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Resumo Esta dissertação descreve como um Radar de onda contínua modulada em frequên-
cia (FMCW) pode ser utilizado na contagem e localização de pessoas dentro de
uma sala. Para além da contagem de pessoas, também é realizado o rastreamento
espacial da pessoa através de métodos de processamento da nuvem de pontos pro-
venientes do Radar.
É feito um estudo teórico, detalhando como o Radar é capaz de calcular parâmetros
fundamentais como a distância, velocidade e ângulo de chegada de um objeto pre-
sente no campo de visão (FoV), assim como os cálculos de processamento de sinal
efetuados com o kit de avaliação do Radar selecionado. A aplicação desenvolvida
no âmbito da dissertação contempla tópicos como, técnicas de redução de ruído,
algoritmos de segmentação de dados e associação destes a pessoas e/ou objetos,
utilizando algoritmos de processamento digital de sinal (DSP) capazes de predição
de movimento em ambientes ruidosos com dados extraídos do Radar, abordando
ainda a projeção de coordenadas cartesianas numa câmara de videovigilância loca-
lizada num ponto distinto da sala.
Este projeto foi pensado para sistemas de segurança e proteção, onde o Radar se-
ria integrado numa câmara de videovigilância, complementado as capacidades de
deteção de pessoas obtidas por meio de algoritmos de processamento de imagem,
os quais tendencialmente falham em determinadas condições atmosféricas ou de
iluminação enquanto o Radar é menos afetado.
A aplicação de interface gráfica de utilizador (GUI) desenvolvida nesta disserta-
ção, foi testada em cenários onde as pessoas percorrem movimentos normais como
caminhar ou estão sentadas no seu local de trabalho e construído de forma a ser
capaz de funcionar em tempo real sem grandes perdas na aquisição de vídeo. São
apresentados alguns resultados práticos focando diversos casos de uso de deteção
e rastreamento de pessoas, atingindo um desempenho interessante.





Keywords Radar, People Detection, Sensor Fusion, Tracking

Abstract The present dissertation describes how a frequency-modulated continuous-wave
(FMCW) Radar can be employed to count and locate persons inside a room. Apart
from counting, it is also performed the spatial person tracking through processing
of the Radar point cloud.
A theoretical study is done, detailing how the Radar can compute fundamental
parameters like distance, velocity, and angle of arrival of an object present in the
field of view (FoV) and the signal processing computations done with the selected
Radar evaluation kit. The application developed in the scope of this dissertation
contemplates topics such as, noise mitigation, clustering algorithms and associ-
ation with detected persons and/or objects. It also uses digital signal processing
(DSP) algorithms capable of movement prediction in noisy environments with data
extracted from the Radar and approaches the projection of Cartesian coordinates
into a video surveillance camera located at a different place.
This project was intended for security and safety systems, wherein the Radar would
be integrated in a video surveillance camera, complementing people detection capa-
bilities achieved via image processing algorithms, which fail in certain atmospheric
or lightning conditions while the Radar is less affected.
The graphical user interface (GUI) application developed in this dissertation was
tested in scenarios where people would walk in regular patterns or are seated in their
workplace and constructed in a way that allows it to work in real-time without ma-
jor losses on the video acquisition performance. Practical results of diverse person
detection and tracking use cases are demonstrated with an interesting performance.
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Chapter 1

Introduction

RADAR stands for RAdio Detection And Ranging and it is most of the time linked
with military equipment and speed control systems used by law enforcement, with the purpose
of measure distance, direction and velocity [1]. Although the technology had a great jump in
development during World War II its invention is dated to the early 20th century when a
German physicist developed a “Telemobiloscope” [2], a device capable of detecting distant
ships through the fog. This was based on the experiments of Heinrich Hertz that showed that
electromagnetic waves were reflected by metallic objects[3]. The first Radars were mostly
used in the military in the detection of oncoming airplanes and missiles, but after the war,
the technology continued to evolve into better devices. These future devices would be capable
of achieving higher frequencies and had integrated hardware capable of modern digital signal
processing techniques, which allowed the radar to achieve finer resolutions in distance and
velocity. With the advance of production techniques, a Radar can be produced relatively
cheap and small, this makes the radar a perfect integration into modern and civil applications
such as smart cities, automobile navigation systems, meteorology, and also medicine [4].

1.1 Context

The applications for the radar can range from the most simple cases as automated door
openers, lighting and traffic control, into more complex uses as gesture recognition and vital
sensing where the radar needs to detect more information than just the presence [5]. The
industry is constantly discovering new uses for the radar to help in the creation of smart
factories, capable of autonomous transporting with collision avoidance, robots with enhanced
accuracy, perimeter security of the facilities, people counting in a room, etc.

Recently there is a rising trend in Radar applications in the automotive industry with
high-end automobiles enhanced with Radars which allows them to provide parking assistance,
door opening collision detectors and lane departure warnings [6]. The new autonomous driving
concept of cars requires the Radar to be more than just a passive sensor with only the ability
to warn the driver. The new Radar must be capable of acting in the control of the vehicle.

The data provided by the Radar in combination with data from other sensors could
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enhance the capabilities of a system, a camera with a radar providing detection and location of
people could allow detection even in extreme conditions where the image processing techniques
would fail to detect. This would bring more safety and reliability to the security systems by
enabling sensor fusion. The process of combining data from multiple sensors is called Sensor
Fusion and lessens the uncertainty of the system if these sensors would be used separately.

This dissertation was done in collaboration with Bosch Security Systems, S.A. – Ovar,
Portugal, in the scope of running R&D projects at Video Systems (VS) business unit. All the
material and conditions for the developments of this dissertation were made available. The BT-
VS team is currently working on projects which involve the development of new technologies
and solutions for safer cities and smart surveillance systems, where Radar technology is seen
as a major skill to potentiate further knowledge to complement scene understanding in diverse
scenarios and weather conditions.

1.2 Motivation

There are multiple devices capable of detecting the presence of a person like a sonar, laser,
or lidar, but the radar is preferred over these because is less affected by diverse environmental
effects such as fog, rain, darkness, heat or even a fire [7]. With the increased interest in Radar
solutions, multiple companies are putting effort into creating self-contained development kits
that permit fast prototyping and testing of Radar applications. The fact that this is achievable
in a small and cheap board makes them an interesting solution for academic researches and
integration in multi-sensory applications.

This dissertation objective includes the development of a system integrating a camera
+ radar to detect and track the presence of people in a room, this could be achieved with
just the camera embedded with YOLOv4 which is a real-time object detection algorithm
that performs well in the detection of people in an image. The problem with solutions
based on machine learning is that they require images with certain conditions to achieve the
expected performance, but in a real-life scenario, these conditions are not always met. If these
applications have a security interest, they should not just perform well 90% of the time, so
the addition of radar to the system would help complement the camera because the data
extractions are unaffected by elements that usually degrade the quality of image processing
algorithms.

Despite the Radar being unaffected by elements like light conditions and fog, the principle
of operation of the radar is prone to generate a diversity of unwanted objects (clutter) in
indoor environments which imposes a challenge into the development of processing techniques.

This dissertation aims to add robust detection and tracking of moving persons in an indoor
scenario, feeding the results into a camera and doing a live projection of the radar detections
on the image. This dissertation does not discuss other alternatives for peoples detections since
the radar will work as a complementary instrument when other sensors would fail.
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1.3 Objectives

The envisioned objective of this dissertation is the development of an application capable
of detecting and tracking people based on data provided by a MIMO FMCW Radar. The
application objectives to be achieved in this dissertation can be listed as the following:

1. Detect and locate the spatial position of people on the point cloud;
2. Count the number of people present in the FoV;
3. Track the movement of multiple people in the Radar FoV;
4. Project the results onto an image in conditions where image processing algorithms would

fail.
The application must be capable of working in real time data in a indoor scenario.

1.4 Contributions

The main contribution of this dissertation consists in the development of a robust Python
module capable of receiving point clouds through UART and perform counting and tracking
of people in real-time. The information provided by this module is then fed into a live image
provided by a camera for sensor fusion. An adaptation of a TI application GUI was developed
to show all the relevant data in real-time.

The work developed on this dissertation resulted in an extended abstract presented at
Union Radio-Scientifique Internationale General Assembly and Scientific Symposium (URSI
GASS 2021) held in Rome, Italy between 28th September and 4th August. The title of the
submitted abstract was ”FMCW Millimeter-Wave Radar-Augmented People Tracking Solution
for Video Surveillance Systems”.

1.5 Dissertation Structure

The dissertation outline is structured into six chapters:
1. Chapter 1 - The current chapter serves as an introductory chapter to the Radar by

giving a brief historical description and explaining why the Radar was the choice of
election amidst other possibilities for people detection and tracking.

2. Chapter 2 - The state of the Art, the theory behind an FMCW Radar and how it can
measure the distance, velocity and Angle of Arrival of a target. The concepts of MIMO
Radar, SNR, Radar Cross Section and CFAR algorithms are also introduced.

3. Chapter 3 - This chapter presents the development kit TI IWR6843ISK-ODS and its
hardware tools and the software processing chain. The People Counting application
is also presented with the information provided by Texas Instruments about how the
Radar converts the received signals into point clouds.

4. Chapter 4 - Describes the application developed capable of interpreting the point
clouds returned by the radar and returning the counting and tracking of people detected
while plotting the results on a GUI based on Texas Instruments application mmwave
People Counting GUI. The targets detected are then plotted into a live camera view.
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5. Chapter 5 - This chapter provides the results of the application developed, in multiple
scenarios. Separating the results into tracking, detection and image projection.

