
Universidade de Aveiro
2021

Fábio Miguel
Correia Alves

Braço Robótico e Humano Desempenham Tarefas de
forma Colaborativa

Collaborative Tasks between Robotic Manipulator
and Human

Universidade de Aveiro
2021

Fábio Miguel
Correia Alves

Braço Robótico e Humano Desempenham Tarefas de
forma Colaborativa

Collaborative Tasks between Robotic Manipulator
and Human

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Doutor José Nuno Panelas Nu-
nes Lau, Professor associado do Departamento de Eletrónica, Telecomunicações
e Informática da Universidade de Aveiro, e do Doutor Manuel Bernardo Salva-
dor Cunha, Professor auxiliar do Departamento de Eletrónica, Telecomunicações e
Informática da Universidade de Aveiro.

Este trabalho foi suportado pela
ANI (POCI-FEDER) no contexto
do Projeto AUGMANITY POCI-01-
0247-FEDER-046103

This work was funded by ANI
(POCI-FEDER) in the context of
the Project AUGMANITY POCI-01-
0247-FEDER-046103

o júri / the jury
presidente / president Professor Doutor José Alberto Gouveia Fonseca

professor associado do Departamento de Eletrónica, Telecomunicações e Informática da Univer-
sidade de Aveiro

vogais / examiners committee Professor Doutor Pedro Mariano Simões Neto
professor auxiliar do Departamento de Engenharia Mecânica da Universidade de Coimbra

Professor Doutor José Nuno Panelas Nunes Lau
professor associado do Departamento de Eletrónica, Telecomunicações e Informática da Univer-
sidade de Aveiro

agradecimentos /
acknowledgements

Agradeço ao Professor Nuno Lau e ao Professor Bernardo Cunha toda a disponibi-
lidade e esclarecimentos ao longo do desenvolvimento deste trabalho. Não só a eles
mas também a todos os membros do IRISLab, pelas oportunidades de aprendiza-
gem e crescimento que me proporcionaram ao longo do meu percurso académico.
Ao meu parceiro de investigação Marcelo Fraga, tanto pelas longas e arduas dis-
cussões como por toda a camaradagem que criamos. Foi quem mais me provou
que 2 cabeças pensam melhor que 1, e que quando eu quero, consigo ser incom-
preensivelmente teimoso.
À Margarida, que primeiro por acaso, e depois com muito gosto, me acompanhou
desde o início deste percurso, e cujo conhecimento que me transmitiu, não só aca-
démico, foi imprescindível para me tornar na pessoa que sou hoje.
À Fernanda Rocha, que sem querer, juntou o melhor grupo de idiotas que alguma
vez pisou esta terra. Foram 5 anos de amizade e maluqueiras, com algum estudo
intensivo pelo meio, que irei levar para a vida.
Finalmente, um obrigado muito especial aos meus pais, pelo apoio incansável ao
longo destes anos. Irei ter um trabalho muito árduo para vos recompensar por tudo
o que me proporcionaram até agora.

Palavras Chave colaboração humano robô, robôs colaborativos, guiamento manual, transferência
de ferramentas, prevensão de colisões, arquitetura de tarefas, controlo de movi-
mento em tempo real

Resumo A colaboração humano robô tem-se tornado um tema proeminente em ambien-
tes industriais ao longo dos anos. O aparecimento de robôs colaborativos e as
vantagens que eles trazem para as linhas de montagem causam a necessidade de
explorar seu hardware e criar novos sistemas que permitam a execução segura de
tarefas colaborativas entre humanos e robôs. Essas vantagens incluem as suas
reduzidas dimensões e custos, os seus materiais de construção mais leves, a exis-
tência hardware de assistência de força/precisão e o cumprimento de requisitos de
segurança, que os permitem ser considerados como colaborativos. Nesta Disserta-
ção, propomos um conjunto de ferramentas e técnicas que possibilitam a execução
de tarefas colaborativas entre um humano e um braço robótico. Essas técnicas
incluem compensação de peso acoplado à garra do robô, identificação de obstá-
culos dinâmicos no ambiente e a criação de novas tarefas de forma simplificada e
abstrata. Essas técnicas podem então ser unidas para criar várias tarefas colabo-
rativas. Exemplos, implementados e testados, são a transferência de objetos entre
humano e robô, manipulação da posição do robô através de interação direta com a
sua garra, manipulação de objetos acoplados dinamicamente e a execução de uma
tarefa industrial com prevenção de colisões. Todas essas tarefas foram agrupadas
numa máquina de estados que permite ao utilizador interagir dinamicamente com
o robô, mudar a tarefa em execução, enquanto recebe feedback constante. Estas
tarefas foram implementadas e testadas num ambiente real com um Universal Ro-
bots UR10e. O cenário consiste num espaço de trabalho partilhado onde o humano
e o robô podem interagir fisicamente e realizar as tarefas propostas.

Keywords human robot collaboration, collaborative robots, hand guiding, tool transfer, colli-
sion avoidance, task level architecture, real time motion control

Abstract Human Robot Collaboration has become a prominent subject in industry settings
over the years. The insurgence of collaborative robots and the advantages they
bring to assembly lines have caused the need to exploit their hardware and cre-
ate new systems that can enable the safe execution of collaborative tasks between
humans and robots. Such advantages include their reduced size and cost, their
lightweight construction, their force/precision assistance hardware and their safety
requirements, that must be met in order to be considered collaborative. In this
Dissertation, we propose a set of tools and techniques that enable the execution of
collaborative tasks between a human and a robotic manipulator. Such techniques
include dynamic payload compensation at the end effector of the robot, identifi-
cation of moving obstacles in the environment, and the creation of high level task
plans. This techniques can then be joined together to create various collaborative
tasks. Examples of such, both implemented and tested, are the transfer of objects
between human and robot, precise hand guiding of the robot at the end effector,
hand guided manipulation of dynamically coupled objects, and the execution of an
industrial task with collision avoidance. All of this tasks were grouped in a global
state machine that allows the user to seamlessly interact with the robot, change
the task in execution while receiving constant feedback.
These tasks were implemented and tested in a real setting with an Universal Robots
UR10e. The setup consisted on a shared workspace where the human and the robot
could physically interact and perform the proposed tasks.

Contents

Contents i

List of Figures v

List of Tables vii

Acronyms ix

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Outline . 2

2 Collaborative Robotics 5

2.1 History . 5

2.2 Human Robot Collaboration . 6

2.2.1 Hardware and Design . 7

2.2.2 Safety . 7

2.2.3 Programming . 8

2.3 Technological Background . 9

2.3.1 Robotics Middleware . 9

2.3.2 Universal Robots UR10e . 11

2.3.3 Motion Planning . 13

2.3.4 Perception . 14

2.4 Related Research . 14

2.4.1 Proposals on HRC and Collaborative Tasks 15

2.4.2 Solutions to Specific HRI Problems . 16

3 Force Torque Sensor Compensation 19

3.1 Force Torque (FT) Sensor Correction . 19

3.1.1 Noise Filtering . 19

i

3.1.2 Observed Behavior . 20

3.1.3 Proposed Solution . 22

3.1.4 Results . 24

3.2 End Effector (EEF) Weight Compensation . 25

3.2.1 UR FT Sensor Controller Internal Compensation 25

3.2.2 Force Theoretical Model . 26

3.2.3 Results . 27

3.2.4 Adapting the FT Theoretical Model . 29

3.3 Real Time Correction and Compensation of FT . 30

4 Dynamic Obstacle Avoidance 33

4.1 Obstacle Detection . 33

4.1.1 Hand Eye Calibration . 33

4.1.2 Robot Segmentation . 34

4.1.3 Obstacle Segmentation . 35

4.2 Artificial Potential Fields . 36

4.2.1 Attraction . 36

4.2.2 Repulsion . 37

4.2.3 Controller . 37

4.3 Real Time Obstacle Avoidance . 38

5 Collaborative Tasks 41

5.1 Hand Guiding . 41

5.1.1 HGFT to EEF Velocity . 41

5.1.2 EEF Velocity to Joint Speed . 42

5.1.3 HG Architecture . 43

5.2 Object Transfer . 43

5.3 Object Manipulation . 44

5.4 Collision Free Execution of an Industrial Task . 45

5.5 Collaborative State Machine . 45

5.5.1 State Transitions . 47

5.5.2 Visual Feedback . 47

5.6 Software Tools for Human Robot Collaboration (HRC) 48

5.6.1 rqt_ur10e . 48

5.6.2 rqt_sami . 49

6 Experiments and Results 51

6.1 Collaborative Setup . 51

6.2 Collaborative Tasks . 52

ii

6.2.1 Interaction Test . 52

6.2.2 Hand Guiding . 52

6.2.3 Object Manipulation . 53

6.2.4 Collision Free Execution of an Industrial Task 57

6.3 System Stability . 62

7 Conclusion 63

7.1 Overview . 63

7.2 Future Work . 64

References 67

iii

List of Figures

2.1 Joint configuration of the UR10e . 11

3.1 Comparison of raw and filtered FT measurements . 20

3.2 Real time test of the variation on FT relative to the position of the Wrist3 joint 21

3.3 Variation of FT relative to time . 21

3.4 Variation in FT relative to interaction with the EEF . 22

3.5 5 EEF testing poses . 23

3.6 Average FT values in the 5 testing poses . 23

3.7 Result of the correction node applied in a real time test 24

3.8 Distribution of the correction function error on FT measurements 25

3.9 Behavior of the FT sensor with parametrization of payload 26

3.10 Visualization of the generation of theoretical force values 26

3.11 Visualization of the generation of theoretical torque values 27

3.12 Comparison of FT measurements from real sensor and analytical model 28

3.13 Distribution of analytical model error on FT measurements 28

3.14 Visualization of the 57 poses in which the tests were performed 29

3.15 Comparison of FT measurements from real sensor and adjusted analytical model 30

3.16 Distribution of the adjusted analytical model error on FT measurements 30

3.17 ROS architecture of the compensation of FT in real time 31

3.18 Result of the compensation architecture applied in a real time test 31

4.1 Visual representation of the conversion from URDF links to robot skeleton 34

4.2 Raw point cloud and categorized point cloud with ROI 35

4.3 Final result of the obstacle segmentation algorithm . 36

4.4 Trajectory execution with cartesian attraction vector . 37

4.5 ROS architecture of the obstacle avoidance in real time 38

4.6 Collision avoidance setup in the Gazebo simulator . 38

4.7 Collision avoidance offline and final trajectory . 39

5.1 ROS architecture of the HG task . 43

v

5.2 State architecture of the object transfer task . 44

5.3 State architecture of the object manipulation task . 44

5.4 State architecture of the industrial task . 45

5.5 Collaborative state machine . 46

5.6 Complete ROS architecture of the system . 46

5.7 Result of the compensation architecture applied in a real time test 47

5.8 LED status feedback on the gripper tool . 48

5.9 ROS rqt_ur10e interface for easy robot control and monitoring 48

5.10 ROS rqt_sami interface for easy robot control and monitoring 50

6.1 Views of the experimental shared workspace . 51

6.2 Succession of steps of the HG test . 52

6.3 6 different EEF weight measurement poses . 54

6.4 Results of the weight measurement test in each position 54

6.5 Result of the compensation architecture applied in a real time test 55

6.6 Succession of steps of the object manipulation test . 55

6.7 Simulation scenario with obstacle and offline generated trajectory 57

6.8 Execution of the trajectory with and without obstacle . 58

6.9 Simulation scenarios with multiple obstacles . 58

6.10 Succession of steps of the collision avoidance test . 60

6.11 Collision avoidance in real scenario with multiple speed settings 61

vi

List of Tables

2.1 Universal Robots UR10e technical specifications . 11

4.1 Internal parameters of the CEC algorithm . 35

6.1 Results of the interaction test . 52

6.2 Results of the HG performance test . 53

6.3 Detailed results and statistics from the weight measurement tests 54

6.4 Results of the object manipulation performance test . 56

6.5 Parameters for the base obstacle avoidance test . 57

6.6 Parameters for the random placement of obstacles . 58

6.7 Results of the obstacle avoidance test . 59

6.8 Minimum EEF distance to obstacle relative to its speed 61

vii

Acronyms

Cobot Collaborative Robot
EEF End Effector
TCP Tool Center Point
CoG Center of Gravity
HRC Human Robot Collaboration
HRI Human Robot Interaction
DoF Degrees of Freedom
2D Two Dimmensinoal
3D Three Dimmensional
GUI Graphical User Interface
LED Light Emiting Diode
RGB Red Green Blue
RGBD RGB Depth
LED Light Emitting Diode
RAM Random Access Memory
FOV Field of View
ISO International Standards Organization
ISO/TS ISO Technical Specifications
TCP Transmission Control Protocol
IP Internet Protocol
XML Extensible Markup Language
OEM Original Equipment Manufacturer
IO Input Output

ROS Robot Operating System
URDF Unified Robot Description Format
UR Universal Robots
UR10e Universal Robots UR10e
ROI Region of Interest
CEC Conditional Euclidean Clustering
ECE Euclidean Clustering Extraction
RRT Rapidly-exploring Random Trees
OMPL Open Motion Planning Library
APF Artificial Potential Field
RTDE Real Time Data Exchange
FT Force Torque
LPF Low Pass Filter
FIR Finite Impulse Response
MAF Moving Average Filter
HG Hand Guiding
HGFT Hand Guiding Force Torque
SM State Machine
JS Joint Speed
DLS Damped Least Squares
PCL Point Cloud Library
XYZ Cartesian Coordinates
RPY Roll Pitch Yaw

ix

CHAPTER 1
Introduction

In this chapter, we contextualize this Dissertation and present its topics. We start with a
concise motivation that enlightens the broad necessity of Human Robot Collaboration (HRC).
Then, we specify the goals we want to achieve, and what exactly has been created in this
work. Finally, the thesis outline is given, with a short summary of each chapter contents.

1.1 Motivation

An industrial robot is a machine that allows efficiency, strength and automation on the
production line. It can be seen as a substitute for the human worker for their ability to perform
repetitive and tedious manufacturing tasks autonomously with high accuracy and precision.
By default, and for safety reasons they are intended to work separately from humans, in their
own environment and are usually programmed to stop if a human worker enters its space.

Despite their great abilities, there are some tasks that are either too complex, or too
dynamic to fully automate and require the continuous presence of a human, to either supervise
or assist the robot. This need of shared execution of tasks with robots, resulted in the
emergence of Collaborative Robots, also known as Cobots. These are industrial robots
generally built with lightweight materials, equipped with Force Torque (FT) assistance and
speed limitation hardware, and overall, are easy to set up and program. Altogether these
features promote safe and efficient interactions with humans.

Starting with a cobot, to reach the collaborative execution of a task, there is a gap
which this Dissertation aims to fill, by proposing and developing a set of tools, techniques
and workflows that not only leverage the hardware of cobots, but also use external sensors.
Such techniques are then used to create and deploy multiple tasks which, when grouped
and integrated in an interaction based state machine, result in the promotion of a shared
collaborative environment where humans and cobots can safely work together.

1

1.2 Objectives

This Dissertation has as its main objective the promotion of shared execution of tasks,
between humans and industrial robots, specifically targeting collaborative robotic manipulators.
To do so, it aims to develop the following set of techniques:

• Interaction and communication with the cobot through touch;
• Manipulation of the cobot by physically Hand Guiding (HG) it;
• Compensation of payload coupled to the End Effector (EEF);
• Detection of dynamic obstacles in the environment;
• Motion planning aware of dynamic obstacles;
• Creation of high-level task plans;

Combining theses techniques, this Dissertation also aims to achieve the following collabo-
rative tasks:

• Precise and responsive HG at the EEF level;
• Transfer of objects between human and cobot, in both directions;
• Lift assistance and precise manipulation of heavy objects;
• Collision free execution of an industrial task;

Finally, all techniques were arranged in a real time concurrent architecture, and all tasks
grouped in a state machine where the user interacts or changes the current task by physically
interacting with the cobot, while receiving visual feedback through its gripper attachment.

Besides the main objectives, efforts were made to increase the ease of use of a robotic
manipulator, with the development of 2 Graphical User Interfaces (GUIs), which help control
and monitor the status of the cobot and the task being executed.

1.3 Outline

This Dissertation is divided into 7 chapters.
Chapter 2 (Collaborative Robotics) enlightens the theoretical background that supports

this work. It starts with the historical context and various definitions on the HRC field. Some
technologies used for the development of cobotic applications are outlined and specific details
are given on the hardware used in this work. Then, it gives an analysis on existing research
proposals performed in this field.

