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resumo 
 

Este trabalho foi desenvolvido no domínio da Geomática aplicado a avaliações 

de risco.O principal objetivo passa pelo desenvolvimento de metodologias de 

suporte a avaliações multi-risco, baseadas em técnicas de deteção remota por 

satélite. 

 

Esta tese resultou no desenvolvimento de dois modelos, para a deteção de 

extensão de cheias e áreas ardidas. Apesar de constituirem dois tipos de 

perigo com características antagónicas, os dois modelos desenvolvidos 

partilham os mesmos princípios teóricos, consistindo em abordagens de 

deteção de alterações, a partir de multiplos índices obtidos a partir de imagens 

de satélite multiespectrais. 

Os dois modelos foram desenvolvidos e implementados na Região de Aveiro 

(localizada no litoral oeste da região centro de Portugal Continental), que 

apresenta diversas pressões naturais e antropogénicas, e que, ao longo dos 

últimos anos, têm sido amplamente estudadas relativamente à vulnerabilidade 

e exposição a diversas fontes de perigo. De forma a avaliar a eficácia dos 

modelos, compararam-se os resultados da sua aplicação com métodos 

alternativos e dados de fontes oficiais. 

 

As metodologias desenvolvidas ao longo desta tese demonstraram elevado 

potencial para incorporação em processos de avaliação de risco, com poucos 

recursos e num curto espaço de tempo, contribuindo para apoiar e facilitar o 

trabalho de planeadores do terriório e decisores, na adoção de práticas 

fundamentadas. Esta investigação vai ao encontro de diversas estratégias 

nacionais e europeias, contribuindo para o aumento da resiliência dos 

territórios face a perígos de origem meteorológica. 
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abstract 

 

This research is a development in the field of Geomatics applied to risk 

assessment. The main objective is to provide methodologies to support multi-

hazard assessments at regional scales, based on satellite remote sensing 

techniques. 

This thesis resulted in the development of two models to detect both flood and 

wildfire burned extents. Despite the antagonic characteristics of such hazards, 

both models share the same theoretical principles, consisting in multi-index 

change detection approaches based on multispectral imagery. 

Both models were developed and implemented to the Aveiro region (in the 

Northwest of Central Portugal), chosen because of its natural and 

anthropogenic pressures, which has been widely studied in terms of its 

vulnerabilities and exposure to several sources of hazards. The accuracy of 

these methods was obtained through comparison with other methods or oficial 

reference sources. 

 

These models have shown great potential for incororation in the risk 

assessment process, with few requirements in terms of time and resources, 

supporting and facilitating territorial planners and decision makers to adopt 

more informed decisions. This research meets several national and European 

strategic goals, contributing to increase the resilience of territories to weather 

related hazards. 
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Chapter 1: 
INTRODUCTION 

1. Background 

The coexistence of modern industrial societies together with fragile natural territories increases 

the vulnerabilities and exposure to both technological and natural risks, placing new challenges for 

risk-management at local and regional scales (de Souza Porto and de Freitas, 2003). The effects of 

global climate change are contributing to increase the frequency and intensity of weather related 

hazards (Deleu et al., 2011), requiring decision support information tools to establish effective 

disaster mitigation strategies (Grünthal et al., 2006). 

According to the European 2020 Strategy (EC, 2010a), there is a global need to strengthen 

economies towards climate risks, disaster prevention and response. By 2014, the European Union 

Internal Security Strategy set a target to establish a risk management policy linking threat and risk 

assessments to decision making, where each member-State would have to proceed with risk 

assessment and cartography. Risk management is amongst the priorities of Portugal’s national 

strategic policies and has been successively incorporated in regional and national spatial planning 

programmes (Fonseca et al., 2014). In 2019, Portugal’s National Emergency and Civil Protection 

Authority published a national level risk assessment evaluation for natural, technological and mixed 

hazards, considering impact of climate change scenarios (ANEPC, 2019). 

Experiences with decision makers show that a territorial perspective is desirable for spatial 

planning decisions and emergency strategies (Grünthal et al., 2006). Hazard-related maps are 

fundamental tools for the support of preventive measures, allowing decision makers to identify the 

spatial distribution and intensities of each hazard, exposed population and values, or expected 

losses. 

The risk assessment process is usually composed by the following steps: 1) hazard identification; 

2) hazard assessment; 3) elements-at-risk exposure analysis; 4) vulnerability assessment; and 5) risk 
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estimation (Van Westen, 2013). By definition, Single-Hazard Risk Assessments (SHRA) address only 

one hazard individually, being the most traditional approach. Nonetheless, most natural and 

anthropogenic risks are likely to occur at one same location and, not rarely, at the same time. Multi-

Hazard Risk Assessments (MHRA) may address multiple hazardous sources and multiple variable 

elements overlapping in time and space, resembling more to the reality of spatial management of 

decision-makers (Carpignano et al., 2009). MHRAs allow establishing comparisons between several 

hazard types, contributing to raise awareness and develop tailor-made mitigation strategies 

(Carpignano et al., 2009; EC, 2010b). 

The risk assessment process can be highly complex, in particular for MHRAs, requiring many sorts 

of data, which are often unavailable or may be extremely costly to obtain. Spatial and statistical 

data have different relevancies for each hazard type, although some of the most common include 

land use, vegetation, Earth surface slope, oceanographic and meteorological factors (Van Westen, 

2013). Remote Sensing (RS) techniques have been used as either complementary or alternative 

sources to ground-based surveys, and may offer a synoptic perspective for many of these 

measurements, contributing for a wide range of disciplines (Tralli et al., 2005). Satellite earth 

observations are available at different spatial, spectral and temporal resolutions, and have been 

used to reconstruct recent-history catastrophic events, providing data for prediction and mitigation 

planning actions (e.g., Grünthal et al., 2006; Leifer et al., 2012; D Lu et al., 2004; Van Westen, 2013). 

 

2. Objectives and Research questions  

This thesis aims at developing methods to facilitate the characterization of weather-related 

events based on remote sensing data and techniques. The main objective is to develop RS methods 

that may be used to support and facilitate multi-hazard risk assessments, with particular focus on 

coastal regions. This work is targeted to regional scale applications, being in line with the 

requirements of national and European strategies and sectorial plans. It intends to provide spatial 

managers and decision-makers with reliable, cost-effective and facilitative tools, and to support 

private and public sectors in increasing territorial resilience to risk. With this in mind, the following 

research questions were formulated: 

‘How can RS data and methods be incorporated in multi-hazard risk assessments, in an effective 

and efficient way?’ 
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‘What are the main advantages and limitations of using satellite remote sensing methods to 

monitor weather-related hazards in coastal regions?’ 

‘May RS techniques be exclusively used to reliably characterize multiple types of hazards in 

coastal regions?’ 

 

3. Thesis structure 

The structure of this thesis is divided into five chapters: 

 Chapter 1 - Introduction: 

o This chapter contains a general introduction of the thesis, objectives and research 

questions; 

 Chapter 2 - Satellite remote sensing for single and multi-hazard risk assessments: 

o This chapter includes a literature review of methods used in the contexts of single 

and multi-hazard risk assessments. Particular focus was given to some of the 

most relevant weather-related hazards of the Mediterranean Biogeographical 

region and the application of satellite remotes sensing data and techniques; 

 Chapter 3 - Multi-INDEx Differencing (MINDED) method for flood extent estimations: 

o This chapter presents MINDED, one of the most important outputs of this thesis, 

corresponding to an innovative remote sensing method for determining flooded 

area extents. The implementation of MINDED is demonstrated through a semi-

automatic application in the Aveiro Region study area. 

 Chapter 4 - A new method (MINDED-BA) for automatic detection of burned areas using 

remote sensing data: 

o Following the identification of several potential research developments (in the 

previous chapters), Chapter 4 presents MINDED-BA, a burned extent assessment 

model. MINDED-BA shares the same theoretical principles of the original 

MINDED, but is itself an advancement in respect to the original method. MINDED-

BA includes several additional procedures specific to the detection of burned 

areas, but also for enhancing data processing, improve automatization and 

overall model performance. 
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 Chapter 5 - General conclusions and future research: 

o This chapter includes the general conclusions of this thesis, which are presented 

with an integrative perspective of all previous chapters. Key findings are 

identified and the research questions (from Chapter 1) are addressed. Future 

research lines are also pointed out. 

 

4. Other considerations 

Among the above-mentioned thesis structure, Chapter 3 has been published in an international 

peer-reviewed journal: 

 Oliveira, E.R., Disperati, L., Cenci, L., Pereira, L.G., Alves, F.L., 2019. Multi-Index Image 

Differencing Method (MINDED) for flood extent estimations. Remote Sens 11:1–29.  

doi: 10.3390/rs11111305 

Moreover, Chapter 2 and Chapter 4 will also be submitted for publication. 

 

During the period of this thesis, other publications were produced in co-authorship, contributing 

for the characterization of multiple hazards and processes occurring in the study area considered 

in Chapters 3 and 4: 

 Cenci L., Disperati L., Persichillo M.G., Oliveira E.R., Alves F.L., Phillips M. (2018) 

Integrating remote sensing and GIS techniques for monitoring and modelling shoreline 

evolution to support coastal risk management. GISCIENCE & REMOTE SENSING, 55, (3), 

355-375. 

 Azevedo A., Fortunato A.B., Epifanio B., den Boer S., Oliveira E.R., Alves F.L., de Jesus G., 

Gomes J.L., Oliveira A. (2017) An oil risk management system based on high-resolution 

hazard and vulnerability calculations. OCEAN & COASTAL MANAGEMENT, 136 1-18. 

 Cenci L., Persichillo M.G., Disperati L., Oliveira E.R., Alves F.L., Pulvirenti L., Rebora N., 

Boni G., Phillips M. (2015) Remote Sensing for Coastal Risk Reduction Purposes: Optical 

and Microwave data fusion for shoreline evolution monitoring and Modelling. 2015 IEEE 

INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 1417-1420. 

978-1-4799-7929-5. 
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 Oliveira A., Jesus G., Gomes J.L., Rogeiro J., Azevedo A., Rodrigues M., Fortunato A.B., Dias 

J.M., Tomas L.M., Vaz L., Oliveira E.R., Alves F.L., den Boer S. (2014) An interactive WebGIS 

observatory platform for enhanced support of integrated coastal management. Journal 

Of Coastal Research, 507-512 
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Chapter 2: 
SATELLITE REMOTE SENSING FOR SINGLE AND MULTI-

HAZARD RISK ASSESSMENTS 

Abstract: Can satellite remote sensing data provide reliable alternatives to support multi-hazard 

assessments? For several years, the incorporation of such data has been growing in single-hazard 

risk assessments, but multi-hazard approaches, despite being attractive solutions, are still lacking 

developments in this area. This chapter provides a review of different approaches from single to 

multiple hazard risk assessments, with special focus on the incorporation of remote sensing data. 

This literature review addresses methods used for single weather-driven hazard assessments in 

Mediterranean regions, including wildfires, soil erosion and floods (fluvial and coastal), as well as 

multi-hazard approaches. Each method is analysed according to a set of pre-defined characteristics, 

to facilitate its analysis and enable comparisons. Despite being a relatively new field, the literature 

about multi-hazard risk assessments contains a wide diversity of approaches from diverse scientific 

fields. This chapter identifies the difficulties in interpreting and selecting such methods and 

presents its main advantages and disadvantages. It concludes that free satellite remote sensing 

data meets most data requirements for top-down approaches, from regional-scale studies and 

beyond. 

Keywords: wildfire; flood; coastal; erosion; data aggregation; hazard interaction 

 

1. Introduction 

Traditional Single-Hazard Risk Assessment (SHRA) approaches include vulnerability and exposure 

analysis of any elements affected by one hazard. However, most natural and anthropogenic risks 

are likely to occur at the same location and, not rarely, at the same time (Carpignano et al., 2009). 

Multi-Hazard Risk Assessments (MHRA) have been highlighted as an ideal solution to deal with the 

combination of multiple hazardous sources and multiple variable elements overlapping in time and 
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space, which may prove to be extremely useful to support spatial planning decisions and emergency 

strategies. 

Despite its apparent simplicity, multi-hazard risk assessments are complex tasks at various levels. 

Not only they address the possibility of occurrence of different types of events (by considering 

multiple hazard sources), but also the possibility of several hazards occurring at the same time (or 

within a certain time frame), according to different types of interactions, which may result in 

secondary hazards or secondary events. Rather than using a geographically based approach, i.e., 

with a territorial perspective, they can also be element-oriented, focusing on specific features (e.g., 

buildings, population, infrastructure) (Delmonaco et al., 2007). 

Considering the complexity of risk assessments, a strong conceptual foundation is often described 

as being useful to understand cause-effect relationships of elements in hazard contexts. Some of 

the conceptual framework models derive from other environmental management fields but are 

often used in risk assessment contexts, allowing the integrating with other methods (Narayan et 

al., 2014). 

In general, hazard assessments may be analysed qualitatively or quantitatively, with the second 

considering two types of approaches: data-driven or physically based methods. Data-driven 

approaches, which are also referred to as statistical or mathematical-statistical (e.g., Devi et al., 

2015), rely on the study of hazard effects, which are usually obtained from historic records. Rather 

than focusing on the physics of processes, these methods act as a ‘black-box’, analysing the 

correlation among the effects and factors which are assumed to control of the effects of hazard 

events, using parametric or non-parametric methods to estimate their probabilities (Liu et al., 

2016c). Instead, physically based methods focus on modelling processes using equations including 

spatial and temporal parameters. These parameters may be treated as deterministic or 

probabilistic, depending on the consideration of uncertainties (Schmidt et al., 2011). In any case, 

either quantitative approach should account for probabilities of occurrence. Marzocchi and Woo 

(2009) highlight the advantages of introducing the concept of probabilities in risk analysis, as a 

valuable contribution for further risk management and decision-making processes, by allowing 

immediate comparisons and gradation between different risks, to define “acceptable risk” levels, 

and perform cost-benefit analysis. 

According to Liu et al. (2016a), geophysical environmental factors can be categorized into two 

types: stable factors and trigger factors. Stable factors are described as directly related to the pre-

conditions before hazard events occur, while trigger factors are considered less stable, determining 
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the frequency and magnitude of hazards. Their corresponding variables may include primary 

variables (e.g., temperature, precipitation), synoptic variables (e.g., weather types, pressure), 

compound variables (e.g., humidity, evaporation), or proxy variables (i.e., soil moisture, river 

discharge or flow velocity) (Gallina et al., 2016; UKCIP, 2003). 

One of the most important considerations concerns the availability of ready and reliable data, 

which depending on the working scale, can be expensive or inaccessible to risk assessment experts. 

Earth Observation (EO) using satellite Remote Sensing (RS) has been highlighted as groundbreaking, 

providing solutions to reduce efforts, costs and time in multi-hazard risk assessments. 

 

2. Satellites 

Spatial and statistical data have different relevancies depending on the type of hazard. Some of 

the most common include land use, vegetation, slope, oceanographic and meteorological factors 

(Van Westen, 2013). RS has provided a synoptic perspective for many of these measurements, with 

variable spatial (or geometric), spectral, radiometric and temporal resolutions, contributing for a 

wide range of disciplines (Tralli et al., 2005). Satellite EO has been used in several single hazard risk 

assessment contexts, enabling the possibility to reconstruct recent-history catastrophic events and 

providing data to predict and plan mitigation actions (e.g., Chuvieco et al., 2010; Grünthal et al., 

2006; Harb and Acqua, 2017; D Lu et al., 2004).  

Finding suitable spatial or geographical information requires a careful analysis of its specifications 

to satisfy methodological data requirements. This process may be even more challenging, since 

satellite remote sensing data and products often imply extremely high costs, for both commercial 

and non-commercial uses. However, in the recent past, this paradigm has been changing, as the 

access to free and open data is increasing. For example, the INSPIRE EU Directive (2007/2/EC) 

entered into force in the state-members in 2007, establishing a framework oriented to make spatial 

or geographical information more accessible and interoperable, for the European Community 

environmental policies and activities. In particular, low-to-medium spatial resolution imagery have 

started to be distributed without charging. The Landsat series, which dates back to the late ’70s, 

has become free to the public since 2008, representing the longest running enterprising of satellite 

EO. The ASTER dataset (Advanced Spaceborne Thermal Emission and Reflection Radiometer) also 

started by being freely available only for non-commercial educational uses, but this policy was 

extended to all users since 2016. Other examples of free access data include Meteosat (first and 
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second-generation), MODIS (Moderate Resolution Imaging Spectroradiometer), SRTM (Shuttle 

Radar Topography Mission) and more recently the Copernicus Program with several Sentinel series. 

Nevertheless, higher spatial resolution imagery continue to have significant costs to end-users, as 

are often managed by private-sector entities, e.g., Worldview, Quickbird, Pleiades or IKONOS. In 

2016, the French Government announced that SPOT images older than 5 years old and dating back 

to 1986, would be freely released for research purposes.  

Despite any eventual loss of commercial interest of older images, they continue being extremely 

valuable for research and investigation purposes, as they may be the only alternative for portraying 

certain events from the recent Earth’s history.  If private and public entities continue improving the 

distribution of free access data, the use of RS should become more massified and reach a broader 

public, contributing to the construction of the Global Earth Observation System of Systems (GEOSS) 

and the World Heritage program (Selding, 2014). 

Table A.1 includes a summary of some of the main free-access satellites that are currently 

available for EO purposes.  

Among passive satellites, the long-record Landsat series has been successively updated. At the 

time of writing, both Landsat 7 and 8 missions are still operational with an offset of 8 days (Landsat 

7 is expected to be replaced by Landsat 9 after September 2021). Despite suffering from a failure 

of the Scan Line Corrector since 2003, Landsat 7 images can still be used thought processing 

techniques (e.g., Chen et al., 2011). EO-1 ALI and ASTER have been launched to provide comparable 

or improved alternatives, to map the land surface temperature, reflectance or elevation. Compared 

to the Landsat series, ASTER delivers increased spectral resolution at equivalent spatial resolution. 

Since both spectral and spatial resolutions control the detection capability, ASTER allows identifying 

features smaller than its spatial resolution (e.g., Disperati and Virdis, 2015). Besides, other than the 

usual Nadir looking bands, ASTER includes a backwards-looking band (3B), which provides stereo 

coverage, allowing for the generation of Digital Elevation Model(s) (DEM).  

As for lower spatial resolutions, the Meteosat first generation (Meteosat-1 to -7) was initiated in 

1972 by a predecessor of the European Space Agency (ESA), consisting in a group of meteorological 

geosynchronous satellites for continuous and reliable meteorological observations. These were 

gradually replaced by a second-generation series (Meteosat-8 to 11), which are still active 

(eventually being replaced by a third generation). The MODIS series, composed by two sensors on-

board of Terra and Aqua satellites (both part of the National Aeronautics and Space Administration 

(NASA) Earth Observing System) is capable of providing short revisit times (1-2 days depending on 
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the latitudes) along with 36 multispectral bands which can have a wide range of uses: the 

identification of land/cloud/aerosols boundaries; ocean colour, phytoplankton and 

biogeochemistry; atmospheric water vapour; surface and cloud temperature; atmospheric 

temperature; cirrus clouds water vapour; cloud properties; ozone; and cloud top altitude (NASA, 

n.d.). VIIRS is another multi-disciplinary sensor providing data for ocean, land, aerosol, and cloud 

purposes, capable of twice the coverage of MODIS with 750m resolution.  

Regarding high-resolution data, SPOT-5 delivers panchromatic images with 5m of spatial 

resolution, but with only three multispectral bands and one short wave infrared band, respectively 

with a spatial resolution of 10m and 20m. 

In terms of active satellites, NASA's Shuttle Radar Topography Mission (SRTM), was initially 

released with 3 arc-seconds (or about 90 m) resolution for regions outside the United States of 

America, but by late 2015, the public release was updated to a resolution of 1 arc-second (about 

30m). Regarding ESA’s missions, the first European Remote Sensing (ERS-1) included a synthetic 

aperture imaging radar, radar altimeter and instruments to measure ocean surface temperature 

and wind fields, which was later complemented by ERS-2, with an additional sensor for atmospheric 

ozone monitoring. ENVISAT was the successor to ERS, having a more advanced imaging radar, radar 

altimeter and temperature-measuring radiometer. More recently, starting in 2015, Japan 

Aerospace Exploration Agency (JAXA) has released several a freely available world digital surface 

model, the ALOS World 3D, with a horizontal resolution of approx. 30-meter mesh (1 arcsec) and 

5-meter vertical mesh, derived from the Advanced Land Observing Satellite "DAICHI" (ALOS). This 

dataset is comparable to the SRTM, with additional benefits, such as wider coverage (including 

Antarctica). 

In the last years, ESA has been responsible for an ambitious initiative, the Copernicus programme, 

aiming to release upwards to 30 satellites, which include Sentinel-1 missions, capable of proving 

day and night radar images and Sentinel-2 missions, designed for high-resolution optical images for 

land services. At the time of writing, Sentinel-3 services are also operational, being relevant for 

ocean and land monitoring. Sentinel 4 and 5 are still being prepared and are expected to contribute 

for atmospheric composition monitoring from geostationary and polar orbits, while Sentinel-6 will 

carry a radar altimeter to measure global sea-surface height, primarily for operational 

oceanography and climate studies (ESA, n.d.). 

The access to some of the above-mentioned data may be found in several web platforms that 

often distribute freely available information, including raw data and products with different levels 
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of processing. Amongst the most important, is the USGS Earth Explorer(USGS, 2020a) which offers 

worldwide coverage and includes the most important Landsat catalogue (with multiple processing 

levels), as well as ASTER, SRTM, MODIS or NOAA’s AVHRR. The European Space Agency also created 

a specific data hub for the Copernicus series (ESA, 2021), including Sentinel’s 1, 2 and 3 products. 

NASA’s Earthdata Search (NASA, 2020a) is another valuable portal, containing a wide range of data 

(e.g., Aqua, Terra, Aura, TRMM, Calipso, NASA DC, JASON, ENVISAT, ALOS, METEOSAT, GOES, 

ICESAT, GMS, Landsat, NIMBUS, SMAP, RADARSAT, NOAA satellites, GPS satellites). The equivalent 

Earth Observation Link (EOLi) (ESA, 2020) allows to browse and preview EO images from Envisat, 

ERS, IKONOS, DMC, ALOS, SPOT, Kompsat, Proba, IRS, SCISAT. Moreover, several other platforms 

are offering final products with particular interest for natural hazard-related studies, including the 

Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC) 

(NASA, 2020b), Joint Research Centre European Forest Fire Information System (JRC/EC, 2020), 

HydroSHEDS (WWF, 2020), and Earth Observation Data with several near-real-time products, 

including MODIS and VIIRS(NASA, 2020c). 

Free-access RS data has become a valuable source for several applications, including research 

purposes. The catalogue of available RS data will likely increase, not only from future satellite 

missions, but also if the industry continues promoting the dissemination of older datasets. Besides, 

aerial remote sensing databases should not be forgotten, particularly for local scale studies (e.g., 

Manzo et al., 2015). In some cases, these can report to periods before satellite EO data, and 

depending on the study area or purpose of the application, may be freely available. 

 

3. Weather-related hazards in temperate Mediterranean regions  

Weather-related natural hazards have been accounted for major losses worldwide, as a 

consequence of meteorological, hydrological or climatological events (Hoeppe, 2016). Even 

relatively mild climates can be affected by such occurrences. For example, the European temperate 

Mediterranean zone (Figure 2.1), where Portugal is included, is generally characterized by hot 

summers and mild winters, yet presenting pronounced climatic differences within short distances, 

depending on altitude, continental landmasses, or maritime influence (Condé et al., 2002). This is 

the case of locations on the border with the Atlantic biogeographical region, where the annual 

temperature amplitude is lower and the annual precipitation is higher, resulting in mild rainy 

winters and not excessively dry summers. Still, extreme events are amongst the main causes of 

weather-related natural hazards affecting this region, a tendency which will likely increase, 
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according to the latest climate change records and projections. The 5th assessment report of the 

Intergovernmental Panel on Climate Change (R. S. Kovats et al., 2014) highlights that since 1950, in 

parts of Southern Europe, high-temperature extremes have become more frequent, while low-

temperature extremes and annual precipitation have been decreasing (Condé et al., 2002). Extreme 

sea levels have also increased due to mean sea level rise. In terms of projected climate changes, 

Southern Europe is likely to be affected by a strong warming in summer, while the annual 

precipitation should decrease. Projections also indicate a marked increase of extremes in Europe, 

in particular heatwaves, droughts and heavy precipitation events. 

 

Figure 2.1 – Biogeographic regions within the European Union (EU) (Sources: European Commission, Eurostat, GISCO; 
EEA) (Coordinate system: WGS84 Pseudo-Mercator). 
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According to Condé et al. (2002), more than half of the Mediterranean Biogeographical region is 

already affected by soil erosion risk, as a consequence of dry climate periods and exposed slopes, 

which are amplified by overgrazing, deforestation and surface disturbance. Wildfires, both natural 

but especially human-induced, are another major problem in southern European countries, with an 

annual average of 48.940 fires and 454.104 ha burned areas, in the last 35 years (Schmuck et al., 

2015). Besides the multi-aspect damages of wildfires which have consequences to human lives, 

socio-economy and biodiversity, they also contribute for soil erosion and desertification. Deep 

burned soils which loose the binding protection of vegetation or litter, suffer from the altered 

hydrological response, reducing resistance to erosion and increasing runoff during post-fire 

rainstorms (Esteves et al., 2012). 

Flood disasters are amongst the most important natural hazards of Europe in terms of economic 

losses (EEA, 2010). The degree of such losses is often dependent on a combination of societal and 

hydro-meteorological factors, being usually higher whenever hydrological floods (i.e. riverine, 

coastal and flash floods) occur in populated areas. According to the EM-DAT records (which date 

back to 1926), some of the most deadly flood events in Europe have occurred in Southern Europe, 

although the number of fatalities has been decreasing in the last decades. Still, between 1998 and 

2009, the Mediterranean Region was affected by some of the most significant disasters in Europe, 

with Italy amongst the countries with the largest economic losses (EEA, 2010). 

Storms are described as natural events that combine strong winds with heavy precipitation. Along 

with floods, storms are amongst the most significant natural hazards affecting Europe.  Between 

1998 and 2009, storms were the deadliest natural hazard, resulting in 729 fatalities (EEA, 2010). In 

Europe, these phenomena are typically associated with extra-tropical cyclones, mostly occurring 

between October and April, and can affect parts of the Mediterranean Region, as storms sweep 

from the Atlantic to the northern Iberian Peninsula and southern France. Coastal regions are 

particularly affected by such events, not only because they are hubs for growing population and 

activities, but also because they are already suffering from climate change effects (e.g., sea-level 

rise, increased cyclone intensity, rotation of the average wave direction), aggravating already 

existing coastal erosion processes. Moreover, when storm events occur under particular tidal 

characteristics (e.g., spring tides), their effects tend to be amplified, contributing to increase 

damages resulting from wave overtopping and coastal flooding.  

Temperature extremes may refer to both sides of the scale and are associated with changes in 

inter-annual temperature variability. According to EEA (2010), most cold waves (or cold spells) in 
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Europe are associated with damages to agriculture, infrastructure and property, although they can 

also contribute to increased mortality rates. Still, heat waves (or heat spells) are those responsible 

for most deaths in Europe, with a particular incidence in the Mediterranean geophysical region. For 

example, during the hot summer of 2003, over than 70.000 fatalities were registered throughout 

Europe. In addition, during 2006 and 2007 there was increased mortality due to heat waves (EM-

DAT). Climate change is affecting heatwaves, which have been increasing twice as fast over the last 

25 years (EEA, 2010). 

The following section consists of a review of methods used for analysing weather-related natural 

hazards, including different types of approaches for the assessment of exposure, vulnerability and 

risk, with special focus on RS applications.  

 

4. A review of methods 

Risk assessments are often based on conceptual frameworks, which may help to identify and 

illustrate the relations inherent to hazards. The Source-Pathway-Receptor concept (SPR-concept) is 

one of such frameworks, being originally developed within the context of environmental sciences 

to describe pollution movements, and have later applied for risk assessment purposes (Holdgate, 

1979). The SPR-concept and its variation, the Source-Pathway-Receptor-Consequence concept 

(SPRC-concept) (Gouldby et al., 2005), allow to quickly translate the components of risk estimation 

and are particularly well established in flood risk assessments (e.g., Oumeraci et al., 2015). The  

Drivers, Pressures, State, Impact and Response framework (DPSIR) was originally developed as an 

adaptive management tool for the analysis of environmental problems, establishing cause-effect 

relations, between society and the environment, being also applied in risk assessment contexts 

(Gari et al., 2015; Juan Pablo Lozoya et al., 2011). The DPSIR conceptual framework was later 

adapted and defined as the Pathways of Effects by J.P. Lozoya et al. (2011), allowing to establish 

relations between hazards and ecosystem services. Conceptual frameworks have been referred to 

contribute for hazard understanding and communication between researchers, stakeholders and 

the public, and allow integration with other methods (Gari et al., 2015). Nevertheless, conceptual 

frameworks tend to suffer from subjectivity issues, not only in terms of the used terminology, but 

also in the assignment of variables according to each class, which may vary even for studies about 

the same subjects. Besides, if multi-hazard interactions are to be considered, to avoid double-

counting issues, it would be necessary to use nested schematization to include element interactions 

and feedback loops, which makes the analysis very complex (Gari et al., 2015).  
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4.1. Single hazard methods 

In general, RS data and methods may be used in different stages of the risk assessment process 

(Harb and Acqua, 2017; Van Westen, 2013). The most direct and immediate approach is to monitor 

the occurrence of hazardous events and to determine the extent of their effects. For example, 

digital imagery processing techniques may be used to identify ongoing processes (e.g., active fires, 

flooding), to determine the extent of hazard occurrences (e.g., annual wildfires, flooded extents), 

or to distinguish areas undergoing different processes (e.g., erosion and accumulation zones of 

coastal  areas, landslides or from other soil erosion processes) (Cenci et al., 2015; Joyce et al., 2009; 

Sala et al., 2016; Vilar et al., 2015a). However, RS may also be used in more indirect approaches, 

incorporating parameters applied in hazard modelling or further stages of the risk assessment 

process. This section includes examples of different types of single-hazard approaches, addressing 

some of the most prominent weather-related hazards affecting the Mediterranean biogeographical 

region. Considering the focus of this thesis on RS applications, the selection of hazards was focused 

on those having direct interactions with two of the most easily identifiable hazard-driving elements 

- water and vegetation. The selected hazards include wildfires, soil erosion, and floods (both fluvial 

and coastal). 

For summarization purposes, the information about each method has been organized and 

synthetized into tables (Table A.2 to Table A.4), which include a short description, data 

requirements, the scale of application, geographical scope, main advantages and disadvantages 

(highlighted or not, by the authors of each method). Moreover, these tables also contain references 

about the authors of each method and case study applications. Finally, each table entry is checked 

about the incorporation of RS data. 

 

4.1.1.Wildfires 

Wildfire risk assessments have been around for several decades and have been consistently 

implemented globally. The Fire Weather Index (FWI), based on the empirical Canadian model (Van 

Wagner, 1987) has been adopted by many national government agencies to provide wildfire risk 

assessments on a daily base. One of the major advantages of the FWI is the fact that it combines 

two other indices, the Initial Spread Index and the Buildup Index, allowing obtaining uniform results 

solely from weather variables. In addition, by being built around equations, the FWI may be readily 
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implemented through computer processing. Despite not being originally developed for such 

purposes, the incorporation of RS data has been introduced in further developments of the FWI, 

with current satellite data and derived products capable of fulfilling most of its data requirements. 

Bedia et al. (2015) applied the FWI at a global scale for both present and future climate projections. 

The later authors used MODIS products (to create ‘non-burned’ and ‘burned’ masks), together with 

publicly available climate data from the WATCH Forcing Dataset-ERA Interim and the Global Map 

of Terrestrial Ecoregions (freely distributed by the World Wildlife Fund). The European Forest Fire 

Information System (EFFIS) has also been used as an alternative source of fire data, providing 

updated information on current, long-term forecasts and fire history in Europe and in the 

Mediterranean Area, using both MODIS and VIIRS data to create updated maps of hotspots and fire 

perimeters (Vilar et al., 2015a).  

As recognized by Coelho et al. (2007), most FWI data requirements include meteorological inputs,  

which may not always be available at the desired spatial and temporal resolutions. The same study 

proposes an alternative methodology to assess wildfire risk, considering the lack of public fully 

available meteorological data, composed of four intermediate indices. The fire detection 

probability consists in identifying “blind zones” for fire detection, considering terrain elevation, 

watchtowers network, proximity to roads and other build-up areas. The ignition risk is determined 

considering the number of ignitions per administrative unit, land uses, and built-up areas proximity. 

The propagation risk index relies on elevation, land use and built-up areas proximity, adding 

available forest fuel management strips networks. Finally, the suppression probability index 

combines the information about firefighting operative distribution and arrival time, obtained from 

the available road network and elevation. Despite considering mostly GIS variables, the Wildfire risk 

method (Coelho et al. 2007) has potential for further integration of RS data and procedures (e.g., 

land cover classification, burned extent masking, fire frequency), which would allow improving its 

automatization levels. 

Amongst the forest fire literature, the most extended method for measuring plant moisture 

content is the Fuel Moisture Content (FMC). This is one of the critical factors affecting fire ignition 

and fire propagation. The FMC is defined as a simple proportion of fresh weight and dry weight, 

being originally dependent on intensive fieldwork sampling (e.g., Chuvieco et al., 2002; Van 

Wagner, 1987). RS methods have been tested to provide significantly better cost-effective 

alternatives, capable of temporal and spatial coverage derived directly from the vegetation cover. 

Chuvieco et al. (2002) tested the correlation of FMC obtained from plot areas with several indices 
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obtained from Landsat TM, obtaining promising results with variable correlation levels depending 

on the vegetation cover. Based on such experience, Chuvieco et al. (2010) developed a framework 

for fire risk assessment using GIS and RS technologies, which was implemented in several Spanish 

regions. This study considers several variables to estimate fire hazard danger, including the Ignition 

Danger (obtained from the estimation of FMC and contributions from lightning and human causes), 

Propagation Danger and several Vulnerability components (including Socio-economic value, 

Degradation potential and Landscape value). Since it covers several aspects of fire risk assessment, 

it presents some disadvantages inherent to its extensive requirements of data usage, in particular 

from the socio-economic realm. 

From point of view of RS, finding suitable indicators for vulnerability purposes is one of the biggest 

challenges. Tedim et al. (2014) provide a complete set of vulnerability indicators for forest fires and 

coastal erosion, applied in two Portuguese study sites. Many of these indicators may be obtained 

using satellite data. For example, the ‘wildland-urban interface’, or the ‘number of buildings’, are 

considered to be indicators of forest fire exposure characteristics, which can be acquired from 

digital imagery classification. DEMs could also provide data for the indicator ‘forest areas slope’, 

which is associated to the physical dimension of Susceptibility/Fragility Indicators. Nevertheless, 

most of these indicators are related to the social and economic dimensions (e.g., GDP, population 

age, employment, etc.), being heavily dependent on statistical databases. 
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4.1.2.Soil Erosion 

Soil erosion is a long studied for phenomena, contributing to soil degradation and desertification 

processes, with consequences for agriculture production, water quality, and derived socio-

economic and environmental problems. Several biophysical factors affect these processes, 

including climate, land cover, soil type and topography. However, those resulting from human 

activities are generally the most challenging to estimate.  

The Universal Soil Loss Equation (USLE) has been one of the most studied methods to determine 

annual soil loss. Originally developed to be applied in gently sloping croplands in the USA 

(Wischmeier and Smith, 1978), it has since been tested and upgraded, having worldwide 

application. The USLE has been applied in Mediterranean climates, considering a wide diversity of 

land covers, topographies and soil management practices. The Revised Universal Soil Loss Equation 

(RUSLE) maintains some of the empirical structure of its previous version, but with improved 

erosion prediction capabilities, including sub-factors from process-based concepts and 

encompassing a wider variety of situations, including forest, rangeland and disturbed areas (Renard 

et al., 1997, 1994). Despite being considerably data demanding, (Lu et al., 2004a) were able to apply 

the RUSLE in the Brazilian Amazonia using only RS and GIS data. This achievement was made 

through a series of parameter developments and simplifications, such as the assumption of equal 

climatic conditions throughout the study area and absence of support practices implementation, 

eliminating two parameters from the overall equation, Rainfall-Runoff Erosivity (R) and Support 

Practice (P). The remaining factors, Soil Erodibility (S), Topographic Factor (LS) and Cover 

Management Factor (C) were obtained from soil maps and survey data, a DEM and other 

parameters obtained from Landsat TM+ imagery. 

The Morgan-Morgan-Finney (MMF) is a semi-empirical model used in the prediction of annual 

soil loss by water (Morgan, 2001). Compared to USLE or RUSLE, it contains a more consolidated 

physical structure, providing better estimates of soil loss. Vieira et al. (2014) highlight the 

importance of wildfires as a major cause of increased runoff and soil erosion in Mediterranean 

forests and woodlands, using a revised version of MMF to model runoff and erosion in burned areas 

and their mitigation. Nevertheless, due its increased complexity and data requirements, the MMF 

model is also heavily dependent on field measurements, which would present significant constrains 

for further integration of RS data. 

In respect to post-fire erosion scenarios, the Erosion Risk Management Tool (ERMiT) was created 

to assess the risk of damaging runoff and erosion events occurring after a fire, providing a 
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distribution of rain event erosion rates with a probability of occurrence (Robichaud et al., 2007). 