6. Chapter 6 - The last chapter presents the conclusion of the work developed in this
dissertation with emphasis on the problems faced. This chapter also mentions the future
work that can be generated from this dissertation.
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Chapter 2

Fundamental Radar Technology

In this chapter, we will present a typical architecture for an FMCW radar which will be
our focus of study since it is a cheap and growing technology. The chapter will also give
an explanation of the theory and mathematics behind the FMCW signals present in the
architecture and the procedure to compute characteristics such as range, velocity and angle
of a target. A MIMO FMCW Radar concept will also be introduced to show how accurate
angle calculations are done in multiple targets environment. At the end of the chapter, the
characterization of the oncoming signals and a CFAR algorithm will be presented to show the
conditions required by a reflection received by the radar to be considered a valid target.

2.1 Introduction to Radar Technology

Figure 2.1: Basic Radar principle.

The principle behind an FMCW radar is to radiate a wave with linearly increasing
frequency and then receive and detect the reflected waves as illustrated in figure 2.1, by
comparing the transmitted signal and the respective reflection and with the help of modern
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signal processing techniques it is not only possible to measure the localization of a target, but
also, classify it, tracking the movement and suppressing the noise also known as clutter [1].

2.1.1 Basic Radar Architecture

As seen in figure 2.2, a typical FMCW Radar architecture consists of [8]:

• An Waveform Generator to generate the triangular-shaped signal paired with a
Voltage Controlled Oscillator (VCO) to create a wave with linearly increasing frequency;

• Two antennas, a transmitter and a receiver to radiate and receive the waves generated
by the waveform generator;

• Mixer to generate the Intermediate Frequency (IF) signal by multiplying both Tx and
Rx signals;

• Power Amplifier (PA) to give enough power so that the radiated waves can strike the
target and have enough power to be reflected;

• Low Noise Amplifier (LNA) to act as a filter for the unwanted components at different
frequencies that interfere with the signals and also to amplify the components in interest
while maintaining a good noise figure;

• Low Pass Filter (LPF) to remove the unwanted components generated by the mixer,
typically works at baseband;

• ADC to convert to digital domain so that digital signal processing techniques could be
applied.

Figure 2.2: An FMCW radar schematic.
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2.1.2 Radar Concepts and Parameters

To help with further reading of this dissertation a few basic concepts about radar systems
are presented here.

• A Target is an object that can be detected by the radar system at a certain distance.
• Speed or Doppler is the scalar representation of the radial velocity. This can be

obtained by computing the frequency shift caused by the moving target onto the
reflected wave, also known as the Doppler effect.

• Angle of Arrival (AoA) is the angle from which the reflected wave arrives at the
receiver antennas and the central axis.

• Chirp is a transmitted wave with linearly increasing frequency.
• SNR is the relation between the Power of a detected point and the noise power.
• A frame is the basic structure of data that has information about the target distance,

speed and possibly angle from multiple consecutive chirps.
• Point Cloud is the result of the processing chain which identifies a target or multiple

targets speed and distance in relation to the radar at a given instant of time.
• Clutter is the echo that originated from the multi-path reflection on walls, ground, etc.

These can later create ghost/fake targets on the point clouds.
• The multiple-input multiple-output (MIMO) radar is a technology used in multiple

transmission and reception systems because it adds new degrees of freedom which in
the FMCW case, allows to perform beamforming techniques that enables the system to
detect reflections from multiple directions.

Figure 2.3: 3D geometry of the radar [9].
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The radar geometry is illustrated in 2.3 where a single target can be classified with the
data provided by the signal processing. Each target will have a range, azimuth angle
θ (angle between x-axis and y-axis), elevation angle ϕ (angle between z-axis and y-axis),
radial velocity v and a SNR. Although in the image the azimuth angle is portrayed as ϕ,
in this dissertation work, the selected symbol for azimuth angle is θ and vice versa.

2.2 FMCW Radar

In this section, we will approach how an FMCW radar can locate and detect a target
using an FMCW Radar type. FMCW stands for Frequency Modulated Continuous
Wave and is a subset of the continuous waveform type of system. There are other types
of waveforms such as FSCW (Frequency Shifting Continuous Wave) or SFCW (Stepped
Frequency Continuous Wave) but in this dissertation, the focus will be only on FMCW.
The FMCW Radar consists of transmitting a wave with a frequency that changes over time,
in this case, we will approach using a linearly increasing frequency [10]. Figure 2.4 shows
the transmitted wave in an Amplitude-Time plot where it is possible to see the frequency
increasing with time and in figure 2.5 the respective frequency modulation also known as
Chirps, where S is the rate of change or Slope, B is the Bandwidth and f0 the initial
frequency. Each signal transmitted is separated by TC which is the time between Chirps.
From this, it is possible to define the slope of the chirp as:

S = B

TC
(2.1)

Figure 2.4: Transmitted signal in the time domain.
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Figure 2.5: Chirp signal.

2.2.1 Range Estimation

When a transmitted wave reflects on an object the echo will eventually arrive at the radar
and be captured by the receiving antennas after a short delay proportional to the traveling
distance. To understand how the FMCW Radar measures the distance to the target, it is
necessary to look back to 2.2 and analyze the IF signal which is the output of the mixer block.
If the input signals are two sine waves sin(ω1t+ φ1) and sin(ω2t+ φ2) then the output of a
mixer is:

IF (t) = sin [(ω1 − ω2) t+ (φ1 − φ2)] (2.2)

This means the IF signal frequency is proportional to the frequency difference between Tx and
Rx. Because there is a low pass filter after the mixer the second part of the equation will be
filtered thus no high-frequency components will be considered at the signal processing level.

The figure 2.6 depicts the transmitted and received signals (top right and left) and the
respective IF signals (bottom right and left) with a single reflection (left side) and multiple
reflections (right side). fb is the beat frequency, τ is the flight time, fi is the starting frequency
and ft is the frequency after τ time. Adapted from [10].

If d is the distance between the target and the radar, the time of flight, τ , can be calculated
as:

τ = 2d
c

(2.3)

where c is the wave traveling speed which can be approximated as the speed of light.
Considering the beat frequency, fb, is the frequency difference between the frequency at τ

time, ft, and the initial frequency, fi, the result of ft can be calculated using the following
equation:

ft = fi + S · τ (2.4)

and thus, considering 2.3 it is possible to rewrite as:

ft = fi + S
2d
c

(2.5)

9



Figure 2.6: Transmitted and received signals with respective IF signals for a single target (left side)
and multiple targets (right side).

The IF signal frequency beat is then:

fb = ft − fi = S
2d
c

(2.6)

By rearranging 2.6 we can describe the distance between the radar and target as:

d = fb
c

2S (2.7)

The distance of a target is proportional to the beat frequencies present in the IF signal
whereas the Fourier Transform is a mathematical transform that decomposes a time-
domain function into a frequency domain function and the Fast Fourier Transform (FFT)
is an implementation of the above [11]. In Radar literature, this is also called 1D-FFT or
range-FFT.

The figure 2.7 represents how the data is stored for further processing in a form of a
matrix. The top image is a frequency-time plot of the transmitted signals. The bottom table
is a visualization of how the data is stored, where the IF signal FFT from each chirp is stored
as a column. A square from the table represents a frequency bin from the FFT which can
later be converted to the range. A row represents the same FFT bin across multiple chirps.
Each color is a peak in the FFT and from the analysis of the table, we can see that we have
three or more targets across all the chirps. Adapted from [10].
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Figure 2.7: The 1D-FFT or range-FFT.

2.2.2 Range Resolution

Range resolution is the measurement ability to separate two very close targets in the
spatial domain. The 1D-FFT of two close objects will result in also very close IF frequencies
causing the FFT to only present one peak if the observation window is small as seen in figure
2.8. To resolve this issue, a bigger observation time is required.

Considering the definitions of beat frequency 2.6 and the slope of the chirp 2.1, and that
two frequencies can be resolved as long as their difference (∆fc) is greater than 1/Tc, the
range resolution (∆d) can be defined as:

∆fc > 1
Tc
⇔

2S∆d
c > 1

Tc
⇔

∆d > c
2STC ⇔

∆d = c
2B

(2.8)

which is inversely proportional to the bandwidth (B) of the chirp transmitted.
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Figure 2.8: The amplitude-time plot (left) of the IF signals of two targets at very close distance. At
the right plot is the FFT of the IF signals with a small observation time window with
just N samples. Adapted from [10].

Figure 2.9: The amplitude-time plot (top) of the IF signals at very close distance where the frequency
difference is really low. The right side is the FFT of the IF signals, but this time, with a
large observation time window that allows 2N samples. Adapted from [10].

2.2.3 Maximum Measurable Distance

Since the distance of a target is directly proportional to the frequency of the IF signal,
then the maximum distance possible to be detected is the maximum frequency that can be
processed. The Radar system architecture has an ADC and, thus the maximum distance will
be limited by the Sampling Rate (fs). Then the maximum distance will be:

dmax = fsc

2S (2.9)

2.2.4 Velocity Estimation

To measure the velocity of a target it is required to have a new degree of freedom which is
the time domain, by correlating the IF signals information from multiple chirps separated in
time it is possible to measure displacements on the target distance. Because in a real-world
scenario an FMCW would be working with time separations in transmitted chirps as small as
milliseconds, a human would not have enough time to move in the range domain, so the peak
frequency detected in the IF signals across two transmitted chirps would be the same, and
thus, makes it difficult to measure the amount of distance variation in the designated time
period.
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Figure 2.10: The amplitude-time plots of different signals from two time distinct time slots. Adapted
from [10].

In figure 2.10, at the top is the transmitted signal, in the middle is the respective reflected
signal after a flight time τ (blue) and the reflected signal from a second chirp with a small
variation in the flight time ∆τ (red). the bottom plot is the respective IF signals with the
same beat frequency. If a target has a relative velocity to the radar bigger than zero, a small
displacement will appear in the form of a phase difference between the first received signal and
the second. Considering the small flight time displacement ∆τ , the phase difference between
the IF signals from two consecutive chirps is:

∆Φ = 2πfb∆τ = 4π∆d
λ

(2.10)

Now, since the time separation between chirps is known as Tc and the phase difference can
be used to estimate the distance variation of a target and knowing that the velocity can be
calculated as v = ∆d

Tc
, by replacing in 2.10 and rearranging the expression, the velocity of the

target is:
v = λ∆Φ

4πTc
(2.11)

A target at a determined distance produces an IF signal with a constant frequency and phase,
but if the target is moving relative to the radar, the IF signal phase from a second chirp will
be different while maintaining the same beat frequency. It is possible to represent the phase
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difference in a form of a phasor in the exponential form as seen in figure 2.11 where each plot
represents the FFT on the IF signal from different chirps.

