
Universidade de Aveiro
2021

Miguel Filipe
Oliveira Dinis

Sistema de Informação com Conteúdos Dinâmicos

Information System with Dynamic Content

Universidade de Aveiro
2021

Miguel Filipe
Oliveira Dinis

Sistema de Informação com Conteúdos Dinâmicos

Information System with Dynamic Content

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Doutor (Carlos Manuel Azevedo
Costa), Professor associado c/ agregação do Departamento de Eletrónica, Teleco-
municações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Professor Doutor Joaquim Arnaldo Carvalho Martins
Professor Catedrático, Universidade de Aveiro

vogais / examiners committee Doutor Eriksson Jorge Melicio Monteiro
Chefe de Gabinete de Tecnologia, Gabinete de Tecnologia, da Smart Solutions - Cabo Verde
(Arguente Principal)

Professor Doutor Carlos Manuel Azevedo Costa
Professor Associado C/ Agregação, Universidade de Aveiro (Orientador)

agradecimentos /
acknowledgements

Agradeço especialmente aos meus orientadores Luís Bastião Silva da BMD
Software e ao Professor Doutor Carlos Costa pelo acompanhamento, ajuda e
incentivo que sempre me prestaram ao longo deste percurso.
Aos meus pais e irmã pelo suporte e apoio constante durante os últimos 5 anos,
bem como aos meus colegas de curso e amigos.

A todos, um muito obrigado.

Palavras Chave Sistemas de Informação, Plataformas Low-Code/No-code, Desenvolvimento de
Software Agile, Desenvolvimento orientado a modelos, Bases de Dados NoSQL,
Esquema de Bases de Dados Dinâmico, Aplicações na Nuvem.

Resumo Os sistemas de informação modernos têm requisitos funcionais que podem variar
significativamente entre organizações ou contextos regionais, para a mesma área
aplicacional. Isto resulta na existência de várias versões de software e respetivos
modelos de dados. Os métodos tradicionais de desenvolvimento são pouco flexí-
veis e eficazes para lidar com a implementação de novos requisitos em tempo útil.
Uma simples adição de um elemento de informação num formulário gráfico obriga
à alteração do modelo de dados e respetiva ação nas tabelas do sistema, resultando
num processo pouco dinâmico de criação de conteúdos que devem ser guardados
na base de dados. Com o advento da computação na cloud, têm surgido soluções
tecnológicas que permitem desenvolver aplicações com recurso a pouco ou nenhum
código. Estas soluções podem inclusive ser operadas por utilizadores finais com
conhecimento do domínio aplicacional. Esta dissertação teve como objetivo de-
senhar e implementar uma plataforma de criação de sistemas de informação com
conteúdos dinâmicos. O resultado foi uma solução web multiplataforma de baixo
custo que permite um desenvolvimento rápido, intuitivo e dinâmico de conteúdos,
através do desenho de modelos a partir de uma interface visual, para utilizadores
sem conhecimentos de engenharia de software. Em termos tecnológicos destaca-se
o facto de a plataforma integrar soluções open-source robustas que, associada a
uma abordagem de metadados, permite uma abstração relativamente à camada de
persistência de dados.

Keywords Information Systems, Low-Code/No-code Platforms, Agil Software Development,
Model-Driven Development, NoSQL Databases, Dynamic Database Schema, Cloud
Application.

Abstract Modern information systems have functional requirements that can vary signifi-
cantly between organizations or regional contexts for the same application area.
This results in the existence of multiple software versions and their respective data
models. Traditional development methods are not very flexible and effective in
dealing with the implementation of new requirements in a time frame. A simple
addition of an information element in a graphical form requires a change in the
data model and its action in the system’s tables, resulting in an undynamic pro-
cess of creating content that must be stored in the database. With the advent
of cloud computing, technological solutions have emerged that allow the develop-
ment of applications using little or no code. These solutions can even be operated
by end users with knowledge of the application domain. This dissertation aimed
to design and implement a platform to create information systems with dynamic
content. The result was a low cost multiplatform web solution that allows a fast,
intuitive and dynamic content development, through the design of models from a
visual interface, for users with no knowledge of software engineering. In technolog-
ical terms, the platform integrates robust open-source solutions, which, associated
with a metadata approach, allows an abstraction regarding the data persistence
layer.

Contents

Contents 1

List of Figures 3

List of Tables 5

Acronyms 6

1 Introduction 9
1.1 Overview . 9
1.2 Scenario . 9
1.3 Objectives . 10
1.4 Dissertation structure . 11

2 Background 13
2.1 Information Systems . 13
2.2 Cloud computing . 14
2.3 Low-code and No-code Platforms 15
2.4 Model-Driven Development (MDD) 16
2.5 Databases . 16

2.5.1 Relational Databases 16
2.5.2 Non-relational databases 18
2.5.3 Search Engines . 19
2.5.4 Relational and non-relational databases comparison . 20
2.5.5 NewSQL, Polyglot Persistence and

Multi-model databases 22
2.6 Related work on the development of dynamic platforms . . . 24

2.6.1 Dynamic GUI forms 24
2.6.2 Database schema evolution 25

3 Low-code development platforms 29
3.1 Open Source solutions . 29

3.1.1 Convertigo . 29
3.1.2 Joget . 30

1

3.1.3 Budibase . 32
3.1.4 OpenXava . 33
3.1.5 Skyve . 36
3.1.6 Other open source solutions 38

3.2 Proprietary solutions overview 40
3.3 Results and considerations . 41

4 DynamicIS Proposal 45
4.1 System Requirements . 45

4.1.1 Non-functional Requirements 45
4.1.2 Functional Requirements 46

4.2 System Architecture . 50
4.3 System Technologies . 53

4.3.1 Server-side . 55
4.3.2 Client-side . 56

4.4 Skyve Integration . 58
4.4.1 DynamicIS REST API 58
4.4.2 Metadata flow . 60

4.5 Persistence . 63
4.5.1 Couchbase integration 64
4.5.2 Database model . 66

4.6 System Implementation . 70
4.6.1 Authentication . 71
4.6.2 Front-end capabilities 71
4.6.3 Form and Result page building 73
4.6.4 Advanced Form customization 74
4.6.5 Project generation . 76

5 Results 81
5.1 General aspects and Authentication 81
5.2 Projects . 81
5.3 Project page . 83
5.4 Module page . 83
5.5 Form page . 84
5.6 Result page . 89
5.7 Test and validation . 91

6 Conclusion 95
6.1 Final considerations . 95
6.2 Future Work . 96

References 97

2

List of Figures

2.1 Cloud computing service model, text adapted from [7] 14
2.2 Layered architecture of Low-code Development Platform

(LCDP) based on [13] . 17
2.3 Example of Polyglot persistence in an E-commerce platform . 23
2.4 High-level Abstraction of the Form based dynamic database

concept, based on [35] . 26

3.1 Convertigo Studio IDE Interface 31
3.2 Initial page of Joget web platform 31
3.3 Joget drag and drop form builder interface 32
3.4 SELECT query run in a MySQL bash showing the table au-

tomatically created from the form defined by the developer
in the UI. 32

3.5 View of the form page running on the web application created
with Joget . 33

3.6 Budibase front-end design page 34
3.7 Example of two entities created from Java classes 35
3.8 Automatically generated UI for Medic and Patient entities . . 35
3.9 Patients list UI . 36
3.10 XML document specifying the entity "Nurse" in Skyve metadata 37
3.11 XML document specifying the "MedicStaff" module in Skyve

metadata . 38
3.12 UI form for the "Nurse" entity and lateral navigation menu

generated by Skyve . 39
3.13 UI view containing all created Nurse entities 39

4.1 DynamicIS platform use case diagram 47
4.2 DynamicIS Web App architecture 51
4.3 DynamicIS web app project structure 52
4.4 HTTP routing excerpt screenshot present in "routes" file . . . 55
4.5 UML activity diagram showing the process of defining a

model (Form) . 62

3

4.6 UML activity diagram showing the process of converting
DynamicIS metadata to Skyve understandable metadata in
project generation . 63

4.7 Document-oriented data model of DynamicIS based on [43]
proposal . 67

4.8 ID and iframe present in the settings of a Google calendar . . 75
4.9 Project generation components 77

5.1 Authentication page . 82
5.2 List of projects . 82
5.3 New project page . 83
5.4 Project page . 84
5.5 Module page . 85
5.6 Form page . 86
5.7 Field of type Association Aggregation in "Appointment" form 86
5.8 Form field description page 87
5.9 View for advanced form customization 87
5.10 View Container dialogue . 88
5.11 Select component dialogue . 89
5.12 Google calendar component page 89
5.13 HTML component page . 90
5.14 Redirect action component page 90
5.15 Result page configuration with default query 91
5.16 Result page for the "Medic" entity with a configured query . . 91
5.17 Generate project page . 92
5.18 Side navigation menu containing the structure of the IS . . . 93
5.19 Result page generated for the IS 93
5.20 Advanced view created for "Appointment" form in the IS . . . 94
5.21 Example of generated form with different field arrangements. 94

4

List of Tables

3.1 Open source LCDP core features comparison. 42

4.1 DynamicIS REST API endpoints 60

5

Acronyms

ACID Atomicity, Consistency, Isolation, Durability. 18, 19, 21

API Application Programming Interface. 34, 40, 54, 58–62, 64, 65, 75

AWS Amazon Web Services. 14

BASE Basically Available, Soft state, Eventually consistent. 19

CAP Consistency, Availability, and Partition tolerant. 19

CDN Content Delivery Network. 71

CRUD Create, Read, Update and Delete. 35, 36

DOM Document Object Model. 62

DSL Domain Specific Language. 16, 39

EIS Enterprise Information Systems. 13

GUI Graphical user interface. 1, 24, 25

HTML HyperText Markup Language. 61

HTTP Hypertext Transfer Protocol. 52, 57, 60

IaaS Infrastructure-as-a-Service. 14

IDE Integrated Development Environment. 3, 27, 31, 37–39, 76

IS Information System. 4, 13, 31, 69, 76, 84, 93, 94

JDBC Java Database Connectivity. 64

JSON JavaScript Object Notation. 10, 19, 55, 65, 66, 75

LCDP Low-code Development Platform. 3, 5, 15, 17, 25, 42

6

MDD Model-Driven Development. 1, 16

PaaS Platform-as-a-Service. 14, 15, 71

PWA Progressive Web App. 30

RDBMS Relational Database Management System. 10, 17, 18, 21, 23

REST REpresentational State Transfer. 33, 36, 40

SaaS Software-as-a-Service. 14, 53, 71, 78

SDK Software Development Kit. 56, 64

SDLC Systems Development Life Cycle. 25

SQL Structured Query Language. 15, 17, 18, 22, 30, 33, 36, 39

UI User Interface. 25, 30, 32, 34, 37, 39, 43, 46

WAR Web Application Resource. 38

XML Extensible Markup Language. 3, 34, 36–38, 62, 78

7

Chapter 1

Introduction

1.1 Overview
In an increasingly digital world, with growing amounts of information be-

ing produced, there follows a tendency to create information systems needed
for the most varied areas of application. Business firms and other organi-
zations rely on modern information systems to carry out and manage their
operations.

The adoption and evolution to web and cloud technologies requires most
of the time a migration that needs to be fast and cost-effective. Not only
for large companies that are built all around information systems but also
for small organizations or even individuals who want to make their business
digital. However, for its small size is not justified to spend many resources
and hire development services to create their information systems.

In addition, modern information systems have functional requirements
that can vary within and outside their application area, usually resulting in
multiple application versions due to the constant changes that need to be
made. The fact that most solutions are developed depending on the context
of the problem makes their extensibility and adjustment more complex.

1.2 Scenario
A traditional information system, such as an enterprise system, results

from a design process where the functional requirements of the domain are
captured, and the implementation is based on highly standardized relational
database systems with rigid data models. If there is a need to change a sim-
ple element of information in a front-end form, it may also be necessary
to build some components or rebuild the entire application, resulting in a
not very dynamic process of creating contents that must be stored in the
database.

9

More recently technologies have emerged to overcome the inflexibility
of relational databases, referred to as NoSQL. These technologies can have
differentiated application purposes supporting multi-paradigms, from logical
and physical data models based on structured data, semi-structured data
and documents. The most common technologies support document-oriented
data modeling (e.g. MongoDB), key/value (e.g. Redis), columnar (e.g.
Cassandra) and graph (e.g. Neo4j).

The real world applications require the data integrity offered by a Rela-
tional Database Management System (RDBMS) in addition to the benefits
offered by NoSQL databases. So, in the context of information systems,
NoSQL technologies can be used in parallel with the relational model to
serve specific purposes (Polyglot persistence). For example, storing dynamic
content in a JavaScript Object Notation (JSON) structure that is schemaless
and static content in a well-defined data model in a relational database.

It is important to note that the search time using dynamic selection
attributes is penalized, unless the creation of complementary structures (i.e.
indexes), and even that requires a degree of customization appropriate to
the model applied.

In an increasingly competitive and highly demand market, such as soft-
ware development, it is becoming more and more necessary to use tools
that help and promote rapid and flexible development which, in turn, bring
some challenges, already present in the literature for some time [1]. For this,
Low-code and No-code development platforms are increasingly being used
due to the ease and speed of learning and also the ability to adapt to dif-
ferent contexts. Moreover, Gartner predicts low-code application platforms
will be used for 65% of all application development activity by 2024 [2]

1.3 Objectives
This research and dissertation proposes a platform that allows the cre-

ation of an information system with dynamic content. It aims to be effi-
cient in terms of attribute search times, scalable and with the possibility
of integration in different scenarios. The proposed solution should promote
a No-Code web development environment, highlighting important features
such as fast, dynamic, and user-friendly development for individuals without
technical knowledge of software engineering.

10

1.4 Dissertation structure
This dissertation is organized into six chapters:

• The first chapter presents the introduction, briefly addressing the cur-
rent context regarding the development of information systems as well
as the intended objectives.

• The second chapter presents the background information as well as
core concepts for the development of software that provides dynamism
and flexibility in the creation of information systems.

• The third chapter presents an analysis of state of the art similar plat-
forms that are integrated in the ambit of a rapid, dynamic and flexible
development as well as comparisons between them.

• The fourth chapter presents the DynamicIS proposal, with its system
requirements, architecture and implementation, along with details of
its components.

• The fifth chapter is the presentation of the results as well as screenshots
of the actual work with descriptions of the interface, use cases of the
platform and its validation.

• The sixth chapter presents a summary and conclusions regarding this
dissertation as well as work that could be done in the future.

• Finally, the References/Bibliography used to produce this work.

11

Chapter 2

Background

This chapter introduces the state of the art with the current knowledge and
advances made in the area of software development for information systems
as well as associated software engineering concepts.

2.1 Information Systems
An Information System (IS) is defined as a set of components for collect-

ing, storing and processing data, as well for providing information, knowl-
edge, and digital products [3]. Nowadays, it is rare a company/organization
not have an IS to support its business strategy or management. Thus, asso-
ciated with the enterprise sector, the Enterprise Information Systems (EIS)
are the key IT assets for industrial enterprises to organize, plan, schedule,
and control their business processes [4].

In an increasingly digital world and with the constant presence of the
web, an ever growing volume of information is generated and needs to be
processed by these systems as well a growing number of companies have a
business model that depends exclusively on their information systems. The
increasingly competitive web market leads to the need for greater flexibil-
ity, dynamism, and speed in the development of these systems. For these
reasons, we are witnessing an evolution of the traditional development of in-
formation systems, driven by new methodologies and trends such the Agile
Software development and the advent of Cloud computing.

13

2.2 Cloud computing
Nowadays, there is a solid and robust network infrastructure capable of

transmitting large amounts of data very quickly. This allowed an easy and
convenient way to make services available over the web, and that is where
the term "Cloud computing" comes from and became a mainstream in 2006
[5]. Defined by NIST as: "a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing re-
sources (...) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction."[6] Hence, Cloud computing
allows companies or users to concentrate on their business model, strategy
or product without having to worry about everything that involves the soft-
ware, platform or infrastructure of their service. Cloud computing is classi-
fied with a three-tier service model: Software-as-a-Service (SaaS), Platform-
as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS). The Figure 2.1
describes each of the layers of services provided by the cloud.

Figure 2.1: Cloud computing service model, text adapted from [7]

In addition to the above, Cloud computing offers a modern way to make
available, or even, create software, through a client (browser). Solutions
based on Cloud technologies have become very popular and have been de-
veloped by large companies such as Amazon through Amazon Web Services
(AWS), which in turn are used by developers to create their own platforms
for various fields like the medical sector [8].

Also, the new technologies inherent to Cloud computing have accelerated
the emergence of platforms made available through the web referred to as
"Low-code" that allow a rapid development of software. Moreover, cloud
enables businesses to use less-expensive technology to rapidly deploy their
low-code solutions, thus proving to be the ideal complement because both
arise in the context of providing an increase in productivity combined with

14

reduced costs, greater agility and scalability [9].

2.3 Low-code and No-code Platforms
Low-code Development Platform (LCDP) refers to a platform that allows

faster development and easy deployment of fully functional software, usually
by abstracting code into visual elements or high-level programming such
as model-driven and metadata-based languages. Moreover, some of these
platforms are made available through a cloud computing environment via
the PaaS model. Intended to be accessible to citizens without programming
knowledge, known as "Citizen developers" i.e. a persona who is not used to
the IT environment and who performs businesses in other fields [10]. No-
code platforms imply that the user of the platform does not have to write
any code, while a low-code platform requires some programming skills.

