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Resumo A área de otimização dos processos tem vindo a ter um interesse crescente
por parte das empresas. Para uma empresa de gestão de abastecimento de
água, a otimização de distribuição de água significa coordenar, de forma
eficiente, os processos de recolha, tratamento e distribuição de água num
único processo. Contudo, para planear de forma eficiente o funcionamento
dos sistemas de abastecimento de água é essencial prever as demandas de
água. A tarefa de previsão é possível se algumas variáveis forem conhecidas
previamente, como os dias de chuva que influenciam diretamente o processo
de recolha de água. Tal como as condições meteorológicas, existem outras
variáveis que afetam o sucesso de uma boa previsão de demanda de água,
como os dias de férias. Um elevando número de variáveis requer mode-
los de previsão cada vez mais sofisticados que requerem maior capacidade
de processamento de informação. Esses modelos nem sempre encontram
uma solucão razoável e, na prática, as variáveis necessárias para treinar um
modelo robusto nem sempre estão disponíveis. Essa dificuldade é superada
com a implementação de modelos de previsão baseados somente em séries-
temporais. São computacionalmente mais simples e não requerem dados de
entidades externas às empresas de abastecimento de água. O foco deste
trabalho é analisar, implementar e testar algoritmos de previsão baseados
em séries temporais aplicadas à demanda de água, tendo como variável de
entrada apenas o histórico de consumo de água. A primeira etapa deste
trabalho consistiu em estudar o histórico do consumo de água na região de
Penacova para traçar padrões temporais de consumo. A segunda etapa trata
da implementação de um modelo clássico de previsão ARIMA e da imple-
mentação de um modelo heurístico de Bakker. Ambos os modelos foram
comparados e diferentes vantagens e desvantagens foram analisadas.





Keywords Water supply system (WSS); water demand forecasting; time series; fore-
casting methods; ARIMA; heuristic forecasting model

Abstract Process optimization has been an area of growing interest for companies.
For a water supply management company, water distribution optimization
means coordinating efficiently the water harvesting, treatment and distribu-
tion stages in a single process. However, to plan efficiently the operation of
water supply systems it is mandatory to forecast the water demands. The
forecasting task is possible if some variables are previously known, such as
the rainy days that directly influence the harvest stage. As well as weather
conditions, there are other variables that affect the success of a good water
demand forecast, such as holidays. The large number of variables requires in-
creasingly sophisticated forecasting models that require greater information
processing capacity. These models do not always find acceptable solution,
and, in practice, the variables needed to train a robust model are not always
available. This difficulty is overcome by the implementation of forecast mod-
els based solely on the time-series. These are computationally simpler and
do not require data from entities outside the Water Supply companies. The
focus of this work is to analyze, implement and test forecasting algorithms
based on time series applied to water demand, having as input variables only
the history of water consumption. The first stage of this work consisted of
studying the history of water consumption in the Penacova area to trace
temporal patterns in the data. The second stage deals with the implementa-
tion of a classical ARIMA prediction model and implementation of a Bakker
heuristic model. Both models were compared and different advantages and
disadvantages were analyzed.





Contents

I Framework 1

1 Introduction 3
1.1 Context and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State-of-the-art Review 5
2.1 Generalities concerning water demand forecasting . . . . . . . . . . . . . . 5
2.2 Water demand forecasting and network failures . . . . . . . . . . . . . . . 7

II Methodology and Implementation 9

3 Selected forecasting techniques 11
3.1 Seasonal autoregressive integrated moving average model . . . . . . . . . . 12
3.2 Adaptive Bakker’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Selected forecasting accuracy methods . . . . . . . . . . . . . . . . . . . . 15

4 Data pre-processing 17
4.1 Outliers detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Portuguese case study description . . . . . . . . . . . . . . . . . . . . . . . 28

III Results, discussion and conclusions 29

5 Results 31
5.1 Accuracy of the ARIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Accuracy of the Bakkers heuristic model . . . . . . . . . . . . . . . . . . . 33
5.3 Results discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion and final remarks 39

Bibliography 41

A Pre-processing code 45

B Implementation of ARIMA model 49

C Implementation of heuristic model 51

i



ii



List of Tables

3.1 AR and MA parameters identification based on ACF and PACF plots.
Adapted from [25] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Average demand per hour for each area . . . . . . . . . . . . . . . . . . . . 28

5.1 Performance of ARIMA model per 24 hours for 1 week of forecasting . . . 31
5.2 Performance of ARIMA model per 30 minutes for 1 week of forecasting . . 31
5.3 Performance of the Bakkers’ heuristic model per 24 hours for 1 year of

forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Performance of the Bakkers’ heuristic model per 20 minutes for 1 year of

forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iii



iv



List of Figures

4.1 Raw time series plot for each day of the week (dotw) and for whole dataset
of Espinheira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Schematic representation of isolation of points through partitions, (a) a
regular point xi requires twelve random partitions to be isolated. (b) an
anomaly point x0 requires four random partitions to be isolated [27] . . . 19

4.3 Example of time series STL decomposition . . . . . . . . . . . . . . . . . 20
4.4 Christmas holidays for two datasets . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Carnival holidays for two datasets . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Easter holidays for two datasets . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7 Summer holidays for two datasets . . . . . . . . . . . . . . . . . . . . . . . 22
4.8 Individual deviating days for two datasets . . . . . . . . . . . . . . . . . . 23
4.9 Average water demand pattern for mild and dry weather in summer months

(Mean of average days refers to average of mild weather days) . . . . . . . 23
4.10 Deviating water demand pattern during mild and dry weather [21] . . . . 24
4.11 Pre-processed time series plot for each day of the week (dotw) and for

whole data of Albarqueira . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.12 Pre-processed time series plot for each day of the week (dotw) and for

whole data of Aveleira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.13 Pre-processed time series plot for each day of the week (dotw) and for

whole data of Espinheira . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.14 Location of the investigated areas in Portugal . . . . . . . . . . . . . . . . 28

5.1 Results for one week of forecasting using ARIMA model for Albarqueira . 32
5.2 Results for one week of forecasting using ARIMA model for Aveleira . . . 32
5.3 Results for one week of forecasting using ARIMA model for Espinheira . . 33
5.4 Results for one week of forecasting using bakkers’ heuristic model for Al-

barqueira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Results for one week of forecasting using bakkers’ heuristic model for Aveleira 34
5.6 Results for one week of forecasting using bakkers’ heuristic model for Es-

pinheira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 Average pattern of water demand for each day of the week . . . . . . . . . 36
5.8 Trend of MAPE for the 24 hours step forecasting over 11 months of analysis 37
5.9 Trend of MAPE for the 20 minutes step forecasting over 11 months of

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.10 Results for one week of forecasting, from 23 and 29 December, using

bakkers’ heuristic model for Aveleira . . . . . . . . . . . . . . . . . . . . . 37

v



5.11 Results for one week of forecasting, from 23 and 29 december, using
bakkers’ heuristic model for Espinheira . . . . . . . . . . . . . . . . . . . . 38

vi



Part I

Framework

1





Chapter 1

Introduction

1.1 Context and objectives

Nowadays, due to computational advances, the behaviour of several systems can
be predicted. The main objective of predicting the behaviours of a system is to act
in advance. When the prediction of a system is related to a company, the common
advantages are events scheduling, optimisation of processes and incidents prevention.

Water Supply and Distributions system are objective of several studies due to their
high complexity. Such systems consist of four main phases that are described by water
collection, water treatment and storage, water transport in the network and distribution
network [1]. Water supply companies are responsible for the distribution of good quality
water to the consumers. The good quality water is obtained by satisfaction of legislative
norms as well as by ensuring the certain demand pressure.

To design a Water Supply System (WSS), water supply companies consider the sys-
tem implementation and distribution costs, in order to minimise them. The common
distribution costs are associated to operation control, maintenance of equipment and
troubleshoot, for example water losses caused by pipe burst. The operational control
includes procedures such pump control scheduling, valves control, starting a filtration
process, etc. It is important to consider that while a system is active, there will be wear
that needs to be compensated by maintaining procedures and, in unforeseen cases, water
losses may occur. Companies started to invest in automation of a water supply system
by installing supervisory control and data acquisition (SCADA) equipment. In fact, the
procedure of collecting data is essential to extract water consumption patterns and to
find the relation between this patterns and external factors as weather, day of the week,
time of the year (e.g. vacations and holidays), past consumptions and geographic loca-
tion. Considering the prediction advantages, studies were carried out on the application
of traditional forecasting techniques as well as more recent techniques based on Artificial
Neural Network (ANN). Besides that, some authors combine methods statistically with
each other. The main differences, advantages, disadvantages and relevant work review
will be addressed in the State-of-art review section.

Water supply companies can take advantage by predicting the water demand of con-
sumers. The optimisation of scheduling processes related with water demand is an ad-
vantage to highlight. So, the work developed in this thesis consists in the implementation
and analysis of different forecasting techniques to the new case study. The application of
the traditional methods in another case study, although it seems redundant, is necessary

3



4 1.Introduction

to validate and evaluate the effectiveness and robustness of the implemented techniques.
In [2] is referred that several researched works based on Machine Learning (ML) fore-
casting does not make a side-by-side comparison with traditional (classic) forecasting
methods which may compromise the effectiveness of conclusions.

Alina Lysenko Dissertação de Mestrado



Chapter 2

State-of-the-art Review

2.1 Generalities concerning water demand forecasting

The prediction based on time-series is called time-series forecasting. Water demand
forecasting can be categorized, in terms of forecast horizon, as short-term, medium-
term or long-term which represents forecasting objectives. In [3] different scales for
this categorization is discussed. In [4] a Dynamic Artificial Neural Network model was
developed and applied on different forecasting time scales. A more recent work of mid-
term water demand forecasting is presented in [5] and [6]. In order to clarify the approach
of the developed work, in the short-term scales is considered time ranges as weekly, daily,
hourly and even time frames portioned in minutes forecasting. In the other hand, time
ranges of months to decades are included to medium/long-term scale [7]. The main
purposes of long-term water demand forecasting are network planning, system design
and future management of resources. Short-term water demand forecasting is required
for schedule processes, for water quality insurance and for network failures detection [8].