Figure 2.11: The FFT of the IF signals. Adapted from [10].

In the figure 2.11, at the left is the FFT of the blue signal from the figure 2.10 and in
the right plot is the respective FFT from the red signal with a flight time variation ∆τ . The
circles with the vectors are a visual representation of the phase difference between the beat
signal and the transmitted signal in the exponential form Aejω.

Considering the phasor as a form of a discrete signal rotating with Angular Speed (ω),
an FFT on these samples will show a peak at the respective ω. This is called 2D-FFT
or Doppler-FFT which is the FFT across the sequence of phasors. In 2.12 a target with
constant velocity is considered and then, the phase difference is measured from the sequence
of chirps transmitted and a 2D-FFT is applied and the result will be a constant Angular
Velocity at ω. The angular velocity measured in radians per sample can be replaced in 2.11
and a velocity can be calculated from the results of 2D-FFT as:

v = λ∆ω
4πTc

(2.12)

Figure 2.12: At the left side is phase difference in the exponential form at multiple chirp indexes and
in the right, the 2D-FFT across the phase differences with peak at the at the angular
velocity ω1. Adapted from [10].

To better understand how the FMCW radar measures velocity in a multiple target
environment, the following scenario is purposed. Two targets at the exact same distance from
the radar are moving with different velocities in relation to the radar. Since they are at the
same distance the beat frequency of the IF signal will be the same, but this time, the phase
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difference will be the sum of two phasors each one caused by each target. A 2D-FFT is able
to resolve both target velocities by detecting a peak at two distinct angular velocities which
are proportional to the target velocity. The following image (figure 2.13 ) depicts the above
scenario explained. Figure 2.13 is a case scenario where the box on the left side is the relative

Figure 2.13: Velocity scenario of two targets at the same distance from the radar with different
velocities. Adapted from [10].

position of two targets with different speeds, but at the same distance from the radar. At the
top is the frequency-time plot of N transmitted chirps separated by TC time. In the middle
we have the visual representation of the phase difference in the exponential form, the blue
vector corresponds to the reflection from the blue target and the red vector corresponds to
the red target. The last plot is the 2D-FFT from the sum of both phasors with peaks at the
respective angular velocities.

The results of the 2D-FFT will be stored as rows in the data matrix where each row
represent the velocity measured across multiple transmitted chirps as seen in figure 2.14. In
the literature this is called a Range-Doppler-Heatmap.
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Figure 2.14: The results of the 2D-FFT where we can separate both targets in the range and velocity
domain. Each colored square represent the objects from 2.13. Adapted from [10].

2.2.5 Velocity Resolution

The velocity resolution is the ability to separate different peaks at the 2D-FFT. In order
to do that, the difference between the two peaks |ω1− ω2|, ∆ω, must be bigger than 2π

N .
Considering the equations ∆Φ = ∆ωTc, the velocity resolution can be estimated as the
following:

∆ω = 2π
N Fs

⇔ ∆Φ > 2πTc
TcN
⇔ ∆Φ > 2π

N

(2.13)

Knowing that phase difference is proportional to the velocity of the target as seen in equation
2.11:

4πvTc
λ

>
2π
N
⇔ (2.14)

v >
λ

2NTc
⇒ vres = λ

2Tf
(2.15)

where Tf is the frame time and is the number of chirps considered multiplied by the chirp
time (Tf = NTc).

2.2.6 Maximum Measurable Velocity

The maximum velocity can be extracted from the fact that if the absolute value of the
phase difference is bigger than 180º (π radians) then the measurement of the velocity becomes
ambiguous because the variation on the angular velocity does not give information on how the
phase difference is evolving through each sample. If the limit in phase difference is π radians,
then the maximum velocity can be defined as:

∆Φ < π (2.16)

v <
λ

4Tc
⇒ vmax = λ

4Tc
(2.17)

This shows that the maximum velocity is inversely proportional to the chirp periodicity.
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Figure 2.15: A single target AoA estimation with the trigonometry relation between the two received
waves. The reflection is originated from a target at θ degrees, and the antennas are
separated by a distance d.

2.2.7 Angle Estimation

To be able to discriminate two targets at the same distance and with the same relative
speed to the radar, it is necessary to increase a degree of freedom in the spatial domain
to be able to compare the received reflection from physically separated points. In other
words, for an FMCW Radar to be able to measure the Angle of Arrival of a reflection it is
necessary to have two or more receiving antennas. Figure 2.15 shows the difference between
the received waves from two physically separated antennas originated by a single reflection.
In this case, it is a Single Input Multiple Output system with one transmitter and two
receivers. Assuming the additional distance the wave received by antenna Rx2 has to travel
in relation to the first antenna is represented by (∆d) and that is value is equal to d sin(θ).
The phase difference between the signals received by the two antennas can be expressed as:

∆Φ = 2π∆d
λ

= 2πd sin(θ)
λ

(2.18)

Then it is possible to rearrange to calculate the AoA value θ:

θ = sin−1(λ∆Φ
2πd ) (2.19)

This shows the direction from which the reflection originated is measured through the phase
difference, just like the velocity measurement. To resolve multiple targets in the angle domain,
the same approach as velocity is made, each peak detected at the 2D-FFT has a respective
phasor that varies with the receiving antenna. A 3D-FFT or Angle-FFT is made across
the multiple receiving antennas and can calculate the AoA.

The data is stored in a form of a cube, where a 2D-heatmap (2.14) is created for each
received antenna. As seen in figure 2.16.
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Figure 2.16: The 3D-FFT across the phase difference from different receiving antennas to resolve
targets in the angular domain.

2.2.8 Angle Resolution

Angle resolution is the minimum angular separation between two targets to appear as two
separate peaks in the 3D-FFT, to estimate the angular resolution the same approach of the
velocity resolution is used. When the angle of two targets are θ and θ + ∆θ and knowing the
phase difference must be bigger than 2π

NRx
, then, the angular resolution can be formulated as:

∆Φ = 2πd
λ
.(sin(θ + ∆θ)− sin θ) > 2π

NRx
(2.20)

2πd
λ
. cos(θ)∆θ > 2π

NRx
(2.21)

∆θ > λ

NRxd cos θ (2.22)

→ θres = λ

NRxd cos θ (2.23)

Since in most FMCW Radar antenna designs the distance between antennas d is usually λ/2,
the expression can also appear in the form of:

θres = 2
NRx cos θ (2.24)

2.2.9 Angular Field of View

The maximum angle aperture can also be estimated by the same criteria of the maximum
velocity. The phase difference must be lesser than π for the result to be unambiguous.
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Therefore the θmax is:

∆Φ = 2πd
λ
.(sin(θ + ∆θ)− sin θ) < π (2.25)

θ < sin−1
(
λ

2d

)
(2.26)

→ θmax = sin−1
(
λ

2d

)
(2.27)

In the same way of the angular resolution, a separation between receivers of λ/2 results in a
Field of View of ±90◦.

2.2.10 Summary of Radar Parameters

The following table 2.1 represents a summary of the above calculations done previously.

Range d = fb
c

2S (m)
Range resolution ∆d = c

2B (m)
Maximum range dmax = fsc

2S (m)
Velocity v = λ∆Φ

4πTc (m/s)
Velocity resolution vres = λ

2Tf (m/s)
Maximum velocity vmax = λ

4Tc (m/s)
Angle of Arrival θ = sin−1( λ∆Φ

2πdRx ) (degrees)
Angle of Arrival resolution θres = λ

NRxdRx cos θ (degrees)
Field of View θmax = sin−1

(
λ

2dRx

)
(degrees)

Table 2.1: Summary of target estimation parameters.

2.3 MIMO Radar

Multiple-Input Multiple-Output (MIMO) radar is a type of radar system that uses
multiple transmitter and receiver antennas. Each antenna transmits independently and
orthogonal signals from the other antennas, so that the receiver can separate from where the
reflected signal originated. This will allow defining a virtual array which contains all possible
to be created, independent channels containing information from each transmitter to each
receiver, thus if the number of Tx is NTx and the number of Rx is NRx, it is possible to create
NTx.NTx independent pairs. A MIMO radar will provide a few advantages such as decreased
angular resolution, increased FoV and higher sensitivity [12][13].

2.3.1 MIMO Model

As stated before, the transmitted signals should be orthogonal. This can be obtained by
using time-division multiplexing (TDM) or frequency-division multiplexing (FDM)
or spatially encoded. From this point forward the TDM modulation will be considered because
it is the most simple form of achieving orthogonality by allowing only one transmitter to
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transmit at each time. If we consider N number of transmitting antennas and M the number
of receiving antennas, the signal received at the mth receiver antenna can be defined as:

xm(t) =
N∑
n=1

sn(t)ej·2·π·τn·(m−1) + nm(t) (2.28)

where sn(t) is the signal from the nth transmitter antenna and τn = dRx cos θn
λ which is phase

shift per antenna as seen in figure 2.15 and equation 2.10 and nm(t) are the noise terms. The
antenna array in the matrix form can be seen as X = AS +N with X being the matrix of
the received signals, S the transmitted signals, N the noise terms and A is the steering vector
matrix containing the phase delays received at Rx originated from all transmitter antennas.


x1(t)T

x2(t)T
...

xM (t)T

 = [a(θ1) a(θ2) . . . a(θN )]


s1(t)T

s2(t)T
...

sN (t)T

+


n1(t)T

n2(t)T
...

nM (t)T

 (2.29)

with
a(θ) =

[
1 ej2πτ(θ) ej2πτ(θ)·2 . . . ej2πτ(θ)(M−1)

]T
(2.30)

The steering vector represents the phase delays experienced by each wave that is received in
relation to the first one to the wave received by the first antenna.