Chapter 3 (Force Torque Sensor Compensation) explains how a 6-Axis FT sensor located
at the cobot EEF can be leveraged for precise HG applications. It also presents a payload
compensation system based on a theoretical FT model, that is used to separate forces caused
by the human from forces caused by attached payload. Finally, it describes a real time
architecture for correction and compensation of FT.

Chapter 4 (Dynamic Obstacle Avoidance) demonstrates how a depth camera can be
integrated with a cobot and make its motion planning collision aware. It outlines techniques
for point cloud segmentation that identify moving obstacles in the environment. Then, it
presents a collision avoidance system that takes into account the identified obstacles when

2

executing predefined trajectories. Just like the previous chapter, it also describes a real time
architecture that implements these models.

Chapter 5 (Collaborative Tasks) uses the previous architectures to build the proposed
collaborative tasks. Then, it aggregates all tasks in a collaborative state machine where a
human can seamlessly execute and switch between tasks through touch interaction. It also
showcases 2 GUIs designed for the development of robotic applications.

Chapter 6 (Experiments and Results) demonstrates the performance of the tasks cre-
ated though various metrics obtained from experiments made, both in simulated and real
environments.

Chapter 7 (Conclusion) gives the final regards about the work developed and elaborates
on future work.

3

CHAPTER 2
Collaborative Robotics

In this chapter, we explore the theoretical background of this work, as well as related
research performed in this field. We start by giving some historical context to see when and
why collaborative robots started to emerge. Then, we define the field of HRC detailing all of its
subfields and characteristics. Afterwards, we outline the current technological trends used to
develop such systems and give a thorough description of the Universal Robots UR10e (UR10e)
system. Finally, we give light to several research efforts performed not only in the general
field of HRC, but also in specific problems directly correlated to this work.

2.1 History

Since the 1970s, industrial robots and manipulators have been part of production lines
in many sectors of the industry. The main reason is that they can complete certain tasks
faster and more efficiently than humans, since they are built with performance and precision
in mind. Furthermore, a lot of manufacturing processes rely on repetitive and laborious tasks
that for a human worker can become tedious and exhausting. According to the International
Federation of Robotics1, in the year 2020 there were an estimated 2.7 million industrial robots
in operation worldwide [1].

This level of automation guarantees uninterrupted and efficient productivity in assembly
lines, since robots do not take breaks or get tired, but at the same time they limit its flexibility
and adaptability. When a manufacturing process, typically of customized products with
smaller lot sizes, prioritizes flexibility and changeability over automation, these machines are
useless and there is a need to involve a human worker in the process. An industrial robot is
usually hard coded to do one task at a time, has limited abilities for handling complex or
limp objects and cannot make decisions, therefore the close linkage of human and robot in
these scenarios should result in the best of both sides. This collaborative approach can have
several advantages compared to full automation, particularly when a robot can be guided by
a human and simultaneously provide power assistance to him [2].

1https://ifr.org/

5

Traditional industrial robots have heavy structures with fixed installations, only interact
with humans during programming and are otherwise separated from them through perimeter
safeguarding, stopping their motion if any obstacle breaches it. These characteristics prevent
them to be used in collaboration or even coexist with human workers. Given these restrictions
and needs from the industry, came the concept of Collaborative Robot (Cobot), firstly coined
in 1996 by J. Edward Colgate and Michael Peshkin [3] as ’a robotic device which manipulates
objects in collaboration with a human operator’. In their work, it was a simple device with a
single joint that assisted the human operator by setting up virtual surfaces which could be
used to constrain and guide motion.

Years later, companies like KUKA and Universal Robots (UR) made commercially available
the first industry ready cobots, denoted as industrial collaborative robots. They were
light-weight, flexibly relocated and easy to teach and program, even by non-experts. Most
importantly, they were equipped with power, force and speed sensors and limiters, allowing
safe execution of tasks near humans, therefore allowing a shared collaborative environment.
Nowadays, cobots have evolved in such a way that they are replacing industrial robots
in assembly lines, or from another perspective, industrial robots are being designed with
collaboration in mind.

2.2 Human Robot Collaboration

HRC is a subsection of the general field of study called Human Robot Interaction (HRI)
which according to research [4, 5] is defined as ’a general term for all form of interaction
between humans and robots’ or ’the process of conveying human intentions and interpreting
task descriptions into a sequence of robot motions complying with robot capabilities and
working requirements’. It is an umbrella term used to describe a multidisciplinary field that
includes knowledge and understanding from human-computer interaction, robotics, artificial
intelligence, design and psychology.
HRI can be divided in several sub-categories based on the following four criteria [6, 7]:

• Workspace: It is the overlapping space in the working range of human and robot;
• Working Time: The time the participants are working inside the shared workspace;
• Aim: The objective, focus and goal of each participant regarding the task at hand;
• Contact: Meaning intentional physical contact between the participants;

Using these four criteria, HRI can be divided in:

• Human-Robot Coexistence (workspace and working time): Defined by the capability
of simultaneously sharing the workspace between humans and robots, but operating
in dissimilar tasks and not interacting with each other. They do not have a common
goal and do not share contact therefore do not need to be synchronized. Robot abilities
often rely only on collision avoidance.

• Human-Robot Cooperation (workspace, working time and aim): It is an upgrade
over the previous category. Now humans and robots also share the same purpose in the

6

given task. Cooperation also requires synchronization, which means that either exists a
common language of communication, through instructions, gestures or voice, or machine
vision is used for the robot to know when it is its time to act.

• Human-Robot Collaboration (all four criteria): The final stage of HRI, where
humans and robots, who simultaneously share the same workspace, work together to
perform a complex task interacting physically with one another. With FT sensing
hardware a robot can interpret human motion and intention, and react accordingly.

With HRC defined and identified inside the broader field of HRI, some of its requirements
and characteristics are going to be drawn in order to proceed with a full understanding of its
context.

2.2.1 Hardware and Design

The design and composition of a cobotic system can be one of the most challenging
problems in this field [8, 9]. Industrial cobots generally operate in complex working conditions
and must be able to carry motion effectively, sometimes in crowded environments, while
facing unexpected events such as the arrival of a human operator. This is one of the reasons
that cobots are usually designed with 6 to 7 Degrees of Freedom (DoF). Another is that an
higher number of DoF provides the cobot with increased flexibility and dexterity in complex
manipulation tasks.

Because cobots are meant to work alongside humans, reduced weight of the moving parts
is one of the main factors in cobot design [10]. Even so, in environments where collisions are
inevitable, the risk of interaction with cobots can be reduced due to their increased sensorial
apparatus [11], such as the use of proximity-sensitive skins or FT sensors to detect collisions,
the increased energy absorbing properties of protective layers, the limits on robot velocity
and maximum strength and force, and in some scenarios the placement of airbags around the
robot [12].

According to recent reviews [6, 7], research is still being develop on numerous different
ways to improve the design of cobots in order to make them reliable, dependable and most
importantly safer.

2.2.2 Safety

The general design and composition of a cobot has been shown, but is not enough to
guarantee safe HRC. According to ISO 10218:2011 [13, 14], and later more widely explained
in ISO/TS 15066:2016 [15], specific requirements for cobotic systems need to be met for them
to be considered safe. These standards define four classes of safety requirements for industrial
robots in collaborative environments:

• Safety-rated monitored stop: The robot is stopped upon access of the human to
the collaborative workspace. Most robot manufacturers offer a safety controller that
assures the standstill of the robot. The robot can then resume the task once the human
has left the collaborative workspace. This mode is mostly used when the cobot works

7

alone, but occasionally a human operator can enter its workspace. In a broader view,
the robot does not move while the human is present.

• Hand-guiding: The human uses a hand-operated device, usually located at the EEF
of the robot, to transmit motion commands to the robot system. This type of operation
implies a direct physical interaction with the robot, where the human must have full
control over its movement. The position of the human within the collaborative workspace
must be defined and a safety controller for delimiting the robot speed is required. Graphic
support through icons or 3D simulation is helpful for intuitive programming of the robot.

• Speed and separation monitoring: There is constant monitoring of the relative
speed and distance between robot and human. The robot must maintain a minimum
safe distance and speed to the human in order to be able to stop any dangerous motion
if contact with the human is imminent. When the separation distance decreases to a
value below the minimum, the robot stops. When the human moves away from the
robot, the robot can resume motion automatically. External vision sensor data might
be needed to achieve this level of monitoring since few manufacturers equip cobots with
such capabilities.

• Power and force limiting: The robot system should be designed to sufficiently reduce
risk to a human by allowing direct, physical interaction without an additional safety
controller. This is done through the design of the robot system by limiting collision
forces so that in the event of a contact between the humans and the robot, biomechanical
tolerance limits are not exceeded.

A traditional industrial robot can be adapted to meet this collaborative modes and
requirements, however it would need additional safety devices such as laser sensors, vision
systems, or controller modifications. For this reason, a commercial cobot that has this features
built-in requires no further hardware costs and can be a more attractive solution.

2.2.3 Programming

Industrial robots have the job of carrying out pre-programmed, repetitious tasks in order
to promote productivity and efficiency. Their software platform is responsible for enabling
HRI and conveying human intention on how certain tasks should be executed. Intuitive robot
programming is an important issue that HRI deals with, since traditional approaches are
either unintuitive or time-consuming. In the early days of industrial automation, robots
could only be programmed by experts in actuators, controllers and hardware programming.
Nowadays, most industrial robots are shipped with teach pendants. These are handheld
devices containing buttons, switches and, in some cases, a touchscreen. They are currently
the most common programming method as they require little to no training in robotics or
programming in general, they display the robots commands in a nontechnical fashion and
allow for online editing of such commands. They also allow for walk-through programming
where an operator physically moves the robot through a desired task. Although these methods
seem intuitive and easy to learn, they are only applicable for certain groups of tasks since
they have low accuracy requirements, and for complex tasks can become cumbersome to use.

8

Finding accurate, intuitive and efficient ways for robot programming is also a problem
for HRI. One possible and currently established technique is the generation of robotic skills,
which are pre-programmed software packages that only need to be parametrized by the user.
A recent study [16] has introduced a software architecture combining generation of robotic
skills, named action blocks, that also allowed for process control, and a set of strategies and
approaches for a fast and intuitive parametrization process.

Further research in this area is constantly looking for better user interfaces for robot
programming [6, 17]. A few examples are:

• Virtual Reality: Where tasks are completed intuitively as if the human is present at
the remote working environment. It guarantees safe programming and is flexible on the
level of workspace constraints or task complexity that may exist. The main problem
is that it requires previous knowledge of the working areas to construct the virtual
environment, and is not suitable for loosely structured working conditions where there
may be constant changes to the environment.

• Augmented Reality: Where virtual elements, mainly computer-generated graphics,
are projected into the real world so that the user can perceive certain elements of robot
programming in real-time. Such elements might include objects, robot motions and
trajectories, and simulated collisions with the real environment. This technique can also
help operators determine the best location for the robot before final installation.

• Program by Demonstration: Where a human performs a task manually and in
parallel, the robot is observing, following and learning the task in real-time. It allows
any user to program a robot by just giving a demonstration of the sequence of operations
to be carried out and shifts the burden of robot programming from robot experts to
task experts. It also makes possible to program more than one robot simultaneously.
A significant problem with this approach is that jerks and inaccuracies in human
demonstrations can lead to unsatisfactory execution of tasks by the robot that is
learning them.

Other approaches on robot programming are also moving forward towards multimodal
interfaces with the inclusion of gestures, voice, eye gaze and facial expressions serving as
high-level inputs to control and program the robotic system.

2.3 Technological Background

In a cobotic system, the interaction between the robot, the user, the external sensors and
software modules usually rely on several different technologies, all working together to provide
a seamless and efficient experience. Below, divided in various categories is explained which
technologies are going to be used in this work and why.

2.3.1 Robotics Middleware

A middleware is a piece of software that enables cohesive, structured communication
between different software modules. It is informally described as "software glue". It has been

9

shown that a cobotic system is comprised of different components, that usually are handled
by different software modules, known as their drivers. These modules may be written in
different programming languages and implement different communication protocols. As such,
the job of a middleware is to hide the obvious heterogeneity resultant of a system with these
characteristics, and provide functions and services that not only enhance the communication
between the entities, but also serve as a flexible, interoperable and central repository of
information shared by them.

The Robot Operating System (ROS) 2 [18] is an open-source robotics middleware. With
over 3.000 packages in its ecosystem, it is also described as a flexible framework for writing
robot software, that comprises a plethora of tools, libraries, and conventions that aim to
simplify the task of creating complex and robust robot behavior across a wide variety of robotic
platforms. A key component of a cobotic system is its communication infrastructure and ROS,
at its lowest level, offers a message passing interface that provides inter-process communication
and implements a publisher/subscriber communication model. Each component that performs
a certain task is called a ROS node, and multiple nodes communicate between them by
exchanging ROS messages through ROS topics. These provide an asynchronous means of
communication, since any node can publish or subscribe to any topic at any time, provided it
respects its message type. For synchronous communication, ROS offers services which can
be seen as remote procedure calls that provide request/response interactions between nodes.
The middleware part of ROS also provides a global key-value server where nodes can set and
get configuration parameters.

When it comes to robot specific features, ROS provides libraries that help their integration
in its ecosystem through collections of software drivers, that abstracts both the low-level
control of hardware components, and the treatment of information generated by sensors and
other peripherals. A crucial example of such functionality is the Robot Geometry Library3

which helps keeping track of where different parts of the robot are with respect to each other
and the world. Therefore, it allows the user to define both static transforms, such as a camera
that is fixed somewhere in the world, and dynamic transforms, such as the pose of the EEF
in a manipulator. This way, any positional data can be easily transformed between any pair
of coordinate frames in the world.

Other features that enhance the development of such systems include RViz4 which provides
3D visualization of robot description models, transforms and many sensor data such as point
clouds; an extensive library of built-in plugins based on rqt5, which is a Qt-based framework
for developing graphical interfaces that easily integrates with the ROS ecosystem; a set of
command-line tools that allow the user to fully control all ROS core functionality without a
GUI, useful for controlling the cobotic system remotely.

2https://www.ros.org/
3http://wiki.ros.org/tf
4http://wiki.ros.org/rviz
5http://wiki.ros.org/rqt

10

2.3.2 Universal Robots UR10e

Although the techniques developed in this dissertation are generic, the cobot with which
this work will be implemented is an UR10e. It is a 6 DoF collaborative industrial robot
equipped with a FT sensor in its EEF. A visual description of its configuration is shown in
Figure 2.1, detailed technical specifications are shown in Table 2.1, and the various ways that
it can be controlled will be explained below, as well as the chosen method and why.

Figure 2.1: Joint configuration of the UR10e

UR10e Value
Reach 1300 mm
Payload 10 Kg FT Sensor Force Torque
DoF 6 rotating joints Range 100 N 10 Nm
Pose Repeatability +/- 0.05 mm Resolution 2.0 N 0.02 Nm
Joint Working Range ± 360 ° Accuracy 5.5 N 0.60 Nm
Joint Maximum Speed ± 120 °/Sec.
Typical EEF Speed 1 m/Sec.
Footprint 190 mm
Weight 33.5 Kg

Table 2.1: Universal Robots UR10e technical specifications

Teach Pendant

The UR teach pendant is a handheld wired device with a 12 inch touchscreen display that
allows the user to fully configure and control the UR10e. It does so using the Polyscope [19],
a graphical user interface that operates the robot arm and control box, creates and executes
programs. It terms of operational modes it allows compliant motion with the Freedrive mode,
manual motion with arrow buttons and sliders, and automatic motion with the creation of
programs using its built-in programming environment, which is seen as a programming tree

11

where the user adds programming nodes. These nodes can be commands telling the robot
what to do or generic programming statements (if, loop, event, etc.). Polyscope allows people
with little programming experience to program the robot and for most tasks it is done entirely
using the touch panel without typing any cryptic commands. Given its simplicity, it is not
ideal for complex tasks, or if the user needs low-level control or sensor information access.
Besides the programming features, the teach pendant is also equipped with a button in the
back that enables the Freedrive mode and an emergency stop red button in the front.

