usual
human system maintenance, improving the Quality of Service vCDN system.

The results obtained regarding the instantiation times and the framework’s validation
show promising results. The automated orchestration of the network is a step further to
improve the Quality of Service on the networks.

With the present solution, the scenarios in which it could be applied are endless. The
monitoring solution was made to be versatile to integrate with any system running on the 5G
Network.

Also, ONAP provides a solution that is possible to adapt to other systems without altering
the policies that are already implemented.

Both components of the development achieved great flexibility to be adopted into other
systems. With the promising results in the instantiation times, the services on the networks
can start to slowly migrate into fully automated management systems.
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CHAPTER 7
Conclusion

The objective of this thesis was to develop a mechanism that would provide a way to assure
the quality of the vCDN service in a heavy workload environment and study the effectiveness
of the solution implemented.

Although it was not possible to test the fully functional system on a testbed that would
resemble more a real-life scenario, the results taken from the tests in a controlled environment
are also very promising, considering that there are close to no adaptations needed to make in
the deployed solution to be able to adapt it in a real-world system.

In Chapter 2 was researched the most relevant and emerging technologies that provide the
necessary knowledge for the design and implementation of this project’s final solution. It was
a vital step for understanding all the underlying technologies at hand to deliver the services
of modern mobile networks. This chapter begins with an explanation of the 5G Network. It
proceeds to describe the most important key enablers, which are Software Defined Networks,
Network Functions Virtualisation, and Multi-Access Edge Computing, for implementing the
5G use cases. These concepts are also the enablers of the vCDN service, which is used,
intending to improve and expand its functionalities as the end goal.

Since this thesis was mainly focused on monitoring the vCDN service, an analytical study
on the available monitoring tools had to be conducted to discover the best-suited solution
to deploy in conjunction with the vCDN system. The chapter finishes with an overview of
the most common orchestration solutions available in the market, which led to acquiring
knowledge on how network orchestration is achieved with the capability of these tools.

With all the information gathered, it was possible to envision the overall system architecture
based on the proposed use case and the methodology to develop the solution. The architecture
proposed was aligned to provide the vCDN service with a scale-out solution for when the
system was overloaded. Besides the previous study, since the ONAP framework is highly
modular, an assessment of the required system components was also executed.
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All the work until here enabled the beginning of the system implementation. Although
ONAP is a powerful platform with a great community supporting it, it is not an easy framework
to work.

It has a very steep learning curve, and each time a new component of the framework is
added to the equation, the curve only gets steeper. The required elements for the implemented
solution were numerous, which added even more complications.

ONAP is a framework that requires a lot of computational power to operate correctly. For
the particular solution of this thesis, which required so many active components simultaneously,
it was troublesome, even for Capgemini Engineering, to find a suitable machine that had all
the necessary resources to run the system flawlessly.

Despite the encountered problems with the ONAP framework, after the successful imple-
mentation and validation of the use case, the results showed that a scale-out control loop is
possible and viable in the vCDN system, without requiring a great amount of time needed to
set up and instantiate a new node, offering the possibility of a solution for service assurance
in the vCDN service and also also the possibility of expanding this solution to other systems
on the edge of the network.

7.1 Future Work

ONAP will keep evolving in the future, and therefore, its capabilities will also be expanded,
allowing for more use cases to be addressed. In the vCDN service, there is still room for
several improvements.

First of all, a logical expansion to the vCDN is to detect when the service is not being
used in a way that justifies more than one instance active at that time and performs a scale
in, all in an automated fashion. Also, to provide better results, the development of a load
balancer to the vCDN service would be optimal to prove that the scaling out of the system
with just one VM was sufficient to improve the previous overloaded edge nodes. In this case,
after the implementation of the load balancer, it could provide valuable insights to make the
intended stress test, addressed previously in Chapter 3.