Figure 2.17: TX and RX antennas of a MIMO Radar.

To understand how the radar identifies the AoA in multiple target environments it is
required to apply some beamforming techniques. These techniques could be applied on the
physical domain like rotating the Radar or applying phase shifts to the transmitted signals
or could be virtually applied by creating radiation patterns on the receiver antennas. These
patterns could be achieved by combining the signals received with different weights, Y = wHX,
where this w matrix could magnify the signals in a specific direction while suppressing the
other directions. The latter technique is widely used in wireless communications. A simple
algorithm based on the beamforming techniques would be to adjust the weight vector to
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rotate across the FoV, measure the respective power received after the weighting at each angle
inside the FoV, and then plot the power of the received signal in function of the beamforming
angle θ.

2.3.2 Bartlett Beamforming

The Bartlett beamforming algorithm is normally applied on radar systems where the
receiver antenna works as uniform linear arrays. This algorithm essentially magnifies the
signals from a certain direction by compensating the phase shift resulting in signals from
a particular direction to sum constructively while from the unwanted directions to sum
destructively. If a signal s(t) from a target arrived with AoA θ0, then the signal at mth

antenna would be xm(t) = s(t) · ej·2π·τ(θ0)(m−1) and the weight vector in Bartlett beamforming
for the mth antenna is ej·2π·τ(θ)(m−1). Since the received signal is the product of the transmitted
signal with the weight vector,Y = wHX = ∑

w∗mxm(t)T , when θ = θ0 the result is maximized.
For Radar systems, the weight vector is the steering vector defined in 2.30 so w = a(θ). The
power received at a angle θ is then [14]:

P (θ) = Y · Y H = (wHX) · (wHX)H = wHXXHw = wHRxxw = aH(θ)RXXa(θ) (2.31)

with RXX being the covariance matrix of the received signal which by definition is RXX =
E
{
x(t) · xH(t)

}
. The results of this function P (θ) will have a maximum at the direction

of the AoA. This algorithm works well when there is only a target because it has very low
resolution [15].

2.3.3 Capon Beamforming

Also known as Minimum Variance Distortionless Response (MVDR) is an upgrade
from the previous algorithm proposed by Capon [16]. The key idea is to maintain the signal
from the desired direction by forming a beam in the look direction and suppressing it in
other directions by minimizing the power contributed by noise and signals coming from other
directions [17]. The solution is to find the weighting vector that minimizes the output power
while maintaining a unit gain, mathematically

min {P} = min
{
Y · Y H

}
= min

{
wHRXXw

}
(2.32)

subject to wHa(θ) = 1 (2.33)

The solution to the above minimization problem is the weighting vector

w = R−1
XXa

H(θ)
a(θ)R−1

XXa
H(θ)

(2.34)

Then, the received signal power at angle θ

P (θ) = Y · Y H = wHXXHw = wHRxxw = 1
a(θ)R−1

XXa
H(θ)

(2.35)

The resolution is enhanced compared to Bartlett method.
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Figure 2.18: Capon (orange) and Bartlett (blue) beamforming with three close targets at [-10,0,10]
degrees. The plot is the power-angle spectrum Capon and Bartlett beamforming,
maximums of this function indicate that there is a reflection coming from that angle
[18].

In figure 2.18 the Bartlett beamforming cannot resolve the three targets because the
resolution for this algorithm is high, which is why this beamforming is only suited for single
target AoA estimation. On the other hand, the Capon beamforming can resolve both three
targets. If the targets are separated by a large angle between them (figure 2.19), then the
Bartlett beamforming is able to resolve the AoA, as well as Capon beamforming which has
been seen before of being able to resolve much smaller angles between targets.
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Figure 2.19: Capon (orange) and Bartlett (blue) beamforming, but this time with four targets with
a large separation between them [18].

2.4 Signal Characterization

In the previous sections, we have analyzed target characteristics estimation based on the
behavior of the signals present in the radar system, but in order to do so, it is required to
have some metrics in regard to the quality of the signals.

2.4.1 SNR

The Signal-to-Noise-Ratio is a measure of confidence in the information to be considered
by comparing the power of the received signal to the power noise level. This relation can be
defined as

SNR = PSignal
PNoise

(2.36)

where the PSignal is the power received by the radar from a reflection on a target and PNoise is
the power of the unwanted power. The unwanted power can come from various origins where
the two most important ones are the clutter and the thermal noise. The thermal noise can be
described as a random signal with equal intensity across all frequencies while the clutter can
be divided into sidelobe clutter and mainlobe clutter [19]. Mainlobe clutter appears when
a high reflectivity surface such as the ground or a metal structure is within the radar FoV
and the sidelobe clutter comes from reflection outside the mainlobe and these are usually not
significant because of the directivity of the antenna usually attenuates these components. To
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define the SNR in a radar system it is important to consider the radar range equation. If Pt
is the transmitted power and Pr the received [10]

Pr
Pt

= σ
G2

4π

[
λ

4πd2

]2
= σG2λ2

(4π)3d4 (2.37)

then the received power can be expressed as

Pr = σPtG
2λ2

(4π)3d4 (2.38)

where σ is the Radar Cross Section (RCS), G the antenna gain and d the target distance.
Considering PNoise is modeled as thermal noise, then PNoise = kBT∆f with k the Boltzmann
constant, T is the temperature of the antenna and ∆f as bandwidth. The SNR can then be
rewritten as

SNR = Pr
PNoise

= Pr
PkBT∆f

(2.39)

then the SNR is
SNR = σPtG

2λ2

(4π)3d4kBTB
(2.40)

2.4.2 Radar Cross Section

Represented by σ, the Radar Cross Section is a target parameter that describes how the
energy is distributed at the target when the wave hits. This parameter depends on many
factors like the object geometry, material, angle of incidence, frequency of operation and
polarization of the transmitted wave [20]. In practice, some of the energy is absorbed by
the target while the rest is scattered in multiple directions in a non-uniform way which can
lead to difficulties in the calculation of the value, therefore, the RCS of a complex object is
usually determined by measurements. By rearranging eq.2.40, the Radar Cross Section can
be expressed as

σ = SNR · (4π)3 · d4 · kB · T ·B
Pt ·G2 · λ2 (2.41)

Since the RCS varies with different objects this can turn into useful information to the radar
and open a new door of opportunities by exploring the discretization of different types of
targets and classifying them according to its RCS value, because the variables in the expression
2.41 are known constants or could be estimated.

2.5 Constant False Alarm Rate

The detection of targets in real-life scenarios is a complicated task, because of the various
form of unwanted noise which comes in unknown forms. To detect objects in such environments,
some digital processing techniques can be applied to reduce the impact of noise. The Constant
False Alarm Rate is a sort adaptive algorithm to detect objects in the background with
noise, clutter and interference. The CFAR role is to read the post-processed signal received
with multiple interferences and decide if is detection or not, by dynamically adjusting the
detection threshold as a function of the sensed environment [21].
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Figure 2.20: Architecture of the CFAR algorithm. At top there is the CFAR window where the
red cell is the CUT, the ”x” marked cells are the guard cells and the blue cells are the
reference cells.

2.5.1 Cell Averaging CFAR

The Cell Averaging CFAR (CA-CFAR) is an implementation of CFAR where the
detection threshold will be proportional to the cell average around a target. The CFAR
algorithm is an iterative method that tests every cell in the range domain by looping across
all the FFT bins.

As seen in figure 2.20 each iteration starts by designating a window with N cells around
the Cell Under Test (CUT) that are included in the estimation of the interference power,
these cells belonging to the window are referred to as Reference cells (Blue cells in image).
Then, some cells that are adjacent to the CUT are discarded, these are called Guard Cells
and are excluded from the window because, in a real-life case, a radar with a very small
resolution detecting a human body would have multiple consecutive cells containing both
reflected energy from the target and interference. The CA-CFAR algorithm will then compute
the average power of the reference cells on the left (Lagging Window) and on the right (Lead
Window) separately and then do the average of both averages done previously. To define
the threshold to be compared, the arithmetic mean of reference cells is then multiplied by
a scaling factor TCA. This value is computed by knowing that the cells will have a random
behavior and there is an analytical formula of the probability of the false alarm [21]. The
TCA affects the Probability of False Alarm (PFA) as expressed in

PFA =
(

1 + TCA
N

)−N
(2.42)

Given a PFA, the scaling factor will be:

TCA =
(
P

−1
N
FA − 1

)
(2.43)

The main limitations of the CA-CFAR are when there are multiple peaks/detections in the
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reference cells where these detections will increase the threshold and therefore, the target
under test might not be detected.

2.5.2 Smallest Of Cell Averaging CFAR

The limitations of CA-CFAR led to the development of new techniques that minimize the
impact of these concerns. One of the developed techniques is Smallest of Cell Averaging-
CFAR (SOCA-CFAR) where the purpose is to tackle the interference of targets close to the
CUT. This approach is a small variation of CA-CFAR where the lead and lagging windows
are averaged independently and then, the smallest of these averages is selected to be the
threshold.

The next chapter will introduce the radar development kit used in this dissertation. A
brief explanation of the hardware present and how the radar can compute in real-time some of
the fundamental data, seen in this chapter. It will also be shown how the data is transferred
between the radar and the PC.
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Chapter 3

Texas Instruments
IWR6843ISK-ODS Kit

This chapter purpose is to introduce the IWR6843 device and the application People
Counting designed by Texas Instruments (TI). The IWR6843ISK-ODS (fig 3.1) is an evaluation
board for the IWR6843 single-chip, Frequency Modulated Continuous Wave sensor capable
of working in the 60 to 64 GHz band. This chip is built-in RFCMOS process with 45nm
transistors which enables three transmitters and four receivers with phase shifters, as well as
a programmable Digital Signal Processor (DSP) unit and a Master Sub-System (MSP)[22].

