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Resumo Pessoas com deficiências na fala, como a afasia, enfrentam geralmente
dificuldades para recuperar e manter a sua independência enquanto vivem
uma vida ativa. O cenário da cama assume grande relevância para estes
indiv́ıduos, devido às diferentes dificuldades que podem ocorrer e requerer
assistência (e.g., dor súbita, dificuldade de movimentação de membros e,
neste contexto, é importante avaliar soluções para essa população.

Esta dissertação tem como objetivo a conceptualização e criação de uma
solução baseada em sensores que reconheça movimentos dinâmicos do
braço, com o utilizador deitado na cama, de forma a apoiar a comunicação,
proporcionando meios não só para o alarme de uma emergência, mas
também para permitir uma comunicação bidirecional e simples entre um
afásico e o seu cuidador.

A solução desenvolvida usa um único “smartwatch” para detectar um
conjunto de gestos usando os valores do acelerómetro, giroscópio, e
magnetómetro, fornecidos através do smartwatch a uma unidade de
processamento colocada ao lado da cama. Esta unidade é responsável
por receber, classificar e decidir se qualquer movimento realizado é um
dos movimentos dinâmicos predefinidos. Se positivo, esta unidade envia
um alerta ao cuidador por meio de uma aplicação móvel especialmente
desenvolvida para o efeito e que permite enviar perguntas básicas, de
resposta sim ou não, de volta ao afásico às quais ele pode responder
usando, novamente, um dos movimentos dinâmicos suportados.

O sistema, que pode ser subdividido em três módulos, inclui uma aplicação
para um smartwatch responsável por adquirir os dados e enviá-los para
uma unidade de processamento, um pipeline implementado na unidade de
processamento responsável por receber e classificar os dados, enviando o
resultado para uma aplicação móvel na posse do cuidador, e uma aplicação
móvel desenvolvido para o cuidador receber as notificações e permitir o
envio de mensagens ao utilizador sob sua responsabilidade. A unidade de
processamento também fornece feedback sonoro, permitindo ao afásico
receber indicações do seu cuidador. Os resultados para reconhecimento
de gestos são bastante positivos, quer para um cenário de “dependência
de sujeito” ou “independência de sujeito” (i.e. “accuracy” e F1-score
com média a rondar os 99% e 91% respetivamente), mostrando que uma
solução generalizada pode ser alcançada, tornando as duas abordagens
viáveis.

Embora o sistema tenha sido constrúıdo para uso por utilizadores afásicos,
este não se limita unicamente aos mesmos, podendo ser generalizado para
cenários que requeiram a ligação entre pessoas na cama aos seus cuidadores,
quando o uso da voz não for viável ou prático.





Key Words Aphasia, Smart Environments, Communication, Gestures, Sensors, In-Bed
Scenarios, Machine Learning

Abstract People with certain speech impediments, such as aphasia, face challenges
to keep independent and active lives. The bedroom scenario assumes
a strong relevance for these individuals due to the different difficulties
that can occur and require assistance while in bed. In this context, it is
important to pursue assistive solutions for this population.

In this dissertation, we aim at creating a sensor-based solution that
recognizes dynamic arm movements while in bed, to support communica-
tion, providing ways to raise alarms to some hazard conditions, and also
enable bidirectional and simple communication between aphasics and their
caregivers.

The solution developed uses a common smartwatch to collect movement
data (using the built-in accelerometer, gyroscope, and magnetometer),
which are forwarded to a bedside unit for processing. The bedside unit
is responsible for receiving, classifying, and deciding if the movement
performed at any time is one of the supported predefined dynamic arm
movements. If positive, the bedside unit sends an alert to the caregiver
using a specially developed mobile application that allows sending basic
“yes” or “no” questions back to the aphasic, to which he may respond
using the supported dynamic arm movements.

The system, which may be subdivided into three modules, includes a
smartwatch app responsible for acquiring the data and sending them to a
bed-side unit, a pipeline implemented on the bed-side unit responsible for
receiving and classifying the data using previously trained machine learning
models, and sending the result to a mobile app in the possession of the
caregiver, and a mobile app developed for the caregiver to receive the
notifications and allow sending messages to the user being cared for. The
bedside unit also implements a speech output service that provides audio
near the bed, allowing the aphasic to hear feedback from the caregiver. The
gesture recognition results are encouraging, both for subject-dependent
and subject-independent scenarios (i.e. mean accuracy and F1-score above
99% and 91% respectively), showing that a model generalization may be
attained, making both approaches feasible.

Although the system was built for the use case of aphasics, it is not limited
to those users and can be generalized for scenarios that require connecting
people in bed to their caregivers, when the use of voice is not feasible or
practical.
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Chapter 1

Introduction

1.1 Motivation

Aphasia is a disturbance of the comprehension and formulation of language caused by
dysfunction in specific brain regions [1]. People with aphasia demonstrate challenges in all
areas of communication, from reading and writing to comprehension and expressive language
[2]. This condition makes it hard for this population to regain and keep their independence,
influencing everyday living and working as a barrier to communicate potential problematic or
difficult situations to family, friends, authorities, and health institutions. These individuals
can greatly benefit from assistive communication solutions, namely those that can support
communication in bed but also throughout the day.

The bed scenario assumes a strong relevance for these individuals, due to the different
difficulties that can occur and require assistance while awake during the night or resting
during the day. In this context, aspects relating to body movement, gestures, and pose can
potentially play a role as alternative ways to communicate specific needs or difficulties, both
implicitly and explicitly. In this regard, the proposal of solutions based on sensors that are
minimally intrusive, comprehensive, reliable, and easily integrated into the bed environment
of the target population, can bring a plethora of benefits assisting them with their needs and
providing straightforward mechanisms to communicate needs.

Previous work established for aphasics and other senior populations was evaluated and,
although there are some solutions to support monitoring of people while lying in bed, to the
best of our knowledge, there is not one that tackles the communication aspect of the situation
and so lies an opportunity to start developing solutions that can support aphasics and other
groups with communication barriers in a bed context.

1.2 Context

The work developed for this dissertation was motivated by the research activities in the
scope of the APH-ALARM project, Comprehensive safety solution for people with Aphasia
(AAL/0006/2019)1. APH-ALARM is an international project, in the context of the AAL Pro-
gramme, with the contributions of partners from Portugal, Hungary, and Austria, including
the University of Aveiro, through its IEETA research unit.

1http://www.aal-europe.eu/projects/aph-alarm/

1
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The purpose of the project is to create a comprehensive safety solution for older people
(55+) with impairments such as aphasia, epilepsy, and/or side-paralysis after a stroke that
can be used throughout the day. To allow support throughout the day (outside the bedroom),
the solution will support manual alert systems using pictograms and automatic alerts using
activity and gesture detection using a smartphone with accessibility options for people affected
by communication impairments. To support this population while lying in bed, the solution
will rely on sensors to detect movements that allow aphasics or others to communicate with,
for instance, a caregiver or family member, without interacting directly with a device.

In this context, this dissertation aims at exploring the in-bed scenario, where the use
of movement sensors will be assessed as a potential solution to support communication for
people with aphasia or other language impediments.

1.3 Objectives

The fundamental goal of this dissertation is to provide a communication mechanism based
on sensors for aphasics, while in bed. The system should be able to detect meaningful gestures
from users laying in bed and forward those events to caregivers, for scenarios in which it is
not possible or practical to use the voice or make selections in an application, to call for help
or basic assistance.

This system should be easily integrated, non-intrusive, and capable of providing accurate
and fast responses for communication attempts by this group of aphasics, generally, a more
elderly group, offering to them a sense of independence and warmth while also giving their
families and caregivers a sense of security.

To achieve this overall goal, a few more specific sub-goals will be pursued:

• Study the specific requirements of the Aphasic-related use cases, and the most relevant
communication scenarios to support. The activities of the APH-ALARM project will
provide valuable inputs.

• Define a controlled set of arm gestures that are appropriate for the in-bed situation.
Unlike other smart home settings, the gestures must be easy to execute when the user
is laying in bed and can include the mattress.

• Develop a gesture classification model, using machine learning techniques and data
collected with the proposed experimental setup.

• Integrate the sensing and classification capabilities to enable simple communication with
another person (e.g., a caregiver).

The setup should be minimally intrusive without compromising the user’s well-being,
contributing to a sense of security, by connecting people being cared for with their caregivers.

1.4 Contributions

The main contribution of this dissertation is the development of a system based on classical
sensors, to support communication for people suffering from aphasia after stroke. This system
is based on the usage of a single wearable that collects data, and a processing unit that
performs the gesture recognition feature as well as implementing the communication channels
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with the caregiver via the Android caregiver application, which was also developed for this
dissertation.

The gesture recognition feature developed in this dissertation recognizes five gestures that
are simple to execute in the bed context and, in certain circumstances, employ the mattress
as an intermediary. The models used for gesture recognition were generated by assessing a
set of sensor data acquired from a variety of people using the setup and methods detailed
later in this dissertation.

The final gesture recognition models were integrated into a functional system that allows
users to interact with a caregiver who is attending to them. With the system deployed,
when a meaningful gesture is performed, an alert is transmitted to the caregiver. The care-
giver’s application allows them to send not only confirmation of the receipt of communication
attempts, but also simple yes/no questions, which originate voice feedback to the speakers
present in the bedroom of the user, who may respond using the supported gestures.

Other contributions involve a paper describing the preliminary results obtained for gesture
recognition using an early setup, which was published at the IEEE International Smart Cities
Conference 2021, held online from September 7 to September 10, 2021 [3], contributions as co-
author on a paper describing a setup with a gesture recognition module, submitted to PerCom
2022 (with notification on December 22, 2021), and contributions on a paper describing an
approach to gesture recognition in a bed-scenario using radar, submitted and accepted to EAI
MobiQuitous 2021.

1.5 Structure

This dissertation is divided into five chapters, excluding this one. Chapter 2 provides
some background and related work on the subjects studied in this dissertation, mainly on
those related to aphasics and gesture recognition. Chapter 3 presents the requirements
of the system, as well as the definition of personas and scenarios related to the system, i.e.,
hypothetical subjects and scenarios that entail the use of the system and people affected by it.
Chapter 4 presents the envisioned solution and all the processes involved in its development.
The findings of the gesture recognition module implemented for the system are presented in
Chapter 5, which is separated into two sections, each containing the results of two studies
that led to the models used in the final solution. The steps taken during the development of
the solution, the main conclusions, and possible future work are presented in Chapter 6.
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Chapter 2

Background and Related Work

This section provides an overview of Aphasia as a condition that can impact people after
a stroke, as well as the current state of the art in assistive technology specially developed for
individuals with speech impediments, where aphasics are included.

Also presented are specifics on the concept of gesture recognition, a very relevant topic for
the work developed throughout this dissertation, with an analysis of a large series of works
in order to assess the current state of the art in the area of gesture recognition.

2.1 Aphasia

Aphasia is a reality predominantly unknown for the general population (approximately
84.5% of people never heard the term and only 8.8% can identify it as a language disorder [4]),
and although having a lot of controversy in what concerns its definition, it is mostly defined
as being the loss or impairment of language caused by brain damage (Benson & Ardila, 1996
[5]). This brain damage usually occurs due to a stroke and it is characterized as a sudden loss
of speech [6], although some of the individuals may recover from it on the first few weeks from
the stroke. The ones that do not recover will be permanently affected by language disorders
that depend on the location and extent of the brain damage.

Aphasia limits the ability to communicate and interact with others in many degrees,
and the majority of individuals suffering from it present language disorders that may affect
listening, comprehension, expression, reading, and writing ([7, 6]).

As stated before, the location and extent of the brain damage influence the type of aphasia
and therefore different symptoms affecting the individual. Despite the variability of lesion
sites across persons with the same aphasia type, lesion patterns within a particular aphasia
type are comparable enough to distinguish it from other aphasia types [8]. Table 2.1 lists the
symptoms of the predominant types of aphasia that affect people after stroke.

Even in the most severe forms of aphasia, recovery is possible. While speech-language
therapy is still the most common treatment for aphasia, the efficacy of traditional treatments
has not been shown definitively. This has prompted efforts to combine information from many
fields to develop more reasonable therapies and introduce new therapeutic techniques, such
as intensive language therapy and pharmaceutical medicines [9].

Because of the different barriers that affect these individuals, they often have their jobs,
relationships and day-to-day life damaged, leading to embarrassment and depression, and so,
assistive technologies specially developed for these individuals and others affected by speech
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Type of Aphasia
Speech
Fluency

Object
nomination

Understanding of
Simple Orders

Word
Repetition

Broca’s Aphasia Non-fluent Disturbed Kept Disturbed

Wernicke Fluent Disturbed Disturbed Disturbed

Transcortical Sensory Fluent Disturbed Disturbed Kept

Conduction Fluent Disturbed Kept Disturbed

Anomic Fluent Disturbed Kept Kept

Global Non-fluent Disturbed Disturbed Disturbed

Table 2.1: Most common types of aphasia and their symptoms.

disabilities are important to improve their lives.

2.2 Assistive Technology for Aphasia

Establishing new methods to communicate is a crucial part of speech therapy. These new
methods usually involve gestures, drawing, writing, or the use of assistive technologies. Any
approach, strategy, technology, or device that complements, augments or substitutes speech
to assist persons with limited speech abilities is referred to as Augmentative and Alternative
Communication (AAC) [10, 11].

Most AAC technology is designed to assist people to express their necessities (e.g. ”I’m
in pain...”) and usually consists of specially crafted devices or apps used to allow a speech-
disabled person to communicate. According to the sensing strategy employed, these AAC
technologies may be classified into five primary types [10]: imaging; mechanical and elec-
tromechanical; touch-activated; breath-activated; brain-computer interface. All of these ap-
proaches convert the communication attempts into readable signs, images, or voice outputs
(using Text-to-speech technology) that can be interpreted by other users [12]. A more detailed
description of each method is presented below.

1. Imaging methods use vision-based sensors (e.g., RGB, RGB-D, or infrared cameras)
to enable eye or head tracking for eye gazing or head-pointing activation. Examples
of commercially available eye gaze/tracking AAC systems are those provided by Tobii
Dynavox [13], eyespeak™ [14], and IntelliGaze [15]. They can typically be used together
with other input modalities (e.g., switch access, head tracking, touchscreen) [10].

2. Mechanical and electromechanical methods rely on mechanical keyboards or
switches, which are used for direct or indirect selection access, respectively. They are of-
ten integrated with other devices (e.g., computers, tablets). Lingraphica is an example,
which offers devices built for stroke or brain injury survivors and other users with com-
munication impairments, providing practice tools for speech improvements and other
tools to help improve the lives of those that deal with these problems daily [16].

3. Touch-activated methods rely on touchscreens or touch membrane keyboards, and
are used for direct selection activation, where the user selects letters or icons correspond-
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ing to words/expressions to write text or form sentences [10]. There are several commer-
cially AAC touchscreen applications available for use together with a (non-)dedicated
tablet or other smart devices, including Verbally (iOS only) [17], Proloquo2Go (iOS
only) [18], SmallTalk (iOS only) [19], and Predictable™ [20].

These AAC methods, except for imaging, have the problem of not being suitable for all
situations and times of the day. Although fine for day situations where the user is feeling well
and has the devices in his possession, when considering a situation where the user is lying in
bed, resting during the day or awake at night, it may not be easy to use systems involving a
keyboard/switch and/or a device with a (touch)screen. That is where sensor-based solutions
are recalled that may be used throughout the whole day, being able to track movements or
other data from the users.