Regarding the monitoring side of the implementation, it could be interesting to adapt the
solution to work in conjunction with Artificial Intelligence and even create a new microservice
to deploy on DCAE to better evaluate the needs of the vCDN nodes instead of using fixed
thresholds with the TCA microservice. This could even bring more advantages for predicting
when the service would be under heavy workloads and begin the instantiation of new nodes
before the system is overloaded.

Lastly, blockchain is a relatively new technology. Some studies are beginning to emerge for
Service Layer Agreements management using the blockchain and smart contracts to guarantee
a more secure and trustworthy deployment of policies in cloud environments. This could
provide valuable but challenging research on integrating this type of technology with the
available orchestration platforms and arm the 5G services with better security.
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Appendix A

This appendix contains the monitoring system configurations for the Prometheus Server and
the monitoring script.

Prometheus Configuration File

1 global:
2 scrape_interval: 10s
3 evaluation_interval: 10s
4

5 scrape_configs:
6 - job_name: "prometheus"
7 static_configs:
8 - targets: ["localhost:9090"]
9

10 - job_name: "openstack"
11 honor_labels: true
12 openstack_sd_configs:
13 - identity_endpoint: http://192.168.89.4:5000/v3
14 username: #######
15 project_name: IT_ALTRAN
16 project_id: 1ea949d8a2c44946bd64cfc4f55149c8
17 domain_id: default
18 password: #################################
19 role: instance
20 region: RegionOne
21 port: 8081
22

23 relabel_configs:
24 - source_labels: [__meta_openstack_instance_status]
25 action: keep
26 regex: ACTIVE
27

28 - source_labels: [__meta_openstack_instance_name]
29 target_label: instance
30

31 - source_labels:
32 - __meta_openstack_address_pool
33 - __meta_openstack_tag_prometheus_io_address_pool
34 action: replace
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35 regex: "provider;provider"
36 target_label: __tmp_keep_target
37 replacement: "true"
38

39 - source_labels:
40 - __meta_openstack_address_pool
41 - __meta_openstack_tag_prometheus_io_address_pool
42 - __tmp_keep_target
43 action: replace
44 regex: "provider;;"
45 target_label: __tmp_keep_target
46 replacement: "true"
47

48 - source_labels: [__tmp_keep_target]
49 regex: true
50 action: keep
51

52 - source_labels: [__meta_openstack_instance_name]
53 regex: prometheus_monitoring_altran
54 action: keep
55

56 - source_labels: [__meta_openstack_instance_id]
57 target_label: vm_id

Listing A.1: Prometheus Server Configuration
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Monitoring System Code

app.py

1 from collect_metrics import Collector
2 import common.common_utils as common_utils
3 import argparse
4

5 def start(ip, port):
6

7 collector = Collector()
8 metrics = collector.collect_readings('http://192.168.89.122:9090')
9 print(metrics)

10

11 if(common_utils.validate_json(metrics)):
12 common_utils.send_message(ip, port, metrics)
13

14 if __name__ == "__main__":
15 parser = argparse.ArgumentParser()
16 parser.add_argument('-i', '--ip', type=str, help='VESCollector IP Address',

required=False, default='10.12.82.65')↪→

17 parser.add_argument('-p', '--port', type=str, help='VESCollector Port', required=False,
default='30417')↪→

18 args = parser.parse_args()
19

20 IP_ADDR = args.ip
21 PORT = args.port
22

23 start(IP_ADDR, PORT)

Listing A.2: Main application
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collect_metrics.py

1 from common.common_utils import metrics_to_dict, metrics_to_dict_mem, reorder
2 from prometheus_client import PrometheusClient
3 import converter
4 import time
5

6 class Collector:
7

8 def __init__(self):
9 self.vm_info = dict()

10 self.cpu_metrics = dict(dict())
11 self.cpu_values = dict()
12 self.memory_metrics = dict()
13 self.disk_metrics = dict(dict())
14 self.disk_values = dict()
15 self.net_interface_metrics = dict(dict())
16 self.net_values = dict()
17 self.eventID = 0
18