In general, water demand forecasting models uses previous water consumptions data
to find consumption patterns. It is possible to include other variables that may influence
consumption such weather or price of water to increase forecasting accuracy. In fact,
it is preferable to use only easily collectable data. The main concern about using is
related to error propagation. For example, weather as input is not practical for water
supply companies. The collection of weather related data from another source is certainly
accompanied with gaps and some noises. Methods that use one variable as input are
commonly related to time series models and are called, for that reason, univariate time
series models [9]. Recently, large number of studies uses classical methods (e.g. ARIMA,
exponential smoothing, naïve model) for comparison and validation of developed methods
purposes [4; 7; 10; 11].

From another point of view, it is possible to identify two basic techniques of water
demand forecasting. Both techniques uses past demand data as input but the main
difference is that (i) the first search relationship between present and past data demand
(such seasonality or patterns) and the (ii) second is based on mathematical formulation,
which includes external variables data (such as demographic factors or weather) [8].
Despite this, another group or forecasting methods should be highlighted: hybrid models,
which results from combination of different singular models [3]. In [11], [12] and [13], it
is proven that hybrid models forecasting outperform the singular models.

Water demand forecasting is object of several studies. Historically, the most common

5



6 2.State-of-the-art Review

adopted techniques were based on time-series (e.g. exponential smoothing and ARIMA)
analysis and regression analysis due to of their implementation simplicity. However, in
scientific community, Machine Learning (ML) algorithms gained a special attention be-
cause of their learning capability [2]. This capability can be used for forecasting purposes
as well as water demand forecasting. The most usual ML algorithm is Artificial Neural
Network (ANN). It is relevant to clarify that regression analysis also makes part of ML
algorithms category. Some of the referred examples of regression analysis in [7] and [8] are
project pursuit regression (PPR), multivariate adaptive regression splines (MARS), sup-
port vector regression (SVR), multiple linear regression (MLR) and others. Large number
of papers in the literature implement ANN algorithms in parallel with other ones (time-
series and/or regression analysis) for comparison purposes [4; 7; 8; 10; 14; 15; 16; 17].
The reported studies show that forecasting ANN based models outperform the other
ones. Despite these conclusions in [8], the best forecasting results are obtained from a
Support Vector Regression (SVR) model over an ANN model.

Forecasting models based on ML algorithms are computationally demanding and,
therefore, it is important to carefully choose input variables for more accurate output.
The common example is taken from [14] where the occurrence of rainfall (binary input)
showed better weekly forecasting results than rainfall amount for City of Kanpur (In-
dia). Contradictorily, in [15] a similar study for City of Ottawa (Canada) showed more
accurate weekly forecast for variable of rainfall amount. From these analogies it is pos-
sible to highlight the biggest drawback of ML algorithms: high computational cost, high
dependency of external data sources for accurate results and lack of robustness itself.

Focusing on ML algorithms, in [18] it is proposed an abductive network approach for
electric load short-term forecasting (hourly and daily). The focus of [18] is to introduce
a solution to overcome ML limitations. The used approach is inductive self-organizing
group method of data handling based on Group Method of Dada Handling (GMDH)
theory. Comparing GMDH approach to neural network algorithms, the pointed-out
advantages are faster model development and faster convergence during it synthesis,
automatic selection of proper input variables and automatic model structure assemble.
In [19] a similar study applied to wind speed forecast is presented. In the conclusions,
an improvement of the forecast performance and the avoidances of unnecessary inputs,
such as effects of noise and errors, are reported. In the forecasting approach, the basis of
GMDH method consists of generation of forecasting models by testing a set of models-
candidates to choose the more accurate one(s) considering an established criterion. Most
of the GMDH algorithms use polynomial mathematical expressions as reference. This
method searches for the most significant system inputs based on the system output
analysis during the model synthesis [20]. Other studies, such as [9], [16] and [21], suggests
fully adaptive methods based on data-driven and/or moving window programming. This
approach seems to be useful because of their independency from external data sources
(e.g. weather). In the other hand, this type of models requires a lower amount of data,
where only the more recent data is relevant, and set of calibration parameters are updated
quickly in comparison with conventional time-series models. Although the majority of
the studies suggest an hourly or daily short-term forecast, in [21] it is described a model
that forecasts water demand for each 15 minutes step in the next 48 hours without
weather input. The advantage of this forecast refinement is that it is possible to make
a more detailed control, which means that knowing the exact time to switch pump adds
optimization margin in process control.

Alina Lysenko Dissertação de Mestrado
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2.2 Water demand forecasting and network failures

In water supply systems (WSS), occurrence of network failures is also a topic of
concern. The main reasons that can lead to water distribution network failure is pipe
bursts. Indeed, the occurrence of pipe bursts is an expected event due to the high
wear that these suffer. The biggest difficulty of WSS companies are about failure time
and location of the occurrence in the network identification. Usually, the identification of
network failures are reported by consumers when they realize that water pressure is lower
[21]. Until the report, water losses occur. In this context, it is proposed to use water
demand forecasting for the water demand anomalies. These anomalies can be associated
with water losses from pipe bursts.

Alina Lysenko Dissertação de Mestrado
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Chapter 3

Selected forecasting techniques

In time-series forecasting there is a varied number of approaches that must be se-
lected carefully. Despite this it is necessary to apply a few approaches to select the most
accurate one(s). Considering the wide availability of forecasting resources and the fore-
caster experience, the choice of the most accurate method is not always evident. In this
community it is common to use specific methods for comparison and validation purposes.

In this chapter three time-series forecasting models and selected forecasting accuracy
methods will be presented. Before proceeding with the models, it is necessary to rec-
ognize the difference between choosing approaches in an industrial or in an academic
environment. Thus, the valued features for each one differs slightly. The accuracy is
the most important feature however for the same amount of data, it may be preferable
to choose a known method that has a short implementation and processing time over
a complex method with higher accuracy, for example. In the industrial environment, it
matters to use an optimized forecasting method, which will rely on a utility function or
on developers’ experience. Meanwhile in academic environment, the interest is testing
new approaches and draw conclusions to contribute to the forecasting field community.

Hence, Autoregressive Integrated Moving Average (ARIMA) is a known model, usu-
ally, applied on case studies by default where data is not stationary. In the opposition
to the previous analytical time-series model, the adaptative Bakker’s model (heuristic)
that shows interesting results for six different water supply zones in the Netherlands but
has no application in southern regions case-studies.

Before proceeding with the implementation of the forecasting model, forecasters have
a wide choice of solutions. So, it is convenient to have a measure to evaluate the perfor-
mance of the available models. This evaluation is made through the estimation of the
model’s accuracy. Despite the simplicity of estimating and reading the accuracy results,
this task must be done with caution as the accuracy measurements are not the same
for most of the forecasting models. Note that even with the same measures of accuracy,
models cannot be compared side by side if case studies are very different in terms, for
example, of the amount or origin of data. In [22], accuracy measures are categorized into
three main groups: scale dependent errors, percentage errors and scaled errors. Each er-
ror group is best suited for a certain type of case study. Therefore, percentage errors are
preferable in most of the cases, however, there are studies where this measure is not ideal.
For example, in situations where one intends to evaluate different forecast models but
using the same dataset, measures based on scaled-dependent errors should be preferred
[23].

11



12 3.Selected forecasting techniques

3.1 Seasonal autoregressive integrated moving average model

Autoregressive Integrated Moving Average is a model commonly used in time-series
forecasting by default. Apart from the model being combination of autoregressive (AR)
and moving average (MA) parameters, it also offers a tool to make time-series being
stationary, an integrated parameter (I).

In time-series forecasting, AR models suggests that the forecasted value is a result of
an autocorrelation between past values (also called lags) and can be written as [22]:

yt = c+ φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + et, (3.1)

where yt , c and et are the forecasted value at time t, a constant and an error at time t
(also called white noise), respectively, and φ1, φ2, . . ., φp are regression parameters until
order p.

MA models are commonly used to trace trends in dataset, so it is a very simple and
useful tool to predict long term trends. Since the data set must be stationary (no trend),
this approach covers a hidden pattern that may exist between a datapoint in a time t and
the error in the previous time t− 1 by autocorrelation [24]. A moving average process is
given as [22]:

yt = c+ θ1yt−1 + θ2yt−2 + . . .+ θpyt−q + et, (3.2)

where yt , c and et are the forecasted value at time t, a constant and an error at time t,
respectively, and θ1, θ2, . . ., θq are moving average parameters until order q.

Thus, ARIMA model is usually referred as ARIMA (p,d,q) where p, d and q represent
autoregressive, integrated and moving average orders, respectively. In fact, ARIMA
is an extended version of Autoregressive Moving Average (ARMA) but combined with
differencing step of time-series (“integrated” parameter) and it is useful when data shows
to be non-stationary. ARMA model is represented as [22] :

yt = c+ φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + θ1yt−1 + θ2yt−2 + . . .+ θpyt−q + et, (3.3)

where yt, c and et are the forecasted value at time t, a constant and an error at time
t, respectively, φ1, φ2, . . ., φp are regression parameters and θ1, θ2, . . ., θq are moving
average parameters.

For ARIMA(p,d,q) model the approach is almost the same [22]:

y′t = c+ φ1y
′
t−1 + φ2y

′
t−2 + . . .+ φpy

′
t−p + θ1y

′
t−1 + θ2y

′
t−2 + . . .+ θpy

′
t−q + et, (3.4)

where y′t represents the differenced series. Parameter d represents number of times the
time series is differenced until it gets stationary.