The People Counting application is a laboratory built by TI that outputs point clouds
detected, with each point containing a polar coordinate, radial velocity and Signal-to-Noise-
Ratio. This data is sent out through UART to PC.

Figure 3.1: TI Mmwave FMCW Radar IWR6843ISK-ODS board. From [22].

3.1 Hardware Architecture

The RF and analog Sub-System (leftmost block in fig 3.2) includes the analog circuitry
such as the transmitters and receiver antennas, a Low-Noise Amplifier (LNA), a Power
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Amplifier (PA), a Mixer, Phase Shifters, a Synthesizer, and ADC capable of working
in complex baseband.

The DSP Sub-System has a C674x DSP working at 600MHz, a Hardware Accelerator
module to off-load the burden of the FFT and Log-Magnitude computations, a high-bandwidth
interconnect (128 bits @ 200MHz), and some peripherals such as DMA for data transfer and a
memory block called radar data cube in which the FFT results and computations are stored
[23].
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Figure 3.2: TI mmwave FMCW Radar IWR6843 functional block diagram. From [23].
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3.1.1 Antennas

The IWR6843ISK-ODS has on-board short-range antennas for the four receivers and three
transmitters. The arrangement of the antennas can be seen in figure 3.3a, which provides the
same angular resolution in azimuth and elevation because the distance between the azimuth
transmitters is the same as the elevation transmitters [22]. The figure 3.3b represents the

(a) IWR6843iSK-ODS MIMO antenna pattern on
board. From [22].

(b) The respective virtual array for the ODS antenna
pattern. From [22].

Figure 3.3: Antenna configuration and virtual array.

respective virtual array formed by the 4x3 antenna array. The blue antennas are 180º out of
phase from the red ones because the microstrip lines have a longer path, so a software-induced
phase shift on the receiver side must be applied.

(a) Radiation pattern in azimuth for all transmitter and
receiver antennas. (b) Radiation pattern in elevation for all transmitter

and receiver antennas.

Figure 3.4: Radiations Patterns. From [22].

Figures (3.4a and 3.4b) show the respective radiation pattern measured in both azimuth
and elevation plane.

3.1.2 Transmitter and Receiver System

Each transmitter channel is capable of amplitude control and has a 6-bit linear phase
shifter that allows beamforming techniques. The output power of the transmission system
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Figure 3.5: Transmitter Sub-System for each Tx antenna. From [23].

is 12dBm. The ramp generator for saw-tooth modulations is done through a block called
timing engine which modulates the synthesizer to generate the custom waveforms at the local
oscillator [23].

Figure 3.6: Receiver Sub-System for each Rx antenna. From [23].

The Receiver Sub-System consists of four receiver channels, where every single receiver
consists of an LNA, mixer, IF filter, an ADC and a decimation filter [23]. The receiver channel
has a noise figure of 12 dB between 60 to 64 GHz and a maximum gain of 48dB. The IF filter
has a bandwidth of 10MHz with a user-defined lower cutoff frequency to filter the detections
at a very close range and the ADC has a resolution of 12 bits with a user defined sampling
rate capable of achieving 12.5 Msps in complex baseband [24]. The received signal is mixed
with in-phase (I) and quadrature (Q) versions of LO, the complex-baseband architecture
allows an improvement in the noise figure as much as 3dB compared to a single-sideband.
The minimum sampling frequency fs for the complex base-band ADC is fb,max while in real
only sampling the minimum is 2fb,max according to Nyquist theorem (fig 3.7).
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Figure 3.7: ADC spectrum for real and complex-baseband architectures where each arrow represents
a reflection detected. From [24].

3.1.3 Chirp Generator

The Clock Sub-System works with an external clock of 40MHz and can generate frequencies
between 60 to 64GHz [23]. It has a built-in oscillator followed by a fraction-N PLL circuit
that generates the reference clock for the system and a synthesizer controlled by a timing
engine that generates a 20GHz local oscillator which later on is processed by an X3 multiplier
to create the required frequencies. The ramp modulation is done by the timing engine block.
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Figure 3.8: Clock system and Synthesizer for chirp generation. From [23].

3.1.4 DSP and MSS

The DSP Sub-System (left side of figure 3.9) is responsible for the computation necessary
to obtain the point clouds from each frame. The Sub-System contains TI high-performance
C674x DSP, a hardware accelerator, a high-speed interconnect and some peripherals such
as DMAs for data transfer, ADC buffers, a Cyclic Redundant Check Engine and a data
handshake memory.

The Main Sub-System (right side of figure 3.9) is the brain of the device and controls all
the peripherals and activities. It contains the Cortex-R4F processor and associated peripherals
such as I2C, UART, Clocking module, PWM and others connected to the Main interconnect.
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Figure 3.9: Processor system block diagram in IWR6843 devices. Left side is the DSP Sub-System
and right side is the Main Sub-System. From [23].

3.2 People Counting Application Processing Chain

The people Counting application developed by TI is able to transmit a frame of chirps for
each transmitter antenna, the signals received by the receiver antennas are then converted into
point clouds. The processing chain of this application can be seen in figure 3.10. This chain
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receives the sampled IF signals in a cube data format and outputs the detected points with
Range, azimuth, elevation, SNR and radial velocity estimation [25]. Except for the range-FFT,
all the blocks are implemented in the c674x DSP while the range-FFT is implemented on the
hardware accelerator. In the following sections, this processing chain will be separated into
smaller blocks and a brief explanation of how they operate and their purpose.

Figure 3.10: People Counting application block diagram of the processing chain. Converts sampled
data into point clouds. From [25].
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3.2.1 Range Processing and Clutter Removal

The first stage of point cloud generation is to read the samples given by the ADC. For
each receiver antenna, the DMA moves samples from the ADC buffer into the Hardware
Accelerator which computes the FFT in a 16-bit, fixed-point, 1D-FFT. After computation,
the DMA moves the data into the radar data cube memory with size Ns ×Nc ×NR which is
the number of samples per chirp Ns, the number of chirps Nc and number of virtual receiver
antennas Nr. The Range Processing is interleaved with the transmission which means is doing
inline FFT of the samples received from each transmitted chirp, this means the radar data
cube is being filled while the transmission is still occurring [25].

Figure 3.11: Block diagram Range-FFT until Range-Azimuth Heatmap. From [25].

Once the frame transmission and reception are complete, the RF front end goes idle
for a while to give time for the DSP to calculate the point clouds. The first stage of point
cloud generation is the Static Clutter Removal, the 1D-FFT data is averaged across
all transmitted chirps for a single receive antenna. The average calculated before is then
subtracted from each chirp received, this removes the static components from the signal
leaving only the signals with movement associated [25]. The formula for the above formulation
is

Xnr = 1
Nc

∑NC−1
c=0 Xncr

Xncr = Xncr −Xnr

(3.1)

With NC the number of chirps transmitted, Nr the number of receive antennas, Xnr average
for a single receive antenna across all chirps and Xncr the samples of a single chirp from a
receive antenna.

Now that the static components of the detections are removed, the next step is to build
the Range-Azimuth heatmap.

3.2.2 Spatial Covariance Matrix Estimation and Capon Beamform-
ing

The spatial Covariance Matrix of the received signals is important to compute the angle
of arrival of an object, as seen in chapter 2. The first capon beamforming is done to detect
objects in the azimuth domain so the covariance matrix is constructed with data from only
the azimuth antennas [25].

Ryy = 1
Nc

∑NC
c=0 YcY

H
c

Yc = [Yc,0, Yc,1, . . . , Yc,Nr−1]T
(3.2)
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Yc,i is the array of received samples for a single antenna i from chirp c. According to
literature, [26], Capon beamforming requires a good estimation of the covariance matrix. The
performance of beamforming by weight calculations declines rapidly if the matrix values are
inaccurate, therefore, by adding diagonal elements the inaccuracy is corrected. A diagonal
loading is applied to the spatial covariance matrix to ensure stability

Ryy = Ryy + γ
tr(Ryy)
Nr

INr (3.3)

With tr(Ryy) the trace of covariance matrix and γ the respective eigenvalues. After the
covariance computation is completed, the azimuth steering vector aa is defined as

aa =
[
1, ej2π

d
λ

sin(θa), . . . , ej2π
d
λ

sin(θa)(Nr−1)
]T

(3.4)

Where each θa is a azimuth bin. The Range-Azimuth Heatmap can be built with power-angle
spectrum for each range bin.

Pna = 1
aHa R

−1
xx aa

(3.5)

The result Pna is the power-angle spectrum which is computed for each range bin. The
covariance matrix inversion computation is done through cholesky decomposition. The
normalized beamforming weights can also be calculated as

Wa =
R−1
xx,naa

aHa R
−1
xx,naa

(3.6)

3.2.3 CFAR Detection Algorithm

Figure 3.12: CFAR Detection and elevation estimation. From [25].

After the Range-Azimuth Heatmap is formed, a 2D CFAR algorithm is applied to detect
the peaks in the spectrum. The two dimensions CFAR means a first SOCA-CFAR is applied
in the range domain for each angle step and then, each detected point in the range domain is
confirmed by also a SOCA-CFAR in the angle domain [9]. This procedure is explained in
flowchart 3.13 and a visual explanation can be seen if fig. 3.14.

The output of this algorithm is a vector containing the detected peaks in the range-azimuth
heatmap with each detected point having a 2D polar coordinate (range, θ).
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Figure 3.13: 2D SOCA-CFAR flowchart. Adapted from [9].
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Figure 3.14: 2D CFAR Input. Range-Angle heatmap where the represented cells are a Range-FFT
at a θ angle. Adapted from [9].
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3.2.4 Elevation Beamforming

The elevation beamforming is performed at the azimuth of each detected point after
2D-CFAR. The process is done following the same steps as the generation of a range-azimuth
heatmap, first, a spatial covariance matrix is computed and then the Power-Elevation spectrum
is generated but only for the range detected at 2D-CFAR [25].