This software can be particularly useful for land managers to plan mitigation treatments, using the 

Water Erosion Prediction Project (WEPP) to estimate erosion and runoff on burned sites, and 

stochastic weather files generated by CLImate GENerator (CLIGEN). Its application includes burned 

and recovering forest, rangeland and chaparrals, with or without the application of mitigation 

treatments. Considering its simplicity and relatively few data requirements, it demonstrates a 

potential for incorporating (at least partially) RS data. Nevertheless, despite delivering reasonable 

estimates of sediment delivery in most post-fire monitored sites, the few exceptions, i.e., over 

predicted sediment delivery, were precisely in two southern California sites with Mediterranean 

Climate (Robichaud et al., 2016). In order to apply ERMit outside the US, formatted input files 

(CLIGEN format) are already provided, including for southern European countries. However, 

Robichaud et al. (2016) refer that key field-measured input parameters are likely to be different, 

depending on soil types and previous land uses, such as less erodible heavily used lands in southern 

Mediterranean countries. 

The Pan European Erosion Risk Assessment (PESERA) is a physically-based model, designed to 

estimate average long-term erosion rates, which has been applied across Europe at 1km resolution 

(Kirkby et al., 2008). The model is constructed around a central water balance, separating 

precipitation into possible pathways, including interception losses, evapotranspiration, overland 

flow, runoff and infiltration. Esteves et al. (2012) applied the PESERA model in fire-affected sites in 

Portugal, considering a 50-year climate historical time-series. Compared to field data, PESERA over-

estimated post-fire erosion in thin stony soils, which occur in much of the fire-prone terrain in 

central Portugal. Despite being considered as a consistent and objective model, capable of 

providing long-term average values according to scenarios (past or future), it is more complex than 

other empirical models, and substantially more demanding on data requirements, in particular of 

rainfall data, which in many countries is of particularly difficult access. 

 

4.1.3.Floods 

According to the Floods Directive (2007/60/EC), ‘flood’ is defined as the temporary covering by 

water of land not normally covered by water, including rivers, mountain torrents, Mediterranean 

ephemeral watercourses, and floods from the sea in coastal areas. Flood risk is described as a 

combination of the probability of a flood event and its potential of causing adverse consequences 

for human health, the environment, cultural heritage and economic activity. 
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Flood hazard related studies in large study areas are often ambitious undertakings, presenting 

high spatial variability interactions (Rathjens et al., 2016). Large hydrological systems present a wide 

diversity of boundary conditions, depending on where a given catchment area joins a waterbody 

(i.e. rivers, estuaries, coastal lagoons, sea, or the ocean). Amongst the selected hazards considered 

in this chapter, those related to floods have the widest variety of approaches. Different methods 

are available for specific contexts, from one-dimensional modelling and beyond, using physically 

based or data-driven approaches. However, many are too complex or data demanding to consider 

the use of RS data, and were not included in this review. 

4.1.3.1.Fluvial 

Fluvial flood hazard maps are usually built after the collection of historical information about past 

flood events, using news reports, questionnaires, flood marks surveys (e.g.,  Coelho et al., 2007) or 

satellite RS data. The modelling chain usually starts with hydrologic modelling to obtain 

hydrographs for assigned return periods (e.g., the 100-year flow), which are consequently 

incorporated in hydraulic flow propagation models to estimate water surface elevations and 

corresponding inundation areas (Degiorgis et al., 2012; Sangwan and Merwade, 2015).  

Most hydrological models are built around the assumption that flows can be affected by up-

stream diversion and storage (USDA, 2012), therefore relying on the availability of relevant time 

series of rainfall data and drainage area to identify flood-prone areas. Hydraulic analyses are built 

around river channel geometry and other variables, such as surface roughness and boundary 

conditions to determine flood inundation areas under different return period-flood events 

(Degiorgis et al., 2012). In sum, meteorological, hydrological and hydraulic investigations are 

needed to define and estimate flooding impact, which together with vulnerability assessments, can 

be combined in final risk analysis (Apel et al., 2009). 

The estimation of flood discharges can be assumed with different levels of detail. The most basic 

approaches are usually based on the statistics of extremes, yet they lack higher spatial 

differentiation and detail on dynamic aspects (Büchele et al., 2006). Different types of hydrological 

models can provide such estimates. Some authors (e.g., Gunasekera et al., 2015), divide them into 

deterministic vs stochastic models, depending whether or not they produce the same output from 

a set of input values. Others (e.g., Martini and Loat, 2007), classify them as static vs dynamic, 

depending on their temporal factor. According to Devi et al. (2015), the most important 

classifications include empirical, conceptual (or parametric) and physically-based models. While 

physically based models try to represent the real physical processes, conceptual models rely on 
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semi-empirical equations, field data and calibrations. Instead, empirical models entirely ignore the 

features and processes of hydrological systems. Whenever gauge data for flood frequency and base 

flood analyses is unavailable (e.g., in remote locations), probabilistic methods can be used as 

alternatives (Bates and De Roo, 2000; Gall et al., 2007). Choosing the right model is usually a 

compromise between input data requirements and result accuracy, in which simplified models tend 

to produce less accurate outputs. 

One of the most popular hydrological models is the Soil & Water Assessment Tool (SWAT) 

(Gassman et al., 2007). It allows simulating long-term river watershed conditions, being very 

popular for agriculture production and management purposes, as well as flood hazard assessments. 

Nevertheless, the continuous simulation characteristics of this physical model are rather complex 

and time-consuming, being highly dependent on the availability of water level gauges and 

precipitation data. 

Runoff models are typically built around equations that estimate runoff as a function of other 

watershed-related parameters (Devi et al., 2015). Some of these methods have been around for 

several decades (e.g., Empirical curve number, HBV, TOPMODEL, WEPP) and have been 

consecutively developed throughout several versions and modifications. Despite not being 

originally designed to incorporate such data, RS has been consistently used in many case study 

applications, particularly DEMs, which are used for characterizing topography catchments.  

The Topographic Index (Manfreda et al., 2014, 2011, 2008) and the Topographic Wetness Index 

(TWI) (Jalayer et al., 2014; Qin et al., 2011) are modified versions of the TOPMODEL. These methods 

have been applied in the delineation of flood-prone areas based on topography, relying mostly on 

DEMs obtained from satellite RS. In many cases, the quality of such datasets is not consistent, 

especially towards the extremes of the vertical axes, such as in mountain areas (e.g., Kolecka and 

Kozak, 2014) and low relief areas (e.g., Gall et al., 2007). Although the main goal of such models not 

including flood risk assessments, as they allow continuous monitoring of entire river basins (or 

certain sections). By providing complete representations of the hydrologic dynamics, they have also 

been used for flood extension and water-depth estimations (e.g., Grillakis et al., 2010; Manfreda et 

al., 2011). Devi et al. (2015) describe TOPMODEL as a semi-distributed model, while reffering that 

other authors consider it to be a physically-based model, since its parameters can be theoretically 

measured. 

Al-Abadi et al. (2016) included the TWI together with other six factors obtained from GIS and RS 

data to delineated flood-prone areas in an arid region. Catastrophe theory models were used to 
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derive weights from a linear combination technique, and the Analytical Hierarchy Process (AHP) 

allowed obtaining normalized ranks according to the classes of each factor. A sensitivity analysis 

was used to define flood susceptibility maps based on the highest variation indices, which included 

‘distance to streams’, ‘curve-numbers’, ‘elevation’, and ‘TWI’. 

The LISFLOOD model (Bates and De Roo, 2000) has been described as a simple raster-based model 

for flood inundation simulation, relying on uniform flow formulae (Manning equation). This 

physically-based hydrological rainfall-runoff model consists of three sub-models: a catchment 

water balance model, a catchment flood simulation model and a high-resolution floodplain 

inundation model, which are embedded in a dynamical GIS environment (Lavalle et al., 2005). The 

main inputs consist of a DEM and land use maps, being suitable for RS based studies. LISFLOOD and 

subsequent modified versions have been applied to simulate floods in river channels and 

floodplains. Van der Sande (2001) compared different image classification techniques and data 

sources, including an IKONOS-2 image, to derive land use in a river floodplain in the Netherlands. 

By assuming different Manning roughness coefficients settings, the LISFLOOD model was used to 

generate several flood extent maps. Damage estimation was calculated by using stage-damage 

curves provided by official public sources, which were used to create damage loss maps. 

In relatively low relief areas, DEMs can identify morphological breaks in slopes, distinguishing 

upland and floodplain areas (Rathjens et al., 2016). A fast approach to create static flood inundation 

maps is to simply overlay a DEM with a surface corresponding to the water level during a flood 

event, assuming the water surface to be flat and everything below it to be flooded (e.g., Priestnall 

et al., 2000; Sangwan and Merwade, 2015; Wang et al., 2002)). Nevertheless, when considering 

global scale DEMs (with lower accuracy and resolutions) such approaches should be used with 

caution when used for flood inundation modelling (Karlsson and Arnberg, 2011). 

Alternatively, hydraulic or hydrodynamic models can be used to obtain more detailed information 

about flood inundation extents, while hydrographs, produced by hydrologic models, may be used 

as inputs to establish upstream or downstream boundary conditions.  

One-dimensional hydraulic finite difference models, such as the HEC-RAS (Brunner, 2016; 

Samarasinghe et al., 2010; Sangwan and Merwade, 2015), are capable of providing flood extent and 

depth estimates with relatively few data requirements. River channels and floodplains are 

described as a series of cross sections perpendicular to flow direction, defined by a series of lateral 

and elevation coordinates which are typically obtained from DEMs. RS methods can also be applied 

to determine Manning’s friction coefficients derived from land use. 
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Onana et al. (2008) presented a RS approach to assess flood hazard risk maps in an urban growth 

context, where SAR images and Normalized Difference Vegetation Index (NDVI) measurements 

were used for vulnerability mapping. Hazard exposure was determined with a linear dispersion flow 

model, requiring three parameters obtained with RS data: velocity flow for lateral translation, the 

distance from the source of flow, and the coefficient of dispersion. 

Other 2D approaches such as Mike 21, rely on structured or unstructured grids, for flood depth 

and extent.  However, with such increased complexity there are also further data requirements. 

Besides, as it is not always easy to represent the location of cross-sections, it may often be the case 

when such added efforts do not represent an increased predictive ability, when compared to 

simpler models (Bates and De Roo, 2000). 

3D hydrodynamic models such as ELCIRC (e.g., Baptista, 1987; Dias et al., 2014) or SELFE (e.g., 

Fortunato et al., 2013; Zhang and Baptista, 2008) provide even more complete simulations of water 

circulation and dynamics, but are consecutively more complex and dependent on exhaustive 

bathymetric grids and computational time, which go beyond the scope of this review. 

From the perspective of a predominant use of RS data, the simplest and best likely approach for 

fluvial flood hazard assessments seems to consist in morphometric analysis based on DEMs, instead 

of considering higher complexity discharge hydrologic models. However, systematic multi-temporal 

analysis should be crucial for determining the return periods of each event. 

Regarding the vulnerability component of flood-related risk analysis, the typical approach consists 

in establishing a correspondence between flood depth and extension maps with exposed assets 

(e.g., land use or cover, population, buildings, infrastructures, vehicles, etc.). Depth damage 

functions can be used to estimate the damages per square meter or exposed elements, by 

considering their characteristics (number of floors, materials, type of property, etc.) (Meyer and 

Messner, 2005; Van der Sande, 2001). Other demographic variables can also be used to characterize 

the vulnerability of the exposed population (e.g., GDP distribution, age, or employment rates) 

(Samarasinghe et al., 2010). 

4.1.3.2.Coastal 

According to Fortunato et al. (2013), coastal flood studies usually involve one of the following 

approaches: 1) the analysis of inundation marks and other testimonies of previous events; 2) the 

statistical analysis of data from tide gauges; 3) the use of process-based models that reproduce the 

main physical processes involved; or 4) the combination of various approaches. Whenever there is 
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a lack of consistent records of data, the use of RS technologies can be considered for identifying 

marks of previous events. However, there are some shortcomings, such as the inability to properly 

identify inundation depths below 50 cm (Fortunato et al., 2013; Ramsey et al., 2012). 

From the perspective of RS techniques, one of the most common approaches is to perform studies 

to estimate the shoreline position, for calculating erosion or accretion rates. Despite being a 

straightforward concept, the extraction of shoreline position can be a challenging task, due to its 

highly dynamic characteristics, on both temporal and spatial scales. RS is theoretically an ideal 

source for registering fast-changing processes (natural or anthropogenic). Boak and Turner (2005) 

describe a list of proxies which may be used for establishing more functional definitions of 

shoreline. Some of these proxies may be extracted from satellite images, exclusively or in a 

combination with other methods (Virdis et al., 2012). Cenci et al. (2013) used one of these proxies, 

‘the stable dune vegetation line’, to perform a multitemporal shoreline analysis of a NW-

Portuguese coast stretch, through a radiometric analysis of the Landsat imagery dataset, and later 

with Sentinel-1 data (Cenci et al., 2017b, 2015). The estimation of erosion and accretion rates was 

obtained with the Digital Shoreline Analysis System (DSAS) a freely available GIS based software 

which computes rate-of-change statistics for a time series of shoreline vector data (Himmelstoss, 

2009). However, such rates are not considered valid for characterising urban coastal settlements, 

since those areas are often protected by engineering infrastructures, therefore not being 

representative of the natural shoreline evolution process. 

Joint probability analysis are used for determining the chance of relevant sources taking high 

values simultaneously (Oumeraci et al., 2015). When applied to variables such as water levels or 

wave height, they can be used for flood risk purposes, to estimate the probability of storm surge 

affecting open coasts or estuaries. Hawkes (2008) summarizes the terminology and compares three 

types of joint probability analysis, including the JOIN-SEA approach, a group of freely available 

computer programs designed for joint probability extremes analysis. Such approaches rely on 

extensive independent records (e.g., significant wave height, mean wave period and sea level), 

which may be achieved using generators (e.g., the stochastic storm surge generator). 

A Coastal Vulnerability Index has been described by Thieler and Hammar-Klose (2000) and further 

developed by Pendleton et al. (2005), in order to map the relative vulnerability of the coast to future 

sea level. It consists on ranking six physical variables contributing to sea-level rise: geomorphology, 

regional coastal slope, rate of relative sea-level rise, historical shoreline change rates, mean tidal 

range, and mean significant wave height. Based on this methodology, Kumar et al. (2010) 



 

28 

 

introduced some developments, which this number to eight risk variables. Some of these 

parameters can be directly obtained from RS methods, while others were derived from software 

modelling tools. RS methods were used to extract elevation (SRTM) and to estimate shoreline 

change rate (using DSAS). The software Mike 21 SW, a wind-wave model which simulates the 

growths, decay and transformation of wind-generated waves and swells in offshore and coastal 

areas, was used to obtain significant wave height (Danish Hydraulic Institute, 2015). The WXTide 

software was used to predict the maximum annual amplitudes of tides, which are derived from a 

worldwide network of stations.  

Appelquist (2013) presented a simple framework to assess multiple climate change hazards in 

coastal environments, covering the aspects of ecosystem disruption, gradual inundation, saltwater 

intrusion, erosion and flooding. The methodology is illustrated in a wheel shaped diagram, starting 

in the centre, and following a route of different options according to coastal classification features: 

geological layout, wave exposure, tidal range, flora/fauna, sediment balance and storm climate. A 

short description is provided to classify each feature according to classes, using simple quantitative 

and qualitative methods. Depending on the classification of coastal features, 565 individual results 

may be achieved, each corresponding to different levels according to each coastal hazard.  The use 

of RS is briefly mentioned, to determine the geologic layout and sediment balance (through Google 

Earth), but has the potential of being extensively developed in order to improve the accuracy of the 

inherent hazard estimations (as described in Appelquist and Balstrøm (2015), a later application of 

the same methodology). 

The integration of different types of data, models and resources are often complex and 

challenging tasks. The DIVA (Hinkel and Klein, 2009), THESEUS (Simcic et al., 2014) or CERA (Narra 

et al., 2017) are examples of GIS-based tools which facilitate this processes in coastal flooding risk 

assessment contexts. One of their main advantages is the inclusion of graphical interfaces that 

guide the user throughout the process of data and modelling integration, including direct access to 

pre-defined global databases, which become more accessible to users with different backgrounds 

and levels of experience. Some of these tools are built in open software platforms, which increase 

the potential for further incorporation of RS data. 

As previously mentioned in section 4.1.1, Tedim et al. (2014) includes a set of coastal erosion 

vulnerability indicators. An index of coastal erosion exposure and fragility is defined as the 

percentage of land uses being affected by erosion (associated to three functions: Agriculture, Urban 

and Ecological), relative to the total surface of a given parish. Indicators of coastal erosion resilience 
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are divided into five types: Physical, Environmental, Economic, Social and Institutional. Moreover, 

it considers the type of coastline geology and geomorphology, including the presence of dunes, as 

an indicator of physical resilience to erosion. The Environmental resilience is evaluated in terms of 

the ecosystems adaptability/endemism. The Economy component, is divided into ‘Economic status’ 

(available funds for protection works, GDP), ‘Empowerment’ (citizen economic dependence to 

community, and community dependence in respect to the state), ‘Companies’ (financial resources, 

insurance rates, insurance and sate compensations), ‘Social’ (population age, education, 

socialization/sense of community) and ‘Institutional’ (Landscape planning regulation). Several of 

these indicators are ambiguous and lack further descriptions, likely requiring extensive fieldwork 

and interviews. Others have the potential of being extracted from RS methods, in particularly those 

related to the physical realm of vulnerability. 

 

4.2. Multi-hazard methods 

  This section includes a review of some of the most important methodologies addressing Multi-

Hazard Risk Assessments (MHRA) (complemented with Table A.5). 

We started by performing a preliminary literature survey, using the Scopus database (Elsevier, 

2020). Our search was limited to documents including the following terms in their titles, abstract 

or keywords: Query 1- “multi-hazard AND risk”; and Query 2 - “multi-hazard AND risk AND remote 

sensing”. Moreover, and given purpose of this work, we considered excluding entries 

corresponding to those within the fields of “Materials Science”, “Energy”, “Medicine”, “Business, 

Management and Accounting”, “Arts and Humanities”, “Chemistry”, “Chemical Engineering”, 

“Economics, Econometrics and Finance”, “Health Professions”, “Psychology”, “Biochemistry, 

Genetics and Molecular Biology”, “Dentistry” and “Nursing”. This literature survey resulted in 501 

entries for Query 1 and 18 entries for Query 2. In Figure 2.2, we can verify the annual distribution 

of these results, in which those corresponding to Query 1 have been consistently increasing   since 

the early 2000’s, while those referring to Query 2 are much more recent and still very scarce. The 

distribution of results per subject area is shown in Figure 2.3, where Query 1 is distributed by 11 

categories, while Query 2 is limited to only 7 subject areas, with “Earth and Planetary Sciences” 

being the most representative of both. 
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Figure 2.2 – Document distribution by year, according to Scopus (Elsevier, 2020), for: a) Query 1 - “multi-hazard AND 
risk”; b) Query 2 - “multi-hazard AND risk AND remote sensing” (Source: Scopus, Elsevier 2020). 

 

 

a) 

b) 
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Figure 2.3 - Documents by subject area, according to Scopus (Elsevier, 2020), for: a) Query 1 - “multi-hazard AND 
risk”; b) Query 2 - “multi-hazard AND risk AND remote sensing” (Source: Scopus, Elsevier 2020). 

 

Considering the results of the above mentioned literature survey and since MHRA still 

corresponds to an emerging field with few dedicated methods, the following review includes 

examples beyond the context of temperate Mediterranean regions. 

For comparison purposes, special attention was given to the following characteristics:  

1. Model Type: similarly to single-hazard approaches, multi-hazard methods can either 

be determined with physically-based models, data-driven methods applied to 

observed features and events, or a combination of both;  

2. Type of results: typically divided into generic or element-oriented (focusing on certain 

features, e.g., loss of human life, economic losses, or buildings);  

a) 

b) 
Physics and astronomy (7.5%) 

 
Agricultural and Biological 

Sciences (7.5%) 
 

Social Sciences (12.5%) 

Earth and Planetary Sciences 
(32.5%) 

Computer Science (15.0%) 

Environmental Science (15.0%) 

Engineering (10.0%) 

Other (0.1%) 

Physics and astronomy (0.8%) 
Multidisciplinary (0.9%) Multidisciplinary (0.9%) 

Agricultural and Biological 
Sciences (1.9%) 

 

Decision Sciences (1.0%) 
Social Sciences (12.9%) 

Mathematics (2.6%) 

Computer Science (4.4%) 

Social Sciences (12.9%) 

Environmental Science (18.1%) 

Earth and Planetary Sciences 
(31.4%) 

Engineering (25.9%) 



 

32 

 

3. Aggregation: whenever any combined multi-hazard risk index is provided, 

aggregation processing is usually required. The most common include the sum of 

individual hazard exposures and vulnerabilities, or the assignment of weights for each 

individual hazard risk;  

4. Hazard Interactions: some approaches account multiple hazards individually, while 

others address hazard relationships (e.g., parallel, series or independent 

interactions);  

5. Incorporation of RS data. 

 

One of the first references regarding multi-hazard approaches is the composite vulnerability 

analysis presented by UNDRO (1979), which describes some of the terminology and methods to be 

applied in a pilot project within the Metro Manila Area (Philippines). However, the biggest advances 

in MHRA have been conducted after the year 2000. 

The Community Risk approach developed by Granger et al. (1999) is one of the first concrete 

approaches towards multi-hazard risk assessments. It includes a characterization of the elements 

at risk and their relative vulnerability to a group of different hazards. Instead of determining specific 

vulnerabilities for each hazard, an overall community vulnerability rank, based on five themes, is 

determined with a set of demography-based indicators, determined for each suburb. Hazard 

exposures regarding earthquakes, landslides, floods and cyclones (wind and storm tide) were 

determined using probability and process models, fed by a local monitoring system, without any 

direct incorporation of RS methods. These models were later used to establish scenarios according 

to the annual exceedance probability of occurrence. Exposure rankings were based on scenarios 

that match or exceed the threshold values defined by the levels of community acceptance regarding 

each hazard. The total risk of each hazard was established for every suburb according to four 

classes, depending on the suburb rank distribution, regarding their vulnerability and exposure to 

each hazard. In sum, this study represents a collection of normalized single hazard assessments, 

using a common vulnerability index, without any sorts of aggregation. 

The methodology used by the Munich Reinsurance Company (2003) is another example of the 

first multi-hazard approaches, this time aiming for an absolute approach and by considering all 

relevant hazards at once. It was developed for the specific context of megacities, embracing a total 

risk index obtained from three main components: hazard exposure, vulnerability and exposed 

values. The exposure analysis was obtained from extensive historic records to provide average 
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annual losses for earthquakes, windstorms and floods. In addition to allocating average annual 

losses, the study includes a factor for long return periods catastrophes (1000-year-loss), based on 

the World Map of Natural Hazards (Berz et al., 2001) and the analysis of environmental factors. The 

vulnerability component comprises building classifications (hazard related and general) and 

preparedness levels (e.g., existing regulations, planning, or protection measures). Exposed values 

where determined from building material values and a global significance classification about the 

role of the urban area in the individual economic network. Each main component was standardized 

and combined in the total risk index using direct multiplication (equal weighting). 

Other worldwide element-oriented publications include the Disaster Risk Index (UNDP, 2004) and 

the World Bank global multi-hazard analysis (Dilley et al., 2005), both relying on worldwide 

databases to determine the risk to loss of life/economic losses of multiple hazards. 

The HAZUZ-MH, developed by (FEMA, 2004), is included in the category of one-tool software for 

MHRA. By granting access to its own databases, it provides a step-by-set guide to determine 

aggregated loss estimation from floods, hurricanes and earthquakes. The software flexibility allows 

the use of different levels of detail and incorporation of additional data from other sources. It has 

increased customization capabilities, including the evaluation of other hazards, applications outside 

the USA and incorporation of RS data.  

Lavalle et al. (2005) developed a multiple (or integrated) weather-related risk assessment for the 

EU, combining RS data and available institutional databases. Single hazard maps are presented for 

floods (using DEMs and LISFLOOD model), forest fires (using EFFIS database), drought (combining 

LISFLOOD and EFAS framework) and heat waves (using temperature and humidity related 

indicators). The vulnerability components are also presented for each hazard, mostly based on 

general statistics (e.g., GDP per capita, age groups) and land cover. Instead of combining the 

multiple hazards in a unique representation, single risk maps are presented individually, in a non-

exhaustive overview. 

As part of the ESPON Hazards Project, Schmidt-Thomé et al. (2006) collected information of 

several single hazard assessments, including the first integrated hazard and risk overview on 

European territory. The Delphi method is used for multi-hazard weighting and assessment of overall 

risk, which was tested in the Dresden Region (Germany) and Centre Region of Portugal. The Delphi 

method was considered to offer limited and subjective information for inner-regional risk profiles. 
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At a closer scale, Khatsu and Van Westen (2005) implemented an element-oriented methodology, 

focused on urban-building to derive the population at risk, in a rapidly developing city in North-

eastern India. Given the limited availability of existing data, the methodology used to create a multi-

hazard map incorporates RS data, complemented with field mapping and historical data. The study 

is based on a building inventory, used to establish susceptibility categories for landslides (using a 

bivariate statistical method integrating EO field data), urban fires (multi-criteria evaluation) and 

earthquake damage (considering three scenarios of earthquake intensity). The multi-hazard loss 

estimation combines the occurrence of the highest category of each hazard for each building, which 

is later used to estimate the corresponding population at risk according to the different wards. The 

results of this study are presented as independent categories of cumulative hazard occurrence, 

without considering any type of aggregation or hazard interaction.  

Grünthal et al. (2006) presented another methodology for multi-hazard risk assessments at a local 

scale. The study refers to the hazard from windstorms, flooding and earthquakes affecting the city 

of Cologne in Germany, using a common economic assessment for their comparison. The paper 

presents a stepwise methodological framework, including hazard assessment, asset inventory, 

vulnerability assessment, loss estimation and synthesis. Mathematical distribution functions were 

used to extrapolate time series of recorded data (i.e. wind speed, river discharge and seismic 

parameters), which were complemented with additional topographic-cartographic information 

(including a DEM). Official data was used to determine the spatial distribution of economic assets 

per land use. Damage functions were applied to a set of scenarios with different probabilities for 

each hazard to obtain their corresponding loss estimation. The risk curves for the three hazards (i.e. 

annual probability of exceedance vs monetary losses) are plotted together without considering any 

further aggregation or hazard interaction. 

Wipulanusat et al. ( 2009) is an example of a multi-hazard risk assessment using RS methods at a 

regional scale. Individual hazard rankings were determined by weighting and ranking several 

empirical factors associated with floods and droughts. A multi-hazard map was created by 

aggregating the ranks for individual hazards, population density and land use type. Given its simple 

deterministic and empirical approach, this methodology presents several limitations, considering 

its subjectivity, lack of uncertainty analysis and no consideration of hazard interactions (even 

though floods and droughts are not mutually exclusive events). 

Within the scope of the project Regional RiskScape, Schmidt et al., (2011) developed a software 

with a generic framework for modelling risks from different natural hazards and for various 
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elements at risk. A software prototype was tested in urban centres and small communities in New 

Zealand. It contains spatially explicit modules for hazard models, asset datasets and vulnerability 

(fragility functions), which were used to simulate the potential impacts of extreme events. It allows 

calculating damage ratios and losses, and establishing comparisons of each risk profile, without 

including any type of hazard interactions. 

Van Westen (2013) is one of the most significant frameworks for understanding single and multi-

hazard risk assessments, considering GIS and EO products and introducing some of the benefits of 

satellite-based monitoring systems. It provides a conceptual framework model for cause-effect 

relationships between triggering events, primary and secondary hazards. It is suited for multi-

hazard risk studies, which can be an alternative to other models, such as the SPRC or the DPSIR. 

Nevertheless, it fails to distinguish the specific parameters that should be used to characterize each 

variable. It includes an overview of the various forms of available spatial data and their relevance 

for different hazards, including earthquakes, volcanic hazards, drought, windstorms, floods, coastal, 

landslides and wildfire. In addition, it includes another framework about the integration of GIS data 

for multi-hazard assessments, which is organized into eight components (i.e. input data, 

susceptibility, hazard, vulnerability, risk, quantitative/qualitative approaches, and disaster risk 

management). 

 Marzocchi et al. (2012) discuss the principles of multi-risk assessments and describes a general 

procedure, along with a simple real case example. After calculating the ranks for each  individual 

risk (Marzocchi et al., 2009), they consider a long-term scenario triggering events, in which the 

result of a secondary risk has a higher probability than the individual risk by itself. The authors 

recognized the relevance of the event tree structure to analyse hazard interactions, and refer the 

importance of Bayesian methods, which provide a probability density function instead of a single 

value for the probability at each node. In other words, the procedure provides the posterior 

probability distribution that integrates the prior probability distribution (Grezio et al., 2010). The 

method allows weighting and merging of all components, providing estimates of the absolute 

probability of any possible event, with associated aleatory and epistemic uncertainties. 

The work of Mignan et al. (2014) and Liu et al. (2015) are examples of two different theoretical 

frameworks for multi-risk assessment, developed within the MATRIX project. The first one (Mignan 

et al., 2014), is a generic framework based on the Sequential Monte Carlo Method, which considers 

hazard interactions, such as conjoint and cascading events. A set of time series (each representing 

one risk scenario) is generated from sampling events from a Poisson distribution, allowing the 
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probabilistic assessment of losses and recognition of more or less probable risk paths. It accounts 

for time-variant vulnerability and exposure, which consider the evolution of assets value with time, 

due to socioeconomic factors or occurrence of previous losses. The complexity of the method 

depends on the number of considered perils and interactions. Instead, the work of Liu et al. (2015), 

is a three-level method for multi-risk assessment, based on Bayesian networks. It requires a pre-

existing assessment of single hazards (e.g., occurrence rates, intensities, pathways), dynamic 

vulnerabilities (time-variant) and consequences. The first level consists of a decision-making 

flowchart about the necessity of a multi-type assessment approach. The second level addresses 

hazards interactions and dynamic vulnerability using a matrix approach for a semi-quantitative 

assessment. The third level is a quantitative multi-risk assessment model, using Bayesian networks 

to estimate the probability of triggering /cascade events and model the time-variant vulnerability 

of a system exposed to multiple hazards. Both Mignan et al. (2014) and Liu et al. (2015) are 

exemplified using a theoretical application to a virtual city, assuming the same generic database 

which includes typical engineering values. Despite the lack of real-world applications, both methods 

seem to be potential candidates for incorporating RS data.  

Agapiou et al. (2016) offer an alternative method to deal with multi-hazard aggregation. The 

paper includes an assessment of the risk of natural and anthropogenic hazards for cultural heritage 

in Cyprus, based on satellite imagery and GIS (developed throughout previous studies in the area). 

It starts by clustering monuments according to spatial constraint factors (i.e. elevation, tectonic 

activity, salinity, road network proximity, vicinity of urban areas, soil erosion and fire occurrence), 

resulting in five homogenous classes. The AHP is applied for each group, assigning different weights 

for each standardized factor (except for elevation). The overall risk hazard and corresponding map 

were obtained by summing all weighted factors for each class. Despite the simplicity of this 

approach, the use of clustering combined with AHP constitutes a more objective alternative 

compared to other methods (e.g., empirical, Delphi method). Unfortunately, it does not 

discriminate information about the types of hazard interactions and is unable of addressing data 

uncertainty. 

Liu et al. (2016a) explore the conceptual relationship behind multi-hazard interactions, including 

a general analysis of the hazard-forming environments. Stable factors are used to identify which 

kinds of natural hazards influence a given area and to calculate susceptibility. Trigger factors are 

used to calculate the probability and magnitude, according to a systematic classification of hazards 

interactions (including independent, mutually exclusive, parallel and series relationships). The 
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paper describes a simple case study analysis focused on typhoon, flood and landslides in China’s 

Yangtze River Delta. A basic framework of multi-hazard risk assessment for two consecutive 

typhoons is also presented. 

In Liu et al. (2016b) a Bayesian Network (BN) method was used to develop the MmhRisk-HI, a 

quantitative model, approaching hazard interactions which is applied in a Chinese region. The 

model is divided into two main components: 1) Calculation of exceedance probability of multiple 

hazards occurring together, focusing on triggering factors relationships; and 2) Calculation of 

possible loss, including an exposure analysis and loss ratio assessment. The exposure analysis 

determines the spatial distribution of exposed elements, incorporating environmental data (daily 

meteorological records), disaster data (type, time and place) and socioeconomic data (general city 

statistics). The loss ratio assessment is calculated from a BN structure, which is used to select 

vulnerability-related indicators (independent variables) and hazard related indicators (trigger 

factors with different relationships). The multi-hazard risk assessment can be later integrated in a 

GIS environment to map possible loss caused with different exceedance probabilities. The case 

study addresses the most common multi-hazard scenario in the region, which is to be affected by 

two consecutive typhoons. This scenario is treated has a multi-hazard group, with corresponding 

hazard and vulnerability indicators. The model is almost entirely constructed on statistical data, and 

RS data is briefly referred to determine the spatial distribution of elements at risk. 

In another publication, Liu et al. (2016c) compare two types of approaches in MHRA: the risk 

index, and the mathematical-statistical (i.e., data-driven) method. Both were applied to China’s 

provinces, using simplified methods. The compared analysis resulted in significant inconsistencies 

but highlighted some of each relative merits. 

Harb and Acqua (2017) discuss about the relevancy of RS technologies to analyse the components 

of multi-risk assessments and during different phases of the disaster management cycle. They 

highlight the benefits of both SHRA and MHRA approaches, concluding that they should not to be 

considered as alternatives to each other. Multi-hazard maps may not have the same level of detail 

of single-risk maps, but can address aggregation and integration of hazard dependencies, which 

may result in more generic and flexible products. Instead, SHRA are described to benefit from a 

unified risk metrics and reduced ambiguity when establishing common units of hazard intensity and 

vulnerability. 
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5. Conclusions 

This chapter highlights the lack of publications with explicit incorporation of Remote Sensing (RS) 

data in both single and Multi-Hazard Risk Assessments (MHRA). As MHRA are still part of a relatively 

new field, there is a lack of agreement about the best way of dealing with aggregation, weighting 

and interactions between the multiple hazards. This is in part a consequence of the complexity in 

handling temporal and spatial scales of different hazard types, and their potential interactions. 

Besides, multi-hazard approaches often encompass a wide variety of scientific domains, with 

different terminologies and ways of cataloguing data and methods, which represents an added 

challenge. 

Several publications highlight the benefits of using conceptual frameworks for risk assessment 

purposes. However, for MHRA, the simple task of assigning interactions is subjective because 

different elements may be classified differently depending on the type of hazard. Still, there are 

stepwise frameworks (e.g., FEMA, 2004; Liu et al., 2016b; Marzocchi et al., 2012; Schmidt et al., 

2011; Van Westen, 2013) which can be useful in MHRA. Most, highlight the importance of defining 

the timeframe, study area, or scale of application, which should be amongst the first considerations 

of any methodological selection. The choice of methods should favour the simplicity and capability 

of providing the required information. 

The lack of consistent historic records of disaster events is a limitation for determining hazard 

exceedance probabilities. Considering the lifetime of the satellite EO era, which has been gradually 

growing in number and sophistication, there is a collection of over 40 years of data, which is 

currently available throughout several databases. Given the current investments and plans to 

launch further missions, multiple science fields should expect a growth in RS data incorporation. 

Weather-related hazard assessments should be no exception.  

Several studies highlight the importance of determining RS uncertainties and the awareness of 

incorporating such data, which may be affected by artefacts, errors, and questionable accuracy. 

Nevertheless, given the high costs of implementation and maintenance of exhaustive field 

monitoring campaigns and surveys, free RS data is already a valuable source of information, 

particularly from regional-to-global scales. Such top-down approaches contribute to overview and 

identify potential risk areas in need of more detailed local studies (Kappes et al., 2010). 
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The ultimate challenge of hazard assessments concerns the representation of results to increase 

the acknowledgment levels of visualization for decision-making purposes, including land-use 

planning and disaster risk management. 
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Chapter 3: 
MULTI-INDEX IMAGE DIFFERENCING METHOD 
(MINDED) FOR FLOOD EXTENT ESTIMATIONS 

Abstract: Satellite remote sensing data are often used to extract water surfaces related to 

extreme events like floods. This study presents the Multi-INDEx Differencing (MINDED) method, 

an innovative procedure to estimate flood extents, aiming at improving the robustness of single 

water-related indices and threshold-based approaches. MINDED consists of a change detection 

approach integrating specific sensitivities of several indices. Moreover, the method also allows 

quantifying the uncertainty of the Overall flood map, based on both the agreement level of the 

stack of classifications and the weight of every index obtained from the literature. Assuming the 

lack of ground truths to be the most common condition in flood mapping, MINDED also 

integrates a procedure to reduce the subjectivity of thresholds extraction focused on the 

analysis of water-related indices frequency distribution. The results of the MINDED application 

to a case study using Landsat images are compared with an alternative change detection method 

using Sentinel-1A data, and demonstrate consistency with local fluvial flood records. 

Keywords: remote sensing; optical satellites; Landsat; change detection; flood mapping; 

Portugal 

 

1. Introduction 

Floods are amongst the most important weather-driven hazards, being capable of inducing 

considerable damage, including economic losses, and threatening of human lives (EEA, 2010). 

The effects of floods are dependent on several factors, including flow velocity and depth. Even 

standing water can produce damage, depending on the persistence time and land cover affected 

(e.g., damages to crops). Floods may result from heavy or persistent rainfall, flooding by water 

bodies, water tables rising, snowmelt, or they may originate from artificial sources (Liu, 2016). 

Mapping flood extent is, thus, important for several scientific (e.g., better understating of 
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hydrological and, more generally, earth system science processes) and operational (e.g., 

emergency management; risk and damage assessment, insurance claims) applications. 