Before running ARIMA model, it is necessary to guarantee that time-series is sta-
tionary. In time-series analysis it is important establish statistical accuracy all over data
sample, which means that some properties must not change over the time. In [22], a
stationary series is described as roughly horizontal (mean is constant), with a constant
variance and without patterns predictable in the long-term. Hereupon, ARIMA model
offers a tool that makes a time series stationary, an integrated parameter. Thus, a series
must be differenced enough times to appear stationary.

Alina Lysenko Dissertação de Mestrado



3.Selected forecasting techniques 13

The most common and practical way to estimate AR and MA parameters is through
a visual analysis of the autocorrelation (ACF) and partial autocorrelation (PACF) func-
tions. In [25] ACF and PACF are deeply explained. Table 3.1 summarizes the parameters
definition through the visual analysis of ACF and PACF plots.

Table 3.1: AR and MA parameters identification based on ACF and PACF plots.
Adapted from [25]

ACFs PACFs Model
Exponential decay and/or
damped sinusoid

Cuts off after lag p AR (p)

Cuts off after lag q Exponential decay and/or
damped sinusoid

MA (q)

Exponential decay and/or
damped sinusoid

Exponential decay and/or
damped sinusoid

ARMA (p, q)

There are time series that have a seasonal behavior. For these cases the seasonal
differencing is applied. However, the simple seasonal differencing does not guarantee a
complete elimination of seasonal features [25], such as ACF and PACF between seasonal
lags, often referred to as m. For this reason, Seasonal Autoregressive Integrated Moving
Average model is generally referred as SARIMA(p,d,q)(P ,D,Q)m.

The complete implementation of SARIMA model can be found in Appendix B. The
Python module used to implement SARIMA model it is called statsmodels. Note that
data pre-processing step was applied followed by resample function to set time-steps from
10 minutes to 30 minutes time-step. This resampling makes the 24 hours seasonality
implicit in parameter m = 48.

3.2 Adaptive Bakker’s model

Adaptive Bakker’s model is a heuristic model since its methodology is based on em-
pirical rules. This means that some coefficients are set by default. The basis of the
model is to forecast water demand for the next 48 hours with 15-min time steps using
data from the last 48 hours as input. However, in this study, 20-min time steps were
used because data were collected in 10-min time steps and were reshaped in 20-min time
steps. This model consists of three steps: 1. Average water demand estimation for the
next 48 hours; 2. Average water demand estimation for each time-step for the next 48
hours; 3. Extra sprinkle water demand estimation for each time-step for the next 48
hours, when applicable.

The first step can be divided into two sub-steps. Firstly, it is calculated an array of
corrected water demand (Qcorr,t) based on previous 48 hours hence the factor correspond
to the previous two days. This is done by dividing the collected data ( Qt ) by the typical
day of the week factor (fdotw,typ,i):

Qcorr, t =
Qt

fdotw,typ,i
. (3.5)

Then, the average water demand value for the next 48 hours, (Qforc,corr,avg) is, ba-
sically, the mean of total number of t steps. In this case, the total number of 20-min.

Alina Lysenko Dissertação de Mestrado
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steps in 48 hours:

Qforc,corr,avg = C1 ·

(
1

72

t=0∑
t=−72

Qcorr, t

)
+ C2 ·

(
1

144

t=−73∑
t=−144

Qcorr, t

)
, (3.6)

where C1 and C2 are set at 0.85 and 0.15, respectively which means that the water
demand values from last 24 hours are heavier than the older one.

In step two is calculated an average water demand for each time-step for the next
48 hours and it comes in the form of an array (Qforc,norm,t) . To achieve this result, the
average water demand value (Qforc,corr,avg) is multiplied by the typical day of the week
factor (fdow,typ,i) and by the typical 20-min. time step factor (fqtr,typ,i,j):

Qforc,norm,t = Qforc,corr,avg · fdotw,typ,i · fqtr,typ,i,j . (3.7)

The third step is an extra step for those cases where extra water demand occurs. The
identification is based on fitting the normal demand curve on the collected water demand
curve. A more detailed explanation about the identification and calculation of sprinkle
water demand (Qsprinkle) can be found in [21]. The final equation can be written as:

Qforc,tot,t = Qforc,norm,t +Qforc,sprink,t, (3.8)

where Qforc,tot,t and Qforc,sprink,t are total water demand forecast and average sprin-
kle demand forecast, respectively. However, to achieve Qforc,sprink,t from Qsprinkle the
methodology is quite de same as described for Qforc,norm,t.

The calculation of typical 20-min. time step factor (fqtr,typ,i,j) is done in two steps.
Firstly, it is calculated factor for the normal demand (fqtr,i,j) for each t. Secondly, is
done the mean of all stored factors where n refers to number of previous stored arrays of
factors. Both are calculated as

fqtr,i,j =
Qt

1
144

∑t=0
t=−144Qt

, and (3.9)

fqtr,typ,ti,j =
1

n

i=n∑
i=1

fqtr,{typ=ti},j . (3.10)

The typical day of the week factor (fdotw,typ,i) is obtained as follows and m represent
a number of last observations of that type of water demand:

fdow,typ,ti =
1
m

∑i=m
i=1 Qavg,{typ=ti},i

1
m·7
∑i=m·7

i=1 Qavg,all,i

. (3.11)

From [21], n and m are set 5 and 10 respectively. This type of approach resem-
bles to rolling window forecasting since factors are estimated from last water demand
observations. The advantage is that factors adjust as the season changes quickly enough.

The calculation of Qforc,sprink,t part is done by the same way as Qforc,norm,t but it is
not described since this part is not applicable in case study of this work as justified in
Section 4.2 (Data Analysis section). More detailed information can be found in [21].

The complete implementation of Bakkers heuristic model can be found in Appendix
C. The code is splitted in two parts: 1. training stage, where the typical factors are
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estimated, both fqtr,i,j and fdow,typ,ti based on water demand observations from previous
weeks; 2. forecasting stage, where actual forecast for next 48 hours occurrs based on
past 48 hours of water demand consumpion. The forecasted values are obtained by
setting input variables: input_day, input_month, input_year and n_days_fore. In the
Appendix C it is forecasted one week of water demand starting at 23rd December 2019.

3.3 Selected forecasting accuracy methods

The performance measures chosen for this work and its datasets are one percent-
age and one scale-dependent errors which are: The means Absolute Percentage Error
(MAPE) and Mean Absolute Error (MAE), respectively. Since the purpose of the case
study was to evaluate different forecasting models in the same dataset, the choice of a
scaled error measure make sense. In addition, percentage errors were also calculated
for comparisons outside of this case study. These errors are calculated according to the
following equations:

MAPE =
1
n

∑i=n
i=1 |yi − ŷi|
y

· 100%, and (3.12)

MAE =
1

n

i=n∑
i=1

|yi − ŷi| , (3.13)

where yi is the measured value and ŷi is the forecasted value.
The accuracy measurement was made for both water demand per 24 hours and per

30 and 20 minutes time-step, for SARIMA and for heuristic Bakker’s model, respectively.
For the 24 hours evaluation, an average of the values of the 20 minutes (and 30 minutes)
time-step was taken. For the 20 minutes time step each time step forecast is compared
to the measured value.
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Chapter 4

Data pre-processing

In most of the cases it is not possible to use raw data as input in forecasting model.
Due to the nature of temporal data, it is usual to find contaminations as result of unex-
pected interventions. In data science this occurrence is called anomaly or outlier. Despite
this there is a subtle difference between both. A simple way to differentiate both terms it
is assuming that when an observation deviates from dataset in the model training stage,
that observation is outlier; when the same occurrence is observed in dataset that was not
used in training stage it is called anomaly. It is common to use both terms as meaning
the same, which is unexpected events in the dataset. These terms will be used in this
document interchangeably.

The main objective of identifying anomalies in dataset is to treat them. The amount
of treatment will affect the quality of the data and, consequently, of the calibration of
the model in the training stage. In [26], it was concluded that anomalies have the biggest
impact on forecast at the forecast origin. So, it becomes clear the need of anomaly detec-
tion in forecasting applications. In summary, there are two types of anomaly detection
approaches: feature-based, which evaluate data features, such as mean and standard de-
viation, and model-based which compares the predicted values with the real ones. Both
approaches consist in establishing a threshold value (for data features and for data itself,
respectively) then each point from the real dataset is analyzed and whenever its value
fall outside the threshold it is considered as an anomaly.

The data pre-processing stage is not the same for all data types, but it commonly
involves two main steps: (i) outliers and missing data identification and (ii) treatment of
identified values.

4.1 Outliers detection

Before proceeding to outliers’ detection, it is necessary to analyze entire data to
understand how much processing is required. This is done by plotting raw data. Figure
4.1 shows data with seasonality of 24 hours, so the plotting is done in that time interval.
For easier analysis, the dataset was split into each day of the week (dotw) and the last
plot corresponds to the whole dataset. Figure 4.1 is an example of a common dataset
before pre-processing where outliers are clear.

17



18 4.Data pre-processing

Figure 4.1: Raw time series plot for each day of the week (dotw) and for whole dataset
of Espinheira
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The first step of data cleaning is focused on removal of obvious outliers’ points.
This allows to establish more stricter threshold values in the next steps of data cleaning
process.

Isolation Forest is an unsupervised method, which means that it works by itself
to discover data features and/or data patterns. The main advantage of unsupervised
methods it that they make possible to work with random variables and/or features.
The main reason of choosing this method for this study is that it is very efficient in
identification of very deviating points of whole dataset, and it is quite fast [27]. The
model is based on decision trees, and it assumes that the process of isolating an anomaly
point requires less partitions than the process of isolating a regular point as shows Figure
4.2. The model isolates every data point and calculates its anomaly score. Anomaly score
translates the ease of isolating a point. For instances, if anomaly score is 0.5, it is a regular
point, and, if anomaly score is 1, it is an anomaly point.

