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resumo O estudo de objectos simétricos, como o caso dos polítopos, e das suas
simetrias é um assunto que atrai a atenção de diferentes subáreas da
Matemática, tal como Geometria e Álgebra, mas também noutras áreas do
conhecimento científico, nomeadamente na Química, pela existência de um
elevado grau de simetria nas moléculas. Os polítopos clássicos, a generaliza-
ção dos polígonos e poliédros para outras dimensões, podem ser analisados
do pontos de vista combinatório, dando origem aos polítopos abstratos. Os
polítopos abstratos regulares podem ser descritos de diferentes formas, tais
como um conjunto parcialmente ordenado, uma geometria de incidência
ou ainda pelo seu grupo de simetrias, que é um C-grupo com diagrama
linear. Os hipertopos foram introduzidos como uma estrutura semelhante
aos polítopos, mas em que o seu grupo de simetrias é um C-grupo com
diagrama não necessariamente linear.

O problema de Grünbaum, um dos problemas clássicos da teoria dos
politopos abstratos, ainda não totalmente resolvido, consiste na classi-
ficação de politopos localmente toroidais. Este problema é extensível a
hipertopos de dimensão 4 com resíduos toroidais de dimensão 3. Hipertopos
localmente toroidais são construidos a partir de hipermapas regulares
toroidais {4, 4}, {6, 3}, {3, 6} ou (3, 3, 3). Pelo Teorema de Cayley,
sabemos que qualquer grupo pode ser representado fielmente por um grupo
de permutações. Assim podemos construir representações fiéis por grupos
de permutações dos grupos destes hipermapas, que podem ser usados tanto
para classificar politopos localmente toroidais como para construir novos
politopos/hipertopos com resíduos toroidais.

Nesta tese determinam-se todos os possíveis graus de representações
fiéis por permutações dos hipermapas toroidais regulares e dos polítopos
localmente toroidais do tipo {4, 4, 4}. A partir destas representações fiéis
por permutações, famílias de hipertopos localmente toroidais de tipo {6, 3

3}
e {3, 4

4} são construídas. Adicionalmente, usando a operação de halving
em politopos não degenerados 2K,G(s), foi possível construir exemplos de
famílias infinitas de hipertopos regulares localmente toroidais, euclidianos e
hiperbólicos.





keywords Polytopes; Hypertopes; Abstract Regular Polytopes; Toroidal Maps; Hyper-
maps; Faithful Permutation Representations; Group Theory; Symmetries.

abstract The study of regular objects, such as polytopes, and their symmetries is
a subject that attracts researchers from different areas of mathematics,
such as geometers and algebraists, but also researchers from other areas
of knowledge such as chemistry, thanks to the high symmetry of the
molecules. An abstract polytope is a structure that combinatoricaly
describes a classical polytope (a generalization of polygons and polyhedra
to higher dimensions). Abstract regular polytopes can be described as a
poset, as an incidence geometry or as C-group with linear diagram. A
hypertope was introduced as a polytope-like structure where its group
of symmetries is a C-group however it does not need to have a linear diagram.

Grünbaum’s problem, one of the classical problems of the theory of
abstract polytopes, not yet completely solved, consists in the classification
of locally toroidal polytopes. The problem is extensible to hypertopes
of rank 4 with toroidal rank 3 residues. Locally toroidal hypertopes are
constructed from toroidal regular hypermaps {4, 4}, {6, 3}, {3, 6} or
(3, 3, 3). The groups of these toroidal regular hypermaps can be represented
as faithful transitive permutation representation graphs, which can be
then used either to classify locally toroidal polytopes or to construct new
polytopes/hypertopes with toroidal residues.

In this thesis, a classification of all the possible degrees of faithful
transitive permutation representations of the toroidal regular hypermaps
and of the locally toroidal regular polytopes of type {4, 4, 4} is given. With
these faithful transitive permutation representations, families of locally
toroidal hypertopes of types {6, 3

3} and {3,
4
4} are constructed. Additionally,

using the halving operation on the non-degenerate polytopes 2K,G(s),
examples of infinite families of regular hypertopes of locally toroidal,
euclidean or hyperbolic type are obtained.
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Chapter 1

Introduction

1.1 Overview and Motivation

The classification of the finite simple groups was one of the biggest milestones achieved
in group theory in the twentieth century. Groups can be seen in a more abstract fashion
or as a set of permutations on a set of points, particularly the groups of symmetries
of geometric objects. Classifying highly symmetric structures in which groups act has
also been an active research topic of mathematics, including geometry. Cayley’s theorem
states that any group is isomorphic to a subgroup of the symmetric group. This allows
us to see a group as a permutation group of a certain degree n, i.e. there exists always
a faithful permutation representation of a group acting on a set of size n. However, this
faithful permutation representation is not uniquely determined. For instance, the group
of automorphisms of the cube, which is isomorphic to S4 × C2, has a faithful transitive
permutation representation on 8 points, with generators ρ0 = (1, 2)(3, 4)(5, 6)(7, 8), ρ1 =
(2, 3)(6, 7) and ρ2 = (3, 5)(4, 6); and a faithful intransitive permutation representation
on 6 points, with generators ρ0 = (1, 2)(3, 4)(5, 6), ρ1 = (2, 3)(5, 6) and ρ2 = (3, 4)(5, 6).
The number of points in which a faithful intransitive permutation representations acts on
can always be increased indefinitely by repeating the actions on copies of the transitive
parts. Libraries of finite groups, particularly of automorphism groups of highly symmetric
structures such as polytopes, regular maps and hypermaps, usually give one faithful
permutation representation of the group [LV06; Har06] which is transitive and usually of
minimal degree.

Abstract Polytopes and their theory is a well studied subject of mathematics and
intimately connected with geometry and group theory, specifically Coxeter groups. These
groups can be represented by a diagram, where the set of vertices are the generators of
the group and with an edge between two generators if the order of the product of these
is greater or equal to 3. Smooth quotients of Coxeter groups, that is, factorizations
that preserve the diagram are designated by C-groups (“C” stands for Coxeter). Finite
Coxeter groups and C-groups with linear diagram are the automorphism groups of finite
abstract regular polytopes. A classical example of abstract regular polytopes are the
toroidal regular polytopes (or toroidal regular maps), which are regular tilings on the
surface of a torus by either squares, triangles or hexagons.

As refered before, some of the atlas of regular maps, hypermaps and polytopes use
faithful permutation representations of their automorphism groups. As observed above,
these representations are not unique. This thesis is the starting point to the study

1



2 1.Introduction

of faithful transitive permutation representations of the automorphism groups of maps,
hypermaps, polytopes and hypertopes. Some faithful transitive permutation representa-
tions were of great importance to the classification of polytopes with the automorphism
group being the symmetric groups [FL11] or the alternating groups [FL19; FLM12a;
FLM12b; CFLM17]. The knowledge of faithful transitive permutation representations of
C-groups associated with the toroidal maps seemed like a promissing way to contribute
to the classification of locally toroidal polytopes, known as Grünbaum’s problem.

We can tile the surface of the torus using a regular hypergraph, usually called a
toroidal hypermap. The automorphism group of this tiling is a Coxeter group however it
does not have a linear diagram, contrarily to the group of an abstract regular polytope. Of
course most Coxeter groups do not have a linear diagram. Some of these Coxeter groups
had already been studied associated with structures such as hypermaps and semi-regular
polytopes. Hence, it makes sense not to restrict our study to symmetric structures
with Coxeter group having linear diagram. Having this idea in mind, a new theory
of highly symmetric structures, called hypertopes, started recently. As you will see,
these structures are not as well-behaved as abstract regular polytopes. Nevertheless, this
generalization allows to study all the Coxeter groups (and their quotients) associated
with symmetric structures not yet known.

The theory of hypertopes is still in its starting stage, having a lot of unanswered
questions and being a fertile area of research. As in the case of abstract regular poly-
topes, we are interested in the classifications of regular hypertopes when a Coxeter group
is specified. Specifically we can extend Grünbaum’s problem to these structures. Using
faithful transitive permutation representations of the C-groups of toroidal maps, we are
able to build locally toroidal hypertopes. In fact, this idea was first used in [FLW15],
where families of regular hypertopes were constructed. More recently, the regular hyper-
topes of locally spherical type were characterized in [FLW20], generalizing the concept of
spherical, euclidean and hyperbolic type. In [FLW20] some computational examples of
hypertopes of hyperbolic and euclidean type were given and later some families of these
types were characterized [MW20; MW21; Ens18].

The main results of this thesis are the classification of all the possible degrees of
faithful transitive permutation representations of the toroidal regular hypermaps and of
the locally toroidal regular polytopes {4, 4, 4}. Another result is the characterization
and construction of new families of hypertopes, for which previous faithful transitive
permutation representations were used.

1.2 Organization of the Thesis

This thesis is organized into ten chapters, including this introductory chapter, where an
overview of the thematic of this thesis was provided, and a conclusion, which indicates a
future research based on the topics presented here.

In Chapter 2, a theoretical introduction to the concepts of abstract regular polytopes,
C-groups, Coxeter groups and faithful transitive permutation representations is given,
which are the base to all chapters in this thesis. Moreover, the concept of diagonals
and centrally symmetric polytopes is provided, which will come to great importance in
Chapter 9, when building polytopes 2K,G(s).

Chapter 3 is dedicated to toroidal regular maps {4, 4}, {3, 6} and {6, 3}, which are

Claudio Alexandre Guerra Silva Gomes da Piedade Tese de Doutoramento



1.Introduction 3

abstract regular polytopes, and to toroidal regular hypermap (3, 3, 3). After introducing
these toroidal regular maps and hypermaps, in Chapter 4 we characterize all possible
degrees of faithful transitive permutation representations of the automorphism groups of
these maps and hypermaps, giving examples of faithful transitive permutation represen-
tations graphs.

Having in mind the results of Chapter 4, we move to the faithful transitive permuta-
tion representations of locally toroidal regular polytopes of rank 4 with toroidal residues
of type {4, 4}. The list of all degrees of these faithful transitive permutation represen-
tations will be given in Chapter 5 for the known finite universal locally toroidal regular
polytopes of type {4, 4, 4}.

The concept of a hypertope is introduced in Chapter 6, standing as a combinatorial
structure for which its automorphism group does not have necessarily a linear Coxeter
diagram. The definition of incidence systems, geometries and coset geometries will be
needed to introduce hypertopes. In addition, an extension of the definitions of (locally)
spherical and toroidal polytopes will be done for regular hypertopes. With the previous
information, we will be able to construct families of regular hypertopes of locally toroidal
(Chapters 7, 8 and 9), euclidean type and hyperbolic type (both Chapter 9).

To read this thesis, the order presented is advised, serving the following chart as a
guide for each chapter’s dependencies.

Figure 1.1: Chapter’s dependencies. The dashed arrows represent the dependencies of
the theoretical chapters.

Claudio Alexandre Guerra Silva Gomes da Piedade Tese de Doutoramento
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Chapter 2

Abstract Regular Polytopes

The theory of abstract regular polytopes as a combinatorial description of a classical
polytope was introduced by McMullen and Schulte on several works both published and
collected on a book of the same name [MS02]. In this chapter, the definition of an
abstract (regular) polytope will be given, focussing on the automorphism group (which
is a C-group) and on its faithful permutation representations which can be described by
graphs.

2.1 Abstract Polytopes

An abstract n-polytope P (or, for short in this thesis, a n-polytope) is a ranked partially
ordered set (poset) of faces (a face F ∈ P with rank i, rank(F )= i is called an i-face)
and follows four defining properties:

(P1) P contains two improper faces, a least facet F−1 of rank −1, and a greatest facet
Fn of rank n;

(P2) Each flag (i.e. a maximal totally ordered subset) of P contains n+2 faces (including
the two improper faces);

(P3) P is strongly connected (see below Definition 2.1.1);

(P4) P must satisfy the diamond condition, i.e. for any F,G ∈ P, whenever F < G
with rank(F )=i − 1 and rank(G)=i + 1, there is exactly two i-faces H, such that
F < H < G.

Let F,G ∈ P be faces of P. We say that F and G are incident if F ≤ G or G ≤ F .
Two faces F and G with F ≤ G determine a section of P, defined by G/F := {H|H ∈
P, F ≤ H ≤ G}.

Definition 2.1.1. [MS02, Connected and Strongly Connected] Let P be a partially
ordered set with properties (P1) and (P2). We say P is connected if either n ≤ 1, or
n ≥ 2 and for any two proper faces F and G of P there is a sequence of proper faces
F = H0, H1, . . . ,Hk−1, Hk = G such that Hi−1 and Hi are incident for i = 1, . . . , k.

We say that P is strongly connected if for each section of P (including the polytope
P itself), that section is connected.

5



6 2.Abstract Regular Polytopes

Two flags of a n-polytope P are said to be adjacent if they differ in exactly one face.
If Φ is a flag of P, the diamond condition tells us that for i = 0, 1, . . . , n − 1 there is
exactly one flag that differ from Φ only in the i-face. This flag is denoted as Φi and is
said to be i-adjacent to Φ. Note that (Φi)i = Φ for each i and (Φi)j = (Φj)i if |i− j| ≥ 2.

We say that P is flag-connected if, for any two distinct flags Φ and Ψ of P, there is
a sequence of flags

Φ = Φ0,Φ1, . . . ,Φk−1,Φk = Ψ

from Φ to Ψ such that, for j ∈ {1, . . . , k}, Φj−1 and Φj are adjacent. Similarly to the
Definition 2.1.1, we say that P is strongly flag-connected if each section of P (including
the polytope P itself) is flag-connected. This leads to the following result.

Proposition 2.1.2. [MS02, Proposition 2A1] Let P be a poset with properties (P1) and
(P2). Then P is strongly connected if and only if it is strongly flag-connected.

This allows us to change the property (P3) to an equivalent one, using flag-connectedness
instead

(P3*) P is strongly flag-connected.

We say a n-polytope P (with n ≥ 2) is equivelar if for each i = 1, 2, . . . , n−1 there is
an integer pi such that any section G/F defined by an (i− 2)-face F and an (i+ 1)-face
G is a pi-gon. Then the (Schläfli) type of P is {p1, p2, . . . , pn−1}.

We say a poset is a lattice if, for every two faces F,G ∈ P, there is a least upper
bound and a greatest lower bound for {F,G}. Whenever the partial order induces a
lattice, we will say that P is non-degenerate, otherwise it is degenerate [Sch85; Dan84].

As an example, consider the cube, with labelled vertices {1, . . . , 8} as in Figure 2.1.
Let an edge be denoted by [i, j], where i and j are distinct pair of vertices that are

1 2

43

6

8

5

7

Figure 2.1: A cube with labelled vertices.

incident to it; and consider the faces, as in the classical sense, denoted as [i, j, k, l]
where i, j, k and l are distinct vertices incident to it. Then, we can build the following
poset in Figure 2.2. It is easy to see that we have a rank −1 element (∅) and a rank
3 element [1, 2, 3, 4, 5, 6, 7, 8], i.e. the empty set and the whole cube, respectively. All
flags of the poset have 5 elements. All sections of the poset are connected (as defined
in Definition 2.1.1), including the whole poset. Finally, any two faces1 of the poset with

1Not to be confused with faces of the cube.
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∅

[4] [5] [6] [7] [8][3][2][1]

[3,4] [3,7] [4,8] [5,6] [5,7] [6,8] [7,8][2,6][2,4][1,5][1,3][1,2]

[1,3,5,7][1,2,5,6][1,2,3,4] [2,4,6,8] [3,4,7,8] [5,6,7,8]

P

Figure 2.2: Poset of a cube.

rank i−1 and i+1 (for i ∈ {0, 1, 2}), results in a section with exactly two i faces. Hence,
we can clearly see that the cube is an abstract polytope2.

2.2 Abstract Regular Polytopes

Consider the mapping ψ : P → Q between two polytopes P and Q. We say that ψ is a
homomorphism if it preserves incidence, i.e. for all F,G ∈ P such that F ≤ G, we have
that Fψ ≤ Gψ in Q. Moreover, ψ is an isomorphism between P and Q if ψ is a bijection
where both ψ and ψ−1 are homomorphisms. If there is an isomorphism between P and
Q, we say that these polytopes are isomorphic and we write P ∼= Q. Furthermore, if ψ
is an isomorphism then it preserves adjacency, i.e. Φjψ = (Φψ)j , for any flag Φ of P and
j ∈ {0, . . . , n− 1}.

An automorphism of P is an isomorphism from P to itself and the set of all auto-
morphisms of P form a group, the automorphism group of P (or simply the group of P),
denoted by Γ(P). Moreover, it is easy to see that if P is a finite n-polytope, then Γ(P)
is also finite.

The dual polytope P∗ of Pis the one obtained by inverting the partial order of P, and if
the latter has type {p1, p2, . . . , pn−2, pn−1}, then its dual P∗ has type {pn−1, pn−2, . . . , p2, p1}.
A bijection φ : P → P∗ that invertes the partial order is called a duality.

Consider the set of all flags of P, denoted as F(P). The group Γ(P) acts freely on
F(P), i.e. for any ψ, φ ∈ Γ(P) if for a flag Φ ∈ F(P) we have ψ(Φ) = φ(Φ), then
ψ = φ. Moreover, we have that the order of Γ(P) divides |F(P)| and, if |Γ(P)| =
|F(P)|, then Γ(P) also acts transitively on the flags (for all two flags Φ, Φ̃ ∈ F(P)
there is a automorphism ψ ∈ Γ(P) such that ψ(Φ) = Φ̃) , i.e. Γ(P) is regular. In
this circumstances, P is said to be regular. Consider the following proposition, where a
different definition of an abstract regular polytope is given.

2The poset presented is usually called the face-lattice of the cube since this poset is actually a lattice.

Claudio Alexandre Guerra Silva Gomes da Piedade Tese de Doutoramento



8 2.Abstract Regular Polytopes

Proposition 2.2.1. [MS02, Proposition 2B4] An n-polytope P is regular if and only if,
for some flag Φ = {F−1, F0, F1, . . . , Fn−1, Fn} of P and each j ∈ {0, . . . , n − 1}, there
exists a (unique) involutory automorphism ρj of P such that Φρj = Φj.

Consider a flag Φ and the involutory automorphism ρj such that Φρj = Φj . Then
there is an automorphism ϕ ∈ Γ(P) such that, for another flag Φ̃, the involutory auto-
morphism ρ̃j = ϕ−1ρjϕ is such that Φ̃ρ̃j = Φ̃j . That is, the involutory automorphisms
corresponding to other flags (not Φ) are conjugates of the ones of flag Φ. Hence, we can
fix on one flag

Φ := {F−1, F0, . . . , Fn}
which we will call a base flag. So, whenever the elements ρ0, ρ1, . . . , ρn−1 (called distin-
guished generators of Γ(P)) are used, a base flag has been implicitly been chosen. More-
over, the group Γ(P) = 〈ρ0, ρ1, . . . , ρn−1〉 and, if P is a polytope of type {p1, p2, . . . , pn−1},
for all j ∈ {1, . . . , n− 1} we have that the order of ρj−1ρj is equal to pj of the polytope’s
type. Furthermore, for |j− k| ≥ 2 the order of ρjρk is 2, meaning that generators ρj and
ρk commute with each other. This is a consequence of (Φj)k = (Φk)j) if |j − k| ≥ 2.

The Coxeter diagram is a graph whose nodes represent the distinguished generators of
a group generated by involutions and two generators ρj and ρk are connected if o(ρjρk) ≥
3. Moreover, we write a label on the edges if o(ρjρk) ≥ 4. For polytopes, this diagram is
a string, like the one represented below.

• o(ρ0ρ1) • o(ρ1ρ2) • • o(ρj−1ρj) • •o(ρn−2ρn−1)•
ρ0 ρ1 ρ2 ρj−1 ρj ρn−2 ρn−1

Figure 2.3: Coxeter diagram of an abstract n-regular polytope.

Since Γ(P) is generated by involutions and has the property of two non-consecutive
generators commuting with each other, it is said to be a string group generated by invo-
lutions (or sggi for short).

A C-group is a group generated by involutions (ggi) that satisfies the intersection
property, i.e. for a group 〈ρ0, ρ1, . . . , ρn−1〉 and I, J ⊆ {0, 1, . . . , n− 1} we have that

〈ρi | i ∈ I〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉. (2.1)

The automorphism group of P satisfies the intersection property, hence it is a C-group.
In addition, it has a string Coxeter diagram, thus it is a called a string C-group. Later
we will consider C-group without a string Coxeter diagram when studying hypertopes
(see Chapter 6)

2.3 From a string C-group to an Abstract Regular Polytope

Let Γ be a string C-group. Let us define for each k ∈ {0, . . . , n− 1} the subgroups of Γ
in the following way.

Γk := 〈ρj | j 6= k〉, (2.2)

usually designated as the maximal parabolic subgroups of Γ. We will also denote as Γk,m
the subgroup 〈ρj | j /∈ {k,m}〉. Since for any i, j ∈ {0, . . . , n − 1} such that |i − j| ≥ 2
we have that generators ρi and ρj commute, then Γk ∼= 〈ρ0, . . . , ρk−1〉 × 〈ρk+1, . . . , ρn−1〉
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2.Abstract Regular Polytopes 9

for k ∈ {1, . . . , n − 2}. As Γ satisfies the intersection property, {ρi | i ∈ {0, . . . , n − 1}}
is an independent generating set, which means that ρj /∈ Γj , for all j ∈ {0, . . . , n − 1}.
Particularly, all Γj are distinct from one another and distinct from Γ itself.

We will construct an abstract regular polytope from the string C-group Γ. For each
j ∈ {0, . . . , n − 1}, consider the set of right cosets of Γj , which we will call the j-faces.
Moreover, consider Γ−1 = Γn = Γ. Furthermore, let us define a partial order between
cosets. We say two cosets Γjφ and Γkψ (for φ, ψ ∈ Γ) are incident Γjφ ≤ Γkψ if and
only if −1 ≤ j ≤ k ≤ n and Γjφ ∩ Γkψ 6= ∅. We will denote a poset built using this
construction as P(Γ).

Theorem 2.3.1. [MS02, Theorem 2E11] Let n ≥ 1, and let Γ = 〈ρ0, . . . , ρn−1〉 be a
string C-group and P := P(Γ) the corresponding poset. Then P is a regular n-polytope
such that Γ(P) = Γ.

It is important to note that string C-groups and abstract regular polytopes are in
one-to-one correspondence, as expressed in the following corollary.

Corollary 2.3.2. [MS02, Corollary 2E13] The string C-groups are precisely the groups
of abstract regular polytopes.

With this correspondence, we will be working oftenly with the string C-groups instead
of considering the poset that was firstly introduced for an abstract regular polytope.
Hence, it will be important to prove in some situations that the group we are working
with is a (string) C-group. The following result will help with this.

Proposition 2.3.3. [FL18, Proposition 6.1] Let Γ be a group generated by n involutions
ρ0, . . . , ρn−1. Suppose that Γi is a C-group for every i ∈ {0, . . . , n − 1}. Then Γ is a
C-group if and only if Γi ∩ Γj = Γi,j for all 0 ≤ i, j ≤ n− 1.

2.4 Coxeter groups

A Coxeter group W is a group with the presentation

W := 〈σ1, σ2, . . . , σn | i, j ∈ {1, . . . , n} : (σiσj)
mij = idW 〉,

where mii = 1 and mij = mji ≥ 2, for i 6= j. This imposes that for all i ∈ {1, . . . , n} we
have (σiσi)

1 = σ2
i = idW , meaning all generators of the group are involutions. Moreover,

if for some i, j ∈ {1, . . . , n} we have mij = 2, then σi commutes with σj . These groups
satisfy the intersection property (2.1) and have associated the Coxeter diagram as defined
previously. The relations corresponding to the definition of the Coxeter diagram are
precisely the ones defining the group. We say a Coxeter group is irreducible or reducible
depending on whether its Coxeter diagram is connected or disconnected, respectively. If
a Coxeter group is reducible, then it is isomorphic to the direct product of its connected
components.

In fact, C-groups are factorizations of Coxeter groups preserving the Coxeter dia-
gram structure and the intersection property. Whenever we say the Schläfli type of a
C-group, we are in fact referring to the parent Coxeter group, which we factorized by extra
relations. Moreover, Coxeter groups with string Coxeter diagram are in one-to-one cor-
respondence with an abstract regular polytope. Coxeter groups associated with abstract
regular polytopes of Schläfli type {p1, . . . , pn−1} are usually denoted as [p1, . . . , pn−1].
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10 2.Abstract Regular Polytopes

Let W be a irreducible Coxeter group and A := (αij) be the n×n symmetric matrix
where its entries are αij = −cos(π/mij). Whenever det(A) > 0, we have thatW is finite.
All possible finite Coxeter groups are listed in Table 6.1 and are said to be of spherical
type. Among these, only those with string diagram are automorphism groups of abstract
regular polytopes, which are precisely the groups of the convex regular polytopes.

When we have det(A) = 0, then W is not finite, however these groups have a normal
abelian subgroup, which acts as a translation subgroup of W , such that the quotient of
W by these subgroups give a group which is finite. These Coxeter groups W are said to
be affine, or alternatively, of euclidean type since they are the automorphism groups of
tesselations of the Euclidean space. The list of all Coxeter groups of Euclidean type is
given in Table 6.2, where those with string diagram are automorphism groups of infinite
regular polytopes corresponding with tesselations of the Euclidean space.

Finally, when det(A) < 0, there is a larger variety of Coxeter groups, known as
Coxeter groups of hyperbolic type. For these, we will introduce the notion of locally
spherical/toroidal. We say that W is locally spherical (or locally finite) if all its maximal
parabolic subgroups have Coxeter diagrams whose connected components are of spherical
type. We say thatW is locally toroidal if all its maximal parabolic subgroups are either of
spherical type or euclidean type, but with at least one of them of euclidean type. Notice
that all Coxeter groups of euclidean type are locally spherical and not locally toroidal.
Locally toroidal polytopes (and hypertopes) will encompass a great deal of this thesis.

2.5 Diagonals and Central Symmetry

Let P be an abstract regular n-polytope and FA, FB ∈ P be distinct vertices (0-faces)
of P. The unordered pair of vertices {FA, FB} is called a diagonal of P. Two diagonals
{FA, FB} and {FC , FD}, with FC , FD ∈ P, are said to be equivalent if there is some
σ ∈ Γ(P) such that {FC , FD} = {FAσ, FBσ}. Thus, the diagonals of P form equivalence
classes, called diagonal classes. Since these vertices can be represented as right cosets of
Γ0, we can write a diagonal as {Γ0φ,Γ0ψ}, where Γ0φ = F0φ = FA, Γ0ψ = F0ψ = FB,
FA 6= FB and φ, ψ ∈ Γ(P). Moreover, due to the transitivity of Γ(P), we can think of
the diagonal classes by their representative {Γ0,Γ0σ} for σ /∈ Γ0, where we fix one of
the vertices as Γ0. In this case, two diagonals {F0, FA} = {Γ0,Γ0φ} and {F0, FB} =
{Γ0,Γ0ψ} are equivalent under Γ(P) if and only if

ψ ∈ Γ0φΓ0 ∪ Γ0φ
−1Γ0, (2.3)

for φ, ψ /∈ Γ0. If the polytope is realizable in an Euclidean space, the diagonal classes
can be ordered by the distance between their representative vertices. For instance, the
edges (the 1-faces) of the polytope P form a diagonal class.

An abstract regular polytope P is said to be centrally symmetric if its automorphism
group Γ(P) has a proper central involution α which is fixed-point free on its vertices. A
pair of vertices of a centrally symmetric polytope is antipodal if they are permuted by
this central involution. In the diagonal classes of a centrally symmetric polytope, there
will be a diagonal class of all the pairs of antipodal points, with representative {Γ0,Γ0α}.
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2.6 Faithful Transitive Permutation Representation Graphs

Let Γ be a group and let X be a set. A permutation representation of Γ on X is a
homomorphism π from Γ to the symmetric group of X, i.e.

π : Γ→ Sym(X).

The image of the representation π(Γ), which is isomorphic to Γ, is a permutation group
hence the elements of Γ can be represented as permutations of elements of X. This gives
a natural action of Γ on the set X

Γ×X → X.

If |X| = d, we say that Γ has a permutation representation of degree d.
A permutation representation is faithful if Γ acts faithfully on X, i.e. the identity

is the unique element of Γ fixing all elements of X. We say that a permutation repre-
sentation is transitive if the group action is transitive on X. Let Λ ≤ Γ and consider
the permutation representation given by the action of Γ on the coset space of Λ. This
action is transitive and, if Λ is a core-free subgroup of Γ, this action is also faithful. In
addiction, given a faithful transitive action of Γ on a set X, the stabilizer of any point is a
core-free subgroup of Γ, giving a one-to-one correspondence between core-free subgroups
and faithful transitive permutation representations (FTPR).

A permutation representation of a group Γ with generating set {αi, i ∈ I} acting on
a set X can be represented as a graph G, with a set of vertices X and with a directed
edge (x, y) with label αi if there is an element αi of the generating set such that αix = y.
When αi is an involution, we substitute the two directed edges (x, y) and (y, x) by a
single undirected edge {x, y} with label αi. Consider then a C-group Γ = 〈ρ0, . . . , ρn−1〉
and let π be a faithful transitive permutation representation of Γ into the symmetric
group Sd, for some d. A FTPR graph G of Γ given by π is a graph with d vertices, such
that vertices i and j of the vertex set V (G) are connected with an edge of label k if and
only if (π(ρk))i = j.

Let us consider an example. Let Γ := 〈ρ0, ρ1〉 be the string C-group of type [4] ∼= D4,
the automorphism group of a square, and consider the correspondence

ρ0
π7−−→ (1, 2)(3, 4)

ρ1
π7−−→ (2, 3).

The FTPR graph associated with π is the following

1 0 2 1 3 0 4

where the labels on the edges are the indices of the involutions that act on those vertices.
It is a FTPR since it can be seen as the action of Γ on the core-free subgroup Λ = 〈ρ1〉.

Λ
0

ρ0Λ
1

ρ1ρ0Λ
0

ρ0ρ1ρ0Λ

The stabilizer of each vertex of the graph is a different conjugate of Λ. Usually, the
numbering on the vertices is not important, and so we will use more commonly the
following presentation of the graph.

• 0 • 1 • 0 •
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12 2.Abstract Regular Polytopes

When Γ is a string C-group, some authors call these (string) C-group Permutation
Representation Graph or CPR Graph, following the designation used by Pellicer in [Pel08].
Any transitive permutation representation of a group Γ gives a connected graph desig-
nated a Schreier coset graph, corresponding to the action of the group on the coset space
of a subgroup (not necessarily core-free). CPR graphs do not need to be connected while
Schreier coset graphs do. Since we will be working with graphs which are not necessarily
transitive, and we want to consider C-groups that are not necessarily string C-groups,
we will not use any of these two designations.

Let GJ denote a spanning subgraph of G whose edge-set has label-set J ⊆ {0, . . . , n−
1}. It can be easily seen, by the definition, that G{i}, for any i ∈ {0, . . . , n − 1}, is a
matching. Moreover, if Γ is a string C-group and |i − j| ≥ 2, ρi and ρj commute and
all connected components of G{i,j} are either single edges, double edges or alternating
{i, j}-squares (squares that alternate labels i and j).

Faithful transitive permutation representation graphs have been extensively used to
characterize abstract regular polytopes [FL11; FL18; FL19; FLM12a; FLM12b; CFLM17;
Pel08] and also to build regular hypertopes [FLW15] . If Γ is the automorphism groups of
an abstract regular polytope or of a regular hypertope, and G is a FTPR graph of Γ with
d vertices, we will say that d is a degree of the regular polytope/hypertope. In chapters 4
and 5 we will use core-free subgroups to study the possible degrees of the toroidal (hy-
per)maps and locally toroidal polytopes {4, 4, 4}. Moreover, in chapters 7 and 8 FTPR
graphs will be used to build and prove that certain C-groups are automorphism groups
of hypertopes.
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Chapter 3

Toroidal Regular Maps and
Hypermaps

3.1 Regular Maps

A map M is an embedding of a connected (multi)graph X into a compact surface S
in which when removing X from S, the components obtained (the faces of the map)
are homeomorphic to unitary disks [Con09; Šir06]. We can consider the vertices and
edges of the graph are the 0-elements and 1-elements of this map, while the faces defined
before are the 2-elements. Maps can be seen as abstract regular polytopes, as long as
their automorphism groups are string C-groups. If so, the flags can be seen as triples of
incident vertex-edge-face. When the surface in which the graph is embedded is a sphere,
this map is a spherical map, while if the surface is a torus, the map is a toroidal map. In
our case, we are interested in toroidal maps.