LCDP have had a great acceptance because they meet an increasingly
dynamic and high demand market of software solutions and services as they
provide more speed in its development and delivering. Not all companies
are able to meet this high demand due to lack of resources, time, or even
inability to hire (due to scarcity) highly qualified programmers, so these
platforms end up filling these needs.

As an example, the COVID-19 pandemic situation has increased the
search for software that needs to be development in a short period of time
and with changing requirements, this promoted a even more adoption of
LCDP [11] [12].

These platforms allow the developer to focus on the data model or the
business model without having to worry about coding the other elements
of the software because the platform takes care of that automatically. The
platform should be able to build most of the infrastructure and deal with the
software deployment so that the developer who has knowledge about a cer-
tain subject inherent to a data model should be able to build forms without
having to handle the database structure, such as SQL, table schemas, etc.
In the Figure 2.2 is shown a generic architecture of the low-code platforms
based and adapted from [13] consisting of four layers: Application Layer
(the graphical interface in which the user interacts), Service Integration,
Data Integration and Deployment.

Regardless the advantages of these platforms, it must be said that they
are not, at the moment, the solution for every type of requirement, which is
caused by their limitation in terms of customization and the impossibility
of supporting every type of features for certain situations, which end up
needing programming through traditional methods [14].

The fact that these platforms speed up the development of systems and
allow a certain dynamism at the level of contents to be implemented in
an information system makes them the most obvious object of study to be

15

researched, and therefore they were taken as the basis for the development
of the software presented as a solution result of this dissertation.

In the next chapter some of the best known low-code platforms will
be analyzed in order to meet a survey of requirements and to understand
how this type of platforms can generate information systems with dynamic
content.

2.4 Model-Driven Development (MDD)
The concept of Model-Driven Development (MDD) is closely associated

with low-code development platforms because it is a way to transform ideas
into applications that deliver business value through abstraction, automa-
tion, and openness [15]. MDD states that only the model of an application
needs to be developed, and the rest is automatically generated. In this way
the realization of ideas into applications becomes easier because models are
high-level interpretations (usually visual components) that abstract complex
programming languages with rigid syntax and enable more effective collab-
oration and communication between business domain experts and software
developers by breaking the language barrier. No-code and Low-code de-
velopment platforms are driven by this development concept because they
handle the models and generate their processes and configurations in an au-
tomated way by transforming them into a programming language (source
code, general-purpose language, such as Java, C) bringing benefits for exam-
ple in terms of efficiency, development time and reduction of human error.
Each of the models is designed through a Domain Specific Language (DSL)
with its logic that handles all the technical aspects of the application with a
higher level of abstraction optimized for a specific class of problems and that
allows a better integration between the technical development team and the
domain experts.

2.5 Databases

2.5.1 Relational Databases

Humans have been storing information for a long time, even before the
invention of the computer. Databases are inherently related to information
systems because they are one of their primary components. However, the
concept of Relational Database as we know it today, was conceived by a
computer scientist from IBM named E.F. Codd in the 1970s [16].

The relational model is an intuitive way of representing data in tables,
where each row in a table is a record with a unique ID (key) and the columns
of the table holds attributes of the data. This type of databases stores
and provides access to data points that are related to one another and the

16

Figure 2.2: Layered architecture of Low-code Development Platform
(LCDP) based on [13]

software used to store, manage, query and retrieve data stored in a rela-
tional database is referred to as Relational Database Management System
(RDBMS) [17].

In 1979 a company called Oracle introduces the first commercial Struc-
tured Query Language (SQL) RDBMS and by the 1980s SQL had become

17

the standard language for relational systems. Relational databases contin-
ued to improve, and have been market leaders for the past 40 years. Cur-
rently it continues to be topping the DB-Engines Ranking for popularity.1
The long time of existence gives them a great level of maturity, documen-
tation and ability to adapt to various applications, and even today they are
the type of database recommended in most systems to be developed, espe-
cially solutions that need a high level of consistency in handling and storing
data.

Relational databases are thus characterized by the implementation of
Atomicity, Consistency, Isolation, Durability (ACID) properties, and are
mostly chosen by developers looking for these features [18]:

Atomicity - all changes to data, associated to a transaction, are performed
as if they are a single operation.

Consistency - data is in a consistent state when a transaction starts and
when it ends.

Isolation - the intermediate state of a transaction is invisible to other
transactions.

Durability - after a transaction successfully completes, changes to data
persist and are not undone, even in the event of a system failure.

2.5.2 Non-relational databases

Although relational databases are still very much present in modern com-
puting applications, new requirements and use cases are emerging due to the
advent of the internet, cloud and big data. Never before has there been such
a large amount of data being produced, manipulated and stored, and rela-
tional database systems have not proven to cope with the flexibility of these
new types of data, which are very often unstructured or semi-structured
data. Besides that, RDBMS were mostly designed to work well when scal-
ing vertically and do not perform properly with the huge amounts of data of
nowadays systems that needs to be distributed due to physical constraints
or operational requirements. They have little support and poor performance
when it comes to scaling horizontally.

Then a new type of database called non-relational, often called "NoSQL"
or "Not Only SQL" began to emerge to support today’s needs. The term
NoSQL was first used in 1988 to name a relational database that did not
have a SQL interface. Generally speaking, a NoSQL database is one that
uses different ways and methods of data storage when compared to RDBMS
[19].

1https://db-engines.com/en/ranking

18

The NoSQL databases are built to scale easily while tolerate node failures
with minimal disruption and, as opposed to relational databases that relied
on ACID properties, many of NoSQL databases works with the database
model BASE (Basically Available, Soft state, Eventually consistent) prop-
erties which aims to provide high levels of availability and resilience even
though this may compromise consistency for a few moments [20].

In addition, when developing a system with a non-relational database,
one must take into account that if it is a distributed system, it can only
operate with two of the three criteria in the CAP theorem which means
Consistency, Availability, and Partition tolerant [21].

In order to distinguish NoSQL database systems, they are classified ac-
cording to their data model, i.e. how they store and access data. The four
main categories of data models are: key-value stores, column-family stores,
document stores, and graph databases [22]. It should be noted that at the
time of writing, the MongoDB database management system, which is clas-
sified as a document store, is in the top 5 of the DB-Engines Ranking2 which
demonstrates its great adoption and popularity by developers.

The key points to consider when looking for a document store are that
data is stored without the need of a schema definition, usually data is semi-
structured in JSON format. Furthermore, the fact that it contains attribute
metadata associated with stored content enables a way of query data based
on its content, all this combined with the ease of running on distributed
systems. These characteristics enables greater convenience when it comes
to handling data provided by the Big data, which explains its great adoption,
where the data comes in the most varied formats, large volumes and where
flexibility is an essential factor.

2.5.3 Search Engines

In addition to the database systems discussed above, it is worth men-
tioning Search Engines, which are currently considered NoSQL database
management systems dedicated to the search of data content. The most
popular search engines are Elasticsearch3 and Solr4 that allow distributed
full text search for high scalability. Both solutions are very effective when
it comes to searching through huge amounts of unstructured information
present in Big Data and support schemaless data structures with ease in
indexing unstructured data and also the use of dynamic fields without the
need for prior definition of the index schema.

In this context, an index is a mechanism for fast content discovery, which
contains multiple Types that in turn contain documents (such a JSON con-

2https://db-engines.com/en/ranking
3https://www.elastic.co/elasticsearch/
4https://solr.apache.org/

19

taining key-value properties)5. It can be compared to the structure of a re-
lational database in the sense that the indices represent the database itself,
the "Types" represent typical tables and the documents are the columns with
respective rows. One of the capabilities of indexes, as being logical parti-
tions of optimized collections of documents, is that they facilitate scalability
due to another concept present, the "Shards". These allow to horizontally
divide the indexes into shards, which allows for a more efficient distributed
structure, since the indexes have no size limit on the documents they can
store and could cause performance problems.

2.5.4 Relational and non-relational databases comparison

Since there is so much choice when it comes to database management sys-
tems belonging to the two database families (relational and non-relational)
and since nowadays it is not only relational database systems that are at an
advanced stage of maturity, there is doubt when it comes to choosing the
most viable and effective option at the time of developing software. This
is why it is important to conduct studies that make a comparison not only
based on direct performance of execution times but also on non-functional
requirements and key properties for specific applications.

From the different studies analyzed and that directly compare relational
databases with non-relational databases [23] [24] [25] [26] [27], there is a
consensus that for a large amount of data the non-relational database is the
best option because it executes queries with better response times than the
relational one. This is explained by the advantages that a non-relational
database system has in allowing better execution in a distributed and scal-
able environment.

In addition, non-relational data models have other advantages when used
in specific Big Data applications such an E-Commerce product catalogue
system as shown in [28]. In this study the authors compared the document-
oriented data model with the relational model and identified advantages:

Reduce Redundancy - any irrelevant field in relational model holds null
value and a document-oriented does not need to store a null value.

Increase the Flexibility - in relational data model, it is not possible to
add any extra field out of its predefined fields. In non-relational data
model there is flexibility due to the fact that it is not restricted to a
fixed scheme.

Unlimited Fields - relational databases supports a limited number of
columns in one single table. In non-relational unlimited number of
fields can be added.

5https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-
indices.html

20

Simplify Data Access - in non-relational data model, every document is
complete with its all required fields and does not refer to other docu-
ments for other fields.

Within the family of non-relational databases there are also several ar-
ticles describing the characteristics of each NoSQL technology, concluding
that each database is best for a particular use case scenario. In [19] the
authors compared and tried to find the best non-relational database in a
quality attribute perspective (performance is only a single aspect that in-
fluences the database choice). Similarly, the study done in [21] compares
the different NoSQL models in terms of Persistence, Replication, Sharding,
Consistency, Query method and Implementation language. Another inter-
esting approach was taken by the authors of [29] which elaborated a binary
decision tree that maps trade-off decisions to example applications and po-
tentially suitable database systems. In this way, developers can select a
particular technology by choose one set of desirable properties over another
in order to better fit the requirements needed.

As shown in the exhaustive study carried out by Kamil Kolonko [26], in
a direct comparison of performance, executing several types of queries, be-
tween the two most used databases of each family, in this case MongoDB for
the non-relational and OracleDB for the relational, MongoDB outperformed
OracleDB in read, scan, insert, update and read-modify-write operations,
but this does not mean that OracleDB has no advantage as in fact it was
also shown to have better consistency in the operations executed. As a mat-
ter of fact the relational databases are well suited for applications requiring
complex querying, and can be considered as a way to overcome the ACID
challenges.

It is worth pointing out that Relational databases are widely used in
most of the applications and have good performance when they handle a
limited amount of data, as shown in [27] when comparing MongoDB with
MSSQL 2014 performing various operations. The difference between the re-
sults of each database was not noticeable until around 1.000 records, stating
that relational databases, namely MSSQL is suitable for small and medium
applications.

In addition to data volume requirements, non-relational databases are a
very interesting option when it comes to increasing agility, since by being
scheme-less the data model structure of the application is not predefined and
can be fixed up during the building of application. In fact the non-relational
data model implies the dynamic schema that therefore supports agile devel-
opment, that is, adapting to evolving application requirements, easily make
changes to an application without interruption change the schema as the
data, application requirements or business evolves. Contrary, when the data
of a use case has certainty about the features, relational data model is per-
fect for that (RDBMS supports only specific and with rigid schema allowing

21

small variations to the data).
In conclusion, the choice of database model should be mostly based on

factors as the amount of data, the flexibility of schema, the budget, the
amount of transactions that would be made and how frequent they are
called [27].

2.5.5 NewSQL, Polyglot Persistence and
Multi-model databases

The technologies that involve databases are constantly changing and
adapting, not only due to the necessity derived from the Cloud Era and Big
Data but also due to the search for solutions with increasing performance.

In addition to the technologies discussed in the previous section, other
paradigms have arisen and are becoming established as a way to address
changing requirements. As an example of this, an approach referred to as
"NewSQL" has emerged in recent years [30]. Designed for a distributed
architecture while at the same time having characteristics that belong to
relational database systems, NewSQL systems can then be considered an
evolution or modification of traditional SQL systems that aims to overcome
some of their disadvantages, introducing NoSQL features such as horizontal
scalability and the ability to run on multiple nodes and datacenters [21].

NuoDB6 and CockroachDB7 are examples of NewSQL distributed
database systems, as they allow capabilities such as fast transactional in-
teractivity, support for queries and the ACID operations typical of SQL
thus having high consistency and at the same time allowing data replica-
tion and scalability. This type of system can be useful as an alternative to
certain NoSQL applications where data analytics in combination with high
consistency are required and distributed usage is necessary.

When analyzing the specific characteristics of each type of database sys-
tem, be it relational or non-relational, it can be concluded that none of these
are perfect and each one of them has strong and weak characteristics for a
certain type of data or usage requirement. In this scenario, it has emerged
a concept referred to as "Polyglot Persistence" where it generally involves
using different types of databases, as appropriate, in different parts of the
target system [31]. In other words, it means using the right tool for the right
use case so that complex applications can take advantage of using different
data models to store and process different parts of their data.

There is another approach to dealing with the variety of data in a system,
which resembles the concept of polyglot persistence, and that is multi-model
databases. These two concepts have in common the goal of dealing with data
from different models using the best performing system for that purpose,
but they contrast in the sense that while in polyglot persistence different

6https://nuodb.com/
7https://www.cockroachlabs.com/

22

independent databases are used and then a mediator is applied to unify and
integrate them in order to answer the queries, in multi-model databases the
goal is to build a single database system to manage the various data models
with a fully integrated back-end [32].

As shown in Figure 2.3, developers of an online commerce platform can
take advantage of polyglot persistence by using the best fitting database
system for a certain type of data.

Figure 2.3: Example of Polyglot persistence in an E-commerce platform

Thus a document based NoSQL database such as MongoDB8 or Couch-
base9 could be used to store all the products in the store as they are change-
prone data types that benefit from the flexible schema of these database
systems. To handle payments, traditional RDBMS are best because here
can take advantage of the consistency required for transactions as well as
the well-structured data. User sessions take advantage of the use of a key-
value store such as Redis10 as fast writes and reads are required without the
need for durable data. For search capabilities, a search engine such as Elas-

8https://www.mongodb.com/
9https://www.couchbase.com/

10https://redis.io/

23

ticsearch is best because it provides fast, indexed text searching capabilities
and suggestions. Finally, to shape product suggestions and recommenda-
tions from the relationships between customers and their preferences, one
can take advantage of a graph-based database system like Neo4j11.

Although polyglot persistence is a theoretically good solution, it is still
immature because there are some challenges, such as the fact that there is no
unified query language and no guarantee of interoperability or cross-database
consistency. At the moment, the solutions developed in this sense need
application code in order to unify the interactions and deal with complex
queries from all the databases in the polyglot system [31].

Meanwhile multi-model systems like OrientDB12 try to take advantage of
the benefits of polyglot persistence in a single system, corresponding to the
"one size fits a bunch" viewpoint, and is an approach that has been shown to
have practical applicability. However, as demonstrated in [32], they are still
an immature solution compared to the already robust and verified relational
databases systems.

2.6 Related work on the development of dynamic
platforms

Before addressing the most recent solutions, specifically the existing Low-
code Development Platforms, it is worth looking at some studies and ap-
proaches that have been made in order to achieve a certain flexibility and
dynamism in the design of information systems.

2.6.1 Dynamic GUI forms

Motivated by the amount of data that is required in the field of biomed-
ical research, where there is a need to quickly collect data either by personal
interviews, online questionnaires or other data sources, a solution that dates
back to 2008 was developed [33]. The authors created a platform consisting
of a flexible database. This platform allowed, in a user-friendly, fast, secure
and reliable way, to create the systems for obtaining and managing these
data collections, such as an information system. Briefly, the dynamism of
the data model design was achieved through a data repository based on
entity-attribute-value with classes and relationships (EAV/CR) where the
surveys (forms) are stored. This way the information system developer
can make updates to forms on the fly without any manual database table
changes. Furthermore, the platform was supported by a conversion system
in which the EAV/CR model with metadata is transformed to a table in the
relational database and attributes are transferred to table columns, thus

11https://neo4j.com/
12https://orientdb.org/

24

allowing to offer the query power and simplicity of relational databases to
external clients.

In another study [34], dating from 2010, the authors focused on an ap-
proach where they aim to decrease database system development time and
amount of written code by inferring database code from the Graphical user
interface (GUI). They refer to this process as GUI analysis development
(GUIDE), in which a simple information system can be created by intu-
itively designing forms that are in turn analyzed (Form-oriented analysis)
by the platform which then automatically creates the underlying database
structure. This approach allows more flexibility for the developer (who does
not need extensive programming knowledge) and reduces the time spent on
database design in the Systems Development Life Cycle (SDLC).

Similar to [33], more recently there has been a work that took a dynamic
form-based approach with creation and modification of the database schema
[35]. This in turn was another attempt to innovate the traditional relational
database design approach motivated by the need for healthcare-IT where it
is intended that groups of researchers/knowledgeable staff in the data do-
main were able to create systems with flexibility to meet their dynamic and
variable requirements without relying on EMR (Electronic Medical Record)
which are often costly and not very dynamic. The key points of this solution
are that there is a relational database that stores the metadata regarding
the UI built by the user and another that stores the actual data entered. In
addition the system has available templates based on the metadata of the
forms that are displayed as UI and that users can modify. These changes
make incremental modifications to the database schema while maintaining
consistency. The Figure 2.4 shows a high-level abstraction diagram of the
system developed in [35].