19 def collect_readings(self, url):
20

21 prom = PrometheusClient(url)
22

23 start = time.time() - 10
24 end = time.time()
25

26 #CPU Metrics
27

28 for cpu in prom.query_range("node_cpu_seconds_total", start, end,
'1s')["data"]["result"]:↪→

29 final_value = 0
30 self.vm_info["vm_name"] = cpu["metric"]["instance"]
31 self.vm_info["vm_id"] = cpu["metric"]["vm_id"]
32 for values in cpu["values"]:
33 final_value += float(values[1])
34 self.cpu_values[cpu["metric"]["mode"]] = final_value/len(cpu["values"])
35 self.cpu_metrics[cpu["metric"]["cpu"]] = self.cpu_values.copy()
36

37 #Memory Metrics
38

39 self.memory_metrics["total"] = metrics_to_dict_mem(url, "node_memory_MemTotal_bytes",
start, end)↪→

40 self.memory_metrics["cached"] = metrics_to_dict_mem(url, "node_memory_Cached_bytes",
start, end)↪→

41 self.memory_metrics["buffer"] = metrics_to_dict_mem(url, "node_memory_Buffers_bytes",
start, end)↪→

42 self.memory_metrics["free"] = metrics_to_dict_mem(url, "node_memory_MemFree_bytes",
start, end)↪→

43 self.memory_metrics["inactive"] = metrics_to_dict_mem(url,
"node_memory_Inactive_bytes", start, end)↪→
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44 self.memory_metrics["slab_unrecl"] = metrics_to_dict_mem(url,
"node_memory_SUnreclaim_bytes", start, end)↪→

45 self.memory_metrics["slab_recl"] = metrics_to_dict_mem(url,
"node_memory_SReclaimable_bytes", start, end)↪→

46

47 #Disk Metrics
48

49 self.disk_metrics["write_seconds"] = metrics_to_dict(url,
"node_disk_write_time_seconds_total", start, end)↪→

50 self.disk_metrics["read_seconds"] = metrics_to_dict(url,
"node_disk_read_time_seconds_total", start, end)↪→

51 self.disk_metrics["io_time"] = metrics_to_dict(url, "node_disk_io_time_seconds_total",
start, end)↪→

52 self.disk_metrics["written_bytes"] = metrics_to_dict(url,
"node_disk_written_bytes_total", start, end)↪→

53 self.disk_metrics["read_bytes"] = metrics_to_dict(url, "node_disk_read_bytes_total",
start, end)↪→

54 self.disk_metrics["writes_merged"] = metrics_to_dict(url,
"node_disk_writes_merged_total", start, end)↪→

55 self.disk_metrics["reads_merged"] = metrics_to_dict(url,
"node_disk_reads_merged_total", start, end)↪→

56

57 #Reorder dictionaries (switch keys and values)
58 disk_metrics_reordered = reorder(self.disk_metrics)
59

60 #Network Metrics
61

62 self.net_interface_metrics["rx_bytes"] = metrics_to_dict(url,
"node_network_receive_bytes_total", start, end)↪→

63 self.net_interface_metrics["rx_drop"] = metrics_to_dict(url,
"node_network_receive_drop_total", start, end)↪→

64 self.net_interface_metrics["rx_errors"] = metrics_to_dict(url,
"node_network_receive_errs_total", start, end)↪→

65 self.net_interface_metrics["rx_packets"] = metrics_to_dict(url,
"node_network_receive_packets_total", start, end)↪→

66 self.net_interface_metrics["tx_bytes"] = metrics_to_dict(url,
"node_network_transmit_bytes_total", start, end)↪→

67 self.net_interface_metrics["tx_drop"] = metrics_to_dict(url,
"node_network_transmit_drop_total", start, end)↪→

68 self.net_interface_metrics["tx_errors"] = metrics_to_dict(url,
"node_network_transmit_errs_total", start, end)↪→

69 self.net_interface_metrics["tx_packets"] = metrics_to_dict(url,
"node_network_transmit_packets_total", start, end)↪→