We say a map is regular if the automorphism group of the map M , denoted as
Aut(M), acts regularly on the set of flags of M (freely and transitively). The auto-
morphism group of a regular toroidal map Aut(M) is a quotient of a triangle group. A
triangle group is a Coxeter group [MS02] with a triangular Coxeter diagram

•
m

ρ0

p •

• n

ρ2

ρ1

and group presentation

∆(m,n, p) := 〈ρ0, ρ1, ρ2 | ρ2
0 = ρ2

1 = ρ2
2 = (ρ0ρ1)m = (ρ1ρ2)n = (ρ0ρ2)p〉.

These groups are automorphism groups of tilings on the sphere, euclidean plane or the
hyperbolic plane, depending on whether 1

m + 1
n + 1

p is greater, equal or less than 1,
respectively.

The triangle groups (m,n, 2), withm,n ≥ 3, are Coxeter groups with string diagrams,
giving polytopes of Schläfli type {m,n}. These triangle groups (m,n, 2) give tilings
(or tesselations) on the sphere, euclidean plane or the hyperbolic plane, depending on
whether 1

m + 1
n is greater, equal or less than 1

2 , respectively. When 1
m + 1

n > 1
2 , we

13



14 3.Toroidal Regular Maps and Hypermaps

get finite tilings on a sphere, usually called the platonic solids. On the other hand, if
1
m + 1

n ≤ 1
2 the tesselations are infinite. Hence, if 1

m + 1
n <

1
2 , we get tesselations of the

hyperbolic plane. Lastly, if 1
m + 1

n = 1
2 , we get a tesselation of the euclidean plane.

In this last case, the only possible integers m,n ≥ 3 that satisfy 1
m + 1

n = 1
2 are

{m,n} ∈ {{3, 6}, {4, 4}, {6, 3}}, which represent the infinite tesselations of the euclidean
plane by triangles, squares and hexagons, respectively. As previously said, the auto-
morphism group of regular toroidal maps are quotients of triangle groups. Consider
then a normal subgroup K, with finite index, of an infinite triangle group G of type
{m,n} ∈ {{3, 6}, {4, 4}, {6, 3}}. If its intersection with the maximal parabolic subgroups
G0, G1 and G2 is trivial, then the finite group G/K is the automorphism group of a
tesselation of the torus, i.e. a toroidal map with type {m,n}. This subgroup K is
generated by translations of the triangular, quadrangular and hexagonal tesselations of
the euclidean plane, respectively. The conditions under which this factorization gives a
regular toroidal map will be specified below.

3.1.1 Toroidal Maps of type {4, 4}
Given a tesselation of the euclidean plane by squares, consider, for s, t ≥ 1, a paral-
lelogram with vertices (0, 0), (s, t), (s − t, s + t) and (−t, s), as shown in Figure 3.1.
The resulting parallelogram can be seen as a toroidal map, designated as {4, 4}(s,t), with
V = s2 + t2 vertices, 2V edges and V faces, that is the obtained by identifying opposite
sides of the parallelogram. The product of two reflections ρi and ρj , with i, j ∈ {0, 1, 2},

ρ0

•

•

ρ2

•

(s−t,s+t)

•(0,0)

(−t,s)

(s,t)

ρ1

Figure 3.1: Toroidal map of type {4, 4}.

are still symmetries of the identified map {4, 4}(s,t) (rotational symmetries), but ρ0, ρ1

and ρ2 are reflexions of {4, 4}(s,t) only if st(s − t) = 0 [CM72], which is precisely when
the map is regular, meaning that the automorphism group acts regularly on the set of
flags.

Hence there are two families of toroidal regular maps, denoted by {4, 4}(s,0) and
{4, 4}(s,s). Their automorphism groups are factorizations of the Coxeter group [4, 4]
(same as the triangle group (4, 4, 2)) by

(ρ0ρ1ρ2ρ1)s = id[4,4] or (ρ0ρ1ρ2)2s = id[4,4],
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3.Toroidal Regular Maps and Hypermaps 15

respectively. The number of flags of {4, 4}(s,0) is 8s2 while the number of flags of {4, 4}(s,s)
is 16s2. Moreover the automorphism group of {4, 4}(s,0) is a quotient of the automorphism
group of {4, 4}(s,s) by 〈(ρ0ρ1ρ2ρ1)s〉, while the automorphism group of {4, 4}(s,s) is a
quotient of the automorphism group of {4, 4}(2s,0) by 〈(ρ0ρ1ρ2)2s〉.

For the map {4, 4}(s,0) consider the unitary translations u = ρ0ρ1ρ2ρ1 and v = uρ1 .

• •

ρ2 • u //

v

OO

•

ρ1 ρ0

We have the following equalities

uρ0 = u−1, uρ2 = u, vρ0 = v and vρ2 = v−1. (3.1)

In the case of the map {4, 4}(s,s), consider as the unitary translations g := uv = (ρ0ρ1ρ2)2

and h := u−1v = gρ0 .

• • •

• • •

ρ2 • •

g

>>
h

``

•
ρ1 ρ0

We have the following equalities

gρ1 = g, gρ2 = h−1 and hρ1 = h−1. (3.2)

3.1.2 Toroidal Maps of type {3, 6} and {6, 3}
Consider the tesselation of the euclidean plane by triangles, whose automorphism group
is the Coxeter group [3, 6], generated by three reflections ρ0, ρ1 and ρ2, as shown in
Figure 3.2 (the triangle group (3, 6, 2)). For s, t ≥ 1, the vertices (0, 0), (s, t), (−t, s+ t)
and (s− t, s+ 2t) define a parallelogram, as shown in Figure 3.2, which gives a toroidal
map, designated as {3, 6}(s,t) having V = s2 + st + t2 vertices, 3V edges and 2V faces,
when opposite sides of the parallelogram are identified. As before, the involutions ρ0, ρ1

and ρ2 are symmetries of {3, 6}(s,t) only if st(s−t) = 0 [CM72], which is the condition for
regularity of {3, 6}(s,t). Hence we distinguish two families of toroidal regular maps of type
{3, 6}: {3, 6}(s,0) and {3, 6}(s,s). The automorphism group of {3, 6}(s,0) and {3, 6}(s,s)
are factorizations of the Coxeter group [3, 6] by

(ρ0ρ1ρ2)2s = id[3,6] and (ρ0(ρ1ρ2)2)2s = id[3,6],

respectively. The number of flags of {3, 6}(s,0) is 12s2 while the number of flags of
{3, 6}(s,s) is 36s2. The automorphism group of {3, 6}(s,0) is a quotient of the group
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16 3.Toroidal Regular Maps and Hypermaps

•(s−t,s+2t)

•

ρ2 •
•(0,0)

(−t,s+t)

(s,t)

ρ1
ρ0

Figure 3.2: Toroidal map of type {3, 6}.

{3, 6}(s,s) by 〈(ρ0ρ1ρ2)2s〉, and the automorphism group of {3, 6}(s,s) is a quotient of the
group of the map {3, 6}(3s,0) by 〈(ρ0(ρ1ρ2)2)2s〉. For the map {3, 6}(s,0) consider the
unitary translations u = ρ0(ρ1ρ2)2ρ1, v = uρ1 = (ρ0ρ1ρ2)2 and t = u−1v.

•

ρ2 •
u

//

v

DD

•

t

ZZ

ρ1
ρ0

We have the following equalities

uρ0 = u−1, uρ2 = u, vρ0 = t and vρ2 = t−1. (3.3)

In the case of the map {3, 6}(s,s), consider as the unitary translations g := uv =
(ρ0(ρ1ρ2)2)2, h := u−2v = gρ0 and j := hg. We have the following equalities

gρ1 = g, gρ2 = h−1 and hρ1 = j−1. (3.4)

ρ2 •
g

44
h

jj j

OO

ρ1 ρ0

Consider lastly the tesselation of the euclidean plane by hexagons, whose automor-
phism is the Coxeter group [6, 3], generated by three reflections ρ0, ρ1 and ρ2, as shown
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3.Toroidal Regular Maps and Hypermaps 17

ρ0

ρ1
ρ2

•

•

•

(s−t,s+2t)

•
(0,0)

(s,t)

(−t,s+t)

Figure 3.3: Toroidal map of type {6, 3}

in Figure 3.3 (triangle group (6, 3, 2)). For s, t ≥ 1, the parallelogram with vertices (0, 0),
(s, t), (−t, s+ t) and (s− t, s+ 2t), as shown in Figure 3.3, gives a toroidal map, denoted
by {6, 3}(s,t), with F = s2 + st+ t2 faces, 3F edges and 2F vertices, when opposite sides
of the parallelogram are identified.

The map {6, 3} is said to be regular when the automorphism group acts regularly on
the set of flags of the map, which is the case if and only if st(s−t) = 0 [CM72]. Therefore,
two families of toroidal regular maps of type {6, 3} arise: {6, 3}(s,0) and {6, 3}(s,s), which
are factorizations of the infinite Coxeter group [6, 3] by

(ρ0ρ1ρ2)2s = id[6,3] and ((ρ0ρ1)2ρ2)2s = id[6,3],

respectively. The number of flags of {6, 3}(s,0) is 12s2 while the number of flags of
{6, 3}(s,s) is 36s2. The automorphism group of {6, 3}(s,0) is a quotient of the automor-
phism group of {6, 3}(s,s) by 〈(ρ0ρ1ρ2)2s〉, and the automorphism group of {6, 3}(s,s) is a
quotient of the automorphism group of the map {6, 3}(3s,0) by 〈((ρ0ρ1)2ρ2)2s〉.

For the map {6, 3}(s,0) consider the unitary translations u = (ρ0ρ1ρ2)2, v = uρ1 =
(ρ1ρ0)2ρ1ρ2 and t = u−1v.

ρ0

• •
ρ1• • •

• • u //

v

EE

t

YY

•
• • ρ2

We have the following equalities

uρ0 = t, uρ2 = t−1, vρ0 = v and vρ2 = v−1. (3.5)
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18 3.Toroidal Regular Maps and Hypermaps

In the case of the map {6, 3}(s,s), consider as the unitary translations g := uv =
((ρ0ρ1)2ρ2)2, h := u−2v = gρ0ρ1ρ0 and j := gh.

• • •
• • • •

• • • •
• • •

• •

g

77

h

gg j

OO

•
• •

ρ1

ρ0

ρ2

We have the following equalities

gρ1 = g, gρ0 = j and hρ1 = j−1. (3.6)

Notice that the maps {3, 6} and {6, 3} are dual, for that reason, the degrees deter-
mined in Chapter 4 for the toroidal maps of type {3, 6}, coincide withe the degres of the
toroidal maps of type {6, 3} (since the group is isomorphic).

3.2 Regular Hypermaps

A hypermap can be seen as a generalization of a map, where edges can connect more
than two vertices. It can be defined as a cellular embedding of a connected bipartite
graph into a compact surface where the bipartition of vertices determines two types of
vertices, in which one type will be the (hyper)vertices and the other the hyperedges.
From a group-theoretical point of view, the full automorphism group of a hypermap is
also a factorization of a triangle group (m,n, p), just like in the case of maps. When
one of the parameters m, n or p is 2, then the hypermap is actually a map. Hence, we
say a hypermap is proper if all parameters m, n, p are at least 3. Similarly to what we
have seen before, a quotient of the triangle group (m,n, p) by a normal subgroup of finite
index that intersects its maximal parabolic subgroups trivially gives the automorphism
group of a hypermap.

We know that when 1
m + 1

n + 1
p = 1, the triangle group (m,n, p) gives a tesselation

of the euclidean plane. For proper hypermaps, the only possible parameters that give an
euclidean plane tiling is when m = n = p = 3, hence the quotients of the triangle group
(3, 3, 3) give tilings on the torus by hypermaps.

3.2.1 Toroidal Hypermap of type (3, 3, 3)

The toroidal hypermap (3, 3, 3) is obtained from a map of type {6, 3} by considering a
bipartition on the set of its vertices (see Figure 3.4). The toroidal hypermap constructed
from {6, 3}(s,t) is denoted by (3, 3, 3)(s,t). The automorphism group G of the hypermap
(3, 3, 3)(s,t) is a subgroup of index 2 of the automorphism group K of the map {6, 3}(s,t),

G := 〈ρ̃0, ρ1, ρ2〉, where ρ̃0 := ρ0ρ1ρ0 and G ≤ K := 〈ρ0, ρ1, ρ2〉.
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3.Toroidal Regular Maps and Hypermaps 19

• • • • ρ̃0 • • • •
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • • • • • •

ρ1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ρ2

• • • • • • • •
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • •

(s−t,s+2t)

• • • • • •
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • • • • •

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • • • • • •
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• •

(0,0)

(s,t)

(−t,s+t)

• • • • • •
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • • • • • •
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Figure 3.4: Toroidal map of type (3, 3, 3)

If the toroidal hypermap is regular, then G is the infinite Coxeter group of the triangle
group (3, 3, 3) factorized by either (ρ̃0ρ1ρ2ρ1)s or (ρ̃0ρ1ρ2)2s, depending on whether it is
(3, 3, 3)(s,0) or (3, 3, 3)(s,s), respectively.

The automorphism group of the (3, 3, 3)(s,0) is a quotient of the group of (3, 3, 3)(s,s)

by 〈(ρ̃0ρ1ρ2ρ1)s〉, and the latter is a quotient of the automorphism group of (3, 3, 3)(3s,0)

by 〈(ρ̃0ρ1ρ2)2s〉.
Let u, v and t denote the following translations of order s of the group of the hypermap

(3, 3, 3)(s,0) (that are translations with the same order in the group of the map {6, 3}(s,0)).

u := ρ̃0ρ1ρ2ρ1, v := uρ1 = ρ1ρ̃0ρ1ρ2 and t := u−1v.

ρ̃0

• •
ρ1◦ ◦ ◦

• • u //

v

EE

t

YY

•
◦ ◦ ρ2

We have the equalities

uρ̃0 = u−1, uρ2 = t−1, vρ2 = v−1, vρ̃0 = t and tρ1 = t−1. (3.7)

For the hypermap (3, 3, 3)(s,s), consider the translations g := uv = (ρ̃0ρ1ρ2)2, h := gρ̃0
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20 3.Toroidal Regular Maps and Hypermaps

and j := gh.
• • •

◦ ◦ ◦ ◦

• • • •
◦ ◦ ◦

• •

g

77

h

gg j

OO

•
◦ ◦

ρ1

ρ̃0

ρ2

In this case we have the following equalities

gρ1 = g, gρ2 = j−1 and hρ1 = j−1. (3.8)

Claudio Alexandre Guerra Silva Gomes da Piedade Tese de Doutoramento



Chapter 4

Degrees of Toroidal Maps and
Hypermaps

The classification of locally toroidal polytopes was one of the missions of Grünbaum
[Grü78], motivating other researchers to follow him, leading to multiple publications
on the area (see [MS02] for references). Recently, a generalization of the notion of an
abstract regular polytope was introduced (see Chapter 6) and the classification of these
structures called regular hypertopes has begun (see Chapters 7, 8 and 9, and [FLW15;
CFHL18; FLPW21]). With this, a generalization of Grünbaum’s classification problem to
these new structures became of high interest for algebraists and geometers. In [FLW15]
the usage of FTPRs of toroidal maps to build FTPRs of locally toroidal hypertopes
was crucial, which motivated a research project that aims to determine the degrees of
the automorphism groups of regular polytopes and hypertopes. In this chapter we will
determine all possible degrees of FTPR of toroidal maps and hypermaps. This study will
be continued in Chapter 5 where we study of locally toroidal polytopes of type {4, 4, 4}.
This classification of the degrees of FTPRs give powerful tools to study and build new
locally toroidal hypertopes (see Chapters 7 and 8).

The results presented in this chapter can be found in [FP20b; FP20a; FP21], giving
the possible degrees of toroidal regular (hyper)maps {4, 4}, {3, 6} and (3, 3, 3).

4.1 Preliminary Results

In this section, some important results will be collected to be used repeatedly to prove
this chapter’s main results, for each of the toroidal (hyper)maps considered. Let G be
the automorphism group of a toroidal regular map of type {4, 4} or {3, 6}, or hypermap
of type (3, 3, 3), and suppose G has a faithful transitive permutation representation of
degree n. Let u, v, g and h be the translations defined in Chapter 3 for each toroidal
map, and T := 〈u, v〉, when G is the automorphism group of {4, 4}(s,0), {3, 6}(s,0) or
(3, 3, 3)(s,0); and T := 〈g, h〉, when G is the automorphism group of {4, 4}(s,s), {3, 6}(s,s)
or (3, 3, 3)(s,s).

Given a FTPR of degree n, the translation subgroup T can either be transitive or
intransitive. Since T is a normal subgroup of G and it is a direct product of two cyclic
groups of order s, the T -orbits form a block system (which might be trivial). Consider
σ and τ the actions of the generators of T restricted to a block and let K := 〈σ, τ〉.

21



22 4.Degrees of Toroidal Maps and Hypermaps

Lemma 4.1.1. If B := |K : 〈σ〉| and C := |K : 〈τ〉| then the size of a T -orbit is k = ds
where d = gcd(B,C).

Proof. Consider that σ and τ are the actions of the generators of T on a block of size
k. Then K := 〈σ, τ〉, A := o(σ), B := |K : 〈σ〉| and C := |K : 〈τ〉|. We have that K
has order AB and acts regularly on the block, hence k = AB. As σ and τ commute, we
have the following

K/〈σ〉 = {〈σ〉, 〈σ〉τ, 〈σ〉τ2, . . . , 〈σ〉τB−1} and

K/〈τ〉 = {〈τ〉, 〈τ〉σ, 〈τ〉σ2, . . . , 〈τ〉σC−1}.
Thus B divides o(τ) and C divides o(σ) = A. Let D := A/C. As k = AB = o(τ)C we
have o(τ) = DB. Now

s = lcm(o(σ), o(τ)) = lcm(CD, BD) = D lcm(C,B)

and
k = AB = DCB = D lcm(C,B) gcd(C,B) = s gcd(C,B).

To conclude the proof consider d = gcd(C,B).

Corollary 4.1.2. If T is transitive, then n = s2. In this case T is regular and G ∼=
T o StabG(id).

Proof. As T is transitive, K = T and since T is a direct product of cyclic groups of order
s, using Lemma 4.1.1, B = C = s, hence k = s2. Since T is transitive, n = s2. Moreover
the action of T is regular. Hence, G ∼= T o StabG(id) [Cam99, Section 1.7].

Proposition 4.1.3. If G is the automorphism group of {4, 4}(s,s), {3, 6}(s,s) and (3, 3, 3)(s,s),
then T is intransitive.

Proof. Suppose that G is the automorphism group of the map {4, 4}(s,s) and that T is
transitive. Let α = ρ0ρ1ρ2ρ1 (which the reader can identify as the unitary horizontal
translation of {4, 4}). By the previous result we have that T is regular, and hence the
n points can be seen as elements of the subgroup T , one of which is idG, therefore
idGα = gahb. As α commutes with both g and h, gihjα = gi+ahj+b and gihjαs =
gi+sahj+sb = gihj . Hence the order of α is at most s, a contradiction.

Analogously, for the map {3, 6}(s,s) and hypermap (3, 3, 3)(s,s), if T is transitive then
the order of α = (ρ0ρ1ρ2)2 and α = ρ̃0ρ1ρ2ρ1, respectively, is at most s, giving a contra-
diction.

This leads to the following lemma, that combines the previous two results.

Lemma 4.1.4. If T is transitive, then G is the automorphism group of {4, 4}(s,0),
{3, 6}(s,0) or (3, 3, 3)(s,0) and n = s2.

Proof. This result is a consequence of Corollary 4.1.2 and Proposition 4.1.3.

Consider now only the cases where T is intransitive. Then from Corollary 4.1.2,
n 6= s2. To deal with this results, we have the following proposition.
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Proposition 4.1.5. If n 6= s2 then G is embedded into Sk o Sm with n = km (m, k > 1)
and we have

(i) k = ab where s = lcm(a, b), and

(ii) m is a divisor of |G|
s2
.

Proof. By Corollary 4.1.2, T is intransitive, and thus G is embedded into Sk oSm, where
k is the size of an orbit of T and n = km.

(i) This is a consequence of Lemma 4.1.1, since if lcm(a, b) = s, then ab = ds, where
d = gcd(a, b).

(ii) Consider the induced action of G on the set of m blocks and the induced homo-
morphim f : G→ Sm. The kernel of this homomorphism has size at least s2, as it
contains T . Hence, the size of Im(f) is a divisor |G|

s2
.

From now on we use m for number of blocks (the T -orbits) and k size of a T -orbit.

The correspondence between FTPRs of G and its core-free subgroups was pointed
out in Section 2.6. Notice that any subgroup of a core-free subgroups is also core-free.
Furthermore, there is an upwards correspondence between core-free subgroups that leads
the following the result.

Lemma 4.1.6. Let H, G and K be groups such that H < G < K. If H is a core-free
subgroup of G, then H is a core-free subgroup of K.

Moreover, if G has a faithful transitive permutation representation of degree n and is
a subgroup of index α of K, then K has a faithful transitive permutation representation
of degree αn.

Proof. Let H be the core-free subgroup of G with index n, that is,
⋂
g∈GH

g = {id}. As
G is a subgroup of K, then

⋂
g∈K H

g = {id}, meaning that H is also a core-free subgroup
of K with index |K : H| = αn, where |K : G| = α. Therefore, there is a FTPR of K
with degree αn.

Since the automorphism groups of the (hyper)maps {4, 4}(s,0), {3, 6}(s,0) (3, 3, 3)(s,0)

are quotients of the automorphism groups of index 2 of {4, 4}(s,s), and of index 3 of
{3, 6}(s,s) and (3, 3, 3)(s,s), respectively, we have the following corollary.

Corollary 4.1.7. Let n be a degree of G. Then:

• if G is the automorphism group of the map {4, 4}(s,0) (resp. {4, 4}(s,s)) then 2n is
a degree of {4, 4}(s,s) (resp. {4, 4}(2s,0));

• if G is the automorphism group of the map {3, 6}(s,0) (resp. {3, 6}(s,s)) then 3n is
a degree of {3, 6}(s,s) (resp. {3, 6}(3s,0)); and

• if G is the automorphism group of the hypermap (3, 3, 3)(s,0) (resp. (3, 3, 3)(s,s))
then 3n is a degree of (3, 3, 3)(s,s) (resp. (3, 3, 3)(3s,0)).

Proof. This result is a consequence of Lemma 4.1.6
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24 4.Degrees of Toroidal Maps and Hypermaps

Also, as seen in Section 3.2.1 of Chapter 3, we have that the automorphism group of
a toroidal hypermap (3, 3, 3)(s,t) is a subgroup of index 2 of the automorphism group of
the toroidal map {6, 3}(s,t). Hence, we have this immediate result from the Lemma 4.1.6.

Corollary 4.1.8. If n is a degree of (3, 3, 3)(s,0) (resp. (3, 3, 3)(s,s)) then 2n is a degree
of {6, 3}(s,0) (resp. {6, 3}(s,s)).

Proof. This result is a consequence of Lemma 4.1.6

We remind again the reader that the degrees of the maps {6, 3}(s,0) and {6, 3}(s,s) are
the same as the ones of {3, 6}(s,0) and {3, 6}(s,s), respectively.

4.2 Degrees of regular maps of type {4, 4}
In this section the degrees of the regular maps of type {4, 4} will be determined. More-
over, using some of the core-free subgroups determined, examples of FTPR graphs will
be given for some of the degrees.

4.2.1 The possible degrees for the map {4, 4}(s,0)

Consider here that G is the automorphism group of the regular map {4, 4}(s,0).

Proposition 4.2.1. Let G be the automorphism group of {4, 4}(s,0) (s > 2). Then its
dihedral subgroups 〈ρi, ρj〉 and respective subgroups are core-free, for i, j ∈ {0, 1, 2}.

Proof. We need only prove that the dihedrals are core-free, since their subgroups are
core-free as a consequence. Consider the dihedral subgroup H = 〈ρ0, ρ1〉. Since s > 2, it
can be seen that

H ∩Hρ2 ∩Hρ2ρ1 = 〈ρ0, ρ1〉 ∩ 〈ρ0, ρ
ρ2
1 〉 ∩ 〈ρρ10 , ρ

ρ2
1 〉 = 〈idG〉.

Hence, H is core-free.
Analogously, the same can be done for the other two dihedral subgroups.

The dihedral groups of Proposition 4.2.1 and their subgroups are stabilizers of ver-
tices, edges, faces, darts and flags of the toroidal map {4, 4}(s,0). Considering these
core-free subgroups, we can have faithful transitive permutation representations acting
on the set of vertices, edges, faces, darts and flags, respectively. Therefore, the regular
map {4, 4}(s,0) (s > 2) has the following degrees.

Corollary 4.2.2. Let G be the automorphism group of {4, 4}(s,0) (s > 2). Then n is a
degree of G if

n ∈ {s2, 2s2, 4s2, 8s2}.

Proof. Since the order o of the dihedrals 〈ρi, ρj〉 (for i, j ∈ {0, 1, 2}) and their subgroups
is o ∈ {8, 4, 2, 1}, and they are core-free based on Proposition 4.2.1, then G has degrees
|G|
o ∈ {s2, 2s2, 4s2, 8s2}.
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Consider now the exceptional cases where s ∈ {1, 2}. For s = 1, the only core-free
subgroups are either trivial or have order 2, and thus the only possible degrees for the
map {4, 4}(1,0) are 8 and 4. If s = 2, the subgroups 〈ρ0, ρ2〉, 〈ρ0〉 and the trivial subgroup
are core-free, having a faithful action on the set of edges, darts and flags. However,
〈ρ1, ρ2〉 and 〈ρ0, ρ1〉 have nontrivial core, that is 〈ρρ12 〉 and 〈ρρ10 〉, respectively. Thus
the map {4, 4}(2,0) is an example of a map whose actions on the vertices and faces are
non-faithful. Therefore, the only possible degrees are 8, 16 and 32 for {4, 4}(2,0).

In what follows the other possible degrees for the maps {4, 4}(s,0) (s > 2) are deter-
mined.

Proposition 4.2.3. Let G be the automorphism group of {4, 4}(s,0) (s > 2). If a and b
are nonnegative integers and s = lcm(a, b) then

(1) H = 〈ua, vb〉 is core-free and |G : H| = 8ab,

(2) H = 〈ua, vb〉o 〈ρ0〉 is core-free and |G : H| = 4ab,

(3) if ab 6= s then H = 〈ua, vb〉o 〈ρ0, ρ2〉 is core-free and |G : H| = 2ab, and

(4) H = 〈u〉o 〈ρ0, ρ2〉 is core-free and |G : H| = 2s.

Proof. (1) Suppose that x ∈ H ∩ Hρ1 = 〈ua, vb〉 ∩ 〈ub, va〉. Then, since u and v
commute, we have that x = (ua)i(vb)j = (ub)k(va)l. Hence, we have that

ai ≡ bk mod s
bj ≡ al mod s.

Since ai is a multiple of both a and b, it is also a multiple of s and ai ≡ 0 mod s.
The same reasoning can be used for bj, leading to bj ≡ 0 mod s. Hence, x = idG
and H is core-free. The order of H is s2

ab thus |G : H| = 8ab.

(2) Suppose that x ∈ H ∩ Hρ1 = 〈ua, vb〉 o 〈ρ0〉 ∩ 〈ub, va〉 o 〈ρρ10 〉. If x /∈ T then
ρ0ρ

ρ1
0 ∈ T , a contradiction. Thus x ∈ T and therefore as in (1) we conclude that

x = idG. The order of H is 2s2

ab thus |G : H| = 4ab.

(3) Suppose that x ∈ H ∩ Hρ1 = 〈ua, vb〉 o 〈ρ0, ρ2〉 ∩ 〈ub, va〉 o 〈ρρ10 , ρ
ρ1
2 〉. If x /∈ T

then ρi0ρ
j
2(ρρ10 )k(ρρ12 )l ∈ K := 〈ua, vb, ub, va〉 for some i, j, k, l ∈ {0, 1}. This is

only possible for (i, j, k, l) ∈ {(0, 1, 1, 0), (1, 1, 1, 1), (1, 0, 0, 1)}. Then we get either
v ∈ K, u ∈ K or v−1u ∈ K which is possible only if a and b are co-primes, and, since
s = lcm(a, b), we would have s = ab, a contradiction. Thus x ∈ T and therefore,
as in (1), we conclude that x = idG. The order of H is 4s2

ab thus |G : H| = 2ab.

(4) Following a similar argument as (3), we get that 〈u, ρ0, ρ2〉∩〈v, ρρ10 , ρ
ρ1
2 〉 = 〈ρ2, ρ

ρ1
2 〉

which is a subgroup of a dihedral subgroup, and hence is core-free.

Theorem 4.2.4. Let s > 2. A faithful transitive permutation representation of the
automorphism group of {4, 4}(s,0) has degree n if and only if

n ∈ {s2, 2ab, 4ab, 8ab}
where a and b are positive integers with s = lcm(a, b).

Proof. The theorem follows from Corollary 4.1.2, Proposition 4.1.5, Corollary 4.2.2 and
Proposition 4.2.3.
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26 4.Degrees of Toroidal Maps and Hypermaps

4.2.2 The possible degrees for the map {4, 4}(s,s)

The automorphism group of {4, 4}(1,0) is isomorphic to a subgroup of {4, 4}(1,1), and
hence, by Corollary 4.1.7 we have that {4, 4}(1,1) has FTPRs with degrees 8 and 16.
Since it is not possible to have a faithful transitive permutation representation of the
automorphism group of {4, 4}(1,1) on only 4 points, the possible degrees for {4, 4}(1,1) are
8 and 16. For the case of s = 2, by Corollary 4.1.7, the automorphism group of {4, 4}(2,2)

has degrees 16, 32 and 64. Also, the subgroup 〈ρ0, ρ1〉 has trivial core, adding the degree
8 to the list of possible degrees of {4, 4}(2,2). The complete list of degrees of {4, 4}(2,2) is
then 8, 16, 32 and 64.

Consider now s > 2. By Corollary 4.1.7 and Theorem 4.2.4, there are FTPRs for
{4, 4}(s,s) for n ∈ {2s2, 4ab, 8ab, 16ab} with s = lcm(a, b). We only need to prove that
these are all the degrees for the map {4, 4}(s,s). Moreover, from Proposition 4.1.3 we
know that m 6= 1, meaning that we need only to check for other possibilities for m = 2.

Lemma 4.2.5. If m = 2 then n = 2s2.

Proof. Let G be the automorphism group of {4, 4}(s,s) acting faithfully on n points.
Suppose that T = 〈g, h〉 has two orbits. Consider the group K, isomorphic to the
automorphism group of {4, 4}(2s,0), where G ∼= K/〈(uv)s〉. We have thatK acts faithfully
on two copies of the set of n points. Let H = 〈u, v〉 < K be the translation group for
{4, 4}(2s,0), as in Chapter 3.1.1. We have that |u| = |v| = 2s. Moreover, if x is a point
on one of the copies, x(uv)s is on the other copy. In addition T is a proper subgroup of
H, thus H must be transitive on 2n points and therefore it acts regularly on 2n points.
Hence, H has order (2s)2, 2n = (2s)2, as wanted.

Theorem 4.2.6. Let s > 2. A faithful transitive permutation representation of the
automorphism group of {4, 4}(s,s) has degree n if and only if

n ∈ {2s2, 4ab, 8ab, 16ab}
where a and b are positive integers with s = lcm(a, b).