These studies show a similar approach when it comes to how the dy-
namism of the content of information systems is achieved. This dynamism
is achieved at the user level because the user is able to flexibly modify forms
with an abstraction from the back-end, in this case the database. The con-
cept of using a forms metadata store allows for customizing schemas and
then aligning the back-end storage data as the schema evolves. Allied to
this was the feasibility of the database being designed from the intuitive
forms by users with little knowledge of database administration as the plat-
form takes care of transforming the forms to build the database. All these
features such as automatic code generation, the design of the data model
from interactive forms and the reduction of development time are features
present in the current LCDP that are analyzed in the next chapter.

2.6.2 Database schema evolution

For some time now, techniques and methods have been present in the
literature that aim to ease the database schema evolution concept, which

25

Figure 2.4: High-level Abstraction of the Form based dynamic database
concept, based on [35]

is defined by the ability of a database system to respond to changes in
the real world by allowing the schema to evolve [36]. It is considered one
of the biggest obstacles when upgrading software, particularly information
systems, and it is getting more complex because unlike traditional informa-
tion systems, the new web-based ones are susceptible to much more frequent
changes in the schema due to the dynamics and new requirements needed to-
day, which combined with the agile development paradigm creates a barrier
for developers at the time of continuous delivery because mainly relational
databases are not naturally prepared for this flexibility.

To overcome this complex challenge that creates down-times (nowadays
not tolerable) and costly expenses, there are some projects that tackle these
problems and avoid developers having to make time-consuming and error-
prone manual changes to databases every time there is an evolution in the
schema. It is the case of the authors of [37] who worked on the PRISM
project where they developed, among others, a language of Schema Modifi-
cation Operators. The solution predicts old queries and updates to work on

26

the new schema versions and perform data migrations.
Even with non-relational (NoSQL) databases where most do not need

a schema (schemaless), the application code usually assumes some sort of
domain model mostly involving object mapper libraries for the persisted
entities, the database may no longer be synchronized with the application
code and therefore there is a need to maintain an evolution [38]. To assist in
some of these aspects there are tools. For example, the "Dynamic mapping"
13 in Elasticsearch that automatically detects and adds new fields to the
index, or the framework for controlled schema evolution in NoSQL databases
developed by the authors of [39] which consists of an integrated solution in an
IDE to assist developers when it comes to managing the combined evolution
of the application code and the schema.

Furthermore, in the context of the agile development methodology, there
are techniques that make it possible to apply continuous integration and
continuous deployment in the development and design of the database to
evolve as an application develops. These techniques were explained in Mar-
tin Fowler’s Evolutionary Database [40] and were the basis for two leading
open source tools for version control and change migration: Liquibase14 and
Flyway15. Both tools allow versioning and organizing database changes as
well as deploying and tracking those changes. Although they have similari-
ties in the capabilities they support, one major distinction is that Liquibase
has also support for NoSQL database types.

13https://www.elastic.co/guide/en/elasticsearch/reference/current/dynamic-
mapping.html

14https://www.liquibase.org/
15https://flywaydb.org/

27

Chapter 3

Low-code development
platforms

This chapter presents the current Low-code and No-code platform solutions
for the development of software, where information systems are included.
The stated software systems are divided into two categories, open source and
proprietary solutions. A brief overview of each one will be presented as well
as comparison tables between the solutions reviewed with emphasis on the
open source solutions.

3.1 Open Source solutions
The low-code open source platforms were chosen to be studied in more

detail due to its possibility to be extended or adapted as their source code
is open and can be inspected. On the other hand, closed or "proprietary"
solutions require licenses or some form of subscription, which makes their
use in the academic environment more complicated. However, it should be
noted that some of open source reviewed platforms contains paid versions
with additional features. The following solutions were found by searching in
the web using the key words "open source low-code platform". In addition,
in order to perform a more comprehensive test, the open-source solutions
were installed and configured on a localhost environment.

3.1.1 Convertigo

Convertigo1 is a Full Stack platform with multiple components for a
Low-code and No-code development environment. This platform enables the
quick building of enterprise grade mobile, tablet and desktop applications
with the features provided depending and divided into editions.

1https://www.convertigo.com

29

It includes an Eclipse-based integrated environment with all the layers
(Back-end and Front-end) provided by the Convertigo platform. On this
platform, it is possible to develop the back-end infrastructure of the sys-
tem through a visual interface without writing extensive code and to create
Front-end cross-platform client applications, by defining pages and graphi-
cal components through a UI based on drag and drop. Among the features
offered for low-code back-end development are the setup of "connectors" to
back end systems like databases and defining "transactions" for data ex-
change and data biding. It also allows the implementation of micro services,
server side business logic, screen flow, local business logic and test cases.

One of the interesting front-end features is that the platform includes a
pallet of components to build the UI and that can be dragged into a tree view
in order to place components inside components. It also contains a built-
in window for viewing in real time the application produced automatically
through Ionic2/Angular3 and TypeScript code automatically generated as
the UI components are added.

Convertigo is a very robust platform and although it allows a lot of func-
tionality, only its core is available in the open source "community edition" for
academic use. This edition, despite providing the Low-code back-end, does
not offer paid features such as more SQL and NoSQL connectors for easy
data biding. Also one of the most distinguishing features of the Convertigo
platform, "Full sync" is not included in the free open source platform. This
feature enables mobile applications to handle offline data, i.e. allows the use
of the application in an offline state. It replicates and synchronizes the data
on the Convertigo Server through a NoSQL database.

3.1.2 Joget

Joget4 is an open source low-code platform that is accessible to the de-
veloper through a web-based interface, i.e. using a browser (Figure 3.2)
Furthermore the server running the platform can be installed independently
of the operating system and the database as long as it supports Java and it
is a SQL based database.

It is also divided into editions, the open source "Community Edition"
already contains many features such as form building, through a drag and
drop UI (Figure 3.3), tabular data lists with the information coming from the
forms which again can be managed through the choice of columns without
the need to write any query from SQL code. It also contains a UI with sev-
eral components for creating responsive "Userviews" that embraces Google’s
Material design in a Progressive Web App (PWA) format and a drag and
drop process builder for designing workflow processes through diagrams.

2https://ionicframework.com/
3https://angular.io/
4https://www.joget.org/

30

Figure 3.1: Convertigo Studio IDE Interface

Figure 3.2: Initial page of Joget web platform

The platform supports a dynamic plugin architecture that makes it ex-
tendable and adaptable to more complex requirements without the developer
having to change the core source of the platform.

When testing Joget on a localhost environment using MySQL database,
some of the strengths that were highlighted were the drag and drop UI
containing functions that are very accessible and easy to learn, requiring
no code to be written to create a complete information system. Even the
operation of the database is completely abstracted from the user as shown
in Figure 3.4. The platform automatically builds the tables in the database
and modifies them as the developer designs the data model (forms). The
generation and deployment of the created application is just a button away.
Figure 3.5 shows the newly created IS with the form defined in the UI
presented in Figure 3.3.

31

Figure 3.3: Joget drag and drop form builder interface

Figure 3.4: SELECT query run in a MySQL bash showing the table auto-
matically created from the form defined by the developer in the UI.

3.1.3 Budibase

Budibase5 is the youngest full-stack low-code platform reviewed. Ac-
cording to its open source github repository, it started being developed in
2019 and currently has very active commits. It is also the platform that is
closest to a No-Code platform due to more abstractions in visual compo-
nents. It is noticeable that the developers have taken extra care in its visual
design in order to facilitate learning by those who use it.

The front-end can be built very easily by selecting visual components
with menus and properties (Figure 3.6) that generate UI using Svelte frame-
work6 and can be changed without using code. This approach to a No-code
platform is intended to bring the obvious advantage of ease of use for users
with little programming knowledge and eases the learning curve, plus devel-

5https://budibase.com/
6https://svelte.dev/

32

Figure 3.5: View of the form page running on the web application created
with Joget

opment time is greatly reduced as the platform reduces the amount of code
needed. On the other hand, the customization flexibility is not so high.

On this platform it is possible to select connectors to a couple of prede-
fined data sources available, with options to choose SQL databases, NoSQL
and even use REST APIs. In addition, the platform also contains a built-in
database where tables and their fields can be created directly from the UI
or imported from CSV. An interesting feature is the fact that more than
one data source can be used in the same application, i.e. create a polyglot
system.

Besides the choices of data sources and front-end creation, workflow au-
tomation is also easily created using components and visual diagrams. In the
test performed, it was possible to create an action, such as being redirected
to another page after submitting a form, all programmed quickly through
the platform’s UI.

It should be noted that in its architecture, this platform contains a
NoSQL database, CouchDB, to store the metadata for all the applications
created, in order to be able to support data replication.

Despite being a fairly young platform, it seems to be an option to be
taken into account, in the test performed it was the platform with the easiest
deployment, most intuitive (with a design that is close to the current modern
web apps) and with the easiest learning curve while allowing great flexibility.

3.1.4 OpenXava

Like the previously analyzed solution "Convertigo", OpenXava7 is an
Eclipse-based framework. It is a solution that was first developed in 2005

7https://www.openxava.org/

33

Figure 3.6: Budibase front-end design page

and since then has been a very active project with frequent updates, a
large community and extensive documentation. It has a model-driven de-
velopment approach, more specifically java-domain-driven. The core of the
application is the development of Java classes that represent entities com-
plemented by OpenXava’s built-in annotations and other JPA’s annotations
(Java Persistence API). It is an Enterprise Java development solution with a
fast learning curve, especially for developers with basic Java knowledge, but
also to users that want to make their work faster and with less code writing.
The platform generates a lot of code automatically (such as the user inter-
face and authentication system) and it is flexible enough to develop real life
complex business applications through agile development as it allows a very
fast initial development and allows to make and view changes instantly by
simply restarting and run the application.

OpenXava is extensible, customizable, integrable and includes support
to call web services using JAX-RS, without adding extra libraries. Auto-
matically generates and stores metadata for all entities being accessible for
the developer to use more generic code.

The layout of the automatically generated web interface, can also be
customized from the creation of views (always in Java annotations). For
example, putting UI form fields on the same row is as simple as separating
the same attributes by commas in the code. It is also possible to add valida-
tions, business logic and user interface behavior. Furthermore, by default,
OpenXava allows to manage the entities created to perform the most com-
mon tasks such as adding, modifying, removing or searching from tables,
generating PDF reports and exporting CSV (for example to import content
into tables), all done by controllers which can be modified through XML
fragments accessible to the developer.

The platform contains a database manager, to facilitate connections and
transactions with the databases and supports any relational database as
long as it is compatible with Hibernate. In the tests performed, although

34

OpenXava handles the evolution of the database schema, such as the au-
tomatic creation of tables and adding columns when the developer adds a
new attribute in a Java class, it falls a bit short because it does not add
the desired default values only when adding new records to the database,
thus there is a need to rely on manual intervention for the evolution of the
scheme.

In a few minutes, a CRUD application of a simple hospital management
system is easily created just by defining two Java classes, one for the entity
"Medic" and another for "Patient" as shown in Figure 3.7.

Figure 3.7: Example of two entities created from Java classes

After running the application, the platform almost instantly creates the
interface shown in Figure 3.8 and all the database back-end. The forms
are also readily functional, after adding a Patient by filling out the form,
a list (Figure 3.9) can be accessed with the records that are stored in the
database.

Figure 3.8: Automatically generated UI for Medic and Patient entities

35

Figure 3.9: Patients list UI

3.1.5 Skyve

The Skyve8 concept and prototype started to be developed in 2005 as
part of Biz Hub Australia9 and evolved until it became open-source in 2014.
Nowadays, it is updated frequently being the result of years of experience
in the industry and is presented in a mature state that intends to be the
base platform for creating high-quality, secure, scalable and maintainable
applications.

Therefore, Skyve is an open-source low-code Enterprise Platform that
integrates a set of solutions (also open-source) and that distinguishes itself
by using a declarative approach, and a Meta-driven development, i.e., from
a high-level specification of metadata described in XML it is possible to
build applications ready to use and in a consistent state without the need
to use a programming language. This approach to a declarative language
makes it possible to ensure security aspects (using the Spring Framework
10), menus, navigation and CRUD activities (also includes a REST interface
for CRUD operations on the database), while much work is abstracted from
the developer, such as the generation of automatic code that is left to the
platform.

A notable feature in Skyve is the automatic database creation and ma-
nipulation along with the searching and filtering support, this way the de-
veloper avoids SQL creation which can result in security vulnerabilities and
other inconsistencies. The entire schema object creation process is handled
automatically by Skyve via Hibernate11 with the ability to easily change the
database system to be used. Furthermore, Skyve includes, besides the struc-
tured database persistence repository, a NoSQL/content repository. This

8https://skyve.org/skyve-enterprise
9https://www.bizhub.com.au/

10https://spring.io/
11http://hibernate.org/orm/

36

dual persistence mechanism is transparent to the developer and a "Apache
Lucene"12 based automatic content management with NoSQL storage is in-
cluded with Skyve (with the possibility of using other solutions like Elastic).
It also includes, within the persistence handling, a tool that allows to easily
backup to another database, supporting any database system as long as it
is compatible with Hibernate. Skyve is also operating system and platform
independent as its engine was created in "Java EE" and is compatible with
any application server, such as Wildfly13.

Skyve allows to automatically generate highly usable UI, using open
source tools such as PrimeFaces14 and SmartClient15, to meet the domain
model defined in the XML specified metadata. The evaluation performed
demonstrates the steps required to build a ready to use application using
the Skyve engine in the Eclipse IDE.

The first step was to create a project from the Skyve website, this way
it was possible to download a quick-start project that can be imported as
a Maven project 16 in Eclipse, which already includes the necessary depen-
dencies specified in pom.xml. After that, the necessary configurations for
the Wildfly server and the PostgresSQL database were made.

Next, two entities "Nurse" and "Doctor" were specified using the Skyve
metadata nomenclature in two XML documents (Figure 3.10 demonstrates
the Nurse) and also a file representing the "MedicStaff" module (Figure 3.11)
which contains the two entities and where the Roles are specified, i.e. the
group of users who have access to these Documents, making them visible in
the side menu automatically generated in the UI.

Figure 3.10: XML document specifying the entity "Nurse" in Skyve metadata
12http://lucene.apache.org/
13https://www.wildfly.org/
14https://www.primefaces.org/
15https://www.smartclient.com/
16https://maven.apache.org/

37

Figure 3.11: XML document specifying the "MedicStaff" module in Skyve
metadata

The next step is to execute the commands with pre-configured maven
run configurations in Eclipse. The first command executed was the "mvn
skyve:generateDomain" which generates the application domain, validates
and compiles the metadata (XML files) in the project, checking that the
domain is in a valid state. After execution, Skyve automatically generates
the Java objects classes for the defined entities and also a file hbm.xml with
mapping metadata that Hibernate uses to determine how to load and store
objects of the persistent class. At this point, the tables for each entity are
also created in the database. Finally it is executed the maven command
"mvn clean compile war:exploded" to update the resources with the com-
piled project, creating a WAR file ready to be executed by the server. The
Figure 3.12 and 3.13 shown the generated UI executing in a web browser
and running in the WildFly server. Since Skyve is used in strict integration
with the platform created for the purpose of this dissertation "DynamicIS",
it will be discussed more in detail in Chapter 4.

3.1.6 Other open source solutions

There are other open source solutions that, despite not having been
tested or analyzed in depth in the scope of this dissertation work, are worth
mentioning because they present some interesting characteristics. Jmix17,
formerly "Cuba Platform" is a plugin for IntelliJ IDEA based on Spring Boot
and that intends to turn this IDE into a Rapid Application Development tool

17https://www.jmix.io/

38

Figure 3.12: UI form for the "Nurse" entity and lateral navigation menu
generated by Skyve

Figure 3.13: UI view containing all created Nurse entities

offering abstractions and extensive code generation in terms of data model
design, data manipulation, business logic, security and UI creation. There
is a gain in flexibility as the developer only has to design the data model
from a UI and the platform is in charge of creating the data model schema
in the database automatically and synchronizing (using the open source
tool "Liquibase") changes as the data model and application code evolves.
It is an interesting solution for developers who are familiar with IDE and
Java programming but still want a way to increase their productivity, gain
flexibility and decrease development time.

OSBP18 project is another solution worth referring to. Its main devel-
oper is a software company "Compex" with more than 30 years of experience
in Enterprise Resource Planning (ERP) solutions. Like the previous solu-
tion, OSBP is also a plugin for an IDE, this time for Eclipse Ecosystem,
and combines No-code with Low-code in a model-driven architecture with
automated application development, enabling the development of enterprise
or any other applications in a fast and flexible way. Its multilayered archi-
tecture (data, business and presentation layer), represented in models and
DSL, allows developers to modify and extend the application to meet new
requirements. This platform is integrated with other open source frame-
works and is not tied to a specific technology, being able to create solutions
with different database systems (SQL and NoSQL) together in a single ap-
plication.

18https://www.eclipse.org/osbp/index.html

39

Running in a drag-and-drop web development environment, it is possible
to identify two solutions, Saltcorn19 and Corteza20 platforms.

Saltcorn is implemented in Javascript and contains a multi-tenancy ar-
chitecture (from a single host it is possible to run several applications). It
is targeted for the creation of Content Management Systems (CMS) with
structured data supported by a well understood and robust relational model.
Among its features are: the creation of tables, views (display of informa-
tion through queries defined in the UI), user and authorization management
(user roles), front-end, events and actions, all with an error-free and plugin-
extensible development environment.

The Corteza project, developed by Crust Technology (its primary con-
tributor), is a scalable self hosted architecture to build organization’s critical
cloud web applications quickly. It provides a secure platform and is com-
patible with various protocols and standarts such as REST API. It allows
the creation of modules (forms that translate into tables) and workflow logic
from the schema design, automatically generating responsive applications.