URScript

Parallel to the Polyscope interface, UR also provides a script level way of controlling its
robots through their own programming language, called URScript [20]. This language includes
variables, types, flow control statements and functions that monitor and control both IO and
robot movements. Inside the Control Box of the robot there is a low-level controller called
URControl. Programming a robot at the script level is done by writing a client application and
connecting to URControl using a TCP/IP socket. When a connection has been established
URScript programs are sent on the socket. Compared to the Polyscope interface, URScript
gives the user more control over the structure of the programs and makes it easier for an
experienced user to take full advantage of the robot. One downside to this approach is the
user that is sending commands externally has no access to the current state of the program,
since once the program is sent, it is executed immediately without feedback. The only way
the user can access the state of the robot is by connecting to another one of the available
client interfaces6 that publish robot information at a fixed rate interval.

Universal Robots RTDE Interface

The Real Time Data Exchange (RTDE)7 interface provides a way to synchronize an
external application with the UR controller over a standard TCP/IP connection. This
functionality is split in two stages, a setup procedure and a synchronization loop. In the setup
procedure, the external application will become a client of the UR controller, over the RTDE
interface by sending a recipe. This recipe should contain a setup list of named input and
output fields that should be exchanged in the synchronization loop. When this loop is started,
the RTDE interface sends data to the client in the same order that the client requested. On
an e-Series UR cobot, such as the UR10e the RTDE interface generates output messages at
500Hz.

Researchers at University of Southern Denmark have developed a C++/Python library
for controlling and receiving data from a UR robot using the RTDE interface, called ur_rtde8.
It makes available three distinct interfaces:

• RTDE Control Interface: Primarily used for moving the robot and utility functions.
It requires a control script to be running on the robot, which is uploaded automatically.

6https://www.universal-robots.com/articles/ur/interface-communication/overview-of-client-interfaces/
7https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-

guide/
8https://gitlab.com/sdurobotics/ur_rtde

12

• RTDE Receive Interface: Used for receiving data from the robot.
• RTDE IO Interface: Used for setting digital/analog IO and adjusting the speed slider

of the robot.

The Control Interface allows for non-blocking commands making the flow of the external
program able to continue while the robot is moving. The separation of Control and IO in
different interfaces also allows to change the speed of the robot while it is moving.

Although it takes programming knowledge and skills, from all the available ways to control
a UR cobot, the use of the RTDE interface has proved to be the most advantageous one.

Universal Robots ROS Driver

The goal of this driver is to provide a stable and sustainable interface between UR robots
and ROS, that both enhances the control of the robots using ROS paradigms such as its
controller interface, and makes available to the ROS environment all data regarding the robot.
By using ROS compatible manipulators, perception sensors, peripherals and motion planners
the user makes sure all components speak the same language and interoperate regardless
of OEM brands or communication protocols. Further implementation details can be found
in [21].

In terms of features, this driver uses the RTDE interface for communication; uses the
speed-scaling of the robot for slowing down trajectory execution accordingly; serves as a
replacement for the teach pendant since it offers ROS services for most of its interactions, such
as start, stop and even recover the robot from safety events; uses on-the-robot interpolation for
joint-based trajectories, which helps if the application can not meet the real-time requirements
of the RTDE interface; and many more, extensively documented in the UR github repository9.

This driver is currently being updated to both include with new functionality and support
new UR software updates. Recent important features include joint velocity-based control that
lets the user directly control the speed of each individual joint, which is very helpful for visual
servoing, real-time motion planning or other kinds of control that require speed control rather
than position control, and cartesian position-based and twist-based control that lets the user
execute trajectories along cartesian paths.

The UR ROS Driver will be the chosen method of interfacing with the UR10e for the
amount of extra functionality it provides and the overall advantages of developing software in
the ROS ecosystem.

2.3.3 Motion Planning

Motion planning is a computational problem with the objective of planning motions for
complex bodies from a start to a goal position. It breaks down a desired movement task
into discrete motions that satisfy movement constraints while avoiding collision with known
obstacles.

The MoveIt Motion Planning Framework [22, 23] is an easy-to-use open source robotics
manipulation platform for developing commercial applications, prototyping designs, and

9https://github.com/UniversalRobots/Universal_Robots_ROS_Driver

13

benchmarking algorithms. Its main strength is the ability to generate high DoF trajectories
trough cluttered environments and avoid local minimums. It also provides robot description and
kinematics implementations for multiple robot manipulators. One of its features that is relevant
to this Dissertation is the implementation of the Open Motion Planning Library (OMPL),
which aggregates many state of the art motion planning algorithms. One of which is the
Rapidly-exploring Random Trees (RRT) Connect planner which will be the default motion
planner used in this work.

In this work, MoveIt will be used mostly for offline position-based trajectory planning.
One of the objectives is to control the robot in real-time, with velocity-based commands
sent at high frequency. As of writing, current MoveIt releases do not support such features,
having only plans to implement them in future versions. Further details on the solution of
this problem will be presented in Section 4.2.

2.3.4 Perception

To fully achieve collaboration in a shared environment, the cobot must be able to perceive
its surroundings. Between the various ways to give the cobot this ability, the majority of them
rely on external sensors, such as stereo or depth cameras, and lidar sensors. All of them give
the system a 3D representation of their field of view through the generation of point clouds.

The Point Cloud Library (PCL) [24] is a standalone, large scale, open project for 2D/3D
image and point cloud processing. It is split into a series of modular libraries ranging from
filters, recognition, segmentation and visualization. It will be extensively used in this work to
achieve the obstacle avoidance task which will be further explained in Section 4.1.

To be able to identify obstacles in relation to the cobot, a process known as camera
extrinsic calibration needs to be performed. It consists on identifying in the cartesian space
where the perception sensor is, in relation to the robot. Only this way, can the obstacles
identified by the sensor be spatially placed in the shared environment. The easy_handeye
ROS package10 is an implementation of the highly cited work of R. Y. Tsai and R. K. Lenz
[25] where a fully autonomous and efficient technique for 3D robotics hand eye calibration is
developed. In the scenario that will be implemented in this Dissertation, where the sensor is
fixed in the world, this package it able to obtain a static transform from the world frame to
the sensor, by capturing images of a fiducial marker attached to the EEF of the robot. Then
using the Tsai-Lenz algorithm implemented in the OpenCV library computes the result and
stores it in the ROS environment.

2.4 Related Research

In the topic of collaborative tasks between a human and a cobot, there is no record of
commercially available, full-featured frameworks or systems, that could allow the accomplish-
ment of the objectives proposed in this dissertation. Even though manufacturers ship their
cobots and accessories with extensible and flexible software, that allow the creation of such

10https://github.com/IFL-CAMP/easy_handeye

14

tasks, there is much work left for the user to design, program and implement the system
architectures that aggregate the collaborative tasks and deliver a cohesive, seamless experience.
Furthermore, there is no limit on the amount of collaboration that can exist, or on how the
available tools can be used together in their final working environments. Despite these facts,
extensive research efforts have, and are currently being made [6, 7] to enhance this field with
structured architectures and frameworks that seamlessly allow multifaceted collaboration
between human and cobot. This section serves as a survey on such proposals, and will firstly
enumerate and detail general approaches to HRC and collaborative tasks. Then, it will shift
to other solutions that directly correlate to specific problems faced in this Dissertation, and
that also served as inspiration to the solutions implemented.

2.4.1 Proposals on HRC and Collaborative Tasks

The work in [26] proposes a collaborative framework for robotic task specification, where
the authors start by stating that the lack of effective sensing and task variability creates
too much uncertainty to reliably hard-code a robotic cell. The developed framework blends
automated task specification with the experience and cognition of a human operator to provide
a more accurate task specification. This work was implemented with ROS and was mainly
focused on surface finishing tasks.

The authors in [27] deal with the problem of developing a collaborative coating cell. They
start by teaching the robot its trajectory with a programming by demonstration technique,
using a multicolored LED marker attached to the coating tool. Then, a 3D perception system
was developed to perform initial point cloud alignment and 6 DoF pose estimation. Finally,
to promote safe HRC, a zone monitoring system was employed to track the position of the
operator inside the cell.

A coordination system for assembly tasks where HRC is required was presented in [28],
where the authors developed a ROS based framework that intertwined a sequence of tasks
modeled in a neutral XML format language, with the ability for human and a robot to coexist
in a fenceless cell, where safety was guaranteed by a 3D industrial safety camera.

Regarding a polishing task, authors in [29] proposed and demonstrated the use of a robotic
manipulator with an FT sensor in its EEF, whose task was to keep a workpiece in a prescribed
sequence of poses while a human operator, equipped with an abrasive tool, proceeded to
polish it. They also allowed the operator to change the orientation of the workpiece mounted
on the robot, by physically pushing or pulling the robot body. They achieved this behavior
with a control algorithm that was able to distinguish polishing forces applied at the EEF level,
from the external torques acting on the robot joints due to the intentional physical interaction
engaged by the human.

Research in [30] resulted in the development of a cobotic framework applied to solve a
screwing task in collaboration with a human operator, using a skill-based approach. The
ROS-based system used a software called Skill Based System, which treats tasks as a set of
skills, which then are composed of sequences of motion primitives. The human operator was
then able to execute programmed tasks or create new ones using the available skills.

15

A framework for the execution of collaborative tasks in hybrid assembly cells was developed
in [31], where the focus was given to the human-robot coexistence for the execution of sequential
tasks, in order for the automation level in assembly lines to be increased. Even though not
strictly dealing with human-robot physical interaction, this work is relevant in the sense that
the authors also developed a gesture based communication protocol between the human and
the robot, and proved that the introduction of human-robot task allocation and execution
benefitted the efficiency of the assembly process in question.

A system for end-user creation of robust task plans was developed in [32], where a Behavior
Tree-based task editor integrates high-level information from known object segmentation,
pose estimation with spatial reasoning, and robot actions to create robust task plans. The
system was implemented on multiple cobots and performed a wide variety of tasks such as
collaborative assembly, wire bending, sanding and polishing.

A multimodal HRI framework is presented in [33] where the authors used speech, hand
gesture recognition, text programming, and interaction capabilities to allow the user to
intuitively program the robot and take over its control at any given time.

2.4.2 Solutions to Specific HRI Problems

A method for precision HG of a cobot at the EEF level is presented in [34]. In this
work, the authors are able to obtain Hand Guiding Force Torque (HGFT) from the EEF FT
measurements. Then, a control scheme to govern the linear/angular motion of the EEF is
described and implemented. The characteristics of the HG task in this Dissertation has many
similarities with this approach, since the former was heavily inspired by the latter.

The work in [35] describes a tool compensation technique to ease and simplify the process
of trajectory learning in common industrial setups. It allows the user to directly use the real
tool attached to the EEF while HG the robot. It was crucial to understand the effects of
coupled weight in the robot EEF and create the compensation model implemented in this
Dissertation for the object manipulation task.

A state of the art on-line collision avoidance framework is proposed in [36], where the
authors represent in space the human and the robot as capsules, and calculate their minimum
distance and relative velocity. With these values, a repulsion vector is created. On the
other hand, with a pre-established path generated offline, an attraction vector is computed
and forces the robot into following the defined trajectory. With these two components, the
implemented control algorithm is able to adjust the robots trajectory in real time, so that it
is able to avoid collision with the human and simultaneously fulfill the task.

While studying the problem of collision prediction, the authors in [37] developed a method
for robot self-identification based on a over-segmentation approach and the kinematic model
of the robot. A similar method will be implemented in this Dissertation, since the vision
system will be based on an RGBD camera, and the points belonging to the robot must be
segmented from the raw point cloud.

The KUKA Sunrise Toolbox [38] is a MATLAB toolbox developed to interface and control
KUKA iiwa robots. It contains functionalities for networking, real-time control, point-to-point

16

motion and physical interaction. This work heavily inspired the contributions made to the
iris_sami ROS package and the development of the plugins rqt_sami and rqt_ur10e, where
similar features were developed for UR cobots.

17

CHAPTER 3
Force Torque Sensor Compensation

In this chapter, we leverage the 6-Axis FT sensor located in the UR10e EEF to create a
system that compensates dynamically attached payload. We start by describing the sensor
interface, outlining some unexpected behavior and how it was corrected. Then, we present
a payload compensation system which uses a theoretical FT model in order to separate FT
caused by physical interaction from FT caused by attached payload. Afterwards, we described
how the theoretical equations were adapted to better match the observed values. Finally, we
describe a software architecture that implements the previous models in real time.

3.1 FT Sensor Correction

To achieve the tasks that require physical contact between the human and the cobot,
the UR10e built-in FT sensor, located at its EEF will be extensively used. Its technical
specifications can be found in Table 2.1. There are two ways of interfacing with the sensor, both
of them managed by the URControl controller. One of them is through URScript commands,
with get_tcp_force() used for obtaining the FT values at the TCP, and zero_ftsensor() that
zeroes the FT measurement by subtracting the current measurement from the subsequent.
The other, is using the UR ROS Driver which publishes the FT measurement in the \wrench
topic at 500Hz, and exposes the \zero_ftsensor service. Relevant to this matter, the Polyscope
interface has a configuration parameter used to describe the weight coupled to the TCP, called
Payload. It is composed of mass, in Kg, and Center of Gravity (CoG), in cartesian coordinates,
and their effect on the FT measurement will be later demonstrated in Subsection 3.2.1.

3.1.1 Noise Filtering

As seen in Table 2.1, the UR10e FT sensor has a reported resolution of 2N on force, and
0.02Nm on torque measurements. The 2 leftmost graphs of Figure 3.1 demonstrate that this
fact is due to the noise generated by the hardware of the sensor.

The chosen way of dealing with the noise is to apply a Low Pass Filter (LPF) to the raw
measurements. Equation 3.1 defines a 2th order Finite Impulse Response (FIR) filter. Other

19

types of LPFs were also considered, such as a Moving Average Filter (MAF) but the results
were not satisfactory.

Wfil = (1− α)Wn + α

(
Wn +Wn−1

2

)
(3.1)

A ROS node with the purpose of filtering the raw measurements was developed. It
subscribes to the \wrench topic, filters each value with Equation 3.1 and publishes them in
the \wrench_filtered topic. The α parameter can be changed in real time using the ROS
dynamic reconfigure tool. Tests showed that an α = 0.2 was satisfactory for noise reduction
without major delay impact on the measurements. Results of this filtering technique can be
observed in the rightmost graphs of Figure 3.1.

Figure 3.1: Comparison of raw and filtered FT measurements

3.1.2 Observed Behavior

Further experiments with the FT sensor measurements showed a couple of unexpected
behaviors described in the following subsections.

Wrist3 Joint Positional Variation

The FT measurements present variations relative to the position of the Wrist3 joint.
Figure 3.2 shows a simple real time test where the EEF is fixed in a random pose, and the
Wrist3 joint is rotated from −360° to 360°. The FT measurements present clear variations
that can reach 8N of difference from the correct value, which should be 0N the entire test
since the EEF has no tool or weight coupled to it. Changing the pose of the EEF presents
the same results.

This presents a problem for the accuracy of the HG and object manipulation tasks since
an error of 8N is significant. Subsection 3.1.3 demonstrates the proposed solution for this
problem.

20

Figure 3.2: Real time test of the variation on FT relative to the position of the Wrist3 joint

Temporal Drift

When the robot is left still for long periods of time, the values of force change linearly
with time, as much as 0.2N/min. It might not seem a significant value, but if an HG task
were to be activated, by letting the robot stand still for a couple of minutes, it would start
moving on its owm. A recording of force values over a period of 10 minutes, with a step of
200ms is shown in Figure 3.3.

0 500 1000 1500 2000 2500 3000
Time(t)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Fo
rc
e(
N)

x
y
z

Figure 3.3: Variation of FT relative to time

Using the \zero_ftsensor service in a recurring, timely manner would fix this problem
but raise the issue on when to do so, since it might also erase important FT measurements
needed for the executing task.

Variations caused by appliying FT

Applying high amounts of external FT to the sensor, will result in a variation on the
measurements after its no longer applied. This behavior can be seen in Figure 3.4 where

21

every time there is a strong interaction with the EEF, the subsequent values of FT present
variations as high as 3N and 0.3Nm.

Figure 3.4: Variation in FT relative to interaction with the EEF

Similar to the previous problem, this measurements are wrongly introduced in the system,
since the FT felt by the sensor should not suffer alterations due to momentarily external
interaction with the EEF.