Breath-activated methods encode messages through modulation of the speed, amplitude,
and phase of breathing signals, which can be detected using different types of sensors (e.g.,
microphones, pressure, or thermal sensors). These methods can be used, for instance, to turn
into Morse Code and therefore encode to text [10].

Brain-computer interface (BCI) methods are frequently used to allow the control of ex-
ternal devices [10]. Non-invasive BCIs rely on external equipment to monitor a user’s brain
activity, such as EEG. [10]. However, despite the fact that EEG recording methods are
non-invasive and inexpensive, they are nonetheless highly obtrusive since they require the
installation of two or more sensors on the user’s scalp.

Even those with limited motor abilities can employ the stated techniques: eye/head track-
ing, breath activation, and a brain-computer interface. Nevertheless, although they mostly
use non-invasive methods, they can still be very intrusive for the user, due to the placement
of sensors on the body (e.g., on the user’s scalp for BCI) or the use of vision-based sensors
that can compromise privacy (e.g., RGB or infrared cameras for eye/head tracking). Some
also need significant training and calibration prior to usage [10].

When motor function is not a problem or only one side of the body is affected, arm/hand
gestures and wearable sensors (such as a smartwatch, which many individuals already have
and use daily) may be a good AAC option for in-bed use. The recognition of sign language
has already been proposed for helping with communication [21]. However, the use of more
simple gestures, such as dynamic arm movements, may be more adequate for people with
speech impairments, who may just want a simple way to alert for a situation or to indicate
something pre-defined that the caregiver/friend/family and the aphasic both understand.

In that regard, gesture recognition may be introduced and give an important opportunity
to understand if a solution based on gestures may be used to ease the lives of those affected
by speech impairments, where aphasics are included. This would allow the translation of
simple hand/arm movements to, for instance, text messages, that may be sent to a designated
caregiver, and therefore allow them to communicate more easily.

2.3 Gesture-Based Human-Computer Interaction

Human activity recognition (HAR) is a general area of research that focuses on recognizing
a person’s individual activity by analysing movement data, captured by sensor-based systems.
These activity recognition systems can be integrated in a plethora of scenarios, from solutions
that envision the recognition of walking patterns between different users [22], to solutions that
foresee the recognition of user gestures.
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Research in the specific area of gesture recognition has, as stated various applications
[23, 24], including human-computer interaction (HCI) (e.g., control of home devices or a
car) [25], human-robot collaboration [26], virtual/augmented reality [27], healthcare (e.g.,
system for healthcare muscle exercise) [28], and communication (e.g., sign language) [22]. The
majority of contributions in the field of communication are concerned with the identification
of sign language gestures [22, 21, 29].

Most action or gesture-based interaction systems are either implemented using computer
vision methods or using wearable sensor data. Computer vision methods using different
types of vision-based sensors, such as RGB, RGB-D/depth, infrared, and thermal cameras,
have been widely used in research [24, 23], while lately radars have also been explored [25].
Although effective for the recognition of gestures, the use of computer vision methods is not
cost efficient and is computationally expensive, being only viable in a controlled environment
with a constant video monitoring solution in place, which is not attainable in every scenario,
introducing compromises regarding privacy and, in most cases, are very sensitive to changes
on the environment (e.g. light, position).

Sensors used for hand/arm gesture recognition include wearable sensors [23], such as ac-
celerometers, gyroscopes, and surface electromyography (sEMG) sensors embedded in gloves
or smartwatches. These sensors, meant to be worn by the user, have the benefit of not gener-
ating privacy issues over radar or vision-based sensors. Moreover, while wearables introduce
the need for the user to remember to wear and recharge them, they may offer continuous
monitoring independently of time and location, and do not require line of sight between the
sensor and the user’s hands/arms, unlike radars and cameras deployed in the environment
[25], and therefore are less sensitive to the environment they are in.

Regarding hand or arm gesture recognition using wearables, several works aim at HCI
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Many examples include uses for remote control of
home appliances [40, 36], healthcare contexts [33], gaming [35], wheelchair control [41], robot
interaction [42, 43, 39], or interaction with mobile phones by people with visual impairments
[44].

Gesture-based systems that rely on the use of wearable sensors usually have a comparable
approach, using similar gestures, sensors, and even recognition methods. Examples of some
of this systems, described in [45, 44, 30], use a setup containing only a wearable with an
accelerometer to detect hand gestures such as left, right, down, up, square and circles. How-
ever, more recent researches tend to use a combination of sensors, mostly accelerometers and
gyroscopes [46, 47], to detect the same set of gestures or even more complex arm movements.

Tchuente et al. used smartwatches with an accelerometer and gyroscope to investigate
the classification of aggressive and non-aggressive movements such as punching, shoving,
slapping, shaking [46]. The goals were to find the best location for the wearable sensor, as
well as the best combination of feature selector and classifier, to achieve high precision in
the identification of motions such as punch, shove, slap, and shake, to name a few. It was
found that having a single smartwatch worn on the dominant wrist and using a combination
of RelieF for feature selection, and k-Nearest Neighbor for classification, held a very good
accuracy of 99.6%, using a one second sliding window and a 96% window overlap.

Porzi et al. suggested a gesture recognition system for people with visual impairments
that used a smartwatch with built-in accelerometers [44]. To assess their models, they used
Support Vector Machines (SVM), Global Alignment Kernels, and a Dynamic Time Warping
model. They were able to recognize eight complex movements, involving up, down, left,
right, and square, among others, with an accuracy of 92.33% using a custom implementation
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of Support Vector Machines (SVM) together with a global alignment kernel (GAK) .

Although the contributions referenced up until now used machine learning for gesture
recognition with excellent results, others have used deep learning, where the motion signals are
fed directly to the neural networks [47, 42]. A sensor-based hand gesture recognition system
based on Feed-Forward and Convolutional Neural Networks using sensory data produced by
accelerometers and gyroscopes was used, getting accuracy’s up to 92.36% for a set of 11
gestures with over 3404 test gestures [47], while in a hand gesture recognition system, based
only on 3D accelerometers was used with a Recurrent Neural Network getting accuracy’s up to
99% for a 6 class gesture set [42]. Deep learning solutions have the disadvantage of requiring
a large amount of data to be trained and tested, as well as demanding more computing power
to do so; however, for more complex scenarios where machine learning fails to deliver good
results, these solutions tend to demonstrate that progress can be made in the topic, with the
growth of complex neural networks.

Considering preprocessing techniques, more specifically the choice of window size and win-
dow overlap, there is some investigation done tackling it. Banos et al. analyzed some of the
most frequently used activity recognition techniques for a wide variety of window sizes and
activities for activity recognition. According to the results, the interval 1–2 seconds provides
the greatest balance of identification speed and accuracy [48]. Chikhaoui has also demon-
strated that for the identification of aggressive and agitated behavior using accelerometers, a
small window size of around one second is justified [49]. The choice of window overlap allows
to obtain more training data but can also lead to over fitted models, Dehghani et al. has
made a comparison of overlapping and non-overlapping sliding windows for human activity
recognition and the results showed that there is no performance gain from the use of over-
lapping windows in conjunction with subject-independent cross validation [50]. This result
has an high impact on resource usage in the feature selection and training process of models.
Although these conclusions were taken, it is important to assess if in the scenario tackled in
this dissertation the same is observable.

Tables 2.2 and 2.3 summarize the state of the art in activity and gesture recognition
research, with a focus on the publications that are most relevant to this dissertation. Details
on the goal, sensors used, features extracted, classifiers used, and classification results are
presented.
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Ref. Year Authors Context Sensor(s) Position

[45] 2011 Tea Marasović et al.
System that uses the accelerometer, embedded
in a mobile phone, to capture simple gestures,
such as hand describing a circle.

Accelerometer Standing

[44] 2013 Porzi et al.

Gesture-based user interaction module, based
on global alignment kernels, for assisting peo-
ple with visual impairments during daily life
activities.

Accelerometer Standing

[30] 2017 Kefer et al.
Effect of device placement on dynamic hand
gesture recognition accuracy.

Accelerometer Standing

[51] 2018 Zhu et al.
Action detection and segmentation algorithm
that is used in a system that uses common
smartwatches to infer gestures in real time.

Gyroscope,
Accelerome-
ter

Standing

[42] 2018 Carfi et al.

Architecture for online gesture recognition,
based on a wearable triaxial accelerometer, a
Recurrent Neural Network (RNN) probabilis-
tic classifier and a procedure for continuous
gesture detection

Accelerometer Standing

[47] 2020 Chu et al.

Study on the use of Neural Network algorithms
to accurately classify a sequence of hand ges-
tures from the sensory data produced by ac-
celerometers and gyroscopes.

Gyroscope,
Accelerome-
ter

Standing

[52] 2020 Siddiqui et al.
Study on hand gesture recognition with the
use of acoustic signals together with an ac-
celerometer and gyroscope at the human wrist.

Gyroscope,
Accelerom-
eter and
Array of
Microphones

Standing

[46] 2020 Tchuente et al.

Study on the detection of aggressive move-
ments using smartwatch data. This also stud-
ied the placement of the sensor units, and in-
vestigated if one wrist-worn smartwatch was
enough.

Gyroscope,
Accelerome-
ter

Standing

Table 2.2: State of art table concerning gesture recognition, with specifics on the context,
sensors and position of the user
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Ref. Gestures supported Features Classifiers Accuracy

[45]
Right, Down, Square, Cir-
cle, Triangle, L-Shape, N-
Shape

For each axis: Average,
Average Absolute Differ-
ence, Variance, Standard
Deviation, Root Mean
Square, Zero-Crossings,
Signal-to-Noise Ratio.
Duration, Correlation
Coefficient, Acceleration,
Average Resultant, Binned
Distribution

kNN with PCA
LDA

87.6% using
LDA

[44]

Left, Right, Up, Down, Cir-
cle Clockwise, Circle Coun-
terclockwise, Square, Ar-
row To The Right

Global Alignment Kernel SVM, DTW

92.33%
using a cus-
tom Global
Alignment
kernel to-
gether with
SVM

[30]

Left, Right, Down, Up,
Square, Circle Counter
Clockwise, Circle Clock-
wise, Triangle

For each axis: Mean,
Min, Max, Range, Vari-
ance, Magnitude, Peaks,
Energy, Frequency Range,
Gesture Duration

SVM, J48 decision
tree, Naive Bayes,
and Neural Net-
works.

90.73%
with Leave-
Subject-Out
Cross-
Validation

[51]

Wave four fingers right,
point with index finger,
clicking the index finger and
the thumb finger, rubbing
the thumb finger with other
four fingers updown, fingers
in the shape of calling .

Frequency Domain Fea-
tures

Recurrent Neural
Network (RNN)

96% us-
ing LSTM
based Neu-
ral Network

[42]
Wrist twist, arm up and
down, circle movement

The inertial signals are fed
directly.

Recurrent Neural
Network (RNN)

96.9% for of-
fline testing

[47]

Left, Right, Up, Down, ,
Circle Clockwise, Triangle,
Bolt Shape, S-Shape UP, S-
Shape Down, Slight Curve

The inertial signals are fed
directly.

PairNet, Residual
PairNet, PairNet
wih Inception,
Residual PairNet
wih Inception,
CNN, LSTM,
Bi-LSTM

92.36% with
Pairnet

[52]
Static hand gestures (eg.
hand lift, thumbs up, okay
sign)

7873 features with some
of the top being shannon
entropy, burstiness, second-
order moment, highlowmu
statistic, interquartile
range.

SVM (Gaussian
kernel) with
10-fold cross-
validation; LDA
classifier with
Monte-Carlo
cross-validation

75%

[46]
Punch, shove, slap, shake,
clap, wave, handshake, type
on keyboard.

For each axis: Mean,
Variance, Median, Range,
Standard Deviation, Skew-
ness, Kurtosis, Parwise
Correlation Coeficient,
Integral

k-Nearest Neigh-
bors (kNN),
Multilayer Per-
ceptron Neural
Network (MP),
Support Vector
Machine (SVM),
Näıve Bayes,
decision tree

99.6% using
a combi-
nation of
RelieF for
feature ex-
traction and
kNN.

Table 2.3: State of art table concerning gesture recognition, with specifics on the gestures,
features, classifiers and results attained.
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2.4 Critical Analysis on Gestures for Communication

It is challenging to locate a contribution that addresses both the in-bed scenario discussed
in this research as well as the communication needs of people with speech impairments like
aphasia. Even though these issues together form a particular niche, contributions from a work
that addresses both themes may benefit a larger audience.

In most studies, the participants carried out the gestures while standing [30, 34, 53] or
information on posture is not clear [54, 33, 42, 36, 55]. Nevertheless, a few studies explored
standing and/or sitting [37, 31, 40]. When comparing results for standing and sitting, Luna
and coworkers found that performance is better when standing (hit rate ranging between
82% and 97% vs 65% and 80%, for 6 gestures, using accelerometer data from 15 subjects
and multi-dimensional dynamic time warping). Nevertheless, only one work has been found
that proposed tackling the recognition of gestures while laying in bed. Lamb et al. have used
gestures in a bed scenario to allow automatic bed positioning using gestures [56], but the
initial work developed has not only used computer vision methods to detect hand gestures,
which is a considerable disadvantage compared to wearable sensor solutions, but it is also not
clear if the gestures recorded were taken when laying in bed, so the results have to be taken
carefully when trying to compare approaches.

When considering contributions related to communication support not involving sign lan-
guage, those are rather infrequent. Exceptions are the works on speech generation using hand
gestures [57] and interaction improvement for people with motor and speech impairments [58].
However, they are not suitable for the scenario being addressed for this dissertation since they
rely, once again, on computer vision methods, with the use of a Leap Motion (infrared camera)
and RGB camera. Research into in-bed situations including wearables has mostly focused on
human activity monitoring (e.g., to monitor sleep quality, alert carers, or trigger automated
actions). In this regard, it is critical, in my opinion, to give an extra and important degree
of support for a wide variety of people (e.g., the elderly) in the bed setting, going beyond
monitoring, by integrating sensors in a bedroom context to collect and apply data to enhance
communication in that scenario.

In the context of the in-bed situation, it is critical that gestures, unlike sign language, be
simple to execute and understand, taking into account the setting and the population being
addressed. It is also worth noting that, while aphasics are the primary focus of research,
developing a system that works for all sorts of aphasics would be challenging. Because aphasics
might have complicated comprehension problems, the goal is to help individuals who still have
some of those characteristics unaffected.

This overview highlights a good amount of work developed on the area of gesture recogni-
tion. Although many studies continue to unveil important results in this area, it is important
to not only address different scenarios (e.g., the bed or bedroom scenario) but also to use
those results to develop clever solutions to support people in their needs and to, for instance,
effectively provide new interactions with the real world.
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Chapter 3

Scenarios and Requirements

The following chapter will perform a detailed study of the people who will be impacted
by this project to describe the intended system’s users, as well as their needs. To accomplish
so, fictitious personas and scenarios involving the personas and the system were created in
order to assess and identify the system’s needs, allowing a better development of a system.

3.1 Personas

Personas are fictitious characters that are created based on research to represent the many
sorts of users that could use some service, product, website, or brand in a similar way [59].
Personas and their motivations help not only in the formulation of system scenarios but also
in the establishment of system requirements, giving real-world goals for the final solution.

Considering the scenario that the system aims to attain, there is a common characteristic
among all personas going to be described next - having aphasia. Although this may limit
the characteristics of those being described, there are still some different characters with
different needs, expectations and capabilities, that may be envisioned for the system.