Ryy = 1
Nc

NC∑
c=0

YcY
H
c (3.7)

The Diagonal loading matrix is added for stability.

Ryy,m = Ryy,m + γ
tr(Ryy,m)

Nr
INr (3.8)

The steering vector elevation spectrum is the kronecker product of the azimuth and elevation
steering vector

a(µm) =
[
1, ejµm , . . . , ej(Nr−1)µm

]T
a(υm) =

[
1, ejυm , . . . , ej(Nr−1)υm

]T
am = a(µm, υm) = a(µm)⊗ a(υm)

(3.9)

Knowing both the covariance matrix and the steering vector, the 1D elevation spectrum is as
follows

Pm = 1
aHmR

−1
yy,mam

(3.10)

3.2.5 Doppler Estimation

Figure 3.15: Doppler estimation and combination of results with detected points. From [25].

The Radial Velocity estimation is done in the last part after all detected points are
determined and each one has a range, azimuth, elevation and SNR information. Before
computing the Doppler-FFT seen in the chapter before, the Capon beamforming is applied to
all 12 virtual antennas at the detected range to find the sample peak value of the detection
across all chirps in the frame. After finding this set of values, the 2D-FFT across all chirps at
the detected range and angle is applied which resolves the radial velocity of the target as seen
in doppler [25].
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3.3 Application Processing Interface

3.3.1 Serial Communication Setup

The communication between radar main sub-system and the PC is done through two
UART interfaces, one for the PC → Radar and another for Radar → PC. The first one is
usually used for the initial parameter configuration data transfer and to acknowledge the
radar to start working while the second one, the Data Port, is the channel where the radar
outputs the point cloud calculated. The figure 3.16 illustrates the setup between Radar and
PC. In the figure 3.17 it is possible to see a high-level interaction between the PC, the radar

Figure 3.16: IWR6843 UART communication setup with PC. Adapted from [25]

and the sub-systems. The Radar starts by transmitting a frame and doing an inline FFT of
the received signals, storing the results in the Radar Cube memory. After the frame ends,
the DSP starts to process the data, outputs the detected point cloud and signals the Main
Sub-System that the data is ready to be sent through UART. Because of the interconnectivity
between sub-systems, this can be done in parallel which means during the data transfer, the
radar can transmit another frame and process the respective data while sending through the
UART interface the previously detected point cloud.
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Figure 3.17: Timing diagram of the task activity done between PC and Radar. From [9]
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3.3.2 TLV Data Format

The people counting demo outputs one packet of data in each frame, the data is sent
through UART configured at 921600 bits-per-second in DMA mode. The data packet is
constructed in Tag Length Value (TLV) format, which means, each packet sent has a frame
header (52 Bytes) with a fixed set of bits at the beginning, in order for the PC to be able
to detect the start of the transmission in the UART buffer. In the header, there is also
information about the number of TLV blocks, the total size of the packet in bytes and a
header checksum to ensure the correct reading [9].

Figure 3.18: Data Packet structure sent to PC with multiple TLV blocks from a single packet. From
[9].

Figure 3.19: The frame header structure. From [9].

Each TLV block has also a header and a payload, the header indicates what is the expected
type of data in the payload and the total length in bytes of the payload including TLV header.

Figure 3.20: Point Cloud unit structure. From [9].

Figure 3.21: Point detected Structure. From [9].
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Since the radar is only sending point clouds, there is only one type of TLVs expected which
is the point cloud TLV which means each packet transmitted by UART contains only a single
TLV. The payload contains a point cloud unit structure (fig 3.20), first data transmitted
in the payload followed by all the detected points where each point has a specific structure
(fig 3.21). The purpose of the first part sent is to set the units resolution in floating-point,
this is done only a single time per TLV, and then, all the detected points are transmitted as
integers. To obtain the real value of the detected point, the integer values in the detected
points must be multiplied by the unit resolution at the PC side. The length of this type of
TLV is sizeof(tlvHeader) + sizeof(PointCloudUnitStruct) + sizeof(PointCloudStruct)×
numberOfPoints.

The next chapter will present the work done with the data provided by the radar, explained
in this chapter. The work consists in parsing the data retrieved from the UART into point
clouds and applying a processing chain that is able to count and track targets on point clouds.
After the processing is done, the data is projected onto a real-time camera image.
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Chapter 4

People Counting and Tracking

One of the objectives of this project was to build an interface capable of displaying the
data sent from the radar and the results of post-processing. So a GUI was built based on
the PyQt5 engine which allows creating multiple threads and a 3D plot based on OpenGL
where the point clouds and the tracking can be shown in a live environment. This chapter
is here just to show the capabilities of the application developed and how the point clouds
are processed by the PC, so in this section, all the images and data presented are built with
data emulating the point clouds detected by the radar. The TI IWR6843ISK-ODS board
is designed for ceil-mount applications but in this dissertation will be used in a wall-mount
scenario, the trade-off is the maximum detectable range which is significantly reduced in
comparison to the TI IWR6843ISK, but the capabilities and potential remains the same.

4.1 Application Flowchart

The Radar is constantly transmitting point clouds through UART which are stored in
the UART Buffer. The tracking module reads the buffer and parses the binary data into
point clouds as specified at the end of chapter 3, and then applies a processing chain that
detects and tracks point cloud clusters. The tracking module outputs the point clouds, the
targets detected and the spatial location to the main thread which plots the points and the
targets in a 3D environment. The main thread computes the respective projections into the
camera and feeds the data into another thread running the live camera image. The image 4.1
depicts the application flowchart developed in this dissertation, with the representation of
the communication between different interfaces. The radar fills the UART buffer with point
clouds, the PC reads the buffer and processes the data to detect people and do the tracking.
Then outputs the targets, the tracking and the point clouds to the GUI which shows in a 3D
view.
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Figure 4.1: Developed application flowchart.

4.2 Point Cloud Processing

After the PC reads the buffer and retrieves a point cloud the first step is to find detections
in the data. The easiest way to do this is to apply a clustering algorithm that outputs the
detected clusters where each one can be a person or clutter. After the cluster is identified, a
filter layer is applied to reduce the impact of the multipath clutter and increase the accuracy
of the detections. The next step is to associate the cluster with existent targets and update
the new position detected, this is done with the help of a Kalman Filter which helps estimate
the state vector of a target.

4.2.1 Clustering with DBSCAN

Each point clouds given by the radar contains the target of interest detections and some
clutter and static points. So it is important to be able to separate these false detections and
ensure only the points from the target of interest are sent forward for further processing. In
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order to do so, clustering methods are able to identify a cluster of points in the spatial domain
with an arbitrary shape which is the case of data retrieved from the radar. The method
chosen was DBSCAN (Density-based spatial clustering of applications with noise) [27]. This
method relies only on the minimum number of points (minPts) and the maximum distance
between them (Eps). In the figure 4.2 three clusters are represented with each color being
the label detected. The intuitive way for a human to visually detect a cluster is to find points

Figure 4.2: Clustering in 3D. Each color represents a label, the yellow color is the noise which are
points with no associated cluster.

that are closely spaced between them which is the key idea behind DBSCAN. For each point
detected, in a given Eps radius, the neighborhood has to have a minimum number of points
belonging to the circle area.

4.2.1.1 Choosing Parameters Value

The approach to assigning the best values of the two parameters of the DBSCAN is
empirical, a set of experiments was made in order to find the values that suited the system.
The minimum number of points (minPts) was chosen based on the sensitivity of the CFAR
algorithm, if the threshold was too low a high number of points would be detected and by
analysis, a person moving would generate between [20,40] points so a minimum of 20 could be
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used. Because the CFAR threshold in the radar configuration was set to a high value, a low
number of points would be detected by the radar which means the minPts was set to 5.

The Eps value was chosen by using rationality, if the Eps is the maximum distance for a
point to be considered inside the neighborhood and the radar has a range resolution of around
5cm in this setup which is the minimum distance between points resolved in range domain,
then a Eps of 12cm was chosen to accommodate the range resolution and allow for multiple
points to be inside the neighborhood.

4.2.1.2 Calculating Centroids of the Cluster

The center of mass of the people detected is used for tracking purposes which can be
translated to the central point of the cluster. This can be obtained by the calculation shown in
equation 4.1, the centroid is (meanx,meany,meanz). In the figure 4.3, the centroid calculated
is visible as the green dot in the middle of the red dots which are the cluster detected.

meanx = 1
nPoints

∑nPoints
n=0 xn

meany = 1
nPoints

∑nPoints
n=0 yn

meanz = 1
nPoints

∑nPoints
n=0 zn

(4.1)

Figure 4.3: Centroid (Green dot) of the cluster (Red).

4.2.2 Point Cloud Filtering

The clutter originated from multipath reflections create clusters of points in different
spatial coordinates, so a single person moving in a room can originate multiple clusters.
To evaluate the fidelity of cluster identification, a two-layer filter is applied to each cluster
detected by the DBSCAN.
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4.2.2.1 Two-Step Identification

The first time a cluster is identified, it is flagged as a ”possible person”. For a cluster to
be considered a person, a second one must appear in the neighborhood region of the first
identification. Because in a second frame, a real person will originate a detection in the same
region of the previous frame since the radar is sending multiple frames in a second, but the
multipath effect generates detections in ”random” locations.

4.2.2.2 SNR Evaluation

Typically, a multipath reflection means a longer distance traveled by the wave, as seen
in chapter 2 the power received by the antennas is inversely proportional to the distance
which means the clutter will have a much smaller power. Because the multipath distance is
usually longer than the LOS distance, the average SNR of a cluster originated by a real target
will be bigger than the respective clutter SNR, so in order for a cluster to be considered a
target, it will need to have an average SNR bigger than a certain threshold. This threshold is
empirically defined as the value that better detects targets.