Special case of the Z-Axis

Upon coupling a gripper tool to the EEF of the robot, the force applied by screwing the
mounting plate onto the EEF has effects on the values of force reported on the Z-Axis. The
mounting plate has 4 screws, and even making sure they are evenly tightened, the stronger
the tightening, the higher the force measurement on the Z-Axis.

Measurements of torque in the Z-Axis present momentary fixed variations depending on
the amount of movement and direction of the Wrist3 joint. These variations can be seen in
any of the real time tests (Figure 3.2, Figure 3.7, Figure 3.18) but in practice are irrelevant
since they only occur when the robot is moving autonomously, not when the user is applying
force to the EEF.

3.1.3 Proposed Solution

Regarding the variation of FT relative to the Wrist3 joint position, tests were made
to prove that the pattern of variation of the measurements was independent of the EEF
orientation, therefore not caused by gravitational forces. The test in question consists on the
rotation of the Wrist3 joint from −360° to 360° in steps of 1°. Each step, the average values
of FT in a time period of 0.1ms are calculated and saved. The result of the test is a matrix
with shape [720, 2, 3], which means 720 values of FT in the 3 cartesian axis. The test was
performed in each of the 5 positions described in Figure 3.5, and its internal behavior can be
seen in Algorithm 1.

The final test results can be seen in Figure 3.6. As predicted, the variation of FT only
has relation to the position of the Wrist3 joint. Furthermore, the standard deviation of the

22

Figure 3.5: 5 EEF testing poses

def testWrist3(pose)
test = Matrix(720, 2, 3)
ur10e.movePose(pose)
ur10e.zero_ftsensor()
wrench = Subscriber("\wrench", size=25)

for position in range(-360, 360):
ur10e.moveWrist3(position)
sample = wrench.getAverage()
test.append(sample.force, sample.torque)

return test

Algorithm 1: Recording of FT measurements in all position of the Wrist3 joint

results is very low, meaning an accurate solution based on the average values recorded can be
implemented.

−300 −200 −100 0 100 200 300
Wrist 3 Angle()

−6

−4

−2

0

2

4

6

8

Fo
rc
e(

N)

x
y
z

−300 −200 −100 0 100 200 300
Wrist 3 Angle()

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

To
rq

ue
(N

m
)

x
y
z

Figure 3.6: Average FT values in the 5 testing poses

As such, from the average results of the tests performed, a ROS node was developed
to correct in real time the FT measurements, based on the position of the Wrist3 joint. It
subscribes to the filtered values of FT from the topic \wrench_filtered, and to the current
position of the Wrist3 joint, present in the \joint_state topic. The position of the joint serves
as index to the correction matrix. The corrected values are published to the \wrench_corrected
topic.

23

Regarding the variations of FT based on time and extreme contacts with the sensor, those
problems become irrelevant when a cobot is placed in a real use case scenario. For the drifting
problem, a simple idle mode can be implemented, where the robot is suspended if no user or
program interacts with it. Once resumed, the \zero_ftsensor service can be called, making
any FT drifting measurements disappear. In the case of the variation of FT due to external
forces, the solution once again relies on the sensor taring service, since the system can be
programmed to trigger it in multiple scenarios, such as a state change or the release of the
gripper tool. Further details on the use of this service, in conjunction with a global state
machine, to solve the inaccuracies of the FT sensor are presented in Chapter 5.

3.1.4 Results

With the implementation of the correction node, the results from the real time test firstly
shown in Figure 3.2 are satisfactory, and presented Figure 3.7.

Figure 3.7: Result of the correction node applied in a real time test

The results are as expected. Since the observed pattern is caused by the position of the
Wrist3 joint, and is highly repeatable, the corrected FT measurements present themselves
relatively close to 0 since the EEF once again has nothing attached. Some variation is still
present on the results of Figure 3.7, but it is caused by the nature of the test. Since the
movement of the Wrist3 joint is continuous, vibrations and jitters are likely to cause forces on
the EEF that ultimately are caught by the sensor.

A more accurate view on the results obtained is shown in Figure 3.8. Each bar in the
histograms represents the probability of the correction error be within that range. The results
are considered satisfactory since there is not a single component with an error higher than
the resolution specifications of the FT sensor (Table 2.1).

24

0.0 0.2 0.4 0.6 0.8
Force X(N)

No
rm

al
ize

d
De

ns
ity

0.0 0.1 0.2 0.3 0.4
Force Y(N)

0.0 0.2 0.4 0.6
Force Z(N)

0.000 0.005 0.010 0.015
Torque X(Nm)

No
rm

al
ize

d
De

ns
ity

0.000 0.005 0.010 0.015 0.020 0.025
Torque Y(Nm)

0.00 0.01 0.02 0.03 0.04
Torque Z(Nm)

Figure 3.8: Distribution of the correction function error on FT measurements

3.2 EEF Weight Compensation

With the FT sensor properly corrected, its measurements can be used for various applica-
tions. One of the objectives of this Dissertation is the precise manipulation of heavy objects
through HG. To do so, there needs to be a way to differentiate FT caused by the gravitational
forces on the object or tool attached to the EEF, and FT caused by direct physical contact of
the user.

3.2.1 UR FT Sensor Controller Internal Compensation

On the Polyscope interface, there is a configuration parameter that directly affects the
behavior of the FT sensor, called Payload. With this parameter, the user should declare the
mass and the CoG of the object attached to the EEF. In the previous tests the Payload
parameter was configured to zero in the two components. The effects of this configuration
parameter can be seen on Figure 3.9 where the same positional test was performed, this time
with the correction function applied. The Payload parameters for this test were 1.5Kg and a
CoG of 0.1m in the Z-Axis. The EEF had nothing attached to it.

Results show a direct compensation of the configured parameters. In terms of accuracy,
the FT sensor was tared when the position of Wrist3 joint was 0° and once it rotated to
180°, the force measurement on the X-Axis was −30N, which appears to be correct given
the configured mass. Despite this fact, there is no knowledge on the implementation of this
compensation mechanism. Furthermore, the use of this parameter would required its constant
update when manipulating objects. The ROS Driver enables this feature through a service,
but every time the Payload parameter is updated, the sensor is tared.

For these reasons, and because of the fact that this Payload parameter might not exist in
other cobotic platforms or sensors, the chosen values of Payload in this Dissertation are 0, and
a theoretical compensation model will be developed with the same objective, but enabling the
user to have more control over the use of the FT measurements.

25

−300 −200 −100 0 100 200 300
Wrist 3 Angle()

−30

−20

−10

0

10

Fo
rc
e(

N)

x_raw
y_raw
z_raw
x_corrected
y_corrected
z_corrected

−300 −200 −100 0 100 200 300
Wrist 3 Angle()

−3

−2

−1

0

1

To
rq

ue
(N

m
)

x_raw
y_raw
z_raw
x_corrected
y_corrected
z_corrected

Figure 3.9: Behavior of the FT sensor with parametrization of payload

3.2.2 Force Theoretical Model

The objective of this model is to generate the values of FT that a given object or tool
would cause on a perfect sensor. This way, when manipulating objects with the cobot, these
generated values can be subtracted from the reported sensor measurements and easily obtain
the HGFT. This model is generalized and can be used in any cobot or sensor. As inputs, it
requires the orientation of the frame of the FT sensor, and the mass and CoG of the object
attached to the EEF.

Force

With the orientation of the sensor relative to the world, 3 unit vectors are created
representing the measurement cartesian components. Then, calculating the theoretical force
is done with using the inner product of a unit vector representing gravity, and each one of the
cartesian unit vectors. Figure 3.10 shows a visual representation of such method.

y

x

z

g

x'

Figure 3.10: Visualization of the generation of theoretical force values

26

Fx = 〈 ˆxeef , ĝ〉 ·m · g (3.2)

Equation 3.2 generates the force in the X-Axis where 〈 , 〉 represents the inner product
between 2 vectors, ˆxeef represents a unit vector with the orientation of the X-Axis in the FT
sensor frame, ĝ is a unit vector representing gravity, m is the mass of the object and g a
scalar representing the acceleration of gravity.

Torque

Analogous to the generation of forces, torque generation also relies on the representation
of the cartesian axis as unit vectors. This time, a new vector containing the direction and
magnitude of the theoretical torque is created using the cross product of gravity and the
CoG of the object. With this vector, torque in each axis can be calculated with the inner
product, just like in the force generation. For a better understanding, Figure 3.11 shows a
visual representation of this method.

y

x

z

g

r

CoG

CoG x g

x'

Figure 3.11: Visualization of the generation of theoretical torque values

Tx = 〈 ˆxeef , ˆCoG× ĝ〉 ·m · g · r (3.3)

Equation 3.3 generates the torque in the X-Axis where ˆxeef represents a unit vector with
the orientation of the X-Axis, ˆCoG represents a unit vector with the orientation of the CoG,
ĝ is a unit vector representing gravity, m is the mass of the object, g the acceleration of
gravity and r is the distance of the CoG to the origin.

3.2.3 Results

To test the accuracy of the model, the Wrist3 joint test was performed with a gripper tool
attached to the EEF. The weight of the tool is 1.5Kg and its CoG is 0.045m in the Z-Axis.
While the test was executing, the values from the theoretical model and the real FT sensor
were recorded and can be seen in Figure 3.12.

27

−300 −200 −100 0 100 200 300
Wrist 3 Angle(°)

−10

0

10

20

30

Fo
rc
e(
N)

x_real
y_real
 _real
x_theory
y_theory
 _theory

−300 −200 −100 0 100 200 300
Wrist 3 Angle(°)

−0.5

0.0

0.5

1.0

1.5

To
rq
ue

(N
m
)

x_real
y_real
 _real
x_theory
y_theory
 _theory

Figure 3.12: Comparison of FT measurements from real sensor and analytical model

Regarding force generation, X-Axis and Y-Axis real measurements appear to deviate from
the analytical values by a constant factor. Because this factor is higher than 1 in the Y-Axis
and lower than 1 on the X-Axis, it is not caused by the weight parameter, but rather by the
internal behavior of the FT sensor. In the case of the Z-Axis, there are large deviations from
the analytical model and it appears to be influenced by the force in the X-Axis.

Regarding torque generation, both X-Axis and Y-Axis appear accurate. The offset that
exists in the Z-Axis is caused by the nature of the test, since it consists on successive rotations
of the Wrist3 joint, where the FT sensor is located.

0.0 0.5 1.0 1.5 2.0 2.5
Force X(N)

No
rm

al
ize

d
De

ns
ity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Force Y(N)

0 1 2 3 4
Force Z(N)

0.00 0.02 0.04 0.06 0.08
Torque X(Nm)

No
rm

al
ize

d
De

ns
ity

0.000 0.025 0.050 0.075 0.100 0.125
Torque Y(Nm)

0.05 0.10 0.15 0.20
Torque Z(Nm)

Figure 3.13: Distribution of analytical model error on FT measurements

Once again, a probabilistic view in the form of histograms can better help understand
the accuracy of the model. Figure 3.13 shows that for X-Axis and Y-Axis, the FT error is
well below the accuracy specification of the sensor (Table 2.1). For the Z-Axis, despite also
being below the accuracy specification, it is significantly higher than the other 2 components

28

and can damage the precision of an HG task, since the FT threshold must be higher than
the error of the least accurate component. Given this fact, efforts were made to adapt the
analytical model to better match the real values.

3.2.4 Adapting the FT Theoretical Model

By running tests in a variety of different EEF orientations, both real and analytical
measurements can be compared and the deviation factors can be computed. Since the the
positional test relies on the movement of the Wrist3 joint, in order to create different EEF
poses, a combination of Wrist1 and Wrist2 joints angles was used. With steps of 45° between
−180° and 180°, a total of 57 different poses can be achieved by combining these 2 wrist joints.
Figure 3.14 is a visualization of the resulting EEF orientations.

Figure 3.14: Visualization of the 57 poses in which the tests were performed

In each orientation, a Wrist3 positional test is performed, recording both analytical and
real FT measurements. With the results, an optimization function based on the Damped Least
Squares (DLS) method is used to find the deviation coefficients between the analytical and
real measurements. After obtaining such coefficients, they are inserted in the analytical model
as correction factors of the generated values. This correction is performed with Equation 3.4
and Equation 3.5.

F =

x = x · αx

y = y · αy

z = z · αz + x · αzx

(3.4) T =

x = x · βx

y = y · βy

z = z

(3.5)

Where α and β parameters represent the correction coefficients obtained from the optimization
function. When performing the same tests as in Subsection 3.2.3, the difference between the
analytical and real measurements is reduced, and the error is now in the range of the noise
generated by the sensor, allowing for greater precision in FT dependant tasks.

This fact is shown in Figure 3.15 where FT analytical and real measurements appear
overlapped. Futhermore, Figure 3.16 details the distribution of the errors between the 2

29

−300 −200 −100 0 100 200 300
Wrist 3 Angle(°)

−10

0

10

20

30

Fo
rc
e(
N)

x_real
y_real
 _real
x_theory
y_theory
 _theory

−300 −200 −100 0 100 200 300
Wrist 3 Angle(°)

−0.5

0.0

0.5

1.0

1.5

To
rq
ue

(N
m
)

x_real
y_real
 _real
x_theory
y_theory
 _theory

Figure 3.15: Comparison of FT measurements from real sensor and adjusted analytical model

measurements and shows what threshold interaction FT values can be used in an HG task.
Given the observations, it is safe to say that a force threshold of 2N and a torque threshold of
0.2Nm are possible. These are very low amounts of FT and a system that can react to them
allows precision and ease of use in any sort of manipulation task.

0.0 0.5 1.0 1.5 2.0 2.5
Force X(N)

No
rm

al
ize

d
De

ns
ity

0.00 0.25 0.50 0.75 1.00 1.25
Force Y(N)

0.0 0.5 1.0 1.5 2.0
Force Z(N)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Torque X(Nm)

No
rm

al
ize

d
De

ns
ity

0.00 0.02 0.04 0.06 0.08
Torque Y(Nm)

0.05 0.10 0.15 0.20
Torque Z(Nm)

Figure 3.16: Distribution of the adjusted analytical model error on FT measurements

3.3 Real Time Correction and Compensation of FT

In order to obtain the corrected and compensated FT measurements in real time, a group
of ROS nodes was developed. Some of them were already previously explained such as the
Driver, Filter and Correct nodes. These nodes were arranged together according to the
architecture described in Figure 3.17.

The Theoretical FT node implements the algorithms explained in Subsection 3.2.2. It
subscribes to the state of the UR10e in order to obtain the EEF pose. Then calculates the

30

UR ROS Driver Filter CompensateCorrect
\wrench

\wrench_filtered \wrench_corrected
\wrench_final

Theoretical FT

\wrench_theory

\joint_states
ROS Node

\ros_topic*

Figure 3.17: ROS architecture of the compensation of FT in real time

theoretical FT values and publishes them to the \wrench_theory topic. This node has 2
internal parameters, "weight" and "cog" that can be updated both from the dynamic reconfigure
ROS tool and from a ROS service named \cobot\payload_update.

Finally, the Compensate node subscribes to both the corrected and analytical values, and
publishes the final FT measurements. It provides a ROS service called \cobot\zero_ftsensor
used to synchronize the corrected and analytical values when the user wants to zero the
FT sensor. This is the recommended way to intentionally tare de FT sensor, since this
way, previous information is not lost and the remaining nodes dependent of this values, can
interoperate safely.

Figure 3.18: Result of the compensation architecture applied in a real time test

To test this architecture, a real time test was performed where multiple joints were
rotated to provoque various orientations on the EEF, which had a gripper tool attached to it.
Figure 3.18 demonstrates the execution and results of this test, where the Wrist2 and Wrist3
joints are simultaneously rotated. The graphs in the middle show both the real and analytical
FT measurements. Their subtraction results in the final FT measurements, shown in the
leftmost graphs, and since no external FT was applied during this test, are all close to 0.

This architecture allows for correct separation of FT caused by gravitational forces on the
attached weight and FT caused by human physical interaction. This way, the cobot can have
any tool or object attached, and simultaneously be manipulated by the user.

31

CHAPTER 4
Dynamic Obstacle Avoidance

In this chapter, we use an external depth sensor to create a real time collision avoidance
system. We start by describing how the sensor information is processed in order to detect
obstacles in the environment. Then, from the identified obstacles we explain how they are
segmented and the distances they present to the robot. Afterwards, we outline how an
attraction and repulsion vectors are created and used to generate a final velocity vector which
the robot will use to avoid dynamic obstacles when executing predefined static trajectories.
Finally, we describe a software architecture that implements the previous models in real time.