Figure 4.2: Schematic representation of isolation of points through partitions, (a) a
regular point xi requires twelve random partitions to be isolated. (b) an anomaly point
x0 requires four random partitions to be isolated [27]

For the next step it was used a very popular outlier detection method for seasonal
and trendy data: Seasonal and Trend decomposition of Loess, commonly called STL
decomposition. The objective of this method is to decompose a time series into three
parts: seasonal, trend and residuals. The procedure consists of iterated cycle which,
in turn, include two loops: the inner and outer loops. At each cycle, the inner loop
applies seasonal and trend smoothing by this order and then, the outer loop estimates the
irregular component, residuals, using seasonal and trend estimations from inner loop [28].
For this case study, the number of observations in each cycle of the seasonal component
was set to number of points for a single day, which means the seasonality is daily. Since
the decomposition is done, another amount of anomaly points can be identified. Thus,
every residual point that falls out of established thresholds are set as outlier. The lower
threshold is 2 times of standard deviation of residuals and the upper threshold is 3 times
of standard deviation of residuals. Figure 4.3 shows a typical STL decomposition.
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Figure 4.3: Example of time series STL decomposition

The last data cleaning step consists of identifying days where the percentage of miss-
ing data is greater than 10%. Therefore, if a day has at least 10% of missing data, the
whole demand of that day is set to zero. This allows to fill missing values in rest of the
days using linear and polynomial interpolation with no significant daily demand pattern
changes.

After identifying the outliers, the number of missing values increases. At this point,
it is possible to fill or simply discard the missing data sections. In the present study both
approaches were applied. In small missing data sections, up to 7 consecutive missing
datapoints (out of 72 datapoints per day), data was filled using linear interpolation. In
the rest of the cases the data was discarded, which means it was not considered in training
stages of the forecasting procedure. The reason for this approach is that the amount of
available data is not large enough to apply a more robust solution, such as filling sections
with predicted values. Figure 4.13 shows the final plot for pre-processed dataset.

The complete code referring to the outliers can be found in the Appendix A. First,
the variables referring to holydays and deviating days were defined, then a detailed
breackdown of the time variable (in date, time, day of the week and other auxiliar
variables). Outliers cleaning is the next step and it is commented throughout the code.
At the end, the data is ready to be labeled by the type of the day (note "LABELING
days of the week" and "LABELING DAY TYPES" code sections).
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4.2 Data analysis

Data analysis is an important step in time series forecasting mainly when dataset
shows pattern in very large scale. A study of patterns was done to understand the
relationship between seasons and to make a more accurate interpretation of the accuracy
of the models. It was made a patterns study suggested on [21] since Bakkers heuristic
forecasting model was applied. In order to adapt the categorizations made in [21], the
following types of the day was discern: seven types for each day of the week, four types
for primary school holidays (Christmas holidays, Carnival holidays, Easter holidays and
Summer holidays) and five types for individual deviating days (New Year’s Day, Good
Friday, day after Ascension Day, day after New Year’s Day and Liberation Day).

In Figures 4.11, 4.12 and 4.13, the existence of patterns between the days of the week
are clear for the demands of Albarqueira, Aveleira and Espinheira. However, this figures
represents days of the week for the whole datasets, which means that other day types are
included here, for example Christmas holidays. The next figures only show two datasets
for the easier interpretation of the results. The reason for the number of the days being
different for two datasets are related to the pre-processing step of dataset.

Figures 4.4, 4.5, 4.6 and 4.7 show the four types for primary school holidays. In
Figure 4.4, for both cases, the lack of pattern consistency is notable, especially in 4.4a
two patterns are visible (working days and Saturdays) although these datasets were set
to the same type of day.

(a) Aveleira (b) Espinheira

Figure 4.4: Christmas holidays for two datasets

For Carnival and Easter holidays, the day patterns are almost the same as shows
Figure 4.5 and Figure 4.6, respectively.
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(a) Aveleira (b) Espinheira

Figure 4.5: Carnival holidays for two datasets

(a) Aveleira (b) Espinheira

Figure 4.6: Easter holidays for two datasets

The results of plotting summer holidays are shown in Figure 4.7. It is noted that in
4.7a, the patterns are more obvious than in 4.7b. These observations have recurrences
in the forecasting accuracy for Summer holidays months.

(a) Aveleira (b) Espinheira

Figure 4.7: Summer holidays for two datasets

The next type of days is Individual Deviating Days that have an unique labeling for
each one. In Figure 4.8, in general, the demand curves have a different behaviour from
each other, specially in 4.10b.
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(a) Aveleira (b) Espinheira

Figure 4.8: Individual deviating days for two datasets

In [21], the last type of the days is related to weather conditions, which are not known
in advance. It was made a study to understand the reality of water demand in dry days
in comparison with mild weather days weather days. So, it was selected the months of
July, August and September to plot the average of water demand in mild weather days
along with average of water demand in dry days, represented in Figure 4.9. The dry
days considered were those with more than 5 degrees Celsius above the moving average
with period of 30 of the summer months. The choice of 5 degrees Celsius as threshold is
related to selecting sunny days that presents average day temperature way higher than
days before and after.

(a) Albarqueira (b) Aveleira

(c) Espinheira

Figure 4.9: Average water demand pattern for mild and dry weather in summer months
(Mean of average days refers to average of mild weather days)
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The analysis of Figure 4.9 allows us to conclude that there are no significant pattern
variations to justify the labeling dry days separately from average weather days, as it is
done in [21] where the similar study justify this need. In Figure 4.10 the water demand
is much higher in dry days, especially between 18:00h and 0:00h, so it makes sense to
apply an extra demand forecasting parameter called sprinkle water demand forecast.

(a) Rhine area (b) Almere area

Figure 4.10: Deviating water demand pattern during mild and dry weather [21]
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Figure 4.11: Pre-processed time series plot for each day of the week (dotw) and for whole
data of Albarqueira
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Figure 4.12: Pre-processed time series plot for each day of the week (dotw) and for whole
data of Aveleira
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Figure 4.13: Pre-processed time series plot for each day of the week (dotw) and for whole
data of Espinheira
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4.3 Portuguese case study description

Water demand forecast has, as main input, the data of previous demand observations.
When forecast methods are time-series based it is important to identifying patterns
and understand its source for better data treatment, described in section of data pre-
processing, and accurate results analysis.

The analysis is split in two parts: firstly it is presented general characteristics of
studied areas and then, data analysis of each one.

Data used in the current study refers to three different portuguese places located in
the center of Portugal. This area is characterized by a warm mediterranean climate and
the average daily temperatures are 10.3 ºC and 21.0 ºC for winter and summer months,
respectively. These locations are small villages and they are about 5 kilometers apart
from each other.The localization is presented in figure 4.14. The used data refer to two
years of consumption, from march of 2018 to march of 2020, with 10min time steps,
resulting in 105120 values for each case study. The data has several outliers and chunks
of missing datapoints which was treated in Section 4.1. Table 4.1 describe the average
water demand consumption per day for each area. It is observed that there is a water
consumption relationship between three datasets: Albarqueira and Aveleira have a factor
5.3 and 2.1 larger average water consumption of Espinheira, respectively. Note that the
number of inhabitants or area itself are not related to the amount of water consumption
of the location since this information is not known.

Table 4.1: Average demand per hour for each area

Case study Average demand [m3/day] Relative factor
Albarqueira 7054.79 5.3
Aveleira 2825.02 2.1

Espinheira 1323.86 1

Figure 4.14: Location of the investigated areas in Portugal
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Chapter 5

Results

5.1 Accuracy of the ARIMA

The results obtained for each method and time interval are presented in this section
and its tables. For ARIMA the forecasting, 3 months of data were considered for training
step and, from then on, a one week water demand forecast was made. The analysis of
data allowed to conclude the best ARIMA model fit is (1, 0, 1)(1, 1, 0, 48), where 48 is
related do daily seasonality (according to reshaping the data to 30 minutes time step).
Table 5.1 describes accuracy for 24 hours of ARIMA forecasting and it shows that the
MAPE error varies between approximately 4% and 16%. The area with the highest water
demand, Albarqueira, has the smallest error of 4.81% and Aveleira the highest error of
15.56%. Table 5.2 lists the results for 30 minutes time step accuracy for three datasets
and, overall it is much higher than in table 5.1 ranging between 18% and 23%.

Table 5.1: Performance of ARIMA model per 24 hours for 1 week of forecasting

Area MAE [m3] MAPE [%]
Albarqueira 115.64 4.81
Aveleira 129.79 15.63

Espinheira 38.49 9.92

Table 5.2: Performance of ARIMA model per 30 minutes for 1 week of forecasting

Area MAE [m3] MAPE [%]
Albarqueira 10 20.22
Aveleira 3.9 22.83

Espinheira 1.46 18.26

Figure 5.1, 5.2 and 5.3 show graphic results for one week forecasting using ARIMA
model for Albarqueira, Aveleira and Espinheira, respectively. Forecasting has daily sea-
sonal pattern and, for each following day, the forecasting pattern remains the same and
it causes low accuracies described above. For Albarqueira scenario, 30 minutes time
steps forecasting shows a large deviant result from original data (20 %). However, for
24 hours accuracy, the result is much lower (around 5 %) because 24 hours accuracy is
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calculated by averaging the 30 minutes forecasting values. For Aveleira it is seen that
both 30 minutes and 24 hours forecasting values are very deviant (16% and 23%). And,
for Espinheira, forecast and original demands have less devaint values out of three cases
(10% and 18%) and seem to have more accurate pattern to the original demand. Note
that, in this context, original demand refers to measured demand.