Flood hazard modelling chains usually start with hydrologic modelling to obtain hydrographs 

for assigned return periods (e.g., the 100-year flow), which are consequently incorporated into 

hydraulic flow propagation models to estimate water surface elevations and corresponding 

inundation areas (Allen and Pavelsky, 2018; Nardi et al., 2019; Pekel et al., 2016). Therefore, 

knowing the extent of flood events is one of the main requirements of the whole modelling 

process. The use of remote sensing methods to extract water bodies from optical and microwave 

satellite data has been widely studied; the same principles generally apply for mapping flooded 

areas. Multispectral optical data may be used to identify distinctive spectral signatures of water 

features. Surface water is characterized by relatively higher reflectance values (ca. 0.1 or lower) 

in the visible region of the electromagnetic spectrum, with peaks occurring in the blue-green 

range, with respect to red and near-short (NIR-SWIR) wave infrared (Campbell and Wynne, 2011; 

Lillesand et al., 2015; McFeeters, 1996; Xie et al., 2016). However, such responses tend to vary 

in the visible and NIR regions, depending on the water column depth, turbidity, dissolved organic 

compounds and eutrophication (Gómez-Palacios et al., 2016; Richards, 2013). In the SWIR part 

of the spectrum, the absorption is very high (i.e., effectively black) independently of the water 

column characteristics. Moreover, this spectral interval shows better aerosol penetration 

capability, these conditions being particularly useful for implementing atmospheric correction 

methods for coastal and inland water-related studies (Shi and Wang, 2007; Stark et al., 2015; 

Vanhellemont and Ruddick, 2015). Nevertheless, a strong limitation of optical sensors is their 

dependence on both sunlight and cloud conditions, which may reduce the possibility to acquire 

data during a flood event. However, the increasing availability of free moderate spatial 

resolution optical data (e.g., Landsat series and Sentinel 2 constellations) augments the number 

of possible acquisitions related to a given event under favourable weather conditions. Indeed, 

there are several operational remote sensing flood detection tools and services based on optical 

satellites (e.g., Brakenridge et al., 2017; Dao and Liou, 2015; Kugler et al., 2007; Revilla-Romero 

et al., 2015). 

Concerning microwave data, due to their almost all-weather, day and night imaging 

capabilities, active synthetic aperture radar (SAR) sensors (e.g., Cosmo SkyMed-CSK, Terra SAR-

X, Sentinel 1 constellations) are the most employed tool for water extraction and mapping of 

flooded areas (e.g., Ding et al., 2015; Oberstadler and Ho, 1997; Smith, 1997; Wang et al., 2017; 

Yesou et al., 2007), as well as for operational purposes (e.g., Bates et al., 2006; Boni et al., 2016; 

Martinis et al., 2015; Pulvirenti et al., 2014, 2011). In SAR images, flooded areas can be easily 
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detected because their backscattering signal intensity is significantly lower compared to other 

surface features (e.g., non-flooded areas) imaged by the sensors. While smooth water surfaces 

reflect the incident radar signal with a specular scattering mechanism, non-flooded areas scatter 

the radar signal in multiple directions (Chini et al., 2017; Ulaby and Dobson, 1989). However, as 

discussed in Matgen et al. (2011), SAR applications suffer from several limitations. The 

delineation of flood areas can be complicated in transient shallow water areas, which produce 

gradual signal variation between flooded and non-flooded areas. Both wind and precipitation 

may cause the roughening of water surfaces, producing pulse returns, which make difficult to 

delineate flooded areas correctly. Furthermore, the accurate extraction of flooded areas in 

urban environments can be affected by double bounce reflection of buildings. Moreover, it has 

been shown that X-band instruments (e.g., CSK and Terra SAR-X) can fail in discriminating 

flooded areas from the microwave radar signature of rain because of the attenuation of the 

radar signal by heavy precipitation events (Pulvirenti et al., 2014). Surface 

absorption/attenuation due to snow or very dry sand surfaces can also produce low backscatter 

values (i.e., dark areas) that can be erroneously classified as flooded areas, thus generating false 

alarms (Pulvirenti et al., 2014; Schlaffer et al., 2015). Finally, also data processing of shadowing 

effects in areas characterized by complex topography may result in the occurrence of low 

backscatter values. In addition to all of this, SAR images are affected by speckle noise that 

complicates their interpretation, due to the coherent nature of the signal, if compared with 

optical images of the same target (Chini et al., 2017). 

The main objective of this study is to improve the estimation of flood extent by means of a 

satellite remote sensing method, integrating several water-related indices in a change detection 

method. The method, hereinafter referred as Multi INDEx Differencing (MINDED), was 

developed to be applied to multispectral satellite data acquired from different optical sensors, 

characterized by the presence of VIS, NIR SWIR bands, including the freely available entire 

Landsat series, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

and Sentinel-2. In order to reach as many users as possible, the procedure has been 

implemented through open-source software. MINDED was applied to a study area in North-

western Portugal, and the results were compared with flooding maps obtained by the 

Hierarchical Split-Based Approach (HSBA) (Boni et al., 2016), a flood detection algorithm 

provided by the GPOD HASARD Sentinel-1 service. 
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1.1. Flood Extent Estimation Methods Based on Remote Sensing Imagery  

The definition of flood, e.g., “temporary covering by water of land not normally covered by 

water” (EU, 2007), conceptually implies the occurrence of a certain type of change over time. 

Digital change detection techniques based on remote sensing imagery are capable of providing 

both long-term and short-term solutions (Coppin et al., 2004; Disperati and Virdis, 2015). Long-

term change detection approaches consist of temporal trajectory analysis (also referred as 

trends), using long series of observation data, which can be used to detect subtle anomalies in 

annual variability of climatic variables, such as those resulting from climate change (Cenci et al., 

2017b). However, that is not the case of floods, which can happen within a few days or hours. 

Bi-temporal change detection analysis includes several methods capable of dealing with such 

short-term phenomena (Coppin et al., 2004; Ji et al., 2009; Li et al., 2016; Lu et al., 2004b) (as 

summarized in Table 3.1). 

Table 3.1 - Advantages and disadvantages of bi-temporal change detection methods. 

 

Univariate image differencing is the most widely applied bi-temporal approach. It consists of 

subtracting spectral or transformed data (e.g., using water-related indices), producing positive 

and negative values, depending on the type of change (Coppin et al., 2004). In theoretical and 

ideal conditions, no-change areas should result in zero values; however, in real conditions, this 

is not the case as an effect of spatial and spectral co-registration errors, as well as natural time-

Method Advantages Disadvantages 

Post classification 
comparisons 

Wide application (Coppin et al., 2004). 
Implemented by processing either single or 

multiple bands (including spectral 
relationships) (Coppin et al., 2004). 

Not ideal for analysing the process of flooding and 
post-flooding events, due to the spatially continuous 

variation of soil wetness (Ji et al., 2009). 

Multi-temporal 
spectral unmixing 

Makes it possible to determine the water 
proportion changes in every pixel (flood 

detection) (Coppin et al., 2004). 

More complex and less straightforward for mapping 
purposes (compared to other hard classification 

techniques). 
Difficulty in defining classes of change. 

Requires a priori information about the study area 
and end-members (Li et al., 2016). 

Data 
transformation 

Transformations are capable of sorting 
modifications of state according to different 
orders (including those resulting from water-

related conditions) (Lu et al., 2004b). 

Finding the meaning for each order of change is often 
a complex task and requires a deep knowledge of the 

study area (scene-dependent) (Lu et al., 2004b). 

Change vector Multivariate technique, capable of 
simultaneously incorporating multiple layers. 
Great potential to recognize and analyse the 
amount and type of changes (Coppin et al., 

2004). 

Selection of different thresholds is in practice very 
complex (Coppin et al., 2004). 

Image ratioing Pixel-by-pixel based analysis of either two-date 
images or image transformations (Coppin et 

al., 2004; Singh, 1989). 

The non-normal distribution of results has been 
criticized for being statistically invalid, preventing the 

computation of thresholds based on standard 
deviation functions (Coppin et al., 2004; Singh, 1989) 

Univariate image 
differencing  

Wide application (Coppin et al., 2004). 
Despite its simplicity, it can achieve better 
performances compared to other methods 

(Singh, 1989). 

Unable to directly specify the type of change (Singh, 
1989). 
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dependent changes. One or more thresholds may be required to define two or more classes of 

change (density-slicing), which may provide hints about amounts and types of change (Singh, 

1989). 

Both optical and SAR data can be used to detect floods using bi-temporal change detection 

methods, which consist of comparing images acquired before and after a certain event. In 

principle, the images pre-dating the event should be the most recent from the available dataset, 

while the post-event the oldest. Regarding the pre-event images, a wide period between 

acquisition and the event will also imply natural changes resulting from phenological cycles as 

well as seasonal water body variations (Gómez-Palacios et al., 2016). As for the post-event 

images, the corresponding time span should be as short as possible in order to record the most 

accurate picture of the flooded area. However, it can be difficult to obtain optical satellite 

imagery approximately coeval to flood occurrence, since hydro-meteorological events are 

typically associated with clouds and long periods of adverse weather conditions. Concerning SAR 

data instead, when applying change detection methods, particular attention must be paid for 

taking into account all the differences between the image changes occurred to the image’s 

targets (e.g., a comparison between images acquired by the same sensor but with different 

orbit/geometry of acquisitions). 

 

1.1.1.Optical Water-Related Indices 

Many optical Water-related Indices (WrI) have been defined and applied in the literature to 

detect surface water from remote sensing imagery. This section introduces those most 

commonly found in flood-related literature. 

The Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1973), is obtained with 

spectral bands corresponding to Red and NIR regions. Without being specific for water detection 

purposes, it has a theoretical threshold of zero, being the negative values generally associated 

with water occurrence. 

The Normalized Difference Water Index (NDWI) (McFeeters, 1996) is one of the first specific 

indices to detect water, considering Green and NIR bands in a similar structure to the NDVI. The 

NDWI includes the same theoretical threshold of zero, but with positive values being interpreted 

as water. The Modified Normalized Difference Water Index (MNDWI) was proposed by Xu 

(2006), as an alternative to the NDWI, using SWIR (e.g., band 5 of Landsat TM) instead of the NIR 
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band. The MNDWI has become one of the most popular water detection indices (Zhai et al., 

2015). 

The Automated Water Extraction Index (AWEI) (Feyisa et al., 2014) was conceived for sensors 

covering the visible to SWIR electromagnetic spectrum range and consists of multiple 

subtractions and additions of bands through several empirically based coefficients, developed 

to maximize the separability between water and non-water pixels. It was developed to improve 

classification accuracy in areas including shadow and dark surfaces, where most other indices 

tend to fail. It includes two versions: the ‘AWEI no shadow’ (AWEI_NS) for situations where 

shadows are not major problems and the ‘AWEI shadow’ (AWEI_S) intended to effectively 

eliminate shadows or other dark surfaces (Zhai et al., 2015). Both versions were developed for 

a theoretical imposed threshold of zero, with water pixels corresponding to positive values. 

Nevertheless, as with other indices, in practice, the optimal threshold is usually scene-

dependent. 

The Tasseled Cap method was first developed by (Kauth and Thomas, 1976) for Landsat MSS 

sensor and then applied to Landsat TM (Crist and Cicone, 1984). It consists of a multispectral 

sensor-based transformation, which makes it possible to obtain new outputs such as Brightness, 

Greenness, and Wetness. Tasseled Cap Wetness (TCW) (Crist, 1985) can be used to identify 

water, using a theoretical value of zero to separate water (positive values) from non-water pixels 

(Fisher et al., 2016). TCW is usually obtained with sensor-specific coefficients applied to either 

Top of Atmosphere (TOA) (e.g., Baig et al., 2014; Huang et al., 2002) or ground reflectance 

(Devries et al., 2016). 

Table 3.2 summarizes the main advantages and disadvantages of each of the previous WrI as 

resulting from the literature. Despite the overall advantages, there are additional challenges for 

flood detection purposes. Suitability and accuracies of each index are affected by local 

conditions, which, depending on the study area heterogeneity, may vary within short distances 

(e.g., land cover type, topography, atmospheric conditions). 
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Table 3.2 - Advantages and disadvantages of optical Water-related Indices (WrI). 

Table 3.3 - Examples of Tasseled Cap Wetness (TCW) coefficients for different optical satellite sensors. 

 

Regardless of the method chosen, mixed pixels are a common problem affecting remote 

sensing applications, particularly those resulting from moderate spatial resolution (e.g., 30 m) 

WrI Name Advantages Disadvantages Equation 

NDVI (Rouse et 
al., 1973) 

Improved detection capacity with 
mixed water and vegetation (Fang-

fang et al., 2011)  

Less suited for water detection (Ji et al., 
2009; McFeeters, 1996) 

NDVI = (NIR − RED) / 
(NIR + RED) 

NDWI 
(McFeeters, 

1996) 

Good performance in mountain 
shadow areas (Gao et al., 2016) 

Good overall accuracy (Rokni et al., 
2014; Zhou et al., 2017) 

Good performance in large urban 
areas with cloud-free conditions 

(Fisher et al., 2016) 

Weaker abilities to extract water bodies 
(Gao et al., 2016) 

Sensitive to built-up land signals, which 
often results in an overestimation of 

water bodies (Zhou et al., 2017) 

MNDWI = (GREEN – 
SWIR1) / (GREEN + 

SWIR1) 

MNDWI (Xu, 
2006) 

The capacity of removing 
interferences of built-up feature 

signals (Rokni et al., 2014; Zhou et 
al., 2017) 

Better suited for open water 
mapping (Zhou et al., 2017) 

High variability of optimal thresholds 
(Zhou et al., 2017) 

Unable to remove certain shadow 
noises effectively (Zhou et al., 2017) 

NDWI = (GREEN − NIR) 
/ (GREEN + NIR) 

 

AWEI (Feyisa et 
al., 2014) 

Good performance in large urban 
areas (Fisher et al., 2016) 

Difficulty in finding optimal thresholds 
(Li et al., 2016) 

Unable of totally removing mountain 
shadows (Li et al., 2016) 

May misclassify high albedo surfaces 
(Feyisa et al., 2014; Zhai et al., 2015; 

Zhou et al., 2017)  

AWEI_NS = 4 × (GREEN 
− SWIR1) − (0.25 × NIR 

+ 2.75 × SWIR1) 

TCW (Crist, 
1985) 

Good ability to extract water bodies 
(Gao et al., 2016) 

Fails to suppress mountain shadow (Gao 
et al., 2016) 

TCW = aB1 + bB2 + …. + 
iBj * 

* Sensor dependent (examples given in Table 3.3). 

 
 

Sensor Data TCW Coefficients Reference 

Landsat 4 TM; 
Landsat 5 TM 

Reflectance 
Factor 

0.0315 B1 + 0.2021 B2 + 0.3102 B3 + 0.1594 B4 + 0.6806 B5 − 0.6109 
B7 

(Crist, 1985) 

Landsat 7 ETM+ At-satellite 
reflectance 

0.2626 B1 + 0.2141 B2 + 0.0926 B3 + 0.0656B4 − 0.7629 B5 − 0.5388 
B7 

(Huang et al., 
2002) 

ASTER At-satellite 
reflectance 

0.166 B1 − 0.087 B2 − 0.703 B3 + 0.187B4 + 0.040 B5 + 0.500 B6 − 
0.287 B7 + 0.030 B8 − 0.318 B9 

(Yarbrough et 
al., 2005) 

SPOT-5 At-satellite 
reflectance 

0.397 B1 + 0.260 B2 + 0.118 B3 − 0.872 B4 (Ivits et al., 
2008) 

Landsat 8 OLI At-satellite 
reflectance 

0.1511 B2 + 0.1973 B3 + 0.3283 B4 + 0.3407 B5 − 0.7117 B6 − 0.4559 
B7 

(Baig et al., 
2014) 

Sentinel-2 At-satellite 
reflectance 

0.0649 B1 + 0.1363 B2 + 0.2802 B3 + 0.3072 B4 + 0.5288 B5 + 0.1379 
B6 − 0.0001 B7 − 0.0807 B8 − 0.0302 B9 + 0.0003 B10 − 0.4064 B11 − 

0.5602 B12 − 0.1389 B8A 

(Nedkov, 2017) 
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satellite images (Feng et al., 2015). As referred by Fisher et al. (2016), another limitation of water 

classification methods concerning the handling of the variability of reflectance spectra which 

changes according to water properties (e.g., concentrations of phytoplankton and sediments, 

depth, or substratum type). Another difficulty relates to the discrimination between shadows 

cast and clouds, and the steep topography, quarries and tall buildings, which may produce 

signals similar to those of water. In the case of flood analysis, the presence of clouds and cloud 

shadows are very common, and one of the first steps should be masking such features (e.g., 

Memon et al., 2015; Xiao et al., 2014). 

For reproducibility reasons, when analysing different epochs and locations, the simplest 

approach would be to use single global thresholds for each WrI. Finding an optimal scene-

dependent threshold may provide better accuracy, even though this can be a difficult task due 

to high temporal and spatial variability (Ji et al., 2009). 

 

1.1.2.Flood-Related Synthetic Aperture Radar Applications  

According to Chini et al. (2017), the use of a simple global threshold is the most frequent 

approach in flood delineation from SAR imagery. Although this approach can be easily 

implemented, and thus, is particularly suitable for operational applications related to flood risk 

emergency management, the criteria used for defining the threshold value affect drastically 

flood mapping results (Chini et al., 2017). Such approaches for image thresholding can be based 

on the visual inspection of the grey-scale frequency histogram (Bartsch et al., 2008; Brivio et al., 

2002; Smith et al., 1996, 1995), or automatic algorithms (e.g., Hess et al., 1994; Otsu, 1979). 

Given the recently increased availability of SAR images, in the last years, several thresholding 

methods for flood detection have been developed (Boni et al., 2016; Chini et al., 2017; Giustarini 

et al., 2013; Martinis et al., 2015b, 2009). These methods exploit the characteristics of SAR 

systems to produce image histograms which are characterized by a bimodal distribution 

(representative of the classes flooded/non-flooded) that can be used to define an optimal 

threshold for detecting inundated areas (Boni et al., 2016; Chini et al., 2017; Giustarini et al., 

2013; Martinis et al., 2015a; Pulvirenti et al., 2014). Such rational can be applied both to a 

multitemporal dataset (change detection methods), or to a single-event image. In the first case, 

the flood mapping algorithm can be represented as a binary classification problem in which the 

“change” class (i.e., the flooded area) must be resolved from the “no change” class (which 

represents the “background” dominant class of the image) (Chini et al., 2017). In the second 

case, instead, the water/flooded pixels correspond to the darker areas of the image that must 
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be discriminated from the other (surrounding) land cover classes which are characterized by 

higher backscattering values (Cenci et al., 2017a). 

 

2. Proposed Method 

2.1. MINDED: the Multi-INDEx Differencing approach 

The Multi-INDEx Differencing (MINDED) method for flood areas detection, illustrated in Figure 

3.1, combines several WrI in a change detection approach, as an alternative to the single WrI 

analysis commonly found in the literature. This method has the objective of integrating the 

strengths of each index and considers the agreement level among outputs obtained by different 

indices as an indicator of overall uncertainty. The structure of MINDED is demonstrated using 

six of the most common WrI found in the literature. Nevertheless, the same theoretical 

principles of the method should apply if other indices are to be considered. 

In order to define the study area and the imagery dataset to process, as a preliminary step, we 

assume that a certain area could have experienced a flooding event within a certain period. If 

historical flood records are not available, other indirect data sources may be considered (e.g., 

precipitation measurements, river water levels, local news). 

For flooded areas, WrI variation occurs between the epochs t1 and t2 (respectively prior and 

after the given flood event). For a change detection method based on image differencing, no-

change areas (Nc) are theoretically represented by the digital value zero. Assuming the time 

span (t2 − t1) is reasonably short, in principle, Nc should be the majority of the pixel image 

distribution, corresponding to the modal value of the frequency distribution. In contrast, digital 

values different to zero represent change areas, and they tend to be located toward both tails 

of the frequency distribution. When WrI differencing (∆WrI) is used, we expect to locate flooded 

areas changes in only one of the tails, either positive (e.g., ∆NDWI, ∆MNDWI, ∆TCW, ∆AWEI), or 

negative (e.g., ∆NDVI) (Figure 3.2). The higher the distance from the modal ∆WrI value, the 

higher the magnitude of change, until a complete change of state from dry to flooded surface. 

If only such kind of flood changes occur, this results in an ideal bi-modal distribution of the 

function (f) where the discrimination between Nc and flooded areas is unambiguous 

(thresholding interval-Figure 3.2a). In practice, different flooding conditions (water thickness 

and suspended materials, water surface roughness), as well as different initial conditions (land 

cover, substrate properties, surface roughness and wetness, and their spatial distribution in 

respect to pixel size), imply a continuous distribution of ∆WrI values beyond Nc (Figure 3.2b). 



 

62 

 

Moreover, when analysing the frequency distribution, one should also take into account the 

effect of the spatial-spectral misregistration between t1 and t2 imagery, changes resulting from 

phenomena other than flooding, and finally the effective sensitivity of WrI to detect surface 

water. The main consequence of these conditions is that the real distribution of Nc is 

represented by a bell-shaped range of ∆WrI values located around zero (Figure 3.2c, Figure 

3.2d). 

 

Figure 3.1 - The Multi-INDEx Differencing (MINDED) method workflow. 
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Given the above considerations and the fact that image differencing prevents discriminating 

among the types of change, but only change signal and intensity, we assume to classify flooded 

areas into the categories Low-Magnitude change (LMc) and High-Magnitude change (HMc) as a 

function of the ∆WrI value (Figure 3.2b–d). This assumption requires the definition of two 

thresholds, between Nc-LMc (TL) and LMc-HMc (TH), which are then used to apply density slicing 

(Campbell and Wynne, 2011; Singh, 1989) to the multitemporal imagery. These thresholds 

should be ideally defined with analysis of ground truth data. If such information is not available, 

thresholds may be obtained by only analysing the frequency distribution of data. The latter 

approach is a key point of MINDED, allowing us to perform semi-automatic remote sensing 

procedures to extract flooded area extent from satellite imagery. We assume that these 

thresholds correspond to a sudden variation of ∆WrI frequency, which is a consequence of the 

effects that the appearance of water-related conditions may induce on sets of pixels. The 

variation may be more (Figure 3.2c) or less (Figure 3.2d) pronounced depending on the 

occurrence of change-related secondary modal values. In the first case, the first order derivative 

of the function (df) is a useful tool to define the thresholds, which are assumed to be located 

where the change of signs of df occurs. In other cases (Figure 3.2d), df continuously approaches 

zero without reaching it. Therefore, we chose as a threshold the ∆WrI value where the second 

order derivative function (d2f) reaches a local maximum, corresponding to a sudden variation 

of both f and df. In this approach, we assumed that this option would ensure the reproducibility 

of the method while reducing its subjectivity. In practice, for a given scene differencing, the 

distribution of ∆WrI may follow both the conditions of Figure 3.2c,d around either TL or TH. 
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Figure 3.2 - Density slicing classification (Nc—No change; LMc—Low-Magnitude change; HMc—High-Magnitude 
change) and threshold selections (TL—threshold between Nc-LMc; TH—threshold between LMc-HMc) for different 

types of frequency (f) distribution histograms of ∆WrI: (a) Ideal perfect distribution: no misregistration effects, 
perfect separation between Nc and change areas; (b) Ideal distribution: no misregistration effects, gradual transition 

from Nc to change; (c) Real distribution 1: misregistration effects, gradual well separated transition from Nc to 
change, and corresponding first (df) and second order (d2f) derivatives; (d) Real distribution 2: misregistration 

effects, gradual change from Nc to change, and corresponding first and second order derivatives. 
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Without ground truth information, the interpretation of HMc may be nonetheless considered 

obvious, because it should represent a complete change of state from dry land to water surface. 

However, the same does not apply to LMc, which may be expected to represent pixels changing 

from dry to wet/saturated surfaces, as well as wet/saturated to water surfaces. Moreover, 

depending on the duration of the time span (t2 − t1), LMc may also correspond to those flooded 

areas that underwent drying/drainage processes after the flooding event. This is particularly 

interesting for those situations whenever it is impossible to obtain cloud-free satellite images 

immediately after a flood event. Finally, Nc areas are expected to include permanent water 

bodies, continuously wet/saturated surfaces, as well as any other kind of permanently dry 

surfaces. 

WrI are determined for t1 and t2 using the corresponding spectral bands (Table 3.2). As for 

TCW the equation and parameters of transformation are sensor-dependent (examples are given 

inTable 3.3). 

After calculating ∆WrI, we perform density slicing based on TL and TH, to obtain a stack of six 

coeval thematic change maps. These maps represent changes caused by flooding according to 

each WrI specific sensitivity. The stack is then analysed to extract two outputs, the Overall flood 

map and the Uncertainty map. 

The Overall flood map integrates the information from each WrI and is obtained by picking the 

absolute majority among the frequency of the change classes Nc, LMc, HMc (at least four 

consistent classifications over six). If an absolute majority does not occur, pixels are classified as 

‘Mixed’.  

The Uncertainty map is obtained by Equation (1) which integrates pixel statistics of change 

classes within the stack, together with WrI specific average a priori accuracies (AccWrI) obtained 

from literature values (Table 3.4), 

𝜌𝑖 =∑𝐴𝑐𝑐𝑊𝑟𝐼 −𝑚𝑎𝑥

{
 
 

 
 ∑ 𝐴𝑐𝑐𝑊𝑟𝐼

𝑊𝑟𝐼=Nc

∑ 𝐴𝑐𝑐𝑊𝑟𝐼
𝑊𝑟𝐼=LMc

∑ 𝐴𝑐𝑐𝑊𝑟𝐼
𝑊𝑟𝐼=HMc

  , (1) 

where i is a given pixel and ρi its uncertainty of change classification. This implies that the 

parameter AccWrI is a weighting factor for change classification statistics (count), while ∑AccWrI is 

the limiting value for the definition of the uncertainty scale range. The expected range of ρi is 0 

- ≈ 3.8, where ρi = 0 represents the lowest uncertainty corresponding to six each other coherent 
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change classes. This approach also handles pixel statistical ties, by choosing the combination of 

indices that provides the highest cumulative AccWrI. 

Table 3.4 - Average a priori WrI accuracies for water detection, obtained from the literature, in percentage 
(Sources: Fisher et al., 2016; Rokni et al., 2014; Zhai et al., 2015; Zhou et al., 2017).  

 

2.2. Pre-Processing Considerations  

As with any change-detection methods, geometrically corrected surface reflectance data 

should be used as inputs to implement the MINDED method correctly. When these products are 

not available, additional pre-processing steps are required, i.e., geometric co-registration and 

radiometric calibrations (Campbell and Wynne, 2011; Schowengerdt, 2007). 

In principle, the implementation of MINDED should be applied to cloud-free areas, while 

minimizing the time span (t2 − t1), in order to reduce the influence of other changes than those 

caused by flooding (e.g., phenological cycles, land cover modifications) (Coppin et al., 2004). This 

is made by choosing the newest image pre-dating and the oldest post-dating the flood event. In 

practice, a trade-off between time span duration and cloud coverage has to be applied. 

Regardless, considering the characteristics of optical satellite imagery and the sensitivity of 

water detection indices, before implementing MINDED, pre-processing is necessary to extract a 

global mask including clouds, cloud shadows, and topographic shadows. Both cloud and 

topographic shadows are dark areas with very low reflectance values in the same bands, where 

the water spectral signature is also characterized by low values (Hughes and Hayes, 2014; 

Schowengerdt, 2007; Zhu and Woodcock, 2012). For this reason, most WrI are susceptible to 

collect such features as water, and it is necessary to mask such pixels. 

Regarding clouds and cloud shadows, several options can be applied. Whenever available, 

sensors providing products containing cloud cover and shadow cover data can be used directly 

to perform masking (e.g., Landsat 4-7 and 8 Level-2, or Sentinel-2 Level-1C). Otherwise, sensor 

specific procedures may be used, particularly single-epoch-based methods (e.g., Braaten et al., 

2015; Fisher, 2014; Hughes and Hayes, 2014; Hulley and Hook, 2008; Irish et al., 2006; 

Index 

Literature Accuracies 
Average  A Priori 
Accuracy (AccWrI) (Zhai et al., 2015) 

(Fisher et al., 
2016) 

(Zhou et al., 2017) 
(Rokni et al., 

2014) 

NDWI 0.938 0.946 0.950 0.995 0.957 
MNDWI 0.968 0.967 0.934 0.920 0.947 

NDVI 0.933 - - 0.990 0.961 
TCW - 0.966 0.918 - 0.942 

AWEI_NS 0.967 0.975 0.941 0.953 0.959 
AWEI_S 0.967 0.984 0.943 0.953 0.962 

    ∑𝐴𝑐𝑐𝑊𝑟𝐼  5.728 
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Scaramuzza et al., 2012; Zhu and Woodcock, 2012), which may be applied to pre-process both 

t1 and t2 images before implementing MINDED. 

Topographic shadows can be deduced from sun elevation and azimuth parameters that are 

usually included in satellite products metadata. In order to perform topographic shadows 

masking, these parameters are integrated with a Digital Elevation Model (DEM), e.g., the Shuttle 

Radar Topography Mission (SRTM) Version 3.0 1-arc-sec DEM (NASA, 2015), the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM (NASA, 2004), the 

ALOS World 3D (AW3D30) Global DEM (JAXA, 2015), or the Multi-Error-Removed Improved-

Terrain DEM (MERIT) (Yamazaki et al., 2017). 

 

3. Study Area: The Aveiro Region (Portugal)  

The Aveiro Region was chosen due to its context of recurrent floods and non-complex 

topography, presenting a favourable context for remote sensing-based flood detection. It is 

located on the north-western part of continental Portugal (Figure 3.3), being part of the 

Mediterranean Biogeographical region, nearby the border with the Atlantic zone. It is 

characterized by a temperate Mediterranean climate under maritime influence (EEA, 2010). 

The study area includes the 11 municipalities of the Baixo Vouga Sub region (NUTS III), 

corresponding to the lower section of the Vouga River Watershed. This river is the main fluvial 

course draining into the Aveiro Lagoon, a shallow coastal lagoon, with a length of 45 km (N-S 

direction) and a maximum width of 10 km (W-E direction) (Azevedo et al., 2017). The lagoon and 

adjacent areas are recognized as a complex system, integrating urban areas and a wide range of 

natural and semi-natural habitats, classified as a Special Protection Area (Natura 2000 Network) 

and Site of Community Importance (Sousa et al., 2016). 

Moreover, the study area includes another shallow natural lagoon, the Pateira de 

Fermentelos. It is classified as a Ramsar Site and is a part of the lowland area of the Cértima 

River, immediately located on the confluence with the Águeda River (an affluent of the Volga 

River). Due to its relatively compact and elongated catchment area, the Águeda River induces 

inflow to the Pateira de Fermentelos, producing floods during heavy rain events (Sena and C. 

Melo, 2012). At about 2.5 km to the east, is located Águeda, one of the largest cities of the study 

area, which, despite successive efforts of authorities, it is known for being regularly affected by 

urban floods. 



 

68 

 

Within the study area, the following municipalities are recurrently affected by floods due to 

intense precipitations: Aveiro, Estarreja, Oliveira do Bairro, Sever do Vouga, Vagos, and Mira. 

Besides, considering the coastal influence of this territory, there are also reports of recurring 

floods due to spring tides in Estarreja, Ílhavo, and Murtosa (Alves et al., 2010; CMI, 2016). 

 

Figure 3.3 - Study area location (Source: CAOP, Atlas do Ambiente, DQA, OpenMaps). Meteorological stations 
Estrada (E) and Tentugal (T) used for wind speed monitoring (Coordinate system: PT-TM06/ETRS89). 

 

4. Results 

Herein, we illustrate the MINDED method for flood extent estimation through an application 

to the Aveiro Region study area. In order to preserve the use of free software only, all image-
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processing tasks were performed with GRASS GIS (v7.2.2), while map compositions were made 

with QGIS (v2.18.15). 

 

4.1. Selection of Events 

Considering the lack of a long-term systematic record of floods in the Aveiro region, the 

selection of events was based on an indirect method. Daily precipitation data were extracted 

from a monitoring database portal (APA, 2018), corresponding to 23 meteorological stations 

located inside the Vouga river catchment area (between 30 December 1979 and 12 September 

2017). Maximum daily precipitation records were ranked from largest to smallest, for every 

meteorological station. Return periods were calculated from Equation (2), derived from a 

Weibull distribution (Equation (3), where, Tx is the period expressed in number of years, Px is 

the probability of exceedance, n is the number of observations and r is the rank number (RAES, 

2013). 

𝑇𝑥 =
1

𝑃𝑥
, (2) 

𝑃𝑥 =
𝑟

(𝑛 + 1)
100 , (3) 

Table B1 resumes the 50 largest daily precipitation events, providing maximum daily 

precipitations and maximum return periods (calculated independently for each of the 23 

meteorological stations). The highest record corresponds to a return period of 32.7 years and 

maximum daily precipitation of 180.0 mm. We used this list in order to search for usable couples 

(t1 and t2) of imagery to be processed (see Section 4.2).  

4.2. Satellite Data Selection 

In order to maintain the simplicity of this methodological application, the selection of satellite 

data was restricted to freely available orthorectified products of multispectral surface 

reflectance. Landsat Level-2 products (from Landsat 4 to 8) are accessible ‘On-demand’ (i.e., 

usually requiring few hours between the order and delivery of the products) in the NASA’s 

EarthExplorer portal (https://earthexplorer.usgs.gov/). Landsat 5 TM, 7 ETM+, and 8 OLI have 

the same spatial resolution (30 m in the visible, NIR and SWIR bands) and temporal resolution 

(16 days, which decrease if more satellites are accounted for a multitemporal analysis). Sentinel 

2 Level-2A products, instead, can be downloaded from the Copernicus Open Access Hub website 

(https://scihub.copernicus.eu/). Sentinel 2 are acquired by the same sensor carried by a 
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constellation of two satellites (Sentinel 2A and 2B). Sentinel 2 data have a spatial resolution that 

varies from 10 m to 60 m in the visible, NIR, SWIR range (10 m to 20 m for the exploited bands) 

and a constellation temporal resolution of 5 days at equator (Drusch et al., 2012). 

From the list of the 50 largest precipitation events (Table B1), we searched images matching 

the methodological requirements of this study, i.e., cloud-free conditions and a reasonably short 

time span between t1 and t2 (we assumed approximately 1 month prior and 15 days after each 

event). This process resulted in four suitable events to be analysed (Table 3.5). Amongst these, 

only two events match reports of flood occurrences. This is likely the consequence of flooding 

not being dependent from daily precipitation only, since other factors, such as precipitation 

intensity, dam breach/discharges, etc. may be relevant. Besides, flood records may be 

incomplete, since they are more focused on recent years. In addition, we observe data 

discontinuities from several meteorological stations, indicating that some of them did not 

acquire date continuously. Finally, as with most Portuguese rivers, those within the study area 

are densely dammed, contributing to regulate water levels during intense precipitation periods 

(especially during drier months). 

Table 3.5 - Selected precipitation events, available satellite images (LS—Landsat; S—Sentinel) and flood event 
records. For a complete list, consult Table A1 (Supplementary Materials). 

 

The major selectable precipitation event matching flood records occurred in 2003 (19 January 

2003), with a return period of 26.5 years (the third largest of all records). The available satellite 

images include two Landsat 7 TM scenes, with t2 being acquired 5 days after the event (RGB 

composites are compared in Figure 3.4). Records mention the floods of January 2003, which 

affected the municipalities of Estarreja, Mira, Murtosa, Oliveira do Bairro and Vagos (affecting 

infrastructures and agriculture fields in Sosa, nearby the Boco River) (Alves et al., 2010; CMI, 

2016). The second largest, occurred in 2016 (13 February 2016), ranking 12th, with a return 

period of 19.2 years. This event affected mostly the municipality of Águeda, causing multiple 

material damages and one mortal victim. The remaining selected events occurred in 2004 (12 

Date Maximum Daily 
Precipitation 

(mm) 

Maximum Return 
Period (Years) 

Available Satellite Images 
Flood Event 

Records t1 t2 

19 January 2003 80.6 26.5 
LS7 (07 December 

2002) 
LS7 (24 January 

2003) 

Estarreja, Oliveira 
do Bairro, Vagos, 

Murtosa 

13 February 2016 128.9 16.4 

S1 (6 February 
2016); LS8 (5 

February 2016) 

LS7 (29 February 
2016) 

Águeda 

12 March 2004 78.5 11.8 
LS7 (12 February 

2004) 
LS7 (15 March 

2004) 
- 

7 October2009 119.0 6.8 
LS7 (21 

September 2009) 
LS5 (15 October 

2009) 
- 
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March 2004) and 2009 (7 October 2009), with considerably smaller return periods and without 

any reports of flooding within the study area. 

Those selected events were analysed with MINDED, using available Landsat 5, 7 and 8 data. 

Landsat 7 images acquired after 31 May 2003 have data gaps caused by a failure in the Scan Line 

Corrector (SLC). Nevertheless, we decided to include such images in our analysis by excluding 

the corresponding faulty pixels in both epochs (t1 and t2). The list of all available images is 

reported in Table B1. 

 

Figure 3.4 - False-colour RGB composites of Landsat 7 (LS7) TM bands, acquired 5 days after the 19/01/2003 flood 
event (26.5 return period). (Coordinate system: PT-TM06/ETRS89). 

 

4.3. Pre-Processing 

In order to perform masking of topographic shadows using only free available data, we 

decided to use the ALOS World 3D–30 m (AW3D30) Global DEM provided by the Japan 

Aerospace Exploitation Agency (JAXA at 

http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm), due to its horizontal resolution 

and improved vertical accuracy (Purinton and Bookhagen, 2017; Santillan and Makinano-

Santinano-Santillan, 2016). Shaded relief maps, where produced for t1 and t2 (using the r.relief 

command of GRASSGIS). 
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Regarding clouds and cloud shadows, we decided to use the quality assessment bands of 

Landsat Level-2 products, which provides probabilities of occurrence of such features. Using the 

information of ‘pixel_qa’ band, we selected those matching the following attributes in order to 

extract cloud-related masks: ‘Cloud Shadows’, ‘Snow/Ice’, ‘Cloud’, ‘Low cloud confidence’, 

‘Medium cloud confidence’ and ‘High cloud confidence’ (USGS, 2018). Note that we assumed a 

conservative approach by including the lowest levels of confidence. 