4.2.3 Tracking With Kalman Filter

The implementation of the Kalman filter was done with the help of a python library called
”FilterPy” [28]. The Kalman filter is a mathematical model which uses measurements over
time that may contain noise and produce a prediction about the real values of the state
vector which contains information about the spatial position, velocity and acceleration in a
3D Cartesian space. These predictions are based on previous measurements and assume a
constant acceleration model between each discrete time step [29]. The state transition Matrix
F is used to describe the dynamics of the system for a constant acceleration model with T

time between steps.

F =



1 0 0 T 0 0 0.5T 2 0 0
0 1 0 0 T 0 0 0.5T 2 0
0 0 1 0 0 T 0 0 0.5T 2

0 0 0 1 0 0 T 0 0
0 0 0 0 1 0 0 T 0
0 0 0 0 0 1 0 0 T

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



(4.2)

Because the movement of a person can be non-linear, the Linear Kalman filter performs poorly,
so a Extended Kalman Filter (EKF) was implemented to handle this problem. The state
of the Extended Kalman filter at the instant k is

Xk = Fxk−1 + wk (4.3)
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Zk = Hxk−1 + ek (4.4)

Where Xk is the state vector in the Cartesian coordinates for a constant acceleration model,
w(n) is the process noise with covariance Q which represents the deviation between the actual
state and the motion model, Zk is the measurement of the system and ek is the measurement
noise. The state vector can be defined as

Xk = [x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈]T (4.5)

4.2.3.1 Predict Stage

The first step is to predict an a-priori state estimate x̂k and covariance Pk

x̂k = Fx̂k−1 + wk−1

Pk = FkPk−1F
T
k +QK

(4.6)

4.2.3.2 Update Stage

Then the measurement residual is calculated

yk = zk −Hx̂k (4.7)

The residual covariance is
Sk = HkPkH

T
k +Rk (4.8)

Then the kalman gain
Kk = PkH

T
k S
−1
k (4.9)

After the kalman gain is calculated, the updated state and covariance estimation

xk = x̂k−1 +KT
k yk

Pk = (I −KkHk)Pk
(4.10)

The state transition Fk and observation matrices are defined as the following Jacobians

Fk = ∂f
∂x |xk−1,wk

Hk = ∂h
∂x |xk

(4.11)
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Figure 4.4: Diagram of how the algorithm predict, allocate and update the calculated cluster centroid
into existent targets.

4.2.3.3 Predict Target Movement

The first stage of the EKF is able to get a prediction of the state vector based on the
previous dynamics. With this in mind, this prediction is used to associate a detected cluster
centroid with the most likely target existent. Prediction arrow in figure 4.4.

4.2.3.4 Allocate to the Closest Target

After the prediction is done, the distance between the cluster centroid and each target
prediction is computed. The target prediction with the smallest distance to the cluster is the
associated one and is used for the next stages. Distance between existent target ellipsoid and
cluster centroid in figure 4.4.

4.2.3.5 Update Target Position

After the cluster is associated with an existent target, the cluster centroid is used to
update the new state vector by feeding as a measurement to EKF. The state vector after the
update stage is used as the new target location. Update arrow in figure 4.4.

Figure 4.5 shows an example of the tracking of a cluster moving in a circular pattern in
a noisy environment. The bounding box is the target position computed after the Kalman
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Figure 4.5: Target Detected (blue bounding box) and tracking (blue line) with movement prediction
(red arrow) in a circular movement (white dots).

update stage that can be obtained from the state vector, the blue line is the tracking of the
target positions and the red arrow is the movement prediction in the X-Y plane.

Figure 4.6: Plot of the top view of the target tracking. The red line is the ground truth, the green
markers are the calculated cluster centroids and the blue line is the updated state vector.

Figure 4.6 is the respective X-Y measurements done in figure 4.5. The ground truth is the
red circle in which the clusters with Gaussian noise are created and used for simulation. The
green crosses are the centroid of the detected clusters by the DBSCAN algorithm and the
spatial location is fed into EKF. The blue line is the updated state vector spatial coordinates
[x,y]. The simulations show the EKF can perform well in the presence of Gaussian noise, the
performance can be evaluated through the RMSE graphic present in the figure 4.7 The RMSE
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Figure 4.7: The RMSE plot. Difference between Kalman and ground truth in meters across 150
steps.

by definition is the Root Mean Square Error which in this case is the average error distance
between the computed Kalman state vector and the ground truth, this means the application
is capable of tracking with an accuracy of fewer than 0.1 meters.

A second simulation was made with a different path, this time with a more complex
scenario caused by a sudden change in the direction which means a non-linear movement
depicted by the red line. This is just used to test the capabilities of the EKF algorithm which
was chosen because of the ability to track more complex scenarios.

Figure 4.8: Top-view plot of a non-linear movement and the output of the tracking stage.
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Figure 4.9: Respective RMSE from figure 4.8.

4.2.4 Sensor Fusion with Camera

4.2.4.1 Cartesian Coordinates System into Image Pixels

The conversion of 3D coordinates to 2D image pixels is done through a technique called
perspective projection [30]. In short, this works by projecting a point into the surface of a
plane as seen in figure 4.10. Based on triangular similarities, the coordinates of the projection

Figure 4.10: Perspective projection of a point located at (X,Y, Z) onto a plane located at distance
f from the origin.

on the plane can be computed as

x′

f
= X

Y
=⇒ x′ = f

X

Y
(4.12)

with x′ the coordinate of the projection onto the plane, X and Y the 3D Cartesian coordinates
of the target and f the distance of the plane. The coordinates of the z′ can also be estimated
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the same way as the above
z′

f
= Z

Y
=⇒ z′ = f

Z

Y
(4.13)

Then each point must be converted into the pixel location by knowing the image limits spatial
coordinates, in other words, the width pixel 0 is located at around 1.5 meters to the right at
a focal distance of 2 meters. The same can be done to obtain the height pixels.

4.2.4.2 Image Enhancement with Radar Information

The Camera used in this dissertation has an FoV of 60º in elevation and 60º in azimuth
while the radar application has 70º in azimuth and 20º in elevation, this means the radar has
additional information in the x-axis as seen in figure 4.11.

(a) Azimuth FoV.

(b) Elevation FoV.

Figure 4.11: FoV enhancement in Azimuth FoV.

With this in mind, the image captured by the camera can be enhanced with extra
information provided by the radar along the azimuth axis, henceforth, the image after the
projection stage has an increased size in width with two lateral columns of black pixels to be
filled with projections from the radar.

4.3 People Counting GUI

The GUI interface shwon in figure 4.12 was developed with the help of the PyQt5 library.
At the left panel, there are some control boxes, such as UART ports to setup the connection,
two buttons for selecting and sending the configuration file, some parameters to control the
point cloud processing and plot, and a table layout with some statistics. At the center, there
are two tabs, one for the 3D plot based on OpenGL and another for the live camera view with
the projection of the targets and point cloud.
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Figure 4.12: People Counting and Tracking GUI.

4.3.1 3D Target Visualizer

This shows the capabilities of the 3D visualizer, two targets were simulated moving in
opposite directions with the respective tracking, clusters used for the detection, the arrow with
the movement prediction and the respective coordinates of the centroid from the bounding
boxes.

Figure 4.13: Multi-tracking of two targets.
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4.3.1.1 Live Statistics

This table shows the maximum range configured, the number of detected people, the
number of possible people that still need a second identification pass, the processing time
between the moment point cloud is read from the buffer and the 3D plot of the output and
the number of points detected by the radar in each frame.

Figure 4.14: Statistics table

57





Chapter 5

Results

In the previous chapter, it has been shown the algorithm implemented on the received
point clouds by the radar and discussed the possible results based on simulations. This chapter
presents the results with real data provided by the radar in multiple scenarios. The results
provided are divided into three parts: people counting, people tracking and sensor fusion.
The first section, people counting, is the ability for the radar to count the number of people
present in the FoV and the number of false detections, the second part is the tracking the
movement of a target following multiple routes and the last section is sensor fusion with the
camera.

5.1 Chirp Parameters

The configured parameters of the FMCW radar are presented in the table 5.1. The selected
configuration was the common ground found that was able to detect multiple persons with
big enough clusters so the DBSCAN algorithm was able to separate the clusters into different
targets and label them. The maximum range selected is only 5.4 meters because the radar
antennas were designed for a ceil-mount configuration where the common distances between
the ground and ceil are around 3 meters. With this constraint, the tests performed are done
in a close space to obtain reliable detections.

Initial Frequency 60.20 (GHz)
Ramp Slope 74.95 (MHz/µs)
Bandwidth 2974 (MHz)
Range resolution 0.05 (m)
Maximum range 5.4 (m)
Velocity resolution 0.18 (km/h)
Maximum velocity 26.9 (km/h)
Sampling Frequency 2.95 (Msps)

Table 5.1: Parameters used for the tests above derived from chapter 2 (table 2.1).

59



5.2 People Counting

The people counting detection is based on the tracking module, it counts the number of
existent tracks and records the location measured. The tests performed were done in limited
conditions because there were some security policies regarding the minimum distance between
people in these extraordinary times.

5.2.1 Scenario Setup

To test the people detection capability of the application developed, multiple people were
asked to stay idle in specific positions marked on the ground which were physically measured
to determine the ground truth.

5.2.2 Tests Performed

The metrics developed for performance evaluation are application counting which is a
measure of how much time the application was able to measure correctly. The positional
accuracy is the distance from the detection average position during the test time to the ground
truth markers.