Figure 5.1: Results for one week of forecasting using ARIMA model for Albarqueira

Figure 5.2: Results for one week of forecasting using ARIMA model for Aveleira
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Figure 5.3: Results for one week of forecasting using ARIMA model for Espinheira

5.2 Accuracy of the Bakkers heuristic model

For heuristic model, since the data has 2 years of water demand, datasets were split
equally in two datasets: training and testing. Although this approach is not the common
one, it was necessary to designate, at least, one year of dataset for training purposes
and the rest for testing purposes because there are days labeled as unique. An unique
day means that water demand pattern is specific to himself and occurs once a year. The
results of accuracy are shown in Tables 5.3 and 5.4. These tables are related to the first 24
hours forecast despite bakkers’ heuristic model calculates forecast for the next 48 hours.
In general, the accuracy for 24 hours forecasting is much better than for 20 minutes step
forecasting and the reason for that is that the daily water demand consumption is less
volatile. The analysis of Table 5.3 shows that MAPE is lower for Albarqueira, which in
the area where the average water demand is the highest. In the other hand, analysis of
Table 5.4 shows that, for 20 minutes step forecast, Albarqueira has the biggest MAPE:
26.42%.

Table 5.3: Performance of the Bakkers’ heuristic model per 24 hours for 1 year of fore-
casting

Area MAE [m3] MAPE [%]
Albarqueira 200.32 5.57
Aveleira 110.20 8.07

Espinheira 39.49 6.29

Figures 5.4, 5.5 and 5.6 show graphic results for all case-studies. It is visible the
adaption of forecasting model to the type of the day and the graphic results match the
results presented in Tables 5.3 and 5.4.
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Table 5.4: Performance of the Bakkers’ heuristic model per 20 minutes for 1 year of
forecasting

Area MAE [m3] MAPE [%]
Albarqueira 9.32 26.42
Aveleira 2.33 12.58

Espinheira 1.12 14.00

Figure 5.4: Results for one week of forecasting using bakkers’ heuristic model for Albar-
queira

Figure 5.5: Results for one week of forecasting using bakkers’ heuristic model for Aveleira
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Figure 5.6: Results for one week of forecasting using bakkers’ heuristic model for Espin-
heira

5.3 Results discussion

This section discusses the accuracy of the results. Overall, the accuracy of 24 hours
forecasting is significantly better than accuracy of smaller time steps forecasting. How-
ever, there is not a clear linear relationship between both accuracies. It is observed that
the location with higher water consumes (Albarqueira) has better accuracies for both
ARIMA and heuristic bakkers’ forecasting models for 24 hours forecast. For ARIMA
scenario, in 24 hours forecast, the location Aveleira has around 3 times larger MAPE er-
ror (15.63%) than Albarqueira (4.81%) and Espinheira has almost 2 times larger MAPE
(9.92%) error than Albarqueira, despite Aveleira has an average water consumption be-
tween these two locations.

Accuracy result for Aveleira seems to be different from an expected result but it can
be explained by Aveleira having a very divergent water consumption pattern between
the types of days. Figure 5.7 shows the average water demand pattern for whole dataset
for each type of the day, in this case, each day of the week. For example, the water
consumption pattern on Saturday and Sunday is plainly different from the consumption
pattern of the rest of weekdays, as shown in Figure 5.7b.

Albarqueira has an interesting precision error of 4.18% because it presents a consistent
daily water demand average over time. For 30 minutes forecast, the accuracy errors vary
between 18% and 23%. Albarqueira is the location with the highest error, as expected.
The reason for a poor accuracy is a peculiarity of the data that have peaks and troughs
throughout the daily consumption history (visible in Figure 5.4, 5.1 and 5.4), it had
a high volatility through the day. Espinheira is the location with lowest error. The
reason for this is not clear since, from data analysis (Figure 4.13), the patterns are not
consistent; despite this, the possible reason might be related to the choice of random
data chunk for evaluation which benefited the accuracy in this regard.

Alina Lysenko Dissertação de Mestrado



36 5.Results

(a) Albarqueira (b) Aveleira

(c) Espinheira

Figure 5.7: Average pattern of water demand for each day of the week

For bakkers’ heuristic method scenario, in 24 hours forecast, the accuracy error results
are ranged between 5% and 8% and these seem to have no linear relation with the average
water demand of the listed locations, however this conclusion must be confirmed with
a greater number of locations. For 20 minutes forecast, the MAPE error is higher for
Albarqueira with the value of 26.42% which is an expected result due to the particularity
of the Albarqueira data (Figure 4.11), as mentioned in the analysis of the ARIMA results.
Aveleira and Espinheira locations have 12.58% and 14.00% MAPE errors, respectively.
The reason Aveleira’s MAPE is quite better is that the datapoint from this location are
consistent and smooth through all dataset (Figure 4.12).

Figure 5.8 and 5.9 represent trend of the MAPE for 24 hour time step forecast and 20
minutes time step forecast over 11 months of analysis, respectively. The missing month
has been discarded because of high lack of data. The first graph shows that Albarqueira
has highest MAPE in July, around 8%, and lowest MAPE in October, around 4% and it
is visible a decreasing error trend. For Aveleira and Espinheira the month of December
stands out due to the sudden rise of the error that may be related to the labeling of the
data as different type of the day in whole Christmas holydays (see Figure 4.4).

The second graph (Figure 5.9) shows that for summer months (June, July and Au-
gust) Albarqueira present lower MAPE. It is noteworthy that Albarqueira MAPE is al-
most double of the MAPE value for Aveleira, which is almost the same relationship that
is visible in Table 4.1 represented as relative factor of average water demand per day
between this both areas. Aveleira and Espinheira have both the maximum MAPE value
in May that remains relatively constant throughout the year for Aveleira and decreases
throughout the year for Espinheira.
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Figure 5.8: Trend of MAPE for the 24 hours step forecasting over 11 months of analysis

Figure 5.9: Trend of MAPE for the 20 minutes step forecasting over 11 months of analysis

Figues 5.10 and 5.11 show results for one week of forecasting in Christmas holidays
and there is clear that days 24 and 25 of December are not properly forecasted for both
cases. Although, it is visible that overall, the fit of the model is not appropriate, specially
in Figure 5.10 .

Figure 5.10: Results for one week of forecasting, from 23 and 29 December, using bakkers’
heuristic model for Aveleira
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Figure 5.11: Results for one week of forecasting, from 23 and 29 december, using bakkers’
heuristic model for Espinheira

Alina Lysenko Dissertação de Mestrado



Chapter 6

Conclusion and final remarks

Through the literature review and the work developed in this thesis it is possible to
conclude that the domain of forecasting algorithms provides enriching case studies. The
purpose is not to run case studies randomly but it is to draw conclusions about each one
to contribute to the improvement of the field of forecasting time series algorithms. The
case study used refer to city Penacova, located in central region of Portugal. The main
conclusions of this work are:

1. the amount of data history influences the quality of data labeling;

2. forecasting water demand with small time step interval only makes sense if this
information adds practical value to the water distribution process;

3. in the found related works, the pre-processing step is hardly ever explicit despite
the importance it represent in accuracy of the forecasting models;

4. it is necessary to test more similar case studies to draw more robust conclusions
about the effectiveness of the forecasting models;

5. the heuristic model presents accuracy results that should be taken into account for
further related work;

6. it is possible to improve the accuracy of the results if the analysis of the data is
done in greater detail (more data is needed);

7. forecasts based exclusively in the variable time are highly valuable because of the
independence of variables that are difficult to obtain;

8. for better analysis, the Nash–Sutcliffe model efficiency coefficient, also called R2

factor, would be very valuable for a more detailed model analysis, as its robustness.

The objectives of this work were partially achieved. Three forecast models were
proposed but ARIMA and Bakkers’ heuristic model were carried through to the end,
leaving GMDH model out.

The obtained results, especially for heuristic model, have interesting values leaving
room for improvements. It is suggested to test heuristic model with more data and
consider making a different classification of the type of the days from those suggested by
the author.
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For ARIMA model, the results are not that interesting. The reason for that is because
the model itself does not allow to detail the seasonality of the data. For that pupose it is
suggested to use a more reigning version of the ARIMA model: Exponential smoothing
state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal
components, also called TBATS model. This model allows to include seasonality at
various scales, for example, daily, weekly and even yearly seasonality.

Thus, both models are not comparable side by side despite this goal. ARIMA was
tested on a randomly chosen one-week forecast meanwhile heuristic was tested for a whole
year. It would be possible to make the forecast for a whole year using ARIMA model
in rolling window scenario for better accuracy results, where the model is fitted with
new parameters every step of rolling window. Although, this solution is not viable at all
due to the computational resources consumption. Bakkers’ heuristic turned out to be a
more efficient model because it provides for the updating of parameters throughout the
forecast cycle, having the rolling windows approach and it does not need a lot of data to
estimate starting parameters.