Finally, the platforms Appsemble21 and Gramex22 both take a compo-
nent based approach (or pre programmed code blocks) to build data apps.
It greatly simplifies the process of building an application, with fewer steps,
less time and fewer bugs but at the expense of customization flexibility.

3.2 Proprietary solutions overview
Unlike open-source software, proprietary software belongs to an individ-

ual, group or company. Its source code is not publicly available and only
the owner of the software is involved in its development. Therefore, the so-
lutions present in this section, which have a different market target than the
previous ones analyzed, have not been tested or reviewed in detail because
their source code cannot be modified, extended or integrated into other so-
lutions. Next, some of the most popular and leading solutions have been
reviewed from their official websites or from third party studies in order to
get an overview of their features.

These solutions are intended to be a tool often used in larger markets,
offering their services and platform through licenses or paid subscriptions.
Their growth and increasing adoption is an attraction for companies al-
ready established in the market for a long time and with robust solutions
such as Microsoft and Salesforce that intend to evolve and adapt to this new
paradigm and business model of low-code platforms. According to a For-
rester report, the low-code market is expected to represent $21B in spending

19https://saltcorn.com/
20https://cortezaproject.org/technology/core/corteza-low-code/
21https://appsemble.com/en/
22https://gramener.com/gramex/

40

by 2022 [41].
A recent Gartner report identifies the market leaders being: Microsoft23,

Outsystems24, Mendix25, Salesforce26 and Appian27 [2].
In summary, Microsoft PowerApps and Salesforce Lightning platform are

distinguished as being products that aim to extend the panoply of solutions
from these two companies, offering integration with their own products as
is the case of PowerApps which as deeper integration with many services in
the Microsoft ecosystem such as Excel, Azure database or similar connec-
tors to legacy systems. These proprietary platforms also contain pre-built
templates or applications and components that can be reused. They are
ready to use and can be obtained from stores within the platform itself such
as Salesforce’s AppExchange marketplace. Another feature, is Collabora-
tive development support tools such as Mendix that allows collaborating
project management in real time with peers and one of the oldest platforms,
Appian, that supports collaborative task management. Support for very
recent technologies such as some kind of artificial intelligence or machine
learning is also present in the leading platforms, such as the decision engine
with AI-enabled complex logic in Appian, AI libraries for discovery, predic-
tion and voice services (Einstein) in Salesforce. The Outsystems platform,
which allows the development and deployment of enterpise-grade applica-
tions quickly in a collaborative environment, also features AI-powered tools.
These tools comprise an AI services layer, to provide automation enhancing
the entire application lifecycle. Overall, the AI technologies available range
from creating AI chatbots, to assist developers create the business logic of
their applications.

It should be noted that Salesforce, Mendix and Outsystems support the
creation of solutions for large companies as they are used to create large
and scalable applications, while Appian’s platform is more oriented towards
small and medium scale companies and presents cheaper solutions.

3.3 Results and considerations
The current paradigm when it comes to low-code platforms is promising.

It is a concept that is evolving quickly in software engineering as a result
of the need to create applications faster, easier, and with a higher level of
flexibility.

Although the proprietary low-code platforms are not susceptible to ex-
tension or modification they were briefly reviewed in this dissertation in or-

23https://powerapps.microsoft.com/en-us/
24https://www.outsystems.com/platform/
25https://www.mendix.com/platform/
26https://www.salesforce.com/products/platform/lightning/
27https://appian.com/platform/low-code-development/low-code-application-

development.html

41

der to have an overview of all the capabilities and features involved in these
applications. The proprietary platforms are safer choices for large com-
panies, due to their great ability to create very scalable applications, and
since they are paid platforms there are greater guarantees when it comes to
support and assistance given by the platform’s own developers. An innova-
tive feature that distinguishes these platforms from open-source platforms is
the fact that they have artificial intelligence or machine learning technology
that is not found in any of the open source platforms analyzed, but also an
advanced level of support for collaborative development.

The table 3.1 presents a summary of core features of the low-code open-
source platforms in a comparative overview. Cell color indicates the feature
support:

• Green: Supported;

• Yellow: Partially supported;

• Red: Not supported;

Feature/Platform Convertigo Joget Budibase OpenXava Skyve
Cloud/
Web-based UI

Eclipse IDE
based

Eclipse IDE
based IDE, Maven

Web-based/
mobile apps Ionic, Angular PWA Svelte Ajax PrimeFaces/

Ajax SmartClient
Drag-and-drop
UI

Only app GUI
building

Extensible Dynamic plugin
architecture

Integration
capabilities

a
a

Workflow/
business logic

Drag-and-drop
workflow creator

Drag-and-drop
workflow creator Auxiliary functions Auxiliary functions/

Metadata

Multiple
back-end
support

Polyglot database
support

Relational database
supported by
Hibernate

Relational database
supported by
Hibernate,

Lucene based
content manager

Database
abstraction

SQL
needed

SQL
needed

Easy app
deployment Any Java EE server Maven commands,

Any Java EE server

Table 3.1: Open source LCDP core features comparison.

Despite being a robust platform, Convertigo, in the open-source edition,
does not contain more advanced features regarding database abstraction, los-
ing some of the dynamism that is intended. The developer does not discard
SQL, as he needs to create and modify tables in the system. The documen-
tation is also not very complete which makes it difficult to understand some
aspects and even to extend the platform.

OpenXava despite being embedded in an Eclipse based IDE such as
Convertigo, follows a more traditional programming approach, not offering

42

No-code oriented capabilities such as drag-and-drop for UI building. How-
ever it does contain useful mechanisms and tools for faster development for
developers with Java knowledge.

With more intuitive and fully drag-and-drop interfaces on the web are the
Joget and Budibase platforms, which distinguish themselves from the others,
for example, with the possibility of creating workflows visually. Nevertheless
Skyve is the most interesting platform due to its structure and organization
oriented towards the development of enterprise applications with security,
performance and scalability aspects that the developer does not have to deal
with directly. The complex capabilities of handling the database in terms
of automatic schema changes and the total abstraction of the database for
the developer provides more flexibility and level of desired dynamic content.
In addition Skyve documentation is very extensive and detailed, the source
code is well organized and understandable. The robustness of the platform
and its feasibility of integration/extension were decisive characteristics for
which it was chosen to integrate DynamicIS, the platform proposed which
will be detailed in the next chapter.

43

Chapter 4

DynamicIS Proposal

This chapter presents in detail the system developed, "DynamicIS", includ-
ing functional and non-functional requirements. They were gathered from
the user interactions, background technologies and related platforms. The
proposed architecture and the technologies involved are presented. It is also
described the processes that led to the implementation of the system as a
whole.

4.1 System Requirements
The development of the DynamicIS platform started with the specifi-

cation and description of its capabilities, functionalities and behavior, in
terms of non-functional as well as functional requirements. These require-
ments were defined mainly in iterations with the client of this proposal,
"BMD Software", and were also based on similar analyzed platforms.

4.1.1 Non-functional Requirements

In order to be a solution that meets the competitive expectations of the
market and provides a good user experience, DynamicIS needs to behave in
specific ways and meet the following non-functional requirements:

• Performance and scalability - The platform should respond quickly
to user interactions with the UI, there should be no long response times
when requests are made to the server. Pages and their components,
including data from the database, should be processed without delays,
errors and data losses. In addition, the platform including the database
should be able to scale with support to large amounts of data without
a decrease in performance.

• Compatibility - Following the trend of current software solutions, the
platform should be accessible independently of the operating system

45

and should run on the web on different devices (mobile or pc) as well
as being compatible with the latest web browsers.

• Extensibility - Given the nature and concept of the platform and the
need to provide dynamism, it must be built with an architecture that
supports flexibility to be extended or modified as new requirements
and tools/frameworks need to be integrated.

• Usability - One of the key aspects of this platform is that it is oriented
to end-users without programming knowledge in a No-code style of
development. For this, it needs to be easy to use and learn, leading
the user to execute the main functions without many steps and without
being error-prone. Thus the platform should have a responsive, web-
style interface design that leads to efficient development by the user.

• Security - As is already the norm in information systems, this plat-
form must have security mechanisms that address issues of privacy in
data access as well as protection against the integrity and loss of data.

4.1.2 Functional Requirements

The set of functional requirements intended for the DynamicIS platform
were obtained from user’s interactions and adapted according to the used
technologies specifications. Certain functionalities of related development
platforms were also considered, specifically the "Skyve" platform, in order to
achieve a better integration, allowing the user to quickly create and modify
an information system from the definition of the data model. In this way
the actors that will use the platform can be either Citizen Developers with
knowledge of the data domain for the system they intend to create or more
advanced Developers who intend to make a quick startup in the development
without the need to write code. In both cases the platform must offer
functionalities that make it possible to specify the data model, manage and
organize it, create user interfaces, and generate/deploy the system from a
button action, while the content of the information system created must be
able to be easily modified or extended without major downtime by using UI
buttons with auxiliary drag-and-drop functionality. The diagram present in
the Figure 4.1 shows the set of main operations a developer might perform
on the DynamicIS platform.

The following list presents detailed descriptions of the use cases specified
in the previous diagram.

• Log-in/Log-out - A user should enter his log-in credentials in an
authentication page in order to access the platform and the projects
created by him. In addition, the user must be able to log out in order
to terminate his session and thus the browser no longer display the
user’s content, redirecting the user to the authentication page.

46

Figure 4.1: DynamicIS platform use case diagram

• Create/Remove project - A user should be able to create a project
by clicking on a button that redirects to a new page to fill the project
information, such as the project name, the information system cus-
tomer and endpoint of connection to the Skyve server. A project is
an information system containing forms, views and result pages. The

47

user should be able to remove a project and the platform deletes all
content belonging to that project from the database.

• Edit Project Info - Projects created by an authenticated user must
be visible by that user and, after one is selected, the information in the
project should be able to be edited by the user at any time, such as the
project name, the endpoint connecting to the Skyve server, the name
of the customer for whom the information system is being developed,
and an image that will be the system’s logo.

• Import image logo - A user should be able to import an image
for the project logo, which will be visible in the UI of the generated
information system.

• Create/Remove module - Within a project, a user should be able
to create modules or remove them and all the content contained in
the module. In the context of this platform, a module contains form
pages, views and result pages associated with each other. All the
content belonging to the same module can be accessed by clicking on
the name of the module from a menu on the UI of the information
system generated from the project.

• View and reorder module - On the project page, a user should be
able to view the modules contained in that project as well as arranging
them by drag-and-drop. The order of the modules will be reflected in
the order they appear in the menu of the generated information system.

• Create/Remove form page - Within a module, a user should be
able to create simple form pages. The user should give the form a
name and add fields to it. Fields can be removed or reordered via
drag-and-drop. Each field should consist of an option to add a de-
scription, a checkbox to identify if the field is required, a list box with
the desired field type. If the selected field type requires any further
option, a new element should appear to specify this option. Within
the possible field types, the platform should provide text, numbers,
dates, check-boxes, combo-boxes, files, images, and also associations
between existing forms existing in the project. The user should be
assisted of error messages after building the form, so that in this way
the platform can build a consistent and error-free information system.
Finally, the user should also be able to delete a form, and the platform
deletes all content associated with it from the database.

• Import form - Within a module, there should be a list box with all
the forms in the project that are from other modules so that a user
can select and import them and quickly create a form from another.

48

• Create/Remove result page - Within a module, a user should be
able to create results pages. The platform should allow the user to
enter a name for the page and be able to choose a form for which want
to create a results table. In addition, should be able to choose, from
the available fields of the selected form, the ones to be visible as well
as allow to choose a name for each field to be displayed in the table.
If the user does not select specific fields, then all the fields of the table
will be shown in the generated project. If the user selects a field of
type image, then options should appear to select the option to show a
thumbnail of the image in the table, as well as its dimensions, or just
a link to the image source.

• Create a view page - Within the form building page, a user should
have an option to create a "view" that consists of a page with more
advanced customization. In the view, the user should be able to create
layouts by inserting containers for vertical or horizontal arrangement
of components, tabs and forms. In the forms, the user should be able
to add columns and rows to insert the fields that were created in the
forms page. Should also be able to add components such as Calendars,
HTML code blocks and buttons. Also, on this page, the platform must
provide a navigation view containing the organization of the elements
arranged on the view page to be created. If the user does not create
a view, the platform after generating the project will create a simple
page for the form created in the forms page.

– Add a Calendar - A user should be able to add a calendar on
the view page and bind form fields to the scheduling of new events
in the calendar.

– Add HTML code block - For more advanced customization,
or even integration of JavaScript or iframe components the user
should be able to add HTML files with the ability to edit them
in the platform in order to create blocks of HTML code.

– Add an action - The user should be able to create a simple work-
flow, through redirection actions, in order to produce a sequence
of steps to follow across different pages. This way, it should be
able to create a button to redirect to another page, through the
choice of forms and result pages in the project. The user should
also be able to add the redirection behavior after the action of
filling and saving the form in the created project.

• View an embedded link of a form/view or result page - The
platform must provide a URL for all created forms/views or result
pages. That way, the user can use this link to embed the form in other
applications.

49

• Group forms and/or result pages - The user should be able to
create groups by dragging forms to other forms, forms with result
pages or results with results and also drag both to a previously created
group. The platform should indicate how many elements of each type
are within the group and should allow to change the name of the group
as well as remove it. In this context, the groups are used to divide the
modules so that they are displayed together in the UI menu of the
generated project.

• Reorder groups, forms and result pages - Through drag-and-
drop, the user should be able to reorder the elements within a module
(groups, forms and result pages). The platform should allow switching
between grouping and reordering of elements.

• Edit form, results page or view - At any time, a user should be
able to view the forms, results page or views present in the project,
specifically within each module, with the possibility of updating or
editing each one.

• Generate a project - The user should be able to generate the project
on click away and view the generation progress via a progress bar, as
well as more detailed messages of the generation status and commu-
nication with the Skyve server.

4.2 System Architecture
Although it is built from scratch and is designed with the concept of ex-

pansion and integration with different platforms, DynamicIS was developed
in order to have the Skyve open-source platform, discussed in the previous
chapter, as the bridge between the content of an information system and its
deployment. Thus, the developed platform adapts functionality from Skyve
Core in order to integrate its own specific metadata into functional Skyve
metadata that generates the information system.

DynamicIS takes advantage of Skyve’s deployment mechanisms and ca-
pabilities but is independent of it. The contents of the information system
can be created and changed at any time on the DynamicIS platform even if
the Skyve server is not running, although can only be deployed once a Skyve
server instance is online. To better illustrate how the system constituents
are integrated, the Figure 4.2 shows a diagram of the DynamicIS system
architecture.

The DynamicIS web app follows a client-server architecture. In this
sense, the server is in charge of managing most of the resources to be con-
sumed by the client. This way, the client, that is a web browser interface,
can run on most devices, including mobile, without needing to be very ro-
bust in terms of hardware resources. Furthermore, this architecture provides

50

Figure 4.2: DynamicIS Web App architecture

51

a transparent interface for clients, since they have no knowledge of the ap-
plication’s specifications and business logic, such as database operations. In
this sense, the client receives the users’ inputs and makes a request to the
server through the HTTP communication protocol, the server processes the
request and sends a response that will be rendered in the client.

DynamicIS web app follows the MVC architectural pattern, which con-
sists in the separation of the application in interconnected layers: Model,
View and Controller. This pattern allows for a promotion of responsibility
segregation development in which the representation of the data domain and
how it is stored (Model), the rendering of interfaces and interactions with the
user (View) and the processing of actions that can update the model (Con-
troller), are separated. Besides the Controllers, services were also developed
and correspond to useful classes with their own logic that are used by the
controllers in order to obtain a better organization and logical separation. It
is worth noting that the MVC pattern is naturally supported by the frame-
work chosen for the development of DynamicIS, which will be discussed in
the next section. The project structure of DynamicIS is represented in the
Figure 4.3.

Figure 4.3: DynamicIS web app project structure

Finally, DynamicIS as a whole, follows a service oriented approach as the
Firebase authentication server, the Couchbase server and the Skyve server
instance are independent components that communicate with the Dynamic
Web App through standard communication protocols and APIs. This way,

52

this system allows multi-tenancy providing SaaS. That is, from a Dynamic
Web App instance, it is possible to manage several Skyve server instances
that in turn deploy different information systems.

4.3 System Technologies
Play Framework1 was the choice for the development of the DynamicIS

Web app. One of the reasons for this choice was the need to support Java
natively in order to be compatible with the dependencies and libraries of the
Skyve core source code that was also developed in Java. Another feature
is the integration of sbt2 as a build tool, which besides allowing a bet-
ter integration with Maven projects, has the ability to allow live compiling
and hot reloading, enabling a more effective development. Additionally, the
Play Framework contains very useful features oriented towards web applica-
tion development, such as natively supporting Akka3 in order to allow fully
asynchronous model and highly-scalable applications with minimal resource
consumption, a feature that was intended given the future-proof nature and
architecture of the Dynamic Web platform. Another characteristic of Play
Framework is the fact that it is a Full-Stack development tool and therefore
also has a "Twirl" template engine that allows for a very dynamic rendering
of web pages on the client-side. That said, it is also worth pointing out that
Play is the framework used in BMD4 projects, which further supported the
choice of this technology.

In order to have extra functionality, it was necessary to declare some
dependencies. This is done through the mechanism that Play Framework
implements (via sbt) for managed dependencies. Since it was used specific
Skyve Core functions for integration there was a need to add this depen-
dency. However, as out of the box sbt uses standard Maven2 repository, it
was necessary to add a resolver to find the Skyve repository. Furthermore,
as part of sbt, it was also possible to add WebJars that provide a convenient
mechanism to add client side dependecies packed into Jar achive files.