70

71 #Reorder dictionaries (switch keys and values)
72

73 net_metrics_reordered = reorder(self.net_interface_metrics)
74

75 return converter.convert(self.eventID, self.vm_info, self.cpu_metrics,
self.memory_metrics, disk_metrics_reordered, net_metrics_reordered)↪→

79



76

77 #print(json.dumps(self.cpu_metrics["data"]["result"], indent=4, sort_keys=True))
78 #print(json.dumps(temp_dict_net, indent=4, sort_keys=True))

Listing A.3: Metrics Collection Module

converter.py

1 import message_data_struct.ves_54_pb2 as ves_54_pb2
2 import time
3 import os
4 import uuid
5 from google.protobuf import json_format
6

7 def convert(eventID, vm_info, cpu_metrics, memory_metrics, disk_metrics,
interface_metrics):↪→

8

9 message = ves_54_pb2.header()
10

11 common_header = message.event.commonEventHeader
12

13 eventID +=1
14

15 #Required fields
16 common_header.version = 3.0
17 common_header.domain = "measurementsForVfScaling"
18 common_header.eventId = ("{}{:07d}").format("Mfvs", eventID)
19 common_header.eventName = ("{}_{}_{}").format("Mfvs", os.getlogin(),

"perf_metrics")↪→

20 common_header.eventType = "applicationVnf"
21 common_header.startEpochMicrosec = time.time() * 1000
22 common_header.priority = "Normal"
23 common_header.reportingEntityName = vm_info["vm_name"]
24 common_header.reportingEntityId = vm_info["vm_id"]
25 common_header.sequence = 0
26 common_header.sourceName = "vCDN_Node"
27 common_header.lastEpochMicrosec = time.time() * 1000
28

29

30

31 ### Measurement Fields
32 meas_fields = message.event.measurementForVfScalingFields
33

34 # Required Fields
35 meas_fields.measurementFieldsVersion = 2.0
36 meas_fields.measurementInterval = 10
37

38 # Optional Fields (Measures)
39

40 # Memory Usage Array
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41 mem_usage = meas_fields.memoryUsageArray.add()
42

43

44 if(memory_metrics):
45 if(all(value is not None for value in memory_metrics.values())):
46 mem_usage.memoryUsed = (int(memory_metrics["total"]) -

int(memory_metrics["free"]) - (int(memory_metrics["cached"]) +
int(memory_metrics["buffer"])))/1024

↪→

↪→

47 mem_usage.memoryFree = int(memory_metrics["free"])/1024
48 mem_usage.memoryConfigured = int(memory_metrics["total"])/1024
49 mem_usage.vmIdentifier = str(uuid.uuid1())
50 mem_usage.memoryCached = int(memory_metrics["cached"])/1024
51 mem_usage.memoryBuffered = int(memory_metrics["buffer"])/1024
52 mem_usage.memorySlabRecl = int(memory_metrics['slab_recl'])/1024
53 mem_usage.memorySlabUnrecl = int(memory_metrics['slab_unrecl'])/1024
54

55 # CPU Usage Array
56

57 if(cpu_metrics):
58 for metric in cpu_metrics:
59 if(all(value is not None for value in cpu_metrics[metric].values())):
60 cpu_usage = meas_fields.cpuUsageArray.add()
61 cpu_usage.cpuIdentifier = str(metric)
62 total = float(cpu_metrics[metric]['idle']) +

float(cpu_metrics[metric]['irq']) +
float(cpu_metrics[metric]['nice']) + \

↪→

↪→

63 float(cpu_metrics[metric]['softirq']) +
float(cpu_metrics[metric]['steal']) + \↪→

64 float(cpu_metrics[metric]['system']) +
float(cpu_metrics[metric]['user']) +
float(cpu_metrics[metric]['iowait'])