Topographic shadows and cloud-related masks were merged into a global mask (using 

GRASSGIS command r.mapcalc). 

 

4.4. Index Calculation and Differencing 

As introduced in Section 2, we first determined the WrI and ∆WrI imagery. Then, we obtained 

the ∆WrI frequency distribution histograms (f) and corresponding first and second order 

derivatives (respectively df and d2f). Given the difference of scales between normalized and 

non-normalized ∆WrI, we used different binning ranges to obtain frequency functions, 

respectively based on 255 and 5000 classes. Moreover, smoothing of f (by means of moving 

averages) was useful to aid the interpretation of df and d2f in order to extract thresholds. 

The threshold extraction procedure is exemplified in Figure 3.5 for ∆NDWI, ∆NDVI and ∆TCW 

using the same flooding event of 2003. The different shape of the ∆TCW distribution (as well as 

the other non-normalized ∆WrI), compared to ∆NDWI and ∆NDVI (Figure 3.5a), is due to the 

compression of scale caused by the high magnitude of the extreme values of the parameter. As 

the f distribution does not show secondary modal values beyond the Nc mode, these ∆WrI 

frequency functions are interpreted as being representative of the example in Figure 3.2d. For 

these reasons, instead of interpreting df (Figure 3.5b), we analysed d2f to obtain TL and TH 

(Figure 3.5c). Since NDVI detects water as negative values, threshold selection analysis was 

focused on the negative side of the ∆NDVI frequency distribution histogram, unlike the other 

indices. Following the theoretical premises of Figure 3.2d, the selection of TL corresponds to the 

absolute modal value of d2f, which identification was straightforward for the entire dataset 

under analysis. Instead, the selection of TH required further statistical processing due to a less 

favourable signal to noise ratio conditions caused by the lower frequency of pixels having ∆WrI 

larger than the TH. For this reason, we performed a series of smoothing procedures by using 

unweighted moving averages, until finding the setup which provided the best delineation of the 

following local maximum (TH) of d2f. 
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Finally, the application of TL and TH allowed us to obtain the thematic spatial representations 

shown in Figure 3.5c. Table 3.6 includes the threshold list for all ∆WrI and for every selected 

event. 

 

Figure 3.5 - Examples of threshold extraction (TL and TH) analysis from ∆NDWI, ∆NDVI and ∆TCW (for the event of 
2003, within the region of interest): (a) frequency distribution functions; (b) first order derivatives (df); (c) second 

order derivatives (d2f); (d) spatial representation of ∆WrI after thresholding (Coordinate System: PT-TM06/ETRS89). 

 

 

NDWI  NDVI  TCW  (a) 

 

(b) 

 

(c) 

 

(d) 
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Table 3.6 - Thresholds of each ∆WrI, for every selected event. 

 

4.5. Flood Extent Estimation Results  

After the selection of the thresholds, we performed density slicing (Campbell and Wynne, 

2011; Singh, 1989) for each ∆WrI, resulting in a stack of six thematic maps for each of the four 

events. The overall flood extent map is produced using mathematical operators that assign each 

pixel to pick the class that corresponds to the majority within the stack of coeval thematic 

classifications (i.e., at least four consistent classifications). Whenever the condition of a majority 

is not met, pixels are classified as ‘Mixed’. 

Taking the largest precipitation event (19 January 2003) as an example, we compared each 

ΔWrI coeval thematic map (Figure 3.6). In every map, a noticeable concentration of LMc and 

HMc areas along both the Pateira de Fermentelos lagoon and the major riverbeds of the region 

of interest (ROI) may be observed. In particular, HMc areas are concentrated to the north-

western part of the ROI (towards both sides of the Vouga River section). Another array of HMc 

areas is located towards the north-eastern side of the Pateira de Fermentelos lagoon, near the 

confluence with the Águeda River. As for the half-southern part of the ROI (along the Águeda 

river, the Cértima river and its confluence with the Pateira de Fermentelos), HMc change areas 

are generally detected except for ΔNDVI, which detect them as LMc. In general, with respect to 

maps obtained by normalized indices, those from non-normalized indices are characterized by 

larger extents of randomly distributed change pixels located away from fluvial areas. Table 3.7 

summarizes the information about the extent of the coeval thematic classes obtained within the 

ROI from each ΔWrI, for the 2003 event. Most LMc areas are detected by ΔAWEI_NS and ΔTCW 

(respectively 24.2%, and 21.8%), while most HMc areas are detected by ΔAWEI_S, ΔAWEI_S and 

ΔTCW (respectively 9.3%, 7.8%, and 3.8%). Amongst all indices, normalized indices are overall 

less sensitive to detect HMc areas, with ΔNDVI being the least one (1.2% of the ROI). 

 

2003 2004 2009 2016 

TL TH TL TH TL TH TL TH 

l 0.05 0.51 0.02 0.32 0.00 0.58 0.10 0.42 

∆MNDWI 0.07 0.62 0.00 0.20 0.00 0.48 0.08 0.35 

∆NDVI −0.80 −0.73 −0.06 −0.44 −0.02 −0.49 −0.13 −0.32 

∆TCW 64 390 12 250 132 513 43 318 

∆AWEI_NS 322 2604 138 2332 333 2442 1476 4566 

∆AWEI_S 388 1173 143 668 94 1419 876 2974 
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Table 3.7 - Coeval class results, obtained within the ROI from each ∆WrI, for the 2003 flood event. 

 

 

Figure 3.6 - Coeval thematic maps for each ΔWrI, at the region of interest, for the event of 19 January 2003 
(Coordinate System: PT-TM06/ETRS89). 

 Nc LMc HMc 
 Area (ha) % Area (ha) % Area (ha) % 

∆NDWI 25,138 75.8 5870 17.8 872 2.6 
∆MNDWI 27,369 82.6 3578 10.8 933 2.8 

∆NDVI 26,895 81.1 4579 13.8 404 1.2 
∆TCW 22,166 66.9 7238 21.8 1267 3.8 

∆AWEI_NS 21,255 64.1 8029 24.2 2594 7.8 
∆AWEI_S 24,799 74.8 3988 12.0 3092 9.3 
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The Overall flood map (Figure 3.7a) and the Uncertainty map (Figure 3.7b) are obtained by a 

procedure based on stacking the six coeval ΔWrI thematic maps (Section 2.1). We observe that 

the frequency of ‘Mixed’ pixels (9.1% of the ROI) is smaller than the sum of the remaining classes 

(Nc + LMc + HMc = 87.1%). Moreover, ‘Mixed’ pixels are also clearly less widespread than the 

randomly distributed change pixels located away from fluvial areas (Figure 3.7a vs. Figure 3.6). 

Larger regions of ‘Mixed’ pixels mostly make a rim between Nc-LMc and LMc-HMc. The 

quantitative uncertainty map makes it possible to perform a spatial analysis of classification 

consistencies. Low uncertainty values are predominant (0 to 2 − 81.9% of the ROI), whereas the 

highest uncertainties (3 to ≈ 4 − 0.9% of the ROI and 0.4% of the whole study area) are 

concentrated around areas of change, with special incidence into the major riverbeds. 
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Figure 3.7 - MINDED results for the 19 January 2003 event, at the region of interest: (a) Overall flood map; (b) 
Uncertainty map (Coordinate System: PT-TM06/ETRS89). 
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Table 3.8. For the event of 2004, we detected almost only Nc areas. In 2009, only few LMc 

(4.4%) and HMc (0.4%) areas were detected by MINDED, most of them corresponding to 

saltmarshes and mudflat areas located inside the Aveiro lagoon. As for the ROI, the few LMc and 

HMc areas are located within the Pateira de Fermentelos lagoon. Most LMc and HMc areas that 

appear in the maps of Figure 3.8 are related to the two largest precipitation events. In 2016, the 

lower parts of the Vouga (Albergaria-a-Velha) and Antuã rivers (Estarreja) a large extent of LMc 

and HMc areas is mapped. Most changes are located around the Pateira de Fermentelos lagoon, 

along the Cértima and Águeda rivers (the second in a smaller extent), intersecting Águeda and 

Oliveira do Bairro municipalities. Regarding the event of 2003, which is characterized by the 

largest return period (26.5 years–Table 3.5), we detected the largest extent of change pixels, a 

total of 23,660 ha (corresponding to 8.2% of the whole study area). For this largest event, change 

areas are consistent with the records of fluvial flood occurrences (see Section 4.2) which were 

detected in all the reported municipalities. Once more, several change areas within the Aveiro 

Lagoon correspond to intertidal saltmarshes and mudflat areas. 
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Figure 3.8 - Overall flood maps obtained with MINDED, for each selected event (the corresponding NIR band of t2 
is displayed in grayscale as the background of Nc pixels) within both the study area and ROI (Coordinate System: PT-

TM06/ ETRS89). 
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Table 3.8 - Overall flood map results for the whole study area in terms of extent (ha and %) and corresponding 
class mean uncertainties (MU), for every selected event. 

 

4.6. Comparison with SAR Data 

Given SAR potentialities for mapping water bodies and the environmental characteristics of 

the study area (i.e., an absence of complex topography, snow and dry sand surface, relevant 

urban areas), Sentinel 1 images can be considered as a reliable source of data to perform 

comparisons with the MINDED outputs. Hence, we compared our results with flooding maps 

obtained by the Hierarchical Split-Based Approach (HSBA) (Chini et al., 2017). This is a 

straightforward automatic change detection method based on Sentinel-1 imagery differencing. 

Considering the availability of Sentinel 1A data, the HSBA algorithm was implemented to 

analyse the event of 2016 (13 February 2016), using three Sentinel 1A images, one for a period 

before the event, and two for a period after. Thus, we selected the same reference image from 

6 February 2016 (7 days before the event), and two others, one from 18 February 2016 (5 days 

after the event) and another from 1 March 2016 (1 day after the LS7 image used as t2, 16 days 

after the event) as post-event images. 

Each Sentinel 1A scene was obtained in IWS (interferometric wide swath) mode, as ESA GRDH 

products (20 × 22 m resolution, resampled to 10 × 10 pixels). All selected Sentinel-1A products 

have been acquired with the same relative orbit (125). The algorithm was applied using the 

following options: Lee Sigma speckle filter (3 × 3), SRTM 1 arc sec geocoding, 5 minimum levels 

for HSBA, 2.4 Ashman coefficient, a minimum number of 1.000 pixels for the image tiles to 

process, and by considering eliminating objects below 10 pixels. 

Wind conditions during the acquisition affect water surface roughness, and therefore, the 

accuracy of both water surface and flood extent mapping. According to meteorological data of 

‘Estrada’ and ‘Tentugal’ stations (APA, 2018), the wind speed at the acquisition times of all the 

considered images was less than 2.0 m/s, which has no effects in inland waters (RMS, 2015). 

The comparison between MINDED and HSBA results for the event of 2016 is illustrated in 

Figure 3.9. 

Overall 
Flood 

Results 

2003 2004 2009 2016 

Area MU Area MU Area MU Area MU 

ha %  ha %  ha %  ha %  

Mixed 26,814 9.3 2.8 13,873 4.8 2.9 3561 10.7 2.8 35,408 12.3 2.9 
Nc 229,067 79.5 0.6 187,508 65.1 0.4 24,835 74.9 1.0 181,247 62.9 0.8 

LMc 20,214 7.0 2.2 14,238 1.5 2.6 1639 4.4 2.4 17,399 6.0 2.7 
HMc 3446 1.2 1.9 377 0.1 2.6 130 0.4 2.8 3381 1.2 2.2 
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From the analysis of Figure 3.9b and Figure 3.9c, it is possible to observe that the extent of 

flooded areas detected by the HSBA algorithm reduced over time (i.e., from 18 February 2016 

to 1 March 2016), with particular incidence to North and West of the Pateira de Fermentelos 

lagoon (along the Águeda and Vouga rivers). This is confirmed by the multi-temporal Sentinel 

1A RGB composite (Figure 3.9d), which highlights in purple those areas flooded by 18 February 

2016, but recovered toward the initial conditions on 1 March 2016. Those areas still flooded by 

1 March 2016 (dark blue) are mostly concentrated to Southwest of the Pateira de Fermentelos 

lagoon (along the Cértima River). 

A quantitative pixel location comparison of MINDED is presented within the form of confusion 

matrixes (Table 3.9) (Congalton, 1991), using MINDED as reference data (although neither 

method provides ground truth reference). For comparison purposes, HSBA results were 

reprojected and resampled to the same grid of MINDED (i.e., the resolution of Landsat images, 

30 × 30m), using bilinear interpolation. Class accuracies, commission errors (i.e., 

overestimation), omission errors (i.e., underestimation) and overall accuracies are provided.  
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Figure 3.9 - Comparison of flooded areas results for the 2016 event (13 February 2016) within the ROI, obtained 
with: (a) MINDED (NIR band of LS7 29 February 2016 in the background); (b,c) the HSBA algorithm-considering two 
different post-event images (S1A IW GRDH from 18 February 2016 and 1 March 2016 respectively, represented in 
the backgrounds); (d) False colour RGB composite: R-S1A obtained 16 days after the event (1 March 2016), G-S1A 
obtained 5 days after the event (18 February 2016), B-S1A reference image 7 days prior to the event (6 February 

2016) (Coordinate System: PT-TM06/ETRS89). 
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Table 3.9 - Confusion matrix between results of MINDED and HSBA methods, analysed in terms of No Change (Nc) 
and Flooded areas (LMc + HMc), for the event of 13 February 2016, within the region of interest. 

 

Despite the temporal proximity between the post-event images Landsat 7 (29 February 2016) 

and Sentinel 1A (1 March 2016), the match between MINDED change classifications (i.e., LMc + 

HMc) and HSBA flooded areas is only 1635 pixels (149 ha), corresponding to a class agreement 

of 3.46%. Instead, the match with the Sentinel 1A image closer to the flood event (18 February 

2016) is 4688 pixels (422 ha), corresponding to a class agreement of 9.79%. In both periods, 

HSBA underestimates flooded areas in comparison to MINDED, which is more noticeable for 1 

March 2016 (omission error of 97%), and less for 18 February 2016 (omission error of 90%). The 

commission errors of flooded areas for both HSBA periods are significantly low, 4.97% for 18 

February 2016 and 4.39% for 1 March 2016, resulting from conflicting classifications of Non-

Flooded (HSBA) and Change areas (MINDED). Regardless of the date of post-event HSBA images, 

we verify overall agreement levels around 86%. The clear majority of concordant Non-flooded-

Nc classifications influences the high overall agreement levels. 

 

5. Discussion 

We performed a Multi-INDEx Differencing (MINDED) method to detect flooded areas aimed 

at improving the robustness of single-index approaches. It benefits from the sensitivities of 

individual indices for detecting water with different characteristics, to mitigate their specific 

limitations, and to assess the consistency among flood detection results within the so-called 

Overall flood map. 

In digital change detection approaches, thresholds control the results of image differencing, 

which may be a critical undertaking when no ground truth data is available (Coppin et al., 2004). 

In practice, missing ground truth is the typical condition when analysing archive data, and in 

  MINDED-LS7 29 February 2016 
  

Nc 
Change (LMc + 

HMc) 
Total Commission Error (%) 

HSBA-S1A 
18/02/2016 

Non-Flooded 273,516 43,198 316,714 13.64 

Flooded 245 4688 4933 4.97 

Total 273,761 47,886 321,647  

Class agreement (%) 99.91 9.79   

Omission error (%) 0.09 90.21   

Overall agreement 
(%) 

86.49 
 

HSBA-S1A 
01/03/2016 

Non-Flooded 273,685 46,231 319,916 14.45 
Flooded 76 1655 1731 4.39 

Total 273,761 47,886 321,647  
Class agreement (%) 99.97 3.46   
Omission error (%) 0.03 96.54   
Overall agreement 

(%) 
85.60 
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particular when studying extreme events like floods, for which systematic collection of field data 

may be problematic. For these reasons, MINDED includes an expedited procedure aimed at 

reducing subjectivity for thresholds selection. The procedure is based on the analysis of the 

frequency distribution of water-related index differencing (∆WrI) data, as well as the 

corresponding first and second order derivatives. Different thresholds may be selected to 

discriminate between No change (Nc) areas and different types of change, based on both 

magnitude and sign of ∆WrI values. Nc areas are expected to include any type of permanently 

dry surfaces, as well as permanent water bodies and stable wet/saturated surfaces. High 

Magnitude change (HMc) areas represent a complete change of state from dry land to water 

surfaces. Low Magnitude change (LMc) areas may include different conditions of subtle change 

like either areas changing from dry to wet/saturated, or from wet/saturated to water surfaces. 

Moreover, when post-event (t2) images are acquired several days after the flood, LMc may also 

include areas that were initially flooded, and then underwent the process of recovering toward 

their original status. For this reason, we consider that MINDED widens the period in which to 

obtain usable images to extract maximum flood extents. This is particularly relevant for optical 

satellite imagery, due to their heavy dependence on cloud-free conditions, which tend to be less 

frequent immediately after heavy precipitation periods. The multi-index approach also makes it 

possible to extract a ‘Mixed’ class resulting from a majority analysis implemented within 

MINDED, as well as an Uncertainty map (Equation (1)) which quantitatively represents the 

spatial distribution of coherence among the different WrI results. The determination of 

uncertainty is also based on accuracies known from the literature (Table 3.4), which are used as 

weighting factors. Consequently, MINDED incorporates the assumed performance of single WrI, 

even though such accuracies may have been obtained by different methods, assumptions, and 

sensors, as well as environmental conditions. 

As for the implementation of MINDED in the study area, further conclusions may be drawn. 

Regarding the selection of events to perform the analysis, it is necessary to acknowledge the 

importance of acquisition time for both pre- and post-event images (respectively t1 and t2). 

When working with archive imagery related to past events, for which details about 

spatiotemporal flooding evolution are unknown, the reference image t1 may represent already 

altered conditions, due to either previous flooding or high water discharge levels. In these cases, 

the outputs of MINDED will result in underestimation of the overall flooded area. As for t2, the 

detection capabilities could vary depending on surface permeability, drainage behaviour, and 

post-event anthropic management, which may limit the available time for usable post-event 

image acquisition. This is particularly relevant for the 13/02/2016 flood, which was studied with 
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a Landsat (LS) 7 image acquired 16 days after the event. In this case, MINDED was able to detect 

tracks of floods in naturalized areas (e.g., mostly HMc areas nearby the Pateira de Fermentelos 

lagoon), even though only LMc areas were detected in the Águeda city centre, where several 

streets were reported to be previously inundated. It is important to highlight that the effects of 

flooding on impervious surfaces, like those of urban areas, are ephemeral and few hours/days 

may be enough to return to the pre-event surface reflectivity conditions. Thus, we can expect 

the more t2 is acquired later than the event, the lower is the accuracy of MINDED to map the 

maximum flood extent. Moreover, it is expected to observe a progressive transition from HMc 

to LMc classes. MINDED cannot solve these issues related to the dynamics of post-flood 

processes, without the integration of ground truths and/or ancillary data. 

As a general condition, flood water characteristics may affect the results obtained by indices 

based on different wavelength ranges of the electromagnetic spectrum (e.g., NIR or SWIR) 

(Fisher et al., 2016; Wang et al., 2011; Xu, 2006). This issue can be relevant for those events 

lacking information collected in the field (as the ones considered within this chapter). 

Nevertheless, concerning the 2003 event, no relevant differences may be identified between 

the post-event (t2) NIR and SWIR bands (Figure 3.4). Such similarities are consequently reflected 

in ΔMNDWI and ΔNDWI results (Table 3.7). In this case, the characteristics of floodwater 

produced similar effects on both the NIR and SWIR bands, which can be interpreted as an 

indicator of low turbidity. In fact, the t2 image was acquired 5 days after the flood event, 

allowing time for sedimentation to take place in slow-moving or standing water areas. Among 

all indices, ∆NDVI was the one detecting fewest HMc areas, confirming its weaker capabilities 

for recognizing water surfaces (Ji et al., 2009; McFeeters, 1996). 

Regarding the statistics of the ∆WrI, when using different sensors for t1 and t2, we can expect 

to observe the occurrence of non-zero centred modal values. This should not be interpreted as 

a shortcoming since we can still assume the whole distribution, as well as the Nc condition, to 

be centred with the main modal value. This is verified for the 2009 and 2016 events, for which, 

considering the limited availability of cloud-free images during the flood periods, we decided to 

use different sensors for t1 and t2. The width of the “bell” shape of each histogram is expected 

to be input-data related and variable according to the distribution of both Nc and LMc/HMc 

areas, spatial and radiometric co-registration between t1 and t2 images, and natural time-

depending changes of features (e.g., phenology changes in natural or agricultural areas). 

However, other sudden changes rather than flooding may also occur, which could be detected 

as false alarms (e.g., land cover conversions from agricultural practices, effects of fires). The 

latest represent intrinsic errors of any image-differencing methods, such as MINDED, which 
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nonetheless may be recognized if such changes occur in places falling out of potentially 

floodable areas (e.g., by analysing DEM). 

Considering that neither of the analysed events resulted in an ideal multi-modal histogram 

(Figure 3.2c), in order to extract the thresholds, we could not use the first order derivative (df), 

so we analysed the second order derivative (d2f) instead. While the extraction of TL, between 

Nc and LMc, was a straightforward procedure, the extraction of TH, between LMc and HMc, 

required further statistical processing that is aimed at improving the signal-to-noise ratio in the 

considered ΔWrI range. This last task is more prone to user-subjectivity, so TH should be more 

reasonably considered as a range of values, which spatial effects have to be verified at map 

scale. Being a typical expert-dependent analysis, this segment of MINDED may be hardly 

implemented as a fully automatic tool procedure. 

An advantage of MINDED, resulting from the approach of combining results from different 

WrI, is the possibility to recognize eventually erratic classifications from a certain index in 

respect to the others. As observed for the 2003 event, all the ΔWrI maps are characterized by 

apparently random distributed change pixels located away from fluvial areas (Figure 3.6). In a 

single-index flood detection approach, these pixels represent a false alarm condition that 

reduces the quality of the flooding map. This is particularly relevant for the non-normalized ΔWrI 

maps, which may result from ineffective cloud masking. In addition, higher sensitivities to terrain 

shadowing caused by local relief (Table 3.2) may produce similar effects, due to rough masking 

from global-scale DEM. A more detailed analysis of such areas highlights the fact that the spatial 

distributions of such pixels are mainly non-overlapping amongst the ΔWrI maps. Consequently, 

the process of stacking implemented within MINDED efficiently handles these false alarms by 

classifying most of them as Nc, or ‘Mixed’ in a smaller degree (e.g., 9.3% of the ROI for the 2003 

event-Figure 3.7). This observation highlights the benefit of MINDED approach with respect to 

the standard single-index alternatives. The ‘Mixed’ class is mostly located nearby the transition 

areas between Nc-LMc and LMc-HMc, suggesting that they result from the occurrence of subtle 

changes that are differently recognized by each WrI. Furthermore, it also shows that the 

combined results from every ΔWrI are each other consistent. Another indication of the 

effectiveness of MINDED is the analysis of the spatial distribution of uncertainty. Highest 

uncertainty values are concentrated around the major riverbeds and areas of change, and their 

frequency is low (ρ = 3 to ≈ 4 − 0.4% of the study area). This suggests that, even though every 

WrI may provide different results about change, MINDED integrates these results giving a more 

robust representation of changes. 
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As expected, we observed larger extents of flooded areas with higher return period events. 

However, in some cases (2009, 2004 and 2003), several intertidal areas were classified as being 

flooded (mostly as LMc). This is a consequence of differences of tidal states between t1 and t2, 

meaning that t1 image likely was acquired during lower tide. Besides, we have to assume that 

MINDED might detect false alarms within permanent water bodies, such as the Pateira de 

Fermentelos lagoon, due to variations of water thickness/composition or floating 

debris/vegetation that might be classified as LMc or even HMc areas. 

Regarding the comparison between MINDED and HSBA methods, results show that the 

location of Flooded and HMc classes areas are coherent. MINDED is more sensitive to detect 

tracks from recent flood events, particularly in LMc areas, which implies detection of larger 

flooded areas. On the other hand, despite the apparent improved spatial resolution of Sentinel 

1A imagery (which is not directly comparable with the spatial resolution of optical data Kumar 

et al., 2010), the HSBA algorithm seems to be less sensitive to discriminate between water 

‘saturated’ areas and drier surfaces during the days following a flood event (resulting in higher 

commission errors). We consider that the low agreement level between Change and Flooded 

classes (Table 3.9), is likely related to the unavailability of Sentinel 1 images acquired during the 

flood event (or immediately after), as well as to the HSBA procedure which eliminates change 

clusters smaller than 10 pixels. 

 

6. Conclusions 

This study presents an innovative method based on the integration of change-detection 

concepts that are known from the literature. MINDED makes it possible to detect the extent of 

past and future flood events, combining multiple water-related indices derived from optical 

satellite data within a change detection approach, and benefiting from long-term image 

catalogues. 

The method implements image differencing and provides a consistent procedure to analyse 

the frequency distribution of water-related indices for the extraction of different thresholds 

depending on the magnitude of changes, as a reproducible alternative to ground-truthing. Then, 

types of change are discriminated considering the sign of difference and applying density slicing 

based on thresholds. 

High magnitude changes include surfaces changing from ‘dry’ to ‘flooded’ state, while low 

magnitude changes correspond to surfaces changing from ‘dry’ to ‘saturated’, or ‘saturated’ to 
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‘flooded’ states. Unchanged areas do not discriminate between permanent water bodies and 

permanent dry surfaces, which is not a limitation for flood hazard analysis. By integrating 

different water-related indices with different sensitivities to water characteristics, and 

considering the agreement among the resulting classifications, the method is capable of 

obtaining both an Overall flood map and an Uncertainty map, estimating uncertainty bounds for 

flooded areas. This approach increases the robustness of results, particularly in the transition 

areas between flooded and non-flooded surfaces, as well as where randomly distributed 

changes not related to water might occur. Moreover, the possibility of analysing flood events by 

comparing imagery acquired by different sensors may help to widen the temporal window for 

obtaining suitable optical satellite images. For these reasons, we consider MINDED being a new 

valid method to be integrated along with others, including SAR-based approaches (e.g., data-

fusion methods), to obtain the best representation of flooded areas. 

The performance of MINDED was tested with an application to a study area in north-western 

Portugal, using Landsat imagery to perform flood detection analyses for several events. The 

results are consistent with known historical flood records. When processing images acquired 

several days after a triggering precipitation event, MINDED showed the capability of detecting 

tracks of floods both in naturalized and agricultural areas. 

Since no ground truth data was available, we compared results from the same event with 

those obtained by processing multi-date post-event Sentinel-1A scenes using the Hierarchical 

Split-Based Approach algorithm. The best agreement between methods was obtained by 

processing the earliest post-event Sentinel-1A image, supporting the idea that MINDED provides 

a close representation of the maximum flood extent. 

The current implementation of MINDED has the potential for automatization improvement, 

which would contribute to its use as a more expedite method for operational purposes. Further 

developments of MINDED should be tested in other regions and contexts, as well as by 

integrating more water-related indices and a different number of indices. Moreover, there is 

potential to implement MINDED using data obtained from other sensors, including improved 

spatial resolution alternatives (e.g., Sentinel-2), without requiring relevant adjustments to the 

procedures, still providing an evaluation of uncertainty. Finally, we highlight that the threshold 

selection procedure developed in this chapter, when applied to either other indices or data, has 

the potential to be applied to change detection studies other than flooding. 

  



 

89 

 

REFERENCES 

Allen, G.H., Pavelsky, T.M., 2018. Global extent of rivers and streams. Science (80-. ). 361, 585–

588. https://doi.org/10.1126/science.aat0636 

Alves, F.L., Sousa, L.P., Silva, J.V., Dias, J.M., Lopes, C., Coelho, C., Pereira, C., 2010. Tarefa 2. 

Revisão do estado-da-arte, recolha e análise de dados, ADAPTARia - Modelação das 

Alterações Climáticas no Litoral da Ria de Aveiro Estratégias de Adaptaçãp para Cheias 

Costeiras e Fluviais. Aveiro, Portugal. 

APA, 2018. SNIRH [WWW Document]. URL http://snirh.pt/ 

Azevedo, A., Fortunato, A.B., Epifânio, B., den Boer, S., Oliveira, E.R., Alves, F.L., de Jesus, G., 

Gomes, J.L., Oliveira, A., 2017. An oil risk management system based on high-resolution 

hazard and vulnerability calculations. Ocean Coast. Manag. 136, 1–18. 

https://doi.org/10.1016/j.ocecoaman.2016.11.014 

Baig, M.H.A., Zhang, L., Shuai, T., Tong, Q., 2014. Derivation of a tasselled cap transformation 

based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 5, 423–431. 

https://doi.org/10.1080/2150704X.2014.915434 

Bartsch, A., Pathe, C., Wagner, W., Scipal, K., 2008. Detection of permanent open water surfaces 

in central Siberia with ENVISAT ASAR wide swath data with special emphasis on the 

estimation of methane fluxes from tundra wetlands. Hydrol. Res. 39, 89. 

https://doi.org/10.2166/nh.2008.041 

Bates, P.D., Wilson, M.D., Horritt, M.S., Mason, D.C., Holden, N., Currie, A., 2006. Reach scale 

floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: 

Data analysis and modelling. J. Hydrol. 328, 306–318. 

https://doi.org/10.1016/j.jhydrol.2005.12.028 

Boni, G., Ferraris, L., Pulvirenti, L., Squicciarino, G., Pierdicca, N., Candela, L., Pisani, A.R., Zoffoli, 

S., Onori, R., Proietti, C., Pagliara, P., 2016. A Prototype System for Flood Monitoring Based 

on Flood Forecast Combined with COSMO-SkyMed and Sentinel-1 Data. IEEE J. Sel. Top. 

Appl. Earth Obs. Remote Sens. 9, 2794–2805. 

https://doi.org/10.1109/JSTARS.2016.2514402 

Braaten, J.D., Cohen, W.B., Yang, Z., 2015. Remote Sensing of Environment Automated cloud 

and cloud shadow identi fi cation in Landsat MSS imagery for temperate ecosystems. 

Remote Sens. Environ. 169, 128–138. https://doi.org/10.1016/j.rse.2015.08.006 



 

90 

 

Brakenridge, G.R., Syvitski, J.P.M., Niebuhr, E., Overeem, I., Higgins, S.A., Kettner, A.J., Prades, 

L., 2017. Design with nature: Causation and avoidance of catastrophic flooding, Myanmar. 

Earth-Science Rev. 165, 81–109. https://doi.org/10.1016/j.earscirev.2016.12.009 

Brivio, P.A., Colombo, R., Maggi, M., Tomasoni, R., 2002. Integration of remote sensing data and 

GIS for accurate mapping of flooded areas. Int. J. Remote Sens. ISSN 23, 429–441. 

https://doi.org/10.1080/01431160010014729 

Campbell, J.B., Wynne, R.H., 2011. Introduction to Remote Sensing, Fifth Edition, 5th ed, 

introduction to remote sensing fifth edition. 

Cenci, L., Boni, G., Pulvirenti, L., Squicciarino, G., Gabellani, S., Gardella, F., Pierdicca, N., Chini, 

M., 2017a. Monitoring reservoirs’ water level from space for flood control applications. A 

case study in the Italian Alpine region. 2017 IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 

Fort Worth, TX, 2017 5617–5620. https://doi.org/10.1109/IGARSS.2017.8128279 

Cenci, L., Disperati, L., Persichillo, M.G., Oliveira, E.R., Alves, F.L., Phillips, M., 2017b. Integrating 

remote sensing and GIS techniques for monitoring and modeling shoreline evolution to 

support coastal risk management. GIScience Remote Sens. 00, 1–21. 

https://doi.org/10.1080/15481603.2017.1376370 

Chini, M., Hostache, R., Giustarini, L., Matgen, P., 2017. A Hierarchical Split-Based Approach for 

Parametric Thresholding of SAR Images: Flood Inundation as a Test Case. IEEE Trans. 

Geosci. Remote Sens. 1–14. https://doi.org/10.1109/TGRS.2017.2737664 

CMI, 2016. Estratégia Municipal de Adaptação às Alterações Climáticas no Município de Ílhavo. 

Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed 

data. Remote Sens. Environ. 37, 35–46. https://doi.org/10.1016/0034-4257(91)90048-B 

Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., Lambin, E., 2004. Digital change detection 

methods in ecosystem monitoring: A review. Int. J. Remote Sens. 25, 1565–1596. 

https://doi.org/10.1080/0143116031000101675 

Crist, E.P., 1985. A TM Tasseled Cap equivalent transformation for reflectance factor data. 

Remote Sens. Environ. 17, 301–306. https://doi.org/10.1016/0034-4257(85)90102-6 

Crist, E.P., Cicone, R.C., 1984. A Phisically-Based Transformation of Thematic Mapper Data - The 

Tasseled Cap. Ieee Trans. Geosci. Remote Sens. 22, 256–263. 

https://doi.org/10.1109/TGRS.1984.350619 



 

91 

 

Dao, P.D., Liou, Y.A., 2015. Object-based flood mapping and affected rice field estimation with 

landsat 8 OLI and MODIS data. Remote Sens. 7, 5077–5097. 

https://doi.org/10.3390/rs70505077 

Devries, B., Pratihast, A.K., Verbesselt, J., Kooistra, L., Herold, M., 2016. Characterizing forest 

change using community-based monitoring data and landsat time series. PLoS One 11, 1–

25. https://doi.org/10.1371/journal.pone.0147121 

Ding, X., Nunziata, F., Li, X., Migliaccio, M., 2015. Performance Analysis and Validation of 

Waterline Extraction Approaches Using Single- and Dual-Polarimetric SAR Data. IEEE J. Sel. 

Top. Appl. Earth Obs. Remote Sens. 8, 1019–1027. 

https://doi.org/10.1109/JSTARS.2014.2362511 

Disperati, L., Virdis, S.G.P., 2015. Assessment of land-use and land-cover changes from 1965 to 

2014 in Tam Giang-Cau Hai Lagoon, central Vietnam. Appl. Geogr. 58, 48–64. 

https://doi.org/10.1016/j.apgeog.2014.12.012 

Drusch, M., Bello, U. Del, Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., 

Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P., 2012. 

Remote Sensing of Environment Sentinel-2 : ESA ’ s Optical High-Resolution Mission for 

GMES Operational Services 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026 

EEA, 2010. Mapping the impacts of recent natural disasters and technological accidents in 

Europe - An overview of the last decade, EEA Technical report. Copenhagen, Denmark. 

https://doi.org/10.2800/62638 

EU, 2007. DIRECTIVE 2007/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 

October 2007 on the assessment and management of flood risks. Off. J. Eur. Union L 288, 

2007. 

Fang-fang, Z., Bing, Z., Jun-sheng, L., Qian, S., Yuanfeng, W., Yang, S., 2011. Comparative Analysis 

of Automatic Water Identification Method Based on Multispectral Remote Sensing. 

Procedia Environ. Sci. 11, 1482–1487. https://doi.org/10.1016/j.proenv.2011.12.223 

Feng, Q., Gong, J., Liu, J., Li, Y., 2015. Flood mapping based on multiple endmember spectral 

mixture analysis and random forest classifier-the case of yuyao, China. Remote Sens. 7, 

12539–12562. https://doi.org/10.3390/rs70912539 

Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R., 2014. Automated Water Extraction Index: A 

new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 



 

92 

 

140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029 

Fisher, A., 2014. Cloud and Cloud-Shadow Detection in SPOT5 HRG Imagery with Automated 

Morphological Feature Extraction 776–800. https://doi.org/10.3390/rs6010776 

Fisher, A., Flood, N., Danaher, T., 2016. Comparing Landsat water index methods for automated 

water classification in eastern Australia. Remote Sens. Environ. 175, 167–182. 

https://doi.org/10.1016/j.rse.2015.12.055 

Gao, H., Wang, L., Jing, L., Xu, J., 2016. An effective modified water extraction method for 

Landsat-8 OLI imagery of mountainous plateau regions. IOP Conf. Ser. Earth Environ. Sci. 

34, 012010. https://doi.org/10.1088/1755-1315/34/1/012010 

Giustarini, L., Hostache, R., Matgen, P., Schumann, G.J., Bates, P.D., Mason, D.C., 2013. A Change 

Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X. IEEE Trans. 

Geosci. Remote Sens. 51, 2417–2430. https://doi.org/10.1109/TGRS.2012.2210901 

Gómez-Palacios, D., Torres, M.A., Reinoso, E., 2016. Flood mapping through principal 

component analysis of multitemporal satellite imagery considering the alteration of water 

spectral properties due to turbidity conditions. Geomatics, Nat. Hazards Risk 0, 1–17. 

https://doi.org/10.1080/19475705.2016.1250115 

Hess, L.L., Melack, J.M., Davis, F.W., 1994. Mapping of Floodplain Inundation with Multi-

Frequency Polarimetric SAR: Use of a Tree-Based Model. Int. J. Ecol. Environ. Sci. 11, 1072–

1073. 

Huang, C., Wylie, B., Homer, C., Yang, L., Zylstra, G., 2002. Derivation of a Tasseled cap 

transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 23, 1741–

1748. https://doi.org/10.1080/01431160110106113 

Hughes, M.J., Hayes, D.J., 2014. Automated Detection of Cloud and Cloud Shadow in 4907–4926. 

https://doi.org/10.3390/rs6064907 

Hulley, G.C., Hook, S.J., 2008. A new methodology for cloud detection and classification with 

ASTER data 35, 1–6. https://doi.org/10.1029/2008GL034644 

Irish, R.R., Barker, J.L., Goward, S.N., Arvidson, T., 2006. Characterization of the Landsat-7 ETM 

ϩ Automated Cloud-Cover Assessment ( ACCA ) Algorithm 72, 1179–1188. 