4.1 Obstacle Detection

In order for a robot to avoid obstacles while in motion, an external vision sensor is
used to capture the shared workspace and send information to the system about the robot
surroundings. In this Dissertation, an RGB Depth (RGBD) camera will be used for this
purpose. It gives the system depth information on its Field of View (FOV), referenced to
itself. The first step in this endeavour is to spatially and dynamically reference the camera to
the robot through hand eye calibration.

4.1.1 Hand Eye Calibration

This process is able to generate an accurate transform from the robot base frame to the
sensor frame. In this proposal, a fiducial marker based on the ARuco library [39] is fixed
on the robot EEF. Then, using the easy_handeye ROS package, a set of translations and
rotations are performed at the EEF level. In each movement, a sample composed of the EEF
pose and the ARuco pose, identified by the sensor, is captured. A total of 3 translations and
6 rotations are performed in each axis, making a total of 27 samples. When the sampling
is finished, the easy_handeye compute service is called and a static transform is obtained,
which is both locally saved and published in the ROS environment.

33

4.1.2 Robot Segmentation

Since the camera will be sensing the shared workspace, there will be multiple scenarios
where the robot will enter its FOV. Robot segmentation consists on a method to identify
which points of the point cloud belong to the robot structure, in order to differentiate obstacles
from the robot when both of them are in the sensor FOV.

The technique developed in this work starts by building a skeleton model of the robot,
starting with the location of its links. The position of these links, defined in the robot
Unified Robot Description Format (URDF) present in its ROS driver, does not match the real
position of the robot arms and wrists, therefore, from these links, a set of points are created
representing the start and end of each real link. Using this set of points and a minimum
distance constant, the skeleton model is created based on Algorithm 2. The difference between
the links defined in the robot URDF and the points created can be seen in Figure 4.1.

def ur10eSkeleton(min_dist = 0.05):
skeleton = []
links = ROS.TransformLibrary.getLinks()
points = obtainPoints(links)

for point in points:
skeleton.append(point)
distance = point.distance(point.next())
num_skeleton_points = distance / min_dist
increment = (point - point.next()) / num_skeleton_points

for i in range(num_skeleton_points):
skeleton.append(point + i * increment)

return skeleton

Algorithm 2: Creation of a point based skeleton model of the robot

Figure 4.1: Visual representation of the conversion from URDF links to robot skeleton

From the resultant skeleton, any point from the point cloud that is closer to it than a
predefined threshold, is considered belonging to the robot, therefore, not accounted for in
the obstacle segmentation process. Also not accounted for, are points on the point cloud
that are too far away from the robot. Based on a another distance constant, a Region of
Interest (ROI) is created, and points that are further distant from the skeleton than it, are
considered irrelevant. The final result of robot segmentation can be observed in Figure 4.2.

34

Figure 4.2: Raw point cloud and categorized point cloud with ROI

4.1.3 Obstacle Segmentation

Starting from the raw point cloud obtained from the sensor, each point is categorized.
Points belonging to the robot, and points too distant from it are removed. Only points
belonging to the ROI, if there are any, are considered obstacles, therefore, a new point cloud
is created with these points.

To this new point cloud, a clustering algorithm is applied in order to represent the point
cloud in a set of small clusters, each one to be considered an obstacle. The algorithm applied
is the Conditional Euclidean Clustering (CEC), which is a region growing algorithm based
on the Euclidean Clustering Extraction (ECE) algorithm. It has the advantage of allowing a
customizable clustering condition and also classifying clusters as too small or too large, based
on defined parameters. The parameters for the CEC implementation, used in this work, can
be found in Table 4.1.

Parameter Value
Leaf Size 0.3
Radius Search 0.4
Cluster Tolerance 0.5
Min Cluster Size 5
Max Cluster Size 90
Squared Distance 0.001

Table 4.1: Internal parameters of the CEC algorithm

The result of this algorithm is a set of clusters and to each cluster, its closest point to the
robot is calculated, achieving the obstacle collision point. Figure 4.3 illustrates the obstacle
detection final result, where 2 obstacles are present in the environment. One of them is outside
the ROI, therefore ignored. The other, which is closer to the robot, is correctly identified.

35

Figure 4.3: Final result of the obstacle segmentation algorithm

4.2 Artificial Potential Fields

A well known method of dealing with real time collision avoidance on robotic manipulators
is to treat the robot navigation as if it was a point in a potential field, and is called Artificial
Potential Field (APF). An APF is the result of the sum of 2 fields. An attraction field,
converging on the goal and a repulsion field created by obstacles in the environment. Within
the final field, the robot can navigate successfully while avoiding the obstacles. Adapted to
the context of robotic manipulators, the robot is in an imaginary vector field and its motion is
the result of attraction forces, making the robot follow a predefined trajectory, and repulsion
forces that repel it away from obstacles.

4.2.1 Attraction

The attraction force is what makes the robot move to its goal. In this work, this is done
by generating a trajectory offline, and in real time make the robot follow the trajectory with
cartesian space velocity commands.

The first step is to generate an offline trajectory. A trajectory needs a start state and
a goal state, and if no static obstacles are declared, the motion planner will generate an
optimized trajectory based on those two inputs. Other factors might impact the final result
but for the focus of this work, offline motion planning will not be discussed in detail. The
trajectories generated with the MoveIt framework are arrays of joint positions, since it is
designed to work with joint position controllers. In this work, the attraction and repulsion
forces will be declared in cartesian space, therefore after obtaining the trajectory, all trajectory
steps are converted to poses in cartesian space. This can be observed in the first subfigure of
Figure 4.4.

After obtaining the set of poses, the robot will start executing the trajectory in its first
point. For this initial position, the robot is moved with a joint position command. After the
initial state, in a 500Hz loop a cartesian attraction vector, which is the difference between the
current EEF position and the next point in the trajectory, is obtained with Equation 4.1.

~Att = Pgoal · T b
e

−1 (4.1)

36

Figure 4.4: Trajectory execution with cartesian attraction vector

Where Pgoal is the pose of the goal point in the trajectory and Tb
e a transformation from the

base frame to the EEF frame. ~Att is obtained in the form of a pose object. The position part
will be the linear velocity and the orientation part will be the angular velocity. This vector is
constantly being calculated based on the monitoring of the EEF and the calculation of the
new goal.

4.2.2 Repulsion

The obstacle segmentation algorithm produces an array of obstacles. Each obstacle is
defined by its pose. The repulsion vector is calculated using this pose and the EEF pose, since
its the most likely part of the robot to colide with obstacles. Within the array of obstacles,
the closest to the EEF is selected. A repulsion vector is created with this obstacle based on
how distant it is to the EEF with Equation 4.2.

~Rep = Peef − Pobs

|| Peef − Pobs ||
· maxd − (d−mind)

maxd
(4.2)

Where Peef is the EEF pose, Pobs is the obstacle pose, d is the distance between the EEF
and the obstacle, and maxd and mind are maximum and minimum distance constants,
respectively. ~Rep is obtained in the form of a linear vector since, in the repulsion vector
calculation, angular velocity is not accounted for. The first part of this equation represents a
unit vector with the direction of the obstacle, and the second part can be seen as a repulsion
factor, which consists on a linear function that ranges from mind

maxd
to 1. This factor causes the

magnitude of the repulsion vector to increase as the distance to the obstacle decreases.

4.2.3 Controller

The APF controller sums the forces from the two components. In this work, the chosen
approach is to create a final cartesian velocity vector, taking as inputs the two forces previously
explained. The final velocity for the robot EEF is calculated with Equation 4.3.

~Veef = (1− || ~Rep ||) · ~Att+ || ~Rep || · ~Rep (4.3)

This way, when there are no obstacles, || ~Rep || = 0, therefore, ~Veef = ~Att. When
obstacles do exist, the controller will give priority to the repulsion vector as is starts to
grow, since as seen in Subsection 4.2.2, the repulsion vector norm increases as the distance to
obstacles decreases.

37

4.3 Real Time Obstacle Avoidance

Similarly to the correction and compensation of FT, a group of ROS nodes was developed
and orchestrated in order to give the robot the ability to avoid dynamic obstacles while in
motion and in real time. Figure 4.5 demonstrates how those nodes are arranged.

Planner Attraction
\trajectory

\eef_velocity

ROS Node \ros_topic
*

Obstacles Repulsion
\obstacles

PF Controller

UR ROS Driver

Astra ROS
Driver

\camera_depth_points

\robot_description

\joint_states

\attraction

\repulsion

Figure 4.5: ROS architecture of the obstacle avoidance in real time

The attraction component starts at the Planner node, which uses the MoveIt motion
planning interface to generate trajectories. It obtains the UR10e description from its driver
and with a move group object plans and publishes robot trajectories. The attraction node
listens to the trajectories published by the Planner node and acts according to what was
described in Subsection 4.2.1. On the repulsion side, the Obstacles node listens to the point
clouds published by the sensor driver and publishes an array with obstacle information.
From that information, the Repulsion node publishes the repulsion vector, according with
Subsection 4.2.2. Finally the APF Controller node joins the attraction and repulsion vectors,
publishing the final EEF velocity vector.

Figure 4.6: Collision avoidance setup in the Gazebo simulator

A testing environment was built in the Gazebo simulator. The UR10e was placed in the
center of the world, an RGBD camera was placed on top of it, overlooking an area considered
the shared environment, where 2 sphere obstacles were spawned. This setup can be seen in
Figure 4.6. A trajectory was created that would intentionally colide with these obstacles.

The offline trajectory and the final trajectory that the robot performed with the collision
avoidance nodes enabled can be seen in Figure 4.7. Further details on the performance of

38

Figure 4.7: Collision avoidance offline and final trajectory

this architecture and details on the implementation on a real scenario will be outlined in
Subsection 6.2.4.

39

CHAPTER 5
Collaborative Tasks

In this chapter, we describe the implementation of the previous models in order to create
the proposed collaborative tasks. We start by outlining how each task was achieved, describing
its interface, flow and parameters. Then, we present the culmination of said tasks in a
collaborative state machine that allows seamless integration and execution of each task. We
finish this chapter showcasing 2 GUIs that were developed with the purpose of enhancing the
development of cobotic applications.

5.1 Hand Guiding

Section 3.2 explained how to obtain a compensated FT measurement in order to obtain
Hand Guiding Force Torque (HGFT), which is caused by the user. This value is used to move
the robot in the direction that it is applied. For this to happen, these values felt on the FT
reference frame need to be converted to a velocity vector, referenced on the base frame of the
robot.

5.1.1 HGFT to EEF Velocity

HGFT should only converted in robot motion when it reaches a certain threshold, otherwise,
it should be zero. It should also exist a way to define the ratio of conversion between FT and
velocity. To achieve this behavior, the HGFT is controlled according to Equation 5.1 and
Equation 5.2.

fi =

fi−fth

fdiv
fi > fth

fi+fth
fdiv

fi < −fth

0 otherwise

(5.1) ti =

ti−tth

tdiv
ti > tth

ti+tth
tdiv

ti < −tth
0 otherwise

(5.2)

Where fi and ti are FT components, tth and fth are FT threshold parameters, and tdiv and
fdiv are ratio constants that define the conversion between FT and velocity.

41

Force to Linear Velocity

It is performed by multiplying the force vector by the rotation matrix between the base
frame and the sensor frame. Then, the resulting vector can be used as cartesian velocity.
Equation 5.3 is used to calculate the linear velocity from the HG force.

~Vlin = Rb
e ·Re

s · Pforce (5.3)

Where Rb
e is the rotation matrix of the EEF frame in relation to the robot base frame, Re

s is
a constant rotation matrix of the sensor frame in relation to the EEF frame, and Pforce is a
point, referenced in the base frame, with the force measurements as its coordinates. ~Vlin is
obtained as a cartesian points which can directly be used as a linear velocity vector in the
robot base frame.

Torque to Angular Velocity

It is performed by obtaining the difference between the sensor rotation, and another
rotation with the torque measurements as its components. Both of these rotations are
referenced in the base frame. Equation 5.3 is used to calculate the angular velocity from the
HG torque.

~Vang = (Rb
e ·Re

s ·Rtorque) · (Rb
e ·Re

s)−1 (5.4)

Where Rb
e is the rotation matrix of the EEF frame in relation to the robot base frame, Re

s

is a constant rotation matrix of the sensor frame in relation to the EEF frame, and Rtorque

is a rotation with the torque measurements as its elements. ~Vang is obtained as a cartesian
rotation which can directly be used as angular velocity in the robot base frame.

5.1.2 EEF Velocity to Joint Speed

With the previous equations, the EEF velocity in cartesian space is obtained from the
HGFT on the FT sensor. As said before, in this work, the UR10e will be controlled in joint
space with joint speed commands. To obtain joint speeds from an EEF velocity, the Jacobian
inversion method will be used.

Jacobian Inversion Method

The Jacobian matrix is used in robotics to provide a relation between joint speeds and
EEF velocities in a robotic manipulator. This relation is given by Equation 5.5.

Ẋ = J(q)q̇ (5.5)

Where q̇ is the robot joint velocity vector, q is the robot joint position vector, J is the
Jacobian matrix, which is a function of the current robot joint positions. Ẋ represents the
EEF velocity and is obtained in the form of a 1 column matrix with 6 elements. The first part
represents linear velocity, and the second represent angular velocity. The Jacobian matrix
is obtained through forward kinematics equations applied on a given joint state. In this

42

work, the Jacobian matrix is obtained with the MoveIt motion planning framework, using the
UR10e robot description.

In order to obtain joint speeds from the EEF velocities, the Jacobian matrix is inverted
and Equation 5.6 is used.

q̇ = J(q)−1Ẋ (5.6)

Since the UR10e has 6 joints, its Jacobian matrix is a square matrix, and it is possible to
invert it and use it according to the previous equation to convert EEF velocities into joint
speeds.

5.1.3 HG Architecture

Having the joint speeds calculated, they are sent back to the ROS driver by publishing
them into the appropriate topic, at 500Hz. The ROS architecture for this task is demonstrated
in Figure 5.1.

Compensate
\wrench_final

ROS Node
\ros_topic*

Wrench2Vel Jacobian
\eef_velocity

JS Controller
\joint_speeds

UR ROS Driver

\joint_states

\joint_speed_controller\command

Figure 5.1: ROS architecture of the HG task

The Wrench2Vel ROS node implements the algorithms explained in Subsection 5.1.1 and
the Jacobian node implements the Jacobian inversion method described in Subsection 5.1.2.
The Joint Speed (JS) Controller node subscribes to the joint speeds calculated with the
Jacobian matrix and publishes them in the appropriate topic made available by the UR ROS
driver. This node also implements a filter to smooth the robot acceleration when rapidly
changing velocity, and a ROS service that allows its control with play, pause and stop functions.

5.2 Object Transfer

The object transfer collaborative task is an example of a user customizable skill. It is
very similar to the general pick and place task with the only difference being that the final
destination is not a place position, but rather a deliver position where the robot will wait
for user input to release the object. This task has various states, and each state has input
parameters and a certain behavior. Figure 5.2 shows the arrangement of the states and their
parameters.

The task starts by moving the robot to a picking position, defined in the pick_pose.
Since this position is a predefined joint state, the trajectory can be planned with the MoveIt
framework and the motion of the robot is controlled through its positional controller. This

43

Picking Grip Delivering Release

pick_pose : JointState deliver_pose : JointStateParameters
forward_move : Integer

has_object : Boolean release_force : Float

Figure 5.2: State architecture of the object transfer task

position is preferably a few centimeters distant from the object, so the next step is to move
the robot forward according to the forward_move parameter.

The robot should reach the next state with its gripper fingers aligned with the object,
therefore, the next step is to close the gripper. The has_object flag is a control parameter used
to only proceed in the flow of the task if the gripper has gripped something. This happens if
the flag is set to true, otherwise, the task would continue ignoring if the gripper has gripped
any object.

The Delivering state moves the robot to another predefined position. When it reaches
that position, it automatically skips to the Release state, where it stops and the system
continuously evaluates the FT measured. If the release_force parameter is configured, the
robot will release the object when a force with magnitude equal to release_force is applied. If
this parameter is not set, which is the default behavior, the robot will release the object when
its weight has been supported by the user, which programmatically means that the robot will
release the object when the FT measured in the Z-Axis of the world frame is higher than zero.