↪→

↪→

65 cpu_usage.cpuIdle = float(cpu_metrics[metric]['idle'])
66 cpu_usage.percentUsage = ((total -

float(cpu_metrics[metric]['idle']))/total) * 100↪→

67 cpu_usage.cpuUsageInterrupt = float(cpu_metrics[metric]['irq'])
68 cpu_usage.cpuUsageNice = float(cpu_metrics[metric]['nice'])
69 cpu_usage.cpuUsageSoftIrq = float(cpu_metrics[metric]['softirq'])
70 cpu_usage.cpuUsageSteal = float(cpu_metrics[metric]['steal'])
71 cpu_usage.cpuUsageSystem = float(cpu_metrics[metric]['system'])
72 cpu_usage.cpuUsageUser = float(cpu_metrics[metric]['user'])
73 cpu_usage.cpuWait = float(cpu_metrics[metric]['iowait'])
74

75 # NIC Performance Array
76 if(interface_metrics):
77 for nic in interface_metrics:
78 if(all(value is not None for value in

interface_metrics[nic].values())):↪→

79 nic_usage = meas_fields.nicPerformanceArray.add()
80 nic_usage.nicIdentifier = str(nic)
81 nic_usage.valuesAreSuspect = "false"
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82 nic_usage.receivedTotalPacketsDelta =
float(interface_metrics[nic]['rx_packets'])↪→

83 nic_usage.receivedOctetsDelta =
float(interface_metrics[nic]['rx_bytes'])↪→

84 nic_usage.receivedDiscardedPacketsDelta =
float(interface_metrics[nic]['rx_drop'])↪→

85 nic_usage.receivedErrorPacketsDelta =
float(interface_metrics[nic]['rx_errors'])↪→

86 nic_usage.transmittedOctetsDelta =
float(interface_metrics[nic]['tx_bytes'])↪→

87 nic_usage.transmittedTotalPacketsDelta =
float(interface_metrics[nic]['tx_packets'])↪→

88 nic_usage.transmittedDiscardedPacketsDelta =
float(interface_metrics[nic]['tx_drop'])↪→

89 nic_usage.transmittedErrorPacketsDelta =
float(interface_metrics[nic]['tx_errors'])↪→

90

91 #Disk Performance Array
92

93 disk_usage = meas_fields.diskUsageArray.add()
94 if(disk_metrics):
95 for disk in disk_metrics:
96 if(all(value is not None for value in disk_metrics[disk].values())):
97 disk_usage.diskIdentifier = str(disk)
98 disk_usage.diskMergedReadLast =

float(disk_metrics[disk]['reads_merged'])↪→

99 disk_usage.diskMergedWriteLast =
float(disk_metrics[disk]['writes_merged'])↪→

100 disk_usage.diskOctetsReadLast =
float(disk_metrics[disk]['read_bytes'])↪→

101 disk_usage.diskOctetsWriteLast =
float(disk_metrics[disk]['written_bytes'])↪→

102 disk_usage.diskTimeReadLast =
float(disk_metrics[disk]['read_seconds'])↪→

103 disk_usage.diskTimeWriteLast =
float(disk_metrics[disk]['write_seconds'])↪→

104 disk_usage.diskIoTimeLast = float(disk_metrics[disk]['io_time'])
105

106 json_msg = json_format.MessageToJson(message)
107 return json_msg

Listing A.4: Converter Module
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prometheus_client.py

1 import requests
2 class PrometheusClient:
3 def __init__(self, url):
4 self.url = url
5 self.endpoint = '/api/v1/'
6

7 def query(self, expression):
8 req = requests.get(self.url + self.endpoint + 'query', params={'query':

expression})↪→

9 return req.json()
10

11 def query_range(self, expression, start, end, step):
12 req = requests.get(self.url + self.endpoint + 'query_range', params={'query':

expression, 'start': start, 'end': end, 'step': step})↪→

13 return req.json()

Listing A.5: Prometheus HTTP API Module
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common_utils.py

1 from jsonschema import validate
2 import requests
3 import json
4 import urllib3
5 from prometheus_client import PrometheusClient
6