Ivits, E., Lamb, A., Langar, F., Hemphill, S., Koch, B., 2008. Orthogonal Transformation of 

Segmented SPOT5 Images : Seasonal and Geographical Dependence of the Tasselled Cap 



 

93 

 

Parameters 74, 1351–1364. 

JAXA, 2015. ALOS Global Digital Surface Model “ALOS World 3D - 30m (AW3D30)” [WWW 

Document]. URL https://www.eorc.jaxa.jp/ALOS/en/aw3d30/ 

Ji, L., Zhang, L., Wylie, B., 2009. Analysis of Dynamic Thresholds for the Normalized Difference 

Water Index. Photogramm. Eng. Remote Sens. 75, 1307–1317. 

https://doi.org/10.14358/PERS.75.11.1307 

Kauth, R.J., Thomas, G.S., 1976. The tasselled cap - A graphic description of the spectral-temporal 

development of agricultural crops as seen by Landsat. Proc. Symp. Mach. Process. Remote. 

Sensed Data, West Lafayette, Indiana, U.S.A, 29 June-1 July 1976 41–51. 

Kugler, Z., De Groeve, T., Groeve, T. De, 2007. The global flood detection system. Off. Off. Publ. 

… 45. 

Kumar, T.S., Mahendra, R.S., Nayak, S., Radhakrishnan, K., Sahu, K.C., 2010. Coastal Vulnerability 

Assessment for Orissa State, East Coast of India. J. Coast. Res. 263, 523–534. 

https://doi.org/10.2112/09-1186.1 

Li, Y., Gong, X., Guo, Z., Xu, K., Hu, D., Zhou, H., 2016. An index and approach for water extraction 

using Landsat–OLI data. Int. J. Remote Sens. 37, 3611–3635. 

https://doi.org/10.1080/01431161.2016.1201228 

Lillesand, T.M., Kiefer, R.W., Chipman, J.W., 2015. Remote Sensing and Image Interpretation, 

7th ed. New York, USA. 

Liu, C., 2016. Analysis of Sentinel-1 SAR data for mapping standing water in the Twente region 

37. 

Lu, D., Mausel, P., Brondízio, E., Moran, E., 2004. Change detection techniques. Int. J. Remote 

Sens. 25, 2365–2407. https://doi.org/10.1080/0143116031000139863 

Martinis, S., Kersten, J., Twele, A., 2015a. A fully automated TerraSAR-X based flood service. 

ISPRS J. Photogramm. Remote Sens. 104, 203–212. 

https://doi.org/10.1016/j.isprsjprs.2014.07.014 

Martinis, S., Kuenzer, C., Wendleder, A., Huth, J., Twele, A., Roth, A., Dech, S., 2015b. Comparing 

four operational SAR-based water and flood detection approaches. Int. J. Remote Sens. 36, 

3519–3543. https://doi.org/10.1080/01431161.2015.1060647 

Martinis, S., Twele, A., Voigt, S., 2009. Towards operational near real-time flood detection using 



 

94 

 

a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Nat. 

Hazards Earth Syst. Sci. 9, 303–314. https://doi.org/10.5194/nhess-9-303-2009 

Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., Savenije, H.H.G., 2011. 

Towards an automated SAR-based flood monitoring system: Lessons learned from two 

case studies. Phys. Chem. Earth 36, 241–252. https://doi.org/10.1016/j.pce.2010.12.009 

McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the 

delineation of open water features. Int. J. Remote Sens. 17, 1425–1432. 

https://doi.org/10.1080/01431169608948714 

Memon, A.A., Muhammad, S., Rahman, S., Haq, M., 2015. Flood monitoring and damage 

assessment using water indices: A case study of Pakistan flood-2012. Egypt. J. Remote Sens. 

Sp. Sci. 18, 99–106. https://doi.org/10.1016/j.ejrs.2015.03.003 

Nardi, F., Annis, A., Baldassarre, G. Di, Vivoni, E.R., Grimaldi, S., 2019. GFPLAIN 250 m , a global 

high-resolution dataset of Earth ’ s floodplains. Nat. Publ. Gr. 6, 1–6. 

https://doi.org/10.1038/sdata.2018.309 

NASA, 2015. Shuttle Radar Topography Mission (SRTM) [WWW Document]. URL 

https://www2.jpl.nasa.gov/srtm/ 

NASA, 2004. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

[WWW Document]. URL https://asterweb.jpl.nasa.gov/gdem.asp 

Nedkov, R., 2017. Orthogonal transformation of segmented images from the satellite sentinel-

2. Comptes Rendus L’Academie Bulg. des Sci. 70, 687–692. 

Oberstadler, R., Ho, Ã.H., 1997. ASSESSMENT OF THE MAPPING CAPABILITIES OF ERS-1 SAR 

DATA FOR FLOOD MAPPING : A CASE STUDY IN GERMANY 11. 

Otsu, N., 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. 

Man. Cybern. 9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076 

Pekel, J., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global surface 

water and its long-term changes. Nature 540, 418–422. 

https://doi.org/10.1038/nature20584 

Pulvirenti, L., Marzano, F.S., Pierdicca, N., Mori, S., Chini, M., 2014. Discrimination of water 

surfaces, heavy rainfall, and wet snow using COSMO-SkyMed observations of severe 

weather events. IEEE Trans. Geosci. Remote Sens. 52, 858–869. 



 

95 

 

https://doi.org/10.1109/TGRS.2013.2244606 

Pulvirenti, L., Pierdicca, N., Chini, M., Guerriero, L., 2011. An algorithm for operational flood 

mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic. Nat. Hazards Earth 

Syst. Sci. 11, 529–540. https://doi.org/10.5194/nhess-11-529-2011 

Purinton, B., Bookhagen, B., 2017. Validation of digital elevation models ( DEMs ) and 

comparison of geomorphic metrics on the southern Central Andean Plateau 211–237. 

https://doi.org/10.5194/esurf-5-211-2017 

RAES, D., 2013. Frequency analysis of rainfall data. Coll. Soil Phys. 30th Anniv. (1983 - 2013) 42. 

https://doi.org/10.1051/matecconf/20165703013 

Revilla-Romero, B., Hirpa, F.A., Pozo, J.T. del, Salamon, P., Brakenridge, R., Pappenberger, F., de 

Groeve, T., 2015. On the use of global flood forecasts and satellite-derived inundation 

maps for flood monitoring in data-sparse regions. Remote Sens. 7, 15702–15728. 

https://doi.org/10.3390/rs71115702 

Richards, J.A., 2013. Remote Sensing Digital Image Analysis An Introduction. 

RMS, 2015. Beaufort Scale for Land Areas. Reading, U.K. 

Rokni, K., Ahmad, A., Selamat, A., Hazini, S., 2014. Water feature extraction and change 

detection using multitemporal landsat imagery. Remote Sens. 6, 4173–4189. 

https://doi.org/10.3390/rs6054173 

Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems in the 

great plains with ERTS. Third Earth Resour. Technol. Satell. Symp. 1, 309–317. 

Santillan, J.R., Makinano-Santinano-Santillan, M., 2016. Vertical Accuracy Assessment of 30-M 

Resolution ALOS, ASTER, and SRTM Global DEMS over Northeastern Mindanao, Philippines, 

in: The International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences. Prague, Czech Republic, pp. 12–19. 

https://doi.org/10.5194/isprsarchives-XLI-B4-149-2016 

Scaramuzza, P.L., Bouchard, M.A., Dwyer, J.L., 2012. Development of the Landsat Data 

Continuity Mission Cloud-Cover Assessment Algorithms 50, 1140–1154. 

Schlaffer, S., Matgen, P., Hollaus, M., Wagner, W., 2015. Flood detection from multi-temporal 

SAR data using harmonic analysis and change detection. Int. J. Appl. Earth Obs. Geoinf. 38, 

15–24. https://doi.org/10.1016/j.jag.2014.12.001 



 

96 

 

Schowengerdt, R.A., 2007. Remote Sensing: Models and Methods for Image Processing, Third 

Edit. ed. Academic Press. 

Sena, C., C. Melo, M.., 2012. Groundwater–surface water interactions in a freshwater lagoon 

vulnerable to anthropogenic pressures (Pateira de Fermentelos, Portugal). J. Hydrol. 466–

467, 88–102. https://doi.org/https://doi.org/10.1016/j.jhydrol.2012.08.006 

Shi, W., Wang, M., 2007. Detection of turbid waters and absorbing aerosols for the MODIS ocean 

color data processing 110, 149–161. https://doi.org/10.1016/j.rse.2007.02.013 

Singh, A., 1989. Review Articlel: Digital change detection techniques using remotely-sensed 

data. Int. J. Remote Sens. 10, 989–1003. https://doi.org/10.1080/01431168908903939 

Smith, L.C., 1997. Sattelite Remote Sensing of River Inundation Area, Stage, and Discharge: A 

Review. Hydrol. Process. 11, 1427–1439. 

Smith, L.C., Isacks, B.L., Forster, R., Bloom, A.L., Preuss, I., 1995. Estimation of Discharge From 

Braided Glacial Rivers Using ERS 1 Synthetic Aperture Radar : First Results. Water Resour. 

Res. 31, 1325–1329. https://doi.org/10.1029/95WR00145 

Smith, L.C., Isacks, B.L., Murray, A.B., Smith, L.C., Isacks, B.L., Bloom, A.L., Murray, A.B., 1996. 

Estimation of Discharge From Three Braided Rivers Using Synthetic Aperture Radar 

Satellite Imagery : Potential Application to Ungaged Basins. Water Resour. Res. 32, 2021–

2034. https://doi.org/10.1029/96WR00752 

Sousa, L.P., Sousa, A.I., Alves, F.L., Lillebø, A.I., 2016. Ecosystem services provided by a complex 

coastal region: Challenges of classification and mapping. Sci. Rep. 6, 1–14. 

https://doi.org/10.1038/srep22782 

Stark, B., Member, Student, Mcgee, M., Member, Student, Chen, Y., Member, Senior, 2015. 

Short Wave Infrared ( SWIR ) Imaging Systems Using Small Unmanned Aerial Systems ( 

sUAS ). 2015 Int. Conf. Unmanned Aircr. Syst. 495–501. 

https://doi.org/10.1109/ICUAS.2015.7152328 

Ulaby, F.T., Dobson, M.C., 1989. Handbook of Radar Scattering Statistics for Terrain, Artech Hou. 

ed. 

USGS, 2018. Landsat Surface Reflectance Quality Assessment [WWW Document]. URL 

https://landsat.usgs.gov/landsat-surface-reflectance-quality-assessment 

Vanhellemont, Q., Ruddick, K., 2015. Remote Sensing of Environment Advantages of high quality 



 

97 

 

SWIR bands for ocean colour processing : Examples from Landsat-8. Remote Sens. Environ. 

161, 89–106. https://doi.org/10.1016/j.rse.2015.02.007 

Wang, M., Shi, W., Tang, J., 2011. Remote Sensing of Environment Water property monitoring 

and assessment for China ’ s inland Lake Taihu from MODIS-Aqua measurements. Remote 

Sens. Environ. 115, 841–854. https://doi.org/10.1016/j.rse.2010.11.012 

Wang, W., Yang, X., Li, X., Chen, K., Liu, G., Li, Z., Gade, M., 2017. A Fully Polarimetric SAR Imagery 

Classification Scheme for Mud and Sand Flats in Intertidal Zones. IEEE Trans. Geosci. 

Remote Sens. 55, 1734–1742. https://doi.org/10.1109/TGRS.2016.2631632 

Xiao, X., Wdowinski, S., Wu, Y., 2014. Improved water classification using an application-oriented 

processing of landsat ETM+ and ALOS PALSAR. Int. J. Control Autom. 7, 373–388. 

https://doi.org/10.14257/ijca.2014.7.11.35 

Xie, H., Luo, X., Xu, X., Pan, H., Tong, X., 2016. Evaluation of Landsat 8 OLI imagery for 

unsupervised inland water extraction. Int. J. Remote Sens. 37, 1826–1844. 

https://doi.org/10.1080/01431161.2016.1168948 

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water 

features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033. 

https://doi.org/10.1080/01431160600589179 

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T. O’Loughlin, F., Neal, J.C., Sampson, C.C., 

Kanae, C., Bates, P.D., 2017. MERIT DEM: Multi-Error-Removed Improved-Terrain DEM 

[WWW Document]. Geophys. Res. Lett. vol.44. https://doi.org/10.1002/2017GL072874 

Yarbrough, L.D., Easson, G., Kuszmaul, J.S., 2005. Using at-sensor radiance and reflectance 

Tasseled Cap transforms applied to change detection for the ASTER sensor. Proc. Third Int. 

Work. Anal. Multi-Temporal Remote Sens. Images 2005 2005, 141–145. 

https://doi.org/10.1109/AMTRSI.2005.1469857 

Yesou, H., Andreoli, R., Fellah, K., Tholey, N., Clandillon, S., Bastiton, S., Allenbach, B., Meyer, C., 

Bestault, C., Fraipont, P., 2007. Large plain flood mapping and monitoring based on EO 

data. IGARRSS. https://doi.org/10.1109/IGARSS.2007.4423008 

Zhai, K., Wu, X., Qin, Y., Du, P., 2015. Comparison of surface water extraction performances of 

different classic water indices using OLI and TM imageries in different situations. Geo-

Spatial Inf. Sci. 18, 32–42. https://doi.org/10.1080/10095020.2015.1017911 



 

98 

 

Zhou, Y., Dong, J., Xiao, X., Xiao, T., Yang, Z., Zhao, G., Zou, Z., Qin, Y., 2017. Open surface water 

mapping algorithms: A comparison of water-related spectral indices and sensors. Water 

(Switzerland) 9. https://doi.org/10.3390/w9040256 

Zhu, Z., Woodcock, C.E., 2012. Remote Sensing of Environment Object-based cloud and cloud 

shadow detection in Landsat imagery. Remote Sens. Environ. 118, 83–94. 

https://doi.org/10.1016/j.rse.2011.10.028 

 

 

  



 

99 

 

Chapter 4: 
A NEW METHOD (MINDED-BA) FOR AUTOMATIC 
DETECTION OF BURNED AREAS USING REMOTE 

SENSING DATA 

Abstract: This work presents a change detection method (MINDED-BA) for determining 

burned extents from multispectral remote sensing imagery. It consists in the development of a 

previous model (MINDED), originally created to estimate flood extents, combining a multi-index 

image differencing approach and the analysis of magnitudes of the image differencing statistics. 

The method was implemented, using Landsat data, to estimate yearly-burn extents within a 

study area located on northwest central Portugal, from 2000-2018. The modelling workflow 

includes several innovations, like preprocessing steps to adress some of the most important 

sources of error mentioned in the literature, and an optimal bin number selection procedure, 

the latter being the basis for the threshold selection for the classification of burn-related 

changes. The results of the model have been compared to an official yearly-burn extent 

database and allow verifying the significant improvements introduced by both the pre-

processing procedures and the multi-index approach. The high overall accuracies of the model 

and its levels of automatization (thanks to an open-source Python script) indicates potential of 

being a reliable method for systematic unsupervised classification of burned areas. 

Keywords:  optical multispectral imagery; Landsat; digital change detection; multi-index; 

univariate image differencing; threshold selection; wildfires; image histogram binning; highly 

reflective surfaces; Portugal. 

 

1. Introduction 

Fire has played an important role throughout human history, allowing men to transform 

ecosystems worldwide (Chuvieco et al., 2014). Wildfires can be described has biomass burning, 

with potential impacts on human life, property and ecosystems (Chuvieco et al., 2014).  
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Remote Sensing (RS) methods have been widely applied to incorporate data in fire risk 

assessment studies. The application of RS methods usually falls into three categories: forecasting 

systems that predict favourable conditions before fire occurrences; monitoring systems for 

active fire detection; and monitoring of post-fire conditions, such as burned extent (e.g., burn 

scar maps) or fire severity (Abdollahi et al., 2018; Leblon et al., 2016). 

Wildfire forecasting systems usually focus on addressing probabilities of ignition and 

propagation (see Section 4.1.1 of Chapter 2). Such models often combine dynamic variables 

(e.g., wind, temperature, or moisture) and static variables (e.g., slope, land cover or proximity 

to specific features), which may be derived from RS techniques (Adab et al., 2015; Liu et al., 

2016a).  

The detection of active fires through RS can be inferred from thermal anomalies, which may 

be detected from multiple sensors (e.g., MODIS, VIIRS, Landsat series). Rapid Burned area 

estimations may be obtained from short-revisiting time sensors, although such higher temporal 

resolutions usually come at the detriment of decreased spatial resolutions (e.g., Matin et al., 

2017; Schroeder et al., 2016; Vilar et al., 2015b). 

Multispectral indices obtained from optical sensors are amongst the most widely used to 

obtain variables to evaluate fire hazard (using time series) and to monitor fire-induced changes 

on vegetation, including burn severity and regeneration (Emilio Chuvieco et al., 2002; Kavzoglu 

et al., 2014). Such indices, which may, or may not have been developed specifically for the 

identification of burned areas, often result from a combination of two or more bands, from 

visible to short-wave infrared ranges (Bastarrika et al., 2011) (some examples are included in 

Table 4.1). Such combinations include Visible (VIS) and Near Infrared (NIR) couples, e.g., the 

Burned Area Index (BAI) (Emilio Chuvieco et al., 2002) which has been developed specifically for 

burned area discrimination, or the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 

1973; Satir et al., 2016) and the Normalized Difference Water Index (NDWI) (McFeeters, 1996; 

Satir et al., 2016). Other combinations consist in grouping Short Wave Infrared (SWIRs) (such as 

the SWIR1 bands from Landsat sensors) with VIS or NIR bands, e.g., the improved version of BAI 

(BAIMs) (Martin 2006), or the Normalized Burn Ratio (NBRs) (Key and Benson 1999), the latter 

allowing discriminating different levels of fire severity. Finally. Finally, other indices include 

longer short wave infrared bands (SWIRl) (such as the SWIR2 from Landsat sensors), e.g., the 

alternative versions of both BAI (BAIMl) and NBR (NBRl), the Mid Infrared Burned Index (MIRBI) 

(Trigg and Flasse, 2001), or the Normalized Burned Ratio 2 (NBR2) combining both SWIRs and 

SWIRl (USGS, 2020b). 
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Multispectral indices can be used for uni-temporal classifications (post-fire) or bi-temporal 

(pre to post fire difference) approaches (Escuin et al., 2008; Kavzoglu et al., 2014). Among bi-

temporal change detections, the Differenced Normalized Burn Ratio (dNBR) is among those with 

the best performances (Sahana and Ganaie, 2017), demonstrating significant correlations with 

field measurements using images captured within ca.30 days after fire events (Parker et al., 

2015). However, as with other indices, it shows poor discrimination between burned areas and 

other surfaces, such as water, bare soil or areas with little vegetation (Escuin et al., 2008). 

According to Bastarrika et al. (2011), the use of indices including SWIRs and SWIRl, has 

demonstrated to mitigate errors, particularly commission errors, such as false assignments of 

clouds, cloud shadows, topographic shadows and water. Such improvements have been 

explained by the distinctive spectral signatures of water and burned areas beyond the NIR 

region, where water tends to absorb longer wavelengths almost completely, while burned forest 

reflectance remains fairly constant or with a slightly growing trend (e.g., Pereira et al., 1999). 

Table 4.1- Burned related Indices (BrI) and corresponding formulas. 

 

The extraction of thematic information from spectral indices is usually carried out using one 

or more thresholds, which may be used to define two or more classes (density slicing) (Campbell 

and Wynne, 2011; Lillesand et al., 2015; Singh, 1989). However, as with any spectral index, 

finding optimal thresholds is often a difficult task, since they are usually scene-dependent (Cenci 

et al., 2017b; Oliveira et al., 2019). Besides, the characteristics and spectral reflectance of burned 

areas may also be highly variable, depending on fire severity, or the density of pre-fire 

vegetation (E. Chuvieco et al., 2002; de Luca et al., 2021).  

Name Equation Reference 

   

NDVI 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 (1) 

 
(Rouse et al., 1973) 

NDWI 
𝑁𝐷𝑊𝐼 =

𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅𝑠

𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅𝑠
 (2) 

 
(McFeeters, 1996) 

NBRs 
𝑁𝐵𝑅𝑠 =

𝑁𝐼𝑅−𝑆𝑊𝐼𝑅𝑠

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅𝑠
 (3) 

 
(Key and Benson, 1999) 

NBRl 
𝑁𝐵𝑅𝑙 =

𝑁𝐼𝑅−𝑆𝑊𝐼𝑅𝑙

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅𝑙
 (4) 

 
(Key and Benson, 1999) 

NBR2 
𝑁𝐵𝑅2 =

𝑆𝑊𝐼𝑅𝑠−𝑆𝑊𝐼𝑅𝑙

𝑆𝑊𝐼𝑅𝑠+𝑆𝑊𝐼𝑅𝑙
 (5) 

 
(USGS, 2020b) 

MIRBI 
𝑀𝐼𝑅𝐵𝐼 = 10𝑆𝑊𝐼𝑅𝑙 + 2 − 9.8𝑆𝑊𝐼𝑅𝑠 (6) 

 
(Trigg and Flasse, 2001) 

BAI 
𝐵𝐴𝐼 =

1

(0.1−𝑅𝑒𝑑)2+(0.6−𝑁𝐼𝑅)2
(7) 

 
(E. Chuvieco et al., 2002) 

BAIMs 
𝐵𝐴𝐼𝑀𝑠 =

1

(0.05−𝑁𝐼𝑅)2+(0.2−𝑆𝑊𝐼𝑅𝑠)2
(8) 

 
(Martín et al., 2006) 

BAIMl 
𝐵𝐴𝐼𝑀𝑙 =

1

(0.05−𝑁𝐼𝑅)2+(0.2−𝑆𝑊𝐼𝑅𝑙)2
 (9) 

 
(Martín et al., 2006) 

   



 

102 

 

One of the main objectives of this study is to develop and implement a method based on 

satellite RS imagery and GIS techniques, using an integrated multi-index image differencing 

approach aimed at determining burned areas, representing an advancement in respect to the 

applications of the single indices listed in Table 1. The method develops from the work of Oliveira 

et al. (2019) and it consists on the analysis of the distribution of a set of index differencing 

statistics, as well as the combination of different single-index classifications by means of a spatial 

majority analysis. The method was implemented in a fully automatic procedure and tested for a 

study area in north-western Portugal. 

 

2. Methods 

The method developed in this study consists of an adaptation of the Multi-INDEx Differencing 

(MINDED) method (Oliveira et al., 2019), which has been originally developed to estimate flood 

extents. For this work, we have incorporated the same methodological principles, yet with a 

different purpose: the detection of burned areas. The assembly the Multi-INDEx Differencing 

method for Burned Areas (MINDED-BA) follows the workflow illustrated in Figure 4.1, 

incorporating Burned related Indices (BrI). Non-normalized indices introduce data magnitude 

disparities, which may be exacerbated both in multitemporal analysis contexts and by 

mathematical derivative operations, potentially requiring additional computational processing 

and leading to threshold selection issues (Oliveira et al., 2019; Zongyi Ma et al., 2011). For these 

reasons, we decided to implement the MINDED-BA by using the following normalized indices: 

NBRs, NBRl, NBR2, NDVI and NDWI. 
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  Figure 4.1 – The Multi-Index Differencing method for Burned Areas (MINDED-BA) workflow (adapted from 
(Oliveira et al., 2019). 
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Given the specificities of MINDED-BA, particular considerations should be drawn for defining 

the requirements of the satellite images dataset. Firstly, we should perform an analysis to 

identify the typical fire season period of the study area. In the case of the study area selected to 

test MINDED-BA (north-western Portugal), the temperate Mediterranean climate fire season 

spreads from boreal spring to late boreal summer, particularly during the highest temperature 

months (i.e., July, August and September) (EEA, 2010). This means that the estimation of yearly 

burned extents, may be assumed to be detectable from images acquired prior (t0) and after (t1) 

each year fire season. Moreover, in order to minimize false change detections associated with 

different phenological cycle stages, t0 may be acquired after the end of the previous fire season. 

This also means that, in a context of a multi-year analysis, every t1 scene may be used as t0 for 

the following year. The calculation of the BrI should be performed using surface reflectance 

values, which may be readily available for some kinds of sensors (e.g., Landsat series Level 2). 

Another important issue is to address either t0 or t1 conditions which may result in false 

detection of burned areas. These might include the occurrence of features such as clouds, cloud 

shadows, topographic shadows, as well as water-related changes (e.g., surface water bodies, 

soil and vegetation water content). Ideally, to minimize such errors, images should include none 

of these cases. In practice, additional conventional pre-processing steps may be performed in 

order to minimize the effects of the above conditions (e.g., Hantson and Chuvieco, 2011; Hughes 

and Hayes, 2014; Ihlen and USGS, 2019; Schowengerdt, 2007; Song et al., 2001; U.S. Geological 

Survey, 2019a; Zhu and Woodcock, 2012). Moreover, certain land cover changes (e.g., 

conversion and/or modifications due to clear-cuts, cropland harvesting or other soil mobilization 

practices) may produce index-differencing results similar to those from burning. In order to 

address these cases, specific pre-processing analyses should be performed using remote sensing 

techniques or other GIS operations based on ancillary information. These analyses represent 

one of the focuses of the methods developed in this research, and they will be later addressed 

in Section 4.2. 

After the pre-processing phase, the following step of MINDED-BA is to calculate every BrI. This 

task should be performed (e.g., using the equations of Table 4.1) for both t0 and t1. 

Then, each corresponding ΔBrI may be calculated using Eq. 10: 

ΔBrI = BrIt0 – BrIt1 (10) 

Considering each BrI specific spectral reflectance bands and the arrangement of Eq.10 (i.e., 

with t0 as the minuend and t1 as the subtrahend), the following task is to identify the range of 

values of ΔBrI which are expected to correspond to burn-related changes. For example, 
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considering NDVI, burned areas are usually found as negative and near-zero values, while green 

vigorous vegetation is characterized by positive values. Hence, according to Eq.10, those 

changes from green vegetation to burned result in positive ΔNDVI values. In fact, every other BrI 

considered in this study performs in a similar way, with recently burned areas corresponding to 

positive ΔBrI values, whereas longer-term post-fire vegetation regrowth areas are detected as 

negative values (e.g., Keeley, 2009). 

Then, thematic classification of changes are obtained applying thresholding techniques to 

every ΔBrI. To this aim, we considered an analogous procedure to (Oliveira et al., 2019), 

consisting in analysing each ΔBrI data distribution function (f), and corresponding first and 

second-order derivative functions, d1f and d2f respectively. Whenever the shape of f allows 

separating no-changes to changes (multi-modal shaped functions), thresholds may be directly 

extracted from this distribution curve. In practice, depending on how much gradual is the 

transition between no-change to change conditions, this threshold has to be estimated using 

either d1f or d2f. 

Similarly to Oliveira et al. (2019), we also chose to select two thresholds, T1 and T2, to obtain 

two classes of magnitude of change, Low Magnitude Change (LMc) and High Magnitude Change 

(HMc). ). With this, we expect to respectively detect respectively light burning conditions, such 

as partially burned canopy, or severe burning conditions, such as complete burning of initially 

vigorous green vegetation (e.g., forests with high leaf chlorophyll concentrations). 

The MINDED-BA workflow continues with the combination of the coeval classifications 

obtained from the single ΔBrI images. Following the same procedures used with MINDED, we 

performed a spatial majority analysis, allowing us to obtain the overall burn classifications and 

to estimate uncertainties. 

The final step of the model consists in quantifying accuracies, which may be performed by 

comparison with either ground truth data or reference ancillary spatial information. In the case 

of our study area, we compared the MINDED-BA outputs with the official dataset of yearly 

burned extents by Portugal’s Institute for Nature Conservation and Forests (ICNF, 2020), which 

were used as our reference burned areas (RBA). 

All the above steps of the MINDED-BA (Figure 4.1) were conceptualized also with the aim of 

developing a fully automatic processing tool for rapid and replicable extraction of burned areas 

from large multitemporal RS imagery datasets. The model was implemented a GRASSGIS Python 
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script, while the map outputs were obtained with QGIS, both being free and open-source 

software. 

 

3. Study area 

The study area considered in this study corresponds to the Aveiro Region, a set of 11 

municipalities of the Baixo Vouga Sub region (NUTS III), located in the north-western part of 

continental Portugal (Figure 4.2). This region is characterized by a temperate Mediterranean 

climate under maritime influence (EEA, 2010). 

 

Figure 4.2 - Study area location map (Coordinate System: PT-TM06/ETRS89). 

 

The total area covers about 169,286 ha, corresponding to the lower section of the Vouga River 

Watershed, which is the main freshwater inlet of a wide coastal lagoon, the Aveiro Lagoon. In 

Figure 4.2, we can identify other water bodies, including rivers and the Pateira de Fermentelos 

freshwater lagoon. The choice of this study area is justified by the recurrence of wildfires and 
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the coexistence of populated territory, along with several important ecological and 

socioeconomic resources (C. O. A. Coelho et al., 2007). Besides, the non-complex topography 

presents a favourable context for RS methods, such as the application of water-related indices 

(Oliveira et al., 2019). However, the wide extent and density of water bodies, wetlands and 

floodplains, represent an additional challenge to test the performance of a wildfire detection 

method such as MINDED-BA. 

According to the Corine Land Cover survey from 2018, Forest and semi natural areas occupy 

49% of the study area, consisting of Coniferous forest (13%), mostly Pinus pinaster concentrated 

in flat coastal municipalities, Broadleaved forest (26%), mostly of Eucalyptus globulus stands 

located to the more inland and hilly municipalities, and Mixed forest (30%). Regarding 

Agricultural areas, they occupy 29% of the study area, among which Permanently irrigated land 

is the most representative land cover class (27%). According to the Regional Forest Plan 

(National Ordinance n. 58/2019 of February 11), climate change scenarios confirm the tendency 

for increasing forest fire factors (ICNF, 2019). 

 

4. Results 

4.1. Satellite data selection 

According to the above-described methodological principles of MINDED-BA, the main input of 

the method consists in multispectral satellite data acquired after the end of each fire season. 

We used the USGS EarthExplorer portal (USGS, 2020a) to search and select multispectral data 

from the Landsat (LS) series. Nevertheless, the MINDED-BA may be implemented considering 

any other optical multispectral sensors, for either t0 or t1. In order to analyse the yearly-burned 

extents of our study area from 2000 to 2018, we have selected the multispectral images listed 

in Table 4.2. This list also includes one image from 1999, which has been used as t0 for 

determining the annually burned extent of the year 2000. . As introduced in Section 2, each t1 

has been used as t0 for the following reference year, which also allowed to facilitate the 

implementation of the Python script and reduced both computing storage and processing time.  

Considering the requirements to calculate each BrI, the multispectral data used as input for 

MINDED-BA have to correspond to surface reflectance values. For this research, we decided to 

use Landsat Collection 1 Level-2 products. In addition, to mitigate the adverse effects of non-

burn related changes, our imagery dataset was generally chosen from autumn-winter periods, 

preferably during low cloud cover and non-flooded conditions. 
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Table 4.2– Landsat level-2 products selected for MINDED-BA (LS5 – Landsat 5; LS7 – Landsat 7; LS8 – Landsat 8). 

Fire season - t1 (year) Image acquisition date Sensor 

1999 04/10/1999 LS5 
2000 22/10/2000 LS5 
2001 12/12/2001 LS5 
2002 07/12/2002 LS7 
2003 10/12/2003 LS7 
2004 21/01/2005 LS5 
2005 15/12/2005 LS7 
2006 27/01/2007 LS5 
2007 22/01/2008 LS7 
2008 26/09/2008 LS5 
2009 27/01/2010 LS7 
2010 13/12/2010 LS7 
2011 06/11/2011 LS5 
2012 03/01/2013 LS7 
2013 10/10/2013 LS8 
2014 08/12/2014 LS7 
2015 05/02/2016 LS8 
2016 06/01/2017 LS8 
2017 06/11/2017 LS8 
2018 24/10/2018 LS8 

 

4.2. Pre-processing 

MINDED-BA is a change detection method that is susceptible to detect, as side effects, other 

types of change besides burning. As an index differencing based approach, the modal values of 

the data frequency functions are assumed to represent the condition of no-change, while 

different types of changes might be inferred depending on which side they are located in the 

frequency distribution curve (positive or negative sign). Even though MINDED-BA combines 

multiple indices, which are obtained from different spectral reflectance bands, other types of 

change (as those described in Section 2) may have the same sign of burned areas. If not 

addressed properly, these conditions will result in the occurrence of false positive errors. Pre-

processing is therefore advised, which may be implemented from different types of data, 

including satellite imagery/products, ancillary geographic information, or reference literature 

values. 

For this reason, we performed masking of clouds, cloud shadows, water and snow features 

using the ‘pixel_qa’ band of the Landsat level-2 products ( U.S. Geological Survey, 2019a, 2019b). 

Moreover, considering the susceptibility of permanent water bodies to produce false positive 

errors and the fact that their spatial position should be relatively stable and well known, we 

created an additional mask within a buffer of 30m around water bodies, using official thematic 

ancillary data (DGT, 2020). 

Topographic corrections were performed for every spectral band, using the cosine method 

(Riaño et al., 2003; Schowengerdt, 2007). Firstly, an illumination model was created for each 
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scene, using the ALOSWorld 3D–30 m (AW3D30) Global DEM provided by the Japan Aerospace 

Exploitation Agency (JAXA, 2020), along with the sun elevation and azimuth acquisition 

conditions (according to the Landsat level-2 metadata). Secondly, we applied the illumination 

models of each scene, allowing to mask the shadowed areas, as well as to correct those original 

reflectance values for pixels directly illuminated from sunlight. 

Both burned, bare soil, rock outcrops and artificial impervious areas are characterized by an 

absence of chlorophyll, which is otherwise present in green vegetation (Escuin et al., 2008). 

When comparing t1 to t0 images, any conversion towards the above-mentioned classes may 

result in false positive errors. For example, within the study area, corn is one of the most 

important agriculture crops, which during wintertime (i.e., for most of Table 4.2 scenes) may 

show a great variety of spectral signal reflectance, depending on different stages of growth, crop 

harvesting, or even soil mobilizations prior to new plantings. Some of these conditions result in 

the conversion of land cover from green vegetation to bare soil, which implies false positive 

errors. In order to mitigate these error conditions, we analysed the land cover spectral 

signatures literature, and we verified that, with the exception of NIR, the reflectance of burned 

areas, vegetation, wetlands and water is predominantly lower than other highly reflective 

surfaces (HRS), such as bare soil, rock outcrops and artificial impervious areas (e.g., Campbell 

and Wynne, 2011; Escuin et al., 2008; Lillesand et al., 2015; Pereira et al., 1999). With such 

considerations in mind, a thresholding range was determined from Pereira et al. (1999), with 

the objective of masking HRS in t1. However, since the original reference land cover values are 

given in top-of-atmosphere (TOA) reflectance, we determined the corresponding ground surface 

reflectance values, using the 22/10/2000 scene (Table 4.2). Both the TOA and surface 

reflectance were obtained from the image DN (Landsat 5 Level 1 and Level 2 respectively), using 

the band-specific factors provided in the metadata. Then, we sampled clusters of pixels within 

the range of TOA reflectance values, in order to calculate corresponding average TOA and 

surface reflectance, allowing determining their correlations and obtaining the surface 

reflectance signatures of the different land cover types (Figure 4.3). Considering the amplitude 

of the HRS masking thresholding range, which is maximum for bands TM2, TM3, TM5 and TM7, 

we integrated this multispectral information calculating the at-satellite Tasseled Cap Brightness 

(TCB) transformation based on these four bands only (Table 4.3). Different TCB values were 

calculated for a series of four increments of the thresholding range (M1-M4; Figure 4.3). Even 

though the diagram of Figure 4.3 refers to Landsat 5, we considered the same spectral signatures 

regardless the sensor, as these latter have a good spectral correspondence (e.g., Chander et al., 

2013; Giuseppe Mancino, Agostino Ferrara, 2020). The four TCB increments were used to mask 
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the t1 dataset. In principle, we expected M2 and M3 to maximize the separation between 

burned areas and HRS. However, as verified in Figure 4.4, in comparison to the false colour 

composite of Landsat 8 bands 654 (in RBG), we found M1 to produce slight improvements in 

masking HRS, without compromising the detection of burned areas, so justifying its use in the 

further steps of MINDED-BA 

 

  Figure 4.3 – Surface reflectance signatures of different land cover types and their correspondence to Landsat 5 
TM (adapted from Pereira et al., 1999), along with different increments of a thresholding range (M1-M4) aimed for 

masking highly reflective surfaces (HRS). 

 
Table 4.3 – Tasseled Cap Brightness (TCB) at-satellite reflectance coefficients for the red, swir1 and swir2 of 

Landsat sensors, along with the resulting TCB values for different increments of the thresholding range (M1-M4) for 
masking highly reflective surfaces (HRS). 

                                                           

(1) Crist, 1985 

(2) Huang et al., 2002 

(3) Baig et al., 2014 

Landsat sensor Tasseled Cap Brightness (TCB) coefficients 
Masking thresholds (TCB) 

M1 M2 M3 M4 

LS5 (TM) 0.4158 B2+0.5524 B3+0.3124 B5+0.2303 B7 (1) 0.1503 0.1728 0.2002 0.2252 

LS7 (TM+) 0.3972 B2+0.3904 B3 + 0.2286 B5+ 0.1596 B7 (2) 0.1099 0.1272 0.1479 0.1664 

LS8 (OLI) 0.278 B3+0.4733 B4 + 0.5080 B6+ 0.1872 B7 (3) 0.1692 0.1942 0.2261 0.2564 
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Figure 4.4 – Example of highly reflective surfaces (HRS) masks, obtained from different increments of the reference 
thresholding range (M1-M4, in Figure 4.3), compared to the corresponding false colour composite of a Landsat 8 OLI 

scene (from 06/11/2017) and the reference burned areas (RBA) (Coordinate System: PT-TM06/ETRS89). 
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4.3. Index calculation and differencing 

After pre-processing every multispectral band, we calculated all BrI for each scene, i.e. for both 

t0 and t1, using the equations of Table 4.1. As expected, the scale of results obtained ranges 

from -1 up to 1, as normalized indices (i.e., NBRs, NBRl, NBR2, NDVI and NDWI) were used.  