5.3 Object Manipulation

The object manipulation task has the goal of allowing the user to give the robot an object
and be able to HG it with precision, while the robot holds the object. Figure 5.3 shows the
composition of this task states.

Grip

Object

Empty

Release

object

!object

dTapY

Figure 5.3: State architecture of the object manipulation task

The Grip state has been seen previously, but this time, instead of configuring a parameter
to evaluate if the gripper has anything attached, this condition will be used as a way to
determine the next state. If the gripper has no object, it will skip to the Empty state which
has no internal behavior other that to wait for user input. This input has the form of a double
tap on the EEF, in the Y-Axis direction. Further details on this communication interface
with the system will be given in Subsection 5.5.1.

44

If the gripper has an object, the system will skip to the Object state where the attached
Payload will be measured and injected in the theoretical FT model. This state starts by
turning off the velocity controller and moving the robot upwards. This motion serves as a
signal to the user to not touch the EEF for a while. Then, the system obtains a FT measure
and from it, it calculates the object weight and CoG. With these parameters, it updates the
theoretical FT model through its \payload_update ROS service. Once the theoretical FT
model gives confirmation, the velocity controller is turned back on, and with the updated
values of payload, the user can accurately HG the system knowing that it will compensate
the object weight. When the user is done with this task, he executes the same double tap as
explained before and the robot transitions to the Release state.

Finally, in the Release state, the velocity controller is turned off, the robot releases the
object, the theoretical FT model is configured with just the gripper tool payload, the FT
sensor is tared, and just before leaving this state, the the velocity controller is resumed.

5.4 Collision Free Execution of an Industrial Task

This system allows for seamless integration of any industrial task given it provides a
certain control interface. This control interface requires the existence of play, pause and stop
services that will be called depending of user interaction. The structure of the states of this
task can be seen in Figure 5.4.

Play Pause Stop

dTapX

dTapX

dTapY

Figure 5.4: State architecture of the industrial task

In this Dissertation, the industrial task implemented is a looped transition between two
positions with dynamic collision avoidance. Programmatically, when this state is activated,
the behavior described in Chapter 4 is reproduced in a loop by activating the APF Controller
node. The trajectory defined in the Planner node will start being executed and any obstacles
detected by the Obstacles node will be avoided. While the task is executing, the user can
pause it by approaching the EEF, which will start to slow down, and make a double tap on
its X-Axis.

5.5 Collaborative State Machine

The tasks explained before are all arranged in a global state machine that treats each task
as a submachine. The initial state is the Hand Guiding task which allows free manipulation
of the robot. To execute a task, a double tap in a specific direction must be executed on the
robot EEF. The behavior flow of the global state machine is described in Figure 5.5.

45

Hand
Guiding

Picking

Pick & Deliver

Grip

Delivering

Release

Play

Industrial Task

Pause

Stop

Grip

Object Manipulation

Object

Release

Empty

dTapX-

dTapX+

dTapY

dTapY

object !object dTapXdTapX

dTapYobject

Enter State State Exit State
action action

*

Figure 5.5: Collaborative state machine

The integration of these tasks with each other is seamless. They all start from the HG
state and also return to it when finished. One of the main advantages of an arrangement such
as this, is that in the execution of the different tasks the robot can be controlled by multiple
entities. For instance, the Object Transfer task uses the MoveIt positional controller, the
Object Manipulation uses the Wrench2Vel ROS node, and the Industrial Task uses the PF2Vel
ROS node. The existence of a structure such as this state machine, allows for a cohesive and
seamless change of control entities, without the user ever noticing their existence.

Filter CompensateCorrect

\wrench

\wrench_filtered \wrench_corrected

Theoretical FT

\wrench_theory

\wrench_final

Jacobian

JS Controller

\joint_speeds

\joint_speed_controller\command

Planner Attraction
\trajectory

ROS Node
\ros_topic*

Obstacles Repulsion
\obstacles

PF2Vel

UR ROS Driver

Astra ROS
Driver

\camera_depth_points

\attraction

\repulsion

Wrench2Vel

UR10e SMTap Action
\tap_action

\eef_velocity

Force Torque Sensor Compensation

Dynamic Obstacle Avoidance

\eef_velocity

Figure 5.6: Complete ROS architecture of the system

46

A complete view of the ROS architecture of the global state machine, and generally, the
work developed in this Dissertation can be seen in Figure 5.6. The symbolism on the UR10e
State Machine (SM) means that this node interacts with almost every other node in the
system, with both services calls and information collecting through topics.

5.5.1 State Transitions

The node that enables the user to interact with the system is the Tap Action node, which
listens to the \wrench topic, evaluates each FT component derivative, and according to it
publishes TapAction messages. This a custom defined ROS message that contains 3 fields:

• type (String) - Defines the type of tap that was registered, single ou double.
• component (Integer) - Defines in what axis the tap occurred.
• direction (Boolean) - Defines the direction of the tap, positive or negative.

To generate a message of this type, the Tap Action node, derives each component of FT
and once this value passes a certain threshold, it publishes a TapAction message. The effects
of the derivation of FT can be seen in Figure 5.7.

Figure 5.7: Result of the compensation architecture applied in a real time test

In the top graph, where raw FT values are plotted, a push and a tap are performed in
each axis. A push is an amount of force applied slowly, and a tap is the same amount of force,
but applied rapidly, like a knock on a door. By looking at the derivative graph on the bottom,
it is evident that a tap can be detected just by evaluating the derivative value.

5.5.2 Visual Feedback

A means of visual feedback from the system to the user can be achieved with the gripper
Light Emitting Diodes (LEDs). Its consists on a luminous ring with Red Green Blue (RGB)
lights that can be programed by the user in terms of color, animation and speed. The effects
that are possible to reproduce on the luminous ring are diverse, with the user being able to
choose from 15 animations, 13 colors and 8 speed settings. Figure 5.8 shows some examples
of these effects.

In this work, 3 colors are used to give the user awareness of the system state:

47

Figure 5.8: LED status feedback on the gripper tool

• Green: The user is free to physically interact with the system.
• Orange: The cobot is busy and the user should not interact with it. The system

might be executing a predefined trajectory, or calibrating the weight of an object.
• Red: Some component of the system lost connection with the robot and the user

should attend to one of the GUI in order to solve it.

With this approach, the user can always know when he should interact with the robot.

5.6 Software Tools for HRC

The collaborative state machine provides an integrated interface for robot usage and
control, but in order to extend it with new features, the user needs to have programming
skills and robotic knowledge. To facilitate this job, 2 rqt GUIs were developed.

5.6.1 rqt_ur10e

When working with a robotic arm, there are a group of actions that are constantly being
executed by the programmer. The rqt_ur10e is a GUI developed for the iris_ur10e ROS
package that gives the user a set of shortcuts for robot interaction and configuration, and
can be seen on Figure 5.9. These actions are specific to the UR10e and the WEISS CRG 200
gripper, and depend on the correct execution of their ROS drivers.

Figure 5.9: ROS rqt_ur10e interface for easy robot control and monitoring

The choice of actions implemented on this GUI were based on personal experience with
the robot. They consist on gripper control, which opens or closes the gripper; common service
calling on the UR10e ROS driver, with the Zero button which tares the FT sensor values and
the Resend button used when the ROS driver looses connection with the robot and a new
connection needs to be performed; a Switch button used to interchange between the joint
positional controller and the joint speed controller; and a configuration field to control the
robot speed slider value.

48

The standard way of executing these actions would be through the command line or by
sending scripts in URScript to the robot. This plugin allows for quicker and cleaner execution
of such actions.

5.6.2 rqt_sami

The iris_sami ROS package, where sami stands for Simple Arm Manipulation Interface,
was developed at IRISLab prior to the development of this Dissertation. It provided easy
robot motion planning through an abstraction of the MoveIt motion planning library with
simple functions like move_joints() or move_pose(). With these functions, a ROS service
server was developed, in which a single instantiation of the MoveIt commander was created
and the user could control the robot with ROS service calls through the command line. These
functions, contrary to the previous package, are robot agnostic and the only requirement is
compatibility with the MoveIt library. Examples of such ROS services include:

• /iris_sami/status: Returns status information about the robot arm.
• /iris_sami/alias: Sends the robot to the alias position passed as input argument.
• /iris_sami/save_alias: Takes as input a string variable and saves the current robot

position as an alias position.
• /iris_sami/move: Takes XYZ RPY arguments and moves the robot relatively

referenced to the EEF frame.
• /iris_sami/pose: Takes XYZ RPY arguments and sends the robot to the designated

global pose on the world reference frame.
• /iris_sami/joints: Takes an array of 6 joints positions and sends the robot to the

designated joint space position.
• /iris_sami/velocity: Takes an array of 6 joints speeds and a time variable and

moves the robot with the designated joint speeds during the designated time.

With these services the user is empowered with complex control on robot motion planning
and can easily combine multiple services on shell scripts for high-level task plans. During the
development of this Dissertation it was noted that the interface through command line calls
is not intuitive and on a practical level could be improved with a GUI. Hence, rqt_sami was
developed. It consists on another rqt plugin, but this time, implementing the functionality
found in the iris_sami ROS package. Figure 5.10 demonstrates the interface.

It is horizontally divided in control functionality and status feedback. Starting at the
top, there is an alias position selector where the user can send the robots to previously saved
positions. Then, the area with arrow buttons allows the user to quickly move the robot in any
direction, with both linear movements and rotations. These actions can be performed relative
to the EEF frame or the world frame, and the buttons work in a press and hold fashion which
means that the robot only moves while the button is being pressed, stopping its motion when
it is released. On the right of the arrow buttons the user can call the movement services with
text input fields, accordingly labeled to each function. The Send button executes the service
and the Reset button clears the fields. On the status feedback section, the first text area
shows relevant information about the robot such as its mode of operation, joint positions and

49

world pose. This information is updated at a rate of 50Hz. Finally on the bottom of the
interface there is a text area where the feedback of each command is presented to the user.

Figure 5.10: ROS rqt_sami interface for easy robot control and monitoring

The development of the tasks proposed in this Dissertation was greatly enhanced by this
interface, which is the main purpose it was initially designed for.

50

CHAPTER 6
Experiments and Results

Every collaborative task previously described was successfully implemented, but in order
to validate its quality, performance, and accuracy, we created and performed a series of
experiments. They result in quantitative and qualitative metrics and serve as a benchmark
of the techniques and tasks developed. After briefly describing the collaborative setup, we
outline each test performed on the collaborative tasks and comment on the results. In the
end, we also give some remarks on the performance and stability of the overall system.

6.1 Collaborative Setup

The experimental setup consists on a UR10e, with a Weiss Robotics CRG 200 gripper
attachment. The vision sensor is a Microsoft Kinect RGBD camera and the shared workspace
is a simple table, approximately 50cm distant from the robot. The camera is positioned at
2m of height with a 45° downwards orientation and its FOV is shown in Figure 6.1b. The
complete composition of the setup is shown in Figure 6.1a.

(a) Collaborative Setup (b) Kinect FOV

Figure 6.1: Views of the experimental shared workspace

51

6.2 Collaborative Tasks

6.2.1 Interaction Test

To validate the use of the EEF double tap as an interaction interface with the cobot, a test
case was developed in which the user would make consecutive double taps in all the directions
available and observe if they were correctly registered through the colors of the gripper LEDs.
Each direction corresponds to a different color. A double tap interaction is considered a fail
when the color of the LEDs does not change, or changes to the wrong color.

Double Taps Fails Accuracy
300 16 94,6%

Table 6.1: Results of the interaction test

In 300 interactions, 94,5% were correctly registered. The majority of the fails were due
to weak execution of the double tap. There was record of a few interactions in which the
direction was wrongly classified. The cause of this is due to the ambiguous direction in which
the user performed the double tap.

6.2.2 Hand Guiding

The accuracy of the EEF compensation model was already discussed in Subsection 3.2.4.
It has been proved that a force threshold of 2N would be possible since it is higher than
the maximum error of the FT theoretical model. Despite this fact, it has also been shown
in Subsection 3.1.2 that physical interaction with the sensor can cause deviations in its
measurements. For this reason, an experimental test was developed to test the accuracy of
the compensation model in a real scenario, and the performance of the HG task in general.

Figure 6.2: Succession of steps of the HG test

The test consists on HG the cobot with the objective of walking the gripper fingers through
an object that is placed on the table. The system must compensate the FT caused by the
gripper in every orientation, therefore the cobot must only move due to external forces caused
by the user. On the other hand, the user must align the gripper fingers with the object
without difficulty. To test the system responsiveness, the user must walk the gripper through
the object in a linear motion, while the gripper fingers are aligned with it. The succession of
steps for this test is shown in Figure 6.2.

The metrics for this test are effectiveness and responsiveness. Effective means that the user
was able to complete the test, therefore the gripper weight was always correctly compensated

52

and the robot only moved according to the force applied by the user. Responsive means that
the robot motion was smooth and specifically in the part that the user must align the gripper
fingers with the object on the table, while performing the linear movement, the griper fingers
never touched the object. The results should be interpreted as number os successes in the
amount of attempts. This test was performed 10 times in multiple settings of force thresholds
from the compensation model, and the results are outlined in Table 6.2.

Force
Threshold

Test
Effectiveness

Test
Responsiveness

Qualitative
Performance

1N 3/10 10/10 Unusable
2N 8/10 10/10 Usable
3N 10/10 10/10 Balanced
4N 10/10 9/10 Satisfactory
5N 10/10 7/10 Unresponsive

Table 6.2: Results of the HG performance test

A closer look at the results and an explanation of the qualitative performance will follow:
• At 1N of force threshold, the system is unusable. The cobot is mostly moving by itself

since the force threshold is too low. This result is expected and serves as a demonstration
of the consequences of the inaccuracies of the FT sensor.

• At 2N, the accuracy results are improved, but not entirely satisfactory. Due to physical
interaction with the sensor, there were certain motions that would cause deviations on
the FT measurements. Despite this fact, with this setting the cobot is very responsive,
reacting to very low amounts of force and allowing the gripper to be easily placed exactly
where the user wants it to be.

• 3N proved to be the best threshold setting. It allowed the correct execution of every
test and the loss on responsiveness was not perceptible. With the gripper attachment,
3N will be the default value for force threshold on the EEF weight compensation model.

• 4N and 5N allowed the same accuracy results obtained with 3N but at the cost of motion
responsiveness. In short, the user would have to exert higher amounts of force on the
EEF for it to move, causing degradation on its smoothness.

The general execution and behavior of the HG task is a success. The goal of this test was
not only to find the best system parameters to obtain the best possible behavior, but also to
prove that the orchestration of ROS nodes and the algorithms they implement, proposed in
this dissertation, is well founded and effective.

6.2.3 Object Manipulation

The object manipulation task requires the dynamic attachment of extra weight to the
cobot EEF. It has been shown previously that the EEF weight compensation model supports
dynamic changing of the weight and CoG parameters, but the performance of this manipulation
task is directly proportional to the accurate measurement of these parameters.

The first test regarding this task should be to find both system and FT sensor performance
on correctly measuring the weight of the coupled object. In order to do this, a 1Kg iron

53

weight will be gripped by the cobot 10 times in 6 different orientations. These orientations
consist on vertically aligning each FT axis, in each direction, with gravity, in order to obtain
the accuracy of each measurement component, and can be seen in Figure 6.3.

Figure 6.3: 6 different EEF weight measurement poses

The raw results are outlined in Figure 6.4. As it is evidently seen, changing the measuring
axis has a significant effect on the reported measured weight.

0

2

4

6

8

10

12

14
X Positive

weight
x
y
z

Y Positive
weight
x
y
z

Z Positive
weight
x
y
z

0 2 4 6 8

−10

−5

0

5

10

X Negative
weight
x
y
z

0 2 4 6 8

Y Negative
weight
x
y
z

0 2 4 6 8

Z Negative
weight
x
y
z

Figure 6.4: Results of the weight measurement test in each position

Table 6.3 gives a closer look at the some statistics from the weight measurement tests. All
values are to be read as weight in Kg.