In this regard, an analysis of the literature about the categorization of different forms of
aphasia and individuals impacted by it was done to gather the required information for the
definition of the personas.
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António Andrade

António Andrade is a sixty-two-year-old divorced man, cur-
rently living with his son on a two-story flat in Póvoa de Varzim,
Portugal. António is a very skillful man, plays various instru-
ments, and even restores some to give to a school in his neigh-
borhood.
António suffered very recently a stroke and started having some
trouble expressing his thoughts and understanding words, be-
cause of that he was diagnosed with Primary Progressive Apha-
sia (PPA), known for gradually affecting the communication

skills of the patient.
Even though he was diagnosed with aphasia, he is currently in a stage where he is still active
and takes part in daily life activities, usually leaving the house by himself to go shopping and
to visit the school to which he donates some instruments because he enjoys the interaction
with a younger audience.

Motivation: From the day his dad moved in with him, he had some trouble supplying
privacy to his dad and, for that reason, wanted a way for him to have the chance to call him
if anything happens, a simpler way that would deny the need to go to his room during the
night without the need of.

Maria Julia, Retired

Maria Julia is a seventy-two-year-old mother of one and grand-
mother of two. She currently lives with his son, his wife, and
both their kids that come home every weekend from college. She
was married but her husband died ten years ago from health
complications related to smoking.
Julia used to live alone with his husband, but since his death
and being diagnosed with aphasia due to a cerebrovascular ac-
cident (CVA) 2 years prior, she moved in with his son so he
could assist and provide her a safer and healthier environment

by having more people around.
Julia worked in a hair salon her entire life so she was used to being around a lot of people,
especially women. Her husband was very special to her and since his death, she started
developing some signs of depression that led her to be accompanied by a psychiatric doctor.
These signs have gotten worse since the cerebrovascular accident that she suffered because it
led to developing hemiparesis that leaves her insecure.
She never had contact with a smartphone or smart gadget in general, so her knowledge at
that level is restricted. Due to the stroke and suffering from aphasia and hemiparesis, she
has trouble getting in and out of bed and has some acute pain during her sleep that may
arise as an emergency at any time.

Motivation: Because Julia’s bedroom is on a different floor from his son’s, she needs a way
to communicate her will, giving their son and family more confidence and trust that she is
safe.
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Adam Will, Shop Attendant
Adam is a 43-year-old, single man, living by himself in Ponte da
Barca, Viana do Castelo, Portugal. For the past 20 years, he works
in the same local shop being an attendant and often does volunteer
work where he lives. Besides his daily work, he enjoys taking care
of his garden, having a good selection of uncommon lily species that
he sells online.
Two months prior, he suffered a stroke that led to the development
of aphasia. He is currently only affected slightly in object nomi-
nation, so for the moment, he still keeps his job. Although he is
currently fine, because he lives by himself, a caregiver was assigned
to him to allow him to have some point of contact in an emergency.

Motivation: Owing to the fact that the caregiver is not present every night in his house he
needs a way to communicate any emergency or need without the use of his voice, but rather
with gestures that support the natural evolution of its condition.

3.2 Scenario

3.2.1 Scenario 1: Urgent Medication Assistance

Júlia, in her sleep, wakes up and feels an acute pain that makes her have to call her
son to administer some urgent medication. She decides to execute the gesture of come
[→ REQ2], so that her son is alerted. The system detects the gesture correctly and sends a
notification to her son’s smartphone [→ REQ2] that receives an indication of a potential
problem. To confirm to his mom that the message was received and that he is coming, he
may send a message of confirmation [→ REQ5] that is broadcast to his mom through a
speaker in her room, giving more confidence to her.

3.2.2 Scenario 2: Home Safety Hazard

António had a rough day and fell asleep early. Suddenly, during the night, António gets’
woken up by a strange sense of dizziness and a strange smell. He quickly realizes that the
smell is actually of propane and urges to get up, yet he fails to succeed [→ REQ1]. To
get help in this situation, he uses the APH-Alarm system to alarm his son of the situation
happening in their home, by executing the gesture of knocking on the bed mattress
[→ REQ2] to alert to a dangerous situation. His son then receives the alarm [→ REQ4]
and quickly understands the severity of the situation calling the firefighters immediately and
sending a confirmation to the caregiver [→ REQ6].

3.2.3 Scenario 3: Anxiety

During a nap after lunch, Adam starts to feel acute pain, preventing him from stand-
ing up [→ REQ2] and causing him anxiety. To get help, he executes the gesture of twisting
his wrist [→ REQ1], which activates the APH-Alarm system and alerts his caregivers
[→ REQ3] of a potentially problematic situation.
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The caregiver receives the warning via the caregiver app on his/her smartphone
[→ REQ4] and has the choice of asking [→ REQ5] Adam a few basic yes or no questions
(including: Need water? Need medication? Is it an emergency?) In order to assess the
situation’s severity or gather extra information.

These questions are broadcast to Adam through the speaker in his bedroom
[→ REQ6], which he will answer by using the predefined gestures supported by the system.

3.3 Requirements

Although different methodologies allow different requirement assessment processes, most
requirements should be set in the early stages of the development cycle of a system to allow
a successful run of development.

There are two types of requirements that may be defined, functional and non-functional.
Functional requirements are requirements mostly related to features of the system, while the
non-functional can be described as being attributes of the system such as performance.

Given the importance of the system’s implementation and the fact that it is the initial
iteration, the requirements were chosen to assure the proposed system’s proper development
and to provide the groundwork for future improvements and additions. Therefore, in this
first iteration, the requirements are based on the needs to accomplish the scenarios proposed.

The non-functional requirements of the system are the following:

1. Suitable for the bedroom: The system should be suitable and easily integrated
with the bedroom scenario, namely the specific in-bed scenario with a user lying in bed;

2. Privacy: Preserves the privacy of the user and safety of data;

3. All-day use: Should allow the use of it during all parts of the day, as long as the
person is lying down in their bedroom;

4. Provide communication means: The system should support communication based
on a pre-defined set of dynamic arm movements as input and provide speech output;

5. Easy to comprehend: The gestures used for communication need to be easily ex-
ecutable by everyone in the considered scenario, and they should take advantage of
the context as much as possible by including the usage of the bed’s mattress or other
components of the bed.

6. Performance: The system should have a good performance and react quickly, in less
than 5 seconds, preferably lower, upon interactions by the user and also on the process
of sending and receiving information (i.e. between user and caregiver).

The system’s functional requirements are sorted by importance and are included in the
Table 3.1, along with parts of the scenarios to which they apply, and a brief description.
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REQ part of scenario Requirement

1 ”preventing him from
standing up”

The system has to support users whenever they are lay-
ing in bed, with continuous operation regardless of the
time of day or night.

2 ”execute the gesture of
come”

The system needs to correctly detect a pre-defined set of
gestures, minimizing false positives as much as possible.

3 “alerts his caregivers” The system needs to generate alerts based on the recog-
nized gestures and send them in form of notification to
an application running on the smartphone of the user’s
defined contact(s).

4 ”caregiver app on
his/her smartphone”

A caregiver smartphone application, to be in the posses-
sion of the caregiver, should receive the alerts from any
communication attempts, as quickly as possible.

5 ”choice of asking” The caregiver app should be able to send Yes/No ques-
tions while also receiving the responses from the user
(i.e., gestures can also be used to answer questions).

6 ”questions are broad-
cast to Adam through
the speaker in his bed-
room”

The setup needs to contain a speaker that provides a
speech output modality to the system. This modality
is responsible for broadcasting both questions from the
caregiver or the alert that the message was received by
the caregiver.

Table 3.1: Functional requirements of the system sorted in order of importance with a de-
scription and part of the scenario where they are considered.
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Chapter 4

System Proposal

This chapter presents the steps involved in the development of the gesture recognition
system developed to support people with speech impairments, mostly aphasics, through the
recognition of gestures. The chapter is divided into 3 sections. The first presents a high-level
overview of the solution implemented. The second section presents the responsibilities of
modules and their interactions as well as some details on the choices of implementation. The
third and final section presents in-depth details of the implementation of the modules.

4.1 System Architecture

The system is described in this dissertation aims at providing communication support to
people with speech disabilities, mainly aphasics.

People with speech and language disorders, such as aphasia or others, often experience
difficulties in expressing their needs in a way that can be understood by others. These
difficulties cause major limitations to their independence, so body movement, gestures, and
pose can potentially play a role as alternative ways to communicate.

Figure 4.1: Basic scenario depicting the goal of the system.

One of the situations where they can feel more vulnerable is their bedroom (Figure 4.1),
especially when laying in bed. With that in mind, the target of our system is the bedroom
environment, where a person is alone and lying on a bed, and may need to communicate with
other people (e.g., to ask for water), while resting during the day or awake at night.

The goal is to provide not a monitoring solution but a way for these users to communicate
with a caregiver, family, or friend.
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To accomplish the goal proposed, the bed scenario had to be reimagined to detect move-
ments and other signals. For that, it was considered the use of sensors attached to the body
and/or mounted to the bed that connects, preferably wirelessly, to a processing unit that
will be able to perform all steps from collection to feature extraction and classification of the
movements. If anything relevant is detected the processing unit should be able to decide and
send a notification to the caregiver responsible for that person.

Figure 4.2: Basic architecture depicting how the bedroom scenario was reimagined.

Figure 4.2 aims at providing a high-level overview of the bedroom scenario just described.
The (aphasic) user is laying in bed, with sensors both placed on the user’s dominant wrist and
the bed. At any time, he decides to alert his caregiver of an event by executing a movement.
Data from the execution of the movement is sent to a local bedside unit that is responsible
to identify the relevant movements executed. If any relevant one is detected, the bedside unit
should be able to notify the caregiver through a smartphone notification sent to the caregiver
app present on this smartphone. Not only that, but the caregiver may also opt to send a
confirmation of the alert reception, as well as simple yes/no questions that can be replied to
using movements by the user.

The method just described allows an aphasic to call a caregiver who may not be present
at all times in case of an emergency, providing a sense of warmth and protection to both the
aphasic and the caregiver.

4.2 Modules Interaction

The system being implemented has three main modules to consider: the sensors re-
sponsible for collecting data, the bed-side unit responsible for aggregating data, classifying
movements, and the communication module, responsible for employing the means for
every service to communicate.

4.2.1 Sensor Layer

Sensors are devices that respond to changes in the environment reporting the value, usu-
ally, to another device. Sensors can be used in a plethora of scenarios, but when considering
the bed scenario most uses for them include monitoring of some sort, for instance, monitoring
sleep posture [60], monitoring blood pressure [61], respiratory rate monitoring [62], mostly
using bed-mounted sensors. Although bio-sensors are commonly used for health monitoring,
our system is focused on activity tracking, specifically quantifying arm movements that can
be associated with meaningful gestures.
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Wearables containing accelerometers and gyroscopes, as well as in-bed solutions using
them, are a great way to detect movement on the body’s extremities and even elements of
the bed. The downside of applying in-bed solutions is that they may interfere with the bed
environment and cause undesirable alterations to the bed scenario, resulting in an unpleasant
setting.

For this system, a wearable is chosen to offer a less invasive but yet reliable method to
detect movement using classic sensors. This wearable is not as obtrusive as one might assume
because it is akin to the use of SOS panic buttons that many seniors are familiar with.

This wearable will be used on the user’s dominant wrist and, through the integrated
sensors will be able to report the signal variations that may be processed externally to detect
if any relevant movement was executed. With that goal, the wearable will be responsible
for retrieving sensors data and sending it to a specialized device for processing. To do that,
the wearable has to establish a channel of communication with an external bedside unit,
transferring the responsibility of movement classification from the device with the sensors to
that unit.

4.2.2 Bed-Side Unit

The bedside unit is responsible for the aggregation of the sensorial data received by the
sensors and the classification of the data to alert a caregiver if any relevant movement is
performed. This unit is also responsible for implementing a speech output service that will
aid the user in the obtainment of messages from a caregiver.

The bedside unit should have enough computing power to not introduce significant delays
on all steps involved in the processing and classification of the data, and should also be able
to establish a reliable connection with the sensors.

Figure 4.3: Classification pipeline used to classify movements performed.

Figure 4.3, presents the processes involved in the classification of the movements. The
steps include data collection, responsible for receiving the data from the sensors, feature
extraction, responsible for extracting relevant features from the sensor data, and the clas-
sification, which takes the features extracted and classifies accordingly to the predefined
movements supported by the system.

To implement the speech output service that converts text messages to speech using text-
to-speech (TTS) technology and plays it using a speaker, the service has to retrieve messages
sent by a caregiver by providing some channel of communication between both parts.

4.2.3 Communication and Interaction

To implement the speech output service that converts text messages to speech using text-
to-speech (TTS), as well as the service that allows the sending of alerts to the caregiver, the
bed-side unit has to establish a bidirectional channel of communication between both, the
user, through the bed-side unit placed in the bed environment, and the caregiver, through
a mobile application that may be used everywhere as long as there is an active internet
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connection to receive messages and send messages. To allow this, an interaction manager is
used which provides endpoints to other external services, devices, or others, to connect and
send information to the system.

To allow the caregiver to receive messages, the smartphone must have an active internet
connection which allows the smartphone to receive notifications and therefore alert him for the
execution of a movement. This implies that the bedside unit must also have an active internet
connection to allow sending notifications as well as receiving questions by the caregiver, thus
providing a bidirectional channel of communication between both parts.

4.3 System Implementation

This section will provide an in-depth description of the implementation of the different
modules and services provided by each of them. The implemented system relies on the use of
classic sensors to detect movement, while the use of in-bed sensors is not considered for this
prototype.

4.3.1 Deployment View

Figure 4.4: Diagram with the services and interactions between them (1 - Wear OS Smart-
watch; 2 - Raspberry Pi 4; 3 - Android Smartphone).

The system is implemented using a modular design, in which each module is constructed
independently of the others and implements a component of the system with a well-defined
interface. This choice brings numerous advantages especially when considering code update
or restructure of the system. Although this may bring additional latency compared to a
monolithic approach that includes all services in a single program, the advantages in terms
of modularity and scalability outweigh the disadvantages [63].
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For the smooth operation of the complete system, the solution, as stated, is segmented
into distinct modules that operate independently of one another and may be replaced with
others without restructuring the system as a whole. These modules are listed and briefly
described below:

1. Sensor data recording, an application developed for the Wear OS smartwatch that
continuously reads sensor data and sends it to the processing unit using Bluetooth.

2. Gesture recognition service

(a) Sensor data collection, advertises a Bluetooth service that serves as the endpoint
for the smartwatch to communicate and publishes the sensor data.

(b) Feature extraction, from the data, received the important features are extracted
to be used for the classification in the following stages.

(c) Gesture classification, a previously trained model is used to classify the move-
ments done and identify gestures executed.

(d) Decision, based on the classification results there needs to be a decision on what
to do, either send a message to the caregiver responsible or not.

3. Speaker service, service responsible for receiving messages from the caregiver and
broadcasting it through the speakers using text-to-speech.

4. Monitoring and configuration services, a web service developed to enable further
interactions with the system. This service implements a web view that allows data
visualization of the classification of the movements being executed, changing of the
model being used for classification, and implements endpoints used for interaction with
the system.

5. Caregiver app, an application developed to be used by the caregiver to receive the
alerts and send messages to the aphasic to his responsibility.