Proof. This result follows from Proposition 4.1.3, Lemma 4.1.5, Corollary 4.1.7, Theo-
rem 4.2.4 and Lemma 4.2.5.

4.2.3 Examples of Faithful Transitive Permutation Representation
Graphs

Any of the core-free subgroups presented in Propositions 4.2.1 and 4.2.3 (or conjugates)
can be used to build FTPR graphs. Moreover, for groups of small order, we can actually
compute all the possible core-free subgroups using GAP [GAP21]. Having a group G
and a core-free subgroup H of G, we can use GAP to get the coset action of our group
G on the set of cosets of H by permutations, allowing us to get examples of FTPR
graphs. Moreover, by fixing the core-free subgroup and increasing the parameter s of
the automorphism groups of the toroidal maps {4, 4}(s,0) and {4, 4}(s,s), we can check for
patterns of the resulting FTPR graphs, making it possible to generalize for any s.

It is important to notice that not all core-free subgroups of G were given in this
study, since our focus was to determine the possible degrees. From our computational
research on GAP [GAP21], some different core-free subgroups from those given above
will be presented in this section as stabilizers of vertices of the graphs.
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Lemma 4.2.7. The following graphs are faithful transitive permutation representation
graphs of the automorphism group of {4, 4}(s,0) with degree 2s (s ≥ 3).

s odd: • 1 • 0 • 1 • 2 • 1 • 0 • 1 • 2 • • 1 • 2 • 1 •
s even: • 1 • 2 • 1 • 0 • 1 • 2 • 1 • 0 • • 1 • 2 • 1 •

Moreover the stabilizer of a point is, up to a conjugacy, 〈v〉o 〈ρ0, ρ2〉.

Proof. Let G = 〈ρ0, ρ1, ρ2〉 be the group with one of the given permutation representation
graphs. Let x be the vertex on the left. When s is odd, both x and all the s− 1 vertices
that are swapped by ρ2 are fixed by ρ0ρ1ρ2ρ1 = u, while the other are cyclicly permuted.
If s is even, u fixes all s vertices swapped by ρ2 and cyclicly permutes the remaining
ones. In both cases, us = idG. In addition, by the graph it can also be seen that
ρ2

0 = ρ2
1 = ρ2

2 = (ρ0ρ1)4 = (ρ1ρ2)4 = (ρ0ρ1)2 = idG. Hence, G is a quotient of the
automorphism group of {4, 4}(s,0) and |G| ≤ 8s2. Let us prove that |G| = 8s2.

First consider the case s odd. The stabilizer StabG(x) of x contains ρ0, ρ2 and
u. Hence StabG(x) contains 〈ρ0, ρ2, u〉 ∼= 〈ρ2〉 × Ds, thus |StabG(x)| ≥ 4s. Hence, by
the orbit-stabilizer theorem, |G| = |StabG(x)||OrbG(x)| ≥ 4s × 2s = 8s2. Therefore,
|G| = 8s2.

Now let s be even. The stabilizer StabG(x) of x contains ρ0, ρ2 and v := ρ1ρ0ρ1ρ2 =
uρ1 . As before |G| ≥ 8s2, implying that |G| = 8s2.

Then, the graph is a faithful transitive permutation representation of the automor-
phism group of {4, 4}(s,0).

Lemma 4.2.8. The following graph is a faithful transitive permutation representation
graph of the automorphism group of {4, 4}(s,0) with degree 4s (s ≥ 2).

•
0

1 • 2 • 1 • 0 • • 0 • 1 •
2

• 1 • 2 • 1 • 0 • • 0 • 1 •

Moreover the stabilizer of a point is, up to a conjugacy, 〈u〉o 〈ρ0〉.

Proof. LetG = 〈ρ0, ρ1, ρ2〉 be the group with the given transitive permutation representa-
tion graph. It can be easily seen that ρ2

0 = ρ2
1 = ρ2

2 = (ρ0ρ1)4 = (ρ1ρ2)4 = (ρ0ρ2)2 = idG.
Moreover, u := ρ0ρ1ρ2ρ1 fixes the 2s vertices that ρ2 swaps and has two cycles of order
s for the remaining vertices. Hence, us = idG. With this, it can be concluded that G
is a quotient of the automorphism group of {4, 4}(s,0), particularly |G| ≤ 8s2. Now con-
sider a vertex x not fixed by ρ2. The stabilizer StabG(x) of x contains ρ0 and u. Thus
StabG(x) contains 〈ρ0, u〉 ∼= Ds, a subgroup of order 2s. Since, |StabG(x)| ≥ 2s, the
order |G| ≥ 2s × 4s, which proves that |G| = 8s2. Consequently, the graph is a faithful
transitive permutation representation graph of {4, 4}(s,0).

Lemma 4.2.9. Let s be even. The following graph is a faithful transitive permutation
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representation graph of the automorphism group of {4, 4}(s,0) with degree 4s (s ≥ 2).

•
1

0 •
1

• 0

1
•

1
•

1

0 •
1

•
0 2

x • 2

0

•
0

•
0

•
0

•
02

•
1

•
2

1

•
1

•
1

•
1

•
1

•
0
• •

0
• •

0
•

Moreover the stabilizer of a point is, up to a conjugacy, 〈ρ0ρ2, ρ1ρ2ρ1〉.
Proof. Let G = 〈ρ0, ρ1, ρ2〉 be the group with the given transitive permutation repre-
sentation graph. First, through the graph it can be seen that (ρ0ρ1)4 = (ρ1ρ2)4 =
(ρ0ρ2)2 = (ρ0ρ1ρ2ρ1)s = idG. Hence, G is a quotient of the automorphism group of
{4, 4}(s,0), particularly |G| ≤ 8s2. Consider the vertex x of the graph. The stabilizer
StabG(x) of x contains both ρ0ρ2 and ρ1ρ2ρ1. Thus, StabG(x) has 〈ρ0ρ2, ρ1ρ2ρ1〉 ∼= Ds

with the element uρ2, in which (uρ2)s = idG since s is even. Thus |StabG(x)| ≥ 2s and
|G| = 8s2. Consequently the graph is a faithful transitive permutation representation
graph of {4, 4}(s,0).

Lemma 4.2.10. The following graph is a faithful transitive permutation representation
graph of the automorphism group of {4, 4}(s,s) with degree 4s (s ≥ 2).

•
20

•
20

•
20

•
0

2 •
1
• •

1
• •

1
• . . . • •

1
•

0

2 •

• 02 • 02 • 02

Moreover the stabilizer of a point is, up to a conjugacy, 〈ρ0ρ2, ρ0ρ1ρ2〉.
Proof. Let G = 〈ρ0, ρ1, ρ2〉 be the group with the given transitive permutation represen-
tation graph (s ≥ 2). First, it can be seen that ρ2

i = idG, for i ∈ {0, 1, 2}, and also
that (ρ0ρ1)4 = (ρ1ρ2)4 = (ρ0ρ1)2 = (ρ0ρ1ρ2)2s = idG. Hence, G is a subgroup of the
automorphism group of {4, 4}(s,s), with order |G| ≤ 16s2. Let x be the second vertex
starting from the left of the graph. The stabilizer StabG(x) has the elements ρ0ρ2 and
ρ0ρ1ρ2. Hence D2s

∼= 〈ρ0ρ2, ρ0ρ1ρ2〉 ≤ StabG(x), and thus |StabG(x)| ≥ 4s. Therefore,
|G| ≥ 16s2, proving that the graph is a faithful transitive permutation representation of
the automorphism group of {4, 4}(s,s).

Lemma 4.2.11. The following graph is a faithful transitive permutation representation
graph of the automorphism group of {4, 4}(s,s) with degree 8s (s ≥ 2).

•
20

•
20

•
20

•
20

•
20

•
20

•

1

•
1
• •

1
• •

1
• • • •

1
• •

• 022 • 02 • 02 • 02 • 02 • 02
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Moreover the stabilizer of a point is, up to a conjugacy, 〈g〉o 〈ρ0ρ1ρ0〉.

Proof. Let G = 〈ρ0, ρ1, ρ2〉 be the group with the given transitive permutation represen-
tation graph (s ≥ 2). First, it can be seen that ρ2

i = idG, for i ∈ {0, 1, 2}, and also
that (ρ0ρ1)4 = (ρ1ρ2)4 = (ρ0ρ1)2 = (ρ0ρ1ρ2)2s = idG. Hence, G is a subgroup of the
automorphism group of {4, 4}(s,s), with order |G| ≤ 16s2. Consider a vertex x that is
not fixed by ρ1. The permutation g := (ρ0ρ1ρ2)2 and ρρ01 is in the stabilizer of x. Hence,
Ds
∼= 〈g〉o 〈ρρ01 〉 ≤ StabG(x), and thus |StabG(x)| ≥ 2s. By the orbit-stabilizer theorem

|G| ≥ 16s2, which proves that indeed G is the automorphism group of the toroidal regular
map {4, 4}(s,s) and the graph is a faithful transitive permutation representation.

4.3 Degrees of regular maps of type {3, 6}
In this section, the degrees of the regular maps of type {3, 6} will be determined. More-
over, examples of FTPR graphs will be given for some of these degrees.

4.3.1 The possible degrees for the map {3, 6}(s,0)

The smallest map of type {3, 6}, the map {3, 6}(1,0), has only one vertex, three edges,
two faces and a automorphism group with order 12. It has the trivial core-free subgroup
and core-free subgroups of order 2. Hence, this map has FTPRs of degree 12 (on the set
of flags) and of degree 6 (on the set of darts) but not on the vertices, edges and faces.
The map {3, 6}(2,0) has FTPRs on the set of edges, faces, darts and flags but not on the
set of vertices since the subgroup 〈ρ1, ρ2〉 has non-trivial core 〈(ρ1ρ2)3〉.

Consider now maps of type {3, 6}(s,0) with s > 2. Similarly to the case of the maps
of type {4, 4}, we have the following results.

Proposition 4.3.1. Let G be the automorphism group of {3, 6}(s,0) (s > 2). Then its
dihedral subgroups 〈ρi, ρj〉 and respective subgroups are core-free, for i, j ∈ {0, 1, 2}.

Proof. The proof is similiar to the one given in Proposition 4.2.1.

Corollary 4.3.2. Let G be the automorphism group of {3, 6}(s,0) (s > 2). Then n is a
degree of G if

n ∈ {s2, 2s2, 3s2, 4s2, 6s2, 12s2}.

Proof. Since the order o of the dihedrals 〈ρi, ρj〉 (for i, j ∈ {0, 1, 2}) and their subgroups
is o ∈ {12, 6, 4, 3, 2, 1}, and they are core-free based on Proposition 4.3.1, then G has
degrees |G|o ∈ {s2, 2s2, 3s2, 4s2, 6s2, 12s2}.

In what follows, the other possible degrees for the maps {3, 6}(s,0) (s > 2) are deter-
mined.

Proposition 4.3.3. Let G be the automorphism group of {3, 6}(s,0) (s ≥ 2).

(1) H = 〈ua, vb〉 is core-free and |G : H| = 12ab, where s = lcm(a, b).

(2) If d is a divisor of s then H = 〈ud〉o 〈ρ0, ρ2〉 and H ′ = 〈ud〉o 〈ρ0ρ2〉 are core-free.
Moreover |G : H| = 3ds and |G : H ′| = 6ds.
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Proof. The proof of (1) is similar the proof of Proposition 4.2.3(1). Let us now prove (2).
(2) Suppose that

x ∈ H ∩Hρ1 = 〈ud〉o 〈ρ0, ρ2〉 ∩ 〈vd〉o 〈ρρ10 , ρ
ρ1
2 〉.

If x /∈ T , then there is a non-trivial element

ρi0ρ
j
2(ρρ10 )k(ρρ12 )l ∈ K := 〈ud, vd〉

for some i, j, k, l ∈ {0, 1}. This implies that (i, j, k, l) = (1, 1, 1, 1) and that t−1 ∈ K,
which is only possible if d = 1. If x ∈ T , then x ∈ 〈ud〉 ∩ 〈vd〉 = {idG}. Hence H is core
free when d 6= 1.

Consider d = 1. In this case u−1ρ0ρ2 = v−1ρρ10 ρ
ρ1
2 = (ρ1ρ2)3 is the unique nontrivial

element in H ∩ Hρ1 , hence H ∩ Hρ1 = 〈(ρ1ρ2)3〉 which is a subgroup of a dihedral
subgroup of G. Thus also in this case H is core-free. As H ′ is a subgroup of H, then the
latter is also core-free.

The order of H is 4s
d and the order of H ′ is 2s

d thus |G : H| = 3ds and |G : H ′| =
6ds.

In order to determine the remaining degrees of {3, 6}(s,0), we will need the following
result, for which we give a proof.

Proposition 4.3.4. Let q be an odd number. The modular equation

x2 − x+ 1 ≡ 0 mod q

has a solution if and only if all prime divisors p of q are such that p ≡ 1 mod 6.

Proof. Let 2∗ be an inverse of 2 modulo q (which exists because q is odd). Then the
equation x2 − x+ 1 ≡ 0 mod q, which is equivalent to (x− 2∗)2 ≡ (−3)(2∗)2 mod q, has
a solution if and only if −3 is a quadratic residue modulo p for every prime divisor of q
[Rib01]. In addition −3 is a quadratic residue modulo p for every prime divisor of q if
and only if p ≡ 1 mod 3, or, as by assumption p is odd, p ≡ 1 mod 6.

Proposition 4.3.5. Let d be a divisor of s. Suppose that there exists α, coprime with
s/d, such that α2−α+ 1 ≡ 0 mod (s/d). Then 〈(v−αu)d, ρ0ρ1〉 and 〈(v−αu)d, ρ1ρ2〉 are
core-free subgroups of G with indexes 4ds and 2ds respectively.

Proof. Let us consider H := 〈(v−αu)d, ρ0ρ1〉. We have

(v−αu)ρ0ρ1 = tαv−1 = vα−1u−α = vα
2
u−α = (v−αu)−α.

Hence H = 〈(v−αu)d〉o 〈ρ0ρ1〉. Furthermore |H| = 3s/d, and therefore |G : H| = 4ds.
Now let us prove that H is core-free. Suppose that H ∩ Hρ0 is nontrivial. Then

there exist l, l′ ∈ {0, . . . , s/d − 1} and j, j′ ∈ {0, 1, 2} such that (v−αu)ld(ρ0ρ1)j =
(t−αu−1)l

′d(ρ0ρ1)j
′ . Clearly this is only possible when j = j′, ld = l′d and (α − 1)ld ≡

ld mod s, or equivalently α2l ≡ l mod (s/d). As α2 − α+ 1 ≡ 0 mod (s/d), α is a cubic
root of −1 modulo (s/d), l ≡ −αl mod (s/d). Consequently, α2l− αl+ l ≡ 0 mod (s/d)
can be rewritten as l ≡ −2l mod (s/d). As, by Proposition 4.3.4, 3 does not divide (s/d),
we obtain l = 0. Consequently H ∩ Hρ0 ≤ 〈ρ0ρ1〉, which is a subgroup of a dihedral
subgroup. Hence H is core-free.

For H := 〈(v−αu)d, ρ1ρ2〉 the proof is analogous.
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Corollary 4.3.6. Let s > 2. There exists faithful transitive permutation representations
of the automorphism group of the toroidal map {3, 6}(s,0) when n = s2 and the following:

1. 3ds, 6ds or 12ds for any divisor d of s,

2. 2ds and 4ds if and only if d is a divisor of s and all prime divisors of s/d are equal
to 1 mod 6.

Proof. This a consequence from Corollary 4.1.2, Corollary 4.3.2, Proposition 4.3.3 and
Proposition 4.3.5.

For when s = 2, the only case of Corollary 4.3.6 that is not a degree for the map
{3, 6}(2,0) is n = s2 (n = 4).

In what follows we prove that the degrees given in Corollary 4.3.6 are the only possible
degrees for the automorphism group of the map {3, 6}(s,0) with s > 2. By Lemma 4.1.5,
consider now that G is embedded into Sk oSm, where n = km with m ∈ {2, 4} being the
number of orbits of T = 〈u, v〉 where u, v and t are as in Section 3.1.2, and k the size
of those orbits. The actions of u, v and t on the block i are denoted by ui, vi and ti,
respectively. In addition let K = 〈u1, v1〉 be the action of T on the block 1.

Proposition 4.3.7. If m = 2, then k = sd where d is a divisor of s and all prime
divisors p of s/d are such that p ≡ 1 mod 6.

Proof. Let m = 2. The following graphs represent all the possible block actions deter-
mined in GAP [GAP21].

Case 1 Case 2 Case 3

• 2 • • 1

0
• • {0,1,2} •

In any of the three cases o(u1) = o(u2) = o(v1) = o(v2) = o(t1) = o(t2) = s. Let
d = |K : 〈u1〉| = |K : 〈v1〉|, then k = ds. Assume d 6= s since the degree 2s2 is already
known to exist.

Case 1: Let ud1 = vj1. Conjugating by ρ0 we obtain u−d1 = tj1 = u−j1 vj1 = ud−j1 , hence
j ≡ 2d mod s. Now conjugating the equation ud1 = v2d

1 by ρ2 we obtain ud2 = t−2d
2 =

u2d
2 v
−2d
2 , thus ud2 = v2d

2 , which gives ud = v2d, a contradiction.
Case 2: Let ud1 = vj1. Conjugating by ρ2 we obtain ud1 = t−j1 = uj1v

−j
1 = uj−d1 , hence

j ≡ 2d mod s. Now conjugating the equation ud1 = v2d
1 by ρ1ρ0 we obtain td1 = u−2d

1 ,
thus vd1 = u−d1 = v−2d

1 . Hence 3d ≡ 0 mod s and therefore ud1 = v−d1 and, conjugating by
ρ1, vd2 = u−d2 . Consequently (u1u2)d = (v1v2)−d, a contradiction.

Case 3: Let ud1 = vj1. As |K : 〈u1〉| = d, j must be a multiple of d, say j = αd. Also, we
have that s/d is the smallest integers such that uds/d1 = idG. From the equality ud1 = vαd1

and as o(u1) = o(v1), we have that α and s/d must be coprimes, i.e. gcd(α, s/d) = 1.
Conjugating the equation ud1 = vαd1 by ρ0ρ1 we obtain v−d1 = t−αd1 = uαd1 v−αd1 . Thus
uαd1 = vαd−d1 . Consequently vα2d

1 = vαd−d1 , which implies d(α2 − α + 1) ≡ 0 mod s, or
equivalently α2 − α+ 1 ≡ 0 mod (s/d). The rest follows from Proposition 4.3.4.

Proposition 4.3.8. If m = 4, then k = ds where d is a divisor of s and all prime
divisors p of s/d are such that p ≡ 1 mod 6.
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Proof. Using GAP [GAP21] it can be checked that there is only one possibility for the
action of G given by the following graph.

•
10

2 •
10

• 2 •

Let ∆i denote the block i, i ∈ {1, . . . , 4}, as follows.

∆2 = ∆1ρ0 = ∆1ρ1, ∆3 = ∆1ρ2 and ∆4 = ∆3ρ0 = ∆3ρ1

We have o(ui) = s for i ∈ {1, 2, 3, 4} and the same holds for o(vi) and o(ti).
Let |K : 〈u1〉| = |K : 〈v1〉| = d. Assume that d 6= s. Analogously to Proposition 4.3.7,

we may write u1 = vαd1 with gcd(α, s/d) = 1. Then, conjugating by ρ0ρ1, we get v
(α−1)d
1 =

vα
2d

1 , which implies α2 − α+ 1 ≡ 0 mod (s/d). The rest follows from Proposition 4.3.4.

Theorem 4.3.9. Let s > 2. The degrees of a faithful transitive permutation representa-
tion of a toroidal regular map of type {3, 6}(s,0) has degree n if and only if n = s2 or if n
is one of the following.

1. 3ds, 6ds or 12ds for any divisor d of s,

2. 2ds and 4ds if and only if d is a divisor of s and all prime divisors of s/d are equal
to 1 mod 6.

Proof. This is a consequence of Corollary 4.1.2, Proposition 4.1.5, Corollary 4.3.6 and
Propositions 4.3.7 and 4.3.8.

4.3.2 The possible degrees for the map {3, 6}(s,s)

In this section we determine the degrees of {3, 6}(s,s) using the degrees of {3, 6}(s,0) and
{3, 6}(3s,0), given in Theorem 4.3.9. Let G be the automorphism group of {3, 6}(s,s).
Consider first the particular case s = 1. In this case 〈(ρ1ρ2)2〉 is a normal subgroup of G,
hence the subgroup 〈ρ1, ρ2〉 has non-trivial core, being the action on the set of vertices
not faithful. On the other hand, the subgroup 〈ρ0, ρ1〉 is core-free, hence G has a faithful
action on the set of faces. All the other possible degrees for {3, 6}(1,1) are the degrees of
{3, 6}(1,0) multiplied by three. Then, the possible degree of {3, 6}(1,0) are 36, 18 and 6.

Contrarily to what happens with the map {3, 6}(2,0), the map {3, 6}(2,2) has a faithful
action on the set of vertices, with degree 12. The remaining degrees for {3, 6}(2,2) are
obtained multiplying each degree of the map {3, 6}(2,0) by three, hence the set of degrees
is 12, 24, 36, 72 and 144. In what follows we deal with the case s > 2.
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Theorem 4.3.10. Let s > 2. A faithful transitive permutation representation of a
toroidal regular map of type {3, 6}(s,s) has degree n if and only if n = 3s2 or n is one of
the following.

1. 9ds, 18ds or 36ds for any divisor d of s,

2. 6ds and 12ds if and only if d is a divisor of s and all prime divisors of s/d are
equal to 1 mod 6.

Proof. By Corollary 4.1.7 all the degrees given on Theorem 4.3.9 multiplied by 3 are
degrees for the map {3, 6}(s,s), which are those presented in the statement of the theorem.
Let us prove that this list is complete.

We have that the degrees of {3, 6}(s,s) multiplied by 3 are degrees of {3, 6}(3s,0). Then,
by Theorem 4.3.9, we can divide the degrees of {3, 6}(3s,0) by 3. Hence, the set of degrees
of {3, 6}(s,s) must be contained in

{3s2, 3δs, 6δs, 12δs}

with δ being any divisor of 3s, or in

{2δs, 4δs}.

if and only if δ is a divisor of 3s and all prime divisors of 3s/δ are equal to 1 mod 6.
If all prime factors of 3s/δ are 1 mod 6, δ must be divisible by 3. Say δ = 3d, thus

{2δs, 4δs} = {6ds, 12ds} where d is a divisor of s and all prime divisors of s/d are equal
to 1 mod 6. These degrees are in (2).

Let us now prove that the degrees 3δs, 6δs and 12δs correspond to the ones listed in
(1). We need only to prove that δ is divisible by 3.

Consider now that G is the automorphism group of {3, 6}(3s,0) and K is the action of
T on block 1, where T = 〈u, v〉 is the translation group of order (3s)2. The automorphism
group of {3, 6}(s,s) is a factorization of the automorphism group of {3, 6}(3s,0) by 〈(uv)s〉.
A faithful transitive permutation representation of {3, 6}(3s,0) on n points corresponds
to a transitive permutation representation (not necessarily faithful) of {3, 6}(s,s) on n/3
triples of points of the form

{x, x(uv)s, x(uv)2s}.

Note that these points are in the same T -orbit. Let B := |K : 〈u1〉| and C :=
|K : 〈v1〉|, where u1 and v1 are the action of u and v on block 1. By Lemma 4.1.1,
δ = gcd(B,C).

Suppose that B divides s. Then (u1v1)s = uis1 for some integer i ∈ {0, 1, 2}. In this
case the triples of points are as follows

{x, xuis1 , xu2is
1 },

for x in block 1. But then both us and vs fix these triples. By conjugation with ρ0, ρ1

and ρ2 we get that the order of u and v in {3, 6}(s,s) is at most s, a contradiction (i.e. it
does not give a faithful transitive permutation representation). Thus B does not divide
s. Particularly 3 must divide B. Analogously 3 divides C and therefore, δ = gcd(B,C)
is divisible by 3, as wanted.
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4.3.3 Examples of Faithful Transitive Permutation Representation
Graphs

In this section, examples of FTPR graphs of the automorphism groups of {3, 6}(s,0) and
{3, 6}(s,s) are given. Contrary to what happened in Section 4.2.3, here it will not be
given proofs as they follow the same ideas as the ones presented in the referred section.

Lemma 4.3.11. The following graphs are faithful transitive permutation representation
graphs of the automorphism group of {3, 6}(s,0) with degree 3s (s ≥ 3).Moreover the
stabilizer of a point is, up to a conjugacy, 〈u〉o 〈ρ0, ρ2〉.
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Lemma 4.3.12. Let s be even. The following graphs are faithful transitive permutation
representation graphs of the automorphism group of {3, 6}(s,0) with degree 6s (s ≥ 4).
Moreover the stabilizer of a point is, up to a conjugacy, 〈u2〉o 〈ρ0, ρ2〉.
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Lemma 4.3.13. The following graphs are faithful transitive permutation representation
graphs of the automorphism group of {3, 6}(s,s) with degree 9s (s ≥ 3). Moreover the
stabilizer of a point is, up to a conjugacy, 〈gh〉o 〈ρ0, ρ2〉.

Claudio Alexandre Guerra Silva Gomes da Piedade Tese de Doutoramento



4.Degrees of Toroidal Maps and Hypermaps 35

1•2 0

•0 1 •1 0 •
2

1

•
1

•
0

2 •
0

•
1•2

0

•1 2
•
1

•0

•
0

•
2

•
•
1•

s = 0 (mod 4) : s = 1 (mod 4)

•0

1•
1

•
0

2 •
0•2

0

•1
2 • 1

1
•
0

•
2

•
•

1

•0

1•
1

•
0 2•2

0

•1

1
•
0

•
2•

1

s = 2 (mod 4) s = 3 (mod 4)

•
1•2

0

1

•1

0

•
2• 2

0
•
0

•
1•

21 •
1

•
0•

1

•1

0

2

• 2

0
•
0

•
1•

21 •
1

•
0•

Lemma 4.3.14. Let s be even. The following graphs are faithful transitive permutation
representation graphs of the automorphism group of {3, 6}(s,s) with degree 18s (s ≥ 4).
Moreover the stabilizer of a point is, up to a conjugacy, 〈(gh)2〉o 〈ρ0, ρ2〉.
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4.4 Degrees of regular hypermaps of type (3, 3, 3)

In this section, the degrees of the regular hypermaps of type (3, 3, 3) will be determined.
Moreover an example of a FTPR graph is given.

4.4.1 The possible degrees for the map (3, 3, 3)(s,0)

Consider s ≥ 2, since if s = 1 the group would just be D3. As in the groups of regular
toroidal maps, the dihedrals and their subgroups are core-free on the automorphism group
of the regular hypermaps (3, 3, 3). Notice that here ρ̃0 is defined as in Section 3.2.1.

Proposition 4.4.1. Let G be the automorphism group of (3, 3, 3)(s,0) (s > 2). Then its
dihedral subgroups 〈ρi, ρj〉 and respective subgroups are core-free, for i, j ∈ {0̃, 1, 2}.

Proof. The proof is similiar to the one given in Proposition 4.2.1.

Corollary 4.4.2. Let G be the automorphism group of (3, 3, 3)(s,0) (s > 2). Then n is a
degree of G if

n ∈ {s2, 2s2, 3s2, 6s2}.

Proof. Since the order o of the dihedrals 〈ρi, ρj〉 (for i, j ∈ {0̃, 1, 2}) and their subgroups
is o ∈ {6, 3, 2, 1}, and they are core-free based on Proposition 4.4.1, then G has degrees
|G|
o ∈ {s2, 2s2, 3s2, 6s2}.

In the following proposition, the remaining degrees are determinded.

Proposition 4.4.3. Let G be the automorphism group of (3, 3, 3)(s,0) (s ≥ 2). If d is a
divisor of s and a and b are positive integers such that s = lcm(a, b), then

(1) H = 〈ua, vb〉 is core-free and |G : H| = 6ab;

(2) H = 〈ud〉o 〈ρ̃0〉 is core-free and |G : H| = 3ds; and

(3) H = 〈(v−αu)d, ρ1ρ2〉 is core-free, for an α coprime with s/d such that α2−α+1 ≡
0 mod (s/d), and |G : H| = 2ds.

Proof. For the case of (1) and (3), the proof is similiar to Proposition 4.2.3(1) and
Proposition 4.3.5, respectively. Consider then case (2).

(2) Let H := 〈ud〉 o 〈ρ̃0〉. Suppose that x ∈ H ∩Hρ1 = 〈ud〉 o 〈ρ̃0〉 ∩ 〈vd〉 o 〈ρ̃0
ρ1〉.

If x /∈ T then ρ̃0ρ̃0
ρ1 ∈ T , a contradiction. Thus x ∈ T and therefore x ∈ 〈ud〉 ∩ 〈vd〉,

which implies that x is trivial. The order of H is 2s
d thus |G : H| = 3ds.

By Corollary 4.1.2, T can be considered to be intransitive, and therefore, by Lemma 4.1.5,
G is embedded into Sk o Sm, where n = km with m ∈ {2, 3, 6} (m being the number
of orbits of T = 〈u, v〉). Moreover k = ab with s = lcm(a, b), or alternatively k = ds
with d divisor of s. Since there is a core-free subgroup of G with index 6ab and 3ds, it
is only needed to prove that the degrees given before for m = 2 (i.e. n = 2ds, where d
is a divisor of s and all prime factors of s/d are equal to 1 mod 6) are the only possible
degrees for the automorphism group of the map (3, 3, 3)(s,0) with s ≥ 2.

Proposition 4.4.4. If m = 2, then k = ds, where d is a divisor of s and all prime
factors of s/d are equal to 1 mod 6.
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Proof. If m = 2 then T has two orbits of size k = ds, with d being a divisor of s, and G
has a core-free subgroup H of index 2ds. But then H is also a core-free subgroup of the
automorphism group of the map {6, 3}(s,0), of index 4ds. Let G/H = {Hg1, . . . ,Hgn}
and let K be the automorphism group of {6, 3}(s,0). Since K/G = {G,Gρ0}, then
K/H = {Hg1, . . . ,Hgn} ∪ {Hg1ρ0, . . . ,Hgnρ0}. We have that {Hg1, . . . ,Hgn} and
{Hg1ρ0, . . . ,Hgnρ0} can either be in the same T -orbits or in different T -orbits. Hence,
the action of K on K/H gives a faithful transitive permutation representation for the
map {6, 3}(s,0) for which T can have either 2 or 4 orbits of size k = ds. But then by
Propositions 4.3.7 and 4.3.8, k = ds where d is a divisor of s and all prime factors of
s/d are equal to 1 mod 6..

Theorem 4.4.5. Let s ≥ 2. A faithful transitive permutation representation of the
automorphism group of (3, 3, 3)(s,0) has degree n if and only if n ∈ {s2, 3ds, 6ds} where
d is a divisor of s or; n = 2ds where d is a divisor of s and all prime factors of s/d are
equal 1 mod 6.

Proof. This is a consequence of Corollary 4.1.2, Lemmas 4.1.3 and 4.1.5, Corollary 4.4.2,
and Propositions 4.4.3 and 4.4.4.

4.4.2 The possible degrees for the map (3, 3, 3)(s,s)

In this section we determine the degrees of (3, 3, 3)(s,s) using the degrees of (3, 3, 3)(s,0)

and (3, 3, 3)(3s,0), given by Theorem 4.4.5. Let n be the degree of a faithful transitive
permutation representation of (3, 3, 3)(s,s) and let T = 〈u, v〉 be the translation group of
(3, 3, 3)(3s,0) of order (3s)2.

Theorem 4.4.6. Let s ≥ 2. A faithful transitive permutation representation of the
automorphism group of (3, 3, 3)(s,s) has degree n if and only if n ∈ {3s2, 9ds, 18ds}
where d is a divisor of s or; n = 6ds where d is a divisor of s and all prime factors of
s/d are equal 1 mod 6.