7 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
8

9 def validate_json(json_msg):
10

11 f = open('common/CommonEventFormat_28.4.1.json', 'r')
12 schema = json.loads(f.read())
13 try:
14 validate(instance = json.loads(json_msg), schema = schema)
15 except Exception as e:
16 print(e)
17 return False
18 return True
19

20 def send_message(ip, port, msg):
21 url = ("https://{}:{}/eventListener/v5").format(ip, port)
22 headers = {'Authorization': 'Basic c2FtcGxlMTpzYW1wbGUx', 'Content-Type':

'application/json'}↪→

23 response = requests.post(url, headers=headers, data=msg, verify=False)
24 print(response.text)
25

26 def metrics_to_dict(url, query, start, end):
27 prom = PrometheusClient(url)
28 entity_values = dict()
29 for entity in prom.query_range(query, start, end, '1s')["data"]["result"]:
30 final_value_disk = 0
31 for values in entity["values"]:
32 final_value_disk += float(values[1])
33 entity_values[entity["metric"]["device"]] = final_value_disk/len(entity["values"])
34

35 return entity_values.copy()
36

37 def metrics_to_dict_mem(url, query, start, end):
38 prom = PrometheusClient(url)
39 single_value = 0
40 for entity in prom.query_range(query, start, end, '1s')["data"]["result"]:
41 final_value_disk = 0
42 for values in entity["values"]:
43 final_value_disk += float(values[1])
44 single_value = final_value_disk/len(entity["values"])
45

46 return single_value
47

48 def reorder(metric_dict):
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49 temp_dict = dict(dict())
50 temp_dict2= dict()
51 temp_list_metrics = []
52 temp_list_entity = []
53 for metric in metric_dict:
54 temp_list_metrics.append(metric)
55 for value in metric_dict[metric]:
56 temp_list_entity.append(value)
57

58

59 temp_dict = dict.fromkeys(list(temp_list_entity))
60 temp_dict2 = dict.fromkeys(list(temp_list_metrics))
61

62 for value in temp_dict:
63 temp_dict[value] = temp_dict2.copy()
64

65 for metric in metric_dict:
66 for value in temp_dict:
67 temp_dict[value][metric] = metric_dict[metric][value]
68 return temp_dict

Listing A.6: Common utilities package

ves_54.proto

1 // Compile with
2 // protoc -I=. --python_out=. ./ves_54.proto
3

4 syntax = "proto2";
5

6 message header{
7 required event event = 1;
8 }
9

10 message event{
11 required commonEventHeader commonEventHeader = 1;
12 optional MeasurementFields measurementForVfScalingFields = 2;
13 }
14

15 message commonEventHeader{
16 required double version = 1;
17 required string eventName = 2;
18 required string domain = 3;
19 required string eventId = 4;
20 optional string eventType = 5;
21 optional string nfcNamingCode = 6;
22 optional string nfNamingCode = 7;
23 optional string sourceId = 8;
24 required string sourceName = 9;
25 optional string reportingEntityId = 10;
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26 required string reportingEntityName = 11;
27 required string priority = 12;
28 required double startEpochMicrosec = 13;
29 required double lastEpochMicrosec = 14;
30 required int32 sequence = 15;
31 }
32

33 message MeasurementFields{
34 required double measurementFieldsVersion = 1;
35 required double measurementInterval = 2;
36 repeated memoryUsageArray memoryUsageArray = 3;
37 repeated cpuUsageArray cpuUsageArray = 4;
38 repeated diskUsageArray diskUsageArray = 5;
39 repeated nicPerformanceArray nicPerformanceArray = 6;
40 }
41

42 message memoryUsageArray{
43 required double memoryUsed = 1;
44 required double memoryFree = 2;
45 required string vmIdentifier = 3;
46 optional double memoryConfigured = 4;
47 optional double memoryCached = 5;
48 optional double memoryBuffered = 6;
49 optional double memorySlabRecl = 8;
50 optional double memorySlabUnrecl = 9;
51 }
52