Weight Test Raw DLS
Correction

Scalar
Correction

X Positive 1.144 1.210 1.001
X Negative 1.138 1.209 1.008
Y Positive 1.369 1.229 1.025
Y Negative 1.311 1.176 0.982
Z Positive 0.992 1.219 1.016
Z Negative 0.999 1.229 1.024
Average 1.159 1.213 1.011
Std Dev 0.146 0.038 0.031

Table 6.3: Detailed results and statistics from the weight measurement tests

54

At first, the raw values are neither precise nor accurate showing a wrong weight average and
an arguably high standard deviation. Applying the correction constants obtained from DLS
optimization in Subsection 3.2.4, it is possible to improve the precision of the measurements,
with a significantly lower standard deviation, but the final average weight value is still far
from the correct. Applying a scalar correction with the value of 1.2 provides an accurate and
precise weight measurement, with an improved and much lower standard deviation, meaning
it is expected that in real use scenarios, the weight of a coupled object should only deviate, in
the maximum, by this value.

Assuming the weight is correctly obtained, a real time test was performed to demonstrate
that the EEF weight compensation model can sustain the same levels of accuracy independently
of the weight coupled to the robot. Figure 6.5 shows a real time test where Wrist1 and Wrist2
joints are rotated causing multiple EEF orientations. Similar to previous real time tests the
EEF weight is compensated with minimal error.

Figure 6.5: Result of the compensation architecture applied in a real time test

Figure 6.6: Succession of steps of the object manipulation test

For the same reasons as in the HG tests, weight compensation error is not enough to

55

validate this task. Furthermore, since extra weight is added, it is suspected that the deviations
caused by physical interaction with the FT sensor will increase compared to the previous task.
This time, the collaborative test consists on HG the cobot, aligning it with a stationary object
in the environment, give the order to grip it, wait for the system to calibrate its payload
and manipulate the object with both linear and angular movements, in order to release it
at another location in the environment. Figure 6.6 shows the succession of steps in this test.
The evaluation metrics are the same as in th HG test, and it was also repeated 10 times in
each force threshold setting.

Force
Threshold

Test
Effectiveness

Test
Responsiveness

Qualitative
Performance

1N 0/10 10/10 Unusable
2N 3/10 10/10 Unusable
3N 7/10 10/10 Usable
4N 10/10 8/10 Satisfactory
5N 10/10 5/10 Unresponsive

Table 6.4: Results of the object manipulation performance test

Table 6.4 presents the results of the test and similarly to the previous task a qualitative
interpretation of them will follow:

• Similarly to the HG task, and for the same reasons, 1N of force threshold is unusable.
• At 2N, the results improve but they are still prone to a lot of deviations, therefore not

enough.
• 3N show enough improvements on the results to be considered usable, since the majority

of tests are completed. Given this fact, in a real manipulation scenario, the objective
would be for the robot to never fail, even if it means sacrificing on responsiveness.

• 4N would be the ideal force threshold value for this task since it allows the completion
of all the tests without significant sacrifice on motion responsiveness.

• 5N presents results similar to the HG task where all tests are completed at the cost of
motion smoothness.

In order for these tests to be successfully completed, the value of force threshold of the
weight compensation model needed to be increased. This is caused by 2 factors:

• Increasing the EEF coupled weight increases the inaccuracies of the FT sensor due to
interaction with the user, as explained in Chapter 3.

• The generation of force values from the theoretical FT model is directly impacted by the
configured value of object weight, which is measured and set in real time, when the robot
grabs the object. Inaccuracies on weight measurement due to incorrect handover, or
simply due to the arguably weak force accuracy specification value of 5.5N, can directly
impact the performance of the theoretical model, whose ultimate goal is to model the
behavior of the real FT sensor.

The solution to this problem seems to rely on adapting the force threshold value of the
theoretical FT model according to the current payload weight. With a 1.5Kg gripper tool, 3N

56

of force threshold meant manipulating the tool with a 1:5 force to motion ratio. Gripping
a 1Kg iron weight, and increasing the force threshold to 5N allows to maintain the same
ratio and be able to successfully and accurately manipulate the conjoint weight. The loss on
responsiveness is an acceptable tradeoff for the fact that, in the end, the tests in question
were effectively completed.

6.2.4 Collision Free Execution of an Industrial Task

The validity of the collision avoidance architecture has already been shown in Section 4.3,
and the execution of an industrial task is a simple succession of predefined steps. To obtain
performance metrics on this task and the collision avoidance architecture, a series of tests will
be performed, both in simulation and in a real environment, and its results outlined.

Gazebo Simulator Environment

The first test consists on a trajectory between two poses and a sphere obstacle strategically
placed on top of the trajectory. Detailed parameters of this test are outlined in Table 6.5,
where position is to read as XYZ coordinates in meters, and orientation as XYZ rotation in
degrees (°).

Trajectory Position Orientation Obstacle Position Radius
Start (1.0, 0.0, 0.4) (0, 90, 90) Sphere (0.8, 0.8, 0.35) 0.1
End (0.0, 1.0, 0.4) (0, 90, 90)

Table 6.5: Parameters for the base obstacle avoidance test

This test was created and executed in the Gazebo simulator. The offline trajectory
was obtained with the RRT Connect planner, that is implemented on the OMPL. Visual
representation of the environment and trajectory is shown in Figure 6.7.

Figure 6.7: Simulation scenario with obstacle and offline generated trajectory

Once the control service on the APF controller is called with the play instruction, the
robot starts executing the trajectory. Since the obstacle node is not detecting any obstacles,
the motion vector is equal to the attraction vector, therefore the executed trajectory is the
same as the predefined one. When the robot approaches the obstacle, and the maximum

57

distance constant is reached, a repulsion vector is generated making the final motion vector
steer the robot away from the obstacle. Once the robot is enough distant from the obstacle
and the repulsion vector disappears, it resumes the original trajectory. Figure 6.8 shows this
behavior, where the original and adjusted trajectories are plotted with the sphere obstacle.

X(m)

0.0
0.2

0.4
0.6

0.8
1.0Y(m)

0.0
0.2

0.4
0.6

0.8
1.0

Z(m)

0.0

0.2

0.4

0.6

0.8

1.0

Original
Adjusted

Figure 6.8: Execution of the trajectory with and without obstacle

Having performed the base test with one obstacle, a set of tests with randomly placed and
varying number of obstacles was performed in order to test the robustness of the collision
avoidance architecture. The number of obstacles ranged from 0 to 5 and they were randomly
placed in an area defined by the parameters in Table 6.6.

Axis Minimum (m) Maximum (m)
X 0.5 1.0
Y 0.5 1.0
Z 0.3 0.5

Table 6.6: Parameters for the random placement of obstacles

Examples of the disposition of the randomly placed obstacles are shown in Figure 6.9.

Figure 6.9: Simulation scenarios with multiple obstacles

The test consists on executing the trajectory of the previous test 10 times in each randomly

58

generated environment. The ability to complete the trajectory without colliding with any
obstacle, and the time it took was recorded. These results are outlined in Table 6.7.

Obstacles Completed Average Time (s)
0 10/10 11.43
1 9/10 19.29
2 7/10 20.44
3 6/10 20.55
4 2/10 22.32
5 0/10 —

Table 6.7: Results of the obstacle avoidance test

The execution of the trajectory without obstacles in the environment is always successful,
and the time is takes is proportional to the velocity configured in the robot controller. Once
obstacles are introduced, the success rate decreases and the time it takes to reach the goal
pose increases. For a reasonable amount of obstacles (1 or 2) the success rate is acceptable,
but for an higher amount, the robot easily colides with obstacles and rarely completes the
trajectory. This happens for a number of reasons:

• The current implementation of the repulsion vector only takes into account one obstacle
at a time, which is the closest, therefore, the repulsion caused by an obstacle can lead
the robot to colide with another obstacle.

• Due to the previous fact, the robot can also get stuck between 2 obstacles that are
equally distant from it, which despite not generating a collision, it will prevent the robot
to reach its goal pose.

• The testing conditions are not realistic, and the placement of more than 3 obstacles in a
small area such as the one previously described is an exaggeration created to test the
limits of the architecture.

To solve these issues, the collision avoidance architecture should be improved by taking
into account multiple obstacles simultaneously, and calculating their distance to multiple parts
of the robot, and not just to the EEF. A possible solution to the local minimum problem,
would be the replanning of the offline trajectory taking into account the obstacles identified.
Due to the nature of the goals proposed for this Dissertation, these endeavours were not
implemented but rather classified as future work.

Real Environment

Regarding the implementation of this task in a real scenario, the executed tests and
recorded performance metrics were not the same as the simulation tests. Instead of testing
the ability to adapt the trajectory in a cluttered environment, focus was given to the relation
between robot speed and minimum collision distance. Reasons for this choice rely on the
fact that arranging various obstacles in a real scenario is more time consuming than in the
Gazebo simulator. On the other hand, the joint speed control in the simulator is not possible
since, currently, the UR10e Gazebo implementation only supports joint position based control.

59

Therefore, since the UR10e Polyscope interface allows velocity control through a speed slider
variable, it is possible to correlate the speed of the robot EEF to the effectiveness of the
collision avoidance architecture.

To achieve these metrics, a similar test was performed were a table served as a shared
workspace, and the robot would execute a trajectory between its extremes. On the first test,
there were no obstacles between the 2 points, but on the following tests an orange cone is
placed in a position that would intentionally colide with the offline trajectory. Figure 6.10
illustrates both the execution of the trajectory without obstacles and with an orange cone
directly interfering with the trajectory.

Figure 6.10: Succession of steps of the collision avoidance test

As observed, the robot is able to avoid the obstacle, complete its trajectory and keep a
safe distance from the obstacle, preventing a collision with any part of the robot. This base
test was performed with a speed slider of 10%. To observe how the robot speed impacts its
behavior when avoiding obstacles, this test was repeated in multiple speed slider settings.
Figure 6.11 demonstrates the trajectory of the EEF when performing the aforementioned
tests, and it also denotes in space the points that were identified as obstacles.

When increasing the speed of the robot, the point in space where the robot starts adapting
its trajectory gets closer to the identified obstacles. The maximum speed slider value was 80%
due to the fact that an higher values causes a collision. Table 6.8 shows in each speed setting
the minimum distance that the robot EEF was in relation to the identified obstacle at that
time. The table also shows the conversion of speed slider to real EEF speed in m/s.

The configured parameter, on the collision avoidance architecture, by which a point is
considered to be inside the ROI, for the execution of theses tests, was 0.3m. The results
obtained are as expected since when the robot moves with a relatively low speed, the distance
it keeps from the obstacle is constant and high enough to prevent collisions, throughout the
execution of the trajectory. But as the speed of the robot increases, the minimum distance
starts to decrease, reaching a point where this implementation is not fast enough to make the
robot avoid the obstacle. This behavior happens for a couple of reasons:

• The distance between the EEF and the tip of the gripper tool is exactly 0.18m, therefore,

60

X(m) 0.10.20.30.40.5

Y(m)

0.70.60.50.40.3

 Z(m)

0.2

0.4

0.6

0.8

Original
10%
30%
50%
60%
70%
80%

X(m)

0.10.20.30.40.5Y(m)

0.7 0.6 0.5 0.4 0.3

 Z(m)

0.2

0.4

0.6

0.8

Original
10%
30%
50%
60%
70%
80%

Figure 6.11: Collision avoidance in real scenario with multiple speed settings

Speed Slider (%) EEF Speed (m/s) Minimum Distance (m)
10 0.054 0.217
30 0.155 0.211
50 0.234 0.198
60 0.282 0.194
70 0.316 0.191
80 0.359 0.183
90 0.406 Collision
100 0,449 Collision

Table 6.8: Minimum EEF distance to obstacle relative to its speed

according to Table 6.8, when the speed slider is higher than 80%, the robot colides with
the obstacle because it cannot maintain a minimum distance higher than 0.18m.

• The rate of identification of obstacles is limited, due to the fact that the Microsoft
Kinect camera can only publish point clouds at a maximum rate of 30Hz. The fact that
this architecture and tests were executed on a laptop also does not help performance.

• As demonstrated in Chapter 4, when identifying obstacles and calculating the repulsion
vector, only the EEF position is used.

A simple fix to obtain better results in this test is increasing the ROI minimum distance
constant, but in theory, 0.3m should be enough to avoid collisions at the EEF level, therefore,
the performance of the robot when avoiding obstacles can be improved in various other
aspects. The collision avoidance architecture should use more points to identify obstacles and
calculate the repulsion vector, than using only the EEF position. Examples are the tip of the
gripper tool and the wrist links. The use of a faster camera with an higher sample frequency
should also be considered, since, by industry standards, 30Hz is not enough to detect dynamic
obstacles. Even though the results can be improved with the aforementioned solutions, this
implementation is considered successful in what it proposes, which is the execution of an

61

offline trajectory with realtime dynamic collision avoidance.

6.3 System Stability

A more general performance metric is the ability for the system to maintain activity for
long periods of time. There are several factors that prevent this from happen. During the
execution of the previous tests and any other time directly interfacing with the robot, there
were some events that injured the overall experience.

For instance, at random instances, when the robot had been correctly functioning for
a certain amount of time, e.g. 20 minutes, the system will lose connection with the robot.
More specifically, the UR ROS driver looses connection to the RTDE interface, or in some
instances, the client program that is running on the robot, requesting commands to the
driver suddenly stops its execution. The cause of this problem was not studied since there
was no observable pattern on the instances that is happened. The solution was to call the
\resend_robot_program ROS service made available by the driver and the connection would
resume.

Another example is the fact that, because we are dealing with a cobot and the joints
are force sensitive, when applying large amounts of force on the EEF, the cobot will make a
protective stop, giving the user a violation alert, explaining that a force or speed limit was
exceeded. Other examples of protective stops are prone to happen when the user couples
high amounts of weight to the EEF. This happens because this weight is not reported to the
UR10e Polyscope interface. It is obvious that the UR10e internal controllers need to know
the correct value of payload in order to correctly calculate the necessary torques to apply in
each joint, but as was explained in Subsection 3.2.1, not reporting the payload parameters to
the UR10e internal system is a necessary tradeoff for obtaining cohesive FT measurements on
the EEF.

A final remark on system performance gives light to the fact that all components of this
system were tested and implemented on a laptop with an Intel Core i7-8550U and 16Gb of
RAM.

62

CHAPTER 7
Conclusion

We conclude this Dissertation with an overview of the work that was developed in order
to achieve the proposed goals. We also give light to certain aspects that can be extended and
improved.

7.1 Overview

This Dissertation proposed a set of tools and techniques that when joined together,
promoted the creation and execution of collaborative tasks between a robotic manipulator
and a human. The initial techniques proposed consisted on interacting with the robot through
touch, converting the FT measured at the EEF into robot motion, compensate extra weight
coupled to the EEF, and detect moving obstacles in the environment. With these techniques,
a set of tasks was proposed that included precise HG of the robot, transfer of tools between
the robot and the human, manipulation of heavy objects, and collision free execution of an
industrial task.

These tasks heavily relied on the existence of FT sensing capabilities on the robot, so
we started by exploring the capabilities and behavior of the FT sensor located on its EEF.
Some unexpected behavior was found, such as the unreasonable variation of FT caused by
the position of the last joint. This behavior and other peculiarities were properly corrected.
Then, to be able to have multiple tools and objects attached to the EEF, and still be able to
precisely HG it, a payload compensation model was developed based on the optimization of an
analytical FT generation model. The combination of the active correction of FT measurements
based on the Wrist3 Joint, and the compensation based on the measured payload, coupled to
the robot, allowed the user to precisely HG the robot with multiple tool configurations and
objects.

To increase the collaborativeness and safety of the system, an external vision sensor was
added to the workspace in order to give the robot obstacle avoidance capabilities. To achieve
this, a motion controller based on the APF method was developed. In this approach, an
attraction vector was generated, that made the robot follow a predefined offline trajectory.

63

Then, a repulsion vector was created from the real time identification of obstacles in the
environment. The combination of these 2 components allowed the robot to adapt its motion
to the existence of dynamic obstacles, and still be able to complete its trajectory.

With this abilities, a group of collaborative tasks was developed and seamlessly combined
in a state machine. The tasks included transfer of objects between the human and the robot,
precisely HG the robot at the EEF level, dynamically couple an object and manipulate it
with the same motion as in the previous task, and the execution of a predefined industrial
task with the ability of avoiding dynamic obstacles.

To test and validate the performance of the proposed tasks, a number of experiments were
designed and implemented in a real scenario with a UR10e cobot. The tests consisted on the
execution of the various tasks with different system parameters. Some metrics were registered
based on the ability to complete the tasks and the qualitative performance of the system,
while doing so. The system showed correct behavior in every task and the results showed that
the best possible behavior relies on proper system parametrization.