Real People Counting Application Counting Positional Accuracy
1 98% 0.06 meters
2 88% 0.11 meters
3 73% 0.11 meters
5 64% 0.14 meters

Table 5.2: Tests performed and results obtained for people counting.
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5.2.3 People Counting Accuracy

Looking to the results on Table 5.2, one can infer that the counting algorithm performs
well if the targets are generating small movements like moving arms or shaking the head.
Since the static clutter removal algorithm (described in chapter 3) removes the static points,
the point cloud retrieved by the radar contains only information from humans moving. When
the number of people increases, the people counting performance decreases because of the
complexity introduced by multiple people interacting with each other.

5.3 Real Time People Tracking

The tests performed for tracking were done with a person following predefined routes
and measuring the results returned by the people counting and tracking module presented in
chapter 4.

5.3.1 Scenario Setup

The section shows the different scenarios tested for the tracking module. The first three
scenarios are done with a single person walking in front of the radar following different patterns
with constant speed. The first test (fig. 5.3) is a person walking towards the radar trying
to maintain the same angle of arrival, the second one (fig. 5.4) is walking across the FoV
(crossing all azimuth angles), the third test (fig. 5.5) is doing a more complex path to show
the capabilities of tracking azimuth and range variations. The final test (fig. 5.6) is done with
the help of a second person moving in the opposite direction.

(a) Setup for perpendicular test.

(b) Setup for parallel test.
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(a) Setup for complex route test.
(b) Setup for two targets moving in opposite

direction test.

Figure 5.2: Tests performed for People Tracking.

5.3.2 Tests Results

The results from the tests presented before are shown here, the plots are the top view
(X-Y axis) of the 3D space created by the GUI. The green points are the centroids detected
by the clustering algorithm and the blue line is the EKF state vector..

Figure 5.3: Results for perpendicular walking pattern of a person with a slow speed.
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Figure 5.4: Results for the parallel test.

Figure 5.5: Results for a complex walking pattern.
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Figure 5.6: Results for two targets moving parallel to each other in opposite directions.
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5.3.3 Tracking Analysis

By observation of the results presented above, the tracking module is capable of following
the measurements and in the case of multiple persons, the tracking can follow the right person.
From the graphics (5.3, 5.4, 5.5 and 5.6) it is possible to see one of the major concerns
regarding the development board used, there is an azimuth region which the radar cannot
originate a uniform density of detections. This region was found in multiple tests and can
be seen in figures 5.4,5.5 and 5.6, the azimuth angles region between [-10,-2] degrees have a
much smaller density of detections in comparison to other regions of the FoV. This raised
some problems which will later be addressed in the chapter 6.
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5.4 Sensor Fusion

The camera used for this test was a webcam from the PC HP Probook 450G3. Each
image contains the bounding box relative to the detected target location projected into the
image and the points returned by the radar. Each point color represents the respective frame
where the points come from because the application adds persistence to the image to fill in
the image with more data.

5.4.1 Image with Radar Data

In this test, a person is moving towards the radar from the negative azimuth side of the
radar. As stated before, this is the region where the radar fails to detect a great density of
points and can be seen by the number of detected points in that frame which is less than ten.

Figure 5.7: Point cloud plus the target location projection onto the camera.

5.4.2 Extending the FoV

The Radar and the camera have different FoV with the radar extending the azimuth view,
the black columns represent the camera blind side which is fulfilled by the radar vision. In the
image (fig. 5.8) below, a person is walking out of the camera FoV but still inside the Radar
vision area.
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Figure 5.8: Target moving out of camera vision but still in radar FoV.

5.4.3 Tracking in Low Visibility Conditions

Because the radar is insensitive to weather conditions, the data provided remains viable
and the image can still be built with detections from the application as seen in figure 5.9.

Figure 5.9: Tracking in extreme visibility conditions.
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5.5 Analysis of the Results Obtained

The counting performance of the radar was found successful in controlled environments
with the counting application able to locate people with high accuracy and had good results
counting people most of the time when people were spatial separated and stationary with just
the small movements people do without thinking of them. Even when the correct counting
failed, it was capable of partially detecting people present in the FoV which is of major
importance if we consider the Radar as a complementary sensor to provide information when
other sensors fail.

The tracking performance is heavily influenced by the behavior of the Extended Kalman
Filter which requires some tuning on some matrices parameters, the results show the tracking
module is able to follow the path a person is taking. The accuracy of the measurements done
through the Kalman filter in relation to the ground truth shows the parameters selection was
not the best because the path could not track huge changes of directions as shown in figure
5.5, where the Kalman update stage failed to follow during a fast ”U” turn.

Enhancing the camera vision with radar data allowed the creation of a security system
capable of detections without a significant impact on the performance of the live video provided
by the webcam. The projection of points and objects tracked into the image did not have a
major impact on the video FPS, adding just a slight delay between the moment the tracking
module outputs the results and the moment they are displayed in the image.
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Chapter 6

Conclusion and Future Work

This chapter describes the conclusions drawn after the execution of this dissertation and
some of the future work that can be developed with the use of the Radar data.

6.1 Conclusion

As can be seen from the results presented, the FMCW radar has the potential for people
detection and tracking without the use of sensitive data that could raise concerns with GDPR
(General Data Protection Regulation). The work developed in this dissertation showed the
tracking performance achieves good results when people are physically separated so that the
clustering does not label multiple clusters as the same cluster and also because the tracking
algorithm requires that people walk through paths that are spatially distant from existent
tracks or the tracking module will allocate the moving cluster to the wrong track.

The radar of choice was TI IWR6843ISK-ODS which is a radar designed for ceil-mount
applications, the maximum range distance is short and makes so that the paths designed and
tested were limited to a small room. Because of that the people counting tests were done in
limited conditions which translated to a small number of people in the FoV not violating the
personal space of each person involved in the tests. The main concern is the development
of applications based on the radar is the clutter which if we wanted to distinguish from a
real detection, a new degree of complexity would be added to the system. In the people
counting and tracking module, the clutter is tackled by measuring the power from the clusters
originated and assuming a clutter cluster will have a much smaller power since it traveled
a longer distance. This is effective in reducing the clutter-induced detections, but could
also mean a loss of valuable information from real targets at a longer distance which would
originate smaller power clusters.

The detection and tracking of multiple persons raised another problem such as the
maximum number of points detected by the radar, which is a feature limited by the memory
available on the board. The maximum number of points is software-defined at the CFAR
algorithm with a maximum of 150 possible points, if the CFAR threshold has a low value,
a high number of points are detected and if there is a limit, some points with valuable
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information about a target may not be considered. This comes into consideration since the
main obstacle regarding this dissertation project was the selected board which is not capable
of detecting points uniformly across the FoV, more specifically at the [-10,0]º azimuth, due
to most likely manufacture flaws, which generated a much smaller density of points in that
region. To detect points crossing that region, a smaller sensitivity at the CFAR algorithm
had to be implemented so the clustering had enough points to group them, consequently, as
stated before, some points would be lost because of the limit on the detection.

6.2 Future Work

The next step to make this technology ready for a real-life scenario, like in a street or
even in a room is to move to another FMCW radar board with an antenna design capable
of detecting objects at a larger distance at the expense of FoV and resolution such as TI
IWR6843ISK. Algorithm-wise, one of the improvements to be done is to add a function in
the association stage of the tracking module, which would return the most likely target for a
cluster, based on the velocity provided in the state vector and the velocity measured by the
radar. This would improve the performance in resolving and tracking targets that are close to
each other and moving in different directions.

For the future, a people counting and tracking application powered by Machine Learning
is in thought. With the help of computer vision digital processing techniques which nowadays
are able to detect and track people on an image with good accuracy, a method of supervised
learning could be applied to Radar ML. The Radar ML will use a different set of inputs
in comparison to ML applied on images, this means there is a possibility of the Radar
outperforming the image techniques in some cases. An obvious case that deteriorates the
performance of image ML is when the light conditions change, in the case of total blackout on
the illumination system these techniques would fail to detect people where the Radar would
still be able to detect since the data is unaffected by light. This work enables the possibility
of other applications using the radar, such as a live plant of a building with multiple FMCW
radars in a mesh grid, detecting and tracking all people in the building in real-time. This
would be useful and non-invasive since it could be installed inside the walls.
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People tracking in video surveillance systems (e.g. camera) requires clear images to detect a person or object in 

a reliable manner. Extreme conditions like zero-lux, presence of smoke or difficult outdoor weather conditions 

create challenges to artificial intelligence/machine learning (AI/ML) image processing algorithms.  

Multi-sensory platforms composed of different sensing typologies act as possible solutions to circumvent such 
challenging situations, bringing complementary characteristics that when fused together, increase system 

performance (e.g. better accuracy in people/object detection) and aggregate outcomes that are more informative 

(e.g. velocity and direction) [1].  

In this abstract, we introduce the development and test of a frequency-modulated continuous wave (FMCW) 

radar working on the 60 GHz millimeter ISM band, which allows complementing surveillance camera real-time 

video streaming with intelligent insights [2] from the scene (e.g. distance of an object, motion speed and/or 

angle of arrival), even when operated in tough scenarios. Due to the spatial diversity of the antenna pattern, one 

can create 3D point clouds, which are further processed to apply tracking algorithms to pinpoint relative location 

of the identified objects and may even permit the objects’ classification as human or non-human by considering 

the physical dimensions of the point cluster. 

The piece of hardware employed in the experiments, shown in Figure 1, is a 60 GHz Radar model 
IWR6843ISK-ODS [3] from Texas Instruments. It has a built-in RF system and digital signal processing (DSP) 

unit that outputs through UART a point cloud with static and Doppler-affected points. With the help of a 

clustering algorithm (DBSCAN) [4] and by feeding only the points with motion, one can accurately pinpoint the 

location of a moving object/person; calculate its speed and identify the direction of movement.  

 

      

Figure 1. (left) Developed Radar package, (center) post-processed point cloud with three objects: a person 

sitting close to the radar positioned in (0, 0, 0) (magenta), another person stepping away from radar position at 6 

km/h (cyan) and a small object with a right-turn movement (dark blue) and (right) the point cloud with all 

moving reflections (cyan) and their trajectory in blue.  
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