Proof. Let G be the automorphism group of (3, 3, 3)(s,s). From Theorem 4.4.5 and Corol-
lary 4.1.7 there are faithful transitive permutation representations with the degrees given
in the statement of this theorem. By Theorem 4.4.5, a degree of (3, 3, 3)(3s,0) is either
equal to (3s)2, 3δ(3s) and 6δ(3s), with δ being a divisor of 3s, or to 2δ(3s), with δ being
a divisor of 3s and all prime factors of 3s/δ equal 1 mod 6.

Dividing the possible degrees of (3, 3, 3)(3s,0) by 3, we get that

n ∈ {3s2, 2δs, 3δs, 6δs}

with δ dividing 3s.
The degree n = 3s2 is in set given in the statement of the theorem. If n = 2δs then,

since δ is a divisor of 3s and all prime divisors of 3s/δ must be equal 1 mod 6, δ = 3d
for some divisor d of s. Hence this degree is already included in the set given in the
statement of this theorem as 6ds, with d a divisor of s and all prime factors of s/d are
equal 1 mod 6. Let us prove that also on the remaining cases δ = 3d, for some divisor d
of s.

The hypermap (3, 3, 3)(3s,0) contains three copies of the hypermap (3, 3, 3)(s,s). To
be more precise, the automorphism group of (3, 3, 3)(s,s) is the automorphism group of

Claudio Alexandre Guerra Silva Gomes da Piedade Tese de Doutoramento



38 4.Degrees of Toroidal Maps and Hypermaps

(3, 3, 3)(3s,0) factorized by the translation (uv)s of order 3. Hence, the points x, x(uv)s

and x(uv)2s of any faithful transitive permutation representation of (3, 3, 3)(3s,0) are
identified under this factorization. Any faithful transitive permutation representation of
an action of (3, 3, 3)(3s,0) on a set X gives a transitive permutation representation (not
necessarily faithful), of degree |X|/3, of (3, 3, 3)(s,s) on triples of points of X of the form{

x, x(uv)s, x(uv)2s
}

with x ∈ X. Note that these points are in the same T -orbit. Hence the number m of
T -orbits is unchanged under this factorization.

To prove that the action on the triple of points is faithful only if δ = 3d, for some
divisor d, we can follow an identical proof as the one presented for Theorem 4.3.10. We
note that Lemma 4.1.1, that establishes the size of a T -orbit, can be used here.

4.4.3 Example of Faithful Transitive Permutation Representation
Graph

Lastly, we can construct FTPR graphs with any of the core-free subgroups H presented
in Proposition 4.4.3 (or conjugates). Here we will only present one possible FTPR graph.
Notice that the FTPR graph given on Proposition 4.4.7 is of minimal degree whenever s
is not a prime number congruent with 1 mod 6.

Proposition 4.4.7. Let s ≥ 2. The following graph is a faithful transitive permutation
representation graph of the automorphism group of (3, 3, 3)(s,0) with degree 3s.
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•
1
•
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•

2
•

1
•

0̃
•

2
•

1
•

0̃
•

2
•

1
•

Moreover, the stabilizer of a point is, up to conjugacy, 〈u〉o 〈ρ0〉.

Proof. Let G = 〈ρ̃0, ρ1, ρ2〉 be the group with the given permutation representation
graph. It is clear from the graph that ρ̃0

2 = ρ2
1 = ρ2

2 = (ρ̃0ρ1)3 = (ρ̃0ρ2)3 = (ρ1ρ2)3 =
(ρ̃0ρ1ρ2ρ1)s = 1. Hence G must be a subgroup of the automorphism group of the regular
hypermap (3, 3, 3)(s,0) and |G| ≤ 6s2.

Consider the vertex x of the permutation representation. Its stabilizer StabG(x) con-
tains the subgroup 〈ρ̃0, u〉 of order 2s. Then, |StabG(x)| ≥ 2s and, by the Orbit-Stabilizer
theorem, |G| ≥ 6s2. Consequently, the graph is a faithful transitive permutation repre-
sentation of the automorphism group of (3, 3, 3)(s,0).
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Chapter 5

Degrees of Locally Toroidal
4-Polytopes of type {4, 4, 4}

The known finite locally toroidal regular polytopes can be found in [MS02], particularly,
the classification of the finite universal locally toroidal regular 4-polytopes whose facets
and vertex-figures are maps {4, 4}(s,0) or {4, 4}(s,s), also known as polytopes of Euclidean
type [4, 4, 4] [FLW20]. This classification is almost complete and listed in the following ta-
ble, where all parameters, corresponding finite regular polytopes {{4, 4}(t1,t2), {4, 4}(s1,s2)},
and the respective automorphism groups G are given. The classification of the universal

Table 5.1: The known finite universal regular polytopes {{4, 4}(t1,t2), {4, 4}(s1,s2)}.

(t1, t2) (s1, s2) |G| G

(2,0) (s, s), s ≥ 2 64s2 (C2 × C2)o [4, 4](s,s)

(2,0) (2s, 0), s ≥ 1 128s2 (C2 × C2)o [4, 4](2,0), s = 1

((C2 × C2)o [4, 4](s,s))× C2, s ≥ 2

(3,0) (3,0) 1440 S6 × C2

(3,0) (4,0) 36864 C2 o [4, 4](3,0)

(3,0) (2,2) 2304 (S4 × S4)o (C2 × C2)

(2,2) (2,2) 1024 C4
2 o [4, 4](2,2)

(2,2) (3,3) 9216 C6
2 o [4, 4](3,3)

(3,0) (5,0) 3916800 Sp4(4)× C2 × C2

finite regular polytopes {{4, 4}(t,0), {4, 4}(s,0)}, for s, t ≥ 3 and both odd, is still an open
problem, being conjectured in [MS02] that those given in Table 5.1 are the only finite
ones.

In this chapter we will determine all possible degrees of the infinite families of lines
1 and 2 of Table 5.1. The degrees of the remaining polytopes of Table 5.1 can be
determined computationally. Indeed we were able to compute them in GAP [GAP21]
(see Table 5.2). Using the same algorithm we found the degrees of the polytopes of lines
1 and 2 of Table 5.1 only up to s = 79 and s = 47, respectively. To determine the degrees
in Table 5.2, we can use GAP [GAP21] to calculate all the subgroups, up to conjugacy,
of the automorphism group of the polytopes and then proceed to determine which are
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40 5.Degrees of Locally Toroidal 4-Polytopes of type {4, 4, 4}

core-free or not by checking the size of the core, taking records of the index of those which
are core-free. For most cases we can use the group as a finitely presented group on GAP.
However, for polytopes {{4, 4}(3,0), {4, 4}(4,0)} and {{4, 4}(3,0), {4, 4}(5,0)}, using it as a
finitely presented group ends up not being efficient. Using an isomorphic permutation
group solves the problem with the automorphism group of these two polytopes.

Table 5.2: The degrees of the known finite universal regular polytopes
{{4, 4}(t1,t2), {4, 4}(s1,s2)}.

(t1, t2) (s1, s2) Set of Possible Degrees Minimal degree
Core-free subgroups

(2,0) (2,0) {m |m a divisor of 128 ∧m ≥ 32} 〈ρ0, ρ2〉
(2,0) (4,0) {m |m a divisor of 512 ∧m ≥ 32} 〈ρ0, ρ3, (ρ1ρ2)2〉
(3,0) (3,0) {m |m a divisor of 1440 ∧m ≥ 60∧

∧m 6= 96} ∪ {40, 30, 24, 20, 12} 〈ρ0, ρ2, ρ1ρ3〉

(3,0) (4,0) {m |m a divisor of 36864 ∧m ≥ 72}
∪ {18, 36, 48} 〈ρ0, ρ1, ρρ23 , ρρ2ρ1ρ23 〉

(3,0) (2,2) {m |m a divisor of 2304 ∧m ≥ 12} 〈ρ0, ρ2, ρ3, ρ1ρ2ρ1〉
(2,2) (2,2) {m |m a divisor of 1024 ∧m ≥ 16} 〈ρ0, ρ1, ρ2〉
(2,2) (3,3) {m |m a divisor of 9216 ∧m ≥ 24} 〈ρ0, ρ1ρ0ρ1, ρ3, ρ2ρ3ρ2, ρρ2ρ1ρ23 〉

(3,0) (5,0)

{2i · 255, 2i · 1275,
2i · 3825, 2i · 425 | 2 ≤ i ≤ 10}
∪ {2i · 765 | 3 ≤ i ≤ 10}

∪ {2i · 15, 2i · 17 | 5 ≤ i ≤ 6}
∪ {2i · 85 | i ∈ {2, 6, 7, 8}}
∪ {2i · 225 | 8 ≤ i ≤ 10}
∪ {2i · 153 | 7 ≤ i ≤ 10}
∪ {2i · 51 | 7 ≤ i ≤ 8}

〈(ρ0ρ1ρ2)2, (ρ1ρ2ρ0)2, [(ρ1ρ2)2]ρ3〉

5.1 The finite universal regular polytopes {{4, 4}(t1,t2), {4, 4}(s1,s2)}

Consider the regular toroidal maps {4, 4}(s,0) and {4, 4}(s,s) introduced in Chapter 3 and
their respective unitary translations. The universal regular polytope {{4, 4}(t1,t2), {4, 4}(s1,s2)},
where (t1, t2) ∈ {(t, t), (t, 0)} and (s1, s2) ∈ {(s, s), (s, 0)} with t, s ≥ 2, is the Coxeter
group [4, 4, 4] = 〈ρ0, . . . , ρ3〉, factored out by two relations of the following set: one with
parameter t and the other with parameter s.

{(ρ0ρ1ρ2ρ1)t, (ρ1ρ2ρ3ρ2)s, (ρ0ρ1ρ2)2t, (ρ1ρ2ρ3)2s}

The effect of this factorization is that the facets and vertex figures of the honeycomb
{4, 4, 4}, which are planar infinite tilings {4, 4}, collapse to a finite toroidal regular map,
{4, 4}(t1,t2) and {4, 4}(s1,s2), respectively. That is, G3 = 〈ρ0, ρ1, ρ2〉 and G0 = 〈ρ1, ρ2, ρ3〉
are the automorphism groups of the toroidal maps {4, 4}(t1,t2) and {4, 4}(s1,s2), respec-
tively. This construction gives always a regular polytope of type {4, 4, 4}, but the known
finite ones are those given in Table 5.1.
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5.2 Relations between the degrees of types [4, 4] and [4, 4, 4]

As mentioned in Section 2.6, there is a correspondence between core-free subgroups and
faithful transitive actions. Also, as seen in Lemma 4.1.6, ifH is a core-free subgroup of G,
andG is a subgroup ofK of index κ, thenH is also core-free inK and |K : H| = κ|G : H|.
Hence, if G has a faithful transitive permutation representation of degree n, then K has
a faithful transitive permutation representation of degree κn. Consequently, we have the
following result.

Corollary 5.2.1. If n is a degree of the toroidal map {4, 4}(s,s) (resp. {4, 4}(2s,0)), then
4n is a degree of the locally toroidal polytope {{4, 4}(2,0), {4, 4}(s,s)}
(resp. {{4, 4}(2,0), {4, 4}(2s,0)}).

This guarantees that {{4, 4}(2,0), {4, 4}(s,s)} has FTPRs with degrees

8s2, 16ab, 32ab and 64ab,

with s = lcm(a, b); while {{4, 4}(2,0), {4, 4}(2s,0)} has faithful transitive permutation
representations with degrees

16s2, 32ab, 64ab and 128ab

with s = lcm(a, b). We will prove that these lists are incomplete.
In what follows we give conditions under which there is a one-to-one correspondence

between the degrees of {4, 4}(s,s) and {{4, 4}(2,0), {4, 4}(s,s)}. Before that, we prove the
following result that can be used for any group having a central involution.

Proposition 5.2.2. Let G be a transitive group of degree n containing a central invo-
lution α. Then G is embedded into S2 o Sn

2
, where the blocks are the 〈α〉-orbits. If 〈α〉

is the kernel of this embedding, then n
2 is the degree of a faithful transitive permutation

representation of G/〈α〉.

Proof. The orbits of α, of size two, form a block system for G. Consider the group
homomorphism f : G → Sn

2
induced by the action of G on these blocks. Therefore the

isomorphism G/〈α〉 ∼= f(G), determines a FTPR of G/〈α〉 on n
2 points.

Proposition 5.2.3. Let s > 2. Let x ∈ {1, . . . , n} be a point of a faithful transitive
permutation representation of {{4, 4}(2,0), {4, 4}(s,s)} whose group is G = 〈ρ0, ρ1, ρ2, ρ3〉.
Let G0 = 〈ρ1, ρ2, ρ3〉 (the group of {4, 4}(s,s)). If ρ0 is fixed-point free, then G0 acts
faithfully and transitively on the 4-sets {x, xρ0, x(ρ0ρ1)2, xρ1ρ0ρ1}. In particular, G0

has a faithful transitive permutation representation of degree n/4.

Proof. Let δ := (ρ0ρ1)2. Let f : G→ Sn
2
be the embedding of G into S2 oSn

2
determined

by the 〈δ〉-orbits. Firstly let us prove that Ker(f) = 〈δ〉.
Suppose that 〈g, h〉 ∩Ker(f) is nontrivial. As Ker(f) is embedded into C

n
2

2 , all the
elements of the kernel are involutions. The only involutions of 〈g, h〉 are gs/2, hs/2 or
(gh)s/2 (which can only happen if s is even). As the Ker(f) is normal in G, (gh)s/2 ∈
Ker(f). As (gh)s/2 is a central involution of G, the actions of (gh)s/2 and δ coincide,
hence (gh)s/2 = δ, a contradiction. Then, 〈g, h〉∩Ker(f) is trivial. Consequently f(ρ1),
f(ρ2) and f(ρ3) are involutions and the group generated by these involutions satisfies
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all the defining relations of {4, 4}(s,s). This implies that H = f(G0) must be the group
of a toroidal map {4, 4}(s,s). As ρ0 is fixed-point-free, it cannot be in Ker(f) or its
action would also coincide with the one of δ, a contradiction. As 〈ρ0, (ρ0ρ1)2〉 is a normal
subgroup of G, its orbits have the same size, hence we may conclude that they are 4-
sets of the form {x, xρ0, x(ρ0ρ1)2, xρ1ρ0ρ1} with x ∈ {1, . . . , n}. In particular, f(ρ0) is
nontrivial and commutes with f(G0), since ρ0 /∈ Ker(f) and f((ρ0ρ1)2) = idf(G), which
implies that f(ρ0)f(ρ1) = f(ρ1)f(ρ0). This shows that G/Ker(f) ∼= C2 × H, which is
precisely the string C-group with disconnected Coxeter diagram obtained factoring G by
〈δ〉. In particular, Ker(f) = 〈δ〉.

By Proposition 5.2.2G/〈δ〉 has a FTPR of degree n
2 . FurthermoreG/〈δ〉 is isomorphic

to 〈α〉 ×H, where α = f(ρ0) is an involution (ρ0 acting on 2-sets {x, x(ρ0ρ1)2}).
Now 〈α〉 ×H is embedded into S2 o Sn

4
. Moreover we may use a similar argument to

the one before to conclude that the kernel of this embedding is 〈α〉.
Factoring 〈α〉 ×H by 〈α〉 gives a group isomorphic to G0. Thus by Proposition 5.2.2

G0 has a FTPR of degree n
4 .

Moreover, the orbits of α are pairs of 2-sets {{x, x(ρ0ρ1)2}, {xρ0, xρ0(ρ0ρ1)2}} and
the action of G0 is faithful on the 4-sets {x, x(ρ0ρ1)2, xρ0, xρ0(ρ0ρ1)2}.

The following corollary to Proposition 5.2.2 gives sufficient conditions that guar-
antee an one-to-one correspondence between the degrees of {{4, 4}(2,0), {4, 4}(s,s)} and
{{4, 4}(2,0), {4, 4}(2s,0)} for s ≥ 2.

Corollary 5.2.4. Let G be the group of {{4, 4}(2,0), {4, 4}(2s,0)} (s ≥ 2) acting transi-
tively and faithfully on n points. Suppose that f is the embedding of G into Sn

2
deter-

mined by the connected components of δ := (ρ1ρ2ρ3)2s. If Ker(f) = 〈δ〉 then n = 2n′

where n′ is a degree of a faithful transitive permutation representation of the group of
{{4, 4}(2,0), {4, 4}(s,s)}.

Proof. Let G = 〈ρ0, ρ1, ρ2, ρ3〉 be the group of {{4, 4}(2,0), {4, 4}(2s,0)}. The transla-
tion δ := (ρ1ρ2ρ3)2s is a central involution in G. Moreover G/〈δ〉 is the group of
{{4, 4}(2,0), {4, 4}(s,s)}. Thus by Proposition 5.2.2 we get the correspondence between
the degrees of {{4, 4}(2,0), {4, 4}(s,s)} and {{4, 4}(2,0), {4, 4}(2s,0)} stated.

5.3 The degrees of {{4, 4}(2,0), {4, 4}(s,s)} and {{4, 4}(2,0), {4, 4}(2s,0)}
5.3.1 The possible degrees of {{4, 4}(2,0), {4, 4}(s,s)}
Let n be the degree of a FTPR of the group G = 〈ρ0, ρ1, ρ2, ρ3〉 of the polytope
{{4, 4}(2,0), {4, 4}(s,s)} with s ≥ 2. Let us denote by G0 the maximal parabolic sub-
group of G generated by {ρ1, ρ2, ρ3}, that is, the group of {4, 4}(s,s). Consider the
subgroup T of G0 generated by g := (ρ1ρ2ρ3)2 and h := gρ1 , as defined in Section 3.1.1.
We have the following relations.

h = hρ0 , g = gρ0 , g = gρ2 , h−1 = hρ2 and h−1 = gρ3 .

Proposition 5.3.1. The group G has a faithful transitive permutation representation
of degree 8s2, 16ab, 32ab and 64ab, where and a and b are positive integers such that
s = lcm(a, b).
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Proof. This follows from Theorem 4.2.6 and Corollary 5.2.1.

The degrees given above are in correspondence with the indexes of core-free subgroups
of {4, 4}(s,s). Moreover, the core-free subgroups of G0 can be used to build FTPR graphs
of G. Let us now give other core-free subgroups corresponding to degrees that are not
listed in Proposition 5.3.1.

Proposition 5.3.2. Let a and b be positive integers such that s = lcm(a, b). The sub-
groups

1. 〈ρ0〉 × 〈ρ2, ρ3〉;

2.
(
〈ρ0〉 × 〈ga/2, hb〉

)
o〈ρ2, ρ1ρ2ρ1〉 if a is even and lcm(a/2, b) = s and

(
〈ρ0〉 × 〈ga, hb/2〉

)
o

〈ρ2, ρ1ρ2ρ1〉 if b is even and lcm(a, b/2) = s;

3.
(
〈ρ0〉 × 〈ga, hb〉

)
o 〈ρ2, ρ1ρ2ρ1〉

are core-free subgroups of G with indexes 4s2, 4ab and 8ab, respectively.

Proof. (1) LetH = 〈ρ0〉×〈ρ2, ρ3〉 ∼= C2×D8. As 〈ρ0〉 and 〈ρρ10 〉 have a trivial intersection,
we have

H ∩Hρ1 = 〈ρ2, ρ3〉 ∩ 〈ρρ12 , ρ3〉 = 〈ρ3〉.
In addition,

H ∩Hρ1ρ2 = 〈ρ2, ρ3〉 ∩ 〈ρρ12 , ρ
ρ1ρ2
3 〉 = 〈ρρ23 〉,

hence H ∩Hρ1 ∩Hρ1ρ2 is trivial. Since |H| = 16, we have that |G : H| = 4s2.
(2) Let H =

(
〈ρ0〉 × 〈ga/2, hb〉

)
o 〈ρ2, ρ1ρ2ρ1〉. As lcm(a/2, b) = s, 〈ga/2, hb〉 and

〈ha/2, gb〉 have trivial intersection. In addition the intersections 〈ρ2, ρ
ρ1
2 〉 ∩ 〈ρρ32 , ρ

ρ3ρ1
2 〉

and 〈ρ0〉∩ 〈ρρ10 〉 are trivial. Therefore H ∩Hρ1 ∩Hρ3 is trivial. Since |H| = 8 s
2

a
2
b , we have

that |G : H| = 4ab.
The proofs for the other subgroup given in (2) and for the subgroup given in (3)

follow similar arguments.

Lemma 5.3.3. The following two conditions are equivalent.

1. a and b are even numbers.

2. a is even and lcm(a/2, b) = lcm(a, b), or b is even and lcm(a, b/2) = lcm(a, b).

Proof. Suppose that a and b are both even. Let α and β be the maximal integers such
that 2α divides a and 2β divides b. Then if α ≤ β, then lcm(a/2, b) = lcm(a, b), otherwise
lcm(a, b/2) = lcm(a, b).

To prove that (2) implies (1), observe that if a is even and b is odd, then lcm(a/2, b) <
lcm(a, b).

In what follows, it will be proven that the degrees given in Proposition 5.3.2 are the
only ones missing in the list of degrees of {{4, 4}(2,0), {4, 4}(s,s)} obtained by Proposi-
tion 5.3.1.

Similarly to Lemma 4.1.5 we have the following result.

Lemma 5.3.4. If n 6= s2, then G is embedded into Sk o Sm with n = km (m, k > 1) and
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(i) k = ab where s = lcm(a, b) and,

(ii) m is a divisor of |G|
s2

= 64.

Proof. As T = 〈g, h〉 is a normal subgroup of G, in the proof of Lemma 4.1.5 re-
place the group of a toroidal map by our G, the group of the locally toroidal polytope
{{4, 4}(2,0), {4, 4}(s,s)}.

Let m be the number of T -orbits and k be the size of a T -orbit (thus n = km) of a
FTPR of G. We will consider m ∈ {1, 2, 4}, as the existence of FTPRs of degrees n =
mab for m ∈ {8, 16, 32, 64} (for any integers a and b with lcm(a, b) = s) is guaranteed
by Propositions 5.3.1 and 5.3.2. Given a numbering on the T -orbits, let us denote by gi
and hi the actions of g and h on block i (or T -orbit i), respectively. Let ∆i denote the
block i.

We will consider cases m = {1, 2, 4}, but before we proceed, let us prove a result
that will be used later in both cases.

Proposition 5.3.5. Let K be a transitive group containing the regular subgroup H =
〈α, β |αa = βb = [α, β]〉 with a, b ≥ 1. If δ ∈ K is an involution commuting with both α
and β, then δ ∈ H and one of the following situations must occur:

1. δ = αa/2 and a is even;

2. δ = βb/2 and b is even or;

3. δ = αa/2βb/2 and both a and b are even.

Proof. If δ ∈ H, then, as δ is an involution, there are at most the three possibilities for δ
given in the statement of this proposition. Suppose that δ /∈ H. Then for some integers i
and j, δαiβj is in the stabilizer of a point x [Cam99, page 9]. As H is regular, any point
y can be written as xh with h ∈ H. But then, yδαiβj = xhδαiβj = xδαiβjh = xh = y.
This implies that δαiβj is trivial, a contradiction.

In Proposition 5.3.5, when a 6= 1 and b = 1, the group H, is a cyclic group of order
a. Then there is only one possibility for an involution commuting with the generator α
of H, that is, αa/2.

Proposition 5.3.6. There cannot be faithful transitive permutation representation with
a single T -orbit.

Proof. Suppose that m = 1, , that is, T is transitive. In this case T is regular, hence
n = s2. If ρ0 has a fixed point then, as ρ0 commutes with g and h, ρ0 is trivial, a
contradiction. Thus ρ0 is fixed-point free. Hence, by Proposition 5.2.3, there exists a
FTPR of the group of the toroidal map {4, 4}(s,s) on 4-sets with T being transitive. But
T cannot be transitive, as proven in Proposition 4.1.3.

Proposition 5.3.7. If there are two T -orbits, then k 6= s.

Proof. Suppose that k = s. If ρ0 is fixed-point free, then by Proposition 5.2.3, {4, 4}(s,s)
has a FTPR of degree n = s/2, contradicting Theorem 4.2.6. Hence, ρ0 must have a
fixed point. Consequently, (ρ0ρ1)2 fixes the blocks and therefore, s is even. Moreover, as
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ρ0 commutes with both g and h, it fixes a block point-wise. In addition, ρ1 must swap
the two blocks, otherwise ρ0 would be trivial.

As k = s, either the action of g within a block, say ∆1, has order s or gcd(|g1|, |g2|) =
1. Let us consider the two cases separately.

Firstly assume g1 and h2 are cycles of order s. Since g and h commute,

g = g1h
α
2 and h = gβ1h2

for some integers α and β. As (ρ0ρ1)2 is a fixed-point free central involution, by Propo-
sition 5.3.5, we have (ρ0ρ1)2 = g

s/2
1 h

s/2
2 . Assume without loss of generality that ρ0 fixes

a point in ∆1, so that ρρ10 = g
s/2
1 and ρ0 = h

s/2
2 .

If α and β are even, one gets gs/2 = g
s/2
1 and hs/2 = h

s/2
2 , hence (ρ0ρ1)2 = (gh)s/2, a

contradiction.
If α is odd and β is even, one gets gs/2 = g

s/2
1 h

s/2
2 and hs/2 = h

s/2
2 , hence (gh)s/2 =

g
s/2
1 = ρρ10 , a contradiction. Similarly if α is even and β is odd one gets the contradiction

(gh)s/2 = h
s/2
2 = ρ0.

If α and β are both odd, one gets gs/2 = hs/2, hence (gh)s/2 is trivial, a contradiction.
Now consider the case gcd(|g1|, |g2|) = 1. Let |g1| = a, |g2| = b with b odd. Then

ab = s. In this case, (ρ0ρ1)2 = g
a/2
1 h

a/2
2 . But also, as b is odd, (gh)s/2 = (g1h2)a/2, a

contradiction.

Proposition 5.3.8. There cannot be faithful transitive permutation representation with
two T -orbits.

Proof. Let m = 2. By Lemma 4.1.1 and Proposition 5.3.7, k > s. Then both 〈g〉 and
〈h〉 act intransitively within a block. If ρ0 is fixed-point free, then the group of {4, 4}(s,s)
has a FTPR on n/4 points by Proposition 5.2.3, with T having either one or two orbits.
We know T cannot have one orbit by Proposition 4.1.3 and if T has two orbits, then
n/4 = 2s2 by Lemma 4.2.5, meaning that the size of a T -orbit acting on n points is
k = (2s)2, a contradiction by Lemma 4.1.1. Thus ρ0 must have a fixed point and thus
must fix an entire block point-wise.

The permutation ρ0 cannot have a trivial action in both blocks, hence ∆1ρ1 = ∆2

and (ρ0ρ1)2 fixes the blocks. In particular, s is even. In addition, neither ρ2 nor ρ3 can
swap the blocks. Hence, since ρ3 must fix a block, therefore |gi| = |gρ3i | = |h−1

i | = s. As
in addition |g1| = |g2| and |h1| = |h2|, we must have |gi| = |hi| for i = 1, 2 (meaning that
each cycle of the cyclic decomposition of g, and h, has order s).

Assume that ρ0 acts trivially on block ∆1. As (ρ0ρ1)2 is a central involution, Propo-
sition 5.3.5 determines the possibilities for (ρ0ρ1)2. The action of (ρ0ρ1)2 on block ∆1

cannot be (g1h1)s/2 otherwise (ρ0ρ1)2 = (gh)s/2. Thus either (ρ0ρ1)2 = (g1h2)s/2 or
(ρ0ρ1)2 = (h1g2)s/2. Since (ρ0ρ1)2 = ((ρ0ρ1)2)ρ3 , in any case one gets gs/2i = h

s/2
i (for

i ∈ {1, 2}). This gives gs/2 = hs/2, a contradiction.

With the cases m ∈ {1, 2} out of the way, we will focus now on the case where we
have four T -orbits. Before that, consider the following two results.

Proposition 5.3.9. Let w = w1w2 . . . wl with wj ∈ {ρi | i = 0, 1, 2, 3} for j ∈ {1, . . . , l}
and such that

| {j ∈ {1, . . . , l} : wj = ρ1 ∨ wj = ρ3} |
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is odd. If w acts non-trivially within a T -orbit, then k = s2.

Proof. Suppose that w acts non-trivially on ∆1 and let K = 〈g1, h1〉. As gw1 = h±1
1 , we

have |g1| = |h1|. Moreover, by conjugation, we get |gi| = |hi| for i ∈ {1, . . . , 4}. Hence
|g1| = |h1| = s. Let B = |K : 〈g1〉| = |K : 〈h1〉|. We have k = |K| = Bs. Let us
prove that B = s. There exists an integer j such that gB1 = hBj1 . Conjugating by w, this
implies that hB1 = gBj1 . Hence, (g1h1)B = (g1h1)Bj . As |g1h1| = s, B ≡ Bj mod s. Now
the equality gB1 = hBj1 can be rewritten as gB1 = hB1 , or equivalently (g1h

−1
1 )B is trivial.

As |g1h
−1
1 | = s, we have B = s.

Proposition 5.3.10. The element u := ρ1ρ2ρ3ρ2 cannot fix all T -orbits.

Proof. Suppose that u fixes ∆i for some i ∈ {1, . . . , 4}. Then there exist a pair of integers
r and t such that ugrht fixes a point x ∈ ∆i. Hence us fixes x. Moreover, as us commutes
with both g and h, it fixes every point in ∆i.

Thus if u fixes every block, then us is trivial, a contradiction.

Proposition 5.3.11. If m = 4 and k 6= s2 then the action of G on the blocks is described
by one of the following graphs.

• 0

2
1 3

•
13

•
0
•

• 0

3

•
13

•
0
•

• 0

1 3

•
1

•
0

3

•

•
0

2

1 3

•
1

•
0

2

3

•

• 1

3
•

2

•
1

3 •

• 1

2 3

•
2

•
1

3

•

• 2 •
13

•
2
•

• 1

3

•
3

•
1
•

Proof. The group G acting on the 4 blocks is a group satisfying the defining relations of
G and such that

(ρ0ρ1ρ2ρ1)2 and (ρ1ρ2ρ3)2

are both trivial. Under these conditions, using GAP [GAP21], we found the 51 block
actions given in Table 5.3 on page 50. By Propositions 5.3.9 and 5.3.10 this list can be
reduced to only eight possibilities, those given in this proposition.

Proposition 5.3.12. If m = 4 and k 6= s2, then k = ab, with a and b being even divisors
of s such that s = lcm(a, b).

Proof. Let us deal with two cases separately: (1) ρ0 is fixed-point free; (2) ρ0 has a
fixed-point.

(1) If ρ0 is fixed-point free, then the group of {4, 4}(s,s) has a FTPR on n/4 points
by Proposition 5.2.3, with T having either one, two or four orbits. The first possibility,
T having exactly one orbit, cannot happen by Proposition 4.1.3. This also excludes
the second graph of the first row of Proposition 5.3.11 (note that x, xρ0, xρ1ρ0ρ1 and
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x(ρ0ρ1)2 belong to different blocks). If T has two orbits, then by Lemma 4.2.5, n/4 = 2s2,
meaning that the size of a T -orbit acting on n points is k = 2s2, a contradiction. This
excludes the remaining graphs of the first row of Proposition 5.3.11.

Finally, suppose that T has four orbits when acting on the quadruples. Then the
size k of a T -orbit on the set of size n must be divisible by 4. Thus, by Lemma 4.1.5,
k/4 = a′b′ with lcm(a′, b′) = s and, by Lemma 5.3.4, k = ab with lcm(a, b) = s. Hence
we have k = 4gcd(a′, b′)s = gcd(a, b)s, and therefore gcd(a, b) is even, as desired.

(2) Suppose now that ρ0 has a fixed point. Hence the action on the blocks cannot
be given by the first four graphs given in Proposition 5.3.11, where ρ0 is fixed-point free.
Whenever ρ0 has a fixed point in a block, say ∆i, then since it commutes with both g
and h, it must act trivially on ∆i.