The main contribution of this work stands out in the testing an efficient and simple
to implement heuristic model that has not been tested in a mediterranean climate and
in low water consumption areas such as Albarqueira, Aveleira and Espinheira.
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Appendix A

Pre-processing code

1 import pandas as pd
2 import numpy as np
3 from s tat smode l s . t sa . s ea sona l import seasonal_decompose
4 from sk l ea rn . ensemble import I s o l a t i o nFo r e s t
5 from da t e u t i l import par se r
6
7
8 #Time constats
9 one_day_hours = 24 # amount of hours in one day
10 hour_minuts = 60 # amount of minuts in one hour
11 week_days = 7 # amout of type days in one week
12 hour_steps = 10 # orig ina l time step
13 week_time_interval_orig inal = int ( ( hour_steps /hour_steps )
14 ∗ one_day_hours ∗ week_days )
15
16 # l i s t of timezones 2018 and 2019
17 tz_mar_18 = ’2018−03−25 ’
18 tz_out_18 = ’2018−10−28 ’
19 tz_mar_19 = ’2018−03−31 ’
20 tz_out_19 = ’2018−10−27 ’
21
22 # national hol idays 2018
23 jan = ’2019−01−01 ’ # 2019
24 abr0 = ’2018−04−01 ’
25 abr1 = ’2018−04−25 ’
26 mai0 = ’2018−05−01 ’
27 mai1 = ’2018−05−31 ’
28 jun = ’2018−06−10 ’
29 ago = ’2018−08−15 ’
30 out = ’2018−10−05 ’
31 nov = ’2018−11−01 ’
32 dez0 = ’2018−12−01 ’
33 dez1 = ’2018−12−08 ’
34 dez2 =’2018−12−25 ’
35
36 # national hol idays 2019
37 jan_1 = ’2020−01−01 ’ # 2020
38 abr0_1 = ’2019−04−19 ’ # sexta f e i ra santa
39 abr1_1 = ’2019−04−21 ’ # Pascoa
40 abr2_1 = ’2019−04−25 ’ # dia da l iberdade
41 mai0_1 = ’2019−05−01 ’ # dia do trabalhador
42 jun0_1 = ’2019−06−10 ’ # dia de portugal
43 jun1_1 = ’2019−06−20 ’ # corpo de deus
44 ago_1 = ’2019−08−15 ’ # assuncao da n. senhora
45 out_1 = ’2019−10−05 ’ # implantacao da republ ica
46 nov_1 = ’2019−11−01 ’ # dia de todos os santos
47 dez0_1 = ’2019−12−01 ’ # restauracao da independencia
48 dez1_1 = ’2019−12−08 ’ # dia da imaculada conceicao
49 dez2_1 =’2019−12−25 ’ # natal
50
51 # indiv idua l deviat ing days 2018
52 new_year = ’2019−01−01 ’ # ano novo
53 good_friday = ’2018−03−30 ’ # sexta f e i ra santa
54 asc_day_after = ’2018−04−02 ’ # dia seguinte do feriado municipal
55 l ibe r ta t i on_day = ’2018−04−25 ’ # dia da l iberdade
56 asc_day_after1 = ’2018−06−25 ’ # dia do feriado municipal
57
58 # indiv idua l deviat ing days 2019
59 new_year_1 = ’2020−01−01 ’
60 good_friday_1 = ’2019−04−19 ’
61 asc_day_after_1 = ’2019−04−23 ’
62 l ibertat ion_day_1 = ’2019−04−25 ’
63 asc_day_after1_1 = ’2019−06−25 ’
64
65 ’ Function␣ f o r ␣data␣ treatment ’
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66 def data_treatment ( l o c ) :
67 # feriados municipais das regioes
68 i f l o c == ’ Ave l e i ra ’ :
69 f e r i a d o = ’2018−06−24 ’
70 f e r i ado1 = ’2019−06−24 ’
71 lim_min = 5
72 inte rpo la t e_l im = 4
73 i_method=’ polynomial ’
74 e l i f l o c == ’ Albarque i ra ’ :
75 f e r i a d o = ’2018−04−07 ’
76 f e r i ado1 = ’2019−04−07 ’
77 lim_min = 0.6
78 in te rpo la t e_l im = 4
79 i_method=’ l i n e a r ’
80 e l i f l o c == ’ Esp inhe i ra ’ :
81 f e r i a d o = ’2018−07−17 ’
82 f e r i ado1 = ’2019−07−17 ’
83 lim_min = 2
84 inte rpo la t e_l im = 4
85 i_method=’ l i n e a r ’
86
87 dir=’C:/ Users /AlinaLysenko/Documents/Univers idade /Tese␣de␣mestrado/Data/Demand␣Scubic ’
88 index_date = pd . date_range ( s t a r t = ’ 16/3/2018␣ 17 :50 ’ , end = ’ 16/03/2020␣ 17 :50 ’ ,
89 f r e q = ’ 10min ’ )
90
91 def par se r ( x ) :
92 return pd . datet ime . s t rpt ime (x , "%Y−%m−%dT%H:%M:%S%z" )
93
94 s e r i e s = pd . read_csv ( dir + ’/PE_’ + lo c + ’ . csv ’ ,
95 header=0, parse_dates =[0 ] , index_col=None , sep=" ; " ,
96 u s e c o l s = [ ’Time ’ , l o c + ’ ␣ (PE) ’ ] ,
97 squeeze=True , date_parser=par se r )
98
99 df_date0 = s e r i e s . set_index (pd . to_datetime ( s e r i e s [ ’Time ’ ] , utc=True ) )
100
101 "␣Resampling␣ from␣10␣minutes ␣ to ␣20␣minutes ␣time−s tep "
102 xdd = df_date0 . resample ( "20T" ) . mean ( )
103 df_date0 = xdd
104
105 "␣Add␣ re levand ␣columns"
106 df_date0_aux = ( df_date0 . index ) . s t r f t ime ( "%Y−%m−%d␣%H:%M:%S" )
107 df_date0 [ ’ Date␣and␣Time ’ ] = [ x [ 0 : 1 6 ] for x in df_date0_aux ]
108 df_date0 [ ’ Date ’ ] = [ x [ 0 : 1 0 ] for x in
109 ( df_date0 . index ) . s t r f t ime ( "%Y−%m−%d␣%H:%M:%S" ) ]
110 df_date0 [ ’Time ’ ] = [ x [ 1 1 : 1 6 ] for x in
111 ( df_date0 . index ) . s t r f t ime ( "%Y−%m−%d␣%H:%M:%S" ) ]
112 df_date0 [ ’ Date ’ ] = (pd . to_datetime ( df_date0 [ ’ Date ’ ] , format=’%Y−%m−%d ’ ) )
113 df_date0 [ ’ Date␣and␣Time ’ ] = (pd . to_datetime ( df_date0 [ ’ Date␣and␣Time ’ ] ) )
114 df_date0 [ ’ val id_days ’ ] = 1
115 df_date0 [ ’Day␣ o f ␣ the ␣week ’ ] = ( df_date0 [ ’ Date ’ ] ) . dt . day_name ( )
116 df_date0 [ ’dow ’ ] = ( df_date0 [ ’ Date ’ ] ) . dt . dayofweek
117 df_date0 [ ’Type ’ ] = df_date0 [ ’dow ’ ]
118
119 df_date0 . rename ( columns={l o c + ’ ␣ (PE) ’ : ’Demand ’ } , i np l a c e = True )
120 df_date0 . index . names = [ ’ idx ’ ]
121
122 "␣Drop␣ f i r s t s ␣and␣ l a s t s ␣ rows␣"
123 df_date0 = df_date0 . drop ( df_date0 . index [ 0 : 1 9 ] )
124 df_date0 . drop ( df_date0 . t a i l ( 5 4 ) . index , i np l a c e=True )
125
126 "␣Drop␣rows␣where␣timezome␣ e x i s t "
127 for tz_idx in [ tz_mar_18 , tz_out_18 , tz_mar_19 , tz_out_19 ] :
128 tz_var = df_date0 [ df_date0 [ ’ Date ’ ] == tz_idx ] . index
129 df_date0 . drop ( tz_var , i np l a c e=True )
130
131 """ OUTLIERS_____________________________________________________
132 order :
133 1 s t − i so la t ion fores t to c lear more obvious ou t l i e r s
134 2nd − c lear a l l data below very low value (0.6 or 5)
135 3rd − STL decomposition
136 4th − c lear data where ava i lab l e data i s l e s s than 90%
137 5th − set a l l zeros to NaN
138 """
139 # (1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
140 df_date0 = df_date0 . f i l l n a (0)
141 model=I s o l a t i o nFo r e s t ( contamination=f loat ( 0 . 0 05 ) , n_estimators=10)
142 x=(df_date0 [ ’Demand ’ ] . va lues )
143 xx=pd . DataFrame (x )
144 model . f i t ( df_date0 [ [ ’Demand ’ ] ] )
145 df_date0 [ ’ s c o r e s ’ ]=model . dec i s i on_funct i on ( df_date0 [ [ ’Demand ’ ] ] )
146 df_date0 [ ’ anomaly ’ ]=model . p r ed i c t ( df_date0 [ [ ’Demand ’ ] ] )
147 df_date0 . l o c [ df_date0 [ ’ anomaly ’ ]==−1, ’Demand ’ ] = np . nan
148
149 # (2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
150 df_date0 . l o c [ df_date0 [ ’Demand ’ ]<lim_min , ’Demand ’ ] = np . nan
151
152 # (3)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
153 df_date0 = df_date0 . f i l l n a (0) # bc SDT doesnt work wel l with NaN values
154 r e s u l t = seasonal_decompose ( df_date0 [ ’Demand ’ ] , model=’ add i t i v e ’ , per iod=72)
155