The different modules communicate using either HTTP Communication or Message Com-
munication, subject to the use of a message broker. These modules will be discussed in further
detail in the following topics, including specifics on the processes and judgments made.

To deploy the solution, a set of devices were chosen. The smartphone used to test the
caregiver app has the only constraint of being an Android smartphone, and for this disser-
tation, a Poco F3, with Android 11 was used. The speaker of choice is a generic, no-brand
speaker with an auxiliary input. The smartwatch and the processing unit, which are more
relevant to the project and have certain significant specifications, are discussed next.

Smartwatch

For this dissertation, an OPPO Smartwatch with Wear OS was chosen. Although other
options for smartwatch’s exist, this watch was chosen for its features and specifications, which
are presented in Table 4.1.

Having Wear OS was the main point. Wear OS is a version of Google’s Android operating
system designed specifically for smartwatches and other wearable devices. Wear OS includes a
variety of connectivity options, including Bluetooth andWiFi, as well as several useful features
and applications [64].
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Specification Description

Operating System Android Wear OS
Processor Qualcomm Snapdragon Wear™ 3100
Memory 1GB + 8GB
Batery 300mAh
Connectivity WiFi, Bluetooth 4.2, Bluetooth Low Energy, GPS, NFC
Misc. Heart Rate Sensor, Tri-axial Accelerometer, Geomagnetic sensor, Barometric

Table 4.1: OPPO Smartwatch main specifications.

Figure 4.5: Oppo smartwatch.

One of the many advantages of Wear OS is that
it allows developers to write programs in Java or
Kotlin in the same fashion that they would on an
Android phone, allowing them to, for instance,
listen to the smartwatch’s sensors and communi-
cate with other devices. For that reason, hav-
ing the ease of developing in Android improves
the development of applications but also allows
porting the work done in one type of device to
another, with the same operating system. Also,
the sensors present in the smartwatch were on par
with the desired set of sensors for the project.

A Wear OS app was developed to read the sensor data from the in-built sensors and was
also responsible for establishing a connection with a processing unit to send data.

Processing unit

Figure 4.6: Raspberry Pi 4 Model B.

A Raspberry Pi 4 was chosen as the process-
ing unit for the system. As stated, the processing
unit is responsible for connecting, collecting, and
processing the sensor’s data to classify the move-
ments of the user into relevant information.

A Raspberry Pi is a compact single-board
computer that was designed to teach basic com-
puter science in impoverished countries’ schools
[65]. This compact single-board computer in-
cludes an ARM CPU and thus has Linux compatibility, making it a great fit for projects
like the one being developed here, where it will serve as a connection point for sensors and
other devices. The specifications for the model chosen are found in Table 4.2.

This device must be able to maintain a solid connection with the sensors without causing
significant latency, allowing for quick recognition and therefore a reliable overall system.
This unit should also be able to connect to other devices on-demand, for possible future
improvements of the overall system, with the introduction, for instance, of new sensors or
devices that allow further interactions.
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Specification Description

Operating System Raspberry Pi OS
Processor Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
Memory 64Gb + 8GB LPDDR4-3200 SDRAM
Charging 5V DC via USB-C connector (minimum 3A*)
Connectivity 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE

Table 4.2: Raspberry Pi 4 specifications

4.3.2 Sensor Data Acquisition

The sensor data recording service is directly deployed on the wearable. As previously
mentioned, a Wear OS smartwatch was chosen for this dissertation owing to many advantages,
one of which is that the system uses Android and its development platform, making the process
of developing new applications for various purposes easier.

The application, deployed on the smartwatch, implements two important methods:

1. Sensor listener, that retrieves and makes the sensor data available to be transferred;

2. Bluetooth service, responsible to establish a connection to a Bluetooth server de-
ployed on the processing unit and send periodic messages to it with the sensors data;

Both methods will be discussed thoroughly next.

Bluetooth service
For the smartwatch to establish a connection to a Bluetooth server deployed on the pro-

cessing unit, a Bluetooth service needs to be deployed on the smartwatch that is capable of
establishing a channel of communication between both devices.

To implement this Bluetooth service, Android utilizes BluetoothDevice to establish a
BluetoothSocket, from which the thread may connect and start a communication channel.

In order for a BluetoothDevice to connect to BluetoothSocket, the smartwatch must
search for a server that advertises a service with a shared UUID between them. If the lookup
is successful and the remote device accepts the connection, a channel of communication is
created and may be utilized to share information. This channel can be used for both reading
and writing, although it’s mostly used to send values from the smartwatch to the processing
unit.

Sensor listener
Nowadays, most Android devices have integrated sensors that allow the retrieval of raw

sensorial data with high precision and accuracy. Due to the increasing performance of those
devices, similar scenarios to the one being addressed in this dissertation started using Android
devices to collect data. Although some other sensors are available in the smartwatch used,
only the accelerometer, gyroscope, and magnetometer are relevant for our scenario and only
those are actively read.

To access the raw data from sensors on an Android device, the Android sensor framework
is used. This framework enables, among other things, the identification of sensors and sensor
capabilities, as well as the monitoring of sensor events, which occur whenever the sensor’s
data changes.
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To allow the monitoring of sensor events, the thread responsible for that needs to imple-
ment two methods:

1. OnAccuracyChanged() - invoked every time the accuracy of a sensor changes.

2. OnSensorChanged() - which is invoked every time the sensor detects a new value and
contains not only the new value of the sensor as well as a timestamp and the accuracy.

When registering a sensor listener, it is not possible to define the polling rate of the
sensors, nevertheless, it may be estimated by the timestamps of the data recordings, but it
is not feasible to use the framework to specify a precise polling rate and therefore, external
methods need to be employed to obtain one.

Java provides mechanisms to schedule threads to run at a specific frequency. Because
there is a need to constantly provide data at a fixed rate, an executor together with a scheduler
was created and used. An executor allows to schedule commands to run after a given delay,
or to execute periodically [66], to execute periodically a time frame has to be provided and
the scheduler takes responsibility for providing the periodicity.

For this system, a fifty-hertz polling rate was chosen. Having a fifty-hertz polling rate
means that every twenty milliseconds a data value needs to be recorded, for that reason the
scheduler was set to that rate, and every twenty milliseconds the value reported by the sensors
is recorded together with the timestamp of the creation of that segment.

After fifty segments have been recorded (one every twenty milliseconds, totaling one sec-
ond), each with a value for the accelerometer, gyroscope, magnetometer, and a timestamp,
the data is transferred to the processing unit via the channel created by the Bluetooth service
for that purpose.

This data segment is delivered together with a packet counter for synchronization reasons
and a timestamp to enable delay monitoring, using JSON format as presented below.

0 {"data_segment": {
1 "packet_counter": 0,

2 "data": "acc_x, acc_y ... 0.2, 0.7, 2.5,...",

3 "timestamp" : 1632259181

4 }}

4.3.3 Sensor Data Collection

The Sensor data collection service, implemented on the processing unit, is responsible for
advertising a Bluetooth server to which the smartwatch connects and establishes a channel
of communication.

When it starts, it has the responsibility of advertising a service that the smartwatch or
other sensor device can understand as being the server for data collection, which can be
achieved by using a UUID that is shared among the devices.

Although other programming languages may be used to implement a Bluetooth server,
Python 3 (version 3.7.10) was chosen. Bluetooth communication is supported by python’s
native sockets but since it is easier to implement, the “PyBluez” (version 0.23) module was
used for this purpose. This module allows users to deploy Bluetooth servers/clients, ranging
from basic to more sophisticated, starting with very simple client and server programs and
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progressing to coping with unreliable servers and even providing Bluetooth Low Energy com-
patibility (BLE) support. This is all very well documented and examples for some scenarios
are presented in their repository and were used for this project [67].

In this service, the flow can be briefly described as follows:

1. Service starts a Bluetooth Socket that accepts connections;

2. A Bluetooth server with a unique “UUID” is advertised and other devices may connect.

3. When a device tries to connect using the same “UUID” a channel of communication
gets established and data may be transferred.

4. Data is received in 1024-bit trunks, which implies that, if the message is bigger than
that, it cannot be received all at once. As a result, data is concatenated from the
beginning of the message until the end is identified, this is possible by using a “JSON”
format on the messages and detecting the terminator.

5. When a full message is received, the sensors data is extracted and gets published to
an MQTT Message Queue that other services can subscribe, consume and process the
data.

4.3.4 Feature Extraction

The Feature Extraction service is responsible for extracting the important features from
the sensor data received for it to be used for classification. Selecting the most appropriate
features is a critical step in data analysis because it allows to process information quicker,
reduce model training time, and determine which features are more significant to the problem
being solved.

This service has the responsibility of consuming and processing the sensor data retrieved
from the message broker used by the last service, extracting the important features needed
to classify the motion as one of the supported gestures.

Since this queue receives a message approximately every second, it is critical that the
feature extraction done does not take too long, causing unwanted delays. Although once
again, any programming language could be used to consume and process the data, python
was once again chosen due to the data analysis capabilities provided by the “pandas” (version
1.2.4) module.

The features extracted from the sensor data are listed in Table 4.3.

Feature Description # Features

Mean Average of each signal axis 9
Variance Variance of the signal 9
Median Median of each signal axis 9
Range Range of the signal 9

Standard Deviation Deviation of each signal axis 9
Skewness Measure of asymmetry of the probability distribution of the signal about its mean 9
Kurtosis How peaked the sensor signal distribution is 9

Correlation Pearson’s correlation between each pair of axes (xy, yz, and xz) 9
Integral Area under the curve 9

Sum of all squares Sum of the squared value of all samples for all three axes of a given sensor 3

Table 4.3: Time-domain features extracted for each sliding window.
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After the features are extracted from the data retrieved, a single segment of data with
the important features is available to be used for classification. This segment is therefore
published into an MQTT Message Queue to allow the service with classification purposes, or
others, to consume it.

4.3.5 Gesture Classification

The Gesture Classification service has the purpose of consuming the MQTT Mes-
sage Queue containing the segments of data published by the service described in Subsec-
tion 4.3.4. With the values retrieved, they are used to classify the movement executed.

To allow classification, research into the topic of gesture recognition was addressed and
an in-depth analysis of the topic is addressed in Section 5. From the results obtained, the
best combination of classifiers and other relevant variables was determined and used in the
system implemented, more specifically in the service being described here. The investiga-
tion done, allowed not only to address the best combination of variables for classification
but also allowed the attainment of a trained model, with data from ten participants that
demonstrated promisingly good results considering a subject independence scenario, which is
relevant considering a real-world scenario.

In essence, this service consumes a segment with the important features extracted and uses
a pre-trained model to classify that segment into a gesture. The model used for classification
can be either the one saved locally on the processing unit or the one in a remote server like
the service described in 4.3.8, that also retrieves the gesture executed.

The result of the classification is given as a number from one to six. From one to five are the
five gestures supported by the system, and the sixth is the “No Gesture”, meaning no gesture
of the ones supported was executed. The number retrieved from the classification is used later
to assess if a gesture was executed and a message needs to be sent to a caregiver/family/friend.

Similar to the other services, the results from the classification are published into an
MQTT Message Queue where other services may retrieve the data and process it arbitrarily.

4.3.6 Decision

The Decision service, the last service provided by the gesture modality is a decision on
what to do with the classification information. It is not a wise option to believe that every
classification is guaranteed to be correct because the model chosen does not have perfect
accuracy for the classification of gestures. As a result, the decision service will only conclude
that a user is executing that exact gesture if three consecutive windows of classification
terminate with the same gesture.

When three consecutive windows result in the same gesture the system assures that the
user executed a gesture and a message may be sent to the caregiver indicating that help is
needed. On top of sending a message to the caregiver, this service uses one of the endpoints
provided by the web service developed to publish a gesture executed together with a timestamp
indicating the time of execution of it.

4.3.7 Speaker Service

The Speaker service provides audio output to the system. It has one major application:
reporting on questions or confirmations sent to the caregiver app by the person responsible
for a specific user.
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This service relies on a physical speaker, connected directly to the processing unit and
a thread that is constantly waiting for questions or confirmations to be broadcast. When
a message is received, the service is responsible for broadcasting it through the speaker on
the system using Text-to-speech (TTS) technology, allowing the user to listen to the question
without the need to look at the screen.

To accomplish this, the Python module “Pyttsx3” (version 2.90) is used and is responsible
to broadcast the messages. This module implements Text-To-Speech conversion fully offline,
and allows to change a few parameters such as volume, voice (male, female), speech rate,
among other features. The only parameter that was adjusted from its default settings was
the speech rate, which was reduced to allow for a better understanding of the questions
and confirmations, keeping in mind that the system is aimed at a group with certain speech
impairments who are mostly elderly.

4.3.8 Monitoring and Configuration Services

To allow the monitoring of the system and the possibility of configuring certain features
of it, a web service written in Flask (version 2.0.1) was developed to support the solution in
place and offer more interaction with the system. This web service includes endpoints that
allow interaction with the system, and a web view that allows including but is not limited
to, visualizing through a plot of the last two minutes, the result of the classification of the
movements that are being performed,

In short, the system allows to:

1. Visualize a plot with the evolution of gestures being executed by the user associated
(Figure 4.7);

2. Configure the model used for classification in real-time (Figure 4.8).;

3. Allows to send a dataset with the correct features calculated to be trained and used for
classification;

4. Implements endpoints allowing further interactions between different parts of the sys-
tem.

Figure 4.7: Plot showing the gesture being ex-
ecuted in real-time.

Figure 4.8: Change classifier feature provided
by the web service.
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To deploy this web service, as stated, a flask Python application was created. Flask is
a web microframework for python and makes it easy to develop a simple and lightweight
web service, depends on Jinja as a template engine but otherwise gives freedom to develop
as intended. The web service deployed provides some endpoints allowing further interaction
with the system by external and remote services such as the caregiver app. The available
endpoints are listed and described below:

1. pub gesture executed - endpoint used by the processing unit to advertise the latest
movement executed. This is called every second and saves the value in a structure with
the one hundred and twenty latest values (corresponding to two minutes).

2. list gestures executed - endpoint used to retrieve the list with the last gestures exe-
cuted to a maximum of 120 entries.

3. classify movement - endpoint used by the processing unit to classify movements. It
allowed sending the features already extracted to retrieve a classification done with a
model loaded on the server.

4. change classifier - an endpoint that allowed to change the classifier model used on
the server.

5. message speaker - endpoint used to send a message that needs to be broadcast on
the user’s side. The caregiver app 4.3.9is in charge of transmitting a message that is
saved and accessible by the processing unit. The speaker service queries this endpoint
to see if any messages are accessible, and when a message is consumed, the endpoint is
cleansed.

6. upload classifier - an endpoint that allowed the upload of a .joblib file to be saved on
the server. This file contains a trained model that could be used for classification.

This web server implements the basics for the intended purpose of the current solution
implemented but can easily be improved in later iterations.

4.3.9 Caregiver APP

The caregiver app consists of a mobile application, developed to be used by caregiver-
s/family/others, responsible for an aphasic. This application was developed for Android
smartphones only and has three main features:

1. Receive notifications on gestures executed by the user, provided by Firebase Cloud
Messaging (FCM).

2. Return a confirmation message to the aphasic to provide positive feedback on the mes-
sage’s receipt.

3. Send predefined yes or no questions to the user and receive the responses in form of the
gesture executed.

To fulfill the intended features the smartphone must have an active internet connection
and the webserver implemented in Subsection 4.3.8 must be up and accessible.
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If any gesture is detected, a system notification is sent by the processing unit to the
caregiver mobile application using Firebase Cloud Messaging. When a notification is sent
(e.g., a gesture was performed), the app unlocks new interaction possibilities (Figure 4.9),
where either a question or a confirmation may be sent to the aphasic (Figure 4.10).