During the development of this Dissertation, there were some challenges not initially
forseen when drawing its requirements. For starters, the amount of inaccuracies in the FT
sensor was not expected, and for some time, it was uncertain how much the collaborative
tasks could rely on it. It was only until the right tests were made and the error patterns
discovered, that a possible correction was designed and implemented. Another struggle came
from the fact that these inaccuracies could only be tested with the real FT sensor. Regarding
the control of the UR10e, the journey to find the best method for joint velocity based control
of the robot was also long and uncertain. For instance, the iris_ur10e ROS package was used
in the initial periods of development. It consisted on a fork of the official UR ROS driver with
some adicional features, such as the inclusion of the Weiss Gripper driver and description.
But because this package forked an old version of the driver, joint velocity based control was
not available, which raised the question of which control interface to use, given the options
outlined in Subsection 2.3.2. Ultimately, efforts were made to merge the newest features of
the official UR ROS driver with the implementation characteristics of the setup at IRISLab.

Nevertheless, every proposed technique was effectively implemented, and every goal
successfully achieved. The final collaboration framework allows the safe execution of predefined
tasks while seamlessly interfacing with the robot in many different ways. This work can be
used as a whole for diverse applications, but also contributes in specific topics on the field of
HRC with the development of the payload compensation model, the APF collision avoidance
controller, the collaborative state machine, and the generic GUIs for robot monitoring and
control. Finally, regarding these achievements and contributions, most importantly, this work
helps breaking the barriers that are currently separating humans and industrial robots.

7.2 Future Work

Despite every proposed goal being accomplished, HRC is a vast field and this Dissertation
only covered a small percentage of its intricacies, therefore, space for added functionality and

64

improved performance is plenty. In no particular order, a few key aspects in which this work
can be expanded will be outlined:

• Full Body HG: The flexibility of manipulating an industrial robot with physical
interaction can be enhanced if extended to every single joint. In this work, the HG of
the robot was limited to the FT measured at the EEF. There are scenarios where being
able to HG the entire robot is very useful, such as when the movement of a single joint
is desired, or when the robot is reaching a singularity.

• Extended Sensor Apparatus: Having a single vision sensor is only sufficient for a
proof of concept collision avoidance model, but is not enough for a real industry scenario.
Increasing the number of sensors, playing with its dispositions and testing multiple
configuration seems a natural evolution on the work developed. An interesting ideia
would be to implement a vision sensor in the structure of the robot.

• Multimodal Interaction: The proposed work provides limited ways of conveying
actions to the robot. There are multiple methods that can be added to this system, in
order to increase the means of communication with the robot such as voice recognition,
gesture recognition, high level task interpretation, or simply increasing the number of
inputs of the system with hardware buttons and switches.

• High Level Creation of Tasks: The ros_smach library allows the creation of complex
robot behavior, describing it as structured state machines. To extend the existing state
machine with new functionalities, knowledge in Python programming is required. It
would be useful if it was possible to create new tasks without programming knowledge.
An intuitive GUI could be built for this purpose, with a drag and drop interface and a
list of robot skills that the user could choose from.

• Offline Trajectory Refactoring: In the implemented approach to collision avoidance,
the offline trajectory is static throughout its execution. There are scenarios with an
high amount of obstacles where the robot is not able to complete the trajectory. This
behavior could be avoided by making local changes to the trajectory or, in extreme cases,
by globally replanning the trajectory, but this time, including the identified obstacles in
the planning environment.

65

References

[1] I. F. of Robotics, “World robotis 2020 report”, 2020. [Online]. Available: https : / / ifr . org /
worldrobotics/.

[2] J. Krüger, T. Lien, and A. Verl, “Cooperation of human and machines in assembly lines”, CIRP Annals,
vol. 58, no. 2, pp. 628–646, 2009. doi: 10.1016/j.cirp.2009.09.009.

[3] J. Colgate, W. Wannasuphoprasit, and M. Peshkin, “Cobots: Robots for collaboration with human
operators”, ASME International Mechanical Engineering Congress and Exposition, pp. 433–439, Dec.
1996.

[4] J. Schmidtler, V. Knott, C. Hölzel, and K. Bengler, “Human centered assistance applications for the
working environment of the future”, Occupational Ergonomics, vol. 12, no. 3, C. M. Schlick and J.
Bützler, Eds., pp. 83–95, Sep. 2015. doi: 10.3233/oer-150226.

[5] H. C. Fang, S. K. Ong, and A. Y. C. Nee, “A novel augmented reality-based interface for robot path
planning”, International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 8, no. 1,
pp. 33–42, Aug. 2013. doi: 10.1007/s12008-013-0191-2.

[6] A. Hentout, M. Aouache, A. Maoudj, and I. Akli, “Human–robot interaction in industrial collaborative
robotics: A literature review of the decade 2008–2017”, Advanced Robotics, vol. 33, no. 15-16, pp. 764–799,
Jul. 2019. doi: 10.1080/01691864.2019.1636714.

[7] E. Matheson, R. Minto, E. G. G. Zampieri, M. Faccio, and G. Rosati, “Human–robot collaboration
in manufacturing applications: A review”, Robotics, vol. 8, no. 4, p. 100, Dec. 2019. doi: 10.3390/
robotics8040100.

[8] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics. Springer International Publishing,
2016. doi: 10.1007/978-3-319-32552-1.

[9] F. Ferland, A. Reveleau, F. Leconte, D. Létourneau, and F. Michaud, “Coordination mechanism for
integrated design of human-robot interaction scenarios”, Paladyn, Journal of Behavioral Robotics, vol. 8,
no. 1, pp. 100–111, Dec. 2017. doi: 10.1515/pjbr-2017-0006.

[10] G. Hirzinger, A. Albu-Schaffer, M. Hahnle, I. Schaefer, and N. Sporer, “On a new generation of torque
controlled light-weight robots”, in Proceedings 2001 ICRA. IEEE International Conference on Robotics
and Automation, vol. 4, 2001, pp. 3356–3363. doi: 10.1109/ROBOT.2001.933136.

[11] Y. She, H.-J. Su, D. Meng, S. Song, and J. Wang, “Design and modeling of a compliant link for inherently
safe corobots”, Journal of Mechanisms and Robotics, vol. 10, no. 1, Dec. 2017. doi: 10.1115/1.4038530.

[12] R. Weitschat, J. Vogel, S. Lantermann, and H. Hoppner, “End-effector airbags to accelerate human-robot
collaboration”, in 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE,
May 2017. doi: 10.1109/icra.2017.7989262.

[13] “Robots and robotic devices — safety requirements for industrial robots — part 1: Robots”, International
Organization for Standardization, Geneva, CH, Standard, Jul. 2011. [Online]. Available: https://www.
iso.org/standard/51330.html.

[14] “Robots and robotic devices — safety requirements for industrial robots — part 2: Robot systems and
integration”, International Organization for Standardization, Geneva, CH, Standard, Jul. 2011. [Online].
Available: https://www.iso.org/standard/41571.html.

67

https://ifr.org/worldrobotics/
https://ifr.org/worldrobotics/
https://doi.org/10.1016/j.cirp.2009.09.009
https://doi.org/10.3233/oer-150226
https://doi.org/10.1007/s12008-013-0191-2
https://doi.org/10.1080/01691864.2019.1636714
https://doi.org/10.3390/robotics8040100
https://doi.org/10.3390/robotics8040100
https://doi.org/10.1007/978-3-319-32552-1
https://doi.org/10.1515/pjbr-2017-0006
https://doi.org/10.1109/ROBOT.2001.933136
https://doi.org/10.1115/1.4038530
https://doi.org/10.1109/icra.2017.7989262
https://www.iso.org/standard/51330.html
https://www.iso.org/standard/51330.html
https://www.iso.org/standard/41571.html

[15] “Robots and robotic devices — collaborative robots”, International Organization for Standardization,
Geneva, CH, Standard, Feb. 2016. [Online]. Available: https://www.iso.org/standard/62996.html.

[16] F. Steinmetz and R. Weitschat, “Skill parametrization approaches and skill architecture for human-robot
interaction”, in 2016 IEEE International Conference on Automation Science and Engineering (CASE),
IEEE, Aug. 2016. doi: 10.1109/coase.2016.7743419.

[17] H. Fang, S. K. Ong, and A. Y.-C. Nee, “Robot programming using augmented reality”, 2009. doi:
10.1109/cw.2009.14.

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Ng, “Ros: An
open-source robot operating system”, ICRA Workshop on Open Source Software, vol. 3, Jan. 2009.

[19] U. Robots, Universal robots e-series user manual, English, version 5.10, Universal Robots, Jun. 2021.

[20] ——, The urscript programming language, English, version 5.10, Universal Robots, Jun. 2021.

[21] T. Andersen, Optimizing the Universal Robots ROS driver. English. Technical University of Denmark,
Department of Electrical Engineering, 2015.

[22] D. Coleman, I. A. Sucan, S. Chitta, and N. Correll, “Reducing the barrier to entry of complex robotic
software: A moveit! case study”, Journal of Software Engineering for Robotics, vol. 5, pp. 3–16, May
2014. doi: 10.6092/JOSER_2014_05_01_p3.

[23] I. A. Sucan and S. Chitta, “Moveit”, [Online]. Available: https://moveit.ros.org/.

[24] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (PCL)”, in 2011 IEEE International
Conference on Robotics and Automation, IEEE, May 2011. doi: 10.1109/icra.2011.5980567.

[25] R. Tsai and R. Lenz, “A new technique for fully autonomous and efficient 3d robotics hand/eye
calibration”, IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 345–358, Jun. 1989. doi:
10.1109/70.34770.

[26] S. Brown and H. A. Pierson, “A collaborative framework for robotic task specification”, Procedia
Manufacturing, vol. 17, pp. 270–277, 2018. doi: 10.1016/j.promfg.2018.10.046.

[27] R. Arrais, C. M. Costa, P. Ribeiro, L. F. Rocha, M. Silva, and G. Veiga, “On the development of
a collaborative robotic system for industrial coating cells”, The International Journal of Advanced
Manufacturing Technology, vol. 115, no. 3, pp. 853–871, Oct. 2020. doi: 10.1007/s00170-020-06167-z.

[28] P. Tsarouchi, S. Makris, G. Michalos, A.-S. Matthaiakis, X. Chatzigeorgiou, A. Athanasatos, M. Stefos, P.
Aivaliotis, and G. Chryssolouris, “ROS based coordination of human robot cooperative assembly tasks-an
industrial case study”, Procedia CIRP, vol. 37, pp. 254–259, 2015. doi: 10.1016/j.procir.2015.08.045.

[29] C. Gaz, E. Magrini, and A. D. Luca, “A model-based residual approach for human-robot collaboration
during manual polishing operations”, Mechatronics, vol. 55, pp. 234–247, Nov. 2018. doi: 10.1016/j.
mechatronics.2018.02.014.

[30] P. J. Koch, M. K. van Amstel, P. Dębska, M. A. Thormann, A. J. Tetzlaff, S. Bøgh, and D. Chrysostomou,
“A skill-based robot co-worker for industrial maintenance tasks”, Procedia Manufacturing, vol. 11, pp. 83–
90, 2017. doi: 10.1016/j.promfg.2017.07.141.

[31] P. Tsarouchi, A.-S. Matthaiakis, S. Makris, and G. Chryssolouris, “On a human-robot collaboration in an
assembly cell”, International Journal of Computer Integrated Manufacturing, vol. 30, no. 6, pp. 580–589,
May 2016. doi: 10.1080/0951192x.2016.1187297.

[32] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager, “CoSTAR: Instructing collaborative
robots with behavior trees and vision”, in 2017 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, May 2017. doi: 10.1109/icra.2017.7989070.

[33] B. Mocan, M. Fulea, and S. Brad, “Designing a multimodal human-robot interaction interface for an
industrial robot”, in Advances in Intelligent Systems and Computing, Springer International Publishing,
Aug. 2015, pp. 255–263. doi: 10.1007/978-3-319-21290-6_26.

68

https://www.iso.org/standard/62996.html
https://doi.org/10.1109/coase.2016.7743419
https://doi.org/10.1109/cw.2009.14
https://doi.org/10.6092/JOSER_2014_05_01_p3
https://moveit.ros.org/
https://doi.org/10.1109/icra.2011.5980567
https://doi.org/10.1109/70.34770
https://doi.org/10.1016/j.promfg.2018.10.046
https://doi.org/10.1007/s00170-020-06167-z
https://doi.org/10.1016/j.procir.2015.08.045
https://doi.org/10.1016/j.mechatronics.2018.02.014
https://doi.org/10.1016/j.mechatronics.2018.02.014
https://doi.org/10.1016/j.promfg.2017.07.141
https://doi.org/10.1080/0951192x.2016.1187297
https://doi.org/10.1109/icra.2017.7989070
https://doi.org/10.1007/978-3-319-21290-6_26

[34] M. Safeea, R. Bearee, and P. Neto, “End-effector precise hand-guiding for collaborative robots”, in
ROBOT 2017: Third Iberian Robotics Conference, Springer International Publishing, Dec. 2017, pp. 595–
605. doi: 10.1007/978-3-319-70836-2_49.

[35] C. T. Landi, F. Ferraguti, C. Secchi, and C. Fantuzzi, “Tool compensation in walk-through programming
for admittance-controlled robots”, in IECON 2016 - 42nd Annual Conference of the IEEE Industrial
Electronics Society, IEEE, Oct. 2016. doi: 10.1109/iecon.2016.7793038.

[36] M. Safeea, P. Neto, and R. Bearee, “On-line collision avoidance for collaborative robot manipulators by
adjusting off-line generated paths: An industrial use case”, Robotics and Autonomous Systems, vol. 119,
pp. 278–288, Sep. 2019. doi: 10.1016/j.robot.2019.07.013.

[37] X. Wang, C. Yang, Z. Ju, H. Ma, and M. Fu, “Robot manipulator self-identification for surrounding
obstacle detection”, Multimedia Tools and Applications, vol. 76, no. 5, pp. 6495–6520, Feb. 2016. doi:
10.1007/s11042-016-3275-8.

[38] M. Safeea and P. Neto, “KUKA sunrise toolbox: Interfacing collaborative robots with MATLAB”, IEEE
Robotics & Automation Magazine, vol. 26, no. 1, pp. 91–96, Mar. 2019. doi: 10.1109/mra.2018.2877776.

[39] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and R. Medina-Carnicer, “Generation of
fiducial marker dictionaries using mixed integer linear programming”, Pattern Recognition, vol. 51,
pp. 481–491, Mar. 2016. doi: 10.1016/j.patcog.2015.09.023.

69

https://doi.org/10.1007/978-3-319-70836-2_49
https://doi.org/10.1109/iecon.2016.7793038
https://doi.org/10.1016/j.robot.2019.07.013
https://doi.org/10.1007/s11042-016-3275-8
https://doi.org/10.1109/mra.2018.2877776
https://doi.org/10.1016/j.patcog.2015.09.023

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Outline

	Collaborative Robotics
	History
	Human Robot Collaboration
	Hardware and Design
	Safety
	Programming

	Technological Background
	Robotics Middleware
	Universal Robots UR10e
	Motion Planning
	Perception

	Related Research
	Proposals on HRC and Collaborative Tasks
	Solutions to Specific HRI Problems

	Force Torque Sensor Compensation
	FT Sensor Correction
	Noise Filtering
	Observed Behavior
	Proposed Solution
	Results

	EEF Weight Compensation
	UR FT Sensor Controller Internal Compensation
	Force Theoretical Model
	Results
	Adapting the FT Theoretical Model

	Real Time Correction and Compensation of FT

	Dynamic Obstacle Avoidance
	Obstacle Detection
	Hand Eye Calibration
	Robot Segmentation
	Obstacle Segmentation

	Artificial Potential Fields
	Attraction
	Repulsion
	Controller

	Real Time Obstacle Avoidance

	Collaborative Tasks
	Hand Guiding
	HGFT to EEF Velocity
	EEF Velocity to Joint Speed
	HG Architecture

	Object Transfer
	Object Manipulation
	Collision Free Execution of an Industrial Task
	Collaborative State Machine
	State Transitions
	Visual Feedback

	Software Tools for HRC
	rqt_ur10e
	rqt_sami

	Experiments and Results
	Collaborative Setup
	Collaborative Tasks
	Interaction Test
	Hand Guiding
	Object Manipulation
	Collision Free Execution of an Industrial Task

	System Stability

	Conclusion
	Overview
	Future Work

	References