Going into detail about the libraries added in DynamicIS, demonstrated
in Listing 4.1, the "guice" is provided and supported by Play and allowed the
use of the Dependency Injection design pattern, which is present in other
frameworks such as SpringBoot5. In that sense, the "guice" library allowed
the use of the "@Inject" annotation in the constructors to permit the cre-
ation of dependent objects outside the class, separating the responsibility of
the object creation in the class that will use it and allowing the injection

1https://www.playframework.com/
2https://www.scala-sbt.org/
3https://akka.io/
4https://www.bmd-software.com/
5https://spring.io/projects/spring-boot

53

mechanism to wire together the components without the need to do it man-
ually. In addition to the "Inject" annotation, the "@Singleton" annotation,
also provided by this library, was used. This annotation allows the class
that uses it, when injected, to create only one instance of that class. This
mechanism is useful for complex and expensive components to create. In the
DynamicIS web app, the @Singleton was used, for example, in the service
class that connects to Couchbase.
resolvers +=
"skyve ".at(" https :// repo.skyve.org/ repository /skyve /")

libraryDependencies ++= Seq(
guice ,
javaWs ,
"org. webjars " %% "webjars -play" % "2.8.0 -1" ,
"org. webjars " % " bootstrap " % "4.6.0" ,
"org. webjars " % "font - awesome " % "5.15.2" ,
"com. couchbase . client " % "java - client " % "3.1.2" ,
"dom4j" % "dom4j" % "1.6.1" ,
"javax.xml.bind" % "jaxb -api" % "2.3.0" ,
"com.sun.xml.bind" % "jaxb -core" % "2.3.0" ,
"com.sun.xml.bind" % "jaxb -impl" % "2.3.0" ,
"com. google .code.gson" % "gson" % "2.8.6" ,
"org. webjars " % " jquery " % "3.6.0" ,
"org.skyve" % "skyve -core" % "7.0.3" ,
"org. apache . commons " % "commons -lang3" % "3.12.0"

)

Listing 4.1: DynamicIS web app library dependencies

Another library supported by Play is "javaWs", which stands for "Web-
Service". This library allows calls to other HTTP services and also makes
asynchronous HTTP calls, which was the case used in DynamicIS to com-
municate with the REST API developed for the Skyve server. This allows
the generation of a DynamicIS project in a information system, deployed on
the Skyve server, as will be demonstrated in the implementation section.

For the XML manipulation and processing, required to create metadata
structures to be integrated with Skyve, "dom4j" and "jaxb" were used. Also,
to assist in the string manipulation process, the "commons-lang3" library
was used, which provides extra methods to the standard Java libraries.

In addition to the other libraries that will be mentioned later, "GSON"6
has been included, which is an ObjectMapper to allow the conversion of
Java objects into JSON representations. This library was fundamental for
storing data in Couchbase which is oriented to JSON documents, as will be
demonstrated in the Persistence section. An interesting feature of GSON,
that differs from other ObjectMapper libraries, is that it does not require

6https://github.com/google/gson

54

the insertion of annotations into Java object classes as GSON infers them
on its own.

Finally, it is important to state that this project was developed using
only open-source or free tools. It was tested with Skyve 7.0.3 via Wildfly 21
server and PostgreSQL database. The DynamicIS web app was programmed
to be used with a Couchbase database (tested with version "Server 6.6").

4.3.1 Server-side

As mentioned in the architecture section, the Play framework has the
MVC pattern as its development orientation. The request life cycle boils
down to an HTTP request received by the framework, which in turn re-
solves the request using the routes file that maps the URI to the "Home
Controller" and "ProjectController" controllers and invokes an action on it.
This action can update one of the Models or fetch information from them us-
ing Couchbase database requests. Finally, the Controller renders a View and
pops up the necessary information that will be sent to the Client through
an HTTP response. The Figure 4.4 demonstrates an excerpt of the routes
with GET and POST methods used in the application. Each of these routes
has a Controller function associated with parameters and data coming from
the request.

Figure 4.4: HTTP routing excerpt screenshot present in "routes" file

The database chosen to integrate this system was Couchbase Server7.
This is distinguished as a NoSQL, distributed, cloud-native database with
replication support. It is a multimodal database oriented to JSON docu-
ments. In addition, it contains a query language (N1QL) with a SQL-like
syntax for querying JSON documents. These features are essential and were
the reason for the choice of this technology because they are in line with
what is intended with the DynamicIS platform. The fact that DynamicIS
allows multi-tenancy leads to the need for a database that supports a dis-
tributed and highly scalable architecture while offering consistent and fast

7https://www.couchbase.com/products/server

55

performance. The agility and flexibility enabled by JSON’s schemaless na-
ture allows it to meet the development dynamism implicit in the DynamicIS
platform that aims to be future proof with the possibility of integrating
and being extended to other types of metadata. Couchbase Server was in-
tegrated into the system using the Couchbase Java Client SDK that allows
DynamicIS to access a Couchbase cluster and perform database operations.

4.3.2 Client-side

One of the objectives of the DynamicIS web app is to be an intuitive
application, user-friendly and, at the same time, allows a fluid use without
long waiting times. In addition, a differentiating feature of DynamicIS is
the No-Code development approach that aims to be compatible with mobile
devices and therefore has to have a responsive user interface capable of
adapting to different screen sizes.

To achieve this result and in order to make the application as efficient
as possible the Twirl template engine embedded in the Play Framework and
native JavaScript were used as essential elements. jQuery8 was also used as it
is a fast and small feature-rich JavaScript library that simplifies JavaScript
usage in certain aspects such as manipulating the HTML document. In
Listing 4.2 a use of jQuery in the script is demonstrated in which it executes
a function after the HTML document is loaded using the ".ready()" method.
This differs from the native JavaScript method "onload" because the onload
event is only triggered after all the content of the document is loaded, causing
a longer delay. In addition, Bootstrap9 was used to achieve an application
with a responsive design compliant with a mobile layout. Finally, Font
Awesome10 icons were used to give a more appealing and intuitive look to
the user. Both libraries were added through Webjars.

@if (! serverReady){
<script >

$(document). ready(function (){
var r = jsRoutes . controllers .
ProjectController .
testServerConnection (true , "@(userId)");
window . location . assign (r.url);

});
</ script >

}

Listing 4.2: JavaScript function to trigger the testServerConnection method
from the browser using jsRoutes.

The twirl template engine allows to create simple text files containing, in
addition to HTML and JavaScript, logic with Scala11 code blocks. A tem-

8https://jquery.com/
9https://getbootstrap.com/

10https://fontawesome.com/
11https://www.scala-lang.org/

56

plate is like a function and can receive parameters such as objects from the
application model. Other possibilities include iterating through for-loops
and if-blocks in order to build simple logic in the Client. The declaration
of reusable Scala code blocks is also possible and this has been done in Dy-
namicIS web app where all template files include the "main.scala.html".All
templates files of this project are contained within the "view" folder and
end in ".scala.html", having to follow this naming convention in order to be
recognized by the template engine and generate a class with a "render()"
method. Listing 4.3 shows a simple method of the HomeController that,
after being invoked by the HTTP request, will send a response, rendering
the page defined in the folder view as "auth.html.scala" which is the authen-
tication page of the DynamicIS web app.

public Result authPage (Http. Request request){
return ok(views.html.auth. render (request));

}

Listing 4.3: HomeController method for rendering the authentication page.

An important feature provided by the Play Framework routing system
is the ability to generate JavaScript code in order to handle routing from
the client-side back to the server-side. In the context of the DynamicIS web
app, this capability was used to invoke certain actions on the back-end from
the client. An example use of this feature was the one that was developed
on the page to generate a project. After the page is loaded by the client
browser, it will invoke a method of the "ProjectController", "testServerCon-
nection" (represented in the Listing 4.2) in order to DynamicIS server test
the connection to the Skyve server. For the Play routing engine to generate
this route, it is first necessary to expose it as shown in Listing 4.4 with a
code excerpt from the "generateProject.scala.html" page template.

@helper . javascriptRouter (" jsRoutes ")(
routes . javascript . ProjectController . generateSkyve ,
routes . javascript . ProjectController . testServerConnection

)

Listing 4.4: Embedded router generated inside a Scala template.

As for the authentication interface, it was used the open-source Fire-
baseUI on the client in order to promote the segregation of services and
to take better advantage of Google’s authentication system that eliminates
boilerplate code and promotes good practices. Thus, FirebaseUI is an open-
source JavaScript library for Web that was customized and integrated into
the client interface of DynamicIS web app’s authentication page. It will be
explained, in more detail, in the implementation section.

57

4.4 Skyve Integration
As discussed in Chapter 3 of this dissertation, Skyve open-source was

the platform chosen to integrate the DynamicIS platform and thus achieve
a solution that allows the creation of information systems with dynamic con-
tent. The choice for Skyve was mainly due to the fact that it has automatic
mechanisms to manage the database structure. Along with the specification
of metadata, it creates a higher abstraction for the developer when deal-
ing with relational databases. Thus, the information systems deployed by
Skyve, has its data, and user’s entered data, stored in a relational database,
whereas DynamicIS contains an independent NoSQL database. This NoSQL
database stores only the metadata of the structures (such as forms) allowing
higher flexibility to make changes. This approach of having one database
for the metadata and another for the user-entered data was based on the
[35] study. The main difference is that the database used in that study for
the metadata was also relational, while in DynamicIS it is non-relational.

The database option for the users information system was relational
due to the fact that this technology stills very established in the market
taking into account their 40 years of experience. So, for most information
systems is continuous to be the best solution. Besides that, many companies
would not choose to migrate data to a non-relational database. This coupled
with the fact that it is easier to find programmers with experience in SQL
with relational databases and that, in this type of information system, it is
preferable to provide the user with data in a consistent state [42] which is a
characteristic of this type of database.

That said, a significant part of the work needed was to understand the
whole organization and functioning of Skyve, this was done by reading its
official developer documentation12 as well as, in more detail, sections of its
source code13.

4.4.1 DynamicIS REST API

The way DynamicIS web app and Skyve’s server communicate is crucial
since the goal is to achieve an integration where neither platform is depen-
dent on the other in a service-oriented architecture. For this purpose it was
developed the DynamicIS REST API that only needs to be included as a
directory within the "src/main/java" of a Skyve project. The structure of
the API is present in Listing 4.5.

12https://skyvers.github.io/skyve-dev-guide/
13https://github.com/skyvers/skyve

58

dynamicISRest
|-- JaxRSActivator .java
|-- RestUserPersistenceFilter .java
|-- RestDynamicISService .java

Listing 4.5: DynamicIS REST directory structure

The "JaxRSActivator.java" file makes use of the JAX-RS API which
defines interfaces and annotations for creating web services. This class is
needed because it contains the resource registry for the server runtime since
it extends the class "Application" and put it in the application’s classpath
that will call the "RestDynamicISService.class".

In addition, the "RestUserPersistenceFilter.java" is needed so that in-
coming REST requests are able to query and interact with the datastore.
For this filter to be active and to comply with the security issues im-
posed by Skyve, it is necessary to edit the web.xml which is located in
"/src/main/webapp/WEB-INF/web.xml" of the Skyve project and insert
the url-pattern through which the Rest API will be accessed. Furthermore,
it is also necessary to update the Spring security settings to allow access
in the pattern specified in web.xml, present in the directory "src/main/-
java/org/skyve/impl/web/spring/SpringSecurityConfig.java".

Finally, the developed class "RestDynamicISService.java" contains all the
endpoints defined by the paths (Annotation @Path) with the HTML meth-
ods (@POST and @GET) and with the consumed data type for all the in-
teractions needed for the communication between DynamicIS and the Skyve
server. Listing 4.6 demonstrates one of the API endpoints that is used to
insert a new logo into the Skyve generated information system. This end-
point can be accessed from the DynamicIS Web app using the path specified
in the @Path annotation and the base endpoint defined in the class "JaxR-
SActivator.java". In this case, the access to this API method is provided
from "{skyveURL}/dynamicis/updatelogo/{customer}".

The DynamicIS REST API, used for the communication between the
DynamicIS Web app and the Skyve server, will be discussed in more detail
in the implementation section.
// Update customer image logo
@Path("/updatelogo /{ customer}")
@POST
@Consumes(MediaType.TEXT_PLAIN)
public Response updateLogo(@PathParam("customer") String customer , String encodedContent) {

try {
assert(customer != null);
assert(encodedContent != null);

String dir = sourceProjectURL + "src/main/java/customers/" + customer +
"/resources";
byte [] fileContent = Base64.getDecoder (). decode(encodedContent);
Files.write(Paths.get(dir + "/logo.png"), fileContent);

}
catch (Throwable t) {

t.printStackTrace ();
AbstractRestFilter.error(null , response , t.getLocalizedMessage ());

}
return Response.status(Response.Status.OK). entity("Logo␣updated!").build ();

}

Listing 4.6: DynamicIS Rest API endpoint for inserting a new image logo

59

The table 4.1 presents all the endpoints that are part of the API, con-
taining their path, HTTP method, MediaType (the type of data the class
accepts to consume) and a brief description of the function to be performed
in the Skyve server.
Path (/dynamicis) Http Method MediaType Description

/newdocument/{modulename}/{docname} POST APPLICATION_XML
Create new
XML metadata
form

/newview/{modulename}/{docname} POST APPLICATION_XML
Create new
XML metada
view

/newcustomer/{customername} POST APPLICATION_XML
Create new
XML metada
customer

/cleanmodule/{modulename} GET
Remove forms
and the directory
of specific module

/removerole/{modulename} GET
a
a
a

Remove roles for
specific module

/testserver GET
Test if Skyve
server is ready
and listening

/assignroles/{modulename}/{moduleupper} GET
Assign roles
to new created
module

/updatemodule/{modulename} POST APPLICATION_XML
Update module
XML file with
new form

/updatelogo/{customer} POST TEXT_PLAIN Update customer
image logo

/newGCredentials/{credentialsFileName} POST TEXT_PLAIN
Create new JS
credentials file
for Google calendar

/newCustomAction/{className}/
{moduleName}/{formName} POST TEXT_PLAIN

Create new Java
generated action
file

/applymavencommands GET
Trigger Maven
commands to
generate project

Table 4.1: DynamicIS REST API endpoints

4.4.2 Metadata flow

In brief, the tables created in the relational database of the Skyve server,
which will be the mechanism for storing data from the information systems,
are generated from metadata that in turn are created from the graphical
interface of the DynamicIS web app. This concept follows the model-driven-
development methodology because the user is only in charge of creating
the models through the visual components of DynamicIS, which in turn is
responsible for generating and processing the metadata necessary for the
Skyve server to recognize.

In this way, and although Skyve works from a relational database with
schema, this schema is abstracted from the user. Taking into account that

60

the user can at any time change the structures of his models with consid-
erable flexibility without directly affecting the schemas of the Skyve tables.
This is due to the fact that the databases of the two systems work indepen-
dently and there are only changes in Skyve when the user gives the order
to generate the project. Skyve contains a well-defined relational database
allowing the generated information systems to take advantage of all the
capabilities, has discussed in Chapter 2.

Therefore, from the moment the user defines his models (Forms, Result
pages and views) until they are recognized as metadata by Skyve which will
create the structure of the information system, there is an inherent process
that can be explained by two phases: Definition of the model with storage
in Couchbase (shown in the activity diagram of the Figure 4.5) and project
generation (Figure 4.6).

The process represented in the diagram of Figure 4.5 starts with a user
entering the page to build a form (the building process of the other models
follows a similar pattern). If this form exists in the database, i.e., the form
has already been created and the user is editing it, the client sends a request
to the server’s "ProjectController" to get the form which in turn will be
retrieved from the Couchbase database through the service developed for
that purpose. Since Couchbase is a document-oriented database, it stores
the data in JSON that need to be converted to a Java Object of type Form
via the GSON object mapper. Since the JSON of the form contains a list of
Fields that can be of various types (Field extends other objects), the GSON
library cannot map this inheritance natively so it was necessary to create a
type adapter for this purpose. It was developed a function that creates a
JSON object, iterates through the subtypes (identified by the key "type"),
and registers the subtypes of the Field object, so that GSON can correctly
parse it. After that a Java object of type Form is sent in response to the
client that in turn processes the fields and dynamically builds the Form.
On the other hand, if the Form does not exist in the database, the user
builds it from the DynamicIS visual interface and submits the form. The
server receives the request containing the processed fields from the <form>
element of the HTML and creates a Java object of type Form. Then, the
object is converted to JSON (using the GSON mechanism explained earlier)
and stored in the Couchbase.

The second phase of the metadata flow begins when a user gives the order
to generate the project. At this point, DynamicIS and the Skyve server start
communicating through the DynamicIS Rest API. The process is described
in outline in the activity diagram in the Figure 4.6 and will be explained in
more detail in the implementation section.

As depicted in the activity diagram, the metadata stored in Couchbase
will be requested. Note that the diagram only shows the process for one
Form, although if there are more, this process is looped.

After the metadata is obtained from Couchbase, it is converted to a

61

Figure 4.5: UML activity diagram showing the process of defining a model
(Form)

Java Object of type "Form" (mechanism explained before). Then the ser-
vice "formSkyveAdapter" will create a metadata class recognized by Skyve,
which contains annotations of the "dom4j" library that allow to marshall
the class, i.e., transform the representation of the object in an XML string.
After that, the string is parsed to a DOM XML, using Play Framework util-
ities, in order to be sent by DynamicIS REST API, which consumes a Me-
diaType.APPLICATION_XML. After the Skyve server receives the meta-
data, the domain can be generated, building the tables and their schemas
in Skyve’s relational database (this part of the process is more detailed in
the implementation section).