If the caregiver’s only intention is to confirm that the message was received, the caregiver
may select “Send a confirmation” which communicates the option with the correct endpoint
of the interaction service described. Ultimately it triggers the speaker service and announces
a confirmation message through the speaker.

If the caregiver needs more information he may choose to send one of the predefined
questions. For this prototype, only three questions were chosen to be supported and are
based on the scenarios defined in Section 3.2 (Figure 4.10), and then waits for a response
from the aphasic (Figure 4.11). This screen accesses the endpoint that retrieves the latest
gesture executed and when a different gesture is executed, it activates further interactions
with the app (Figure 4.11), these interactions are the possibility of sending a confirmation or
a further question back to the aphasic.

Figure 4.9: (Left Figure) Home screen. (Right Figure) Home screen when a gesture was
detected and the system allows further interactions.
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Figure 4.10: (Left Figure) Interaction choices available. (Right Figure) Predefined questions
that may be used to interact with the aphasic.
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Figure 4.11: (Left Figure) Screen that waits for the response of the aphasic. (Right Figure)
Screen that waits for the response with a response received.
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Chapter 5

Results

The system proposed and described in this dissertation aims to support individuals with
aphasia in communicating. It was defined that, to do it, communication would be based on
the identification of a set of gestures that may have a certain defined meaning.

To accomplish this objective, two experimental procedures, one with a smartphone and
another with a smartwatch, were carried out to gather data and understand the possibilities
of obtaining a machine learning model good enough to accurately recognize gestures using
only one wearable placed at the dominant wrist of the user. The effect of the use of different
machine learning classifiers, sliding window sizes, and window overlaps was evaluated to find
the best combination and obtain the best performing model in both a subject dependence
and independence scenario, with the latter being preferred.

5.1 Gesture Selection

The gestures for the system implementation were chosen taking into account two crucial
aspects: the bed scenario being addressed, and the target user group. The bed scenario
implies that the user will be lying in bed and that the motions must be straightforward to
comprehend and execute. Therefore, arm movements that make use of the mattress or other
elements of the bed may be favored above others. The target population, which consists
primarily of aphasics, has a past medical history of stroke, which has resulted in aphasia
but is also likely to have resulted in other problems, physical or otherwise. This necessarily
requires the use of dynamic arm movements that can be performed in a variety of ways, with
varying speeds and amplitudes.
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Gesture Description

Knock Knock with hand palm on the mattress, close to the body.

Twist Twist the wrist, preferably, with a 0 to a 45-degree angle between the bed
and forearm.

Clean Move the hand from left to right and vice-versa, with the arm in contact
with the top of the mattress.

Circle Make a clockwise circle shape in the air, with the arm extended throughout
the whole movement and an open hand, starting and ending closely at the
same location.

Come (to me) Move the forearm towards the arm, starting with the arm extended on
the bed’s mattress and ending with a 45-degree angle between the forearm
and arm.

Table 5.1: Arm gestures considered for the system’s prototype.

Figure 5.1: Set of gestures aimed to be supported by the system’s prototype.

The gestures contemplated for the system being implemented are described in Table 5.1
and shown in Figure 5.1. To choose the gestures, state-of-art literature contemplating gesture
recognition was used as a starting point. Although more gestures could be proposed, it was
concluded that for the proposed system, although not optimal, a minimum of 2 gestures
allows full interaction with the system (one to activate the system and send an alert to the
caregiver, and two other to allow answering yes or no questions, one of which, in the worst
scenario, may be the one used to trigger the alert.

Multiple works have used similar gestures such as up, down, left, right, circle, with good
results using classical machine learning algorithms. Since those gestures can also be used in
the bed scenario with some adaptation, the movement knock, which includes a movement of
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up and down perpendicular to the mattress, the movement clean which encompasses left and
right movement with the hand resting on the bed mattress, and the circle movement were
included. Although present in fewer works, the wrist twist was chosen due to the ease of
execution and the possibility of executing in different positions, from a wrist twist with the
hand resting on the mattress to a high wrist twist. The fifth gesture is meant to be an intuitive
gesture that allows the user to mimic calling someone. Although it had not previously been
utilized in gesture recognition research, it was nevertheless chosen due to the meaning of the
gesture for the considered context, keeping in mind the challenge at hand, which is providing
new communication possibilities through the execution of dynamic hand or arm movements.
After defining the gesture set, it was validated by a speech therapist with experience with
aphasics.

To avoid detecting other arm movements, or the absence of movement, as an interaction
attempt, a sixth gesture was considered, which is referred as to “No gesture”. This “No
gesture” intends to entail all the regular behavior that a user does while laying in bed. This
includes all movement except the prescribed gestures and may include activities relevant to
the bed scenario like body rotation or moving the hand towards the face.

5.2 Preliminary Evaluation

The first experiment for this dissertation was designed to acquire preliminary results on
gesture recognition relying on a bed setup with only one sensor device attached to the user’s
wrist, to assess the possibility of progressing with the proposed setup.

With that target in mind, a first approach was developed using the built-in sensors of
common smartphones as provisional movement quantification sensors (i.e, the user wore a
smartphone on the wrist). Although not optimal, at the time, the availability of sensors
was scarce, and to obtain early results, it was possible to replace the intended wearable
with a common smartphone with similar sensors. The data collected were then processed to
evaluate the possibility of using gestures in a bed environment. The processing involves four
important stages shown in Figure 5.2, which will be discussed in greater detail below: sensor
data collection, preprocessing, feature extraction, and classification.

Figure 5.2: Processing stream.

To evaluate this initial solution, two scenarios were considered: user-dependent and user-
independent. Firstly, the user-dependent solution was conducted to explore the potential of
different classifiers. For this scenario, different classifiers were explored with data from each
user, one at a time, for both model training and testing. After that, the user-independent
scenario was investigated by assessing the feasibility of having a solution where a model
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trained with data from a group of subjects may be used to accurately classify movements
from other, never-seen, subjects.

5.2.1 Experimental Setup and Protocol

The experimental setup included a prototype, which relies on a sensor device, including
3D accelerometer, gyroscope, and magnetometer sensors, attached to the user’s dominant
wrist. Due to some limitations, the device chosen was an Android smartphone 1, attached to
the user’s dominant wrist, containing the three listed sensors. The setup also included a bed
where the participants lay down to perform the experimental procedure.

The initial evaluation of the prototype was carried out with gesture data acquired from
three subjects. Table 5.2 presents some details of the participants involved in this experi-
ment. Each participant was informed of the experiment beforehand, including the setup, the
conditions, and the gestures that they would be asked to perform. They were also encouraged
to practice the gestures, without the sensors, but this step was not critical to the experiment
since the gestures were meant to be of ease of execution.

No. users Sex (M/F) Age Weight Height Right/Left handed

3 1/2
32.67
[22, 54]

75.3
[60,83]

1,71
[1.62, 1.80]

3/0

Table 5.2: User characterization for the participants involved in the first experiment. The
values for age, weight, and height are presented as mean [minimum, maximum].

Participants were instructed to position the wearable module on their dominant wrist and
then lie down in the bed on their backs with the arms parallel to the body. In this position,
they were asked to repeatedly execute each gesture listed in Table 5.1 for ten seconds each
time. For this experiment, concerns regarding the order of execution of the gestures and the
number of repetitions were not taken into consideration.

5.2.2 Dataset Characterization

Participant one provided most of the data, with a total of 17 executions for each gesture,
while participants two and three contributed with, respectively, 4 and 2 executions per gesture.
Only participant one contributed with “No Gesture” data.

Sensor data for each trial of a gesture were collected, labeled, and divided using a sliding
window of one second with an overlap of 96% between consecutive windows. This sliding
window size and overlap was the only combination explored in this first experiment, due
mostly to the results presented in recent related work on gesture recognition using similar
techniques [48, 49, 50, 46]. For each sliding window, a total of 84 time-domain features,
presented in Table 4.3, were extracted and used for feature selection, which resulted in a
dataset with a total of 29550 instances (24300 for participant 1, 3250 for participant 2, and
2000 for participant 3).

The plots presented in Fig. 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, are examples that show the sensor
variations (accelerometer, gyroscope, and magnetometer) during the execution of the different
performed gestures.

1Huawei PSmart with Android 8.0 EMUI 8.0 Oreo
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Figure 5.3: Signal variations during the execution of the “knock” gesture.

Figure 5.4: Signal variations during the execution of the wrist “twist” gesture.

Figure 5.5: Signal variations during the execution of the “clean” gesture.
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Figure 5.6: Signal variations during the execution of the “circle” gesture.

Figure 5.7: Signal variations during the execution of the “come” gesture.

Figure 5.8: Signal variations during the execution of the “no gesture”.

These plots depict how the various signals change during the execution of different ges-
tures. Based on a naked-eye analysis, there are some clear patterns in the signals generated,
but the differences in amplitude and speeds between different executions, as well as the pos-
sibility of distortion added by unintentional shakes, must be taken into account, especially
given the context of the problem and the population addressed.
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Threshold-based solutions were successfully used in early work involving primarily activity
recognition to distinguish between different sets of activities, but with the introduction of
dynamic arm movements utilizing a single smartwatch, other approaches based on machine
learning and deep learning began to be experimented due to improvements in those topics as
well as due to the increasing capabilities of the devices capturing and receiving the signals.

5.2.3 Classification Approach and Results

5.2.3.1 Feature Selection

In this experiment, the RelieF algorithm for feature selection was used. RelieF is an
algorithm, initially proposed for binary classification problems, that uses a filter method
approach to do feature selection. RelieF gives a score for each feature based on differences
between the nearest neighbor instance pairs, and since its creation, a few RelieF-based feature
selection algorithms have been created to tackle problems that the original one did not, such
as multi-class classification.

In this study, the TuRF variant was chosen. TuRF stands for Tuned Relief and is
especially used to address noise in large feature spaces, being thus relevant in the context of
the problem.

The 20 most relevant features selected using TuRF are presented in Table 5.3, and were
the features chosen for classification in the later stages, instead of the extraction of all 84
time-domain features.

Sensor Statistical Measure

Accelerometer rxy, rxz, ryz, σx, σy, σz, rangez

Gyroscope rxy, rxz, ryz, σy, rangey

Magnetometer rxy, rxz, ryz, σy, σz, rangex, rangey, rangez

Table 5.3: Top 20 features selected from the sensor data from the first experiment.

5.2.3.2 Classifiers and Evaluation Approach

In this initial evaluation, taking into account the limited size of our dataset, the following
classic classifiers were contemplated: support vector machines (SVM), decision tree (DT),
random forest (RF), and Gaussian Näıve Bayes (GNB). Python’s “scikit-learn” library (ver-
sion 0.24.2) [68] was used for model training and testing. The default values were used for
the classifiers’ hyperparameters, except the SVM’s kernel (linear kernel), due to the fact that
for this experiment the linear kernel held better results when compared to the default kernel
(RBF).

Two evaluation approaches were followed. Initially, the performance of the model obtained
with each classifier was evaluated using 10-fold cross-validation over the data from participant
one. Secondly, the classifier that yielded the best results from the first approach was used
to train a model with all data from participant one, which was then tested with data from
never-seen subjects (participants two and three). This last approach was used to verify how

38



good was the generalization of a model trained with data from a group of subjects and used to
predict gestures based on data from never-seen subjects, which is very relevant for a real-world
scenario.

Given the classes were balanced (i.e., the same number of instances for each gesture or
class), the metric chosen for evaluation was the accuracy.

5.2.3.3 Results

Table 5.4 presents the results achieved using the classifiers mentioned, as well as data from
Participant 1 for both training and testing.

Gesture SVM DT RF GNB

ALL 99.7 98.6 99.7 99.6

Knock 100.0 99.7 100.0 100.0
Twist 99.3 98.1 99.8 99.4
Clean 99.3 96.1 99.3 99.8
Circle 100.0 98.2 99.9 99.1
Come 99.9 97.8 100.0 100.0
No Gesture 99.8 99.3 99.7 99.7

Table 5.4: Mean accuracy results (%) for the 4 classifiers, using Participant 1’s data for
training and testing (10-fold cross-validation).

From the results is observable that all classifiers yielded great results with the overall
accuracy being higher than 98%. Furthermore, all gestures were recognized with similar
accuracy (>99%) for all classifiers except the DT (presenting an accuracy of at least 96%).

The worst result was obtained for the “Clean” gesture using DT (accuracy of 96%) and
overall the “Clean” gesture presents the worst results among the different classifiers. However,
the results for the classification of that gesture are still very high considering it got a minimum
of 99% except for, as stated, DT.

The best model performance was achieved with the SVM and RF algorithms, with similar
overall accuracy but with varying accuracy values for the different gestures. While SVM
was capable of delivering perfect accuracy values for the “Knock” and “Circle” gestures,
RF presented perfect recognition for the “Knock” and “Come” gestures. Nevertheless, the
remaining gestures presented accuracy results over 99%, which is excellent.

The results for classification when using the model trained with SVM and all data from
participant 1 are presented in Table 5.5. The table only shows the results using SVM, since
it leads to the best results on this second approach when compared with RF.

When considering the performance of a model tested with data from never-seen subjects,
it is expected that the performance decreases comparatively to a subject-dependent solution,
which is exactly what occurs and is observable, with an overall accuracy of 94% for all
gestures and subjects, which is considerably lower than the results shown in Table 5.4 that
contemplated only data from participant one for both training and testing.

When considering the accuracy results for each individual gesture, the highest accuracy
is achieved for the “Knock” and “Come” gestures, while for the remaining gestures the accu-
racy varied between 81% and 96% with the “Clean” gesture holding, once again, the worsts
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Participant ALL Knock Twist Clean Circle Come

2 93.7 99.5 100.0 69.2 100.0 100.0
3 93.4 100.0 78.2 100.0 88.7 100.0

Both 93.6 99.7 91.7 80.9 95.7 100.0

Table 5.5: Accuracy results (%) obtained when training a model with SVM and data from
Participant 1, and testing it with data from Participants 2 and 3.

result. It is also interesting to note that, with the exception of the “Come” gesture, which
held perfect accuracy results for both participants, for “Twist”, “Clean” and “Circle”, despite
the fact that for one of the participants’ classification was flawless, the accuracy was lower
for the other participant. Regardless, both individuals’ results are similar and plenty good,
with an accuracy between 93% and 94% considering the mean for all gestures.

5.2.3.4 Conclusion

The first preliminary results obtained in this experiment for assessing the performance
of machine learning algorithms to recognize a six-class set of gestures, using only one wrist-
mounted wearable, are very promising. Although data are scarce and one of the drawbacks
of this experiment, it was important to assess that, first, a subject-dependent solution is
viable, and second, that a subject-independent solution seems to be viable with the results
suggesting that a model trained from a small set of participants may result in a model with
good generalization, which is very useful in real-world scenarios.

The results are reassuring and in line with the performance of related systems (e.g., [44]),
but, nevertheless, the gathering of data from more participants, with more gesture instances
and possibly different gestures, is required to obtain more convincing results. Also, with
more data, the performance of different models with different sliding window sizes, window
overlaps, and feature selectors may be evaluated to understand which combinations yield the
best results for gesture recognition in the bed scenario.

5.3 Experiment with Wearable

Following the initial experiment, which yielded promising results for gesture recognition
in a bed scenario using only one wearable, a more detailed experiment was conducted to get
more definitive results on the usage of gestures in the bed setting.