Now consider the first three block actions described by the graphs given on the second
row of Proposition 5.3.11. If ρ0 is trivial on a block, then, as it commutes with ρ2 and
ρ3, we get that ρ0 acts as the identity, a contradiction. Thus the remaining possibility
for the block action is described by the alternating {1, 3}-square, the one on the right
side of the second row of Proposition 5.3.11.

Let ∆2 = ∆1ρ1, ∆3 = ∆2ρ3 and ∆4 = ∆3ρ1 = ∆1ρ3. As (ρ0ρ1)2 fixes the blocks, k
must be even and, consequently s is even.

Let K = 〈g1, h1〉 be the action of T on the block ∆1 and let B := |K : 〈g1〉|
and C := |K : 〈h1〉|. By Lemma 4.1.1 k = gcd(C,B)s and, as seen in the proof of
Lemma 4.1.1, there exists some D such that |g1| = DC and |h1| = DB. One may
consider a = gcd(B,C) and b = s. Then it is sufficient to prove that both B and C are
even numbers.

Let us first prove that both |g1| and |h1| are even. Note that |g1| and |h1| cannot both
be odd, since s = lcm(|g1|, |h1|). Hence, suppose |g1| is even and |h1| is odd. Since |h1|
is odd, we must have (ρ0ρ1)2 = (g1h2h3g4)|g1|/2. We have s/2 ≡ 0 mod |hi| for i ∈ {1, 4}
and s/2 ≡ 0 mod |gi| for i ∈ {2, 3}, hence (h1g2g3h4)s/2 is trivial. In addition, note that
s/2 ≡ |g1|/2 mod |g1|. Consequently,

(gh)s/2 = (g1h2h3g4)s/2(h1g2g3h4)s/2 = (g1h2h3g4)s/2 = (g1h2h3g4)|g1|/2 = (ρ0ρ1)2

a contradiction. The case where |g1| is odd and |h1| is even can be treated similarly.
Then both |g1| and |h1| are even.

Suppose that gcd(C,B) is odd. Assume that either C or B is odd, but not both.
Then, since the orders of both g1 and h1 are even, D must be even. Suppose first that
that B is even and C is odd. Let i and j be such that hB1 = gCi1 and gC1 = hBj1 . As
|hB1 | = |gC1 | = D both i and j must be coprime with D. Hence i and j are odd numbers.

Then h
Bs
2

1 = g
Cis
2

1 , implies that Cis
2 = 0 mod s, a contradiction, since C and i are odd.

We get the same contradiction if we assume that B is odd and C is even. Thus B and
C are both odd. Let α and β be such that lcm(B,C) = αB = βC. Then, both α and β
are odd. Thus, considering a i such that hB1 = gCi1 , we get the equalities below, meaning
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that (gh)s/2 is trivial:

(gh)s/2 = (g1h2h3g4)s/2(h1g2g3h4)s/2

= (g1h2h3g4)
D
2
lcm(B,C)(h1g2g3h4)

D
2
lcm(B,C)

= (g1h2h3g4)
D
2
βC(h1g2g3h4)

D
2
αB

= (g1h2h3g4)
DC
2

(β+αi)

= id,

a contradiction. Hence gcd(C,B) must be even.

Theorem 5.3.13. Let a and b be positive integers such that s = lcm(a, b) and s ≥ 2.
Then the locally toroidal polytope {{4, 4}(2,0), {4, 4}(s,s)} has a faithful transitive permu-
tation representation of degree n if and only if

n ∈ {4s2, 8ab, 16ab, 32ab, 64ab} or n = 4ab if a and b are both even.

Proof. This result follows from Propositions 5.3.1, 5.3.2, 5.3.8 and 5.3.12 and Lemma 5.3.3.

5.3.2 The possible degrees of {{4, 4}(2,0), {4, 4}(2s,0)}
Let us now focus on the locally toroidal polytope {{4, 4}(2,0), {4, 4}(2s,0)}, for s ≥ 2.

Theorem 5.3.14. Let a and b be positive integers such that s = lcm(a, b) and s ≥ 2.
Then the locally toroidal polytope {{4, 4}(2,0), {4, 4}(2s,0)} has a faithful transitive permu-
tation representation of degree n if and only if

n ∈ {8s2, 16ab, 32ab, 64ab, 128ab} or n = 8ab if a and b are both even.

Proof. Notice that the theorem holds when s = 2 (see Table 5.2). From now on assume
that s ≥ 3. Let G be the group of {{4, 4}(2,0), {4, 4}(2s,0)} and let n be a degree of
a FTPR of G. Consider the normal subgroup T of G generated by u2 and v2 where
u = ρ1ρ2ρ3ρ2 and v = uρ2 . Let δ := (ρ1ρ2ρ3)2s = (uv)s and β := (ρ0ρ1)2. As δ is a
central involution, it determines an embedding of G into S2 o Sn

2
where the blocks are

the connected components of δ. Let f denote the homomorphism G → Sn
2
determined

by this embedding. If Ker(f) = 〈δ〉 then, by Theorem 5.3.13 and Corollary 5.2.4, n is
one of the degrees listed in the statement of this theorem. In what follows we lead with
the case Ker(f) 6= 〈δ〉.

Firstly consider the case s odd. In this case T has no involutions. Hence, as all
the elements of Ker(f) are involutions, the intersection of T with Ker(f) is trivial,
therefore f(G0) must be is the group of the map {4, 4}(s,s). If ρ0 ∈ Ker(f) then β ∈
Ker(f). But as β is a central involution in G, we get β = δ, a contradiction. Hence
|f(ρ0)| = |f((ρ0ρ1)2)| = 2. This shows that f(G) is the group of {{4, 4}(2,0), {4, 4}(s,s)},
or equivalently, Ker(f) = 〈δ〉, a contradiction.

Let us now lead with the case s even. In this case δ ∈ T . Suppose that Ker(f) ∩ T
is not 〈δ〉. Then 〈us, vs〉 ≤ Ker(f). Indeed 〈us, vs〉 is the maximal subgroup of T
contained inKer(f). Consequently, f(G0) is, in this case, the group of the map {4, 4}(s,0).
Now suppose that ρ0 ∈ Ker(f) then β := (ρ0ρ1)2 ∈ Ker(f), as before one gets a
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contradiction. Hence Ker(f) = 〈us, vs〉 and G/Ker(f) is isomorphic to the group of
{{4, 4}(2,0), {4, 4}(2s′,0)} where s′ := s/2.

We may assume by induction the degrees of {{4, 4}(2,0), {4, 4}(2s′,0)} are precisely
those of the following list where lcm(a′, b′) = s′.

8s′2, 16a′b′, 32a′b′, 64a′b′, 128a′b′ or n = 8a′b′ if a′ and b′ are both even.

Assume without loss of generality that lcm(2a′, b′) = s. Then the degrees of G are
contained in the following list.

4s2, 16(2a′)b′, 32(2a′)b′, 64(2a′)b′, 128(2a′)b′ or n = 8(2a′)b′ if a′ and b′ are both even.

All these degrees correspond to the ones given in the statement of this theorem with one
exception, n = 4s2. Let us now rule out this possibility.

Suppose that n = 4s2 then, the number m of T -orbits is at most 4. We remind that
T = 〈u2, v2〉, δ = usvs, β = (ρ0ρ1)2 and, since s is even, Ker(f) = 〈us, vs〉. As δ is a
fixed-point-free involution (swapping n/2 pairs of points), and u2 and v2 have the same
cyclic decomposition, us swaps exactly n

4 pairs of points while vs swaps the remaining n
4

pairs of points. As the orbits of T have the same size and T acts regularly on each orbit,
there exist exactly two possible sizes, say a and b, of a cycle of the cyclic decomposition
of u2 (and for v2). Moreover, as us has fixed points, a and b must be distinct. Let us
see that this implies that m = 2. Firstly, as the case where a = b = s cannot happen, T
cannot be transitive, thus m 6= 1. Secondly, again as a = b = s cannot happen, n/4 6= s2,
hence m 6= 4. Let ∆1 and ∆2 be the T -orbits. As a 6= b, ∆1ρ2 = ∆2. Furthermore, ρ2 is
the unique permutation of the generating set of G, permuting the blocks. Indeed, as ρ0

commutes with u and v, uρ1 = u−1, uρ3 = u, vρ1 = v and vρ3 = v−1, the other involutions,
ρ0, ρ1 and ρ3, cannot swap the blocks as this would force the cyclic decomposition of u2

and v2 to be the same on the blocks, and a = b = s. Let u1, v1, u2 and v2 denote the
actions of u and v on ∆1 and ∆2, respectively. Let a and b be the orders of u2

1 and u2
2,

respectively. Then us = ua1, vs = va2 . The orbits of 〈β, δ〉 have the same size, equal to 4.
Thus, with no other possibilities, either β = vb1u

b
2 or β = δvb1u

b
2. In addition, as ρ0 fixes

the blocks and commutes with u2 and v2, we get ρ0 ∈ 〈β, δ〉, a contradiction.
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Table 5.3: The possible actions on the blocks when m = 4
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Chapter 6

Regular Hypertopes

In the previous chapters, we have dealt with regular maps, hypermaps and locally toroidal
polytopes. In particular, the introduction of hypermaps and Coxeter groups without
string diagrams (such as the triangle groups) as a generalization of maps, gives way to
new geometrical structures which are not polytopes, since they do not possess a string
Coxeter diagram, but still have symmetry. Inspired by this generalization, the authors
of [FLW16] generalized the concept of abstract polytopes to similar structures whose
automorphism groups are C-groups without a string Coxeter diagram and named them
a hypertopes.

In this chapter, we will give an introduction to incidence systems and incidence ge-
ometries, which are necessary to define a (regular) hypertope. This chapter will have
mainly results presented in [FLW16], [FLW20] and [BC13].

6.1 Incidence Systems, Geometries and Hypertopes

An incidence system Γ := (X, ∗, t, I) is a 4-tuple where

• X is the set of elements of Γ;

• I is the set of types of Γ;

• t : X → I is a type function that associates to each element x ∈ X a type t(x) ∈ I;

• ∗ is an incidence relation on X that is reflexive, symmetric and such that, for all
x, y ∈ X, if x ∗ y and t(x) = t(y) then x = y.

With this incidence relation, we can build an incidence graph of Γ, where the elements
of X are the vertices and two vertices x, y ∈ X are connected if x ∗ y. The rank of Γ is
the number of types of Γ, i.e. the cardinality of I.

A flag1 is a subset of X such that all elements are pairwise incident. This can be
seen in the incidence graph as a clique. The type of a flag F is the set of types of the
flag, i.e. t(F ) := {t(x) : x ∈ F}. A chamber2 is a flag of type I. We say that Γ is a
geometry or incidence geometry if all flags of Γ are contained in a chamber.

1Note that the definition of a flag in the context of incidence systems is not the same as in abstract
polytope.

2Chambers in incidence systems correspond to flags in abstract polytopes (seen as posets).
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52 6.Regular Hypertopes

An element x ∈ X is said to be incident to a flag F , denoted as x ∗ F , if x is
incident with every element of F . The residue of a flag F in Γ is the incidence geometry
ΓF := (XF , ∗F , tF , IF ) where

• XF := {x ∈ X : x ∗ F, x /∈ F};

• IF := I\t(F );

• tF and ∗F are the restrictions of t and ∗ to XF and IF .

We say Γ is connected if its incidence graph is connected. Moreover, we say that
Γ is residually connected if all residues of rank at least two of Γ, including Γ, have a
connected incidence graph. Furthermore, we say Γ is chamber-connected if, for every two
chambers C and C̃, there exists a sequence of chambers C =: C0, C1, . . . , Ck := C̃ such
that consecutive chambers in the sequence differ in exactly one element of a certain type
i ∈ I, i.e. |Ci ∩ Ci+1| = |I| − 1. Γ is said to be strongly chamber-connected if all its
residues of rank at least two, including Γ, are chamber-connected.

An incidence system Γ is said to be thin (respectively firm) if all rank one residues
of Γ contain exactly two (resp. at least two) elements. The thinness condition is similar
to the diamond condition of abstract polytopes. Moreover, if an incidence system Γ is
thin, then for every chamber C of Γ there is one and only one chamber that differs on
the element of type i, called the i-adjacent chamber and denoted as Ci. Consider now
the following result.

Proposition 6.1.1. [FLW16, Proposition 2.1] Let Γ be a firm incidence geometry. Then
Γ is residually connected if and only if Γ is strongly chamber-connected.

We call pre-hypertope to a thin incidence geometry and we define a hypertope to be
a strongly chamber-connected (or residually connected) pre-hypertope.

The incidence graph of a hypertope is then an n-coloured graph (where n is the
number of types of the hypertope, i.e. the rank) such that

1. The maximal cliques (which are the chambers) all have size n and have an element
of each type;

2. All (n − 1)-clique can be augmented to form an n-clique in exactly two ways (a
consequence of the thinness condition); and

3. The graph is connected and for all k-cliques, where 1 ≤ k ≤ n − 2, the subgraph
of elements incident to all elements of that clique is still connected (the residually
connected condition).

In order to fully understand the concept of a hypertope, take as an example the cube.
Let us build an incidence system from the cube. Let the set of elements X be the union
of the set of vertices, edges and faces of the cube and the set of types I is {0, 1, 2}. The
type function t is defined as follows: t(x) is 0, 1 or 2 if x is a vertex, an edge or a face,
respectively. The incidence graph is as in Figure 6.2, where •, N and � denote elements
of type 0, 1 and 2, respectively.

Chambers correspond to maximal cliques of this graph, with type {0, 1, 2}, i.e. a
set with vertice-edge-face (• − N − �). This incidence system is connected since the
graph is connected, and it is a geometry since any flag is a subset of a chamber. Also,
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Figure 6.1: A cube.

Figure 6.2: Incidence graph of a cube.

residually connectedness is easy to see since the residue of any flag of rank one is an
incidence geometry of rank 2 with an incidence graph that is still connected. Finally, we
can see that this incidence geometry is thin since, picking any flag of rank 2, its rank one
residues only have two elements (i.e. a flag of rank 2 can be augmented to be a chamber
in exactly two different ways). Hence, the cube is a hypertope. Notice that in this case
this incidence relation is a partial order, and for this reason this incidence geometry is a
polytope. In general, a hypertope is an abstract polytope when the incidence relation is
a partial order. Hypertopes that not abstract polytopes are called proper.

6.2 Regular Hypertopes

Let Γ be an incidence geometry (X, ∗, t, I). An automorphism of Γ is a mapping Γ→ Γ
such that

• α is a bijection on X;

• for each x, y ∈ X, x ∗ y if and only if α(x) ∗ α(y);

• for each x, y ∈ X, t(x) = t(y) if and only if t(α(x)) = t(α(y)).
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54 6.Regular Hypertopes

We say an automorphism α is type preserving if, for any x ∈ X, t(x) = t(α(x)). The
set of all automorphisms of Γ is denoted as Aut(Γ) and the set of all type-preserving
automorphisms is denoted as AutI(Γ). Both sets are groups and it is obvious that
AutI(Γ) ≤ Aut(Γ). A non-type-preserving automorphism σ ∈ Aut(Γ)\AutI(Γ) is called
a correlation. This generalizes the concept of duality in abstract polytopes.

An incidence geometry is said to be flag-transitive if the type-preserving automor-
phism group AutI(Γ) is transitive on all flags of a given type J , for each type J ⊆ I.
Equivalently, Γ is chamber-transitive if AutI(Γ) is transitive on all chambers of Γ and we
have the following result.

Proposition 6.2.1. [FLW16, Proposition 2.2] Let Γ be an incidence geometry. Γ is
chamber-transitive if and only if Γ is flag-transitive.

An incidence geometry Γ is regular if AutI(Γ) acts regularly on the chambers, i.e.
if the action is semi-regular and transitive. Hence, we say a regular hypertope is a flag-
transitive (or equivalently chamber-transitive) hypertope. We need not impose the semi-
regularity since thinness already implies it: an element g ∈ AutI(Γ) that fixes a chamber
C will fix all the i-adjacent chambers Ci, for each i ∈ I, which by residually connected-
ness, implies that g must fix all chambers, and hence g = id.

Let C be a (base) chamber of a regular hypertope Γ with type set I := {0, . . . , n−1}.
We will denote as ρi, for each i ∈ I, the automorphism from AutI(Γ) that maps the
chamber C to its i-adjacent chamber Ci. Due to thinness, it is easy to see that each ρi
is an involution. Then we have that S := {ρ0, . . . , ρn−1} is a generating set of AutI(Γ)
and the following result.

Theorem 6.2.2. [FLW16, Theorem 4.1] Let I := {0, . . . , n − 1} and let Γ be a regular
hypertope of rank n. Then AutI(Γ) is a C-group of rank n.

Notice that regular hypertopes in which its type-preserving automorphisms is a string
C-group are precisely abstract regular polytopes. If the Coxeter diagram of a regular
hypertope is connected we say it is an irreducible regular hypertope; otherwise, we say
it is reducible.

6.3 Coset Geometries

As in the case of abstract regular polytopes, regular hypertopes can be built from C-
groups. However, contrary to string C-groups, not all C-groups give a regular hypertope.

Proposition 6.3.1. [Tit56] Let n be a positive integer and I := {0, . . . , n − 1}. Let G
be a group together with a family of subgroups (Gi)i∈I , X the set consisting of all cosets
Gig with g ∈ G and i ∈ I, and t : X → I defined by t(Gig) = i. Define an incidence
relation ∗ on X ×X by:

Gig1 ∗Gjg2 iff Gig1 ∩Gjg2 6= ∅.

Then the 4-tuple Γ := (X, ∗, t, I) is an incidence system having a chamber. Moreover,
the group G acts by right multiplication as an automorphism group on Γ as a group of
type preserving automorphisms. Finally, the group G is transitive on the flags of rank
less than 3.
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An incidence system built using the previous proposition is denoted as Γ(G; (Gi)i∈I),
where the subgroups Gi, for i ∈ I, are designated as the maximal parabolic subgroups. If
Γ(G; (Gi)i∈I) is a geometry, it is designated a coset geometry. If G is a C-group, there is
no guarantee that the incidence system Γ(G; (Gi)i∈I) is a regular hypertope, or even if it
is a geometry (examples are given in [FLW16] and [FLW20]). Nonetheless, the following
result gives a sufficient condition for obtaining regular hypertopes.

Theorem 6.3.2. [FLW16, Theorem 4.6] Let G = 〈ρ0, . . . , ρn−1〉 be a C-group of rank n
and let Γ := Γ(G; (Gi)i∈I) with Gi := 〈ρj | j ∈ I\{i}〉 for all i ∈ I := {0, . . . , n− 1}. If
G is flag-transitive on Γ, then Γ is a regular hypertope.

Hence, it is sufficient to prove that a coset geometry constructed from a C-group
is flag-transitive to guarantee that we have a regular hypertope. In order to prove the
flag-transitivity of a C-group on its coset geometry, we have that following theorem by
Buekenhout and Cohen [BC13].

Theorem 6.3.3. [BC13, Theorem 1.8.10 (iii)] Let Γ(G, (Gi)i∈I) be the coset incidence
system of G over (Gi)i∈I . Then Γ is flag-transitive if and only if for each subset J
of I of size three, the group G is transitive on the set of flags of type J , and for each
i ∈ I the subgroup Gi is flag-transitive on Γ(Gi, (Gi,j)j∈I\{i}). If one (whence both) these
properties hold, then Γ is a geometry.

To prove that G is transitive on the set of flags of type J ⊆ I (|J | = 3), we need to
prove one of the three equivalent conditions given in the following Lemma (see Proposition
1.4.1 in [Tit74])

Lemma 6.3.4. [Tit74] Let Gi, Gj, Gk be three subgroups of a group G. The following
conditions are equivalent.

1. GiGj ∩GiGk = Gi(Gj ∩Gk).

2. (Gi ∩Gj)(Gi ∩Gk) = Gi ∩ (GjGk).

3. If the three cosets Gix, Gjy and Gkz have pairwise non-empty intersections, then
Gix ∩Gjy ∩Gkz 6= ∅.

Whenever we have a rank 3 coset incidence system of a C-group, the following con-
dition is sufficient to prove we have a regular hypertope.

Proposition 6.3.5. [FLW16, Proposition 4.3] If G := 〈ρ0, ρ1, ρ2〉 is a C-group of rank
3, and Γ(G; (Gi)i∈{0,1,2}) with Gi = 〈ρj | j 6= i〉 is thin, then Γ is a regular hypertope.

A special case is when we are dealing with string C-groups, where in this case, as
observed previously, we have an improper regular hypertope.

Theorem 6.3.6. [Sch83; Asc83] Let (G, {ρ0, . . . , ρn−1} be a string C-group of rank n
and let Γ := Γ(G, (Gi)i∈I) with Gi := 〈ρj | j ∈ I\{i}〉 for all i ∈ I := {0, . . . , n − 1}.
Then Γ is thin, residually connected and regular, i.e. a regular hypertope. Moreover, Γ
has a string diagram.

To classify regular hypertopes, the authors of [FLW20] give an important result about
quotients of the automorphism group of regular hypertopes, which generalizes a known
result of abstract regular polytopes [MS02, Theorem 2E17], called the quotient criterion.
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Theorem 6.3.7. [FLW20, Theorem 3.1] Let G := 〈ρ0, . . . , ρn−1〉 be a group generated
by involutions and H := 〈δ0, . . . , δn−1〉 be a C-group. If the mapping σ : G → H with
σ(ρi) = δi for each i = 0, . . . , n − 1 is a homomorphism which is one-to-one on Gi for
each i = 0, . . . , n− 1, then G is also a C-group.

Consider the incidence system Γ := (X, ∗, t, I) and a normal subgroup N ≤ AutI(Γ).
The quotient of Γ with respect to N is an incidence system Γ/N := (X, ∗N , tN , I) where

• X is the set {F ·N : F ∈ X} of orbits of N in X;

• for F1, F2 ∈ X, (F1 · N) ∗N (F2 · N) if and only if there exist a face F in F1 · N
and a face G in F2 ·N such that F ∗G; and

• tN (F ·N) = t(F ).

Theorem 6.3.8. [FLW20, Theorem 3.2] Let U be a regular hypertope and U := 〈ρ0, . . . , ρn−1〉
be its type-preserving automorphism group. Let NCU be such that N∩Ui is trivial for all
i ∈ {0, . . . , n−1}. Let Hi = 〈ρjN : j ∈ {0, . . . , n−1}\{i}〉 for all i ∈ {0, . . . , n−1}. If
Γ(U/N ; {H0, . . . ,Hn−1}) is a flag-transitive coset geometry, then it is a regular hypertope
and it is isomorphic to U/N .

6.4 (Locally) Spherical and Toroidal Hypertopes

Every Coxeter group is the type-preserving automorphism group of a regular hyper-
tope, which more recently was named the universal hypertope associated with the Coxeter
group [FLW20]. As explained in Section 2.4, C-groups are quotients of Coxeter groups and
the type-preserving automorphism groups of regular hypertopes are C-groups. Hence,
the universal hypertope associated with the Coxeter groupW is then called the universal
cover of the hypertope Γ and the Coxeter diagram of Γ is the diagram of its universal
cover. We say that a regular hypertope Γ is of typeW if its type-preserving automorphism
group is a quotient of a Coxeter group W .

A regular hypertope is of spherical type if its type-preserving automorphism group
is a smooth quotient of a finite irreducible Coxeter group or its diagram is a union of
diagrams of finite irreducible Coxeter groups. A locally spherical regular hypertope is a
regular hypertope whose maximal parabolic residues are of spherical type. A projective
hypertope is a quotient of a (locally) spherical regular hypertope by a central symmetry.
These hypertopes are listed in Table 6.1[FLW20, Table 1].

We say a locally spherical regular hypertope is of euclidean type if its Coxeter diagram
correspondes to an affine irreducible Coxeter group of Euclidean type, listed in Table 6.2
[FLW20, Table 2]. A regular toroidal hypertope is a smooth quotient of a regular universal
hypertope of euclidean type [FLW20]. As examples of regular toroidal hypertopes, we
have the regular (hyper)maps, described in Chapter 3, or the tesselation of the euclidean
space by n-cubes (with diagram C̃n−1) described in [MS02, Section 6D] Moreover, Ens
characterized all the proper rank 4 regular hypertopes of toroidal type [Ens18], i.e. with
diagram Ã3 and B̃3. In section 9.2 we give an infinite family of regular hypertopes with
diagrams B̃n−1.

A locally spherical regular hypertope is of hyperbolic type if its type-preserving au-
tomorphism group of its universal cover is an irreducible compact hyperbolic Coxeter
group [FLW20, Table 2]. These compact hyperbolic Coxeter groups exist only in ranks
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Table 6.1: Finite irreducible Coxeter groups and respective locally spherical hypertopes
of spherical type [FLW20, Table 1].

Diagram Group Order Universal Projective

hypertope hypertope

An (n ≥ 1) • • • • • • • • [3n−1] (n+ 1)! {3n−1} -

•
Dn (n ≥ 4) • • • • • • •

•
[3n−3,1,1] 2n−1 · n! {3n−3, 3

3} -

Bn (n ≥ 3) • • • • • • • 4 • [3n−2, 4] 2n · n! {3n−2, 4} {3n−2, 4}n

Ip2 (p ≥ 3) • p • [p] 2p {p} -

E6 • • • • •

• [32,2,1] 12 · 6! {22,1} -

E7 • • • • • •

• [33,2,1] 8 · 9! {32,1} {32,1}9

E8 • • • • • • •

• [34,2,1] 192 · 10! {42,1} {42,1}15

F4 • • 4 • • [3, 4, 3] 1152 {3, 4, 3} {3, 4, 3}56

H3 • • 5 • [3, 5] 120 {3, 5} {3, 5}5

H4 • • • 5 • [3, 3, 5] 14400 {3, 3, 5} {3, 3, 5}15
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58 6.Regular Hypertopes

Table 6.2: Affine irreducible and compact hyperbolic Coxeter groups and respective
locally spherical hypertopes of euclidean and hyperbolic types [FLW20, Table 2]
.

Euclidean Hyperbolic

Ãn−1 (n ≥ 3) •
• • • • • •

[p, q] • p • q •
3 ≤ p, q <∞, 1

p
+ 1

q
< 1

2

• •
D̃n−1 (n ≥ 5) • • • • • •

• •

[(k, l, m)]
3 ≤ k, l, m <∞
1
k

+ 1
l
+ 1

m
< 1

•
l•

k

m •

C̃n−1 (n ≥ 3) • 4 • • • • • • 4 • [(3, 3, 3, p)]
p = 4, 5

• p •

• •

•
B̃n−1 (n ≥ 4) • 4 • • • • • •

•

[(3, 4, 3, 4)]
• 4 •

•
4
•

Ẽ6 • • • • •

•

•

[(3, 5, 3, p)]
p = 4, 5

[(3, 3, 3, 3, 4)]

• 5 •

•
p
•

• 4 •
• •
•

Ẽ7 • • • • • • •

•

[p, 3, 5]
p = 4, 5

• p • • 5 •

[3, 5, 3] • • 5 • •

[p, 3, 3, 5]
p = 3, 4, 5

• p • • • 5 •

Ẽ8 • • • • • • • •

•
[5, 3

3]
•

• 5 •
•

F̃4 • • • 4 • •
[5, 3, 3

3]
•

• 5 • •
•

G̃2 • • 6 •

Ã1 • ∞ •
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6.Regular Hypertopes 59

3, 4 and 5, and not many finite examples of proper hypertopes of this type were known
for rank 4 and 5, since their groups are quite big. Some examples of small size were
obtained computationally in [FLW20, Table 3] and more examples and infinite families
of proper regular hypertopes of hyperbolic type were characterized [MW20; MW21]. In
Sections 9.3 and 9.3 the works of Weiss and Montero in [MW20] will be extended to
infinite families of regular hypertopes of type { 3

3, 5} and { 3
3, 3, 5}. Also, in Section 9.2

families of improper regular hypertopes of hyperbolic type {2p, 2p} (with p ≥ 3) will be
given through the halving operation.

A regular n-polytope or a regular 4-hypertope is said to be locally toroidal if its
maximal residues are either of spherical type or euclidean type, with at least one of
them being of euclidean type [MS02; FLPW21]. A generalization of this concept for
hypertopes of rank greater than 4 is yet to be established. When the defining relations
of the type-preserving automorphism group of a locally toroidal hypertope are those
corresponding to the Coxeter diagram with the only additional relations determining the
toroidal residues, we say it is a universal locally toroidal hypertope. As examples of locally
toroidal regular hypertopes, we have the polytopes of type {4, 4, 4} of Chapter 5 or the
proper hypertopes described in [CFHL18; FLW15]. Moreover, in Chapters 7 and 8 and
Section 9.2 infinite families of locally toroidal regular hypertopes will be given.

6.5 Halving Operation of non-degenerate polytopes

Recently, in [MW20], the halving operation was revisited and, furthermore, the condi-
tions under which it gives a regular hypertope, starting from a regular polytope, were
established. In what follows we recall important results that can be found in [MW20].

Let n ≥ 3 and let P be a regular non-degenerate n-polytope of type {p1, . . . , pn−1}
with automorphism group G(P) = 〈ρ0, . . . , ρn−1〉.

The halving operation is the map

η : 〈ρ0, ρ1, ρ2, . . . , ρn−1〉 → 〈ρ0ρ1ρ0, ρ1, ρ2, . . . , ρn−1〉 = 〈ρ̃0, ρ1, ρ2, . . . , ρn−1〉.

The halving group of P, denoted by H(P), is the image of the halving operation on
G(P). If n ≥ 3 and P is non-degenerate, then H(P) = 〈ρ̃0, ρ1, . . . , ρn−1〉 is a C-group
[MW20, Theorem 3.1] with the following Coxeter diagram

•ρ1
p2

•
ρ2

p3 •
ρ3

•
ρn−3

pn−2 •
ρn−2 ρn−1

pn−1 •

•
ρ̃0

p2

k

where k = p1 if p1 is odd, otherwise k = p1
2 . In this paper, we will focus on polytopes of

type {4, p2, . . . , pn−1}, hence the Coxeter diagram will be as follows.

•ρ1
p2

•
ρ2

p3 •
ρ3

•
ρn−3

pn−2 •
ρn−2 ρn−1

pn−1 •

•
ρ̃0

p2
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60 6.Regular Hypertopes

Let H(P) denote the coset indicence system Γ(H(P), (Hi)i∈{0,...,n−1}) associated with
the halving group of the non-generate regular polytope P, where Hi are the maximal
parabolic subgroups of H(P). Then, H(P) is flag-transitive [MW20, Proposition 3.2].
Hence, using Theorem 6.3.2, we have the following corollary.

Corollary 6.5.1. [MW20, Corollary 3.2] Let P be a non-degenerate regular n-polytope
and I = {0, . . . , n− 1}. Let H(P) be the halving group of P. Then the incidence system
H(P) = Γ(H(P), (Hi)i∈I) is a regular hypertope such that AutI(H(P)) = H(P).

If P is a polytope of type {4, p2, p3 . . . , pn−1}, then we denote the type of H(P) as{
p2
p2
, p3, . . . , pn−1

}
, and its universal automorphism group as

[
p2
p2
, p3, . . . , pn−1

]
. More-

over, as stated in [MW20], H(P) has index 2 on G(P) if the set of vertices of P is
bipartite, which is only possible if p1 is even.
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Chapter 7

Two families of locally toroidal
hypertopes

Locally toroidal hypertopes were one of the first type of hypertopes to be extensively
studied in [FLW15]. In this paper, the authors used Tits’s coset geometries to compu-
tationally obtain lists of finite universal locally toroidal regular hypertopes with toroidal
residues of type {3, 6}. This was done using Coxeter groups with the intended diagram
which were then parameterized using the parameters of their toroidal residues. Contrary
to what happens in abstract regular polytopes, this parametrization can lead to hyper-
topes with toroidal residues smaller than what would be expected by the factorization.
That is, the hypertopes had the expected diagrams but the residues did not correspond
to the given parameters (this will be explained in detail in Section 7.3). Hence, this raises
the importance of confirming the correctness of the residues, since it may mislead when
the parameters and the residues differ.