Alina Lysenko Dissertação de Mestrado



A.Pre-processing code 47

156 seasona l , trend , r e s i d = r e s u l t . seasona l , r e s u l t . trend , r e s u l t . r e s i d
157 resid_mu = r e s i d .mean ( )
158 resid_dev = r e s i d . std ( )
159 lower = resid_mu − 2∗ resid_dev
160 upper = resid_mu + 3∗ resid_dev
161 anomal ies = df_date0 [ ( r e s i d < lower ) | ( r e s i d > upper ) ]
162 for inx , row in anomal ies . i t e r r ows ( ) :
163 i_ann = inx
164 df_date0 [ ’Demand ’ ] . l o c [ i_ann ] = 0
165
166 # (4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
167 c_index = [ ]
168 for c in range (0 , len ( df_date0 ) , 7 2 ) :
169 df_head = df_date0 . i l o c [ c : c+72]
170 df_zeros = ( df_head [ ’Demand ’ ] == 0 ) .sum( )
171 df_nan = df_head [ ’Demand ’ ] . i sna ( ) .sum( )
172 z_n = df_zeros + df_nan
173 i f z_n > 7 :
174 c_index . append ( c )
175
176 df_date0 = df_date0 . reset_index ( )
177 for inx , row in df_date0 . i t e r r ows ( ) :
178 i = inx
179 i f i in c_index :
180 df_date0 . at [ i : i +71 ,[ ’Demand ’ , ’ val id_days ’ ] ] = 0
181 df_date0 = df_date0 . set_index ( ’ idx ’ )
182
183 # (5)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
184 df_date0 . l o c [ df_date0 [ ’Demand ’ ] == 0 , ’Demand ’ ] = np . nan
185
186 "␣ In t e r po l a t e ␣miss ing ␣ va lues ␣"
187 df_date0 = df_date0 . i n t e r p o l a t e (method=i_method , ax i s =0,
188 l im i t = inte rpo la t e_l im , order=3 , d i r e c t i o n s=’ forward ’ )
189
190 "␣LABELING␣days␣ o f ␣ the ␣week"
191 monday = df_date0 . l o c [ df_date0 [ ’dow ’ ]==0]
192 tuesday = df_date0 . l o c [ df_date0 [ ’dow ’ ]==1]
193 wednesday = df_date0 . l o c [ df_date0 [ ’dow ’ ]==2]
194 thursday = df_date0 . l o c [ df_date0 [ ’dow ’ ]==3]
195 f r i d ay = df_date0 . l o c [ df_date0 [ ’dow ’ ]==4]
196 saturday = df_date0 . l o c [ df_date0 [ ’dow ’ ]==5]
197 sunday = df_date0 . l o c [ df_date0 [ ’dow ’ ]==6]
198
199 # feriados municipais das regioes
200 i f l o c == ’ Ave l e i ra ’ :
201 f e r i a d o = ’2018−06−24 ’
202 f e r i ado1 = ’2019−06−24 ’
203 e l i f l o c == ’ Albarque i ra ’ :
204 f e r i a d o = ’2018−04−07 ’
205 f e r i ado1 = ’2019−04−07 ’
206 e l i f l o c == ’ Esp inhe i ra ’ :
207 f e r i a d o = ’2018−07−17 ’
208 f e r i ado1 = ’2019−07−17 ’
209
210 d_18= { ’ Nat ional ␣ ho l idays ’ : [ jan , abr0 , mai0 , mai1 , jun , ago , nov , dez0 ,
211 dez1 , dez2 , f e r i a d o ] }
212 d_19 = { ’ Nat ional ␣ ho l idays ’ : [ jan_1 , abr1_1 , abr2_1 ,mai0_1 , jun0_1 ,
213 jun1_1 , ago_1 , out_1 , nov_1 , dez0_1 ,
214 dez1_1 , dez2_1 , f e r i ado1 ] }
215 dd_18= { ’ Ind i v idua l ␣ dev i a t ing ␣days ’ : [ new_year , good_friday , asc_day_after ,
216 asc_day_after1 , l ibe r ta t i on_day ] }
217 dd_19 = { ’ Ind iv idua l ␣ dev i a t ing ␣days ’ : [ new_year_1 , good_friday_1 ,
218 asc_day_after_1 , asc_day_after1_1 ,
219 l ibertat ion_day_1 ]}
220
221 """ LABELING DAY TYPES_____________________________________________
222 order :
223 1 − set ’Type ’ to dotw
224 2 − set 4 holydays ( chrismas , carnaval , easter , summer)
225 3 − set a l l saturdays and a l l sunday
226 4 − set a l l national holydays to sunday
227 5 − set indiv idua l deviat ing days
228 ___________________________________________________________________
229 """
230
231 # (1) already done when i created ’ type ’ column −−−−−−−−−−−−−−−−−−−
232
233 # (2) holydays−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
234 df_date0 . l o c [ ’ 2018−12−17 ’ : ’ 2019−01−02 ’ , ’Type ’ ] = 10 # 2019
235 df_date0 . l o c [ ’ 2019−12−17 ’ : ’ 2020−01−06 ’ , ’Type ’ ] = 10 # 2020
236
237 df_date0 . l o c [ ’ 2019−03−04 ’ : ’ 2019−03−06 ’ , ’Type ’ ] = 11 # 2019
238 df_date0 . l o c [ ’ 2020−02−24 ’ : ’ 2020−02−26 ’ , ’Type ’ ] = 11 # 2020
239
240 df_date0 . l o c [ ’ 2018−03−26 ’ : ’ 2018−04−06 ’ , ’Type ’ ] = 12 # easter
241
242 df_date0 . l o c [ ’ 2018−06−16 ’ : ’ 2018−09−12 ’ , ’Type ’ ] = 13 # 2018
243 df_date0 . l o c [ ’ 2019−06−24 ’ : ’ 2019−09−09 ’ , ’Type ’ ] = 13 # 2019
244
245 # (3) saturdays and sundays−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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246 df_date0 . l o c [ df_date0 . dow==5, ’Type ’ ] = 5
247 df_date0 . l o c [ df_date0 . dow==6, ’Type ’ ] = 6
248
249 # (4) national holydays −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
250 for k in range ( len (d_18 [ ’ Nat ional ␣ ho l idays ’ ] ) ) :
251 df_date0 . l o c [ d_18 [ ’ Nat ional ␣ ho l idays ’ ] [ k ] , ’Type ’ ] = 6
252 for k in range ( len (d_19 [ ’ Nat ional ␣ ho l idays ’ ] ) ) :
253 df_date0 . l o c [ d_19 [ ’ Nat ional ␣ ho l idays ’ ] [ k ] , ’Type ’ ] = 6
254
255 # (5) indiv idua l deviat ing days −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
256 for g in range ( len (dd_18 [ ’ I nd i v i dua l ␣ dev i a t ing ␣days ’ ] ) ) :
257 df_date0 . l o c [ dd_18 [ ’ I nd i v i dua l ␣ dev i a t ing ␣days ’ ] [ g ] , ’Type ’ ] = 90
258 for g in range ( len (dd_19 [ ’ I nd i v i dua l ␣ dev i a t ing ␣days ’ ] ) ) :
259 df_date0 . l o c [ dd_19 [ ’ I nd i v i dua l ␣ dev i a t ing ␣days ’ ] [ g ] , ’Type ’ ] = 90
260 return df_date0
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Appendix B

Implementation of ARIMA model

1 import numpy as np
2 import pandas as pd
3 from matp lo t l ib import pyplot as p l t
4 from s tat smode l s . t sa . s t a t e space . sarimax import SARIMAX
5 import fun_labeled_data as l b l da t a
6
7 l o c=’ Ave l e i ra ’
8 df_date = lb lda ta . data_treatment ( l o c )
9 df_date . set_index ( ’Date ’ )
10 data_sample=2∗24∗60 # 2 months for ARIMA model f i t t i n g
11
12 # Resample foe 30 min
13 df3 = df_date . resample ( ’ 30T ’ ) . mean ( )
14
15 # se l e c t a sample of data (from t a i l )
16 df_sample=df3 . t a i l ( data_sample )
17
18 # data s p l i t t i n g
19 l 1=len ( df_sample )
20 l_75=int (75∗ l 1 /100)
21 t r a i n = df_sample [ : l_75 ]
22 t e s t = df_sample [ l_75 : ]
23
24 # sarima implementation
25 model = SARIMAX( tra in , order =(1 ,0 ,1) , seasonal_order= (1 , 1 , 0 , 48 ) ,
26 en f o r c e_s t a t i ona r i t y=False , e n f o r c e_ i n v e r t i b i l i t y=False )
27 model_fit=model . f i t ( )
28 f o r e c a s t = model_fit . g e t_foreca s t ( s t ep s =48∗7) # forecast 1 week
29
30 # plot re su l t s
31 ax=df_sample . p l o t ( )
32 ax1 = f o r e c a s t . predicted_mean . p lo t ( ax=ax , l a b e l=’ f o r e c a s t ’ )
33 p l t . show ( )