Then, considering Equation 10, we calculated each ΔBrI, using the BrI values for t0 and t1. As 

verified in the example of Figure 4.5, the scale of every ΔBrI ranges between -2 and 2. 

 

 

  Figure 4.5 – Example of a single index differencing calculation, corresponding to the ΔNBR2 of the year 2017 
(Coordinate System: PT-TM06/ETRS89). 



 

113 

 

4.3.1.Selection of optimal number of bins and threshold selection  

For the threshold selection procedure of MINDED-BA, we calculated both first-order 

derivatives (d1f) and second-order derivatives (d2f) from the ΔBrI frequency distributions. The 

computational processing was performed considering the effect of data binning. In fact, we 

verified that by considering different binning intervals, we were experiencing significantly 

different results. Within a range of higher bins, we observed higher frequency oscillations, while, 

using smaller bins would substantially reduce this effect, until reaching a point where d1f and 

d2f start losing local extrema, consequently preventing any threshold selection. We also found 

that by using smoothing techniques based on mobile averaging (according to [30]), we could 

reduce local noise, but also reducing the overall signal of the functions. Besides, smoothing 

seemed to affect the shape of d1f and d2f, resulting in shifting of modal values in the horizontal 

axis, eventually causing the signal to become flat, which would have a negative effect in the 

threshold selection procedure. For these reasons, we developed a new approach to better 

address which number of bins would provide the best signal to noise combination, for both d1f 

and d2f. 

We started by defining a representative set of numbers of bins to be analyzed. Equa-tion 11 

allows extracting any amount (j) of numbers of bins (n) equally spaced in a base 10 logarithmic 

scale by a constant factor (a): 

𝐵𝑖𝑛𝑛 = {
10𝑛, 𝑛 = 1

101+𝑎(𝑛−1), 𝑛 ≠ 1
, 1 ≤ 𝑛 ≤ 𝑗, (𝑗, 𝑛) ∈ ℕ, (𝑎 > 0) ∈ ℝ       (11) 

Using Equation 11, we extracted a sample of 15 numbers of bins (i.e., j=15 and n from 1 to 15), 

equally spaced by a constant a=0.15, resulting in the following set: 10, 14, 20, 28, 40, 56, 79, 

112, 158, 224, 316, 447, 631, 891, and 1259. 

Afterwards, the optimal bin number selection was implemented for each ΔBrI d1f and d2f. This 

procedure was empirically performed considering Equation 12, which is based on the 

assumption that statistical noise is associated with erratic oscillations of these functions: 

𝐵𝑖𝑛_𝑟𝑎𝑡𝑖𝑜 =  
𝑡𝑜𝑡𝑎𝑙_𝑐𝑠

#(>𝑚𝑣)
  (12) 

where #(>𝑚𝑣) is the number of values of the variable greater than the modal value of the ΔBrI 

frequency distribution and total_cs is the total number of consecutive ΔBrI values with the same 

slope sign, including both consecutive positive and negative slopes. We calculated the Bin_ratio 

of Equation 12 for each number of bins of every ΔBrI d1f and d2f. The highest Bin_ratio is 
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assumed to correspond to the number of bins providing the optimal signal-to-noise 

combination. 

Figure 4.6 illustrates an example of the Bin_ratio distribution of the d1f of every ΔBrI 

corresponding to the image difference of 2017. In this case, we verify that for every ΔBrI, an 

optimal number of bins may be selected corresponding to the modal value of the Bin_ratio 

distribution. We also found that the distribution functions achieve minimum stable values after 

ca. 447, further justifying the representability of both the selected sample size and numbers of 

bins. 

 

Figure 4.6 –Example of a Bin_ratio distribution of d1f, for each ΔBrI, in 2017. 

  

The entire set of values for the optimal number of bins per year, ΔBrI and derivative order (d1f 

and d2f) is shown in Table 4.4. In Figure 4.7, the same data are represented as box-plot diagrams. 

We found the optimal number of bins to vary depending on the ΔBrI, derivative order, and 

scene. In general, the d1f of ΔNBRs appears to be less variable and, together with the ΔNDWI, is 

handled better with lower numbers of bins. For ΔNBR2 and ΔNDVI, the optimal numbers of bins 

of d2f are generally lower than those of d1f, with ΔNBR2 showing the highest variability for d1f. 

Despite having analyzed a wide range of numbers of bins (10-1259), we highlight that inter-

quartile range of the entire set of optimal numbers of bins is concentrated into a very small 

range (28-56). This suggests the occurrence of a common tendency to stability of the optimal 

numbers of bins independently of the ΔBrI considered. 
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Table 4.4 – Optimal numbers of bins, for each ΔBrI d1f and d2f. 

 df1 df2 

 ΔNBRs ΔNBRl ΔNBR2 ΔNDVI ΔNDWI ΔNBRs ΔNBRl ΔNBR2 ΔNDVI ΔNDWI 

2000 40 40 40 40 20 28 28 28 40 56 

2001 40 40 14 40 56 40 28 20 28 40 

2002 40 56 20 28 28 28 40 28 40 28 

2003 40 40 28 40 40 28 40 28 28 28 

2004 28 40 28 56 40 28 40 28 28 28 

2005 40 56 28 56 28 28 28 28 40 28 

2006 28 28 40 28 40 28 56 40 28 28 

2007 28 40 56 40 28 28 40 40 28 28 

2008 40 40 40 40 28 40 28 28 40 28 

2009 40 40 20 40 28 40 28 28 40 56 

2010 20 40 20 56 28 28 28 28 28 28 

2011 40 56 56 40 28 28 28 56 40 28 

2012 28 56 28 40 28 40 28 20 40 40 

2013 40 40 79 56 79 40 28 56 40 20 

2014 40 40 112 40 28 40 56 56 28 40 

2015 40 40 79 56 28 28 28 56 28 28 

2016 56 56 28 56 40 28 40 28 79 28 

2017 40 40 40 56 40 28 40 40 40 40 

2018 56 40 56 28 20 40 28 56 40 28 

Average 38.1 43.6 42.7 44.0 34.5 32.4 34.7 36.4 37.0 33.1 
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Figure 4.7 – Distribution of yearly optimal numbes of bins, per ΔBrI and derivative order: (a) d1f; (b) d2f. 

 

Figure 4.8, illustrates the d1f and d2f functions obtained from different numbers of bins. This 

example corresponds to the ΔNBR2 of 2007, in which we can observe the optimal numbers of 

bins (i.e., 56 for d1f and 40 for d2f), alongside with other consecutive non-optimal values. 

Considering the example of Figure 4.8a, where thresholds may be identified as changes to 

positive d1f values, the representation for 79 bins seems to have the highest apparent signal, as 

the result of a lower compression of the ΔNBR2 frequency statistics. However, it also shows the 

highest oscillations, compared to other representations implying the detection of additional 

thresholds with lower ΔNBR2 values. The latter would potentially lead to increase false positive 
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detection (overestimation of changes). Also, in Figure 4.8a, due to the downsampling effect of 

numbers of bins 28 and 40, no thresholds could be extracted from d1f, which would potentially 

increase false negative errors (underestimation of changes). Regarding Figure 4.8b, where 

thresholds correspond to local maximums after a change to positive d2f, we also verify that 

higher bin numbers imply lower threshold values. However, higher numbers of bins also increase 

local noise, increasing the number of local maximums and consequent thresholds (e.g., 79 

numbers of bins from ΔNBR2 0.4 to 0.9). In both cases, the optimal numbers of bins seem to 

provide the best apparent compromise between signal and noise. 

 

 

Figure 4.8 – Comparative example of different statistical data binning intervals of ΔNBR2 from 2007, with the 
corresponding thresholds (×) for d1f (a) and d2f (b). 
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The thresholds extracted from each optimal number of bins are listed in Table 4.5 and 

represented in Figure 4.9 as box-plot diagrams. For the threshold selection we chose the lowest 

threshold values, for T1 and T2, independently of d1f and d2f. In some cases, only one threshold 

could be extracted, while in others, more than two thresholds could be found. This means that, 

in the example of Figure 4.8, T1 was obtained by d2f (0.19), while T2 by d1f (0.88). Table 4.5 and 

Figure 4.9 show that T1 values are less variable in comparison to T2, with the exception of 

ΔNDVI, which are distributed in equivalent short ranges. Besides, the ΔNDVI T2 values are also 

significantly lower than the remaining ΔBrI. The ΔNDWI was among the most variable, for both 

T1 and T2.  

Table 4.5 –Thresholds T1 and T2 (if any), obtained from each ΔBrI. 

 

  

 ΔNBRs ΔNBRl ΔNBR2 ΔNDVI ΔNDWI 
 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 

2000 0.09 0.56 0.14 - 0.20 - 0.11 - 0.06 0.50 
2001 0.10 0.63 0.21 0.97 0.34 - 0.14 - 0.22 - 
2002 0.16 - 0.24 0.90 0.27 - 0.09 0.45 0.23 - 
2003 0.14 - 0.16 0.77 0.25 1.13 0.16 - 0.17 - 
2004 0.30 - 0.33 0.94 0.31 - 0.20 - 0.43 - 
2005 0.22 0.85 0.31 0.60 0.25 - 0.14 0.43 0.19 - 
2006 0.22 0.89 0.20 0.66 0.19 0.96 0.17 - 0.34 - 
2007 0.10 0.63 0.16 0.86 0.19 0.88 0.21 - 0.04 - 
2008 0.24 0.48 0.33 - 0.24 - 0.10 0.42 0.45 - 
2009 0.10 0.35 0.12 - 0.19 0.88 0.12 0.43 0.08 0.52 
2010 0.12 - 0.21 - 0.22 1.07 0.21 - 0.15 - 
2011 0.21 - 0.24 - 0.23 - 0.09 0.48 0.36 - 
2012 0.11 0.56 0.18 0.66 0.26 - 0.06 - 0.18 0.71 
2013 0.27 0.84 0.37 - 0.22 0.46 0.12 0.40 0.37 0.97 
2014 0.05 0.60 0.08 0.56 0.12 0.40 0.15 - 0.09 - 
2015 0.28 - 0.29 - 0.20 0.73 0.17 - 0.36 1.05 
2016 0.06 0.19 0.10 0.75 0.09 0.72 0.05 0.50 0.20 - 
2017 0.33 0.77 0.21 0.74 0.16 0.92 0.16 0.47 0.15 - 
2018 0.15 0.82 0.17 - 0.11 0.50 0.11 0.49 0.13 0.93 
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Figure 4.9 – Distribution of the thresholds obtained for each ΔBrI: (a) T1; (b) T2 (if any). 

 

4.3.2.Single ΔBrI results  

After extracting one or two thresholds for each ΔBrI, we performed density slicing to classify 

different burned related change magnitudes, which are summarized in Table 4.6. Following the 

approach of (Oliveira et al., 2019), every pixel lower than T1 was classified as No change (Nc). 

Those in between T1 and T2 were classified as Low Magnitude change (LMc), while pixels above 

T2 were classified as High Magnitude change (HMc). From Table 4.6, we can verify the 

consistency of Nc areas as the clear majority, followed by LMc areas, and finally HMc areas, the 

latter being always dependent on the detection of a T2. 

The yearly burn-related maps from each ΔBrI are exemplified in Figure 4.10, for 2006 and 

2016, where the single index classifications are compared to the RBA (ICNF, 2020). 
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Table 4.6 – Summary of single ΔBrI results, given as area (in hectares,) for each class (Nc – No change; LMc – Low Magnitude change; HMc – High Magnitude change). 

 ΔNBRs ΔNBRl ΔNBR2 ΔNDVI ΔNDWI 

Year Nc LMc HMc Nc LMc HMc Nc LMc HMc Nc LMc HMc Nc LMc HMc 

2000  96 808     7 463     33     99 907     4 509     -       103 706     577     -       97 821     6 483     -       102 063     2 357     2    

2001  86 634     10 534     19     91 396     4 624     1     94 736     1 279     -       90 757     6 492     -       96 001     1 186     -      

2002  111 021     5 431     -       111 939     2 263     3     111 647     2 555     -       112 082     4 395     44     112 189     4 262     -      

2003  112 256     5 838     -       110 062     5 061     2     112 376     2 751     3     113 760     4 373     -       113 439     4 655     -      

2004  96 583     6 735     -       95 041     5 831     5     97 697     3 184     -       98 810     4 554     -       98 604     4 694     -      

2005  84 091     7 736     26     85 004     3 411     2 142     85 706     4 848     -       82 453     7 832     1 768     91 206     629     -      

2006  91 977     6 718     10     88 952     8 326     464     92 817     4 923     1     95 200     3 514     -       93 914     4 790     -      

2007  86 524     6 971     14     88 631     4 547     0     90 837     2 339     1     89 682     3 832     -       92 397     1 111     -      

2008  81 004     3 726     308     83 051     1 931     -       83 446     1 537     -       82 734     2 301     4     81 591     3 447     -      

2009  87 619     7 898     871     87 989     7 986     -       94 680     1 291     3     88 142     8 019     256     94 586     1 801     1    

2010  85 104     6 177     -       87 502     2 748     -       87 723     2 522     3     87 596     3 696     -       89 881     1 400     -      

2011  86 086     9 829     -       86 266     8 867     -       90 874     4 256     -       86 598     9 310     137     89 617     6 298     -      

2012  98 776     8 283     570     101 703     4 176     497     104 778     1 592     -       98 752     8 919     -       105 730     1 897     2    

2013  77 805     8 076     134     80 015     4 774     -       77 684     6 777     321     78 779     6 208     319     80 392     5 442     170    

2014  93 499     8 934     7     95 621     5 672     27     98 429     2 512     367     97 234     5 281     -       101 763     672     -      

2015  96 771     4 487     -       95 594     4 553     -       93 186     6 949     0     98 529     2 792     -       96 918     4 300     24    

2016  89 787     10 910     10 277     94 283     16 451     239     102 827     8 145     1     88 387     22 322     68     110 191     739     -      

2017  85 835     6 853     298     77 007     14 692     1 287     78 300     14 677     9     81 918     9 378     131     89 001     3 945     -      

2018  82 016     6 090     0     86 110     2 023     -       79 445     8 686     2     84 716     3 392     32     87 716     397     0    

Average 91063.0 7299.5 661.4 91898.6 5918.3 245.7 93731.2 4284.2 37.5 92313.1 6478.6 145.2 96168.4 2843.3 10.5 
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Figure 4.10 – Examples of coeval thematic maps from each ΔBrI, for 2006 and 2016, compared to the reference burned areas (RBA) (Coordinate System: PT-TM06/ETRS89).
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From Table 4.6, we can verify that ΔNDWI tends to detect the least changes, both in terms of 

LMc and HMc areas. Moreover, and as verified in the examples of Figure 4.10, such changes 

tend to be clearly outside the limits of the RBA. Considering these discrepancies and the overall 

purpose of MINDED-BA, we decided to exclude ΔNDWI from further steps of the model. As for 

the remaining ΔBrI, we verify that ΔNBRs seems to be the most sensitive to detect both 

magnitudes of change, particularly in comparison to ΔNBR2. In Figure 4.10, most HMc areas 

were detected by ΔNBRs and ΔNBRl, with the clear majority occurring within the limits of the 

RBA. However, these same indices also seem to be more affected by image noise (i.e., apparently 

random distributed pixels), particularly for LMc areas. In 2006, several LMc pixels have been 

detected along the lower Vouga River by ΔNBRs, ΔNBRl and ΔNDVI. As for 2016, we also verify 

the occurrence of several change pixels outside the RBA (mostly LMc areas), which, based on 

visual inspection of imagery and ancillary data (EEA, 2020), are particularly incident in corn 

plantations, on the banks of the northern branch of the Aveiro Lagoon. 

 

4.3.3.Combined overall burn maps 

After performing density slicing for each ΔBrI, we combined the yearly classifications of ΔNBRs, 

ΔNBRl, ΔNBR2 and ΔNDVI through a majority analysis. This means that the overall burn maps 

classes Nc, LMc or HMc, were given whenever there was a majority among the coeval ΔBrI maps. 

For every non-majority combination, pixels were classified as ‘Mixed’. Nevertheless, two 

particular conditions have been addressed. The first one corresponds to the case of 2LMc+2HMc 

coeval classifications, which were considered to likely describe burn related change, and 

therefore they were classified as LMc areas. The second condition corresponds to 

2Nc+LMc+HMc. Despite the relative majority of Nc class, these were classified as Mixed, as the 

overall combination consists in a tie between no-change and change.  

The overall results from the majority analysis procedure are shown in Table 4.7. In general, we 

observe Nc to be the most representative class (mostly above 90%), while HMc areas are the 

clear minority. LMc areas tend to be the second largest, which are sporadically exceeded by the 

Mixed class. From this entire set, 2016 was the year with the largest changes, particularly LMc 

areas, followed by 2017 and 2011. In contrast with the above results, we observe that Mixed 

areas remain relatively constant throughout the entire dataset, never exceeding 5% of the 

overall area. 
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Table 4.7 – Overall burn maps results, from 2000 to 2018. 

 

Figure 4.11, shows the combined overall burn maps obtained with MINDED-BA, from 2000 to 

2018. The thematic classifications obtained from the model are displayed along with the RBA, 

indicating a good correspondence between both datasets. These maps allow to observe that 

Mixed pixels tend to be located within burned areas.  

Nevertheless, we also verify the occurrence of several LMc areas outside the RBA extents. In 

Figure 4.12, the false colour composites allow to identify flooded or highly water-saturated areas 

in brown, bare soil areas as light pink, whereas burned areas, as obtained by the RBA, 

correspond to tones similar to the above classes. The overall burn maps detect LMc areas, either 

around water bodies (e.g., 2000, 2009 and 2014), or in presumably non-burned agriculture fields 

(e.g., 2016) such as corn plantations. These changes may be interpreted as a consequence of soil 

water content variations, different stages of growth, as well as crop harvesting effects, which 

cause false positive errors resulting from similar ΔBrI to burned areas. 

year 
Nc LMc HMc Mixed 

area (ha) % area (ha) % area (ha) % area (ha) % 

2000 98621 94.6 3645 3.5 - 0.0 2017 1.9 

2001 90116 93.9 2774 2.9 - 0.0 3097 3.2 

2002 111044 97.3 1573 1.4 0 0.0 1551 1.4 

2003 110206 95.8 2232 1.9 - 0.0 2651 2.3 

2004 95484 94.7 2572 2.6 - 0.0 2791 2.8 

2005 83683 92.4 4678 5.2 403 0.4 1777 2.0 

2006 90709 92.8 3186 3.3 3 0.0 3832 3.9 

2007 88350 94.8 2235 2.4 0 0.0 2590 2.8 

2008 82556 97.1 1349 1.6 1 0.0 1077 1.3 

2009 87895 91.6 5074 5.3 49 0.1 2956 3.1 

2010 86722 96.1 1787 2.0 - 0.0 1736 1.9 

2011 86074 90.5 5741 6.0 - 0.0 3312 3.5 

2012 99896 93.9 3618 3.4 191 0.2 2630 2.5 

2013 78493 92.6 4329 5.1 52 0.1 1863 2.2 

2014 94917 93.7 3253 3.2 1 0.0 3084 3.0 

2015 95741 95.7 2397 2.4 - 0.0 1934 1.9 

2016 91456 82.4 15974 14.4 112 0.1 3390 3.1 

2017 79573 85.6 8897 9.6 287 0.3 4197 4.5 

2018 85244 96.7 1921 2.2 - 0.0 953 1.1 
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Figure 4.11 – Overall burn maps obtained from MINDED-BA from 2000 to 2018, in comparison to the reference 
burned areas RBA (ICNF, 2020)(ICNF, 2020) (Coordinate System: PT-TM06/ETRS89) 
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Figure 4.12 – False colour RGB composites (R:SWIR2; G:SWIR1;B:NIR) of t0 and t1, together with MINDED-BA 
overall burn maps and RBA, for 2009 and 2016 (Coordinate System: PT-TM06/ETRS89). 

 

4.4. Accuracy assessment 

The accuracy analysis of the MINDED-BA overall burn maps results was performed with the 

confusion matrix approach (Congalton, 1991). Table 4.8 and Figure 4.13 summarize the overall 

statistics, in which the distribution of both LMc and HMc classes (whose sum corresponds to the 

total changes - TC) were analysed in respect to the yearly reference burned areas (RBA) (ICNF, 

2020). For the purpose of summarization, we will be presenting the results of commission errors 

in respect to the total changes (TCCE), i.e., false positive detections of changes, while omission 

errors will be presented in terms of burned areas (BAOE), i.e., false negative cases. 
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Table 4.8 – Confusion matrix statistics between the MINDED-BA overall burn maps results and the yearly reference 
burned areas (RBA)(ICNF, 2020)(ICNF, 2020), from 2000 to 2018 (Nc – no change; LMc – Low Magnitude change; 

HMc – High Magnitude change; TC – Total changes (LMc+HMc); Ov– Overall accuracy ; TCCE – TC commission errors; 
and BAOE – Burned areas omission errors). 

 
Accuracies (%) Errors (%) Total area (ha) 

Nc LMc HMc TC Ov TCCE BAOE LMc HMc RBA 

2000 100.0 0.1 - 0.1 96.4 99.9 74.0 3645 0 8.6 

2001 100.0 1.2 - 1.2 97.0 98.8 15.7 2774 0 40.1 

2002 100.0 2.3 100.0 2.3 98.6 97.7 23.6 1573 0 47.6 

2003 100.0 1.5 - 1.5 98.0 98.5 26.0 2232 0 45.4 

2004 99.4 11.8 - 11.8 97.1 88.2 64.9 2572 0 862.0 

2005 98.5 54.2 88.2 56.9 96.1 43.1 30.0 4678 403 4134.2 

2006 99.7 17.2 79.3 17.2 96.9 82.8 29.6 3186 3 779.6 

2007 99.9 0.6 0.0 0.6 97.5 99.4 81.9 2235 0 74.5 

2008 99.9 0.9 0.0 0.9 98.3 99.1 81.7 1349 1 68.7 

2009 99.9 3.5 17.1 3.6 94.6 96.4 26.7 5074 49 251.6 

2010 99.6 27.6 - 27.6 98.1 72.4 42.2 1787 0 853.4 

2011 99.8 4.3 - 4.3 93.8 95.7 43.5 5741 0 435.1 

2012 99.8 16.9 85.0 20.3 96.9 79.7 22.9 3618 191 1003.7 

2013 99.2 38.6 91.8 39.2 96.1 60.8 26.1 4329 52 2327.0 

2014 100.0 0.3 0.0 0.3 96.7 99.7 43.6 3253 1 15.5 

2015 99.6 20.3 - 20.3 97.7 79.7 43.6 2397 0 862.7 

2016 98.9 43.3 84.6 43.6 90.6 56.4 12.7 15974 112 8033.0 

2017 99.3 45.5 93.4 47.0 93.9 53.0 11.2 8897 287 4861.4 

2018 100.0 1.4 - 1.4 97.8 98.6 8.3 1921 0 30.2 

Average 99.7 15.3 58.1 15.8 96.4 84.2 37.3 4064.9 57.8 1301.8 

 

 

Figure 4.13 – Summary of the confusion matrix statistics between MINDED-BA overall burn maps and the yearly 
reference burned areas (RBA) (Nc – no change; LMc – Low Magnitude change; HMc – High Magnitude change; TC – 

Total changes (LMc+HMc); Ov– Overall accuracy). 
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The results of the confusion matrix show that MINDED-BA has a satisfactory response, 

reaching an average overall accuracy of 96.4%. We found Nc areas to have the highest average 

class accuracy (99.7%), followed by HMc (58.1%) and LMc areas (15.3%). The accuracies of HMc 

areas are the most variable, followed by LMc areas. Such variability is correlated with the total 

area of yearly RBA, with higher LMc and HMc accuracies occurring in years with larger burned 

extents (e.g., for those years with over 1000 burned hectares). This correlation seems to be 

particularly stronger for LMc areas, which have a polynomial correlation with RBA (R2=0.951) 

(Figure 4.14). On the other hand, the Overall accuracy seems to be more stable and independent 

from the RBA extent. 

In general, we found TCCE to be clearly higher than the BAOE. This fact is confirmed by TC (i.e., 

LMc+HMc) being always higher than the RBA (Figure 4.13). Once again, there seems to be a 

correlation between RBA and error rates, with the lowest errors occurring in years with larger 

burned extents, particularly for TCCE, which also have a polynomial correlation with RBA 

(R2=0.955) (Figure 4.14). 

 

 

Figure 4.14 – Correlations between different parameters of the confusion matrix of MINDED-BA overall burn maps 
and the Reference Burned Areas (RBA) (Nc – no change; LMc – Low Magnitude change; HMc – High Magnitude 

change;); Ov– Overall accuracy ; TCCE – Total changes commission errors; and BAOE – Burned areas omission errors). 
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To verify the benefits of the multi-index approach, we repeated the confusion matrix analysis 

for each individual ΔBrI, with the corresponding results being summarized in Table 4.9. In terms 

of the Nc class agreement, all indexes had similar performances, with ΔNBRl and ΔNBR2, 

respectively having the best (99.7%) and worst (99.3%) performances. In turn, for the LMc class, 

ΔNBRl achieved the highest average values (10.9%), with ΔNBRs and ΔNDVI having the lowest 

agreement rates (9.2%). The results for HMc are more contrasted, with ΔNBRl showing the 

highest agreement levels (51.0%), while ΔNBR2 being significantly worse than the remaining  

ΔBrI. Nevertheless, the best overall agreement was obtained for ΔNBR2, with an average of 

95.6%, which is still under the MINDED-BA overall agreement (96.4%). In terms of errors, we can 

verify that TCCE are clearly above the BAOE, confirming the tendency of overestimation of changes 

by every individual ΔBrI. ΔNBRl results have both the best average TCCE (87.3%) and the best 

average BAOE (34.7%). 

The comparison between Table 4.8 and Table 4.9 allows verifying that in general MINDED-BA 

outperformed every ΔBrI individual parameter of the accuracy analysis, with the exception of 

omission errors that are slightly lower for ΔNBRl and ΔNBRs.  
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Table 4.9 – Summary of the confusion matrix results, between every individual ΔBrI and the RBA, from 2000 to 2018 (Nc – no change; LMc – Low Magnitude change; HMc – High Magnitude 
change; Ov– Overall accuracy ; TCCE – Total Changes commission errors; and BAOE – Burned areas omission errors). 

 

 

 

year 
ΔNBRs ΔNBRl ΔNBR2 ΔNDVI 

Nc LMc HMc Ov TCCE BAOE Nc LMc HMc Ov TCCE BAOE Nc LMc HMc Ov TCCE BAOE Nc LMc HMc Ov TCCE BAOE 

2000 100.0 0.1 0.5 92.8 99.9 41.4 100.0 0.1 - 95.7 99.9 54.7 100.0 0.1 - 99.4 99.9 93.8 100.0 0.0 - 93.8 100.0 80.5 

2001 100.0 0.3 20.7 89.2 99.6 10.5 100.0 0.8 0.0 95.2 99.2 17.7 100.0 0.3 - 98.6 99.7 90.9 100.0 0.6 - 93.4 99.4 19.0 

2002 100.0 0.8 - 95.4 99.2 18.0 100.0 1.7 57.1 98.0 98.3 24.2 100.0 0.6 - 97.7 99.4 72.5 100.0 0.7 32.8 96.2 98.9 25.9 

2003 100.0 0.8 - 95.1 99.2 20.2 100.0 0.8 30.8 95.6 99.1 22.7 100.0 0.5 2.7 97.6 99.5 77.1 100.0 0.8 - 96.3 99.2 38.7 

2004 99.4 7.9 - 93.5 92.1 50.4 99.4 8.0 55.6 94.1 92.0 54.2 99.1 3.8 - 96.1 96.2 88.0 99.3 7.4 - 95.2 92.6 68.4 

2005 98.5 40.2 94.1 93.6 59.7 29.2 98.4 35.8 81.8 95.6 46.5 31.9 96.7 32.6 - 93.3 67.4 63.8 98.6 24.0 89.3 92.1 64.0 24.9 

2006 99.7 9.2 78.3 93.6 90.7 27.6 99.8 4.1 63.0 91.4 92.7 25.2 99.5 7.5 0.0 94.8 92.5 56.7 99.7 15.3 - 96.7 84.7 37.9 

2007 99.9 0.3 1.9 92.5 99.7 74.8 99.9 0.4 0.0 95.1 99.6 78.8 99.9 0.4 0.0 97.4 99.6 88.5 99.9 0.4 - 95.8 99.6 81.1 

2008 99.9 0.5 0.5 95.2 99.5 70.7 99.9 0.7 - 97.7 99.3 81.3 99.9 0.2 - 98.1 99.8 94.8 99.9 0.7 0.0 97.2 99.3 77.0 

2009 99.9 1.0 15.2 91.1 97.6 22.9 99.9 2.6 - 91.8 97.4 25.1 99.8 6.8 0.0 98.5 93.2 68.1 99.9 1.7 34.3 91.6 97.3 27.1 

2010 99.6 9.9 - 93.6 90.1 34.2 99.6 19.8 - 97.1 80.2 41.2 99.1 6.4 0.0 96.5 93.6 82.5 99.5 14.0 - 96.1 86.0 44.4 

2011 99.8 2.9 - 89.8 97.1 40.7 99.8 3.1 - 90.8 96.9 41.0 99.6 2.9 0.0 95.3 97.1 73.9 99.8 2.9 90.0 90.4 95.9 34.4 

2012 99.8 5.0 74.9 92.4 90.5 19.8 99.8 8.9 84.6 96.1 83.0 24.0 99.3 17.4 - 98.0 82.6 73.5 99.8 9.1 - 92.3 90.9 22.5 

2013 99.2 21.8 90.1 91.9 77.1 25.0 99.2 36.7 - 95.7 63.3 27.4 98.5 15.9 0.0 91.7 82.8 49.4 99.2 16.1 45.3 93.0 82.4 35.2 

2014 100.0 0.1 2.4 91.3 99.9 28.5 100.0 0.2 1.3 94.4 99.8 41.5 100.0 0.1 0.0 97.1 99.9 88.1 100.0 0.2 - 94.8 99.8 46.6 

2015 99.6 14.6 - 95.8 85.4 39.1 99.6 15.3 - 95.8 84.7 33.2 99.3 5.5 66.7 92.8 94.5 63.4 99.4 16.5 - 97.1 83.5 57.2 

2016 98.8 10.7 58.8 86.5 66.0 12.7 98.8 41.8 91.9 90.3 57.5 14.1 97.5 70.4 44.4 95.6 29.6 30.5 98.9 32.0 0.5 85.4 68.1 11.9 

2017 98.2 49.3 91.1 94.5 48.9 30.2 99.5 24.4 95.0 87.5 69.9 8.0 98.1 25.5 4.1 86.6 74.5 28.4 99.1 32.1 0.3 92.1 68.4 18.9 

2018 100.0 0.0 0.0 93.1 100.0 100.0 100.0 1.4 - 97.7 98.6 13.4 100.0 0.3 0.0 90.2 99.7 33.0 100.0 0.9 68.1 96.2 98.5 5.8 

Average 99.6 9.2 40.7 92.7 89.1 36.6 99.7 10.9 51.0 94.5 87.3 34.7 99.3 10.4 9.8 95.6 89.6 69.3 99.6 9.2 40.1 94.0 89.9 39.9 
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4.5. Uncertainty analysis 

The uncertainty analysis of MINDED-BA consists in analysing the results of the combination 

among the four coeval ΔBrI thematic maps. For this procedure, we defined a range of uncertainty 

classes, ranging from 0 to 3: 

0 – unanimity (4 identical coeval classifications) 

1 – absolute majority (with three identical coeval classifications) 

2 – relative majority (with two identical coeval classifications) 

3 – no majority (tie between two couples of identical coeval classifications) 

The above mentioned pixel-scale values allowed us to obtain the overall uncertainty, which 

corresponds to the uncertainty class values weighted according to their frequency. Table 4.10 

summarizes the results of the uncertainty analysis, where we can verify that MINDED-BA 

uncertainty values are mostly 0 and 1, which contribute for low overall uncertainties. However, for 

every year, the highest uncertainty class (i.e., 3) exceeds the intermediate class (i.e., 2). From the 

entire dataset, we found that 2008 and 2002 have the lowest average uncertainties, while 2017, 

2016 and 2011 have the highest average uncertainties. 

Table 4.10 – Uncertainty class distribution of yearly overall burn map results. 

 

years 

Uncertainty classes  

0 1 2 3  

area (ha) % area (ha) % area (ha) % area (ha) % 
Average 

uncertainty 

2000 948900 91.0 73613 7.1 158 0.0 20162 1.9 0.13 

2001 823368 85.8 105364 11.0 153 0.0 30975 3.2 0.21 

2002 1049771 92.0 76194 6.7 0 0.0 15516 1.4 0.11 

2003 1050957 91.3 73423 6.4 13 0.0 26504 2.3 0.13 

2004 896207 88.9 84347 8.4 7 0.0 27907 2.8 0.17 

2005 778087 85.9 91987 10.2 8282 0.9 27052 3.0 0.21 

2006 857233 87.7 80862 8.3 848 0.1 38361 3.9 0.20 

2007 832291 89.3 73488 7.9 86 0.0 25883 2.8 0.16 

2008 793570 93.4 43421 5.1 2277 0.3 10562 1.2 0.09 

2009 837502 87.3 84842 8.8 7194 0.7 30194 3.1 0.20 

2010 813525 90.1 71555 7.9 17 0.0 17348 1.9 0.14 

2011 795139 83.6 122965 12.9 0 0.0 33116 3.5 0.23 

2012 934072 87.8 97178 9.1 3373 0.3 28721 2.7 0.18 

2013 718831 84.8 105790 12.5 3093 0.4 19652 2.3 0.20 

2014 893693 88.3 87313 8.6 2061 0.2 29480 2.9 0.18 

2015 898133 89.7 83251 8.3 0 0.0 19340 1.9 0.14 

2016 866092 78.1 174932 15.8 32917 3.0 35384 3.2 0.31 

2017 722058 77.7 156027 16.8 1843 0.2 49610 5.3 0.33 

2018 740162 84.0 131475 14.9 0 0.0 9527 1.1 0.18 
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Figure 4.15 shows the uncertainty maps for MINDED-BA, where we can observe that the highest 

uncertainty classes (i.e., 2 and 3) tend to be located within the limits of RBA. Pixels corresponding 

to uncertainty values of 1 seem to be either randomly distributed (e.g., 2010, 2018), or are 

concentrated nearby water bodies (along the lower sections of the Vouga River and around the 

Pateira de Fermentelos lagoon, for 2000, 2001, 2009, 2014).  
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Figure 4.15 –MINDED-BA uncertainty maps, from 2000 to 2018 (Coordinate System: PT-TM06/ETRS89). 
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5. Discussion 

This study presents a change detection model for determining burned extents from wildfires. It 

consists in the development of a previous model (MINDED), originally designed for determining 

flood extents (Eduardo R. Oliveira et al., 2019). Despite both being weather-related hazards (Deleu 

et al., 2011; Lavalle et al., 2005), flooding and wildfires have antagonistic causes and effects. Floods 

are often the consequence of extreme precipitation events, while wildfires tend to occur and 

proliferate during dry periods. Nonetheless, this work demonstrates that the same theoretical 

principles can be applied to determine the extents of both hazardous processes. This can be done 

by selecting different hazard-specific indices, or by focusing on different sides of the same index-

differencing distribution curves. Since MINDED and MINDED-BA share the same theoretical 

principles, they also share certain advantages and limitations. By combining several indices based 

on different multispectral regions, both methods allow narrowing the range of types of change, in 

which burned area detection is also included.  

When analysing processes such as wildfires, which have non-Boolean characteristics and result 

from the interaction with other natural and anthropic processes, it is essential to define an 

adequate set of procedures to ensure the quality of the modelled results. Figure 4.16 highlights 

both the advantages of the multi-index approach (Multi-index), and the importance of the pre-

processing developments (Masking) introduced in MINDED-BA, in a way that the final result (i.e., 

the Multi-index + Masking) shows clear improvements when compared to the reference burned 

areas (RBA) (ICNF, 2020). Nevertheless, as an index differencing-based approach, it is still not 

completely able to discriminate each type of change. 
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Figure 4.16 – Comparison of results obtained with different processing levels, including those from HRS masking and 
the multi-index majority analysis (example of the year 2017, with the single index differencing corresponding to ΔNBR2) 

(Coordinate System: PT-TM06/ETRS89). 

 

As a digital change detection method, MINDED-BA is intrinsically dependent on the quality and 

quantity of the information conveyed by the images used for both t0 and t1 scenes. This means 

that, for instance, in the temperate Mediterranean climate regions, for estimating yearly burned 

areas, t0 and t1 should be acquired as closest as possible to the end of each year, to ensure that 

each forest fire season (i.e., from early spring to late summer) has ended. Considering MINDED-BA 

relies on multispectral images acquired by sensors with revisiting periods of several days, such as 

those provided by Landsat, this might present additional difficulties. The first difficulty is to find 

cloud-free images during the wet season, which for particularly rainy years may be hard to obtain, 

especially for older epochs with a more limited scene availability. For this reason, it was not possible 

to select images acquired exactly at the same time of every year, ranging from late September to 
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late January of the following year. This may be considered as an important source of error, since 

more changes other than burning may become detected by MINDED-BA (e.g., phenological cycles, 

seasonal agricultural or forestry management practices). Additionally, due to this limited image 

availability and the total time extent of this study (i.e., 18 years), we had to consider couples of 

images acquired by different Landsat sensors (Table 4.2). Nevertheless, as referred by Oliveira et 

al. (2019), using different sensors for t0 and t1, is not expected to affect the accuracy of the model 

significantly, but instead cause shifting of the ΔBrI modal values, and consequently of the threshold 

values (as observed in Table 4.5). The second difficulty is that several phenomena other than fires 

may constitute false positives for every ΔBrI, requiring further pre-processing steps. 