In this chapter, we will revisit two families of hypertopes that were introduced in
[FLW15], prove that their automorphism groups are C-groups, and confirm the correct-
ness of the toroidal residues. Also, faithful transitive permutation representations will
prove their usefulness when proving the C-group condition in Section 7.1. The results
presented in this chapter are the product of a visit of Dimitri Leemans and Asia Ivić
Weiss to the University of Aveiro and can be found in [FLPW21].

7.1 A family of locally toroidal hypertopes arising
from {4, 3, 4}(s,s,0)

Consider the cubic toroids {4, 3, 4}(s,s,0) with automorphism group [4, 3, 4] := 〈τ0, τ1, τ2, τ3〉
factorized by the extra relation (τ0τ1τ2τ3τ2)2s. Using a Petrie operation, such that
α0 := τ0, α1 := τ1, α2 := τ2 and α3 := τ1τ3, we get a group with diagram

• 6α3 α2

4

•

•
4α0 α1
•

and satisfying the relations (α0α1α2α1α3α2)2s = id and (α1α2α3)4 = id. Now taking
its index 2 subgroup G := 〈αα0

1 , α1, α2, α3〉, we get an infinite family of universal locally
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62 7.Two families of locally toroidal hypertopes

toroidal regular hypertopes with the following Coxeter diagram where ρ0 : α1, ρ1 := α2,
ρ2 := α3 and ρ3 := αα0

1 .

•

• 6
ρ2 ρ1

•

ρ0

ρ3
•

As this diagram can be obtained from the diagram of the tetrahedron by adding an edge
with label 6, this is called a hexagonal extension of the diagram of a tetrahedron. The
family of groups found is an incidence system with toroidal residues {3, 6}(2,0) (corre-
sponding to G0) and {3, 6}(s,0) (corresponding to G3, for s ≥ 3). However, the result
of theese operations, the Petrie operation and the second one, which corresponds with
doubling the fundamental region, do not guarantee that G is a C-group nor that its coset
incidence system is flag-transitive. Hence, our goal is to prove the following theorem.

Theorem 7.1.1. Let G be the group with the following presentation

G := 〈ρ0, ρ1, ρ2, ρ3 | ρ2
0 = ρ2

1 = ρ2
2 = ρ2

3 = (ρ0ρ1)3 = (ρ0ρ2)2 = (ρ0ρ3)2 =
(ρ1ρ2)6 = (ρ1ρ3)3 = (ρ2ρ3)2 = (ρ0(ρ1ρ2)2ρ1)s = (ρ3(ρ1ρ2)2ρ1)2〉.

Then Γ(G; (Gi){0,1,2,3}) is an universal locally toroidal regular hypertope with toroidal
residues {3, 6}(2,0) and {3, 6}(s,0).

Proof. This follows from Propositions 7.1.2 and 7.1.3.

Consider the FTPR graphs of degree 3s given in Lemma 4.3.11 for s even and odd
in Section 4.3.3, and the following FTPR graph of {3, 6}(2,0) acting on the set of faces.

• 2 •

•
2
•

1
•

2

0

•
1

0

•
2
•

Combining these graphs we get a transitive permutation representation graph that en-
compasses the nature of both toroidal residues of G which are the automophism groups
of {3, 6}(2,0) and {3, 6}(s,0). We now prove that this graph gives a FTPR of G and, with
this, we will be able to prove that G is a C-group.

Proposition 7.1.2. Let s ≥ 3. The following graphs are faithful transitive permutation
representation graphs, of degree 4s, of the group G given in Theorem 7.1.1. Moreover, G
is a C-group.

s even

• •
3

2 •
3

• •
3

2 •
3

•
•

3
•

1
•

0

2

•
2

0
1
•

2
•

1
•

0

2

•
2

0
1
•

2
•

1
• •

0

2

•
2

0
1
•

3
•

• • •
s odd

• •
3

2 •
3

• •
3

2 •
3

• •
3

2 •
3

•
3
•

1
•

0

2

•
2

0
1
•

2
•

1
•

0

2

•
2

0
1
•

2
•

1
• •

0

2

•
2

0
1
•

2
•

1
•

0

2 •
• • •
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7.Two families of locally toroidal hypertopes 63

Proof. Let H be the group presented by the transitive permutation representation on ei-
ther graphs. First of all, it can be easily that H ≤ G since ρ2

0 = ρ2
1 = ρ2

2 = ρ2
3 = (ρ0ρ1)3 =

(ρ0ρ2)2 = (ρ0ρ3)2 = (ρ1ρ2)6 = (ρ1ρ3)3 = (ρ2ρ3)2 = (ρ0(ρ1ρ2)2ρ1)s = (ρ3(ρ1ρ2)2ρ1)2 =
idH . Hence, |H| ≤ 48s3 Consider in both graphs the vertex on the left. The stabilizer of
this vertex is the group generated by ρ0, ρ1 and ρ2, of size 12s2. Since H is transitive on
4s vertices, then |H| ≥ 48s3. Hence, the graph is a FTPR of G. In order to prove that G
is a C-group, let us use the FTPR graphs and the intersection property in Equation 2.1.
Let G be either of the graphs presented and let GJ be the subgraph of G with the same
vertices of G but only with edges with label in J ⊂ I = {0, 1, 2, 3}. It is easy to see that
all subgraphs of GI\{i} are faithful (intransitive) permutation representations of C-groups
and, hence, the maximal parabolic subgroups Gi are also C-groups. Hence, by Propo-
sition 2.3.3, we need only to prove the intersection property on the maximal parabolic
subgroups. Graph wise, it can be easily seen that GI\{i} ∩GI\{j} = GI\{i,j}, with i, j ∈ I.
Hence, it is clear that the intersection condition verifies, and so G is a C-group.

The proposition above describes one FTPR graph with 4s vertices for the C-group
G. It is most likely the minimal degree of a FTPR of that group, having in mind the
results obtained in Section 4.

By Theorem 6.3.2, to complete the proof of Theorem 7.1.1 we only need to prove
flag-transitivity.

Proposition 7.1.3. If G is the group of Theorem 7.1.1 and Gi := 〈ρj | j ∈ I \ {i}〉 with
i ∈ I := {0, 1, 2, 3}, then Γ(G; (Gi)i∈I) is flag-transitive.

Proof. To prove that G is flag-transitive on Γ, by Lemma 6.3.4 it is sufficient to prove
the following equality for every possible subset {i, j, k} of I with three distinct elements.

(Gi ∩Gj)(Gi ∩Gk) = Gi ∩ (GjGk),

since all maximal parabolic subgroupsGi are flag-transitive in Γ(Gi, (Gj)j∈I\{i}) (they are
automophism groups of abstract regular polytopes). In any of these cases, the inclusion
(Gi ∩ Gj)(Gi ∩ Gk) ⊆ Gi ∩ (GjGk) is trivial. Let us prove the other inclusion for each
case separately.

Case {i, j, k} = {0, 1, 2}: Since G1 = {idG, ρ0, ρ2, ρ3, ρ0ρ2, ρ0ρ3, ρ2ρ3, ρ0ρ2ρ3} and
G1G2 =

⋃
g∈G1

gG2, it follows that G1G2 = G2 ∪ ρ2G2 and thus G0 ∩ G1G2 = G0,2 ∪
(G0 ∩ ρ2G2). As ρ2 ∈ G0, we get G0 ∩ ρ2G2 = ρ2(G0 ∩ G2) = ρ2G0,2 ⊆ G0,1G0,2. It is
now clear that G0 ∩G1G2 = G0,1G0,2, as wanted.

The cases where {i, j, k} are equal to {0, 1, 3} and {2, 1, 3} follow a similar proof.
Case {i, j, k} = {0, 2, 3}: Now we have G2G3 = G3 ∪ ρ3G3 ∪ ρ1ρ3G3 ∪ ρ0ρ1ρ3G3 and

therefore

G0 ∩G2G3 = G0,3 ∪ (G0 ∩ ρ3G3) ∪ (G0 ∩ ρ1ρ3G3) ∪ (G0 ∩ ρ0ρ1ρ3G3).

Since G0∩ρ3G3 ⊆ ρ3G0,3 and G0∩ρ1ρ3G3 ⊆ ρ1ρ3G0,3, we get G0∩G2G3 ⊆ G0,3∪ρ3G0,3∪
ρ1ρ3G0,3 ∪ (G0 ∩ ρ0ρ1ρ3G3). The only difficulty now is to prove that G0 ∩ ρ0ρ1ρ3G3 ⊆
G0,2G0,3. Let α ∈ G0 ∩ ρ0ρ1ρ3G3 and consider the following numbering of the left side
vertices of one of the FTPR graphs given in Proposition 7.1.2.

5

1
3

2
1

3

0

2

6

2

0

1

4
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64 7.Two families of locally toroidal hypertopes

For every α ∈ ρ0ρ1ρ3G3, α acts on the FTPR graph by sending vertex 5 to vertex 1.
On the other hand 1 and 5 are in different orbits of G0 and hence G0 ∩ ρ0ρ1ρ3G3 = ∅.
With this we conclude that G0 ∩G2G3 ⊆ G0,2G0,3 and therefore Γ is flag-transitive.

7.2 A family of locally toroidal hypertopes arising
from {3, 3, 4, 3}(s,0,0,0)

In [FLW15], the authors suggested the existence of an infinite family of universal finite
locally toroidal regular hypertopes whose Coxeter diagram is a 4-circuit of type (3, 6, 3, 6),
as pictured below, with four toroidal rank 3 residues being {3, 6}(s,s), {3, 6}(1,1), {3, 6}(2,0),
and {3, 6}(2,0).

•
6

•
6

• •
However, the authors did not prove that those were exactly the toroidal residues of this
potential regular hypertope, nor that it was actually a regular hypertope. The authors
did observe that this family could be obtained from toroids of type {3, 3, 4, 3}(s,0,0,0) (for
more information on this family, we refer to [MS02, Section 6E]). In the following propo-
sition, we use this observation given in [FLW15] to derive a ggi whose maximal parabolic
subgroups are automorphism groups of the toroidal maps specified above. Moreover, we
will prove that the group obtained satisfies the intersection property, hence is a C-group,
and that it is flag-transitive on its coset incidence system.

Proposition 7.2.1. Let s ≥ 2 and H = 〈ρ0, ρ1, ρ2, ρ3, ρ4〉 be the automorphism group of
the regular toroid {3, 3, 4, 3}(s,0,0,0). The group G = 〈τ0, τ1, τ2, τ3〉 with τ0 := ρ1, τ1 :=
ρ2, τ2 := ρ1ρ3, τ3 := ρ0ρ4 is a ggi such that G0, G1, G2 and G3 are the automorphism
groups of the toroidal maps {3, 6}(s,s), {3, 6}(1,1), {3, 6}(2,0), and {3, 6}(2,0) respectively.
Moreover, the groups G and H are isomorphic.

Proof. Let H be the automorphism group of the rank 5 toroid {3, 3, 4, 3}(s,0,0,0). The
group H is obtained as the quotient of the affine Coxeter group [3, 3, 4, 3] having the
Coxeter diagram

•ρ0 •ρ1 • 4ρ2 •ρ3 ρ4•

by adding the relation (ρ0ρ1(ρ2ρ3ρ4)3)2s = idH . Consider the group G := 〈τ0, τ1, τ2, τ3〉
generated by the involutions

τ0 := ρ1, τ1 := ρ2, τ2 := ρ1ρ3, τ3 := ρ0ρ4.

As it was shown in [FLW15], we can write ρ0 = (τ0τ3)2τ0 and ρ4 = (τ0τ3)3, meaning that
G ∼= H. We have that G has the following Coxeter diagram (as a ggi), as wanted.

•τ3 τ2

6

•
6

•
τ0 τ1

•

Claudio Alexandre Guerra Silva Gomes da Piedade Tese de Doutoramento



7.Two families of locally toroidal hypertopes 65

We now prove that the toroidal residues Gi are as stated in the proposition. From the
diagram we see that every Gi determines a regular toroidal map of type {3, 6}, and hence
either a map {3, 6}(k,0) with automorphism group of order 12k2 or a map {3, 6}(k,k) with
automorphism group of order 36k2. We now determine each group Gi for i ∈ {0, 1, 2, 3}.

The group G1 = 〈τ2, τ3, τ0〉 = 〈ρ1ρ3, ρ0ρ4, ρ1〉. As ρ4 = (ρ1ρ0ρ4)3, we have that
G1 = 〈ρ1, ρ3, ρ0, ρ4〉, i.e. G1

∼= H2
∼= D3 × D3. Thus G1 must be the automorphism

group of the toroidal map {3, 6}(1,1).
Now consider G2 = 〈τ1, τ0, τ3〉 = 〈ρ2, ρ1, ρ0ρ4〉. As ρ4 = (ρ1ρ0ρ4)3, we conclude that

G2
∼= H3

∼= C2×S4. Hence G2 has order 48 and is the automorphism group of {3, 6}(2,0).
Similarly, as G3 = 〈τ0, τ1, τ2〉 = 〈ρ1, ρ2, ρ1ρ3〉, G3

∼= H0,4
∼= C2 × S4. Hence G3 has

order 48 and is the automorphism group of {3, 6}(2,0).
Let us now consider the group G0. We have G0 = 〈τ3, τ2, τ1〉 = 〈ρ0ρ4, ρ1ρ3, ρ2〉.

To prove that G0 is the automorphism group of {3, 6}(s,s) we will need to prove that
(τ3(τ2τ1)2)2 has order s and that τ3(τ2τ1)2τ2 has order 3s. Indeed, as the automorphism
group of {3, 6}(s,0) is a quotient of the automorphism group of {3, 6}(s,s), we have to
guarantee that the group is not smaller than expected.

We may take the vertex-set of the toroid {3, 3, 4, 3} to be Z4∪(Z4+
(

1
2 ,

1
2 ,−1

2 ,−1
2

)
), i.e.

the set of points of the euclidian 4-space whose cartesian coordinates are all integers or all
halves of odd integers [MS02, Section 6E]. As a space-form, the toroid {3, 3, 4, 3}(s,0,0,0) is
the euclidian 4-space factorized by Λ(s,0,0,0) = sΛ(1,0,0,0) whose basis is {e1, e2, e3,

1
2(e1 +

e2 + e3 + e4)} (where ei, i ∈ {1, . . . , 4} are the vectors of the canonical basis).
Let us now prove that v := τ3(τ2τ1)2τ2 = ρ0ρ4(ρ1ρ3ρ2)2ρ1ρ3 is a translation of order

3s. Consider the involution σ := ρ1ρ2ρ3ρ2ρ1 and the hyperplane reflexions Ri (for
i ∈ {0, . . . , 4}) and S as defined on page 171 of [MS02, Section 6E].

(x1, x2, x3, x4)R0 = (1− x1, x2, x3, x4)
(x1, x2, x3, x4)R1 = (x1, x2, x3, x4)− 1

2(x1 − x2 − x3 − x4)(1,−1,−1,−1)
(x1, x2, x3, x4)R2 = (x1, x2, x3,−x4)
(x1, x2, x3, x4)R3 = (x1, x2, x4, x3)
(x1, x2, x3, x4)R4 = (x1, x3, x2, x4)
(x1, x2, x3, x4)S = (x2, x1, x3, x4)

Then v = ρ0ρ4ρ3ρ2σρ3 and its action on the euclidean 4-space is given by V = R0R4R3R2SR3.
We find that xV = (x3, 1−x1,−x2, x4) and (x1, x2, x3, x4)V 3 = (−1, 1,−1, 0)+(x1, x2, x3, x4).
Consequently, V is a translation of order 3s. Therefore G0 is the automorphism group
of either {3, 6}(s,s) or of {3, 6}(3s,0).

Let us now prove that (τ3(τ2τ1)2)2 = (ρ0ρ4(ρ1ρ3ρ2)2)2 has order s, or equivalently
that U = (R0R4(R1R3R2)2)2 is a translation of order s. Let P = R0R4(R1R3R2)2. Then
U = P 2. The action of P on the euclidean 4-space is described by the following equality.

(x1, x2, x3, x4)P =
(1

2
,
1

2
,−1

2
,−1

2

)
+

1

2


−1 −1 1 1
−1 1 1 −1
1 1 1 1
1 −1 1 −1



x1

x2

x3

x4


Let M be the 4 × 4 matrix above. As M2 = 4I4 (where I4 denotes the 4 by 4 identity
matrix) and (1

2 ,
1
2 ,−1

2 ,−1
2)M = (−2, 0, 0, 0), we get that U(= P 2) is a translation defined

by (x1, x2, x3, x4)U = (−1
2 ,

1
2 ,−1

2 ,−1
2) + (x1, x2, x3, x4) that has order s. With this we

have shown that G0 is the automorphism group of {3, 6}(s,s).

Claudio Alexandre Guerra Silva Gomes da Piedade Tese de Doutoramento



66 7.Two families of locally toroidal hypertopes

Proposition 7.2.2. The group G = 〈τ0, τ1, τ2, τ3〉 of Proposition 7.2.1 is a C-group.

Proof. Let H be the automorphism group of the rank 5 toroid {3, 3, 4, 3}(s,0,0,0) and let G
be as in the previous proof. We have shown in Proposition 7.2.1 that G1 = H2, G2 = H3

andG3 = H0,4. SinceH is a C-group, Gi∩Gj = Gi,j whenever {i, j} ⊂ {1, 2, 3}. SinceG0

is a C-group (the automorphism group of a toroidal map {3, 6}(s,s)), by Proposition 2.3.3
we only need to prove that G0 ∩Gk = G0,k for every k ∈ {1, 2, 3}.

Recall that G0 = 〈τ1, τ2, τ3〉 = 〈ρ2, ρ1ρ3, ρ0ρ4〉. For each k, the fact that G0 ∩ Gk ⊇
G0,k is trivial. To prove the other inclusion we consider each case in turn.

Case k = 1: We know that G1 = 〈ρ1ρ3, ρ0ρ4, ρ1〉 = 〈ρ3, ρ0, ρ4, ρ1〉 = H2
∼= D3 ×D3

and that G0,1
∼= D3. With this, we have the inclusion chain D3

∼= G0,1 ⊆ G0 ∩ G1 ⊆
G1
∼= D3 × D3. Suppose that G0 ∩ G1 � D3. Then, from the subgroup lattice of

D3 ×D3, G0 ∩G1 can either be C3 ×D3, C2 ×D3 or (C3 × C3)o C2. For the first two
cases, there would exist α ∈ G0 ∩G1 centralizing G0,1. But there is no such element in
[3, 6](1,1). Consider then G0 ∩G1

∼= (C3 × C3)o C2. It can be checked computationally
that 〈ρ0ρ1, ρ3ρ4〉 ≤ G0 ∩G1. Moreover, that would mean that ρ0ρ1 ∈ G0, which in turn
results in ρ0ρ1ρ2ρ1ρ0ρ2ρ0ρ1ρ2 = ρ0 ∈ G0, which implies G0 = G, a contradiction. As a
consequence, G0,1 = G0 ∩G1.

Case k = 2: We have G0,2
∼= 〈ρ2, ρ0ρ4〉 ∼= C2 × C2 and G2

∼= H3
∼= C2 × S4, and

suppose that G0 ∩ G2 6= G0,2. Since we have the inclusion G0,2 ≤ G0 ∩ G2 ≤ G2,
we can check computationally the subgroup chain of G2

∼= C2 × S4 and determine the
proper subgroups of G2 that contain 〈ρ2, ρ0ρ4〉 = G0,2 but are distinct from it. These
are 〈ρ0, ρ2, ρ4〉 ∼= C2×C2×C2 and 〈ρ0, ρ1ρ2ρ0ρ1, ρ2, ρ4〉 ∼= C2×D4. In either cases, this
implies that both ρ0 and ρ4 are in G0, which in turn result in ρ1ρ3ρ4ρ3ρ1ρ4ρ1ρ3ρ4 = ρ1 ∈
G0, a contradiction as in case k = 1. Consequently G0,2 = G0 ∩G2.

Case k = 3: Lastly, we have G0,3
∼= 〈ρ2, ρ1ρ3〉 ∼= D6 and G3 = 〈ρ1, ρ2, ρ1ρ3〉 = H0,4

∼=
C2 × S4. There is no other subgroup in the subgroup chain between D6 and C2 × S4.
Hence G0 ∩G3 = G0,3.

As a result, we have that G is a C-group.

Theorem 7.2.3. Let G = 〈τ0, τ1, τ2, τ3〉 be as defined in Proposition 7.2.1. The incidence
system given by Γ(G; (Gi)i∈I) with Gi := 〈τj |j ∈ I \ {i}〉 for all i ∈ I := {0, 1, 2, 3} is a
finite universal locally toroidal regular hypertope whose Coxeter diagram is a 4-circuit of
type (3, 6, 3, 6) having the rank 3 residues {3, 6}(s,s), {3, 6}(1,1), {3, 6}(2,0), and {3, 6}(2,0)

(with type-preserving automorphism groups G0, G1, G2 and G3, respectively).

Proof. From Theorem 6.3.2, Propositions 7.2.1 and 7.2.2 we only need to prove that G is
flag-transitive in Γ. For that, by Lemma 6.3.4, we need to prove one of the two equivalent
equalities Gi,jGi,k = Gi∩(GjGk) or GiGj,k = GiGj∩GiGk for {i, j, k} ⊂ {0, 1, 2, 3}, since
all Gi are flag-transitive in Γ(Gi, (Gj)j∈I\{i}). In both equalities, the direct inclusion is
trivial. We now prove the other inclusion for each case separately.

As in Proposition 7.2.1, let H := 〈ρ0, ρ1, ρ2, ρ3, ρ4〉 be the group of the regular poly-
tope {3, 3, 4, 3}(s,0,0,0).

Case {i, j, k} = {1, 2, 3}: Since H is a string C-group of a regular polytope and since
G1 = H2, G2 = H3, and G3 = H0,4, the equivalent equalities are satisfied.

Case {i, j, k} = {0, 1, 2}: In this case G1G2 = G2 ∪ ρ3G2 ∪ ρ4ρ3G2. Hence, G0 ∩
(G1G2) = G0,2 ∪ (G0 ∩ ρ3G2) ∪ (G0 ∩ ρ4ρ3G2). It is easy to see that G0 ∩ ρ3G2 =
ρ1ρ3G0∩ρ1ρ3G2 = ρ1ρ3G0,2 and that G0∩ρ4ρ3G2 = G0∩ρ4ρ0ρ1ρ3G2 = ρ4ρ0ρ1ρ3(G0,2).
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7.Two families of locally toroidal hypertopes 67

Since both ρ3ρ1 and ρ3ρ1ρ4ρ0 ∈ G0,1, we conclude that G0 ∩ (G1G2) ⊆ G0,1G0,2, as
wanted.

Case {i, j, k} = {0, 1, 3}: We have G0G1 = G0 ∪ G0ρ0 ∪ G0ρ1 ∪ G0ρ0ρ1 ∪ G0ρ0ρ3 ∪
G0ρ0ρ1ρ0 and G0G3 = G0 ∪ G0ρ1 ∪ G0ρ1ρ2 ∪ G0ρ1ρ2ρ3. We claim that the cardinality
of the following set C of cosets is 8 (meaning that all cosets are pairwise distinct).

C := {G0, G0ρ0, G0ρ0ρ1, G0ρ1ρ0, G0ρ0ρ1ρ0, G0ρ1, G0ρ1ρ2, G0ρ1ρ2ρ3}.

As G0∩〈ρ0, ρ1〉 ⊆ G0∩G1∩〈ρ0, ρ1〉 = G0,1∩〈ρ0, ρ1〉, and the right-hand intersection
is trivial, the first six cosets must be distinct. To prove that the remaining cosets are
also distinct some more calculations are needed. Let us prove that G0ρ0 6= G0ρ1ρ2ρ3.
Assume that ρ0ρ3ρ2ρ1 ∈ G0. Since ρ1ρ3 ∈ G0 and ρ3 commutes with both ρ0 and ρ1,
we have that ρ3ρ1(ρ0ρ3ρ2ρ1) = ρ1ρ0ρ2ρ1 ∈ G0. As ρ1ρ0ρ2ρ1 also belongs to G2 it must
belong to G0∩G2 = 〈ρ2, ρ0ρ4〉 = {idG, ρ2, ρ0ρ4, ρ2ρ4ρ0}. We can easily see that any case
leads to a contradiction: if ρ1ρ0ρ2ρ1 = idG, then ρ0ρ2 = idG; if ρ1ρ0ρ2ρ1 = ρ2, then
ρ1ρ0ρ2 = ρ2ρ1, but ρ1ρ0ρ2 has order 4 and ρ2ρ1 has order 3; if ρ1ρ0ρ2ρ1 = ρ0ρ4, then
ρ4 = ρ0ρ1ρ0ρ2ρ1; at last if ρ1ρ0ρ2ρ1 = ρ2ρ0ρ4, then ρ4 = ρ0ρ2ρ1ρ0ρ2ρ1.

Similar calculations made us conclude that |C| = 8. From this we get G0G1∩G0G3 =
G0 ∪G0ρ1 ⊆ G0G1,3, as desired.

Case {i, j, k} = {0, 2, 3}: In this case G0G2 = G0 ∪G0ρ0 ∪G0ρ1 ∪G0ρ0ρ1 ∪G0ρ1ρ0 ∪
G0ρ1ρ2 ∪ G0ρ0ρ1ρ0 ∪ G0ρ0ρ1ρ2 ∪ G0ρ1ρ0ρ2 ∪ G0ρ0ρ1ρ0ρ2 ∪ G0ρ1ρ0ρ2ρ1 ∪ G0ρ0ρ1ρ0ρ2ρ1

and G0G3 = G0 ∪ G0ρ1 ∪ G0ρ1ρ2 ∪ G0ρ1ρ2ρ3. We claim that all the cosets of these
partition decompositions of G0G2 and G0G3 are distinct when the representatives of the
coset are different. We omit the calculations as the arguments are similar to those used
in the above cases and can easily be checked. Then, G0G2∩G0G3 = G0∪G0ρ1∪G0ρ1ρ2

and consequently G0G2 ∩G0G3 ⊆ G0(G2 ∩G3), as desired.
With this we conclude that Γ is flag-transitive and therefore a regular hypertope.

7.3 Locally Toroidal Hypertopes with unexpected residues

In the previous section, we proved the existence of a family of locally toroidal hypertopes
which was suggested in the first line of Table 8 of [FLW15]. In this same table a list
of universal locally toroidal hypertopes with a 4-circuit diagram of type (3, 6, 3, 6) was
given, results which were obtained using Magma [BCP97]. Tits algorithm was used in
that research to construct regular (and also chiral) incidence geometries from groups with
the defining relations for the groups with the 4-circuit diagram of type (3, 6, 3, 6) together
with four additional relations which determine the toroidal maps {3, 6}s, {3, 6}t, {3, 6}u,
and {3, 6}v.

In all cases, from lines 2 to 12, this construction leads to a hypertope. However, the
authors assumed that the toroidal rank 3 residues for each hypertope in the table would
be determined by the values of the eight parameters s = (a, b), t = (c, d), u = (e, f),
v = (g, h), which was not the case. Specifically, in lines 2 and 3 this fails as some of
the toroidal residues are in fact smaller than what would be expected by the defining
relations of that toroidal residue.

The type-preserving automorphism group of the hypertope of line 2 of Table 8 of
[FLW15] is the group G := G(s,t,u,v) with (s, t,u,v) = ((2, 0), (2, 0), (1, 1), (3, 0)) as
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68 7.Two families of locally toroidal hypertopes

having the following presentation (in [FLW15] the authors considered the rotational sub-
group instead).

G = 〈ρ0, ρ1, ρ2, ρ3|ρ2
0 = ρ2

1 = ρ2
2 = ρ2

3 = (ρ0ρ1)3 = (ρ0ρ2)6 = (ρ0ρ3)2 =
= (ρ1ρ2)2 = (ρ1ρ3)6 = (ρ2ρ3)3 = (ρ2(ρ3ρ1)2ρ3)3 = (ρ3(ρ2ρ0)2ρ2)2 =
= (ρ0(ρ1ρ3)2)2 = (ρ1(ρ0ρ2)2ρ0)2 = idG〉

(7.1)

The maximal parabolic subgroups G1, G2, and G3 are the type-preserving auto-
morphism groups of {3, 6}(2,0), {3, 6}(1,1), and {3, 6}(2,0) respectively. However, after a
closer inspection, G0 turns out to be the automorphism group of a toroidal regular map
{3, 6}(1,1), which is covered by the automorphism group of {3, 6}(3,0) (the toroidal residue
that was expected). We note that changing the presentation of G given above, replac-
ing the relator (ρ2(ρ3ρ1)2ρ3)3 by (ρ2(ρ3ρ1)2))2 (the relator of the toroidal regular map
{3, 6}(1,1)), we get (ρ1ρ3)2 = idG, and the resulting hypertope turns out the universal
rank 4 locally toroidal regular polytope {{3, 6}(2,0), {6, 3}(2,0)} of type {3, 6, 3} with 240
chambers (see [Wei84] and also Table 11E1 of [MS02]) and not the hypertope determined
by the group presentation 7.1.

The same happens to the hypertope in line 3 of Table 8 of [FLW15] that was con-
structed from the rotational subgroup of the C-group G := G(s,t,u,v) with (s, t,u,v) =
((2, 0), (2, 0), (1, 1), (6, 0)) with the following presentation.

G = 〈ρ0, ρ1, ρ2, ρ3|ρ2
0 = ρ2

1 = ρ2
2 = ρ2

3 = (ρ0ρ1)3 = (ρ0ρ2)6 = (ρ0ρ3)2 =
= (ρ1ρ2)2 = (ρ1ρ3)6 = (ρ2ρ3)3 = (ρ2(ρ3ρ1)2ρ3)6 = (ρ3(ρ2ρ0)2ρ2)2 =
= (ρ0(ρ1ρ3)2)2 = (ρ1(ρ0ρ2)2ρ0)2 = idG〉

(7.2)

In this case, G0 is the automorphism group of the toroidal map {3, 6}(2,2) and not of
{3, 6}(6,0), which covers it. It can easily be checked that replacing the relator (ρ2(ρ3ρ1)2ρ3)6

by (ρ2(ρ3ρ1)2)4 yields the group of the same locally toroidal regular polytope {3, 6, 3} as
above.

Another important aspect to be noted is that the ordering of the residues (arising
from the Coxeter diagram) matters. In the previous section, we have a family of regular
hypertopes with toroidal residues {3, 6}(s,s), {3, 6}(1,1), {3, 6}(2,0), and {3, 6}(2,0) for the
maximal parabolic subgroups G0, G1, G2 and G3, respectively, but a different order of
these residues on the 4-circuit (3, 6, 3, 6) may lead to different hypertopes or even may
not lead to hypertopes at all.
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Chapter 8

Locally toroidal hypertopes from
FTPR graphs

In this chapter we give two new infinite families of regular 4-hypertopes having the
following diagram that we will denote by {3, 4

4}. We also say that these are hypertopes
of type {3, 4

4}.

•

•ρ3 ρ1•
4

ρ0

4

ρ2
•

We construct these regular hypertopes from a C-group using what is known as Tits’
algorithm, which was described in Proposition 6.3.1. The C-groups in this chapter were
found by combining FTPR graphs of toroidal maps {4, 4}(s,0) found in Chapter 4 (Propo-
sitions 4.2.7 and 4.2.9), with FTPR graphs of the cube and of the hemi-cube. Here, it
will be evident how the use of FTPR graphs, together with Tits algorithm, is an efficient
method to discover new families regular hypertopes.

8.1 Star 4-hypertopes having the map {4, 4}(s,0), the hemi-
cube and the cube as rank 3 residues

Let s be an even number and s ≥ 4. Consider the following FTPR graph, having 3s
vertices, which was obtained combining FTPR graphs of the cube, the hemi-cube and of
a FTPR graph of degree 2s of {4, 4}(s,0) given in Proposition 4.2.7 with labels 0 and 2
interchanged (which is also, by duality, a FTPR graph of a map of {4, 4}(s,0)).