53 message cpuUsageArray{
54 required string cpuIdentifier = 1;
55 required double percentUsage = 2;
56 optional double cpuIdle = 3;
57 optional double cpuUsageInterrupt = 4;
58 optional double cpuUsageNice = 5;
59 optional double cpuUsageSoftIrq = 6;
60 optional double cpuUsageSteal = 7;
61 optional double cpuUsageSystem = 8;
62 optional double cpuUsageUser = 9;
63 optional double cpuWait = 10;
64 }
65

66 message diskUsageArray{
67 required string diskIdentifier = 1;
68 optional double diskMergedReadLast = 2;
69 optional double diskMergedWriteLast = 3;
70 optional double diskOctetsReadLast = 4;
71 optional double diskOctetsWriteLast = 5;
72 optional double diskOpsReadLast = 6;
73 optional double diskOpsWriteLast = 7;
74 optional double diskTimeReadLast = 8;
75 optional double diskTimeWriteLast = 9;
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76 optional double diskIoTimeLast = 10;
77 }
78

79 message nicPerformanceArray{
80 required string nicIdentifier = 1;
81 required string valuesAreSuspect = 2;
82 optional double receivedTotalPacketsAccumulated = 3;
83 optional double receivedTotalPacketsDelta = 4;
84 optional double receivedOctetsAccumulated = 5;
85 optional double receivedOctetsDelta = 6;
86 optional double receivedErrorPacketsAccumulated = 7;
87 optional double receivedDiscardedPacketsAccumulated = 8;
88 optional double receivedDiscardedPacketsDelta = 9;
89 optional double receivedErrorPacketsDelta= 10;
90 optional double transmittedDiscardedPacketsAccumulated = 11;
91 optional double transmittedErrorPacketsAccumulated = 12;
92 optional double transmittedOctetsAccumulated = 13;
93 optional double transmittedOctetsDelta = 14;
94 optional double transmittedTotalPacketsAccumulated = 15;
95 optional double transmittedTotalPacketsDelta = 16;
96 optional double transmittedDiscardedPacketsDelta = 17;
97 optional double transmittedErrorPacketsDelta = 18;
98 }

Listing A.7: VES Standard Message Definition (Google Protocol Buffers)
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Appendix B

This appendix contains the configurations for the policies used in the control loop.

Threshold Crossing Analytics Policy

1 {
2 "tca.policy": {
3 "domain": "measurementsForVfScaling",
4 "metricsPerEventName": [
5 {
6 "policyScope": "DCAE",
7 "thresholds": [
8 {
9 "version": "1.0.2",

10 "severity": "CRITICAL",
11 "thresholdValue": 1615635,
12 "closedLoopEventStatus": "ONSET",
13 "closedLoopControlName": "LOOP_scale_up",
14 "direction": "GREATER_OR_EQUAL",
15 "fieldPath":

"$.event.measurementsForVfScalingFields.memoryUsageArray[*].memoryUsed"↪→

16 },
17 {
18 "version": "1.0.2",
19 "severity": "CRITICAL",
20 "thresholdValue": 80,
21 "closedLoopEventStatus": "ONSET",
22 "closedLoopControlName": "LOOP_scale_up",
23 "direction": "GREATER_OR_EQUAL",
24 "fieldPath":

"$.event.measurementsForVfScalingFields.cpuUsageArray[*].percentUsage"↪→

25 }
26 ],
27 "eventName": "vNodeMeasures",
28 "policyVersion": "v0.0.1",
29 "controlLoopSchemaType": "VM",
30 "policyName": "vcdnScaleOut.hi-lo"
31 },
32 {
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33 "policyScope": "DCAE_Scale_Down",
34 "thresholds": [
35 {
36 "version": "1.0.2",
37 "severity": "CRITICAL",
38 "thresholdValue": 403908,
39 "closedLoopEventStatus": "ONSET",
40 "closedLoopControlName": "LOOP_scale_down",
41 "direction": "LESS_OR_EQUAL",
42 "fieldPath":