49
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Appendix C

Implementation of heuristic model

1 from os import system
2 import matp lo t l ib . t i c k e r as t i c k e r
3 import sys
4 import numpy as np
5 import time
6 import pandas as pd
7 import datetime
8 import matp lo t l ib . pyplot as p l t
9 from matp lo t l ib . dates import DateFormatter
10 from datetime import datetime , t imede l ta
11 import plot_template as plt_temp
12 import fun_labeled_data as l b l da t a
13 import bakk_func as bakk
14
15 l o c=’ Ave l e i ra ’
16
17 # DATA TREATMENT
18
19 df_date0 = lb lda ta . data_treatment ( l o c )
20 df_date0 . set_index ( ’Date ’ )
21
22 "␣Time␣ cons ta t s ␣"
23 one_day_hours = 24 # amount of hours in one day
24 hour_minuts = 60 # amount of minuts in one hour
25 week_days = 8 # amout of type days in one week
26 hour_steps = 20 # orig ina l timesteps (10min from SCUBIC)
27 week_time_interval_orig inal = int ( ( hour_steps /hour_steps ) ∗
28 one_day_hours ∗ week_days )
29 """
30 Bakkers model for water demand forecast ing i s made of three steps
31 1 s t − the average water demand for the next 48 hours i s forecasted
32 2nd − the normal water demands for the indiv idua l 15−min.
33 time steps are forecasted
34 3rd − i f appl icab le , extra spr ink le water demands for the indiv idua l
35 15−min. time steps are forecasted
36
37 """
38 f i n a l = [ ]
39 o r i g i n a l = [ ]
40 accuracy_step = [ ]
41 n_days_fore = int (7 ) # how many days to forecast next
42 input_day = 23 # today (day to predict )
43 input_month = 12 # month
44 input_year = 2019 # year
45 fst_day = datetime (2018 , 3 , 18)
46
47
48
49 """
50 #Training set
51 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 """
53 for f in range ( n_days_fore ) : # next days to forecast
54 t i c = time . c l o ck ( )
55 today = datet ime ( input_year , input_month , input_day )
56 i f f != 0 :
57 today = ( today + t imede l ta ( days=f ) )
58 today_str = ( datetime ( input_year , input_month , input_day ) ) . s t r f t ime ( ’%Y−%m−%d ’ )
59 yesterday = ( today + t imede l ta ( days=−1)) # 1 day before
60 be fo r eye s t e rday = ( today + t imede l ta ( days=−2)) # 2 days befor
61 tomorrow = ( today + t imede l ta ( days=1)) # day af ter
62 aftertomorrow = ( today + t imede l ta ( days=2))
63
64 df_yesterday = df_date0 . l o c [ yesterday ]
65 df_beforeyesterday = df_date0 . l o c [ be f o r eye s t e rday ]
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66 df_today = df_date0 . l o c [ today ]
67 df_tomorrow = df_date0 . l o c [ tomorrow ]
68 df_aftertomorrow = df_date0 . l o c [ aftertomorrow ]
69 total_n_days = int ( ( today − fst_day ) . days+1)
70
71 weeks = ( total_n_days + f )/7
72 n_days = 0
73 m_prio = 10
74 n_prio = 5
75
76 bakker_minuts_steps = 20
77 or ig ina l_minuts_steps = 10
78
79 # function to return constants that depends of minuts_steps
80 n_i , n_steps , m_prio_aux , n_prio_aux = lb lda ta . fun_time_const ( bakker_minuts_steps ,
81 total_n_days , weeks , n_days , n_prio , m_prio )
82 Q_t = df_date0 [ fst_day : ( yesterday . date ( ) ) . s t r f t ime ( "%Y−%m−%d" ) ]
83 Q_t_previous = df_date0 . l o c [ ( be f o r eye s t e rday . date ( ) ) . s t r f t ime ( "%m/%d/%Y" ) :
84 ( yesterday . date ( ) ) . s t r f t ime ( "%m/%d/%Y" ) ]
85
86 # INIT EMPTY ARRAYS
87 f_qtr = [ ] # la s t Q_t
88 f_qtr_global_td = [ ] # la s t stored Q_t (m/n)
89 f_qtr_global_tm = [ ]
90 f_qtr_typ = [ ]
91 f_dotw_typ_prev = [ ]
92 f_dotw_typ_next = [ ]
93 f_qtr_typ_global = [ ]
94 Q_corr_t = [ ]
95 Q_forc_norm_f = [ ]
96 j_dotw = [ ] # array with dotw of l a s t 48 hours
97 j_dow_global_td = [ ] # array with dotw of l a s t 5 week
98 j_dow_global_tm = [ ]
99 j_type = [ ]
100 j_type_global = [ ]
101
102
103 "␣FACTOR␣ of ␣Typical ␣15−min␣ step : ␣ f_qtr ␣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
104
105 for i in range ( len (Q_t_previous ) ) :
106
107 j = Q_t_previous [ ’Type ’ ] . va lues [ i ]
108 s = bakk . f_qtr_fun (Q_t_previous , i , n_steps )
109 f_qtr . append ( s )
110 j_dotw . append ( j )
111 Q_t_previous_dotw = np . unique (Q_t_previous [ ’dow ’ ] . va lues )
112
113 "␣ Se l e c i ona r ␣apenas␣ os ␣ t i p o s ␣ r e l e v an t e s ␣com␣determinado␣n"
114 ttoday = df_today [ ’Type ’ ]
115 ttomorrow = df_tomorrow [ ’Type ’ ]
116
117 Q_t_type_td = pd . DataFrame ( columns=[ ’ Idx ’ , ’Type ’ , ’Demand ’ ] )
118 Q_t_type_tm = pd . DataFrame ( columns=[ ’ Idx ’ , ’Type ’ , ’Demand ’ ] )
119 count_n_td = 0
120 count_n_tm = 0
121 c_td = 0
122 c_tm = 0
123 nnnn=int ( n_steps∗n_prio )
124
125 # Select ing Q_t_type for today
126 for index , row in Q_t [ : : − 1 ] . i t e r r ows ( ) :
127 i f row [ ’ valid_days ’ ]==1:
128 l ine_type = row [ ’Type ’ ]
129 line_demand = row [ ’Demand ’ ]
130 l ine_idx = index
131 count_n_td += 1
132 i f l ine_type == ttoday and c_td < nnnn :
133 c_td += 1
134 l i n e = { ’ Idx ’ : [ l ine_idx ] , ’Type ’ : [ l ine_type ] ,
135 ’Demand ’ : [ line_demand ]}
136 df_l ine = pd . DataFrame ( l i n e )
137 Q_t_type_td = Q_t_type_td . append ({ ’ Idx ’ : l ine_idx ,
138 ’Type ’ : l ine_type , ’Demand ’ : line_demand } ,
139 ignore_index=True )
140
141 # Select ing Q_t_type for tommorow
142 for index , row in Q_t [ : : − 1 ] . i t e r r ows ( ) :
143 i f row [ ’ valid_days ’ ]==1:
144 l ine_type = row [ ’Type ’ ]
145 line_demand = row [ ’Demand ’ ]
146 l ine_idx = index
147 count_n_tm +=1
148 i f l ine_type == ttomorrow and c_tm < nnnn :
149 c_tm +=1
150 l i n e = { ’ Idx ’ : [ l ine_idx ] , ’Type ’ : [ l ine_type ] ,
151 ’Demand ’ : [ line_demand ]}
152 Q_t_type_tm=Q_t_type_tm . append ({ ’ Idx ’ : l ine_idx ,
153 ’Type ’ : l ine_type , ’Demand ’ : line_demand } , ignore_index=True )
154
155 # sp l i t arrays in days
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156 Q_t_split_td = np . s p l i t (Q_t_type_td , int ( len (Q_t_type_td ))/ int ( n_steps ) )
157 print ( ’Q_t_type_tm ’ , Q_t_type_tm , len (Q_t_type_tm) , n_steps )
158 Q_t_split_tm = np . s p l i t (Q_t_type_tm , int ( len (Q_t_type_tm))/ int ( n_steps ) )
159
160 # for today
161 for j j in range ( len (Q_t_split_td ) ) :
162 Q_t_jj = Q_t_split_td [ j j ]
163 for i i in range ( len (Q_t_jj ) ) :
164 l = bakk . f_qtr_fun (Q_t_jj , i i , n_steps )
165 f_qtr_global_td . append ( l )
166
167 # for tomorrow
168 for j j in range ( len (Q_t_split_tm ) ) :
169 Q_t_jj = Q_t_split_tm [ j j ]
170 for i i in range ( len (Q_t_jj ) ) :
171 l = bakk . f_qtr_fun (Q_t_jj , i i , n_steps )
172 f_qtr_global_tm . append ( l )
173
174 # geting f_qrt_type for today and for tomorrow
175 for xx in [ f_qtr_global_td [ : : −1 ] , f_qtr_global_tm [ : : − 1 ] ] :
176 for yy in range ( n_steps ) :
177 j = xx [ yy : : n_steps ]
178 l = bakk . f_qtr_typ_fun ( j )
179 f_qtr_typ_global . append ( l )
180
181
182 "␣FACTOR␣ of ␣Typical ␣day␣ o f ␣ the ␣week : ␣f_dow␣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
183
184 yyesterday = df_yesterday [ ’Type ’ ]
185 bbe fo reyes t e rday = df_beforeyesterday [ ’Type ’ ]
186
187 for tod in [ yyesterday , bbe fo reye s t e rday ] :
188 t = bakk . f_dotw_typ_fun (Q_t[ : : −1 ] , tod , n_steps )
189 f_dotw_typ_prev . append ( t )
190 f_dotw_typ_prev [ : : −1 ]
191
192 for tod in [ ttoday , ttomorrow ] :
193 t t = bakk . f_dotw_typ_fun (Q_t[ : : −1 ] , tod , n_steps )
194 f_dotw_typ_next . append ( t t )
195
196 "␣STEP␣1␣"
197 n_row , _ = Q_t_previous . shape
198 s t ep s = n_row/2
199 C1 = 0.85
200 C2 = 0.15
201 count_idx = 0
202 for index , row in Q_t_previous . i t e r r ows ( ) :
203 count_idx +=1
204 Q_t_val = row [ ’Demand ’ ]
205 i f count_idx <= steps :
206 Q_corr_t_val = Q_t_val/ f_dotw_typ_prev [ 0 ]
207 else :
208 Q_corr_t_val = Q_t_val/ f_dotw_typ_prev [ 1 ]
209 Q_corr_t . append (Q_corr_t_val )
210
211 C1_aux = C1 ∗ (1 / s t ep s ∗ np . nansum(Q_corr_t [ int ( len (Q_corr_t ) / 2 ) : len (Q_corr_t ) ] ) )
212 C2_aux = C2 ∗ (1 / s t ep s ∗ np . nansum(Q_corr_t [ 0 : int ( len (Q_corr_t ) / 2 ) ] ) )
213 Q_forc_corr_avg = C1_aux + C2_aux
214
215 "␣STEP␣2␣"
216 count_idx_1 = 0
217 for t in range ( n_steps ∗2 ) :
218 count_idx_1 +=1
219 i f t <= n_steps :
220 Q_forc_norm_val = Q_forc_corr_avg∗ f_dotw_typ_next [ 0 ] ∗ f_qtr_typ_global [ int ( t ) ]
221 else :
222 Q_forc_norm_val = Q_forc_corr_avg∗ f_dotw_typ_next [ 1 ] ∗ f_qtr_typ_global [ int ( t ) ]
223 Q_forc_norm_f . append (Q_forc_norm_val )
224
225 fst_day_aux = pd . to_datetime (Q_t_previous [ ’ Date ’ ] . t a i l ( 1 ) . va lues [ 0 ] )
226
227 add_day = t imede l ta ( days=1)
228 add_week = t imede l ta ( days=7)
229
230 measured = df_date0 [ ( fst_day_aux+add_day ) . s t r f t ime ( "%Y−%m−%d" ) :
231 ( fst_day_aux+add_day+add_day ) . s t r f t ime ( "%Y−%m−%d" ) ] # aka or ig ina l data
232 f o r e c a s t ed = Q_forc_norm_f
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