• 1 • 0 • 1 • 2 • 1 • 0 • 1 • 2 • • 1 • 0 • 1 •

•
0x

3

•
3

•
0

3

•
3

•
0

3

•
3

Let G = 〈ρ0, ρ1, ρ2 , ρ3〉 be the group with the above FTPR graph. Consider the
incidence system (G, (Gi)i∈{0,1,2,3}) where Gi = 〈ρj | j 6= i〉. It can be easily seen that
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70 8.Locally toroidal hypertopes from FTPR graphs

the maximal parabolic subgroups of G are G0
∼= [4, 3], G1

∼= C2 × C2 × C2, G2
∼= [4, 3]3

and G3
∼= [4, 4](s,0).

Proposition 8.1.1. G is a C-group.

Proof. For i ∈ {0, 1, 2, 3}, Gi is known to be a C-group, thus, by Proposition 2.3.3, we
need only to prove that Gi∩Gj = Gi,j , for distinct i, j ∈ {0, 1, 2, 3}. As Gi,j ≤ Gi∩Gj we
only need to prove the other inclusion. First G1 ∩Gj ∼= C2 ×C2

∼= G1,j for j ∈ {0, 2, 3}.
Now since G0,2 = 〈ρ1, ρ3〉 ∼= S3 is a maximal subgroup of G2 and G2,3 = 〈ρ0, ρ1〉 ∼= D4 is
a maximal subgroup of G2, we have, G0 ∩G2 = G0,2 and G2 ∩G3 = G2,3.

Consider the subgroups G0 and G3. The subgroup G0 acts faithfully on nine points,
as follows.

1 1 2 5 1 6 2 7 1 8

3

3

4

3

9

3

The subgroup G0 ∩ G3 must be a subgroup of the stabilizer of vertex 4 in G0, which is
〈ρ1, ρ2〉. Hence, G0 ∩G3 = G0,3.

Proposition 8.1.2. The group G has the following presentation.

〈ρ0, ρ1, ρ2, ρ3 | ρ2
0, ρ

2
1, ρ

2
2, ρ

2
3, (ρ0ρ1)4, (ρ0ρ2)2, (ρ0ρ3)2,

(ρ1ρ2)4, (ρ1ρ3)3, (ρ2ρ3)2, (ρ0ρ1ρ2ρ1)s, (ρ0ρ1ρ3)3〉

Moreover, the order of G is 24s3.

Proof. Let H be the group with the presentation given in this proposition. We easily
get from the FTPR graph that G ≤ H. Let δ := ρ0ρ3. The group generated by the
set {δ, ρ1, ρ2, ρ3}, which is isomorphic to H, is a quotient of an infinite Coxeter group
having the following diagram.

•

• 4ρ2 ρ1•

ρ3

δ

τ

•

Since (ρ2ρ1δ)
3 = ρ2ρ

ρ1
2 ρ

ρ1δ
2 and the involutions ρ2, ρ

ρ1
2 and ρρ1δ2 commute with each

other, the order of ρ2ρ1δ is 6. Thus 〈δ, ρ1, ρ2〉 ∼= [4, 3]. In addition (δρ3ρ1ρ2ρ1)s = id.
Thus H admits a duality τ as suggested by the diagram above.

Consider the group H∗ := 〈τ, ρ3, ρ1, ρ2〉, where τ is an involution commuting with
both ρ1 and ρ2, and such that ρτ3 = δ. It turns out that H∗ is a factorization of a Coxeter
group with linear diagram

• 4τ ρ3• ρ1• 4 ρ2•
by the relation (τρ3τρ3ρ1ρ2ρ1)s = id. Let u := τρ3ρ1ρ2ρ1ρ3 and v := uρ3 . As s is even,
(τρ3τρ3ρ1ρ2ρ1)s = (τv)s = (τvτv)s/2 = vs = id. Hence, H∗ is the automorphism group
of the toroid {4, 3, 4}(s,0,0), of order 48s3. Since H is a index 2 subgroup of H∗, we have
that |H| = 24s3.
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8.Locally toroidal hypertopes from FTPR graphs 71

Now consider the vertex x of the FTPR graph of G.

• 1 • 0 • 1 • 2 • 1 • 0 • 1 • 2 • • 1 • 0 • 1 •

•
0x

3

•
3

•
0

3

•
3

•
0

3

•
3

The stabilizer of x, StabG(x), is a subgroup of 〈ρ1, ρ2, ρ0ρ1ρ0, ρ3ρ1ρ2ρ1ρ3〉. We have
that K := 〈ρ1, ρ2, ρ0ρ1ρ0〉 is an index 2 subgroup of the automorphism group of the map
{4, 4}(s,0). Hence, |K| = 4s2. By Proposition 8.1.1, ρ3ρ1ρ2ρ1ρ3 /∈ K, hence |StabG(x)| ≥
2|K| = 8s2. Therefore, by the Orbit-Stabilizer Theorem, we have that |G| ≥ 8s2 · 3s =
24s3. Consequently G ∼= H.

Proposition 8.1.3. For (i, j, k) ∈ {(0, 1, 2), (0, 1, 3), (2, 1, 3), (0, 2, 3)},

Gi ∩GjGk = Gi,jGi,k.

Proof. For j = 1 we have G1Gk = Gk ∪ ρkGk for k ∈ {0, 2, 3}. Hence for (i, k) ∈
{(0, 2), (0, 3), (2, 3)} we have Gi∩G1Gk = Gi∩ (Gk ∪ρkGk) = (Gi∩Gk)∪ (Gi∩ρkGk) =
Gi,k ∪ ρkGi,k ⊆ Gi,1Gi,k.

Now let (i, j, k) = (0, 2, 3). We have that G2G3 = G3 ∪ ρ3G3 ∪ ρ1ρ3G3. Then,
G0 ∩G2G3 = G0,3 ∪ ρ3G0,3 ∪ ρ1ρ3G0,3 ⊆ G0,2G0,3.

Theorem 8.1.4. Let s be even and s ≥ 4. The group G with the following presentation
is the automorphism group of a regular hypertope of type {3, 4

4} whose residues of rank 3
are either cubes, hemi-cubes or toroidal maps {4, 4}(s,0).

〈ρ0, ρ1, ρ2, ρ3 | ρ2
0, ρ

2
1, ρ

2
2, ρ

2
3, (ρ0ρ1)4, (ρ0ρ2)2, (ρ0ρ3)2,

(ρ1ρ2)4, (ρ1ρ3)3, (ρ2ρ3)2, (ρ0ρ1ρ2ρ1)s, (ρ0ρ1ρ3)3〉

Proof. This is a consequence of Theorem 6.3.2, Lemma 6.3.4 and Propositions 8.1.1,
8.1.2, 8.1.3.

8.2 Star 4-hypertopes having the map {4, 4}(s,0) and cubes
as rank 3 residues

Let s be even and s ≥ 4. Let G be the group described by the following FTPR graph,
having 6s vertices, that was obtained combining FTPR graphs of the cube and the FTPR
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72 8.Locally toroidal hypertopes from FTPR graphs

graph of the map {4, 4}(s,0) in Proposition 4.2.9.

• 0x

3

•
3

• 0

3

•
3

• 0

3

•
3

• 0

3

•
3

• 0 • • 0 • • 0 • • 0 •

•
1

02

•1 2

0

•
1

0

•1

0

•
1

0

•1 2

0

•
1

0

•1

20

•
1

•
2

1

•
1

•
1

•
1

•
2

1

•
1

•
1•

0
• •

0
• •

0
• •

0
•

•
0

3

•
3

•
0

3

•
3

•
0

3

•
3

•
0

3

•
3

From the graph, it can be easily seen that the maximal parabolic subgroups of G are
G0 := 〈ρ1, ρ2, ρ3〉 ∼= [4, 3], G1 := 〈ρ0, ρ2, ρ3〉 ∼= C2 × C2 × C2, G2 := 〈ρ0, ρ1, ρ3〉 ∼= [4, 3]
and G3 := 〈ρ0, ρ1, ρ2〉 ∼= [4, 4](s,0).

Proposition 8.2.1. The group G is a C-group.

Proof. Since Gi is a C-group for all i, by Proposition 2.3.3, we need only to prove that
Gi∩Gj = Gi,j for i, j ∈ {0, 1, 2, 3} and i 6= j. As G1

∼= C2×C2×C2 and G1,k
∼= C2×C2

for all k ∈ {0, 2, 3}, then it is trivial to see that G1,k = G1 ∩Gk.
The group G0 acts faithfully on 6 points with the following FTPR graph.

• 3x • 1y • 2z • 1 • 3 •
Consider the points x, y, z in the graph. The group G0 ∩ G2 is in the stabilizer of the
set {x, y, z} that is isomorphic to S3. Hence G0 ∩ G2 = G0,2. The group G0 ∩ G3 is in
the stabilizer of x that is isomorphic to D4. Hence G0 ∩G3 = G0,3.

Now consider the faithful action of G2 on 10 points given by the following FTPR
graph.

• 0x

3

•
3

y

• 0 •

•
1

0

•
1

0

•
1

•

•
0
• 1

•
0

3

•
3

The group G2∩G3 is in the stabilizer of {x, y} that is isomorphic to D4, hence G2∩G3
∼=

G2,3.

Proposition 8.2.2. Let λ := ρ0ρ1ρ3ρ0ρ1ρ2ρ1ρ3. The group G has the following presen-
tation with s even and s ≥ 4.

〈ρ0, ρ1, ρ2, ρ3 | ρ2
0, ρ

2
1, ρ

2
2, ρ

2
3, (ρ0ρ1)4, (ρ0ρ2)2, (ρ0ρ3)2,

(ρ1ρ2)4, (ρ1ρ3)3, (ρ2ρ3)2, (ρ0ρ1ρ2ρ1)s, λ2〉
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Moreover, the order of G is 48s3.

Proof. Consider the point x on the FTPR graph of G. The stabilizer of x, StabG(x), con-
tains 〈ρ0ρ1ρ0, ρ1, ρ2, λρ3ρ1ρ0ρ1ρ3〉. The group K := 〈ρ0ρ1ρ0, ρ1, ρ2〉 is a index 2 subgroup
of the automorphism group of the map {4, 4}(s,0). Hence, |K| = 4s2. By Proposition 8.2.1
K is a proper subgroup of StabG(x), then |StabG(x)| ≥ 8s2. As the FTPR graph of G
has 6s points, by the Orbit-Stabilizer Theorem, |G| ≥ 8s2 · 6s = 48s3.

Let H be the group with the presentation given in this proposition. We have
G ≤ H. The element (ρ0ρ1ρ3)3 is a central involution in H. Indeed ρ2(ρ0ρ1ρ3)3ρ2 =
ρ0ρ1ρ3λρ3ρ1ρ3ρ2 = (ρ0ρ1ρ3)3. Factorizing H by 〈(ρ0ρ1ρ3)3〉 we get the automorphism
group of the regular hypertope given in Theorem 8.1.4. Thus |H| = 48s2. Consequently
G ∼= H.

Proposition 8.2.3. For (i, j, k) ∈ {(0, 1, 2), (0, 1, 3), (2, 1, 3), (0, 2, 3)},

Gi ∩GjGk = Gi,jGi,k.

Proof. For j = 1 the proof is similar to case j = 1 of Proposition 8.1.3. Let (i, j, k) =
(0, 2, 3). We have thatG2G3 = G3∪ρ3G3∪ρ1ρ3G3∪ρ0ρ1ρ3G3∪ρ1ρ0ρ1ρ3G3∪ρ3ρ1ρ0ρ1ρ3G3.
Then, G0 ∩G2G3 = G0,3 ∪ ρ3G0,3 ∪ ρ1ρ3G0,3 ∪ (G0 ∩ ρ0ρ1ρ3G3) ∪ (G0 ∩ ρ1ρ0ρ1ρ3G3) ∪
(G0 ∩ ρ3ρ1ρ0ρ1ρ3G3).

Consider the FTPR graph of G and the vertices a, b, c.
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For all α ∈ ρ0ρ1ρ3G3, aα ∈ {b, c}. But neither b nor c are in the G0-orbit of a. Hence,
G0 ∩ ρ0ρ1ρ3G3 = ∅. Similarly, replacing a by a′(resp. a′′) we get G0 ∩ ρ1ρ0ρ1ρ3G3 = ∅
(resp. G0 ∩ ρ3ρ1ρ0ρ1ρ3G3 = ∅). Consequently, G0 ∩G2G3 = G0,3 ∪ ρ3G0,3 ∪ ρ1ρ3G0,3 ⊆
G0,2G0,3.

Theorem 8.2.4. Let λ := ρ0ρ1ρ3ρ0ρ1ρ2ρ1ρ3, s be even and s ≥ 4. The group G with the
following presentation is the automorphism group of a regular hypertope of type {3, 4

4}
whose residues of rank 3 are either cubes or toroidal maps {4, 4}(s,0).

〈ρ0, ρ1, ρ2, ρ3 | ρ2
0, ρ

2
1, ρ

2
2, ρ

2
3, (ρ0ρ1)4, (ρ0ρ2)2, (ρ0ρ3)2,

(ρ1ρ2)4, (ρ1ρ3)3, (ρ2ρ3)2, (ρ0ρ1ρ2ρ1)s, λ2〉
Proof. This is a consequence of Theorem 6.3.2, Lemma 6.3.4 and Propositions 8.2.1,
8.2.2, 8.2.3.
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74 8.Locally toroidal hypertopes from FTPR graphs

8.3 Quotients of regular hypertopes that give rise to regular
hypertopes

In Theorem 6.3.8, we have given sufficient conditions under which a quotient of the
type-preserting automorphism group G of a regular n-hypertope by a normal subgroup
N give another regular n-hypertope. Among these conditions N ∩ Gi = {idG}, for all
i ∈ {0, . . . , n − 1}, is required. This theorem together with Theorem 6.3.7 allows to
prove that G/N is a C-group. In the proof of Proposition 8.2.2, we use the fact that
factoring the automorphism group given in Section 8.2 by 〈(ρ0ρ1ρ3)3〉, results in the
automorphism group given in Section 8.1. Although 〈(ρ0ρ1ρ3)3〉 is a normal subgroup of
one of its maximal parabolic subgroups, failing the condition above, the resulting group
is still a C-group. This led us to believe that we can have a more general result, without
imposing that condition. Here, we will prove a weaker version, where we consider a
normal subgroup of a maximal parabolic subgroup.

Theorem 8.3.1. Let G be the automorphism group of a regular hypertope and N be a
normal subgroup of Gi for some i ∈ {0, . . . , r − 1}, whose normal closure N , in G, has
trivial intersection with Gj for j ∈ {0, . . . , r − 1} \ {i}. If Gi/N is a C-group then the
maximal parabolic subgroups of G̃ := G/N are C-groups.

Proof. Assume, without loss of generality, that i = 0. We have that N C G0 and G0/N
is a C-group. Let G̃ := G/N such that G̃ = 〈ρ0N, . . . , ρn−1N〉 and its maximal parabolic
subgroups G̃j = 〈ρkN | k ∈ {0, . . . , n − 1} \ {j}〉. When j 6= 0 we have that Gj ∩ N is
trivial, meaning G̃j ∼= Gj and hence G̃j is a C-group.

Based on the result of Theorem 6.3.7, consider the mapping σ : G̃0 → G0/N such
that σ(xN) = xN . This map is a homomorphism, as shown below.

σ(xNyN) = (since N C G)

= σ(xyNN)

= σ(xyN)

= xyN

= xyNN = (since y ∈ G0 and N C G0)

= xNyN = σ(xN)σ(yN)

Moreover, it is easy to see that it is one-to-one on the maximal parabolic subgroups
G̃0,j (for each j ∈ {1, . . . , n− 1}). Hence, G̃0 is a C-group.

Note that the conditions of Theorem 8.3.1 are not sufficient to guarantee that G̃ is
a C-group. Nevertheless, we know from Proposition 2.3.3 that if the maximal parabolic
subgroups are C-groups, we need only to prove that G̃i∩G̃j = G̃i,j , for all 0 ≤ i, j ≤ n−1,
in order to prove that G̃ is a C-group.

8.3.1 Star 4-hypertopes having the map {4, 4}(s,s), the hemi-cube and
the cube as rank 3 residues

Proposition 8.3.2. Let s ≥ 2. Consider the automorphism group G of the regular
hypertope of Section 8.1, with toroidal residue {4, 4}(2s,0) and let N := 〈(ρ0ρ1ρ2)2s〉.
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8.Locally toroidal hypertopes from FTPR graphs 75

Then G̃ := G/N has the following presentation

〈ρ0, ρ1, ρ2, ρ3 | ρ2
0, ρ

2
1, ρ

2
2, ρ

2
3, (ρ0ρ1)4, (ρ0ρ2)2, (ρ0ρ3)2,

(ρ1ρ2)4, (ρ1ρ3)3, (ρ2ρ3)2, (ρ0ρ1ρ2)2s, (ρ0ρ1ρ3)3〉

with toroidal residue {4, 4}(s,s). Moreover, G̃ has order 48s3.

Proof. Consider u = ρ0ρ1ρ2ρ1 and g = (ρ0ρ1ρ2)2. First, let us prove that

N = {idG, gs, ρ3g
sρ3, ρ1ρ3g

sρ3ρ1}.
Consider the FTPR graph of G, that was introduced in Section 8.1, and consider the
action of the involutions gs, (gs)ρ3 and (gs)ρ3ρ1 .
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Suppose that there is an element of N that is not in the four elements stated above.
We can check that both (gs)ρ3ρ1ρ0 and (gs)ρ3ρ1ρ2 are equal to (gs)ρ3ρ1 . Hence, these four
elements are the only ones of N . Moreover, it can be seen that (gs)ρ3ρ1 = gs(gs)ρ3 ,
making N ∼= C2 × C2. With this, we have that G̃ = G/N has order 48s3.

From Theorem 8.3.1, we already have that all maximal parabolic subgroups are C-
groups. Additionally, we know that all Gi ∼= G̃i, for i ∈ {0, 1, 2}, proving all the relations
of the presentation above, except for the ones of the toroidal residue {4, 4}. We have
that G̃3 can be isomorphic to the automorphism groups of either the map {4, 4}(s,s) and
{4, 4}(s,0). Let us prove it cannot be the latter and, to do so, suppose that usN = N .
Then we have that us ∈ N . Since us /∈ N , this implies that us is ρ3g

sρ3 or one of its
conjugates. Consider the vertex labelled x. The action of us fixes this vertex, impling
that us = (gs)ρ3ρ1 . However, by considering the vertex labelled y, the action of us either
fixes the vertex or swaps it to its ρ0-adjacent (depending on whether s is even or odd,
respectively), a contradiction. Hence, us /∈ N , proving that the toroidal residue of G̃ is
{4, 4}(s,s).

Using Theorem 8.3.1, it is already known that all maximal parabolic subgroups of
G̃ are C-groups. Then to prove that G̃ is the automorphism group of a regular hy-
pertope with the above presentation, we need only to prove the intersection property
between these maximal parabolic subgroups and flag-transitivity. To do so, we can use
the following transitive permutation representation graphs, for s even
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76 8.Locally toroidal hypertopes from FTPR graphs

and for s odd.

• 1 • 0 • 1 • 2 • 1 • 0 • 1 • • 1 • 0 • 1 • 2 • 1 • 3 •

•
0

3

•
3

•
0

3

•
3

•
0

3

•
3

Conjecture 8.3.3. G̃ is the automorphism group of a regular hypertope of type {3, 4
4}

whose residues are {4, 3}, {4, 3}3 and the toroidal map {4, 4}(s,s).
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Chapter 9

Families of hyperbolic hypertopes

As previously said in Section 6.4, compact hyperbolic Coxeter groups exist only in ranks
3, 4 and 5, and until very recently there were not many examples of finite proper regular
hypertopes of hyperbolic type for rank 4 and 5. Computational examples were of small
size [FLW20, Table 3]. However the works of Weiss and Montero expanded the numbers of
examples and families of proper regular hypertopes of hyperbolic type [MW20; MW21].
Some of these examples were obtained using the halving operation, an operation well
characterized for abstract regular polytopes (see [MS02, Section 7B]). Weiss and Montero
in [MW20] expanded this operation to obtain regular hypertopes from non-degenerate
abstract regular polytopes, as presented in Section 6.5.

As described in Chapter 2, we will consider as a non-degenerate abstract regular
polytope those which their partial order induces a lattice. Some authors consider a
polytope degenerate whenever its Schläfli type has at least a 2 [MS02; Cun17]. However,
polytopes such as the toroidal map {3, 6}(1,1) have all their vertices incident with each
and every one of their facets (i.e. it is a flat polytope), having also a slight degeneracy
that cannot be allowed when applying the halving operation. Hence, by restricting non-
degenerate polytopes to those whose partial order is a lattice guarantees that no type of
degeneracy can happen. Moreover, the lattice condition will be useful when building new
polytopes from centrally symmetric ones, as described in Lemma 9.1.3 of Section 9.1.

In this chapter, we will start from centrally symmetric regular non-degenerate poly-
topes of spherical type and, by applying the halving operation, we obtain families of
regular hypertopes, some of which of hyperbolic type. As expressing in Section 6.5, if
the set of vertices of P is bipartite, then H(P) has index 2 on G(P). In Sections 9.2 and
9.3 the halving operation will be used on polytopes of type {4, p2, . . . , pn−1} factorized
by relations with even number of ρ0 and ρ1. Hence, in all cases that we will deal with in
this chapter, |H(P)| = |G(P)|/2.

In Table 9.1, a list of all centrally symmetric regular non-degenerate polytopes of
spherical type (i.e. finite irreducible Coxeter groups with linear diagram) is given, whose
automorphism group is 〈τ0, . . . , τn−1〉 and with central involution α.

The only centrally symmetric polygons have an even number of vertices and their
proper central involution is a 180 degrees rotation. For rank 3 and 4, the spherical
regular polytopes that are centrally symmetric can be easily computed. For rank n ≥ 5,
the only spherical regular polytopes are the n-simplex and the n-cube {4, 3n−2} (and
its dual). Since the group of the n-simplex is centerless, only the n-cube {4, 3n−2} (and
its dual) are centrally symmetric, with α = (τ0τ1 . . . τn−1)n [HL08]. Moreover, all the
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78 9.Families of hyperbolic hypertopes

Table 9.1: The centrally symmetric non-degenerate regular polytopes of spherical type
Rank Schläfli type Number of vertices α |P|
2 {2p}, for 2 ≤ p <∞ 2p (τ0τ1)p 4p

3

{3, 4} 6
(τ0τ1τ2)3 48{4, 3} 8

{3, 5} 12
(τ0τ1τ2)5 120{5, 3} 20

4

{3, 3, 4} 8
(τ0τ1τ2τ3)4 384{4, 3, 3} 16

{3, 4, 3} 24 (τ0τ1τ2τ3)6 1152
{3, 3, 5} 120

(τ0τ1τ2τ3)15 14400{5, 3, 3} 600

n ≥ 5
{3n−2, 4} 2n

(τ0τ1 . . . τn−1)n 2nn!{4, 3n−2} 2n

polytopes of Table 9.1 are convex polytopes, meaning that their poset form a face-lattice.

9.1 The 2P,G(s) polytopes

Consider a Coxeter group W generated by k involutions σ0, . . . , σk−1 with Coxeter dia-
gram G, and τ0, . . . , τn−1 to be involutory automorphisms ofW , permuting its generators.
Then W can be extended to a semidirect product G = W o Λ, where Λ is the group of
involutory automophisms ofW which permute its generators. In the caseW is a C-group
represented by a Coxeter diagram G, the automorphisms τi can be seen as symmetries of
G.

Definition 9.1.1. [MS02] Let G be the Coxeter diagram of a C-group and let P be
a regular n-polytope with automorphism group G(P) = 〈τ0, . . . , τn−1〉. We say G is
P-admissible if:

• The Coxeter diagram G has more than one node;

• G(P) acts transitively on the set of nodes of G, V (G);

• The subgroup 〈τ1, . . . , τn−1〉 of G(P) fixes at least one node of G, which we will
designate as F0;

• The action of G(P) on the diagram G, with respect to F0, respects the intersection
property, i.e., for I ⊆ {0, . . . , n− 1} and denoting V (G, I) as the set of nodes of G
that the subgroup 〈τi|i ∈ I〉 maps the node F0 to, then

V (G, I) ∩ V (G, J) = V (G, I ∩ J) if I, J ⊆ {0, . . . , n− 1}

Let us consider the case V (G) = V (P) and let F0 be a vertex of P. Then G is P-
admissible [MS02]. The number of possible choices for the proper branches of the diagram
G depends on the number of diagonal classes of P. When P is centrally symmetric, there
is an involution α permuting pairs of antipodal vertices of P, forming one diagonal class
of P. When this diagonal class is the only one represented in the Coxeter diagram G by
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9.Families of hyperbolic hypertopes 79

proper branches all with the same label s, then the diagram G =: G(s) is a matching and
the corresponding Coxeter group is a direct product of dihedral groups of degree s, Ds,
which is finite if and only if P is finite.

Consider a Coxeter group W with diagram G(s),

W := W (G(s)) = 〈σF | F ∈ V (G(s))〉, (9.1)

and a centrally symmetric regular polytope P, with G(P) = 〈τ0, . . . , τn−1〉 and where
V (G(s)) = V (P). Let F0 be a vertex of P. Then the (n+ 1)-polytope 2P,G(s) is defined
by the group

G(2P,G(s)) := W oG(P) = 〈ρ0, . . . , ρn〉
where

ρi :=

{
σF0 , for i = 0,
τi−1, for i = 1, . . . , n.

(9.2)

For each F ∈ V (G), there exists an element τ ∈ G(P) and an involution σF of W such
that

σF = σF0τ = τ−1σF0τ = τ−1ρ0τ. (9.3)

When P is centrally symmetric, with central involution α, G(s) is a matching, as described
before, with label s, making (σFσFα)s = id. When s ≥ 3, all generators σF of W
commute with each other, except with σFα. Then we haveW ∼= D

|V (G)|/2
s . Also, for each

F ∈ V (G) and τ ∈ G(P), such that F0τ = F , we have that

σFσFα = τ−1ρ0τα
−1τ−1ρ0τα = τ−1ρ0αρ0ατ. (9.4)

In particular, for s = 2, the diagram G(2) only has improper branches and 2P,G(2) is the
Danzer polytope 2P [Dan84].

The following theorem gives some properties of 2P,G(s) which will be of great impor-
tance for our results.

Theorem 9.1.2. [MS02, Theorem 8C5] Let n ≥ 1, and let P be a centrally symmetric
regular n-polytope of type {p1, . . . , pn−1} with p1 ≥ 3. Then the regular (n + 1)-polytope
2P,G(s) has the following properties.

1. 2P,G(s) is of type {4, p1, . . . , pn−1};

2. G(2P,G(s)) = Dq
s o G(P), with q := |V (P)|/2, where the action of G(P) on Dq

s

(= W ) is induced by the action on G(s). In particular, 2P,G(s) is finite if and only
if P is finite, in which case∣∣G(2P,G(s))

∣∣ = |Ds|q · |G(P)| = (2s)|V (P)|/2|G(P)|;

3. If s is even and P has only finitely many vertices, then 2P,G(s) is also centrally
symmetric.

Notice that if P is the Coxeter group [p1, . . . , pn−1] factorized by a set of relations R,
then 2P,G(s) is a Coxeter group [4, p1, . . . , pn−1] factorized by the relations in R and the
extra relations

(ρ0αρ0α)s = id,
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80 9.Families of hyperbolic hypertopes

where α is the central involution of P, and

(ρ0τ
−1ρ0τ)2 = id

for all τ ∈ G(P) such that τ 6= α and {F0, F0τ} give distinct diagonal classes of P.
When P is non-degenerate, this construction gives a non-degenerate polytope, as

expressed the next lemma.

Lemma 9.1.3. [MS02, pp. 264] Let P be a centrally symmetric regular n-polytope of
type {p1, . . . , pn−1} with p1 ≥ 3. If the poset of P is a lattice, then the poset of 2P,G(s) is
a lattice.

9.2 Polytopes 2P,G(s) and Hypertopes H(2P,G(s)) when P is a
2p-gon, n-cube or n-orthoplex

In Table 9.1 we were introduced to the centrally symmetric polytopes P that will be
considered in this chapter. There are three infinite families of polytopes given in that
table: the 2p-gons with type {2p}, the n-cube with type {4, 3n−2} and the n-orthoplex
with type {3n−2, 4}. In the following sections, we will construct extensions of these poly-
topes and then apply the halving operation as defined in Section 6.5 to obtain families of
hypertopes. Moreover, families of proper regular toroidal hypertopes

{
3
3 , 3

n−3, 4
}

(2s,0n−1)

will be given for an arbitrary rank and s, extending the results of [Ens18] and [MW20],
where the duals of the hypertopes

{
3
3 , 4
}

(2s,0,0)
and

{
3
3 , 3

n−3, 4
}

(4,0n−1)
are presented,

respectively.

• The polytope 2{2p},G(s) and hypertope H(2{2p},G(s))

Consider the following polytopes, defined as below.

Definition 9.2.1. [MS02, Section 7B] Let 2 ≤ j ≤ k := b1
2qc. Then, we define the poly-

tope P := {p, q | h2, . . . , hk} such that its automorphism group G(P) has the following
presentation

G(P) := 〈 ρ0, ρ1, ρ2 | ρ2
0 = ρ2

1 = ρ2
2 = (ρ0ρ1)p = (ρ1ρ2)q = (ρ0ρ2)2 = id,

{(ρ0ρ1(ρ2ρ1)j−1)hj = id, for 2 ≤ j ≤ k} 〉

Let P be the polygons with even number of vertices, i.e. of type {2p}, for p ≥ 2.
From Corollary 8C7 of [MS02], we have the following result.

Corollary 9.2.2. [MS02, Corollary 8C7] Let 2 ≤ p < ∞ and 2 ≤ s < ∞. Then
2{2p},G(s) = {4, 2p | 4p−2, 2s}, with group Dp

s oD2p, of order (2s)p · 4p. If p = 2, this is
the torus map {4, 4}(2s,0), with group (Ds ×Ds)oD4 of order 32s2.

We write 4p−2 to mean a row of 4’s of size (p−2). Using this result and Definition 9.2.1,
we have the following proposition.

Proposition 9.2.3. Let 2 ≤ p < ∞ and 2 ≤ s < ∞. Then the group G(2{2p},G(s)) =
[4, 2p | 4p−2, 2s] has the following presentation

G(2{2p},G(s)) := 〈 ρ0, ρ1, ρ2 | ρ2
0 = ρ2

1 = ρ2
2 = (ρ0ρ1)4 = (ρ1ρ2)2p = (ρ0ρ2)2 = id,

{(ρ0ρ1(ρ2ρ1)j−1)4 = id, for 2 ≤ j ≤ p− 1}, (ρ0ρ1(ρ2ρ1)p−1)2s = id 〉.
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9.Families of hyperbolic hypertopes 81

Proof. The proof follows from Corollary 9.2.2 and Definition 9.2.1.

From the polytopes of the previous proposition, we derive a family of polytopes using
the halving operation.

Proposition 9.2.4. Let 2 ≤ p <∞, 2 ≤ s <∞. The incidence system

H(2{2p},G(s)) = Γ(H(2{2p},G(s)), (Hi)i∈{0,1,2}),

where H(2{2p},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2〉 = 〈ρ̃0, ρ1, ρ2〉, is a regular polytope of type {2p, 2p},
where its automorphism group, of size (2s)p · 2p, is the quotient of the Coxeter group
[2p, 2p] by the relations ((ρ̃0ρ2)j−1ρ̃0ρ1(ρ2ρ1)j−1)2 = id, for 2 ≤ j ≤ p− 1, and
((ρ̃0ρ2)p−1ρ̃0ρ1(ρ2ρ1)p−1)s = id.