Similar to the first experiment, a study on the effect of the classifier on the model’s
performance was investigated using classic machine learning algorithms and considering a
subject-dependent scenario. Another experiment was also carried out using a leave-one-
subject-out cross-validation approach to study subject independence. On the other hand,
contrary to the first experiment, in this one, due to having more data and therefore more
instances to train and test, an additional study on the effect of different sliding window sizes,
window overlaps, and features selected, was done.

All findings were analyzed and discussed to determine which classification algorithm,
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feature set, sliding window size, and window overlap combination is optimum for gesture
recognition in a bed situation for people with aphasia or anyone with speech impairment.

5.3.1 Experimental Setup and Protocol

The first step of this experiment was to gather data from more participants. For that, a
convenience sample of 10 able-bodied adults (5 male, 5 female) were recruited among friends
and family. The characteristics of the sample can be found in Table 5.6. Similar to the first
experiment, all participants involved in this second experiment were not affected by aphasia
or any other liability to the upper body.

No. users Sex (M/F) Age Weight Height Right/Left handed

10 5/5
44.3

[22, 76]
77.9

[58,91]
176.5

[164, 185]
10/0

Table 5.6: User characterization for the participants involved in the second experiment. The
values for age, weight, and height are presented as mean [minimum, maximum].

Figure 5.9: Participant laying in
bed ready to start the data gath-
ering procedure.

The data gathering for this experiment was conducted
over different days depending on the availability of the par-
ticipants, however, the recording for a participant was al-
ways made during the same day, and the process took a
maximum of thirty minutes. The bed and equipment for
recording were the same throughout all recordings, and
two special applications for the recording of data were de-
veloped to ease this process (application described in Ap-
pendix A).

All participants in the gathering of data for this ex-
periment signed a consent where the experiment was de-
scribed, along with the conditions and data to be gathered
during the executions. After agreeing and signing the con-
sent, they were given a sequential identifier with three fig-
ures that identified the participants providing anonymity.
They were then asked their age, height, weight, and domi-
nant arm for statistical purposes, and before beginning the
trial they were free to ask any question. There was not a
single participant that showed signs of doubt or any other
relevant worry.

Participants were then asked to place the wearable device tightly on their dominant wrist,
the same they indicated before. This wearable device, contrary to the first experiment, was
a Wear OS smartwatch, containing a 3D accelerometer, gyroscope, and magnetometer. With
the wearable device correctly placed on their dominant wrist, they were instructed on which
gestures to perform, as well as the protocol. Each gesture was given a name and a brief
explanation of the movement to be performed. The protocol stipulated that each gesture
should be performed 10 times, for 5 continuous seconds each, in different sessions and in
a random order to eliminate bias that could result from performing 10 repetitions of the
same gesture one after another or different gestures but in the same order. The protocol
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also stipulated that before beginning the execution of a gesture, the person in charge of
commanding the recording would indicate the name of the gesture and the moment to start
and stop the execution. This was done to help the process of recording without any trouble.

Participants were encouraged to perform every gesture in the most natural way possible
with the speed and amplitude they intended and found the most natural. They were also
informed that, at any moment, they could refuse to continue the trial, leaving at any moment
they felt it was enough. Nevertheless, that did not happen and every participant concluded
the process successfully and with no trouble.

If no question was brought on the protocol or gestures to be executed, the participants
were asked to lay in bed, with arms parallel to the body, as demonstrated in Figure 5.9.
In this position, they were asked if there was any question or worry and were once again
encouraged to execute the gestures the most naturally possible.

5.3.2 Dataset Characterization

Each participant provided ten recordings of five seconds for each of the gestures. The
recordings for each participant were saved in a folder named with the identifier of a participant
with folders for each gesture inside it.

Data were recorded at a sampling rate of 50 hertz, meaning that for every twenty mil-
liseconds a new value for each of the sensors was recorded and saved, leading to two hundred
and 50 data points2 for each recording of a gesture, totaling 2,500 for 10 recordings of each
gesture and a total of 15,000 for one participant.

Table 5.7 presents an overview of the collected data. The collected data were later pro-
cessed to extract important features to allow classification. To provide a good in-depth
analysis, different windows (either 1 or 2 seconds) and different window overlaps (0%, 50%,
and 96 %) were used when extracting the important features, leading to six different datasets
with the different possible combinations of sliding window size and window overlap. These
datasets were saved in a specific Comma-separated values (CSV) file, named after each of the
variables (e.g., participant001 2secWindow 96overlap.csv, stands for a dataset from the
participant with the identifier ’001’ when considering a 2-second sliding window size and 96%
window overlap).

Sliding-Window (s) 1 2

Overlap (%) 0 50 96 0 50 96

No. Instances Per gesture type 500 900 10,100 400 700 7,600

Total 3,000 5,400 60,600 2,400 4,200 45,600

Table 5.7: Total number of instances obtained in the second experiment, for each combination
of sliding window size and overlap.

The plots presented in Fig. 5.10, 5.11, 5.12, 5.13, 5.14, 5.15 below illustrate how the various
signals provided by the smartwatch change during the execution of each gesture. Similar to the
plots produced in the first experiment (with a smartphone), there are some clear indications
that some features may be significant to discern between different gestures.

2Data points include a value for every axis of the accelerometer, gyroscope, and magnetometer, and a
timestamp.
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Figure 5.10: Signal variations during the execution of the wrist “knock” gesture.

Figure 5.11: Signal variations during the execution of the wrist “twist” gesture.

Figure 5.12: Signal variations during the execution of the “clean” gesture.
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Figure 5.13: Signal variations during the execution of the “circle” gesture.

Figure 5.14: Signal variations during the execution of the “come” gesture.

Figure 5.15: Signal variations during the execution of the “no gesture”.

Although the plots obtained are comparable to the ones obtained on the first experiment,
they are generally in different ranges, yet the patterns produced are similar . This suggests
that, while the sensors from the smartphone used in the first experiment, and the smartwatch
used in the second are comparable, they may have different resolutions. However, because
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the equipment used did not allow to access the specifications of each sensor, no conclusions
could be drawn in this respect.

Different sliding windows and overlaps will present different results depending on the clas-
sifier used. Even though previous research on gesture recognition came up with different
optimal combinations of overlaps and sliding windows, due to the unique scenario and en-
vironment involved in this dissertation, the following subsections present an investigation of
the different combinations of feature selectors, classifiers, sliding window sizes, and window
overlaps.

5.3.3 Evaluation Approach and Results

The data recorded with the contribution of ten participants led to different data sets
with the particular number of instances presented in Table 5.7. In the next topics, the effect
of different classifiers, different sliding window sizes, and different window overlaps will be
addressed in two distinct scenarios: subject-dependent and independent. For the subject
dependent case, considering a model is trained and tested with data for each participant
separately (using a 10-fold cross-validation approach), and a subject-independence scenario,
that leaves, each time, one user out of the training process to assess the performance of a model
trained with data from the rest of the participants on that users’ data (leave-one-subject-out
cross-validation approach).

Additionally, an evaluation of the use of two feature selectors will be conducted and
compared to the feature selection process done in the first experiment. For this evaluation,
two Feature Selectors will be used and evaluated for the different data sets obtained from
different combinations of window overlaps and sliding window sizes. This evaluation intends
to provide an overview of which feature selector holds better results as well as assess the
minimum number of features needed to obtain a good classification result.

Since our dataset is balanced, the following evaluation metrics were considered: overall
accuracy (5.1) and F1 score (5.2). In our system, it is important to avoid false negatives
when considering “No gesture” as the positive class, i.e., avoid detecting a gesture when there
is no gesture. Therefore, the false-negative rate (FNR) for the “No gesture” class was also
computed using (5.6).

Overall accuracy (%) =
TP + TN

TP + TN + FP + FN
× 100 (5.1)

Overall F1 score (%) =

∑C
i=1 F1(ci)

C
(5.2)

Class F1 score (%) = 2× class precision× class recall

class precision + class recall
(5.3)

Class precision (%) =
TP

TP + FP
× 100 (5.4)

Class recall (%) =
TP

TP + FN
× 100 (5.5)

Class FNR (%) =
FN

TP + FN
× 100 = 1− class recall (5.6)

In (5.4), (5.5) and (5.6), TP , TN , FP and FN correspond to:
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• True positives (TP): number of instances correctly classified as belonging to the consid-
ered class;

• True negatives (TN): number of instances correctly classified as belonging to a class
other than the one considered;

• False positives (FP): number of instances incorrectly classified as belonging to the con-
sidered class;

• False negatives (FN): number of instances incorrectly classified as belonging to a class
other than the one considered.

In (5.1), TP , TN , FP and FN correspond to the sum of the corresponding values con-
sidering all classes. In (5.2), C is the number of classes and F1(ci) is the F1 score for class
ci.

5.3.3.1 Feature Selection

The challenge of feature selection is to decide what feature set can be used for classification
without compromising the accuracy of classification or requiring a large computational power
when using a large set of features.

The same process of feature extraction from the first experiment was used in this second
one, but this time it was performed for different combinations of window sizes and overlaps.
For each sliding window, 84 time-domain features were extracted, which were chosen over
frequency domain features due to being less computationally expensive. These features are
presented in Table 4.3 and are mostly based on past work done in gesture and activity
recognition [46]. The features are presented in Table 4.3.

To evaluate the performance of two feature selectors, a similar technique to the Sequential
Forward Selection (SFS) [69] was used. The two filter-based feature selectors selected chosen
were ANOVA F-Value and, similarly to the first experiment, RelieF. The process of evaluation
is divided into two distinct stages:

1. Feature Ranking: each feature selector ranks the features from 1 to 84, for each
dataset corresponding to each combination of sliding window size and overlap.

2. Accuracy for N Features: for each combination, each classifier is assessed using
the features selected in the first step, starting with the most prominent feature and
gradually increasing one feature at a time. The accuracy of each additional feature
is logged to determine when adding new features no longer benefits the model being
assessed.

5.3.3.1.1 Feature Ranking

The results obtained for the feature ranking of each combination of window size and
overlap are very extensive and for this reason, are not presented, but a few observations may
be made.
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With RelieF, regardless of the window size and overlap, the features’ ranking is similar.
For instance, considering the top twenty features for each combination, only the cases of the
range of the gyroscope’s y-axis, the standard deviation of the magnetometer’s y-axis, and the
standard deviation of the magnetometer’s x-axis, occur once, with the rest of the features
being selected in at least three combinations, with most of them being selected every time.
It is also interesting to note that RelieF tends to prefer features related to the correlation
between pairs of axes of the signal axis, with standard deviations and variance of the signals
coming further down on the list of preferences.

Using ANOVA F-Value, although the rankings of features vary more between different
combinations of overlaps and windows, the features among different combinations remain the
same. Although less noticeable due to the slightly more varied feature scoring, the corre-
lations of the signal axis, standard deviations, and range remain on the top of the features
selected. Similar to what was done for RelieF, if considering the top twenty features selected
for each combination, only the cases of the mean of the magnetometer z-axis, integral of the
magnetometer z-axis, and the standard deviation of the magnetometer, x-axis, are not present
in all combinations. Furthermore, similarly to what occurred with RelieF, the feature sum of
all squares gets left on the bottom of the rankings in all cases.

When comparing both feature selectors, it gets clear that both select features using dif-
ferent criteria, nevertheless they end up selecting a portion of the same features among them
with eleven of the top twenty features being selected by both feature selectors. Another inter-
esting aspect is that RelieF, compared to ANOVA F-Value, selects more features calculated
over the values of the magnetometer sensor, with, for instance, the example of ANOVA F-
Values, using a 96% overlap and a 1-second sliding window, selecting four features related to
the magnetometer which is almost three times less of the RelieF algorithm that selects eleven
features calculated over data from the magnetometer.

When taking the results of feature selection from the first experiment into consideration,
what we can observe is that, although with different data sets, the similarity’s between the
features selected are astonishing.

The features selected for the first experiment are present in Table 4.3 and, if compared
with a comparable set of twenty features for each feature selector of this second experiment,
what we can observe is that the correlations between the signal axis are the most predomi-
nately selected features, appearing in all cases independently of the feature selector or data
set chosen, and goes in line with what was experienced by Tchuente et al. work [46]. Another
important aspect is that all other features that are similar between them are the range of
all axis of the magnetometer and the standard variation of the y-axis and z-axis of the mag-
netometer also. This is a possible indication that the magnetometer is an important sensor
to have in account when considering data from never seen subjects, but further investigation
needs to be conducted to assess it.

5.3.3.1.2 Accuracy for N Features

With the stage of Feature Ranking completed, the accuracy for each classifier using an in-
creasing number of features was evaluated. The five different classifiers (SVM, DT, RF, kNN,
and GB) considered for this second experiment were evaluated to determine the minimum
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number of features required to achieve an acceptable classification result.

In this experiment, each classifier was trained and tested over datasets containing data
from all users combined, with the same window size and overlap. These classifiers were used
to train and test a model with an increasing number of features and the mean accuracy was
obtained and assessed using 10-fold cross-validation to verify when the gain in accuracy ceased
being noticeable.

The outcomes of the experiment described are once again remarkable. Regarding RelieF
feature selection, the accuracy improves, regardless of the combination of classifiers, overlaps,
and windows, with an increasing number of features until it reaches the mark of ten to twenty
features. On the other hand, ANOVA F-Value appears to be more unstable in that regard,
with some combinations requiring close to thirty features to stabilize the accuracy, while
others do not, with only the need of ten to fifteen features. This is important to notice
especially if low computational power is a requirement of the system, allowing less processing
power to obtain a similar level of accuracy. One other important aspect to notice is that,
independently of the feature selector, DT produces the lowest mean accuracy values even with
a high number of features selected.

To define a heuristic that helps find the minimum number of features for which the accu-
racy stops increasing by a given amount, it was decided that the number of features chosen
would be the first to obtain an accuracy value of at least 1%/2%/3% less than the maximum
for that combination. For instance, considering a criterion of 2%, RelieF and a window of 1 s
with 0% overlap, the maximum accuracy obtained is 95%, but 13 features are enough to get
94% accuracy, which goes accordingly to the heuristic defined.

A summary of the information gathered can be observed in Table 5.8, presenting the min-
imum, maximum, mean, median, and mode, number of features with three different criterion
values (1%, 2%, and 3%). The values for each criterion are obtained as a mean of the different
combinations.

Feature Selector Criterion(%) Minimum Maximum Mean Median Mode

RelieF
1 7 79 27.2 21.0 18.0
2 7 43 16.1 15.5 13.0
3 5 24 12.2 11.0 11.0

ANOVA F-Value
1 7 79 28.4 27.5 8.0
2 6 43 15.6 11.5 7.0
3 5 27 10.3 8.0 7.0

Table 5.8: Minimum, maximum, mean, median, and mode, number of features needed with
three different criterion values (1%, 2%, and 3%)

The number of features is closely the same when comparing both feature selectors with
the same stopping criteria. The fact that the median is lower than the mean is an indication
that there is some combination of sliding window and overlap that demands more features,
making the median a better indicator. An interesting fact is that the mode of the ANOVA
F-Value has a lower mode compared to RelieF, indicating that there is a majority of cases
where a lower number of features is can be used.