62

Figure 4.6: UML activity diagram showing the process of converting Dy-
namicIS metadata to Skyve understandable metadata in project generation

4.5 Persistence
The data persistence mechanism chosen for integrating DynamicIS took

into account mainly the ability to be highly scalable and flexible so that
the application can progressively evolve along with the data model. Thus,
the Couchbase database stores data in JSON structures that are extremely
convenient for web-application programming due to its fast serialization and
deserialization processes and its flexibility. That said, Couchbase’s storage
unit is the document, which refers to a database entry and represents a single
instance of an object in the application code. A document can be compared
to a row in a table of a relational database with the difference that it provides
flexibility because each document can contain JSON with varying schemas,
i.e. different key-value pairs and the application is the one that defines and
manages the structure of the documents since Couchbase does not enforce

63

uniformity. Given these characteristics, DynamicIS, being designed with
Couchbase, can be extended to integrate other platforms (besides Skyve)
that contain different properties and structures. So, if there is a change in
the documents, they do not have all to be updated in the same way. Another
important feature of the documents is that they can be highly self-contained,
meaning that they have the advantage of supporting scalability, replication
and can be accessed with low latency without other documents needing to be
accessed14. In addition, documents can contain nested structures, allowing
them to express relationships without referencing other data structures, like
tables in the relational databases, allowing a more natural approximation to
the hierarchy of data present in the application objects.

4.5.1 Couchbase integration

The Play framework provides a plugin to manage JDBC connection pools
for relational databases making the process of setting up and using data
sources easier. Since non-relational databases are variable, they currently
lack a common API and are not natively supported by Play. However,
Couchbase server contains a Java SDK API that allows Java applications
to access a Couchbase cluster easily. So, for the purposes of organization
and segregation of services in the DynamicIS web app, the class "Couch-
baseAdapter" was created.

"CouchbaseAdapter" is a service class that manages all operations and
queries to the Couchbase server and serves as a mediator between the Couch-
base API and DynamicIS. Couchbase supports "Indexes" which are neces-
sary to make the data available to be found when querying. When Couch-
baseAdapter is instantiated, it creates the necessary primary indexes to be
able to perform queries. Next, it connects to the Couchbase Server Cluster
and gets references to the buckets as shown in Listing 4.7.
public Couchbase () {

...
this. connectionString = " localhost ";
this. username = " Administrator ";
this. password = " password ";
this. bucketName = "forms";
this. bucketNameProjects = " projects ";
this. bucketNameModules = " modules ";

// Connect to Couchbase Server cluster
try {

this. cluster =
Cluster . connect (connectionString , username , password);

} catch (NullPointerException ex) {
log.warn("Cant connect to Couchbase cluster ");

}

// Get a Bucket references
this. bucketForms = cluster . bucket (bucketName);
this. bucketProjects = cluster . bucket (bucketNameProjects);

14https://docs.couchbase.com/server/current/learn/data/document-data-model.html

64

this. bucketModules = cluster . bucket (bucketNameModules);

// Create primary indexes
createPrimaryIndex (primaryIndexForms);
...

}

Listing 4.7: Connection to Couchbase Server (excerpt from "Couch-
baseAdapter" class)

In the context of how Couchbase operates, a bucket is a way to logically
group collections of documents. For the DynamicIS Web app, buckets were
created to group documents belonging to the main entities: projects, mod-
ules, forms, groups, views, results and users (which will be detailed in the
data model section).

Although Couchbase supports "N1QL", which is a JSON query language
that can be used to peform many single-document operations with a SQL-
like syntax, at its core is used a high-performance key-value store. This way,
using the API for crud key-value operations is much more efficient because
the requests can go directly to the correct node15.

It was with the performance of the key-value mechanism in mind that
most database operations by DynamicIS are done through that API and not
through "N1QL" queries. Since operations using the API for key-value are
performed directly on a single document, they need to be provided with the
ID that is unique to that document.

Thus, DynamicIS data model was designed in a way that some docu-
ments contain a field referencing the IDs of the documents they are related
to. For example, whenever a new user is registered, through Firebase au-
thentication, it is created and stored in the Couchbase with the ID provided
by Firebase. When this user creates a DynamicIS project, it saves the ID of
that project in his Couchbase document. Therefore, when the user logs into
the DynamicIS web app, his Couchbase document is retrieved from the ID
provided by the authentication. Then DynamicIS will iterate over the IDs
of his projects, included in the user document, retrieving them individually
through the key-value API. This way, the data retrieval is more efficient be-
cause complex queries are not used. Besides that, the documents retrieved
from the database are smaller since they do not contain the entire entities
of the objects but only ID references.

Listing 4.8 demonstrates the function of the class "CouchbaseAdapter"
that performs the operation of retrieving a Project from the database us-
ing its ID. The Couchbase API key-value method that retrieves the doc-
ument (still in JSON format) is the "get" and the parameter "RawJson-
Transcoder.INSTANCE " is used to specify that the retrieved data is in
JSON format, since the serialization to transform it into a Project object is
done after using the GSON library.

15https://docs.couchbase.com/java-sdk/current/howtos/kv-operations.html

65

public Project retrieveProject (String document_id) {

GetResult projectResult =
collectionProjects .get(document_id ,

GetOptions . getOptions ().
transcoder (RawJsonTranscoder . INSTANCE));

String returnedJson =
projectResult . contentAs (String . class);

Gson gson = new Gson ();
Project project =
gson. fromJson (returnedJson , Project .class);
return project ;

}

Listing 4.8: Couchbase method to retrieve a project (excerpt from "Couch-
baseAdapter" class)

4.5.2 Database model

Unlike typical relational database systems that use the Entity-
Relationship Model for the representation of the data model, DynamicIS is
based on a non-relational document-oriented database. As it happens, this
database stores documents in JSON format and it is difficult to abstract
the document model to an Entity-Relationship Model. For this reason, it
was opted to apply the authors’s proposal of [43] for a standard approach to
building data visualizations in the form of ER diagrams for NoSQL, more
specifically document-oriented. Therefore, in order to better understand the
database implementation of the DynamicIS system, a data model diagram
was created, represented in Figure 4.7.

The diagram is organized into seven main entities represented in the
shape of a document. Each document represents a class in the applica-
tion but also groups (or collections) of documents that follow an identical
structure, the so-called "Buckets" of Couchbase. The arrows between the
documents represent a relationship between them, which is equivalent to a
reference made by the ID of one document as an attribute of another doc-
ument. For example, all documents of the entity User contain a list of IDs
for entities of the type "Project" and the equivalent one-to-many notation
as in the UML is used. In addition to this type of relationship through ID
references, a document can have one or more embedded documents and in
the Java class this translates to an attribute of an Object type and not just
its reference in a String. In the case of embedded documents, the same no-
tation of the UML is used. For example, the Document of the "Form" entity
contains several documents of the "Field" entity, thus also constituting a
one-to-many relationship. Hence, taking the Form Document as example,
its JSON structure will be mapped (using the GSON library) in such a way
that its key-values correspond to the following attributes of the developed
Java Class represented in the Listing 4.9:

66

Figure 4.7: Document-oriented data model of DynamicIS based on [43] pro-
posal

public class Form {

private String couchbaseID ;
private String name;
private String icon;
private List <Field > fields = new ArrayList < >();
private List <String > actionsNames = new ArrayList < >();
private String embedLink ;
private String formViewId ;

...
// constructor , getters , setters and auxiliary methods

}

Listing 4.9: Excerpt from Form class of DynamicIS web app

67

As can be seen in Listing 4.9, following object oriented programming
practices, the attributes declared in the class are preceded by the keyword
"private" in order to be protected from unexpected changes from outside
this class. For the outside classes to be able to access the attributes of this
class, getters and setters were created (not represented in the Listing).

Considering this, each of the declared attributes corresponds to a key
in JSON and this does not have to be strictly followed as the application
will still run if there are more keys in JSON. Also there is a "formViewId"
attribute that corresponds to a reference to the "FormView" entity and a
list of "Field" objects that correspond to documents embedded in the JSON
of this entity as shown in Listing 4.10 which represents a document of type
Form in Couchbase.

{
" couchbaseID ": "dd76afa9 -e2a3 -4ed4 -b59a -7 cf34c829129 ",
"name": "Nurse",
"icon": "fa -user -o",
" fields ": [

{
" length ": 30,
"idx": 0,
" fieldName ": "Name",
" required ": true ,
"type": " TextField ",
" description ": "Nurse name"

},
{

" defaultValue ": 20,
" hasDefaultValue ": true ,
"idx": 1,
" fieldName ": "Age",
" required ": true ,
"type": " IntField ",
" description ": ""

}
],
...

}

Listing 4.10: Example of "Form" Document stored in Couchbase

That said, a description for each entity will now be presented in order to
explain its functionality in the system (all the specified classes are located
in the model folder of the DynamicIS web app development framework).

• User - As in almost every other software system, there is a need to
store information about the user who interacts with the system. That
is why this entity exists and stores information about the "uid" (which
is acquired through Firebase’s authentication service), "couchbaseID"
which is the document id in Couchbase, the user’s email used as au-
thentication element and a list of Projects created by that user.

• Project - The purpose of DynamicIS is the creation of information
systems and, in this context, this entity serves to store information

68

about a project that basically contains all the necessary content for
the development of the information system. Thus, this entity has a
project name, information to access the Skyve URL, project directory
on the machine that contains the Skyve server, name of the Customer
for which the information system is being created and also a list of
modules created the last time the project was generated. In addition,
the Project keeps a list of all the modules it consists of.

• Module - An information system usually contains sections that group
together information with related content. For example, an informa-
tion system should have a "Staff" module with information about doc-
tors, nurses, etc. It is in this sense that this entity exists, in order
to store the metadata of forms, results pages and groups. Note that
a module will be a section in the navigation menu of the generated
information system, so it needs to have a name.

• Group - This entity is used to organize result pages and forms more
specifically than in modules. In the generated information system, all
the content within a group (which also has a name) will be entered in
a subsection of the menu.

• Form - Forms are a fundamental part of any information system.
They are used to fill in information about a certain subject by those
using the system and generally the system revolves around them. This
entity was created for the purpose of storing metadata about Forms.
As such, it contains a name (which is present in the navigation menu
of the information system) the name for a FontAwesome library icon, a
url to embed the form (outside the information system) and contains
a list of all the fields that the user will add to the form. Although
not represented in the diagram in the Figure 4.7, the Fields are ex-
tended by other child entities that represent subtypes of fields and
that correspond to most of the types used in forms which will rep-
resent a SQL data type in the tables of the IS generated by Skyve,
they are: Text, TextArea, TimeField, Timestamp, Integer, Image,
File, DateTime, Data, Combo box, Checkbox, Aggregation Associa-
tion and finally Composition Association. The fields enumerated are
the possible choices of fields for selection on a form, each of which has
different characteristics and constraints.

• FormView - Some DynamicIS users may need to create more cus-
tomized form views and not just define the fields of a form. This
entity was created in order to provide a more advanced means of cus-
tomization to the Form entity (and is therefore referenced there) ei-
ther in terms of layout and element arrangement or by adding compo-
nents other than fields. Thus, this entity contains another entity "For-

69

mViewObject" which consists of a type of object that can be added to
the form view. It should be noted that although it is not represented
in the diagram, a "FormViewObject" contains other "FormViewOb-
jects" that extend this class: "VContainer" and "HContainer" which
represent vertical and horizontal containers, "Tab", which represents a
tab layout, three components which are "HtmlComponent" (block of
html code) , "GCalendar" (Google Calendar) and "ActionComponent"
(buttons with actions). Also, the entity "FormWidgetView" that rep-
resents a form, "FormRow" and "FormColumn" that represent columns
and rows of a form and finally "FormRowItem" that represents an item
inside a row that can be a field.

• ResultView - Besides the Form, a ResultView is another fundamental
piece of an information system, because it is the entity that represents
the tables with a view of the contents obtained from the forms. Thus,
this entity contains another entity, "Query", which represents the con-
tent to be made available about a given form in the generated infor-
mation system. A "Query" contains another entity "Column" which
specifies the attribute of the form element to be represented, contain-
ing the name that will be visible in the table to the information system
user as well as other characteristics. The "Column" entity is an ex-
ample of the flexibility of the NoSQL schemaless because there are
"Column" documents that represent an image and will have more at-
tributes, such as the size of the thumbnail of the image to be displayed,
allowing documents of the same type to be different, in other words,
a different scheme.

4.6 System Implementation
The implementation of DynamicIS started with studying the Play

Framework, its capabilities and working methodology. In addition, it was
necessary to understand Skyve engine, specifically the mechanism underly-
ing the manipulation of the database structure of the information system,
in order to the implementation of a flexible integration between the two
platforms.

Overall DynamicIS allows a fast, easy (No-Code) way to implement an
Information System based on domain definition through form building but
also with more advanced components. Thus, the DynamicIS platform is in
charge of creating and storing the metadata concerning the entire composi-
tion of the information system, allowing for a quick setup and modification.

That said, in addition to what was covered in the previous sections, in
terms of Persistence and Integration with Skyve, this section presents more
implementation considerations and how its components work together. In

70

the next chapter, some screenshots of DynamicIS running with the imple-
mentation of the following sections will be presented.

4.6.1 Authentication

Like most applications, DynamicIS needs to recognize the identity of a
user in order to secure the data belonging to him and provide that data
regardless of the platform with which the user uses DynamicIS.

In order to ensure segregation of responsibilities in a service oriented
architecture approach, the choice was made to leverage Google Firebase
Authentication, which contains robust components and a back-end to man-
age the registration flow, login in and log out. Besides the Firebase au-
thentication back-end, it was also taken advantage of FirebaseUI which is
an open-source JavaScript library that allows communication through the
client with the Firebase back-end.

The first step was to create a project registration for the DynamicIS ap-
plication, as well as adding its authorized access domain in Firebase console.
Then, it was necessary to insert a CDN to obtain the Firebase library in
the "main.scala.html" view of the DynamicIS web app template so that, as
all the other views extend this view, it will be possible to ensure that the
user authentication status is maintained by all the views. Only email and
password authentication was used for proof of concept, although Firebase
supports multiple providers. The "auth.scala.html" template page is the first
to be called when DynamicIS is launched and it is this page that starts the
FirebaseUI with the component for the user to log in or register. It is in
the FirebaseUI configuration script that callbacks are added after an action.
In this case, a callback is added to the DynamicIS back-end controller to
create a new user and store a reference to this user (using the ID created
by Firebase) in the User entity (explained in the Persistence section). In
addition to this callback, another one is triggered in case a user successfully
logs in (this check is done through the Firebase back-end) and that calls
a method in the DynamicIS controller to retrieve the User’s projects and
load the User’s home page. It should be noted that the callbacks, as they
are done from the client, take advantage of the JavaScript routing system
provided by PlayFramework in order to call a method from a DynamicIS
back-end controller.

4.6.2 Front-end capabilities

DynamicIS platform intends to provide a conceptual model that ap-
proaches a PaaS for SaaS development through DynamicIS web app inte-
grated with the Skyve server that allows the deployment of the software
(Information System). In this case, the DynamicIS web app is a platform
with a No-Code development environment that allows the quick and easy

71

creation of Information Systems for a broad group of people whether they
have programming knowledge or not. Unlike more manual code writing ori-
ented environments, DynamicIS is focused on visual components with drag
and drop capabilities while having an intuitive and mobile friendly interface.
In DynamicIS, there is no text editor but rather components that generate
the text (code and metadata).

On the DynamicIS interface pages it is possible to visualize the content
created by a user, whether its projects, inside the projects the modules
and in this one the forms and results pages. Besides the visualization of
this content, the platform also allows a drag-and-drop reorganization of the
content on the same page, and this organization will correspond to changes in
the disposition of elements in the information system that will be generated.
To provide content from the back-end to the front-end of DynamicIS, the
Play Framework’s twirl template allows the inclusion of parameters in the
template since they work as functions (in this case in Scala language).

The example shown in Listing 4.11, presents a function of the template
for the preview page of a User project. The first parameter is the project, an
object of type "Project" present in the models folder. The second parameter
refers to a list of modules contained in the project of type "module". The
third parameter refers to the user ID which is of type "String" (standard
Scala and Java data type). All these parameters are loaded from a function
present in a back-end controller.

@(project : models .Project , modules : Seq[models . Module],
userID : String)(implicit request : Request)

Listing 4.11: Parameters of "ProjectPage.scala.html" located at the top of
template page

The display of the contents in the interface is in general done from an
iteration between all the IDs present in the Project. If it is on a Module
page, after the iteration, a check is made to distinguish the ID in order to
verify if it belongs to a Form, ResultPage or Group and thus associate an
action to the respective function in the back-end.

Drag-and-drop is controlled from a JavaScript script that handles and
adds a Listener to the occurrence of an event, which in this case is the end of
Drag. This event triggers through JSRoutes a function to reorder the items
which takes as parameter the IDs of the item that started drag-and-drop
and the item that ends it, and makes the respective index updates so that
the order is updated. In case the user is in "Group Mode", the script does
not reorder the elements but rather groups the items and triggers a different
controller function for this purpose.

That said, it is worth mentioning that the front-end operation is dynamic
and based on the content loaded from the back-end controllers, and although
not very complex (to not overload the client) the logic present in the twirl

72

template engine allows to create highly flexible pages without resorting to
other frameworks.