Proof. Let 2 ≤ p < ∞, 2 ≤ s < ∞. The fact that the incidence system of the halving
group H(2{2p},G(s)) is a regular hypertope follows from the fact that 2{2p},G(s) is non-
degenerate (a lattice, by Lemma 9.1.3) and from Corollary 6.5.1. Moreover, in Section
7B [MS02], it is given that the halving operation on regular polytope of type {4, k} results
in a regular polytope of type {k, k}. Let us write the relations that are not of the infinite
Coxeter group [2p, 2p].

Firstly,

id = (ρ0ρ1(ρ2ρ1)j−1)4

= (ρ0ρ1(ρ2ρ1)j−1ρ0ρ1(ρ2ρ1)j−1)2

= (ρ0ρ1(ρ0ρ2ρ0ρ1)j−1ρ0ρ1(ρ2ρ1)j−1)2

= ((ρ0ρ1ρ0ρ2)j−1ρ0ρ1ρ0ρ1(ρ2ρ1)j−1)2

= ((ρ̃0ρ2)j−1ρ̃0ρ1(ρ2ρ1)j−1)2.

For the relation (ρ0ρ1(ρ2ρ1)p−1)2s = id, similar arguments give

id = (ρ0ρ1(ρ2ρ1)p−1)2s = ((ρ̃0ρ2)p−1ρ̃0ρ1(ρ2ρ1)p−1)s.

Notice that, if p = 2, the regular hypertope obtained from the halving of {4, 4}(2s,0)

is the regular map {4, 4}(s,s).

• The polytope 2{3
n−2,4},G(s) and hypertope H(2{3

n−2,4},G(s))

Let P be the n-orthoplex, with n ≥ 3. From Corollary 8C6 of [MS02], we have the
following result.

Corollary 9.2.5. [MS02, Corollary 8C6] Let n ≥ 3 and 2 ≤ s < ∞. The polytope
2{3

n−2,4},G(s) is the cubical regular (n + 1)-toroid {4, 3n−2, 4}(2s,0n−1), with group Dn
s o

[3n−2, 4] of order (4s)nn!.

The defining relations of the regular polytope {4, 3n−2, 4}(2s,0n−1) are those given by
its Schläfli type and the extra relation [MS02, Section 6D]

(ρ0ρ1ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ1)2s = id.

Now, using the halving operation, we get a family of proper regular toroidal hyper-
topes, as shown in the following result.
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82 9.Families of hyperbolic hypertopes

Proposition 9.2.6. Let n ≥ 3, 2 ≤ s <∞. The incidence system

H(2{3
n−2,4},G(s)) = Γ(H(2{3

n−2,4},G(s)), (Hi)i∈{0,...,n}),

where H(2{3
n−2,4},G(s)) := 〈ρ0ρ1ρ0, ρ1, . . . , ρn〉 = 〈ρ̃0, ρ1, . . . , ρn〉, is a regular hypertope

whose automorphism group, of size (4s)n−1(2s)n!, is the quotient of the Coxeter group
with diagram

•ρ1

•
ρ2

•
ρ3

•
ρn−2

• 4
ρn−1 ρn

•

•
ρ̃0

factorized by
(ρ̃0ρ2ρ3 . . . ρn−1ρnρn−1 . . . ρ3ρ2ρ1)2s = id.

Proof. The incidence system of the halving group H(2{3
n−2,4},G(s)) is a regular hypertope

since the poset of the polytope {3n−2, 4} is a lattice, making 2{3
n−2,4},G(s) non-degenerate

(by Lemma 9.1.3), which is under the conditions of Corollary 6.5.1. The relations of the
Coxeter diagram above follow naturally from the definition of the halving operation.

Consider now the extra relation

(ρ0ρ1ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ1)2s = id

of {4, 3n−2, 4}(2s,0n−1). Then,

id = (ρ0ρ1ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ1)2s

= (ρ0ρ1ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ1ρ0ρ1ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ1)s

= (ρ0ρ1ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ0ρ1ρ0ρ1ρ0ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ1)s

= (ρ0ρ1ρ0ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ1ρ0ρ1ρ0ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ1)s

= (ρ̃0ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ1ρ̃0ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ1)s

= (ρ̃0ρ2 . . . ρn−1ρnρn−1 . . . ρ2ρ1)2s

Following the notation of Ens [Ens18] and Weiss and Montero [MW20], we denote
these regular toroidal hypertopes by

{
3
3 , 3

n−3, 4
}

(2s,0n−1)
.

• The polytope 2{4,3
n−2},G(s) and hypertope H(2{4,3

n−2},G(s))

Consider the n-cube with automorphism group [4, 3n−2] = 〈τ0, . . . , τn−1〉, with n ≥ 3.
Let (v1, v2, . . . , vn) be the coordinates of a vertex of the n-cube in an Euclidean space

and let vi ∈ {±1}. In addition, let

(v1, v2, . . . , vn)τ0 := (−v1, v2, . . . , vn)

(v1, . . . , vj−1, vj , vj+1, vj+2, . . . , vn)τj := (v1, . . . , vj−1, vj+1, vj , vj+2, . . . , vn),

for j ∈ {1, . . . , n − 1}. Let F0 := (1n) be the vertex having all coordinates equal to 1,
and let β := τ0τ1τ2 . . . τn−2τn−1. Then,

F0β = (1n−1,−1)
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where 1n−1 means we have a row of +1’s of size (n− 1). Moreover, it is easily seen that

F0β
i = (1n−i,−1i)

Particularly,
F0β

n = (−1n).

Thus βn is clearly the central involution of the n-cube.

Lemma 9.2.7. The n-cube has exactly n diagonal classes which can be represented by
{F0, F0β

i}, for 1 ≤ i ≤ n, where F0 is a vertex, β = τ0τ1τ2 . . . τn−2τn−1, and F0β
i is the

vertex of the action of βi on the vertex F0.

Proof. Consider the construction of the vertices of the cube as above and let F0 := (1n).
Let 1 ≤ i, j ≤ n and consider the vertices F0β

i = (1n−i,−1i) and F0β
j = (1n−j ,−1j).

Suppose that the diagonals {F0, F0β
i} and {F0, F0β

j} are in the same diagonal class.
Then, they share the same square length as their diagonal class representative

||F0 − F0β
i||2 = ||F0 − F0β

j ||2.

Hence,

||F0 − F0β
i||2 = ||F0 − F0β

j || ⇔
⇔ ||(0n−i, 2i)||2 = ||(0n−j , 2j)||2 ⇒

⇔ i = j.

Since there are n distinct diagonal classes of the n-cube [MS02, Section 5B] and we
can represent n distinct diagonal classes as above, we have proven the statement of the
lemma.

With the above lemma, we are able to give the relations of the group of automorphisms
of 2{4,3

n−2},G(s).

Corollary 9.2.8. Let n ≥ 3 and 2 ≤ s < ∞. Then 2{4,3
n−2},G(s) is a (n + 1)-polytope

with type {4, 4, 3n−2} and automorphism group D2n−1

s o [4, 3n−2] of order (2s)2n−1
2nn!

with the relations given by its Coxeter diagram and the following extra relations

(ρ0β
−iρ0β

i)2 = id for 2 ≤ i ≤ n− 1

(ρ0β
nρ0β

n)s = id,

where β = ρ1ρ2 . . . ρn. Moreover, its toroidal residue is the map {4, 4}(4,0).

Proof. The polytopes above are obtained by Theorem 9.1.2 and, when i = n, βn is the
central involution of the polytope {4, 3n−2}, meaning that

(ρ0β
nρ0β

n)s = id.

The remaining extra relations of the statement of this corollary come from diagonal
classes of improper branches of the diagram G(s). Particularly, when i = 1, we have

id = (ρ0β
−1ρ0β)2 = (ρ0ρn−1 . . . ρ2ρ1ρ0ρ1ρ2 . . . ρn)2
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which implies that
id = (ρ0ρ1ρ0ρ1)2 = (ρ0ρ1)4,

a relation given by the type of the polytope. Hence, (ρ0β
nρ0β

n)s = id and (ρ0β
−iρ0β

i)2 =
id, for 2 ≤ i ≤ n − 1, are the only extra relations needed to define the automorphism
group of 2{4,3

n−2},G(s).
To prove that the toroidal residue is the map {4, 4}(4,0), observe that from id =

(ρ0β
−2ρ0β

2)2 we have

id = (ρ0ρ1ρn−1 . . . ρ2ρ1ρ0ρ1ρ2 . . . ρnρ1)2

which implies
id = (ρ0ρ1ρ2ρ1ρ0ρ1ρ2ρ1)2 = (ρ0ρ1ρ2ρ1)4,

showing that the toroidal residue is the map {4, 4}(4,0).

If n = 3, the resulting abstract polytopes are quotients of the locally toroidal polytope
of type {4, 4, 3}, satisfying the following relations

(ρ0ρ1ρ2ρ1)4 = (ρ0(ρ1ρ2ρ3)3)2s = id,

which do not give an universal locally toroidal polytope. Therefore, these polytopes do
not appear in [MS02, Section 10].

Let us construct the regular hypertopes corresponding to this family. As before, we
will use the halving operation.

Proposition 9.2.9. Let n ≥ 3 and 2 ≤ s <∞. The incidence system

H(2{4,3
n−2},G(s)) = Γ(H(2{4,3

n−2},G(s)), (Hi)i∈{0,...,n}),

where H(2{4,3
n−2},G(s)) := 〈ρ0ρ1ρ0, ρ1, . . . , ρn〉 = 〈ρ̃0, ρ1, . . . , ρn〉, is a regular hypertope

and its automorphism group, of size (2s)2n−1
2n−1n!, has the relations given by its Coxeter

diagram
•ρ1

4

•
ρ2

•
ρ3

•
ρn−2

•
ρn−1 ρn

•

•
ρ̃0

4

and the extra relations (β̃−iβi)2 = id, for 2 ≤ i ≤ n − 1, and (β̃nβn)s = id, where
β = ρ1ρ2 . . . ρn and β̃ = ρ̃0ρ2 . . . ρn. Moreover the toroidal residue is the map {4, 4}(2,2).

Proof. Let n ≥ 3 and 2 ≤ s <∞. The incidence system of the halving groupH(2{4,3
n−2},G(s))

is a regular hypertope by Corollary 6.5.1 since the poset of the polytope {4, 3n−2} is a
lattice, making 2{4,3

n−2},G(s) non-degenerate, by Lemma 9.1.3.
Then, if we denote β = ρ1ρ2 . . . ρn and β̃ = ρ̃0ρ2 . . . ρn, we have

id = (ρ0β
−iρ0β

i)k

= (ρ0(ρn−1 . . . ρ2ρ1)iρ0(ρ1ρ2 . . . ρn)i)k

= ((ρn−1 . . . ρ2ρ0ρ1ρ0)i(ρ1ρ2 . . . ρn)i)k

= ((ρn−1 . . . ρ2ρ̃0)i(ρ1ρ2 . . . ρn)i)k

= (β̃−iβi)k,
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where k = 2 if 2 ≤ i ≤ n − 1, and k = s if i = n. Moreover, we have that β̃n = β̃−n,
meaning that

(β̃−nβn)s = (β̃nβn)s.

Let us prove that the toroidal residue is the map {4, 4}(2,2). Consider the transla-
tions u := ρ̃0ρ2ρ1ρ2 and g := (ρ̃0ρ2ρ1)2 of the toroidal map residue {4, 4} of the above
hypertope. Then, we have that

u = ρ̃0ρ2ρ1ρ2 = ρ0ρ1ρ0ρ2ρ1ρ2 = ρ0ρ1ρ2ρ0ρ1ρ2 = (ρ0ρ1ρ2)2,

which is a translation of order 4 of the toroidal residue {4, 4}(4,0) of 2{4,3
n−2},G(s). Fur-

thermore, we have that

g = (ρ̃0ρ2ρ1)2 = (ρ0ρ1ρ0ρ2ρ1)2 = ρ0ρ1ρ2ρ0ρ1ρ0ρ1ρ0ρ2ρ1 = ρ0ρ1ρ2ρ1ρ0ρ1ρ2ρ1,

which is a conjugate of ρ0β
−2ρ0β

2, meaning o(g) = 2. Since o(u) = 4 and o(g) = 2, then
the toroidal residue of our regular hypertope is the map {4, 4}(2,2).

Particularly, when n = 3, the regular hypertope of type
{

4
4 , 3
}

given by Proposi-
tion 9.2.9 is locally toroidal, with toroidal residue {4, 4}(2,2), and satisfies the relation
((ρ̃0ρ2ρ3)3(ρ1ρ2ρ3)3)s = id.

9.3 Polytopes 2P,G(s) and Hypertopes H(2P,G(s)) when P has
rank 3 or 4

In this section we consider that P is one of the remaining regular polytopes of Table 9.1:
the icosahedron, the dodecahedron, the 24-cell, the 600-cell and the 120-cell. In what
follows, similarly to the previous section, we construct extensions of these polytopes and
then we apply the halving operation to obtain regular hypertopes. In [MW20], two locally
spherical regular hypertopes of hyperbolic type are given:

{
3
3 , 5
}
, with automorphism

group of order 60·212, and
{

3
3 , 3, 5

}
, with automophism group of order 7200×2120. These

two hypertopes will correspond to our hypertopes H(2{3,5},G(2)) and H(2{3,3,5},G(2)), re-
spectively. Here, we will give an infinite family of these hypertopes. In addition, we
will give a family of hypertopes of type

{
3
3 , 4, 3

}
with toroidal residue

{
3
3 , 4
}

(4,0,0)
. Most

proofs of the following results will be omitted as they follow the same ideas present in
the proofs of Corollary 9.2.8 and Proposition 9.2.9.

• The polytope 2{3,5},G(s) and hypertope H(2{3,5},G(s))

Let P be the icosahedron with automorphism group G(P) := 〈τ0, τ1, τ2〉. The icosahe-
dron has three distinct diagonal classes, which can be determined computationally with
GAP[GAP21]: {F0, F0β}, {F0, F0β

3} and {F0, F0β
5}, where β := τ0τ1τ2. The vertices of

the latter diagonal class are antipodal. In fact, the diagonals {F0, F0β} and {F0, F0β
2}

are in the same diagonal class, since the double G0-cosets coincide, that is,

G0β
2G0 = G0(τ0τ1τ2)2G0 = G0τ0τ1τ2τ0G0 =

= G0τ0τ1τ0τ2G0 = G0τ1τ0τ1τ2G0 = G0βG0.
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The same can be proven for the diagonals {F0, F0β
3} and {F0, F0β

4}. With this, we can
provide the polytope 2{3,5},G(s) and the hypertope H(2{3,5},G(s)).

Corollary 9.3.1. Let 2 ≤ s < ∞. Then 2{3,5},G(s) is a 4-polytope of type {4, 3, 5} with
automophism group D6

s o [3, 5] of order 120 · (2s)6. Moreover, the group G(2{3,5},G(s)) :=
〈ρ0, ρ1, ρ2, ρ3〉 is the quotient of the Coxeter group [4, 3, 5] by the relations (ρ0β

−3ρ0β
3)2 =

id and (ρ0β
5ρ0β

5)s = id, where β = ρ1ρ2ρ3.

Proposition 9.3.2. Let 2 ≤ s <∞. The incidence system

H(2{3,5},G(s)) = Γ(H(2{3,5},G(s)), (Hi)i∈{0,...,3}),

where H(2{3,5},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2, ρ3〉 = 〈ρ̃0, ρ1, ρ2, ρ3〉, is a regular hypertope and its
automorphism group, of size 60 · (2s)6, is the quotient of the Coxeter group with diagram

•ρ1

•
ρ2 ρ3

5 •

•
ρ̃0

factorized by (β̃−3β3)2 = id and (β̃5β5)s = id, where β := ρ1ρ2ρ3 and β̃ := ρ̃0ρ2ρ3.

• The polytope 2{5,3},G(s) and hypertope H(2{5,3},G(s))

Let P be the dual of the icosahedron, the dodecahedron. Using GAP[GAP21] and the
double coset action described in equation 2.3, we can determine the diagonal classes of
the dodecahedron: {F0, F0β

i}, for 1 ≤ i ≤ 5, where β = τ0τ1τ2 is an element of the
group [5, 3] = 〈τ0, τ1, τ2〉. As before, we give the polytope 2{5,3},G(s) and the hypertope
H(2{5,3},G(s)).

Corollary 9.3.3. Let 2 ≤ s < ∞. Then 2{5,3},G(s) is a family of 4-polytopes with type
{4, 5, 3} and automorphism group D10

s o [5, 3] of order 120 · (2s)10. Moreover, the group
G(2{5,3},G(s)) := 〈ρ0, ρ1, ρ2, ρ3〉 is the quotient of the Coxeter group [4, 5, 3] by the relations
(ρ0β

−iρ0β
i)2 = id, for 2 ≤ i ≤ 4, and (ρ0β

5ρ0β
5)s = id, where β = ρ1ρ2ρ3.

Proposition 9.3.4. Let 2 ≤ s <∞. The incidence system

H(2{5,3},G(s)) = Γ(H(2{5,3},G(s)), (Hi)i∈{0,...,3}),

where H(2{5,3},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2, ρ3〉 = 〈ρ̃0, ρ1, ρ2, ρ3〉, is a regular hypertope and its
automorphism group, of size 60 · (2s)10, has the relations given by its Coxeter diagram

•ρ1
5

•
ρ2 ρ3

•

•
ρ̃0

5

and the extra relations (β̃−iβi)2 = id, for 2 ≤ i ≤ 4, and (β̃5β5)s = id, where β := ρ1ρ2ρ3

and β̃ := ρ̃0ρ2ρ3.
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• The polytope 2{3,4,3},G(s) and hypertope H(2{3,4,3},G(s))

Let P be the self-dual polytope of type {3, 4, 3}. Using GAP[GAP21] we have that the
24-cell has 4 distinct diagonal classes: {F0, F0β

i}, for i ∈ {1, 3, 4, 6}, where β = τ0τ1τ2τ3

is an element of the group [3, 4, 3] = 〈τ0, τ1, τ2, τ3〉. We will determine the polytope
2{3,4,3},G(s) and regular hypertope H(2{3,4,3},G(s)).

Corollary 9.3.5. Let 2 ≤ s < ∞. Then 2{3,4,3},G(s) is a 5-polytope of type {4, 3, 4, 3}
and automorphism group D12

s o [3, 4, 3] of order 1152 · (2s)12. Moreover, the group
G(2{3,4,3},G(s)) := 〈ρ0, ρ1, ρ2, ρ3, ρ4〉 is the quotient of the locally toroidal Coxeter group
[4, 3, 4, 3] factorized by the relations (ρ0β

−iρ0β
i)2 = id, for i ∈ {3, 4}, and (ρ0β

6ρ0β
6)s =

id, where β = ρ1ρ2ρ3ρ4 and its toroidal residue is the cubic toroid {4, 3, 4}(4,0,0).

Proof. The proof follows the same idea as in Corollary 9.2.8. To prove that the toroidal
residue is the cubic toroid {4, 3, 4}(4,0,0), observe that the relation (ρ0β

−3ρ0β
3)2 = id

implies that (ρ0ρ1ρ2ρ3ρ2ρ1)4 = id.

Proposition 9.3.6. Let 2 ≤ s <∞. The incidence system

H(2{3,4,3},G(s)) = Γ(H(2{3,4,3},G(s)), (Hi)i∈{0,...,4}),

where H(2{3,4,3},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2, ρ3, ρ4〉 = 〈ρ̃0, ρ1, ρ2, ρ3, ρ4〉, is a regular hypertope
and its automorphism group, of size 576 · (2s)12, has the relations given by its Coxeter
diagram

•ρ1

• 4
ρ2

•
ρ3 ρ4

•

•
ρ̃0

and the extra relations (β̃−iβi)2 = id, for i ∈ {3, 4}, and (β̃6β6)s = id, where β :=
ρ1ρ2ρ3ρ4 and β̃ := ρ̃0ρ2ρ3ρ4. Moreover, its toroidal residue is

{
3
3 , 4
}

(4,0,0)
.

Proof. The proof follows the same idea as in Proposition 9.2.9. Moreover, as seen in the
proof of Proposition 9.2.6, we can rewrite the relation (ρ0ρ1ρ2ρ3ρ2ρ1)4 = id, given in
Corollary 9.3.5, as (ρ̃0ρ2ρ3ρ2ρ1)4 = id, which is the factorizing relation of the regular
hypertope

{
3
3 , 4
}

(4,0,0)
.

• The polytope 2{3,3,5},G(s) and hypertope H(2{3,3,5},G(s))

Let P be the 600-cell. The 600-cell has 8 distinct diagonal classes, which can be obtained
with GAP[GAP21] and can be represented by {F0, F0β

i}, for i ∈ {1, 4, 6, 7, 9, 10, 12, 15},
where β = τ0τ1τ2τ3 is an element of the group [3, 3, 5] = 〈τ0, τ1, τ2, τ3〉. Let us determine
the polytope 2{3,3,5},G(s) and the hypertope H(2{3,3,5},G(s)).

Corollary 9.3.7. Let 2 ≤ s < ∞. Then 2{3,3,5},G(s) is a 5-polytope of type {4, 3, 3, 5}
and automophism group D60

s o [3, 3, 5] of order 14400 · (2s)60. Moreover, the group
G(2{3,3,5},G(s)) := 〈ρ0, ρ1, ρ2, ρ3, ρ4〉 is the quotient of the Coxeter group [4, 3, 3, 5] by
the relations (ρ0β

−iρ0β
i)2 = id, for i ∈ {4, 6, 7, 9, 10, 12}, and (ρ0β

15ρ0β
15)s = id, where

β = ρ1ρ2ρ3ρ4.
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Proposition 9.3.8. Let 2 ≤ s <∞. The incidence system

H(2{3,3,5},G(s)) = Γ(H(2{3,3,5},G(s)), (Hi)i∈{0,...,4}),

where H(2{3,3,5},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2, ρ3, ρ4〉 = 〈ρ̃0, ρ1, ρ2, ρ3, ρ4〉, is a regular hypertope
and its automorphism group, of size 7200 · (2s)60, has the relations given by its Coxeter
diagram

•ρ1

•
ρ2

• 5
ρ3 ρ4

•

•
ρ̃0

and the extra relations (β̃−iβi)2 = id, for i ∈ {4, 6, 7, 9, 10, 12}, and (β̃15β15)s = id,
where β := ρ1ρ2ρ3ρ4 and β̃ := ρ̃0ρ2ρ3ρ4.

• The polytope 2{5,3,3},G(s) and hypertope H(2{5,3,3},G(s))

Lastly, let P be the 120-cell polytope. As previously, we can determine with the help of
GAP[GAP21] that the 120-cell has 15 distinct diagonal classes, using the double coset
action described in equation 2.3. These diagonal classes can be represented by {F0, F0β

i},
for 1 ≤ i ≤ 15, where β = τ0τ1τ2τ3 is an element of the group [5, 3, 3] = 〈τ0, τ1, τ2, τ3〉.
Let us determine the polytope 2{5,3,3},G(s) and hypertope H(2{5,3,3},G(s)).

Corollary 9.3.9. Let 2 ≤ s < ∞. Then 2{5,3,3},G(s) is a 5-polytope of type {4, 5, 3, 3}
and automophism group D300

s o [5, 3, 3] of order 14400 · (2s)300. Moreover, the group
G(2{3,3,5},G(s)) := 〈ρ0, ρ1, ρ2, ρ3, ρ4〉 is the quotient of the Coxeter group [4, 5, 3, 3] by the
relations (ρ0β

−iρ0β
i)2 = id, for 2 ≤ i ≤ 14, and (ρ0β

15ρ0β
15)s = id, where β = ρ1ρ2ρ3ρ4.

Proposition 9.3.10. Let 2 ≤ s <∞. The incidence system

H(2{5,3,3},G(s)) = Γ(H(2{5,3,3},G(s)), (Hi)i∈{0,...,4}),

where H(2{5,3,3},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2, ρ3, ρ4〉 = 〈ρ̃0, ρ1, ρ2, ρ3, ρ4〉, is a regular hypertope
and its automorphism group, of size 7200 · (2s)300, has the relations given by its Coxeter
diagram

•ρ1
5

•
ρ2

•
ρ3 ρ4

•

•
ρ̃0

5

and the extra relations (β̃−iβi)2 = id, for 2 ≤ i ≤ 14, and (β̃15β15)s = id, where
β := ρ1ρ2ρ3ρ4 and β̃ := ρ̃0ρ2ρ3ρ4.

9.4 Expanding the results further

In this chapter we have given a list of infinite families of regular hypertopes of arbitrary
rank, constructed from finite centrally symmetric non-degenerate spherical polytopes P.
We notice that Theorem 9.1.2 establishes the following:

Claudio Alexandre Guerra Silva Gomes da Piedade Tese de Doutoramento



9.Families of hyperbolic hypertopes 89

• If s is even and P has only finitely many vertices, then 2P,G(s) is also centrally
symmetric.

This implies that if s is even, all the polytopes determined in Sections 9.2 and 9.3 are
centrally symmetric, being eligible to be used in Theorem 9.1.2, giving other families
of polytopes of type {4, 4, p1, . . . , pn−1}. Moreover, since we know that these polytopes
2P,G(s) are also non-degenerate, these new families would also be eligible for the halving
operation, giving families of hypertopes.

Here the focus was on spherical polytopes but the same idea can be applied to cen-
trally symmetric toroidal polytopes. Indeed, from Corollary 9.2.2 and the point above,
it follows that the toroidal maps {4, 4}(2s,0) are centrally symmetric and non-degenerate
(for s ≥ 4 and even), and therefore extendable by the same processed that was used in
this chapter to create polytopes 2{4,4}(2s,0),G(k). Moreover, the toroidal map {4, 4}(2s,0) is
just a case of the toroidal (n+ 1)-cubic tesselation {4, 3n−2, 4}(2s,0n−1) for n = 2. We can
repeat the process to this more general case and extend further this cubic tesselation to
2
{4,3n−2,4}(2s,0n−1),G(k), for s ≥ 4 and even. To these new polytopes the halving operation

can be applied, giving new hypertope families.
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Chapter 10

Conclusion and Future Research

As stated in the introduction, faithful transitive permutation representations are a pow-
erful tool to characterize groups, particularly automorphism groups of abstract regular
polytopes and regular hypertopes, which are C-groups. Moreover, the FTPR graphs are
extremely useful to detect patterns of the action of these groups. These patterns can
be exploited by fusing strategically FTPR graphs of the maximal parabolic subgroups in
order to obtain a new permutation representation graph, which will potentially be FTPR
graphs of other C-groups. Although the results presented in this thesis are very well-
behaved, these constructions do not always give a FTPR graph of a C-group, since the
intersection property might be lost. Consider the following permutation representation
graph.

8t vertices



3 3 3 3 3 3• 21 • 21 • 21 • 21 • 21 • 21
0 • • 0 • • 0 • • 0 • • • • 0 • • 0

• 122
3

• 12
3

• 12
3

• 12
3

• 12
3

• 12
3• 21 • 21 • 21 • 21 • 21 • 21

0 • • 0 • • 0 • • 0 • • • • 0 • • 0

• 122 • 12 • 12 • 12 • 12 • 12

• 21 • 21 • 21 • 21 • 21 • 21
0 • • 0 • • 0 • • 0 • • • • 0 • • 0

• 122
3

• 12
3

• 12
3

• 12
3

• 12
3

• 12
3︸ ︷︷ ︸

8s vertices

This permutation representation graph can be obtained by combining copies of the
FTPR given in Proposition 4.2.11, being a permutation representation of a ggi G with
diagram

• 4ρ0 ρ1

4

•
4

•
4ρ2 ρ3
•

and maximal parabolic subgroups G0
∼= [4, 4](t,t), G3

∼= [4, 4](s,s) and G1
∼= G2

∼=
[4, 4](l,0), where l = 2lcm(s, t). It can be proven computationally that for (s, t) ∈
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{(2, 2), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)} the group having this permutation representation
graph is not a C-group. Hence, one must always be cautious when using this method of
constructing FTPR graphs in order to obtain new families of hypertopes. In addition, we
remind the reader of the difference between the parameters which we factor the Coxeter
group of a hypertope and the respective resulting maximal parabolic subgroups, which
in Section 7.3 we saw that it can differ.

Having in mind the construction of new families of regular hypertopes, particularly
locally toroidal hypertopes, we started by determining the degrees of FTPR of toroidal
regular maps and hypermaps. The results obtained for the regular toroidal maps {4, 4}
ended up being crucial for the extension of this result to locally toroidal polytopes of
type {4, 4, 4}. In [MS02], we may find the full classification of the finite locally toroidal
regular polytopes of type {6, 3, p}, for p ∈ {3, 4, 5, 6}, and partial results for type {3, 6, 3}.
Following the same line of research, we can classify in the future all the degrees of FTPR
of these locally toroidal regular polytopes. Furthermore, another line of research would be
to study all the possible degrees of FTPRs of the regular (n+1)-cubic toroids {4, 3n−2, 4}s,
for s ∈ {(s, 0n−1), (s, s, 0n−2), (sn)}. The case where n = 2 coincides with the toroidal
maps {4, 4}(s,0) and {4, 4}(s,s). For any n ≥ 3, one could think it would be easy to have
a general result for the set of degrees of the FTPRs of these cubic toroids. However, as
the group of the (n− 1)-simplex is a subgroup of the (n+ 1)-cubic toroids, this depends
on the degrees of Sn, which is not yet known. This seems to be a hard question.

This thesis started during a period where the theory of regular hypertopes was giving
the first steps and my commitment was to give a contribution to the classification of
these new structures. In this thesis some families of regular hypertopes of euclidean,
hyperbolic and locally toroidal type were given, and a family of locally toroidal regular
hypertopes of type {3, 4

4} was let to future work. Related to this, other problem came into
the scene: to find sufficient conditions to obtain a C-group using a “weak” factorization.
If we consider all abstract regular polytopes which are non-degenerate (i.e. its poset is
a lattice) of rank greater than 2 with at most 2000 flags, listed in [Har06], we have that
this factorization is sufficient to get a C-group except for some abstract regular polytopes
of type {4, 6}, {4, 8}, {4, 10}, {4, 12} and {6, 6}. By studying why this exceptions fail,
we might understand better how to define the sufficient conditions that would allow this
factorization to be a C-group.

In Chapter 9, many examples of families of regular hypertopes were obtained through
the halving of the non-degenerate abstract regular polytopes 2P,G(s). Moreover, if s
is even, the centrally symmetric abstract regular polytopes 2P,G(s) obtained of type
{4, p1, . . . , pn−1} can be used to build new abstract regular polytopes {4, 4, p1, . . . , pn−1}.
This would let us use again the halving operation to obtain families of regular hypertopes
of type {4

4 , p1, . . . , pn−1}. The challenge into this approach is figuring out the diagonal
classes of the centrally symmetric abstract regular polytopes 2P,G(s) derived for s even.
In addiction, the application of the halving operation on the dual of the regular hyper-
topes of type {3

3 , 3, . . . , 3, 4} (B̃n−1 Coxeter diagram) would allow us to obtain families of
hypertopes of type {3

3 , 3, . . . , 3,
3
3} (D̃n−1 Coxeter diagram). However, the halving group

here might not be a C-group nor flag-transitive, since it is only established for non-
degenerate abstract regular polytopes. Furthermore, Chapter 9 started from centrally
symmetric regular polytopes P of spherical type to get to the non-degenerate abstract
regular polytopes 2P,G(s). These results could be expanded to the centrally symmetric
regular polytopes of euclidean type, such as the toroidal regular maps of type {3, 6}s,
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the cubic toroids of type {4, 3n−2, 4} and the honeycombs of type {3, 3, 4, 3} (and their
duals).

With the results of this thesis, we are able to give new ways to build and classify
new regular hypertopes, either by building FTPRs of regular hypertopes based on the
knowledge of FTPRs of the maximal parabolic subgroups, or by the halving operation
on non-degenerate abstract regular polytopes. The focus of this thesis was mainly on
the FTPRs’ method, which led to the classification of all the degrees of FTPRs of the
toroidal regular (hyper)maps {4, 4}, {3, 6} and (3, 3, 3). We believe the methodologies
described here, combined with computational insight and experimentation, will have a
heavy impact on the research of new regular hypertopes.
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