To conclude, although some variations in the number of features required to reach a stable
number of features may occur, to compare both feature selection approaches, the same number
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of features for both will be selected, and the median using a 2% stopping criteria was chosen,
due to presenting a good compromise between the number of features and accuracy. With
that said, since Relief has a median of 15.5% and ANOVA F-Value has a median of 11.5%,
selecting the 16 top features seems a reasonable number of features to consider.

Lastly, while the results seem to be conclusive that the features selected by both fea-
ture selectors are good regardless of the sliding window size, overlap chosen, the results for
subject-dependent and subject-independent being described next will use the features already
selected previously in the first experiment. This is done, first, to withdraw conclusions on
a feature set chosen from data that is going going to be used in later stages to train and
test models, and also because the feature set seems to be rather similar, making it a good
candidate to be used at this stage.

5.3.3.2 Subject Dependence

As indicated in the introduction of this section, the next step is to verify the effect of the
different classifiers, window sizes, and window overlaps for the subject-dependent case. The
results of this experiment will help understand the effects of the different variables, as well as
obtain the combination yielding the best results for classification of movements.

For this experiment, five classic machine learning classifiers, one more than what was used
in the first experiment, were assessed: support vector machines (SVM), decision tree
(DT), Random Forest (RF), and Gaussian Näıve Bayes (GNB). This time K-Nearest-
Neighbor (kNN) is also being considered for a more in-depth analysis of classic machine
learning techniques.

Python’s “scikit-learn” library (version 0.24.2) [68] was used for model training and test-
ing. The default values were used for the classifiers hyperparameters except for the SVM
kernel since the results of the first experiment using a Linear Kernel held better results.
Because these classifiers are often used in machine learning research, they provide a useful
starting point for understanding each one’s behavior in the bed scenario described in this
dissertation.

The performance of the models obtained with each combination of classifier, window
size, and window overlap, were evaluated over the balanced datasets from every participant
individually, using 10-fold cross-validation. This procedure produces, for each participant, 30
combinations of classifier, window overlap, and sliding window size, for a total of 300 for all
participants.

For the obtained results, three important effects need to be discussed: the classifier, the
window overlap, and the sliding window size effect. Following that, the impact of each vari-
able will be explored, with figures to assist the understanding of the variations.

5.3.3.2.1 Classifier effect

Five different classifiers were used over different combinations of features, overlaps, and
windows. To find which classifier yields the best results for gesture recognition in the specific
scenario described in this dissertation, the mean for the accuracy, precision, recall, and F1-
score were calculated over a 10-fold cross-validation test.
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Figure 5.16: Boxplot for the Mean accuracy and F1-Score results for the classifier effect on a
subject-dependent scenario.

Figure 5.16 presents the box plots of the values of the accuracy’s and F1-score for each
fold and classifier, independently of window, overlap, and user.

When considering the effect of the different classifiers it is observable that SVM and RF
hold the better results, while DT presents the worst. Both SVM and RF present almost no
variability, and median values close to 100%, with SVM presenting fewer outliers, compared
to RF, in both the mean accuracy and F1-score values. It is also observable that the GB and
kNN classifiers yield closely the same results, with most accuracy values over 95%, but not
close to the ones provided by RF and SVM. Nevertheless, the median values presented by GB
and kNN are still high but due to the variability of the Mean accuracy and F1-Score SVM
and RF are considered better classifiers for the scenario being addressed.

Table 5.9 presents the mean value for the overall accuracy and F1-score over the 10 cross-
validation folds resulting from the five classifiers over each user individually. The comparison
is done between users to allow a more in-depth analysis of the performance of the classifiers
over different users.

DT GB KNN RF SVM

Participant
Identifier

Mean
accuracy(%)

Mean
F1(%)

Mean
accuracy(%)

Mean
F1(%)

Mean
accuracy(%)

Mean
F1(%)

Mean
accuracy(%)

Mean
F1(%)

Mean
accuracy(%)

Mean
F1(%)

1 97.2 97.2 98.7 98.7 98.3 97.9 98.7 98.7 99.5 99.5
2 98.7 98.7 99.5 99.5 99.1 99.0 99.9 99.9 99.9 99.9
3 93.6 93.3 94.7 94.6 97.4 97.3 98.1 98.1 98.9 98.9
4 99.2 99.2 99.4 99.4 99.5 99.4 99.9 99.9 99.8 99.8
5 97.2 97.2 99.5 99.5 99.1 99.0 99.9 99.9 100.0 100.0
6 98.6 98.6 99.8 99.8 99.4 99.4 99.7 99.7 99.9 99.9
7 96.6 96.6 97.9 97.8 98.8 98.7 99.2 99.1 98.5 98.5
8 96.5 96.4 96.8 96.8 98.1 98.0 98.6 98.5 98.4 98.3
9 98.1 98.0 98.8 98.8 99.2 99.1 99.1 99.1 99.8 99.8

10 98.4 98.4 99.7 99.7 99.9 99.9 99.9 99.9 99.9 99.9

Table 5.9: Classifier effect over each participant on a subject dependence scenario.

What can be taken from the results is that:

1. DT, as expected, presents the worst results for classification, yet, for most of the users
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it still prevails with an accuracy over 93%, which is still low compared to the other
classifiers, but high concerning the classification of movements.

2. SVM presents the best results in the majority of the participants, showing good results
even in the toughest participants where other classifiers show worse results. kNN and RF
come after with also great results but with instances where it fails more than compared
to SVM.

3. The third participant has the worst results, with DT failing the most to recognize the
movements (accuracy of around 94%). SVM and RF models, on the other hand, show
versatility by maintaining good accuracy overall, even in the most difficult cases like
participant 3.

4. Although kNN and GB in most cases present a good classification result, close to the
ones provided by SVM and RF, it fails to provide the same level of accuracy in other
scenarios (e.g., participants 3 and 8) where the latest shows consistently good values.

5.3.3.2.2 Window Size and Overlap Effect

When considering alternative sliding window sizes, the main drawback with its increase
is that it takes longer to recognize a specific movement and therefore delays the response of
any system that reacts upon a classification. This may not be a problem in situations where
a quick response of the system is not required, but it could be a problem in other situations.
Due to the scenario in which these gesture recognition models will be employed, it is critical
to have a quick reaction. For that reason, only two sliding window sizes were considered: 1
and 2 seconds. Other sliding window sizes could be considered, especially those in between
both, or even intervals of less than a second, but it was decided that, for the first experiment
with different sliding window sizes, those two would be enough.

When taking into account the overlap used, there are two main focal points to consider:
using a bigger overlap results in a greater amount of data that takes longer to process, and,
even though not being considered, for now, using a bigger overlap may lead to overfitting of
the models, resulting in worse classification results when considering data from never seen
subjects.

Figures 5.17 and 5.18 present the boxplot for the mean 10-fold cross-validation accuracy
and F1-score results with the use of different window sizes and window overlaps over the
different tested classifiers.

Regarding the sliding window size only, what can be taken from the results is that the
2-second sliding window size provides better results with a small margin over the 1-second
sliding window, especially when considering accuracy results for SVM and RF. The remaining
classifiers improve on the accuracy and F1-score but are not as evident.

Nonetheless, the use of either sliding window size seems viable independently of the classi-
fier chosen. Although some cases present better results with one over the other, the differences
are small and maybe disregarded if the system where the models are being made for has the
requirement of a higher sliding window size.

Regarding only the overlap chosen, the results show that increasing the overlap improves
the accuracy and F1-Score for all classifiers.
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Figure 5.17: Boxplot for the Mean accuracy values considering the overlap and window effect
over each different classifier, for a subject-dependent scenario.

Figure 5.18: Boxplot for the Mean F1-Score values considering the overlap and window effect
over each different classifiers, for a subject-dependent scenario.

Figures 5.19 and 5.20 present the accuracy and F1-score mean results considering SVM
and RF individually since they were the two best resulting classifiers.

Once again, regarding the sliding window size and overlap chosen, the results are similar
to the overall results. If using either SVM or RF, as stated before, the 2-second window yields
better results even with an overlap of 0%. Nonetheless, if using a 96% overlap, the results
with a 1-second sliding window size are also perfect, making both approaches viable.

5.3.3.2.3 Results per gesture

In the above topics, conclusions were taken on the effect of multiple variables individually.
It was found that SVM and RF produce, on average, and considering only the effect of the
classifier, the best results for classification of the movements recorded. However, due to
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Figure 5.19: Boxplot for the Mean Accuracy and F1-Score results for different combinations
of sliding window size and overlap, considering SVM only.

Figure 5.20: Boxplot for the Mean Accuracy and F1-Score results for different combinations
of sliding window size and overlap, considering only RF.

presenting lesser outliers compared to SVM, RF will be preferred.

It was also revealed that, in a subject-dependent scenario, the overlap choice entails, on
average, remarkably better results when using higher overlaps. It was also revealed that the
sliding window size of choice leads to improvements when choosing the 2-second one over the
1-second sliding window. Nevertheless, if considering only the two best classifiers, SVM and
RF, a 1-second sliding window with 96% overlap also shows great results, comparable to those
obtained with a 2-second sliding window.

To understand how well each gesture is classified, the results for each participant using
the overall best combination of variables - RF, 2-second sliding window size, and 96% window
overlap - were taken and the results are presented in Table 5.10. The metric chosen to evaluate
the recognition for each gesture was the F1-Value that takes the value from both precision and
recall, but the overall accuracy, F1-Score, and FNR (for the No-gesture) for each participant
are also presented.

The results obtained are similar, presenting flawless F1-Score for all participants, except
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Participant
Identifier

Knock
F1(%)

Twist
F1(%)

Clean
F1(%)

Circle
F1(%)

Come
F1(%)

No gesture
F1(%)

Accuracy(%) F1-Score(%)
FNR (no

gesture)(%)

1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0
2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0
3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0
4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0
5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0
6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0
7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0
8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0
9 100.0 100.0 99.9 100.0 100.0 99.9 99.9 99.9 0.0
10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0

Total 100.0 100.0 100.0 100 100.0 100.0 100.0 100.0 0.0

Table 5.10: Mean F1-Score values were obtained for each gesture, overall accuracy, F1 score,
and FNR for each participant, considering only RF, a 2-second sliding window, and 96%
overlap.

for Participant 9. This subject presents lower results for “clean” and “no gesture”, but the
results are still above nine-nine percent, which is still remarkably good.

Overall, the results obtained in this Subject Dependence evaluation are encouraging and
led to conclusions on the effect of different variables. Although these results are not conclusive
on what is needed to develop a model that may be used for a wider population with good
generalization, the results may be used if that is not attainable.

5.3.3.3 Subject Independence

The performance evaluation in a subject dependent scenario is important, especially in
situations where the models used in applications or systems demand the recording of new
data for every new participant using the system, but that is not the intention for a system
where the models under consideration in this dissertation will be used. Nevertheless, the
results obtained for the subject-dependent test are relevant not only to assess the effects of
the overlap, sliding window size, and classifier, but more importantly to be used if a good
model generalization can not be attained.

The goal of this subsection is to explore if it is possible to end up with a good combi-
nation of classifier, window overlap, and sliding window size, to obtain a model that shows
good generalization, capable of addressing multiple situations regardless of the user being con-
sidered, which is very relevant considering a real-world scenario. To achieve this, a subject
independent test was conducted, which consists in testing models with data from never-seen
subjects.

In this subsection, an evaluation of all classifiers will be addressed when training with all
but one participant and testing with the one being left out repeating the same process for
all available subjects. Similar to what was done in the subject-dependent scenario, the effect
of the classifier, window overlap, and sliding window size will be evaluated to reach a good
balance between all variables, allowing to obtain a good gesture recognition model, with good
generalization, for the considered scenario.
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5.3.3.3.1 Classifier Effect

The same five classifiers used in the subject-dependent scenario were applied in the subject-
independent situation to see whether any of them stands as a superior solution for gesture
recognition. Considering the results for the subject-dependent scenario, SVM and RF exhib-
ited the strongest results, while DT exhibited the worst. Having these results in mind, and
considering the way DT is built, it is expected for them to produce, once again, the worst
results.

Similar to what was done in the subject-dependent scenario, the comparison of the mean
accuracy and F1-score for the different classifiers is presented in Figure 5.21.

Figure 5.21: Boxplot for the Mean accuracy and F1-Score results for the classifier effect on a
subject-independent scenario.

As it is observable, and as expected, DT produces the worst results by far when compared
to the other four classifiers. This time, SVM produces, on average, the best results, with
accuracy and F1-Score exhibiting low variability and a high median value, going in line with
what was observed in the subject-dependent scenario. RF, however, although also producing
low variability for accuracy, it produces a lower median value comparatively to SVM.

kNN and GB exhibit similar results, with median accuracy values above the mark of 90%
but with a considerable amount of variability, however the mean accuracy median results for
kNN is close to the one presented by SVM.

Since the F1-Value values are on average better and the mean accuracy values have lower
variation, RF is regarded as the second-best option for classification, even though it presents
a lower accuracy median value than kNN.
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DT GB kNN RF SVM

Participant
Identifier

Mean
accuracy(%)

Mean
F1(%)

Mean
accuracy(%)

Mean
F1(%)

Mean
accuracy(%)

Mean
F1(%)

Mean
accuracy(%)

Mean
F1(%)

Mean
accuracy(%)

Mean
F1(%)

1 87.3 86.8 93.6 93.6 92.9 92.8 96.9 96.9 96.6 96.6
2 79.9 78.9 92.6 92.7 87.7 86.5 92.1 91.5 94.1 93.8
3 58.5 56.7 69.3 68.2 67.5 66.2 66.3 67.0 65.5 65.3
4 96.8 96.8 99.1 99.1 95.9 95.9 99.3 99.3 97.9 97.9
5 74.1 73.3 84.6 84.1 94.7 94.5 89.6 89.2 94.4 94.4
6 83.8 83.5 95.8 95.8 94.2 94.1 92.0 92.0 98.8 98.8
7 86.6 86.5 90.1 90.5 90.7 90.5 92.1 92.4 91.4 91.4
8 74.8 73.7 83.2 81.6 87.4 87.0 89.9 89.4 88.9 88.6
9 80.3 79.3 86.8 85.1 82.9 81.6 89.9 89.5 92.6 92.4

10 76.4 72.7 89.5 89.2 98.5 98.5 86.5 83.7 95.9 95.8

Table 5.11: Classifier effect over each participant on a subject independence scenario.

When considering the results presented in Table 5.11, it gets more clear that SVM and
RF have the best overall results. Although in one case kNN shows the best accuracy results
(e.g., participant 10), SVM and RF consistently present good results, being stable for the
classification of the movements being considered and therefore being considered the best
options for the scenario.

5.3.3.3.2 Window Size and Overlap Effect

The results obtained for the comparison of different overlaps and windows are presented
in Figures 5.22, 5.23 and 5.24, which contain the mean accuracy, F1-Score, and False Negative
Rate (FNR) for the “No Gesture” over each different combination of classifier, overlap window,
and sliding window size.

Figure 5.22: Boxplot for mean accuracy values considering the overlap and window effect over
each different classifier, for the subject independent test.
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Figure 5.23: Boxplot for mean F1-Score values considering the overlap and window effect over
each different classifier, for the subject independent test.

Figure 5.24: Boxplot for the False-negative rate (FNR) for “No gesture” calculated over all
combinations of classifier, window overlap, and sliding window size.

When considering only the effect of different overlaps, what is observed is that different
overlaps do not always present a considerable difference. RF, for instance, gets overall less
variability on the Mean accuracy and F1-Score with a higher overlap, but in the case of the
2-second sliding window, the median lowers.