4.6.3 Form and Result page building

Forms are important parts that integrate information systems, as such
DynamicIS allows a developer to create them from a graphical interface. In
this interface, an index-based approach was used to handle the fields that
are dynamically added through the client. Whenever a field is added to a
form, it will be identified with an index so that, when the back-end receives
the form request, it can distinguish fields as they can be reordered from
drag-and-drop and as they can be extended from the parent class "Field".
Each field thus has to be processed individually on the backend because they
have different properties. For example, a field of the subtype "ComboBox"
needs to have features that allow the user to add options to it. After form
submission, the backend also validates the form by presenting error messages
to the client if the form is not valid.

Just as it is possible to enter information using forms, an information sys-
tem also needs to allow visualization of the information entered and stored
in the database. For this reason, DynamicIS contains a mechanism to create
Result Pages with developer-defined queries. The mechanism is similar to
that of form fields but in this case instead of fields it is possible to choose
columns to be available for viewing in a table associated with the attributes
of a specific form. After creating a result page, Couchbase stores the meta-
data related to the queries and in the project generation phase (described
in the Project Generation section) they will be converted into queries rec-
ognizable by Skyve.

For all Form and Result pages created from DynamicIS, it provides a
link that can be embedded. This can be useful if external services want
to access the GUI of the information system and embed it via an iframe
but without the navigation menus that are included by default in all Skyve
pages. To implement this functionality, it was necessary to make changes to
Skyve’s default Routing mechanism. In this case, it was necessary to add
the code excerpt present in Listing 4.12 to Skyve’s "router.xml" file, which
directs where to forward the request.

<uxui name=" public ">
<route outcome ="/ external / editembed .xhtml" >

<criteria webAction ="e" />
</route >
<route outcome ="/ external / listembed .xhtml" >

<criteria webAction ="l" />
</route >

</uxui >

Listing 4.12: Excerpt of code added to Skyve "router.xml" file

73

Skyve makes use of JavaServer Faces and XHTML for the definition of
client web pages and therefore two pages "editembed.xhtml" and "listem-
bed.xhtml" were created and adapted from the original Skyve "edit" and
"list" pages in order to embed only the form and the results. It was also
necessary to adapt Skyve’s "home.jsp" file because this is where the requests
go first. This is where they are analyzed and checked to see if are valid
and then the "router.xml" file is called so that the request is redirected to
the specified pages. The changes included the addition of the parameter
"p" (of the url) for "public" so that the forms that can be embedded are
made publically available. In this case, Skyve’s routing system will provide
a link. For example, a "Medic" form belonging to the "MedicStaff" module of
the "dynamicis" project can be accessed in a widget style through the link:
http://{domain}/dynamicis?a=e&m=MedicStaff&d=Medic&p=public

4.6.4 Advanced Form customization

Besides creating forms by just defining their fields, DynamicIS allows
advanced form customization to meet more specific requirements. This cus-
tomization not only allows to adjust the layout of the form, but also to add
more components such as HTML code blocks, actions and calendars. Both,
advanced form design and the regular design features of DynamicIS, allow
the developer to make no mistakes when building the information system be-
cause everything is controlled. The developer defines components through
a user interface that imposes rules, unlike Skyve’s characteristic low-code
that allows several mistakes to the developer and requires some time to get
used to metadata specification.

One of the features implemented on the views page was a tree-view style
side navigation menu. Given the nature of the organization of objects within
a view, these can be of various sub-types and are organized in lists within
lists. So, this navigation menu has to be built dynamically in the client
using recursion to traverse all objects within objects. For this, the template
receives as argument a JSON string which contains the object lists, then a
JavaScript script converts the JSON string into a JavaScript object to be
manipulated. Next, the HTML elements are created recursively using the
method "Element.classList", which allows to manipulate HTML elements in
order to create a ListGroup using also Bootstrap classes. Since each element
in the menu contains a link to select an object (and each object has different
behaviors in the view) it is also necessary to create this link dynamically
through back-end calls to a function that goes through all the elements
recursively and creates a link for the element to be selected that redirects
the user to it when selected.

Calendars and scheduling are features often adopted in information sys-
tems. However, in the analyzed platforms, it is not a native feature or
they do not have tools that assist the process of creating calendars for the

74

information system. For this reason, a component was implemented in Dy-
namicIS in the advanced view that allows calendars to be created in an easier
way. The choice was to use Google Calendar and its API, a system very
used by the community that contains useful synchronization across multiple
devices. A user can bind specific fields of a form (one text field, and two
of type Date) to automatically create events in the calendar whenever he
fills those fields of the form. This way, for example, a doctor can register an
appointment by filling out a form in the information system and an event
is created in the calendar that can be accessed even from the smartphone
(it does not have to be in the information system) as long as the google
calendar has the same account associated.

That said, in order for a developer to create a calendar, first needs to
create a Google service account. These accounts are a special type of ac-
counts to be used in applications. This way, the application (in this case a
DynamicIS project) can make authorized calls to the Google Calendar API.
It is also necessary for the developer to create (from the service account
console) a credentials JSON file that can be dragged into the DynamicIS
interface which automatically associates with the calendar. The developer
just has to put the calendar ID and iframe so that it can be embedded. This
information is easily accessible and can be found in the settings of a Google
calendar as can be seen in Figure 4.8 with the red and green arrows.

Figure 4.8: ID and iframe present in the settings of a Google calendar

After containing this information, DynamicIS dynamically generates
Java code that binds the form fields and creates the events automatically
by calling the Google calendar API.

Automatic code generation is a common and important feature in Low-
code/No-code platforms and in DynamicIS, besides the code generated for
the Google Calendar component, it was also necessary to implement a mech-
anism for actions that can occur in the client (IS) and that trigger an event
in the Skyve server (such as redirection actions). This mechanism was im-
plemented based on the adaption of Skyve functions and metadata. So,

75

when a project is being generated, DynamicIS will iterate over all the com-
ponents of a View, and each of these, when necessary, will generate Java
files that will be transmitted through the "/newCustomAction/" endpoint
of the DynamicIS REST API to the a specific directory in the Skyve server
project structure.

4.6.5 Project generation

DynamicIS is a system that explores Skyve’s Low-code capabilities to
create a No-Code platform with more automatic code generation and greater
flexibility. However, since each one can work independently, it makes it
possible for a system to be developed by two different entities. A domain
knowledgeable person such as a doctor can build a form using DynamicIS
from his tablet and see the result almost instantly in a fully functional IS, and
a developer with more knowledge can later make more specific modifications
or adaptations from Skyve using an IDE.

As shown in the Figure 4.9, this integrated system consists of three layers,
with the DynamicIS web app (No-code) and DynamicIS Rest API (Commu-
nication) created as part of this dissertation proposal. Minor changes were
made to the Skyve level for configuration purposes, so any project created
with Skyve can be easily connected to DynamicIS in order to be extended.

The components that are part of the DynamicIS web app and participate
in the process of generating a project consist of the ProjectController that
performs operations on the database from the "CouchbaseService" service,
which in turn makes use of Models (Java object classes). The "Project-
Controller" also makes use of two auxiliary components that build Skyve’s
specific metadata classes. The method in charge of generating a project, that
transforms what was created in DynamicIS into useful content for Skyve, is
the "generateSkyve()" and will be explained next.

Before invoking the generateSkyve() method, the client first makes a call
to the "testServerConnection()" method which in turn invokes the "/test-
server" endpoint of the DynamicIS REST API. If it has a positive response,
then the client does the routing to call generateSkyve(). It should be noted
that the call to "testServerConnection()" is also made after a timeout if the
Skyve server does not respond and then the client displays a button for the
user to restart the operation. That said, "generateSkyve()" is composed of
6 stages that must be executed sequentially, and an error in one stage does
not allow to proceed to the next one. This staged process is responsible for
creating an information system running on the Skyve server from a project
created in DynamicIS. Most of the interactions between the two systems
occur in the process, via the DynamicIS REST API:

1) It starts by executing a function that checks the modules that have
been removed since the last generation of the project. It then iterates

76

Figure 4.9: Project generation components

over those modules and through the "/removerole" endpoint, using
the Play WebService (WS) library, it communicates with the Dynam-
icIS REST API. Note that the WS was used with the method "to-
CompletableFuture.get()" in order to make an HTTP asynchronously
(non-blocking) but, since it has the .get(), it expects the call to return
a response. All DynamicIS REST API calls work using this pattern,
so that they execute sequentially. Already in the DynamicIS API,
the system will execute a query on the Skyve database in order to
eliminate the "Roles" for these modules. This procedure is necessary
because Skyve uses roles and does not allow users to access modules
if they have no role (they are not authorized). However, if there is a

77

role in the database for a module that no longer exists, it generates
an error. Next, it is necessary to track the modules removed since the
last generation of the project, so that a developer using DynamicIS can
make changes to the modules without bothering with further configu-
rations. After that, there is a call to the API endpoint "/cleanmodule/"
in order to delete the directories and files belonging to modules that
are no longer used in the Skyve server directory. Whenever a phase
ends, the client reloads and updates the project generation progress
along with a status message describing the phase procedure.

2) It iterates over each module in the project, makes the necessary con-
sistency checks and, within each module, it checks its forms. If a
form has association fields to forms (i.e. relationships between tables)
from other modules, Skyve needs the metadata file of the module con-
taining that form to reference the other module, so this process is
done automatically in DynamicIS. Also, if a form has been customized
through a view, another Skyve XML metadata file will be sent via
the DynamicIS API endpoint "/newview", as Skyve distinguishes be-
tween the two types of forms. This endpoint will send an XML doc-
ument created with the help of the DynamicIS "ViewSkyveAdapter"
service, which in general creates a Skyve metadata class correspond-
ing to a view from the metadata stored in DynamicIS, specifically in
Couchbase. For regular forms (without advanced customization), the
"FormSkyveAdapter" service will be used in a similar process to the
one explained above, but this time the endpoint for transmitting the
XML document will be "/newdocument". Also on a module, the exis-
tence of Result Pages is verified. The queries created, corresponding
to columns that will be displayed in the information system within
a module, are added to the Skyve metadata document. Next, the
groups created are verified and added to the module. Finally, being
completed the operations on a module, it will be converted into an
XML document of Skyve specific metadata and be sent to the Skyve
server from the endpoint "/updatemodule".

3) Skyve supports multi-tenant SaaS with the possibility to customize
an application for each specific customer. For each customer, it needs
a metadata XML file with settings and declarations concerning that
customer, the modules accessible by it, the module that will be started
as home page and other aspects such as the system language.This stage
is responsible for creating that XML document and sending it to the
Skyve server through the "/newcustomer" endpoint.

4) This stage is in charge of sending an image that will be the informa-
tion system’s logo. This will appear in the upper left corner above the
generated system navigation menu as well as on the default authenti-

78

cation page. For this, the image will be converted from a sequence of
bytes to a String using the Base64 encoding scheme. It will be sent by
the endpoint "/updatelogo", and on the API Skyve side, the inverse
process of decoding will be done.

5) Orders are given to the Skyve server to proceed with the execu-
tion of Maven commands via the "/applymavencommands" endpoint.
Skyve contains Maven targets utilities to assist developers in some
processes. These targets can be executed from commands in the Dy-
namicIS API beginning with "mvn" which will be executed using the
java.Lang.Runtime that allows the application to interact with the en-
vironment it is running in. In total, 3 commands will be executed
sequentially that will generate the information system domain, vali-
date and compile the metadata (XML files), update the directory with
the compiled project, restart the Skyve server and deploy the project.
At this point, an information system is already deployed with the nec-
essary tables in the relational database.

6) The last stage is used to register the last modules generated in the
current project so that it is synchronized with the next generation
of the project. Also, since the information system is now running, a
button will appear on the client so that a user can be redirected to a
page with the information system preview.

79

Chapter 5

Results

This chapter covers the results obtained. Besides screenshots of the Dynami-
cIS App interface, the actions and options available to the user will be briefly
described. Throughout the presentation of the interface, an example of an
information system will be developed based in the scope of a typical use case
for a medical information system. In the final section, the project will be
generated in order to validate the solution.

5.1 General aspects and Authentication
Since the DynamicIS app was designed as a No-code platform, it is as-

sumed that it can have a more generalized usage by users already accustomed
to the mobile application paradigm. DynamicIS takes into account respon-
siveness and adaptation to different screen sizes through the layout of its
elements and a design based on buttons and intuitive simple interface.

Figure 5.1 shows the initial interface of a DynamicIS workflow and cor-
responds to the authentication page. The application contains a top bar
in blue color that remains on every page, where it is possible to click on
the DynamicIS logo to be redirected to the main page containing the user
projects, if logged in. In the upper right corner, it is the email address of
the logged-in user and a log-out button to clear the entire browser session.
It should be noted that, if a user enters an email address that does not exist
in the system, the interface presents an option to create an account on the
fly. After a user logs in, it will redirect to its homepage.

5.2 Projects
A project is defined as the set of all the components that will be inte-

grated in order to originate the information system. After a user logs in,
all his previously created projects will be shown with the icon of a folder as
shown in Figure 5.2. It is on this same page that a user can create a new

81

Figure 5.1: Authentication page

project or edit an existing one by clicking on it. If the user wants to create
a new one, a new page will be displayed (Figure 5.3) in order to fill in the
project information and the respective fields needed for the integration with
the Skyve server.

Figure 5.2: List of projects

It is on this page that the base URL for connecting to the DynamicIS
REST API is set, as well as the root directory of the Skyve project present
on the machine where the server is running. This is also where the choice of
the information system logo is made which will be stored in the DynamicIS
database, because the transmission of the logo to the Skyve server is only
made when the project is generated. Note that all these settings can be

82

edited at any time on a project page, as will be demonstrated next. This
approach to connecting to a Skyve server makes it possible to quickly in-
stantiate a similar project that needs minor changes to another customer
from the same project created in DynamicIS, saving a lot of development
time in the design of forms and database structure.

Figure 5.3: New project page

5.3 Project page
When a user clicks on a project it will be redirected to that project’s

page. It is on this page that is showed the existing modules that compose it.
It will be also provided functionalities to generate the project, edit project
information, create new modules and remove the project (deleting all its
data from the database). Figure 5.4 (the top bar has been omitted from the
screenshot) shows this page with 3 modules created. Each new module cre-
ated will be displayed in the "Modules" container and these can be dragged
at any time to change their order. The order of the modules changes their
positioning in the side navigation menu of the information system (as shown
in Figure 5.18) generated by Skyve.

5.4 Module page
When a user clicks on a module, it will be redirected to the module page.

On this page, it is possible to see all the items that make up the module, such
as the Forms, and the Result Pages. The user can edit them at any time or
drag them (just like on the modules page) to change their arrangement that

83

Figure 5.4: Project page

will be reflected in the information system. In addition, it is also possible to
group forms and results into groups by clicking on the "Group mode" button,
where dragging stops rearranging and switches to grouping mode. Figure
5.5 shows the created "Staff" module containing two forms and a group (in
gray) consisting of two results pages. Here, everything is dynamic, and the
order, groups and their names can be changed at any time. The "import
form" option allows to import a form from another module in a way that
allows to quickly change a similar form by importing his content.

5.5 Form page
It is on the Form page that the fundamental part of an information

system, i.e. the form, is created. A user can add form fields dynamically,
even if the form have been submited and the information system has been
generated, because forms can be updated at any time. Figure 5.6 shows
the form constructed for the entity "Medic". Each new field created con-
tains 3 generic elements to fill out: the option to add a description (tooltip
that appears next to the field in the generated IS), a checkbox to make
the field mandatory to fill out, the name of the field. In the DynamicIS
platform, it is possible to choose among different types of field (with filling
constraints) that present new and specific options. Figure 5.7 shows a field

84

Figure 5.5: Module page

of the association type aggregation of the form "Appointment" for making an
association between two forms (corresponding to relations between tables in
the information system database). In this case, the "Aggregation" field has
two selection boxes available to select from among the available forms pre-
viously created. Adding tooltips is done by clicking the "Add Description"
option which displays the page shown in Figure 5.8. After the description
is added, the icon turns blue to show that a description has already been
created. Once again, it is possible to reorder items, in this case fields, by
clicking the "Reorder Fields" button, which makes the Remove icon change
to a Reorder Icon and makes it possible to drag fields to change their po-
sition on the form. A user can change the form icon that will appear in
the navigation menu of the information system by setting a Font Awesome
icon. Also, as already discussed in previous sections, a link is available so
that the form can be embedded in another external website by creating a
special widget. One of the goals of DynamicIS is to create an error-free
system for the developer. For this reason the entire workflow is protected.
As shown in Figure 5.6, if a user clicks the "Create Form" button without
having any field selected as "Required", a red warning message will appear
informing the user that the form cannot be created and registered in the
database (different messages appear, depending on the condition, to ensure
a consistent form creation).

This is the simplest and quickest way to define a form template, and is
enough to generate a fillable form in the information system, with a lay-
out where each field take up one line. If a user wants a more advanced
customization with other components than just fields, can do this by click-
ing on the "Advanced Mode" button in order to be redirected to the page
presented in Figure 5.9 where a view for the form can be designed.

85

Figure 5.6: Form page

Figure 5.7: Field of type Association Aggregation in "Appointment" form

Here the user can organize the items of a view into containers (Figure
5.10) that automatically arrange elements inside them vertically or horizon-
tally, and can also place containers in separate Tabs. There are two possible
ways to navigate over the items in the view, either through the "Navigation

86

Figure 5.8: Form field description page

Figure 5.9: View for advanced form customization

87

View" menu, which allows to see the complete structure of the View and
where the item currently selected is in blue, or through the "Layout Area"
that allows to browse the items contained within the currently selected item
with the possibility to select an item to change its settings, such as the
alignment of a form’s fields, the option to add a border and a name to the
form, etc. Note that the button options that are at the top differ depending
on the item currently selected by the user, for example it is only possible to
place fields inside a form, so this option button is not shown as the user in
the screenshot of Figure 5.9 has a "vertical container" item selected.