"$.event.measurementsForVfScalingFields.memoryUsageArray[*].memoryUsed"↪→

43 },
44 {
45 "version": "1.0.2",
46 "severity": "CRITICAL",
47 "thresholdValue": 20,
48 "closedLoopEventStatus": "ONSET",
49 "closedLoopControlName": "LOOP_scale_down",
50 "direction": "LESS_OR_EQUAL",
51 "fieldPath":

"$.event.measurementsForVfScalingFields.cpuUsageArray[*].percentUsage"↪→

52 }
53 ],
54 "eventName": "vNodeMeasures",
55 "policyVersion": "v0.0.1",
56 "controlLoopSchemaType": "VM",
57 "policyName": "vcdnScaleDown.hi-lo"
58 },
59 {
60 "policyScope": "DCAE",
61 "thresholds": [
62 {
63 "version": "1.0.2",
64 "severity": "CRITICAL",
65 "thresholdValue": 60,
66 "closedLoopEventStatus": "ONSET",
67 "closedLoopControlName": "LOOP_rebuild",
68 "direction": "GREATER_OR_EQUAL",
69 "fieldPath": "$.event.measurementsForVfScalingFields.cpuUsageArray[*].cpuWait"
70 }
71 ],
72 "eventName": "vNodeRebuild",
73 "policyVersion": "v0.0.1",
74 "controlLoopSchemaType": "VM",
75 "policyName": "vcdnRebuild.hi-lo"
76 }
77 ]
78 }
79 }
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Listing B.8: TCA Policy Configuration

Drools Operational Policy

1 {
2 "abatement": false,
3 "operations": [
4 {
5 "failure_retries": "final_failure_retries",
6 "id": "scale_up",
7 "failure_timeout": "final_failure_timeout",
8 "failure": "final_failure",
9 "operation": {

10 "payload": {
11 "requestParameters": "{\"usePreload\":true,\"userParams\":[]}",
12 "configurationParameters":

"[{\"ip-addr\":\"$.vf-module-topology.vf-module-parameters.param[9]\",\ c

"oam-ip-addr\":\"$.vf-module-topology.vf-module-parameters.param[16]\",\ c

"enabled\":\"$.vf-module-topology.vf-module-parameters.param[23]\"}]"

↪→

↪→

↪→

13 },
14 "target": {
15 "entityIds": {
16 "resourceID": "VcdnHeatV1..vcdn_nodes..module-0",
17 "modelInvariantId": "9c464468-2d07-4228-b640-35541408bc99",
18 "modelVersionId": "47b4c896-668c-4aa8-9eae-66cd54a387ba",
19 "modelName": "VcdnHeatV1..vcdn_nodes..module-0",
20 "modelVersion": "1",
21 "modelCustomizationId": "89d6d26a-557b-4d72-bd28-a8ea9ac8a032"
22 },
23 "targetType": "VFMODULE"
24 },
25 "actor": "SO",
26 "operation": "VF Module Create"
27 },
28 "failure_guard": "final_failure_guard",
29 "retries": 5,
30 "timeout": 240,
31 "failure_exception": "final_failure_exception",
32 "description": "Node Streamer Scale Up Operation",
33 "success": "final_success"
34 }
35 ],
36 "trigger": "scale_up",
37 "timeout": 240,
38 "id": "LOOP_scale_up"
39 }

Listing B.9: Drools Policy Configuration
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Appendix C

This appendix contains the figures from Chapter 5, relative to the implementation steps.

Figure relative to 5.3a)

Figure relative to 5.3b)
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Figure relative to 5.3c)

Figure relative to 5.3d)
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Figure relative to 5.3e)

Figure relative to 5.4a)
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Figure relative to 5.4b)

Figure relative to 5.4c)
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Figure relative to 5.5a)
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Figure relative to 5.5b)

Figure relative to 5.5c)

98



Figure relative to 5.6a)

Figure relative to 5.6b)

Figure relative to 5.6c)
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Figure relative to 5.7a)

Figure relative to 5.7b)
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Figure relative to 5.7c)
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