DT on the other hand produces better median results on a 1-second sliding window with
a 50% window overlap compared to a 0% or 96%, but the latter shows better results in terms
of variability. In the case of DT with a 2-second sliding window, the results are overall better
with a 0% overlap.

SVM presents better results with bigger overlaps when considering all three metrics (ac-
curacy, F1-Score, and FNR for the “No Gesture”).

Regarding the sliding window size, there are a few observations to be made. RF classifier
holds worse results when changing from a 1-second sliding window to a 2-second sliding
window, mainly due to more variability and lower medians, while SVM presents the opposite
behavior, getting overall less variability when going from a 1 to the 2-second sliding window.

Figure 5.25 presents the results for accuracy and F1-Score for different window sizes and
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overlaps when considering only SVM, which was the classifier that yielded the best results
when considering only the effect of the classifier.

Figure 5.25: Mean Accuracy and F1-Score values for different combinations of sliding window
size and overlap considering only SVM, for the subject independent scenario.

When taking into consideration only the results from the SVM, regarding the sliding
window, there is not an option that clearly outperforms the others when considering the
accuracy and F1 score. However, the False Negative Rate results for the “No gesture” are
better with a 2-second sliding window size and 96% window overlap (see Fig. 5.24), therefore
that is preferable.

In essence, there is not a relation between the overlap selected and classification correct-
ness. Similar to the subject-dependent scenario, both sliding window sizes are viable.

5.3.3.3.3 Results per Gesture

With the effects of classifiers, overlaps, and sliding windows discussed, it was determined
that the best combination results from the use of SVM, and a 2-second sliding window with
a 96% overlap.

Similarly to what was analyzed in the subject dependent scenario, to understand how the
combination of variables work on the recognition of each gesture, the F1-Score results for each
participant using the combination of SVM, 2-second window size, and a 96% overlap were
calculated and are presented in Table 5.12.
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Participant
Identifier

Knock
F1(%)

Twist
F1(%)

Clean
F1(%)

Circle
F1(%)

Come
F1(%)

No gesture
F1(%)

Accuracy(%) F1-Score(%)
FNR (no

gesture)(%)

1 94.7 93.4 98.5 100.0 99.6 90.8 96.1 96.2 3.2
2 100.0 74.9 88.4 93.0 100.0 99.5 93.1 92.6 1.0
3 97.9 41.4 79.8 60.9 37.3 47.9 60.4 60.9 0.0
4 100.0 93.9 99.9 95.3 100.0 97.9 97.8 97.8 4.2
5 98.1 89.8 97.6 94.7 100.0 86.6 94.4 94.5 4.9
6 99.7 97.5 100.0 100.0 99.5 97.2 98.9 98.9 5.4
7 94.1 99.6 97.2 85.6 99.6 88.2 94.1 93.9 0.0
8 100.0 94.2 63.2 95.7 89.9 81.7 88.1 87.4 0.0
9 97.4 85.9 77.9 97.6 99.8 97.3 92.8 92.7 5.3
10 100.0 88.9 100.0 100.0 99.7 91.2 96.7 96.7 0.0

Total 98.2 85.9 90.3 92.3 92.5 87.8 91.3 91.2 2.4

Table 5.12: Mean F1-Score values obtained for each gesture, overall accuracy, F1 score, and
FNR for each participant, considering only SVM, a 2-second sliding window, and 96% overlap.

The results presented in Table 5.12 show some important details. When comparing the
different subjects, we can observe that only one has an overall accuracy and F1-Score below
87% percent, and the remaining subjects present relatively high metric values. The “Knock”
gesture exhibited the best results considering all users. The remaining gestures exhibited
overall F1-Scores above 90% except for the “Twist” and “No Gesture”, but that is mostly
due to participant 2 that held the worst results.

The Confusion Matrix presented in Figure 5.26 provides for a more precise understanding
of which gestures are being misunderstood as others and, as a result, a more detailed un-
derstanding of which gestures are better recognized. The values displayed in the confusion
matrix presented in Figure 5.26 correspond to the sum of the number instances considering
all subjects (the diagonal values were set to 0).

Figure 5.26: Confusion matrix for the subject-independent case, when using SVM and 2-
second window overlap with 96% overlap, considering all subjects.

In terms of gestures, we can observe from the confusion matrix that the majority of ges-
tures are misinterpreted as “No gesture”, with the “Twist” gesture being the worst case,
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presenting the most cases where the gesture is confused as a “No gesture”. These results
are most likely due to the number of movements included in the “No gesture” class, which
encompasses not only the lack of movement but also tiny motions that are commonly per-
formed in a bed setting (e.g. bringing the hand up to the face). On the other side, the “No
gesture” is not as commonly confused with other gestures, with the “Twist” gesture having
the largest frequency of false negatives, when considering the “No gesture” as the positive
class. Overall, the gesture with the best results is “Knock”, followed by “Circle” and “Come”,
which is confirmed by the F1-Score values presented in Table 5.12.

To conclude, the combination of SVM, 2-second window size, and a 96% overlap, holds,
for the subject independent scenario, very good classification results, with at least three of
the gestures being detected with very good results overall, and therefore showing promising
results for the attainment of a generalized model capable of providing great results for the
recognition of the predefined gestures considered for the system.

5.4 Conclusion

The two experimental procedures conducted in this chapter help understand how machine
learning techniques behave for gesture recognition in a bed environment with the user laying
in bed.

Although the preliminary experiment was conducted with a not-so-optimal setup and num-
ber of participants, the results were encouraging for the development of the second setup and
a few observations led to believe that the execution of gestures in a bed scenario was viable.
The second experiment, with an enhanced setup and a more improved data collection process
allowed to assess, with more certainty, the performance of machine learning techniques for the
recognition of gestures. The results are good even when considering a subject-independent
scenario, which is important for the goal of this dissertation.

Although not optimal, due to the limitations in which the involvement of users was con-
strained by the COVID-19 pandemic, no aphasics could be recruited to retrieve gesture data.
Nevertheless, the sample from both experiments shows great diversity, which is important to
enrich the dataset with different executions of the proposed movements, leading to a more
realistic scenario with the possibility of obtaining a better and more prepared model for classi-
fication on a wider population beyond the one selected for the experiments. From the process
of data gathering, the most important result that was taken is that all participants were com-
fortable executing the gestures, which is very important considering that in some cases these
gestures might be performed by people with some condition that affects their performance of
the gestures, therefore, having gestures simple to understand and execute is important.

Considering the classification results for the second experiment, only, when assessing the
user-dependent solution, where a model is trained from data from a given subject and used
to recognize gestures performed by that same subject, the algorithms that led to be best
results were RF and SVM, with almost perfect identification of the gestures. The results were
already expected due to it being trained and tested for each user individually, but the results
are nonetheless important if a model generalization is not attainable and therefore a model
for each user using the system needs to be trained.

For the user-independent solution, the results were also very encouraging with SVM lead-
ing to the best results overall, with most participants presenting an overall accuracy and
F1-Score over 92%, with at least three of the gestures being recognized almost flawlessly,
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which was stated as being important when considering the gesture selection in Section 5.1.
When comparing the performance of user-dependent and independent solutions, the latter

performs poorly. This outcome was already expected, as it is more difficult to classify the
movements of a never-seen subject using a model trained on data from other subjects, due
to normal differences in how different users execute the gestures. However, while a user-
dependent approach allows for very high gesture recognition performance, it has the drawback
of requiring data collection from each new user using the system, which is neither convenient
nor cost-effective. However, the results indicate that a user-dependent is not needed and
that a good model generalization may be obtained with more data for each gesture and more
participants performing them.
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Chapter 6

Conclusions

6.1 Work Summary

The work developed in this dissertation followed a specific path to fulfill the proposed
goals. Therefore, an investigation on new ways for people with aphasia to communicate in
a bedroom scenario while laying in bed was conducted and the processes followed for the
execution of it were as follows:

1. Acquisition of knowledge in the problem domain, concerning aphasia and existing solu-
tions, to support this audience. This enabled us to define target scenarios and formulate
the requirements for a communication support solution in the bed scenario.

2. Hands-on exploration of different configurations concerning the positioning of sensors
to find a solution that allowed to tackle the project goal.

3. Definition, based on related work in the area of gesture recognition, of a set of dynamic
arm movements that could be used as a non-verbal form of communication and that
would take into account the environment in which they will be used.

4. Experimentation of widely known machine learning techniques together with data cap-
tured from sensors placed on participants’ wrists to recognize a small set of gestures, to
support communication and provide a new way to communicate. This early work gave
confidence to later data gathering from a wider group, to find the best model possible
for the goal of this dissertation.

5. Definition of the final architecture of the system and implementation of a prototype that
captures and distinguishes a predefined set of gestures and sends requests to caregivers’
smartphones using a minimal and non-obtrusive setup.

6. Improvement of the setup with alternative interactions, which include the possibility
of the caregiver to send yes/no questions to the aphasic to which he/she may respond
with two of the gestures supported.

The steps followed allowed for the completion of all of the dissertation’s objectives, which
was critical to produce a coherent work with a few key contributions for the scenario under
consideration.

63



6.2 Main Results and Contributions

The work developed in this dissertation has two key contributions: the investigation done
on gesture recognition in a bed scenario using machine learning techniques which yielded
great and promising results, and the proof-of-concept system developed that establishes a
bidirectional communication channel between a user and a caregiver responsible for that
person, supported by the use of gestures by the user.

The gesture recognition investigation that was conducted in this dissertation is important
for the fact that it provided contributions for gesture recognition in an in-bed scenario which
was lacking in the topic of gesture recognition. The results gave a great output of what could
be expected when using a small but considerable set of gestures, which were chosen taking
into consideration the bed environment. A subject-dependent scenario was first conducted
and offered good results. In the real world, a solution relying that each user executes gestures
for training purposes is not practical. However, the results obtained when considering a
user-independent scenario were promising and showed that a model generalization may be
attained, making both approaches viable with the second being preferred.

The system developed contemplated the feature of gesture recognition, that was built
around the investigation done for this dissertation. Gestures are used to trigger alerts that are
sent to the caregiver through its smartphone and allow bidirectional communication between
both parts. This is an important contribution to the project but further improvements need
to be done, nevertheless, it was built considering that further modules could be introduced.
For that, messaging methods that allow the introduction of new modules without the need of
restructuring the whole system was chosen. Preliminary tests of the system presented good
performance with little to no delay on the responses to gestures executed, which is important
considering a use case of emergency.

Although the system was built around the context of people with aphasia, the prototype
and solution developed are not limited to those. The system is simple enough to be understood
by the majority of people and can be used by anyone that needs a solution to connect to a
caregiver for basic assistance, without the need to call or read from a screen.

6.3 Future Work

While the work developed in this dissertation presented good results, the system and
performed research are just preliminary results that serve as a baseline for what may be done
regarding the scenario and population being addressed.

The prototype developed is a first attempt at a system that uses gestures to be used for
communication. Although an initial experiment was carried out, the approach was brief and
did not include an in-depth evaluation of the system’s usability by the target population,
performance, or energy efficiency. As a result, future research should focus on evaluating
the system’s with the target group, particularly with older people who are more likely to be
affected by these speech disabilities, to determine whether the system is viable and if it can
be extended to be used in other scenarios, such as interacting with smart home systems, and
even be used outside of the bedroom environment, thereby providing more support to this
population throughout the day.

Future research should also contemplate the development and improvement of features of
the system as well as the extension of the research work done regarding gesture recognition.
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The most important aspects to be addressed are the following:

1. Extensive assessment of the system with final users in regards to usability, performance,
and energy efficiency;

2. Gathering of more gesture data, with the participation of a larger group. This evalu-
ation could be extended by gathering data from a single user on different days, so the
performance of classification could be evaluated taking into consideration the variations
that may occur from one day to another on the same participant.

3. Implement new interaction possibilities on the caregiver side, with more responses and
question alternatives. This step should take feedback from final users and their care-
givers to understand their needs and therefore offer a more concise solution.

4. Extension of the system regarding customization options, with, for instance, the possi-
bility of choosing and changing what each gesture means for the user, and provide other
visualization features that allow a better follow-up from the caregiver.

5. Extend the system with the integration of in-bed sensors that can provide alternative
interaction possibilities or enhancement of those already implemented;

6. Extend the speaker service by implementing more feedback interactions, e.g., when an
aphasic successfully executes a gesture a confirmation of the success could be broadcast
on the speaker. This could not only further minimize false positives (reaching the
smartphone), but also, and mainly, reinforce the comfort in the communication of the
person with aphasia.

This foreseen future work offers new lines for development, but we also expect that new
requirements would come from working with final users and professionals in the field, therefore,
getting feedback from both parties is crucial in determining which topic should be addressed
first.
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Appendix A

Recording Application

To allow the recording and retrieval of data for training and testing purposes on the second
experiment conducted, two applications were developed, one for the Wear OS Smartwatch
and the other for an Android Smartphone.

The first application, implemented directly on the smartwatch, is responsible for collect-
ing and sending sensor data. To control the recordings, this Wear OS application receives
commands from an Android Smartphone device, which has an application for that purpose.

To provide communication between the two devices, messages are exchanged. With Wear
OS by Google, a wearable has multiple ways to send and sync data. The “Wearable Data Layer
API”, which is part of Google Play services, was used for this project (take into account that
for this to work, both devices must be linked). With the Wearable Data Layer API different
clients can be used:

1. CapabilityClient offers details on which Wear OS network nodes support certain
custom app features. Nodes can be either wearables or smartphones and capabilities
are device defined;

2. MessageClient useful for remote procedure calls like managing a handheld media
player from the wearable.

3. ChannelClient used for the transfer of larger files or data that can not be shared using
MessageClient and data streams such as voice.

4. DataClient offers an API for components to read and write to a DataItem that is
shared across all Wear OS devices.

For this recording application, DataClient was chosen. As stated, DataClient uses
DataItems to synchronize information between handhelds and wearables and comprises of
a payload (the data being sent between devices) and a path (a unique path where the data is
written and where the data can be read by other devices listening to that path). Consecutive
DataClient messages must have distinct payloads, therefore messages must be provided with
something that makes them unique. As a result, a timestamp is appended to all payloads,
making them unique.

To start a recording, the user taps the “Record” button and the handheld sends a start
message together with a time limit indicating how long the recording will last, this value
ranges from 1 to 10 seconds and can be selected using a SeekBar on the mobile device.
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Figure A.1: Starting screen. Figure A.2: Save data screen.

Although a set amount of time is defined at the start, a recording can, at any moment be
stopped by sending a message indicating it. When this occurs the handheld receives the data
that was recorded until that moment, otherwise, it will record for the time indicated, and
only then does the information gets sent.

When the smartwatch application receives a start command, it begins filling a Comma-
separated values(CSV) object. This object is composed of data records where each one
contains for a given time the values of the sensor data from the accelerometer, gyroscope,
magnetometer, along with a timestamp. When the time given for a recording is completed or
a stop command is received, the structure is sent back to the mobile smartphone that started
the recording utilizing a DataItem through the DataClient API.

The data received may then be saved or not on the mobile device’s internal storage. Each
file will be saved in a folder appropriate to each participant and each gesture, for example,
”/data/001/twist/” holds the files for the twist gestures by the participant with identifier
’001’.

The sampling frequency of the Android Wear smartwatch was set to fifty Hertz in the
application1, however owing to Android’s internal sensor implementation where the polling

1Using a Java Executor with a scheduler that executes approximately every twenty milliseconds and saves
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rate cannot be set, it may vary a small amount.

the sensor information
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