Regarding the atmospheric correction of the multispectral images used as t0 and t1, to ensure 

the replicability and robustness of MINDED-BA results, we considered the Landsat Level 2 products 

(i.e., given as surface reflectance) which are determined by the USGS algorithm (Ihlen and USGS, 

2019; U.S. Geological Survey, 2016). For the same reasons, we also considered the quality 

assessment bands (‘pixel_qa’), which were used to mask clouds, cloud shadows, water and snow 

features. Nevertheless, considering the relative stability of permanent water bodies within our 

study area and the ready-availability of spatial thematic data containing their limits, we defined a 

buffer area with the objective of masking such permanent water bodies. This ensured that none of 

those pixels remained undetected by the USGS algorithm and avoided any further interference with 

the MINDED-BA results. 

Additional criteria were also necessary to discard other potentially known interferences such as 

forest/shrubland clearcutting, agricultural crop harvesting, or soil mobilization occurred between 

t0 and t1.. This might be achieved with pre- or post-processing masking of highly reflective surfaces 

(HRS), which might occur in t1, so resulting in false positive detections. Such task may be 

implemented by creating a user-defined training dataset, or by considering reference literature 

values. The first option has the advantage of providing the best correlation with the characteristics 

of a study area, but may require a-priori knowledge of both bare soil and burned area locations 

(e.g., using analogous approaches to Cenci et al., 2017c), being more dependent on the end-user 

expertise and technical skills. On the other hand, classifications based on reference land cover 

literature values, allows implementing the model in a fully automatic routine without any 

subjectivity issues. The latest also allows the possibility of being applied as a “black-box” tool, 

targeted for non-experts in remote sensing techniques. Since the thresholding procedures of 

MINDED-BA rely entirely on the index differencing statistics, there is a clear advantage in 
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implementing masking as a pre-processing step (as opposed to post-processing), because by 

eliminating such interferences, the signal separation between changes and no-changes is also 

improved (i.e., noise reduction). For these reasons, we adopted the theoretical reference value 

approach to define a thresholding range applied to those multispectral bands that maximize the 

separation between burned areas and HRS. Then, we determined sensor-specific Tasseled Cap 

Brightness (TCB) values for a series of increments within the thresholding range, which were later 

used to mask HRS from every t1 scene. In principle, we expected the best masking to correspond 

to those increments positioned towards the middle of the thresholding range, as their position was 

likely to maximize the difference towards the HRS theoretical reflectance signatures, and to provide 

the best trade-off between the Total changes commission errors (TCCE) and the Burned areas 

omission errors (BAOE). In fact, if MINDED-BA was to be applied without any complementary 

information or additional analysis, M2 or M3 would likely be the safest alternatives. Instead, we 

found that the lowest threshold (i.e., M1) was the best option for our case study (see Figure 4.4). 

This result may be explained by the different spectral characteristics of the burned areas, as well as 

the reflectivity of HRS due to local pedology and geology. Moreover, we would like to highlight that 

instead of the TCB, we could have directly integrated the same multispectral bands, as sum or 

average of reflectance values. After trying such approaches, we verified that despite having similar 

results, the TCB provided slightly better masking of HRS, allowing obtaining marginal, but consistent 

improvements (ca. 1%) for every parameter of the confusion matrix. 

The optimal bin selection approach introduced in this work is a further development to the 

MINDED threshold selection procedure. It consists in a conceptual interpretation of the shape for 

the ΔBrI frequency distribution function, by depicting what are the expected indications are caused 

by noise and signal variations. Despite the different ΔBrI under analysis being obtained by 

integrating different multispectral bands combinations and the tested bin number values being 

characterized by a set of 15 samples in a quite large range (10 – 1259), the obtained range of optimal 

bin numbers is concentrated in only 3 samples (Figure 4.7; 28,40,56). These findings may be a 

consequence of the effects of the time span between t0 and t1 images, as well as the extent and 

type of changes. However, further research should be performed to understand truly this 

behaviour. As for the thresholds T1 and T2, in theory these should fall within the range of ΔBrI 

values 0 – 2 (as only normalized indices were considered). The results show that T1 is more 

concentrated in a small range of values (interquartile range 0.10-0.36), while a wider range 

characterizes T2 (0.45-0.99). We can conclude that the optimal bin number distribution spreads 

within ca. 20% of the sampled range, while the threshold T1 within ca. 13% of the expected range, 
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hence suggesting high stability regardless the ΔBrI. On the other hand, T2 spreads within ca. 27%, 

suggesting higher variability. 

Regarding the threshold distribution, there are several factors affecting their magnitude and 

variability. Such factors should include the types of changes occurring between t0 and t1, as well as 

the sensors used to detect them, which in some cases are different between the two epochs (Table 

4.2). For these reasons, such threshold variations should not be interpreted as an indicator of 

uncertainty, as they reflect the method’s response to a shift of the modal value of the frequency 

distribution functions. The higher variability observed for T2 should also be more dependent on the 

optimal bin number value, because the higher the bin number, more intermediate thresholds may 

be detected (Figure 4.8). 

If not addressed correctly, or addressed at all, some of the above-mentioned conditions may still 

produce effects over the entire MINDED-BA model chain. In those cases, the ΔBrI distribution 

functions and their corresponding d1f and d2f, may be affected, triggering the possibility of 

detecting sub-optimal thresholds and leading to less accurate classification as burned related 

changes (either as LMc or HMc). Despite all the pre-processing steps, MINDED-BA seems to have a 

tendency of overestimating burned areas (in comparison to the RBA) (as observed in Figure 4.11, 

Figure 4.12, Figure 4.13 and Table 4.8). This tendency is likely a consequence of the wide and flat 

topography of the lower section of the Vouga River Watershed. In some cases, we found several 

LMc areas to occur nearby river bodies which are prone to flooding (Oliveira et al., 2019) (e.g., for 

2000, 2009 and 2014). Moreover, MINDED-BA may be also sensitive to higher differentials of either 

vegetation greenness or water contents between t0 and t1 images, as might be the case for 2016 

(see Figure 4.12). This means, that in such cases, t0 was probably acquired during particularly 

wetter or even flooded condition. As an alternative, both t0 and t1 scenes could have been acquired 

earlier to the wet season, but with the risk of missing burned areas from those years. 

From the initial set of normalized indices, we found ΔNDWI results to have insufficient 

performances in detecting burned areas (Figure 4.10), so we discarded it from further steps of 

MINDED-BA. For these reasons, we ended up using four ΔBrI. In general, we found ΔNBRl to have 

the best individual performance for most parameters of the confusion matrix analysis, while ΔNBR2 

achieved the best overall accuracy with the RBA (Table 4.9). These findings, confirm the indications 

found in the literature (Bastarrika et al., 2011; Pereira et al., 1999), which highlight the benefits of 

considering both SWIRs and SWIRl to improve the discrimination between burned areas and water. 

However, as observed in the examples of Figure 4.10, ΔNBR2 seems to underestimate certain 
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burned areas, probably resulting by reduced fire severity conditions. The majority analysis of 

MINDED-BA has demonstrated to handle most individual ΔBrI limitations, meaning that the overall 

maps of Figure 4.11 represent the best combination for most of the confusion matrix parameters 

(Table 4.8). Moreover, the uncertainty assessment which is enabled by the majority analysis 

provides additional and relevant information about those locations where MINDED-BA tends to 

perform with different levels of confidence. 

The correlations found between some of the parameters of the confusion matrix and the RBA 

extents (Figure 4.14) indicate that, as a general behaviour, the larger the burned areas the better 

the performance of the MINDED-BA. This is likely the consequence of MINDED-BA being a 

statistically dependent method, requiring that the frequency of pixels corresponding to burn-

related changes should be large enough to produce measurable changes on df1 and df2 functions. 

Nevertheless, the method accuracy is also dependent on the occurrence of other types of changes 

that may lead to detect false-positives, such as those verified in 2016. 

Despite being the widest within our study area, wildfires are not exclusive to forests or 

agricultural areas. In particular, during those years with the largest burned areas, many fires 

involved other land covers, such as artificial or even wetland areas (e.g., for 2017). Such 

heterogeneity of burned surfaces increases the difficulty in finding optimal thresholds, which ideally 

would have to be transversal to detect burned-related changes for every type of land cover. 

Regarding the ICNF official burned areas, which were used as our RBA, they are the closest 

available dataset that may be used as a ground truth alternative. However, this dataset is in practice 

a product of a multi-source survey, combining fieldwork and remote sensing data interpretation. 

This means that these are also affected by unknown errors which, as an example, may overestimate 

the real extent of burned areas (e.g., as seen in Figure 4.4, where the outer RBA polygon seems to 

be including several non-burned islands), and consequently increase the BAOE. Besides, this ICNF 

dataset is mostly Boolean in terms of the occurrence of fires, therefore, we have no way of verifying 

which fire severities are being considered. Nevertheless, for the last years, ICNF has started 

releasing additional information, such as date, type of fire (e.g., shrubland, agriculture, and 

forestry), cause of ignition, or source, which seem to demonstrate coordination with multi-level 

civil protection agents. 

The tendency for overestimating is a common issue for any image differencing method based on 

a bitemporal analysis, particularly when implemented with couples of images with one year or 

larger temporal separation. However, since MINDED-BA has been completely integrated in an 
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automatic script, it should be relatively easy to implement it in a systematic routine, in order to 

analyse different couples of images acquired within a shorter time span (i.e., corresponding to the 

satellite temporal resolution). This would also enable to assess the yearly-burned areas extents. In 

fact, if such analysis was to be performed, the user subjectivity errors when selecting the images 

would no longer persist, and the overestimation issue should be highly minimized. Such higher 

frequency multitemporal comparisons would also allow to analyse the persistence (or not) of 

detected changes throughout more than an image couple, which by itself should allow a systematic 

improvement of burned extent detection. 

 
6. Conclusion 

This study presents MINDED-BA, an automatic change detection method based on multispectral 

optical satellite images, aimed at determining yearly-burned extents. The method was 

implemented within a study area located on northwest central Portugal, using Landsat data from 

2000 to 2018. This work is the development of a previous multi-index differencing method, 

originally designed to detect flood extents. MINDED-BA allows detecting burned-related changes, 

based on the analysis of magnitudes of the image differencing statistics. Another relevant point of 

the method concerns the development and implementation of several pre-processing steps 

introduced within the modelling workflow, with the objective of discarding some of the most 

significant sources of error mentioned in the literature. From such developments, we highlight a 

new procedure to mask highly reflective surfaces, based on land cover-specific multispectral 

literature reflectance values, which were integrated and implemented in MINDED-BA through the 

Tasseled Cap Brightness. Moreover, the optimal bin number selection procedure introduced in this 

work to process the image-differencing statistics, which is on the basis for the threshold selection 

for the classification of changes, has demonstrated to be a consistent and subjectivity-free 

approach. The performance of such innovations was verified by comparing MINDED-BA outputs 

with an official dataset of burned areas. Moreover, MINDED-BA also showed significant 

improvements compared to the single-index results. In fact, its majority analysis allowed combining 

the classifications provided by the best performing indices, while reducing noise caused by single-

index false positives. Nevertheless, in comparison to the reference burned extents, MINDED-BA 

tends to overestimate burned areas, being sensitive to changes other than those from burning. This 

was particularly noticeable whenever the couples of images used to perform index differencing 

were acquired under significantly changed conditions over about one year (e.g., in terms of water 

content, seasonal vegetation greenness, or when major land-use changes take place). 
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The method was implemented through an automatic python script, selecting one Landsat scene 

per year, acquired after the study area annual fire season. Considering the ease of implementation 

provided by a GRASSGIS python script, its straightforward theoretical principles and effective 

results, MINDED-BA has the potential of being useful as a reliable unsupervised method for the 

preliminary assessment of regional and national level yearly-burned extents. Moreover, if 

implemented by integrating also other sensors different from Landsat, it should allow to improve 

the temporal resolution of the input data and to mitigate detection errors. 
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Chapter 5: 
GENERAL CONCLUSIONS AND FUTURE RESEARCH 

1. Key findings 

This thesis is focused on the development and application of remote sensing methods to support 

the characterization of multiple hazards in a coastal region. To this end, two methods sharing the 

same theoretical principles, were developed and implemented in the Aveiro Region Study Area. 

The first method, Multi-INDEx Differencing (MINDED), is described in Chapter 3, consisting of a 

change detection approach for determining the extent of flooded areas. MINDED was implemented 

through a semi-automatic procedure, using GRASS-GIS, a freeware Geographic Information System 

software which includes a Python language interface. Despite being based on a traditional change 

detection approach, considering image differencing of Water-related Indices (WrI), the method 

includes several innovative procedures and showed great potential for being used in regional-scale 

flood extent estimations. One of its key aspects is the threshold selection step, which can be 

obtained exclusively from data frequency analysis, without the need of ground truth information. 

Despite the unimodal characteristics of the image differencing data, which is often problematic for 

many threshold selection methods (e.g., Ng et al., 2013; Otsu, 1979), MINDED allows classifying 

different magnitudes of flood-related changes, including those caused by the detection of saturated 

soils, which may represent traces of recent flood events. In addition, this procedure is particularly 

useful in reducing user-induced subjectivity issues and allowed to establish the basis for further 

automatization developments. Moreover, the majority analysis implemented within MINDED 

allows combining the strengths of each individual WrI and provides estimates of uncertainty. 

Despite no ground truth data being available, which is demonstrative of the importance of this 

research, the results of MINDED were compared to an alternative method, the HSBA, which is based 

on SAR data, highlighting that MINDED is more sensitive to detect changes which may be related to 

flooding. 
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The second method, the Multi-Index Differencing Method for Burned Areas (MINDED-BA), is 

presented in Chapter 4, consisting in the adaptation and development of the original MINDED, with 

the purpose of estimating burned areas. This subsequent model combines several Burned related 

Indices (BrI) and an improved workflow suited for the characterization of a different hazard. 

Particular attention was given to the pre-processing stage of the method, where several procedures 

were introduced to address those conditions which would likely result in false detection of burned 

areas. The threshold selection of MINDED-BA also includes a new subjectivity-free procedure for 

optimal bin number selection, which not only allows finding the best statistical compromise 

between signal and noise, but also enables the possibility of implementing the method in a fully 

automatic routine. The results of MINDED-BA were compared to the official annual burned areas 

provided by the Portuguese Institute of Nature and Forest Conservation, allowing verifying the 

significant improvements from the newly introduced procedures, as well as the advantages of the 

multi-index majority analysis over the single-index results. Despite achieving high overall accuracy 

levels, we found that MINDED-BA tends to overestimate burned related changes, with false 

positives occurring whenever the method was sensitive to detect other types of change. 

Being based on multispectral indices obtained from optical sensors, both MINDED and MINDED-

BA have several limitations. Both methods are completely dependent on the availability of images 

used to characterize both pre- and post-event conditions. In the case of floods, the choice of the 

post-event image is particularly important, since the effects caused by the presence of water are 

spatially and temporally more dynamic when compared to the effects of fire. On the other hand, 

when comparing two epochs separated by several months (i.e., such as in the case of annual burned 

extent analysis), most change detection methods are also more susceptible of detecting other non-

desired types of change. Such changes may result from phenology, land use practices (e.g., 

agricultural management), or even land cover conversions. Besides, other false positives may arise 

from the occurrence of clouds and casting of shadows by clouds or topography. For these reasons, 

we can generally assume that the usability and performance of both methods will be likely better 

in non-mountainous locations, without long periods of permanent cloud cover, such as in coastal 

areas like the Aveiro Region. Considering the limitations imposed by the use of medium resolution 

optical satellite sensors (e.g., Landsat series), the study of flood extents is expected to be easier in 

large floodplain areas, in comparison to steeper sloped riverbeds. In the case of MINDED-BA, its 

most straightforward use is to estimate annual burned area extents at regional scales, but it could 

be implemented also to detect changes over different temporal and spatial scales, particularly by 

incorporating data from other sensors. 
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MINDED and MINDED-BA are themselves the main contributions of this thesis, which may be used 

as two highly automatized tools to support the characterization of two different types of hazards. 

By being dependent on RS data and techniques, both models are expected to be valuable 

contributes for low-cost and expedite alternatives, to study locations with scarce data collection 

availability, and to aid subsequent supervised classifications or fieldwork validations. 

Following, the three formulated research questions will be answered considering the work 

developed in this thesis: 

‘How can RS data and methods be incorporated in multi-hazard risk assessments, in an effective 

and efficient way?’ 

The models developed in this thesis provide a good starting point for multi-hazard risk 

assessments, since they share a common theoretical base and nomenclature, facilitating their 

further integration. Considering the concept of ‘risk’, which is often characterized as a function of 

‘hazard’ and ‘vulnerability’ (Smith, 2013; UNISDR, 2009), this thesis might be considered as a 

contribute to the first factor of this function.  The ‘hazard’ concept in turn, is often defined as a 

function of ‘probability’ and ‘magnitude’ (Smith, 2013; UNDRO, 1979), so MINDED and MINDED-BA 

are more directly contributing to analyse the magnitude of occurred events and may be particularly 

useful during the initial stages of the hazard risk assessment process chain (e.g., Van Westen, 2013). 

Such methods may also be relevant to perform frequency analysis (e.g., Meneses et al., 2018; 

Oliveira et al., 2012), to estimate the probabilities associated with different magnitudes of such 

phenomena, or to feed and validate other models (Chapter 2). Moreover, they can also contribute 

for the vulnerability evaluation process, helping to identify which are the elements at risk and how 

to estimate their value (e.g., as preparation for damage-assessment field interviews). 

In the specific case of floods (Chapter 3), by using the precipitation records and remote sensing 

imagery alone, we estimated the probabilities of such events by assuming the probabilities of floods 

are the same probabilities of precipitation records. Nevertheless, the probabilities of the events 

calculated using a Weibull distribution from the precipitation records, may not have a direct 

correspondence with floods, particularly in more artificialized water bodies and basins. By 

considering the first images of the Landsat series, which at the time of writing of this thesis are 

already ca. 40 years old, we should be in principle able to characterize a significant number of 

events of the recent past. However, we have to highlight the decreased availability and more 

limited specs of older images, which together with other factors affecting the usability of 

multispectral optical scenes (e.g., cloud coverage), may significantly reduce the number of 
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detectable flooding events. Despite the ephemeral characteristics of the presence of water, the 

high sensitivity of MINDED to detect increases of surface wetness makes this model a useful tool to 

monitor occurred floods. 

Regarding MINDED-BA, we present the results of yearly-burned areas between 2000 and 2018 

(Chapter 4), which in principle and depending on the satellite image availability, could also be 

extended back to the late ‘70s (Landsat MSS and TM series operation period). Due to the longer 

lasting effects of vegetation burning in respect to flooding, MINDED-BA is capable of detecting 

burned-related changes by comparing images acquired with ca. one-year intervals, which in turn 

allows performing systematic monitoring of wildfire events. Anyway, the same method could be 

implemented also to map more accurately the extent and intensity of burned areas related to 

specific known fire events. Such approach could be performed by selecting the closest images prior 

and after the epoch of the event (similarly to the approach described in Chapter 3). 

 ‘What are the main advantages and limitations of using satellite remote sensing methods to 

monitor weather-related hazards in coastal regions?’  

One of the main advantages of the RS methods over other ground-based approaches is related 

to the synoptic perspective of satellites, which allows surveying wide territorial extents, with little 

time and resources. If such RS methods incorporate objective decision rules integrated in automatic 

routines, they ensure highly reproducible and unbiased classifications, which may be harder to 

achieve when performing fieldwork. Coastal regions, in particular, may include several types of 

locations of difficult access, e.g., steep slope coastal cliffs, dense wetlands, or high-energy water 

bodies, which may only be observed from higher fields of view. The use of satellite RS data to 

characterize weather-related variables is well established in the literature and the literature 

includes several examples of such methods being used in hazard assessment contexts (Chapter 2). 

Both MINDED and MINDED-BA are methods capable of detecting hazard-related changes, provided 

the effects of such occurrences persist by the time of the post-event image acquisition. Besides, 

without systematic ground-level monitoring data, RS methods may be the only alternative for 

studying phenomena occurred in the recent past. In particular, the simplicity of MINDED and 

MINDED-BA is one of their greatest advantages, being less demanding in terms of input data when 

compared to other more complex RS methods. Besides, MINDED and MINDED-BA are close to the 

fields of environmental sciences (and further away from applied mathematics, or computational 

sciences), which may facilitate the understanding by potential end-users about the methodological 

workflows and enable tweaking according to their needs. More complex methodologies do not 
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necessarily indicate improved performances, as it is the case of univariate image differencing which 

have been described to achieve better results in comparison to other more complex change 

detection methods (Singh, 1989). The fact that MINDED and MINDED-BA may use bi-temporal 

medium resolution images helps to reduce the computational task times and requirements, and 

since they were implemented using readily available and free-access data and software also widens 

their potential of application.  

RS methods are nonetheless susceptible to produce detection errors, and ground-level 

validations are recommended for achieving the truest representations of reality. Besides, we must 

highlight the effects of the Earth atmosphere, which is always present between satellite sensors 

and the land surface, being susceptible of introducing artefacts, leading to detect false changes or 

even entirely block any surface reflectance signal. Since optical satellite sensors are only capable of 

measuring passive energy, they are usually set up to measure reflected sunlight and to operate for 

daytime conditions. The changes that may be detected by MINDED and MINDED-BA depend on the 

spatial, spectral and temporal resolutions of the sensor used for the imagery acquisition. This 

means that if any given type of change takes place in a very small extent, e.g., over an area several 

times smaller than the pixel resolution of the acquiring sensor, it may not be detectable by the 

method. In the same way, if the effects of change do not persist until the post-image acquisition, 

or if such effects do not have a distinct spectral signature, the methods would also fail due to the 

sensor insufficient temporal and spectral resolutions. MINDED and MINDED-BA rely on the analysis 

of the frequency distribution curve of the index image differences to infer what types of changes 

might occur. However, image-differencing approaches are not conceptually capable of 

individualizing and classify every type of change. Nevertheless, as seen in Chapter 3 and 4, the 

methods may include within the automatic procedures complementary steps to mask/isolate likely 

known interferences. 

‘May RS techniques be exclusively used to reliably characterize multiple types of hazards in 

coastal regions?’ 

The development of satellite sensors has been remarkably improved during the last decades and 

the use of remote sensing techniques have followed the same trend. Looking back at a few decades 

ago, there was only a very limited number of multispectral satellite sensors that could be used for 

studying hazardous events and other earth processes. Besides, compared to today’s standards, 

such data was less easily available and considerably more limited in terms of the sensor specs. In 

the 90s, also with the advent of SAR sensors, other opportunities for RS techniques emerged and 
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today there is a wide variety of satellites, which allow extracting and integrating different types of 

relevant data to characterize hazardous processes (Chapter 2). SAR sensors may perform under 

conditions not accessible to passive multispectral sensors, but they are affected by some limitations 

that do not allow obtaining the same information as passive sensors (Chapter 3). Another important 

aspect of multispectral imagery, in particular of more ancient sensors, is that they may be the only 

way of analysing older events. For this reason, it is important to keep developing methods that are 

capable of integrating and comparing both older and more recent data, contributing for widening 

the timeframe of monitored hazardous events and improving the determination of their frequency 

and magnitude. 

The exclusive use of RS data for multi-hazard risk assessments still implies some limitations, so it 

should ideally be complemented with other ground-level data. For example, the characterization 

of the ‘vulnerability’ concept is particularly complicated from the point of view of RS. In a way, the 

‘exposure’ analysis might be partially characterized by incorporating variables derived from DEMs 

and multispectral imagery (e.g., elevation, slope and land cover). Instead, the characterization of 

the ‘susceptibility’ concept, which is often characterized by the preparedness or coping capacity 

the  elements at risk (Adger, 2006; Martini and Loat, 2007), should be a significantly harder task 

from the synoptic perspective of satellites. Nevertheless, depending on the type of hazard under 

analysis, several types of information might be extracted from RS techniques in order to analyse 

socioeconomic aspects (e.g., density of human settlements, discrimination among different types 

of infrastructures, vegetation health from agriculture/forestry).  

In conclusion, at the time of writing of this thesis, ideally RS methods should not be used 

exclusively to perform hazard assessments, and far less to establish an entire base for complete risk 

assessment processes. However, every day this gap is becoming narrower and in the future RS data 

and methods are expected to be progressively more relevant and useful. 

 

2. Future research 

Hazard risk assessments will continue challenging spatial planners and decision makers to adopt 

better practices in usually complex scenarios. Models such as those presented in this thesis can be 

useful tools to support their decisions. However, given the high diversity of scientific fields involved, 

further efforts should be taken to improve the comprehension and implementation of such tools. 

Despite the high automatization levels of both MINDED and MINDED-BA, their replicability would 



 

153 

 

likely benefit from developing user-friendly interfaces, with direct connections to satellite imagery 

database catalogues. 

The implementation of both models to the Aveiro Region seems to indicate good overall 

performances, but further developments should be made to better study and manage their 

limitations, in order to improve their accuracies. Such developments may include alternative pre 

and post-processing procedures, the incorporation of imagery acquired by different sensors, and 

to test different data arrangements (e.g., optimize the imagery temporal selection, consider 

different indices, or test other segmentation techniques). Further research should also include the 

implementation of MINDED and MINDED-BA in a wider diversity of locations, conditions, and other 

types of hazards, including those characterized in Chapter 2 (i.e., soil erosion and coastal floods; 

but also, e.g., landslides, earthquakes). Moreover, the same methodological principles behind these 

models should also be valid for analysing any other kind of spatio-temporal change, which might 

be registered in RS imagery. Future research could be applied in monitoring other types of earth 

surface processes, including as climate change impacts (e.g., glacier melting, shoreline erosion, live 

coral reef depletion).  
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Appendix A 

 

Table A.1 - General information about free access satellites (Sources: Chander et al., 2009; ESA, n.d.; Kolecka and 

Kozak, 2014; Kunte et al., 2014; Roy et al., 2014; USGS, n.d.) 

Mission 
Launch 

date 
Decommission Sensor Bands spatial resolution 

Revisit 
time 

Landsat 1 
July 23, 

1972 
January 7, 1978 MSS and RBV 

Multispectral 4-7: 68x83m (resampled 
to 60m); TIR 8: 68x83m (resampled to 

60m) 
18 days 

Landsat 2 
January 22, 

1975 
February 25, 1982 MSS and RBV 

Multispectral 4-7: 68x83m (resampled 
to 60m); TIR 8: 68x83m (resampled to 

60m) 
18 days 

Landsat 3 
March 5, 

1978 
March 31, 1983 MSS and RBV 

Multispectral 4-7: 68x83m (resampled 
to 60m); TIR 8: 68x83m (resampled to 

60m) 
18 days 

Landsat 4 
July 16, 

1982 
June 30, 2001 MSS and TM Multispectral 1-5; 7: 30m; TIR 6: 120m 16 days 

Landsat 5 
March 1, 

1984 
June 5, 2013 MSS and TM Multispectral 1-5; 7: 30m; TIR 6: 120m 

16 days 
 

Landsat 7 
April 15, 

1999 
Operational (SLC-off 
since May 31, 2003) 

ETM+ 
Multispectral 1-5; 7: 30m; 

Panchromatic 8: 30m; TIR 61-62: 60m 
16 days 

Landsat 8 
February 
11, 2013 

 
Operational OLI and TIRS 

Multispectral 1-7, 9: 30m; 
Panchromatic 8: 15m; TIR 10-11: 100m 

(resampled to 30m) 
16 days 

Earth 
Observing-1 

November 
21, 2000 

Operational ALI 
Panchromatic PAN: 10m; Multispectral 

1-7: 30m 
16 days 

Terra (EOS AM-
1) 

December 
18,1999 

Operational 
ASTER 

 
VNIR 1-3, 3B; 15m; SWIR 4-9: 30m; TIR 

10-14: 90m 
16 days 

Terra (EOS AM-
1) 

December 
18,1999 

Operational 
MODIS 

 
Multispectral 1-2: 250m; 3-7: 500m; 8-

36: 1km 
1-2 days 

Aqua (EOS PM1) 
May 4, 
2002 

Operational (failure 
on Band 6 shortly 

after launch) 
MODIS 

Multispectral 1-2: 250m; 3-7: 500m; 8-
36: 1km 

1-2 days 

SPOT-5 
May 4, 
2002 

March 31, 2015 SPOT-5 
Panchromatic PA-1 PA-2: 5m; 

Multispectral 1-3: 10m; SWIR: 20m 
2-3 days 

STS-99 
February 
11, 2000 

February 22, 2000 SRTM 
Band C and X: Worldwide DEM of 1 arc-

second (30 m) 
NA 

Suomi NPP 
28 

October, 
2011 

Operational VIIRS 
Multispectral M1-M16: 750 m; Imagery 
l1-l5: 350m; Low-light Day-Night-Band: 

750 m 

1-2 times 
a day 

ERS-1 
July 17, 

1991 
March 10, 2000 

RA, ATSR, MWR, 
SAR, WS, PRARE 

ATSR IR: 1km, MWS: 20hm; MWR: 
20km; SAR: 30m; WS: 50km; 

35 days 

ERS-2 
April 21, 

1995 
September 5, 2011 

RA, ATSR, MWR, 
SAR, WS, PRARE 

GOME 

ATSR IR: 1km, MWS: 20hm; MWR: 
20km; SAR: 30m; WS: 50km; GOME: 
5km vertical, 40-320km horizontal 

35 days 

ENVISAT 
March 1, 

2002 
April 8, 2012 

ASAR, MERIS, AAT 
SR, RA-2, MWR, 
GOMOS, MIPAS, 

SCIAMACHY, 
DORIS, LRR 

MERIS Band 1-15: RSR 1.2km, FSR 
300m; ASAR: 30m, WSM 150m, GMM 

1km; AATSR: 1km; GOMOS: 1.7km 
vertical 

3 days 

SENTINEL-1 

April 3, 
2014 

Operational SENTINEL-1A 
SAR Band C – SM: 5x5m; IW: 5x20m; 

EW: 20x40m; WV: 5x5m 

12 days 

April 25, 
2016 

Operational SENTINEL-1B 12 days 

SENTINEL-2 

June 23, 
2015 

Operational SENTINEL-2A 
Multispectral B1, B9, B10: 60m; B2-B4, 

B8: 10m; B5-B7, B8A, B11, B12: 20m 

10 days 

March 7, 
2017 

Operational SENTINEL-2B 10 days 

SENTINEL-3 

February 
16, 2016  

Operational SENTINEL-3A SLSTR – S1-S6: 500m; S7-S9, F1-F2: 
1km; OLCI – 21 spectral bands: 0,3 -

1.2km; SARL: Ku-band (~300m), C-band 
(~300m) 

SLSTR, 
OLCI: 1-2 

days; 
SRAL: 27 

days 

April 25, 
2018 

Operational SENTINEL-3B 
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Table A.2 - Single hazard methods for Wildfires (MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic; RS: Satellite Remote 
Sensing data incorporation) 

 

  

Method Year What does it do? Data requirements Scale Geographical scope Advantages Disadvantages Sources MT RS 

Fire Weather 
Index 

1977 

Combination of an Initial 
Spread Index and Buildup 
Index, resulting in a Fire 
Danger Index based on 
meteorological data. 

 Temperature, 
relative humidity, 
wind speed, rain, 
vegetation cover 

Variable Forests 

Good indicator of the potential of 
ignition, fire extension and 
extinction capacities; Well 

consolidated and used by most 
national agencies 

Demanding in terms of 
meteorological data 

(Bedia et 
al., 2015; 

IPMA, 
2015; Van 
Wagner, 

1987)  

DD  

Fuel moisture 
content 

2001 
Fuel moisture content 

correlation with Landsat 
optical bands 

Landsat imagery (1-
7) 

Regional Mediterranean 
Correlation of FMC with NDVI / 

NDII / LWCI / Relative greenness 
Not a risk assessment 

model. 

(Emilio 
Chuvieco et 

al., 2002) 
Pb-D  

Wildfire risk 2007 

GIS based risk model, 
combining 4 intermediate 

indices: fire detection 
probability, ignition risk, 

propagation risk and 
suppression probability 

Elevation data, 
buildings, roads, 

land use and 
watchtower 

locations. 

Regional 
Mediterranean 

(maritime influence) 

User friendly; built around easily 
available data; potential for semi-

automatic routines (allowing 
updates);  

Although the FWI was 
taken into consideration, 
no meteorological factors 

where included due to lack 
of data 

(C. O. A. 
Coelho et 
al., 2007) 

Pd-D  

Framework for 
fire risk 

assessment 
2009 

Fire risk assessment method 
based on fire occurrence 
probability and potential 

damages. . 

FMC (Terra-MODIS, 
NOAA-AVHRR 
images); Land 

cover/use; Lightning 
statistics; DTM; 

Degradation 
potential data; 

Landscape value;   

Regional/ 
Local 

Mediterranean 

Emphasis on potential damages of 
fire, rather than ignition and 
propagation potential (most 

common); Complete description of 
input factors (including human 

negligence, arson, recreation and 
land-use) 

Very demanding in terms 
of data requirements 

(socio-economic; 
erodibility; vegetation 
response ability); no 

validation to vulnerability 
components due to lack of 
estimations on fire effects 

(Chuvieco 
et al., 2010) 

Pd-P  

Vulnerability 
assessment 
indicators 

2014 

Identifies a set of indicators 
to determine the 

vulnerability of forest fires 
and coastal erosion 

Many socio-
economic variables, 

land cover/use, 
habitats, 

geomorphology 

Regional/ 
Local 

Mediterranean 

Includes a list of exposure, 
susceptibility/fragility and lack of 
resilience indicators for coastal 
erosion and wildfires, applied to 

Portuguese study sites 

Not a risk assessment 
model; Complexity 

resulting from too many 
indicators and 

corresponding data 
requirements; Lack of 

detail on the indicators 
description.  

(Tedim et 
al., 2014) 

- -



 

158 

 

Table A.2 (continuation) - Single hazard methods for Wildfires (MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic; RS: 
Satellite Remote Sensing data incorporation) 

  

Method Year What does it do? Data requirements Scale 
Geographical 

scope 
Advantages Disadvantages Sources MT RS

MODIS/ 
EFFIS 

2015 

Analysis of agreement between MODIS 
and the European Forest Fire 

Information System between 2000 and 
2009  

MODIS 
Global/ 

Regional 
Europe 

Analysis in terms of 
number of active fires 

and burned area by 
means of linear and 
quantile regressions. 

Not a risk assessment 
model 

(Vilar et 
al., 2015a) 

-  

MMT / 
FlamMap  

2016 

Pixel-based LiDAR canopy fuel 
characterization that uses that uses the 

MTT algorithm to model burn 
probability (pixel burns/total number 
of fires), conditional flame length (fire 

intensity estimate) and fire size. 

Topography, geospatial 
information on fuels, data 
on weather, fuel moisture 

content and fuel 
characteristics. 

 Mediterranean 

Preliminary exposure 
analysis for risk 
mapping and 
mitigation. 

Not a complete risk 
assessment methodology; 
No available LIDAR for our 

study area (besides the 
Aveiro Lagoon). 