Figure 5.10: View Container dialogue

Also, on this customization page, components can be added in addition
to the forms (Figure 5.11) in order to give extra capabilities to the infor-
mation system. As mentioned before, the ability to support calendars is
a very recurring feature in information systems and DynamicIS contains a
mechanism to facilitate this implementation through the Google Calendar
Component (Figure 5.12). On the Calendar component page, in addition
to a user filling out information to associate with a Google calendar, it also
has selection boxes to associate compatible form fields with the creation of
calendar events automatically as a user in the information system fills out
these fields. The HTML block component allows more advanced users to
add HTML or even JavaScript snippets to the page, these will automatically
be placed in a <div> in the generated information system interface. Figure
5.13 shows the page of the component that allows this, where it is possible
to drag a file with the code that will be automatically placed in the text area
on the left and can be edited there. Finally, it is possible to add an action,
i.e. a button that triggers a certain action when clicked by a user of the
information system. In this case, it is shown in Figure 5.14, the "Redirect
Action" that allows, after saving the contents of a form, to redirect the user
to another form page in order to create form filling flows. Here a user has
the option to choose a dialog message that appears after clicking the button,
the text that appears on the button as well as the icon and the redirection
form, within the existing ones in the project.

88

Figure 5.11: Select component dialogue

Figure 5.12: Google calendar component page

5.6 Result page
Once the information has been entered into the information system by

filling out forms, it is necessary to have pages with tables to make this
information available in an organized way. In DynamicIS, these pages are
created through Result Pages. The configuration of a Result Page is shown
in Figure 5.15 to demonstrate the results of the entity "Appointment". The

89

Figure 5.13: HTML component page

Figure 5.14: Redirect action component page

configuration is done by choosing the associated form and therefore the
fields that will be shown in the result table (from the fields that compose
the form). If a user does not click on the "Add Query" option, DynamicIS
will automatically create a result page that simply shows a table with all
the fields that compose the form with default settings.

If a user wants to choose specific fields, as shown in Figure 5.16 for the
entity "Medic", it is possible in some fields, such as the image type, to set

90

Figure 5.15: Result page configuration with default query

more different configurations.

Figure 5.16: Result page for the "Medic" entity with a configured query

5.7 Test and validation
After a user is satisfied with solution designed and wants to create the in-

formation system from the project, it can do so by clicking on the "Generate
Project" button that is located on a project homepage. It will be redirected
to the page shown in Figure 5.17, which contains a progress bar and dis-
plays messages informing of the operations performed on the Skyve server
that communicates through the DynamicIS REST API. At the end of the

91

generation, an option to run the project appears, which is made available to
preview through an iframe embedded in DynamicIS web app.

Figure 5.17: Generate project page

It is important to note that the process of project generation in an in-
formation system is relatively fast, for a first startup with new forms where
it is necessary for Skyve to create new tables in the database, it takes an
average of 35 seconds from the start of the generation until the solution
availability. A next generation of a project with only form changes, such
as adding a new field or other minor updates, only takes an average of 27
seconds. These metrics are important because, in a production, information
system they mean how long the system is down and can not be used.

While the changes are being made in the DynamicIS web app, the infor-
mation system is running normally as the two systems work independently,
also allowing for greater security in the information stored in the database.
Another significant aspect is the fact that as DynamicIS is oriented to No-
Code and implicitly to the use of less experienced developers. The removal
of a form does not imply the removal of a table, nor of its information in the
information system’s database, it only implies system changes in the infor-
mation system user interface. This way, the administration of the database
can be left to more experienced developers not allowing errors and even
worse, the loss of important data.

That said, the next screenshots are the actual interface of the prof-of-
concept information system created with the DynamicIS web app. Figure
5.18 demonstrates the side navigation menu, containing at the top the logo

92

that was loaded when the project was created, in blue the tabs corresponding
to the modules created, and in the Staff module it is also possible to see the
"Results" group created to group all the results pages, forming a sub-section
within the module.

Figure 5.18: Side navigation menu containing the structure of the IS

Figure 5.19 demonstrates the results page for the entity/form "Medic"
with a table and a record that was filled in through the form for demon-
stration. Here can be seen the fields defined previously in the DynamicIS
interface (Figure 5.16) for visualization.

Figure 5.19: Result page generated for the IS

The result of generating the defined advanced view (Figure 5.9) in the
information system is shown in Figure 5.20 which contains the calendar
component as well as the created form. In this page, a user fills in the
fields of the "Appointment Information" and, after clicking the "Register
Appointment" button, an event will be automatically created in the calendar
from that information.

93

Figure 5.20: Advanced view created for "Appointment" form in the IS

Another form was created from the DynamicIS web app contained within
the "Forms" module to demonstrate an example of forms with a different
layout that was quickly customized through the advanced view. Figure 5.21
demonstrates the result interface in the generated information system.

Figure 5.21: Example of generated form with different field arrangements.

94

Chapter 6

Conclusion

This chapter is allusive to the conclusion, presenting a summary, as well
as final considerations and work that could be done in the future within the
topic of this dissertation.

6.1 Final considerations
Today we are witnessing a rapid technological transformation of soft-

ware development methods. This is caused largely due to the advent of the
internet and cloud computing, and many companies are taking advantage
of these capabilities to provide tools and platforms that are more intuitive,
faster and accessible to a wider range of users. Information systems devel-
opment is one of the sectors that benefit most from these platforms, with
more and more data being generated and consumed around the world. It
is necessary to create systems that are more capable, scalable, developed
in a fast way, and most importantly, that provide features that make them
more flexible and dynamic, adaptable to the constant demand for different
requirements.

In this sense, the fast-growing Low-code and No-code platforms coupled
with new approaches to databases are the solutions that best enable de-
velopment adapted to current needs. They allow development time to be
shortened by reducing the writing of code and boilerplate code through au-
tomatic generation mechanisms, following the motto of not reinventing the
wheel. They are allowing more individuals with less experience to develop
robust solutions at lower cost and with increased flexibility.

Nowadays, open-source platforms emerge as convenient and capable so-
lutions, although few really offer a No-code environment without the need
to write and learn some type of code, as these features are more exploited
on proprietary platforms.

It was with the dynamism offered by Low-code solutions in mind that the
DynamicIS platform was created. This platform allows the development of

95

a complete information system by defining its fundamental basis, the forms.
Thus the entire development environment is No-code based on buttons and
drag-and-drop allowing a domain knowledgeable person with no program-
ming experience to turn his ideas into a ready-to-use information system,
in a short time and in a very intuitive way through any device running a
web browser. At its core, DynamicIS contains a dynamic metadata storage
mechanism that can be displayed and organized as a template that can be
updated by the developer at any time. DynamicIS was developed as a proof
of concept in strict integration (but at the same time independent) with
the open-source Skyve platform, a Low-code solution, taking advantage of
its robust work at the level of metadata processing in the database and
production of the final information system.

Without a doubt, all this evolution has proven to be very interesting, but
we must take into account that although these types of platforms contain
more and more capabilities, they still present limitations at the level of
more complex requirements, and therefore, more classical approaches by
developers with programming experience are still necessary.

6.2 Future Work
This work constitutes the basis of a platform capable of creating a simple

information system, and it is structured in a way that it can be extended to
create more complex components to integrate the range of its capabilities.
Something interesting that could be a great addition to this work, would
be to integrate a No-Code mechanism to create more complex workflows
in which the developer could design logic and actions that would occur in
the system if a certain event happened. Another capability that would en-
rich this platform would be a mechanism to automatically learn database
schemas from existing systems, i.e. by connecting DynamicIS to a system
currently in production, it would provide all the form structures automati-
cally so that they could be easily modified.

Finally, it would provide extra value to the solution, the upgrade to a
fully self-contained platform, that would run in a cloud environment, with-
out the need for the developer to instantiate external servers to deploy the
information system.

96

References

[1] R. Kadia. “Issues Encountered in Building a Flexible Software De-
velopment Environment: Lessons from the Arcadia Project”. In: SIG-
SOFT Softw. Eng. Notes 17.5 (Nov. 1992), pp. 169–180. issn: 0163-
5948. doi: 10.1145/142882.143768. url: https://doi.org/10.
1145/142882.143768.

[2] Paul Vincent et al. Magic Quadrant for Enterprise Low-Code Appli-
cation Platforms. 2019.

[3] Vladimir Zwass. Information system. Encyclopedia Britannica. url:
https://www.britannica.com/topic/information-system.

[4] Nan Niu, Li Da Xu, and Zhuming Bi. “Enterprise Information Systems
Architecture—Analysis and Evaluation”. In: IEEE Transactions on
Industrial Informatics 9.4 (2013), pp. 2147–2154. doi: 10.1109/TII.
2013.2238948.

[5] Paulo Neto. Demystifying Cloud Computing.
[6] Peter Mell and Tim Grance. The NIST Definition of Cloud Comput-

ing. 2011. url: https://csrc.nist.gov/publications/detail/
sp/800-145/final.

[7] Sagar Tambe. What Are the Types of Cloud Models? Apr. 2019. url:
https://www.cuelogic.com/blog/3-types-of-cloud-computing-
services.

[8] Desislava Ivanova, Plamenka Borovska, and Stefan Zahov. “Develop-
ment of PaaS using AWS and Terraform for medical imaging analyt-
ics”. In: vol. 2048. Dec. 2018, p. 060018. doi: 10.1063/1.5082133.

[9] Joe McKendrick. Low-code and no-code prepare enterprises for an ’un-
knowable future’. Mar. 2021. url: https://www.zdnet.com/article/
low-code-and-no-code-have-evolved-very-quickly-over-the-
past-year/.

[10] Gartner Glossary for Citizen Developer. url: https://www.gartner.
com/en/information-technology/glossary/citizen-developer.

97

[11] Cliff Saran. Covid-19 drives growth in low-code development tools. Feb.
2021. url: https://www.computerweekly.com/news/252496408/
Covid-19-drives-growth-in-low-code-development-tools.

[12] Roberto Torres. Low code helped put out COVID-19 fires. How can
leaders sustain momentum? June 2020. url: https://www.ciodive.
com/news/low-code-implementation-coronavirus-2020/580024.

[13] Apurvanand Sahay et al. “Supporting the understanding and com-
parison of low-code development platforms”. In: 2020 46th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA). 2020, pp. 171–178. doi: 10.1109/SEAA51224.2020.00036.

[14] Agnes Hallberg. “Using Low-Code Platforms to Collect Patient-
Generated Health Data: A Software Developer’s Perspective”. In:
(2021).

[15] Johan den Haan. Low-Code Principle #1: Model-Driven Development,
The Most Important Concept in Low-Code. Jan. 2020. url: https:
//www.mendix.com/blog/low-code-principle-1-model-driven-
development.

[16] Kristi Berg, Dr. Tom Seymour, and Richa Goel. “History Of Databases”.
In: International Journal of Management & Information Systems
(IJMIS) 17 (Dec. 2012), p. 29. doi: 10.19030/ijmis.v17i1.7587.

[17] What is a Relational Database (RDBMS)? url: https : / / www .
oracle.com/database/what-is-a-relational-database/.

[18] ACID properties of transactions. url: https : / / www . ibm . com /
docs/en/cics- ts/5.4?topic=processing- acid- properties-
transactions.

[19] João Lourenço et al. “NoSQL Databases: A Software Engineering Per-
spective”. In: Advances in Intelligent Systems and Computing 353
(Jan. 2015), pp. 741–750. doi: 10.1007/978-3-319-16486-1_73.

[20] Cristofer Zdepski, Tarcizio Alexandre Bini, and S. N. Matos. “An Ap-
proach for Modeling Polyglot Persistence”. In: ICEIS. 2018.

[21] Tariq N. Khasawneh, Mahmoud H. AL-Sahlee, and Ali A. Safia. “SQL,
NewSQL, and NOSQL Databases: A Comparative Survey”. In: 2020
11th International Conference on Information and Communication
Systems (ICICS). 2020, pp. 013–021. doi: 10 . 1109 / ICICS49469 .
2020.239513.

[22] Antonios Makris et al. “A Classification of NoSQL Data Stores Based
on Key Design Characteristics”. In: Procedia Computer Science 97
(2016). 2nd International Conference on Cloud Forward: From Dis-
tributed to Complete Computing, pp. 94–103. issn: 1877-0509. doi:
https : / / doi . org / 10 . 1016 / j . procs . 2016 . 08 . 284. url:

98

https : / / www . sciencedirect . com / science / article / pii /
S1877050916321007.

[23] Antonio Celesti et al. “An OAIS-Based Hospital Information System
on the Cloud: Analysis of a NoSQL Column-Oriented Approach”.
In: IEEE Journal of Biomedical and Health Informatics 22.3 (2018),
pp. 912–918. doi: 10.1109/JBHI.2017.2681126.

[24] Roman Čerešňák and Michal Kvet. “Comparison of query performance
in relational a non-relation databases”. In: Transportation Research
Procedia 40 (2019). TRANSCOM 2019 13th International Scientific
Conference on Sustainable, Modern and Safe Transport, pp. 170–177.
issn: 2352-1465. doi: https://doi.org/10.1016/j.trpro.2019.
07.027. url: https://www.sciencedirect.com/science/article/
pii/S2352146519301887.

[25] Cornelia A. Győrödi et al. “Performance Analysis of NoSQL and Re-
lational Databases with CouchDB and MySQL for Application’s Data
Storage”. In: Applied Sciences 10.23 (2020). issn: 2076-3417. doi: 10.
3390/app10238524. url: https://www.mdpi.com/2076-3417/10/
23/8524.

[26] Kamil Kolonko. “Performance comparison of the most popular rela-
tional and non-relational database management systems”. In: (2018).

[27] Roxana Sotoc Cornelia Győrödi Robert Győrödi. “A Comparative
Study of Relational and Non-Relational Database Models in a Web-
Based Application”. In: (2015).

[28] Jannatul Maowa. “A Comparative Study on Big Data Handling Using
Relational and Non-Relational Data Model”. In: (2017).

[29] Friedrich Gessert F Wingerath W. “NoSQL database systems: a survey
and decision guidance.” In: (2017).

[30] Matthew Aslett.What we talk about when we talk about NewSQL. Apr.
2011.

[31] Pwint Phyu Khine and Zhaoshun Wang. “A Review of Polyglot Per-
sistence in the Big Data World”. In: Information 10.4 (2019). issn:
2078-2489. doi: 10.3390/info10040141. url: https://www.mdpi.
com/2078-2489/10/4/141.

[32] Jiaheng Lu and Irena Holubová. “Multi-Model Databases: A New
Journey to Handle the Variety of Data”. In: ACM Comput. Surv. 52.3
(June 2019). issn: 0360-0300. doi: 10.1145/3323214. url: https:
//doi.org/10.1145/3323214.

[33] Margus Jäger et al. “Flexible Database Platform for Biomedical Re-
search with Multiple User Interfaces and a Universal Query Engine.”
In: vol. 187. Jan. 2008, pp. 301–310. doi: 10.3233/978-1-58603-
939-4-301.

99

[34] Meredith A. Barnes, Mathys C. du Plessis, and Brenda Scholtz. “To-
ward Database Inference by GUI Analysis: A Case Study”. In: Pro-
ceedings of the 2010 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists. SAIC-
SIT ’10. Bela Bela, South Africa: Association for Computing Machin-
ery, 2010, pp. 346–349. isbn: 9781605589503. doi: 10.1145/1899503.
1899542. url: https://doi.org/10.1145/1899503.1899542.

[35] Kunal Malhotra, Shibani Medhekar, and Shamkant Navathe. “To-
wards a Form Based Dynamic Database Schema Creation and Mod-
ification System”. In: vol. 8484. June 2014. isbn: 978-3-319-07880-9.
doi: 10.1007/978-3-319-07881-6_40.

[36] John F. Roddick. “Schema Evolution in Database Systems - An An-
notated Bibliography”. In: SIGMOD record 21.4 (1992), pp. 35–40.

[37] Carlo Curino, Hyun J. Moon, and Carlo Zaniolo. “Automating
Database Schema Evolution in Information System Upgrades”. In:
Proceedings of the 2nd International Workshop on Hot Topics in
Software Upgrades. HotSWUp ’09. Orlando, Florida: Association for
Computing Machinery, 2009. isbn: 9781605587233. doi: 10 . 1145 /
1656437 . 1656444. url: https : / / doi . org / 10 . 1145 / 1656437 .
1656444.

[38] Stefanie Scherzinger and Sebastian Sidortschuck. “An Empirical Study
on the Design and Evolution of NoSQL Database Schemas”. In: Oct.
2020, pp. 441–455. isbn: 978-3-030-62521-4. doi: 10.1007/978- 3-
030-62522-1_33.

[39] Stefanie Scherzinger, Thomas Cerqueus, and Eduardo Cunha De
Almeida. “ControVol: A framework for controlled schema evolution in
NoSQL application development”. In: 2015 IEEE 31st International
Conference on Data Engineering. 2015, pp. 1464–1467. doi: 10.1109/
ICDE.2015.7113402.

[40] Joe McKendrick. Evolutionary Database Design. May 2016. url:
https://martinfowler.com/articles/evodb.html.

[41] John R Rymer et al. The forrester wave™: Low-code development plat-
forms for ad&d professionals, q1 2019. 2019.

[42] Cory Nance et al. “Nosql vs rdbms-why there is room for both”. In:
(2013).

[43] Harley Vera et al. “Data modeling for NoSQL document-oriented
databases”. In: CEUR Workshop Proceedings. Vol. 1478. 2015, pp. 129–
135.

100