(Alcasena 
et al., 
2016) 

Pb-
P 
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Table A.3 - Single hazard methods for Soil Erosion (MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic; RS: Satellite 
Remote Sensing data incorporation RS: Satellite Remote Sensing data incorporation) 

 

Method Year 
What does it 

do? 
Data requirements Scale 

Geographical 
scope 

Advantages Disadvantages Sources MT RS 

USLE 1978 

Soil erosion 
estimation in 
croplands on 
gently sloping 
topography 

Rainfall and runoff 
factor, Soil erodibility 
factor, Topography, 

Land cover and 
management, Support 

practice   

Local 
Gentle slope 

croplands - USA 

Widely studied; Useful for local 
conservation planning at an 

individual property level 

Fails to properly distinguish 
between soil and climatic 

conditions in the infiltration 
process 

(Wischmeier and 
Smith, 1978) 

DD -

Morgan-
Morgan-
Finney 

1984 
Empirical model 

for predicting 
annual soil loss 

Rainfall energy, 
overland flow, plant 

height, ground cover, 
rainfall interception, 
evapotranspiration, 

hydrologic depth of soil, 
top soil layer bulk 

density, soil surface 
cohesion, slope 

 Local Mediterranean 

Some of the simplicity of USLE/ 
RUSLE models but has a more 

consolidated physical structure, 
separating the Soil Erosion 

Process into a water phase and 
sediment phase 

Extremely data demanding 
(introducing sources of error and 

uncertainty) 

(Vieira et al., 
2014, 2010) 

DD -

RUSLE 1997 
Calculates 

annual soil loss 

Precipitation, soil 
properties, topography, 

land cover, 
experimental factor 

Regional 
/ Local 

USA / 
Mediterranean 

Less demanding in terms of data 
requirements; widely studied 

Tendency to overestimate runoff 
and soil erosion rates; still 

depending on soil properties and 
experimental factor 

(D. Lu et al., 
2004; Renard et 
al., 1997, 1994; 

Vieira et al., 
2014, 2010)  

DD  

ERMIT 2006 

Provides a 
distribution of 

post -fire 
erosion rates 

with likelihood 
of their 

occurrence 

Topography, vegetation 
cover, soil texture and 

burn severity 

Regional 
/ Local 

USA / 
Mediterranean 

Suited to simulate the early 
stages of the disturbance 

window in post-fire scenarios; 
Predicts the probability of 

sediment delivery from the base 
of a hillslope  

Doesn’t provide average annual 
erosion rates 

 
(Robichaud et al., 

2007; Vieira et 
al., 2014)  

Pb-
P 

-

PESERA 2012 

Estimation of 
runoff and 

erosion rates: 
constructed 

around a central 
water balance, 

separating 
precipitation 
into possible 

pathways; 

Relief, soil and 
vegetation 

characteristics, climate 
data 

Regional 
/ Local 

Europe 

Consistent and objective 
estimates of soil erosion rates 

with regional applicability; 
Model flexibility; Capable of 
providing long-term average 

values; Possibility of using 
scenarios; Ability to isolate fire-

induced from ‘background’ 
erosion 

Data demanding, particularly 
rainfall; dependent of national 

spatial soil data (uniformity and 
harmonization issues); 

Concentrated on dominant 
processes but poorly estimating 

the remaining; Over-estimation of 
post fire soil erosion in thin stony 

soils 

(Esteves et al., 
2012; Kirkby et 

al., 2008)  

Pb-
D 
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Table A.4 - Single hazard methods for Floods (MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, Va: Variable; RS: 
Satellite Remote Sensing data incorporation RS: Satellite Remote Sensing data incorporation) 

 

  

Hazard 
type 

Method Year What does it do? 
Data 

requirements 
Scale 

Geographical 
scope 

Advantages Disadvantages Sources MT RS 

Fl
u

vi
al

 

Empirical 
Curve 

Number 
1972 

Estimation of runoff volume 
from watershed 

Land use, soil 
types, DEM, 

average annual 
precipitation, 

average annual 
temperature 

Local / 
Regional 

USA 
Usable for the design of 
water control structures 

Not intended for 
reproducing hydrographs 

of actual floods; Little 
quantitative information; 
Developed to be used in 

the USA 

(Mockus et 
al., 1972)  

DD 

HBV 1976 

Semi-distributed rainfall-
runoff conceptual model, 
which simulates discharge 
using rainfall, temperature 
and estimates of potential 

evaporation 

Daily 
temperature, 
precipitation, 

evaporation, land 
use, geology, 

elevation 

Local / 
Regional 

River basins 

Usable with different 
climatic conditions; Has 

many applications, 
including flood 

forecasting 

Large number of 
parameters need to be 

found through 
calibration; cannot 

simulate high resolution 
flood plain processes 

(Bergström, 
1976; 

Grillakis et 
al., 2010; 

Lindström et 
al., 1997)  

DD 

TOPMODEL 1979 

Semi distributed conceptual 
model; Purely topographic 
interpretation, measuring 

the capacity to accumulate 
water 

Catchment 
topography, soil 

transmissivity 

Local / 
Regional 

River basins 

Can also be considered 
as a physical model as its 

parameters can be 
theoretically measured; 
can be used in single or 

multiple sub 
catchments; Allows to 

calculate water depth or 
storage deficit at any 

location 

Large number of 
parameters need to be 

found through 
calibration; cannot 

simulate high resolution 
flood plain processes 

(Beven and 
Kirkby, 
1979)  

DD 

WEPP 1989 

Continuous simulation to 
predict soil loss and 

deposition, rather than 
average net soil loss; 

Contains its own process-
based models for hydrology, 

water balance, plant 
growth, residue 

decomposition and soil 
consolidation; 

Daily rainfall data; 
Daily discharge 
data; Soil map; 
DEM, Landsat 

images; 
Toposheets;  

Local / 
Regional 

River watersheds 

Capable of predicting 
spatial and temporal 

distributions of net soil 
loss/gain for entire 

hillslopes; Simulates the 
effects of vegetation in 

individual storms; 

Too complex and data-
demanding to be used as 
simple management tool 
and as a screening model 

(Tiwari et 
al., 2000; 
Verma et 
al., 2010)  

Pb-P 
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Table A.4 (continuation) - Single hazard methods for Floods (MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, Va: 
Variable; RS: Satellite Remote Sensing data incorporation RS: Satellite Remote Sensing data incorporation) 

 

  

Hazard 
type 

Method Year What does it do? 
Data 

requirements 
Scale 

Geographical 
scope 

Advantages Disadvantages Sources MT RS

Fl
u

vi
al

 
 

SWAT 1993 

Physical model that 
breaks an entire 

catchment into sub 
sections 

Daily rainfall data, 
topography, land 
use, vegetation 

and soil 
characteristics 

Local / 
Regional 

River basins 

Useful to simulate water 
sediment circulation, 

agriculture production 
and pollutants in 

ungauged basins; efficient 
for long term simulations 

Complexity and highly 
dependent on data;  

(Gassman et 
al., 2007) 

Pb-
P 



LISFLOOD 1999 

Simple raster-based 
model for flood 

inundation simulation 
due to extreme rainfall 

DEM; land use; 
Manning 

Roughness 
Coefficients 

Local / 
Regional 

Fluvial and 
coastal 

floodplains 

Accounts for influences of 
topography, precipitation, 
antecedent soil moisture 

content, land use type 
and soil type; Useful for 

flood extent/depth maps 
in large river basins 

Lacks consideration about 
ground water flow or 

other to revert the water 
to go back into the river 

channel. 

(Bates and De 
Roo, 2000; 

Lavalle et al., 
2005; Van der 
Sande, 2001)  

Pb-
P 



Planar water 
surface 

2000 

Static flood extension 
maps obtained from 
DEM overlaid with a 

planar surface. All areas 
below that surface are 

considered flooded 

LIDAR / DEM 
Local/ 

Regional 
River 

floodplain 

Simplistic approach with 
very few data 
requirements 

Completely dependent on 
DEM resolution; Absence 

of channel/floodplain 
routing, surface 

penetration or any other 
flow dynamics;  

(Priestnall et 
al., 2000; 

Rathjens et 
al., 2016; 

Sangwan and 
Merwade, 

2015)  

DD 

Remote 
sensing 

based flood 
extent 

estimation 

2002 

Flood inundation extent 
obtained from a 

combination of Landsat 
and DEM 

M Radarsat-1, 
Landsat TM 

Regional 
Coastal 

floodplain 

Reliable results for coastal 
floodplains with larger 
spatial extents and low 
relief; Complementary 

use of DEM to Landsat for 
dense canopies 

Errors resulting from 
lower DEM resolution 

(Wang et al., 
2002) 

DD 

Multi-
attributes 
semantic 
partitions 

2006 

Integration of urban 
growth, vulnerability 
and dispersion flow 

layers, obtained with RS 
and using a fuzzy 

integral 

ESR-SAR, SRTM-3, 
SPOT4 

Local Urban areas 

Application in urban 
growth contexts, where 
there is no monitoring of 

food hazards 

Experimental results; 
Methodological 

complexity 

(Onana et al., 
2008) 

Pb-
D 
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Table A.4 (continuation) - Single hazard methods for Floods (MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, Va: 
Variable; RS: Satellite Remote Sensing data incorporation RS: Satellite Remote Sensing data incorporation) 

 

Hazard 
type 

Method Year What does it do? Data requirements Scale 
Geographical 

scope 
Advantages Disadvantages Sources MT RS 

Fl
u

vi
al

 

 

Risk Map 
Germany 

2006 

Regionalization approach for 
flood peak discharge; Statistical 
analysis of ungauged areas and 
very long recurrence intervals; 
Hydrodynamic simulations for 
hazard and risk mapping; GIS-
based software; Multifactorial 

approach for damage estimation 

Gauge data; 
(Inundation depth; 

flow velocities); DTM; 
land use; 

precipitation; damage 
functions 

Local/ 
Regional 

River basins 

Allows to map 
the extent of 

inundation zones 
and water depths 

for different 
return periods, 

including 
ungauged areas; 

Requires long series 
of gauge data 

(Büchele et al., 
2006) 

DD 
/ 

Pb-
P 

- 

Topographic 
index / 

Topographic 
wetness 

index 

2007 

Modified version of TOPMODEL 
for the delineation of flood 

prone areas based on 
topography 

DTM (e.g., ASTER, 
SRTM) 

Regional River Basins 

 
Good 

performance for 
broad resolutions 
and basins with 

higher slope 
ratios  

Not a complete risk 
assessment method 
(probabilities are not 
considered); Doesn’t 

consider the 
influence of artificial 

structures 

(Jalayer et al., 
2014; Kirkby et 

al., 2008; 
Manfreda et al., 

2014, 2011, 
2008; Qin et al., 

2011)  

DD  

HEC-
HMS/HEC-
RAS flood 

risk analysis 

2010 

Flood risk analysis based on HEC-
HMS (Hydrologic Modelling 
System) and HEC-RAS (River 
Analysis System); HEC-HMS 
simulates rainfall losses and 
runoff from a single rainfall 

event or a continuous rainfall; 
HEC-RAS used to obtain flood 

extent and depth. 

SAR, Digital Contour 
Maps, Spot heights, 

land use, LiDAR, 
rainfall gauge data, 
stream flow gauge 
data; demography; 

building construction 
materials; household 
vulnerability survey 

Regional River Basin 

Production of 
hazard maps 

corresponding to 
different return 

periods; 
Consideration of 
vulnerability of 
population and 

buildings 

Dependent on gauge 
data (rainfall and 
stream flow) and 

surveys; Difficult to 
determine 

appropriate cross 
section locations 

where they are not 
explicitly 

represented; 
Increased 

computational cost 

(Brunner, 2016; 
Samarasinghe et 

al., 2010; 
Scharffenberg, 

2013)  

Pb-
D 

 

Static flood 
inundation 

model 
2011 

Simple static flood inundation 
model performed by filling 
global DEMs with water;  

SRTM, HYDRO1K, field 
observation of 

watermarks 

Local / 
Regional 

Coastal 
floodplain 

Simple approach; 
vertical accuracy 

assessment of 
global datasets 
on a local scale 

Some ambiguity in 
radar 

measurements; 
questionable 
accuracy and 

resolutions of global 
DEMs 

(Karlsson and 
Arnberg, 2011)  

DD 
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Table A.4 (continuation) - Single hazard methods for Floods (MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, Va: 
Variable; RS: Satellite Remote Sensing data incorporation RS: Satellite Remote Sensing data incorporation) 

 

  

Hazard 
type 

Method Year What does it do? Data requirements Scale 
Geographical 

scope 
Advantages Disadvantages Sources MT RS 

Fl
u

vi
al

 

 

Flood prone 
areas 

identification 
based on RS 

elevation 
data 

2012 

Pattern classification 
techniques for the 

delineation of flood-
prone areas and 

hazard graduation 

Existing flood hazard 
maps; Void filled and 

Hydrological 
condition elevation 

models 
(HydroSHEDS); 
distance from 

nearest stream, 
elevation to the 
nearest stream, 

surface curvature, 
contribution area, 

local slope 

Regional River basins 

Allows to distinguish areas 
subject to flood hazard with 
a return time greater than 
the used based on relative 

elevation and distance from 
the nearest stream; DEM 

resolution enough to 
describe local terrain 

morphology; 
Recommended for primary 

assessments, to identify 
flood-prone areas and 
hazard grading in large 

regions 

DEM resolution not 
enough for the 

recognition of flood 
control structures 

(Degiorgis 
et al., 
2012) 

Pb-
D 



Probabilistic 
GIS-based 

method for 
delineation of 

urban 
flooding risk 

hotspots 

2013 

Combines the 
Topographic Wetness 

Index, Urban 
morphology types and 

census data, using 
maximum likelihood 

to estimate the 
threshold to identify 

flood-prone areas 

DEM, rainfall annual 
maxima, Population 

density 
Local 

Portions of river 
basins/ Cities 

Uses Bayesian parameter 
estimation for the 
characterization of 

uncertainties in delineating 
the potentially flood-prone 

areas (by calculating the 
complementary probability 

of false values) 

Uncertainties of 
TWI threshold lead 

to considerable 
differences in the 

results  

(Jalayer 
et al., 
2014) 

DD 

Flood 
susceptibility 

mapping 
2016 

Delineation of flash-
flood prone areas 

through integration of 
catastrophe theory 

and analytical 
hierarchy process in a 

GIS;  

Ground surface 
elevation, slope 
angle, curvature, 

topographic wetness 
index, stream power 

index, curve 
numbers, and 
distance from 

intermittent streams 

Regional Arid regions 

Few data requirements; 
application in vast remote 
areas; sensitivity analysis 

for each factor is provided; 
the catastrophe theory 

does not involve the 
decision maker's opinion in 

assigning weights for the 
causative factors 

(decreased subjectivity) 

Standardized and 
normalized data;  

(Al-Abadi 
et al., 
2016) 

DD 
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Table A.4 (continuation) - Single hazard methods for Floods (MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, Va: 
Variable; RS: Satellite Remote Sensing data incorporation RS: Satellite Remote Sensing data incorporation) 

 

  

Hazard 
type 

Method Year What does it do? Data requirements Scale 
Geographical 

scope 
Advantages Disadvantages Sources MT RS 

 
C

o
as

ta
l 

DSAS 
early 

1990's 

Rate-of-change statistics 
for a time series of 

shoreline vector data 

Optical/Microwave 
imagery 

 Regional Coastal areas 

Allows the use of 
shoreline proxies which 

can be obtained 
exclusively with RS 

techniques 

Not applicable on 
urban/artificial 

shorelines 

(Cenci et al., 
2017b, 2015, 

2013; 
Himmelstoss, 
2009; Virdis 
et al., 2012)  

DD 

Coastal 
Vulnerability 

Index 
2005 

Coastal Vulnerability 
Index based on relative 

risk variables; 

Geomorphology (RS 
data); Shoreline 
change rate (RS 

data/DSAS), Coastal 
slope (Bathymetries); 

Relative Sea-Level 
change  

(tide gauges); Mean 
significant wave 

height; Tidal Range 
(e.g., WXTide 

software) 

Regional Coastal areas 

Allows the possibility of 
aggregating data 

obtained from diverse 
sources (including. RS 

data); Objective 
assessment of natural 
factors contributing to 

the evolution of the 
coastal zone; Useful for 
management purposes 

Dependent on 
gauge data 

information (Tidal 
Range); 

Subjectivity 
associated to data 

ranking 

(Kumar et al., 
2010; 

Pendleton et 
al., 2005)  

Pb-
D 



DIVA 2006 

Dynamic and Interactive 
Vulnerability Assessment 
tool. Quantitative coastal 
vulnerability indicators. 
Database of biophysical 

and socio-economic 
coastal data; Sea level and 
socio-economic scenarios; 

Integrated model with 
several interacting 

modules and a graphical 
interface. 

80 biophysical and 
socioeconomic 

parameters (access 
to a pre-defined 

database) 

National 
/ 

Regional 
/ 

Global 

Coastal areas 

Freely available; 
Intuitive and user-
friendly graphical 

interface; Allows basic 
and advanced level 

interactions (using own 
scenarios and 

alternative algorithms); 
Modelling framework 
and semi-automated 

development process. 

Not designed for 
local scale 

applications or to 
be used  as a 

decision support 
tool; Local data 
inconsistencies; 

Does not provide 
expert level GIS 

functionality; 
Several relevant 

drivers and 
processes were 

not included 

(Hinkel and 
Klein, 2009) 

Pb-
D 

- 
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Table A.4 (continuation) - Single hazard methods for Floods (MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, Va: 
Variable; RS: Satellite Remote Sensing data incorporation RS: Satellite Remote Sensing data incorporation) 

 

  

Hazard 
type 

Method Year What does it do? Data requirements Scale Geographical scope Advantages Disadvantages Sources MT RS 

 

C
o

as
ta

l 

Coastal 
Hazard 
Wheel 

2012 
Generic framework for 

coastal hazards 
assessment 

Google Earth, Bing maps, 
Satellite imagery 

Sub-
regional 

to 
national 

Coastal areas 

Hazard screening in 
areas with limited data 

availability; Covers 
ecosystem disruption 

hazards, gradual 
inundation, salt-water 
intrusion, erosion and 

flooding. 

Based on a 
geological layout 

with unknown 
certainty; 

Qualitative 
assessment; No 

integration between 
hazards 

(Appelquist
, 2013; 

Appelquist 
and 

Balstrøm, 
2015)  

Pb-D 

THESEUS 2014 

Exploratory tool for 
integrated coastal risk 
assessment, including 

the effects from 
different scenarios 

DEM, hydraulic structures and 
infrastructures position and 
geometry; land use; socio-

economic indicators; habitats 
and species 

Regional Coastal areas 

Freely available; 
Preliminary risk 

assessment, 
identification of 

threatened areas and 
mitigation solutions; 

Multi-criteria analysis; 
Expert weighting of 

indicators 

Limited in terms of 
the inclusion of the 
resilience concept; 
Experimental tool 

(Simcic et 
al., 2014) 

DD 

XtremRisk 2015 

Integrated risk analysis 
to coastal floods. 

Storm surge generator, 
joint probability 

analysis, reliability and 
breach analysis, 

damage assessment 

Tidal gauge and wind records; 
damage functions;  

Local / 
Regional 

Estuary/Open coast 
Uses a storm surge 

generator to reproduce 
storm surge curves 

Complexity; 
Requires large 
record series 

(Oumeraci 
et al., 2015) 

DD -

CERA 2016 

Tool for assessing risk 
of coastal erosion 

(QGIS plugin); 
Incorporation of 
weighted coastal 
vulnerability and 

consequence 
parameters; Risk 

matrix. 

Distance to shoreline, 
topography, geology, 

geomorphology, land cover, 
anthropogenic actions, 

maximum significant wave 
height, maximum tidal range, 

erosion/accretion rates, 
population, employment, 
ecology status, historical 

heritage 

Local Coastal areas 

Low data requirements, 
fast tool, easy 

application, open 
software, weighting of 

vulnerability parameters 
based on expert 

judgement and multi-
criteria analysis 

Dependent on data 
obtained from other 

methods; No 
account of 

probabilities 

(Narra et 
al., 2017) 

Va 
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Table A.5 - Multi-hazard methods (AG: Aggregation; MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, Va: Variable; IN: 
hazard interactions; RS: Satellite Remote Sensing data incorporation) 

 

  

Name Year What does it do? 
Data 

requirements 
Scale 

Geographical 
scope 

Advantages Disadvantages Sources Results MT AG IN RS 

Community 
Risk 

1999 

Comparison of single 
hazard risk ratings, 
calculated from the 

exposure of elements 
according to scenarios 
of exceedance of risk 

acceptability and 
hazard vulnerability 

rankings 

Historical event 
records, gauge 
data, building 

characteristics and 
road data, land 

cover, DEM 

Local 
Tropic 

community 

Quantitative 
comparison 

between multiple 
hazards 

No overall multi-hazard 
classification; overall 

vulnerability index 
assuming equal 

contribution from all 
hazards; Results provided 

as suburb-by-suburb 
ranks; Empirical 

assumptions introduce 
errors and uncertainties 

(Granger et 
al., 1999) 

Element-
oriented 

DD 
/ 

Pb-
P 

 - - 

Munich 
Reinsurance 

company 
2003 

Risk as the combination 
of Hazard exposure and 

vulnerability. Hazard 
Exposure: Average 

annual losses combined 
with probable 

maximum 
loss; Vulnerability: 
Building class and 

regulations/ planning in 
respect to hazards 

City statistics, 
building data, 
historical loss 

data, demography 

Local Megacities 

Absolute 
approach; Hazard 

weighting 
calculated from 
historical loss 

data; 
Determination of 

probable 
maximum loss 

(1000 year); 

Limited application 
(megacities); The index is 
highly influenced by the 
exposure values, while 

vulnerability plays a 
secondary role; 

Vulnerability is highly 
dependent on the quality 

of available data 
comparability issues); Lack 

of detail in method 
description 

(Munich 
Reinsurance 
Company, 

2003) 

Absolute 
potential 

loss values 
(per 

megacity) 

DD 
/ 

Pb-
P 

 - - 

Disaster Risk 
Index 

2004 

Sum of single hazard 
assessments extracted 
from EM-DAT. Provides 
hazard frequency per 
country and hazard-
specific vulnerability 

indicators. Cluster 
analysis and PCA per 

country. 

EM-DAT Global World 
Worldwide 
application 

Only represents primary 
hazard events recorded in 
global disaster databases 
(even when the majority 
of loss is associated other 

different hazards 
triggered by the primary 
event); Refers exclusively 

to loss of life. 

(UNDP, 
2004) 

Loss of life DD  - 
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Table A.5 (continuation) - Multi-hazard methods (AG: Aggregation; MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, 
Va: Variable; IN: hazard interactions; RS: Satellite Remote Sensing data incorporation) 

 

  

Name Year What does it do? Data requirements Scale 
Geog. 
scope 

Advantages Disadvantages Sources Results MT AG IN RS 

HAZUZ-MH 2004 

Step-by-step software 
guide to establish multi-
hazard risk assessments. 

Includes different levels of 
analysis and its own 
provided database 

(optional). Works with 
deterministic or 

probabilistic scenarios for 
loss estimation 

Optional data 
regarding 

population, 
structures and 
vulnerability 

Census 
tract 

USA 
User friendly but still 

customizable; Includes 
its own database. 

Designed for the USA; 
Only provides 

aggregated 
estimations of lost, 
without identifying 

which specific 
elements will be 

affected; no 
aggregation for multi-

hazard interactions 

(FEMA, 
2004) 

General 
application 

DD 
/ 

Pb-
D / 
Pb-
P 

 - - 

European 
integrated 
map of risk 

from 
weather 
driven 
events 

2005 

Incorporation of 
vulnerability, exposure and 
hazard, into one risk layer, 

specific for each hazard 
type; the multiple hazards 
were not aggregated into a 

unique representation 

DEM, Land cover , 
European Soils 

Map, EFAS flood 
forecasts, Satellite 
imagery (post-fire), 
EFIS, Temperature, 

Humidity, Socio-
economic statistics, 

mitigation 
measures 

NUTS 3 
European 

Union 

Vulnerability and 
exposure specific for 

each hazard; 
Configurable risk-

scenarios by 
modifying the hazard, 

exposure or 
vulnerability; Employs 
validated models and 

homogeneously 
generated data 

Impossible to include 
return period 

calculations (data 
unavailability); 

simplified procedures 
and assumptions 

were applied; Two-
dimensional flood 

modelling; Damage 
assessment not 
including cars 

(Lavalle 
et al., 
2005) 

General 
application 

Pb-
D 

- -  

Global 
multi-
hazard 
analysis 

2005 

Mortality/Economic loss 
risks (weighted values of 

population/GDP); Exposure 
according to vulnerability 

coefficient (20-year 
historical 

mortality/economic 
losses). Multi-hazard index 

as a sum of individual 
hazard estimates 

GDP (World Bank 
Classification), 

Population, EM-
DAT;  

Country World 

Compares the global 
multi-hazard analysis 
with regional/ local 

case study examples  

Data inconsistency: 
Broad representation 

of global loss 
estimations which 

vary unevenly in the 
EM-DAT records; 

coarse resolution of 
global data on 

socioeconomic and 
vulnerability variables 

(if any exist) 

(Dilley 
et al., 
2005) 

General 
application 

DD  - - 
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Table A 5 (continuation) - Multi-hazard methods (AG: Aggregation; MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, 
Va: Variable; IN: hazard interactions; RS: Satellite Remote Sensing data incorporation)  

 

  

Name Year What does it do? Data requirements Scale 
Geog. 
scope 

Advantages Disadvantages Sources Results MT AG IN RS 

ESPON 2006 

Integrated hazard and risk 
overview on the European 

territory. Application of 
the Delphi method to 
weight several hazard 

assessments 

Combination of 
hazard-specific indices 
with historical records. 

NUTS 3 EU 

First integrated 
approach in 

Europe; Case 
study testing 

Preliminary 
approach based on 

preliminary data 
sets; 

(Schmidt-
Thomé et al., 

2006) 

General 
application 

Pb-
D 

 - -

Urban multi-
hazard risk 

analysis 
using 

2006 
Characterization of hazard 

susceptibility and  
elements at risk 

Building footprint, 
aerial photographs, 

field surveys, 
economic and 

demographic data; IRS 
LISS III - PAN and 

ASTER images 

Local Urban 

Alternative to 
restricted data 

access situations; 
Element-oriented 

(buildings) 

Does not quantify 
risk - qualitative 
combination of 

multi-hazard 
susceptibility; 

General approach 

(Khatsu and 
Van Westen, 

2005) 

Element-
oriented 

- - -  

Multi-risk 
assessment 

2006 

Individual hazard 
assessments determined 

from exceedance 
probabilities of potential 

events and damages 
(distribution functions). 
Estimation of loss with 

damage functions 

Time series of hourly 
wind speeds, averaged 
over a sampling period 

of 10 min; gauge 
discharge data; seismic 

records; official 
topographic-

cartographic system 
(land register) 

Local Cities 

Risk curves with 
exceedance 

probabilities and 
direct monetary 
losses, provide 

valuable 
information for 

disaster 
mitigation 

Uncertainties 
where not 

considered (which 
are expected to be 

high); 

(Grünthal et 
al., 2006) 

Monetary 
economic 

losses 
DD - - - 

Total 
estimation 

of risk 
2009 

Empirical approach to 
select factors for hazard, 

vulnerability and elements 
at risk exposure. 

Distribution according to 
classes based on 

experience of authors. 
Total estimation of risk 
determined as a sum of 

both hazards, population 
and land use 

Topography, aerial 
photos, soil map, 

geohydrology map, 
irrigation area map, 
climate map, slope 

map, watershed 
classification map, 

geological map, 
district map, field 

survey 

Regional 
River 
basin 

Possible 
stakeholder and 

public 
acceptability of 
results (easy to 

understand) 

Simplistic empirical 
approach; No 

details about the 
application of RS 

methods; No 
hazard interaction 

is considered. 

(Wipulanusat 
et al., 2009) 

General 
application 

Pb-
D 

 -  
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Table A.5 (continuation) - Multi-hazard methods (AG: Aggregation; MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, 
Va: Variable; IN: hazard interactions; RS: Satellite Remote Sensing data incorporation) 

 

  

Name Year What does it do? Data requirements Scale 
Geog. 
scope 

Advantages Disadvantages Sources Results MT AG IN RS 

Principles of 
multi-risk 

assessment 
2009 

General procedure 
for multi-hazard risk 

assessments. 
Comparison between 

single-risk 
assessments and a 

long-term scenario of 
triggering events, 
using the Bayesian 

event structure 
principle 

Single-hazard 
annual risk for 

human life; 
Historical event 

records 

Local 

Mediterra
nean 

municipalit
y  

Accounts for 
weighting and 

merging of multi-
hazard interactions; 

Describes the 
general steps to be 

used in MRA  

Generic real case 
example without the 
aim of providing real 
estimations; Only one 

scenario of hazard 
interactions  

(Marzocchi 
et al., 2012; 
Marzocchi 
and Woo, 

2009) 

Element-
oriented 

(Human life 
loss) 

Pb-P   - 

Regional 
RiskScape 

2011 

Software with 
components of a risk 

model: hazards, 
assets (elements at 

risk) and vulnerability 
models (or fragility 

functions) 

Customizable 
parameters 

according to each 
module (hazard, 
assets and loss) 

Local 

Urban 
centres 

and small 
communiti

es 

Allows function calls 
of external hazard 

computer models, or 
surfaces from pre-

computed hazard or 
observed scenarios 

Lack of uncertainty 
quantifiers; generic 

approach;  
does not allow 
modelling the 

interaction between 
multiple hazards and 

assets in a risk 
scenario 

(Schmidt et 
al., 2011) 

Element-
oriented 

(economic 
loss) 

Va  - - 

Generic multi-
risk approach 

2014 

Generic 
probabilistic 

framework based on 
sequential Monte 
Carlo Method for 

coinciding and 
triggered events 
(Markov chain), 

time-variant 
vulnerability and 

exposure. 

Generic data (e.g., 
hazard intensity, 

long-term 
occurrence rate, 

damage ratio) 

Variable Variable 

Probabilistic 
assessment of 

losses; Recognition 
of more or less 

probable risk paths; 
Introduction of risk 

migration matrix 

Complexity; Lack of 
real-word application 

and capability of 
dealing with 

uncertainties, domino 
effects in 

socioeconomic 
networks, climate 

change, infrastructure 
ageing and exposure 

changes 

(Mignan et 
al., 2014) 

Conceptual/ 
General 

application 
DD   - 
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Table A.5 (continuation) - Multi-hazard methods (AG: Aggregation; MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, 
Va: Variable; IN: hazard interactions; RS: Satellite Remote Sensing data incorporation) 

 

  

Name Year What does it do? Data requirements Scale 
Geog. 
scope 

Advantages Disadvantages Sources Results MT AG IN RS 

Three-level 
framework for 

multi-risk 
assessment 

2015 

Multi-risk 
assessment 

framework which 
includes a 

decision-tree flow 
chart for 

qualitative, semi-
quantitative 
(matrix) or 

quantitative 
assessments 

(Bayesian 
networks) 

Pre-assessment of: 
single hazards (e.g., 
rate of occurrence, 

pathway, 
intensities), 

vulnerabilities (e.g., 
people, buildings) 
and consequences 

(loss of life, 
economic losses, 
environmental 
degradation) 

Variable Variable 

Flexible structure; 
Quantitative assessment of 

hazard interactions and 
dynamic vulnerability; 
Includes a theoretical 
example of Bayesian 

networks to estimate the 
probability of 

triggering/cascade effects; 
Capable of treating 

uncertainties of hidden 
geodynamic variables 

Requirements of pre-
assessment of single 

hazards, 
vulnerabilities and 

consequences; More 
suitable to geo-

dynamic hazards; No 
real-case application  

(Liu et 
al., 

2015) 

Conceptual 
/ General 

application 
DD   - 

Hazard forming 
environmental 

analysis 
2016 

Multi-hazard risk 
assessment based 
on the analysis of 
stable and trigger 
factors. Includes 4 
classes of hazard 

interaction trigger 
analysis: 

independent, 
murex, parallel and 

series 

Stable factors (river 
basins, landform,  

County 
River 
basin 

Comparison of stable and 
trigger factors according to 

multiple hazards; Trigger 
factor analysis considers 

hazard interactions besides 
domino effects; 

Vulnerability addresses 
multiple hazards as a group 

Unable to cope with 
hazards without 

obvious environment 
characteristic (e.g., 

storm); Limited 
knowledge about 

triggering factors can 
induce additional 

relationships between 
natural hazards; 

generic case study 
application 

(Liu et 
al., 

2016a) 

Conceptual 
/ General 

application 
Va   - 
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Table A.5 (continuation) - Multi-hazard methods (AG: Aggregation; MT: Model type – DD: Data-Driven, Pb-D: Physically based – Deterministic, Pb-P: Physically based – Probabilistic, 
Va: Variable; IN: hazard interactions; RS: Satellite Remote Sensing data incorporation) 

 

 

Name Year What does it do? Data requirements Scale 
Geog. 
scope 

Advantages Disadvantages Sources Results MT AG IN RS 

Comparative 
performance of 

MHRA 
methods 

2016 

Comparison of two 
types of approaches in 

multi-hazard risk 
assessment: risk index 

and mathematical 
statistical method 

General statistics (e.g., 
demography, 

economy), disaster 
history (EM-DAT) 

National Country 

Presents the relative 
merits of both 

approaches resulting 
from a general case 

study application 

Generic examples 
using simplified 

approaches 

(Liu et 
al., 

2016c) 

Conceptual 
/ General 

application 

DD 
/ 

Pb-
P 

  - 

MmhRisk-HI 2016 

Calculates possible loss 
and exceedance 

probability of multiple 
hazards, including their 

interactions. Uses a 
Bayesian Structure. 

Treats multiple hazards 
as a group with 
corresponding 

vulnerability-related 
indicators. 

Environmental data 
(meteorological), 

Disaster data (type, 
time place direct 
economic loss), 

Socioeconomic data 
(GDP, income, 

population density, 
gender ratio, age 

structure, 
telecommunication 

infrastructure, 
transport route, 

medical provision, 
social dependency) 

Province Regional 

Addresses hazard 
interactions; 
Possibility of 

integration in a GIS 
environment to map 
risk areas; benefits 

from a Bayesian 
structure to select 

indicators and 
exceedance 
probability 

calculation; Effective 
estimation in a real 

loss situation; 

Unable to provide 
loss per individual 
hazard; Based on a 

limited set of 
actual hazard-

interaction; 
Absence of 
uncertainty 
quantifiers 

(Liu et 
al., 

2016b) 

Economic 
losses 

provided 
DD   

Clustering and 
analytical 
hierarchy 

process applied 
to multi-hazard 

risk 
assessments 

2016 

Clustering of 
monuments based on 
parameters obtained 

with RS. Addressing of 
individual and unique 

characteristics using the 
Analytical Hierarchy 
Process. Overall risk 

hazard map 
determination. 

Clustering into groups 
followed by AHP for 

each class. 
Interpolation of weight 
factors and application 

into an overall risk 
map. 

Regional Regional 

Allows the 
integration of several 

single-hazard 
assessments in an 
overall hazard risk; 

Objective 
methodology for 

hazard aggregation 

Hazard interaction 
is not taken into 

consideration; AHP 
lacks the ability to 

cope with data 
uncertainty and 

imprecision 

(Agapiou 
et al., 
2016) 

Element-
oriented 

DD  - 



 

172 

 

Appendix B 

Table B.1 - Fifty largest precipitation events, from 23 meteorological stations located in the Vouga River watershed 
(between 1979/12/30 and 2017/09/12); Corresponding availability of satellite images: LS—Landsat; S—Sentinel; This 

table is ordered according to the maximum return period (descending). 

 

  

Date Maximum 
Daily 

Precipitation 
(mm) 

Maximum 
Return 
Period 
(Years) 

Available Satellite Images Flood Event Records (Alves et al., 
2010; CMI, 2016) 

t1 t2  

1995/12/25 180.0 32.7 - - Águeda, Albergaria-a-Velha, 
Aveiro, Murtosa 

2007/06/14 85.0 29.3 LS5 (2007/06/04) LS5 (2007/06/20) * Ovar 

#2003/01/19 80.6 26.5 LS7 (2002/12/07) LS7 (2003/01/24) Estarreja, Oliveira do Bairro, 
Vagos, Murtosa 

2008/04/10 96.1 24.9 - LS7 (2008/04/11 *) Estarreja , Murtosa, Mira, Vagos, 
Oliveira do Bairro 

1993/10/09 124.9 24.2 - - - 

1995/12/26 114.5 23.6 - - Águeda, Albergaria-a-Velha , 
Aveiro, Murtosa 

1983/11/22 97.0 23.4 - - - 

1985/02/09 120.0 23.1 - - - 

2004/12/01 90.0 22.9 LS7 (2004/11/26) LS7 (2004/12/12 *) - 

1989/12/21 120.0 19.8 - - - 

2001/01/27 150.1 19.6 - LS7 (2001/02/03) * Albergaria-a-Velha, Aveiro , 
Estarreja, Ílhavo, Sever do Vouga, 

Vagos, Mira , Murtosa 

#2016/02/13 128.9 16.4 S1 (2016/02/06); 
LS8 (2016/02/05) 

LS7 (2016/02/29) Águeda 

1984/10/19 121.0 16.4 - - - 

1998/09/28 85.0 14.6 - - Águeda, Vagos 

2003/01/03 98.8 12.4 - - - 

2015/09/16 129.4 12.1 LS7 (2015/09/06); 
LS8 (2015/09/14 *); 
S1A (2015/09/10, 

2015/09/15) 

LS7 (2015/09/22 *); 
LS8 (2015/09/30 *); S1 

(2015/09/16) 

- 

#2004/03/12 78.5 11.8 LS7 (2004/02/12) LS7 (2004/03/15) - 

1996/02/06 125.7 11.8 - - Murtosa 

1980/11/12 85.5 11.5 - - - 

2006/11/24 96.1 11.4 - - Estarreja, Ílhavo 

2016/01/04 133.3 9.8 LS7 (2015/12/27 *); 
S1 (2016/01/02); 
S2 (2015/12/22) 

S1A (2016/01/08); S2 
(2016/01/11 *) 

Águeda 
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Table B.1 (continuation) - Fifty largest precipitation events, from 23 meteorological stations located in the Vouga River 
watershed (between 1979/12/30 and 2017/09/12); Corresponding availability of satellite images: LS—Landsat; S—

Sentinel; This table is ordered according to the maximum return period (descending). 

# Selected precipitation event, * Significant cloud percentage (>15% of the overall scene). 

 

 

 

Date Maximum 
Daily 

Precipitation 
(mm) 

Maximum 
Return 
Period 
(Years) 

Available Satellite Images Flood Event Records (Alves et al., 
2010; CMI, 2016) t1 t2 

1994/01/06 116.1 9.8 - - Águeda, Murtosa 

1982/11/07 73.2 9.8 - - - 

1996/05/18 67.0 9.0 - - Murtosa 

2005/12/02 111.3 8.8 LS7 
(2005/11/29) 

LS7 (2005/12/15) - 

2008/04/08 93.5 8.3 - LS7 (2008/04/11 *) - 

1993/09/17 99.5 8.1 - - - 

1986/11/11 73.5 7.9 - - - 

1983/04/22 110.0 7.9 - - - 

1984/11/16 117.0 7.8 - - - 

1991/03/06 82.5 7.8 - - - 

2005/10/30 80.0 7.7 - - - 

2003/08/29 71.5 7.3 - - - 

#2009/10/07 119.0 6.8 LS7 
(2009/09/21) 

LS5 (2009/10/15) - 

2001/02/06 73.3 6.6 - - Ovar 

1989/02/26 87.5 6.6 - - - 

1987/09/26 99.0 6.5 - - - 

1997/01/09 108.7 6.5 - - Murtosa 

2002/10/01 67.1 6.2 - - Mira 

1992/01/08 67.0 6.0 - - - 

2009/12/07 73.2 5.9 - - - 

1994/10/05 63.3 5.9 - - Ovar 

2002/11/19 73.0 5.9 - - - 

2004/10/27 67.3 5.7 - - - 

2006/12/08 125.9 5.4 LS5 
(2006/10/12) 

- - 

1996/01/09 66.4 5.0 - - Murtosa 

1988/01/25 80.0 5.0 - - - 

2015/01/31 127.8 4.9 LS8 
(2015/01/01); 

S1(2015/01/30; 
2015/01/31) 

LS7 (2015/02/10) *; LS8 
(2015/02/18) 

- 

1997/12/22 77.5 4.9 - - Murtosa 

2009/10/22 63.9 4.7 - - - 


