
Universidade de Aveiro
2021

Rodrigo Rocha
Lopes da Fonseca

Algorithmic design for customizable products
with additive manufacturing

Design algoŕıtmico para produtos customizáveis
com fabrico aditivo

Universidade de Aveiro
2021

Rodrigo Rocha
Lopes da Fonseca

Algorithmic design for customizable products
with additive manufacturing

Design algoŕıtmico para produtos customizáveis
com fabrico aditivo

Dissertação apresentada à Universidade de Aveiro para cumprimento
dos requisitos necessários à obtenção do grau de Mestre em Engenharia
Mecanica, realizada sob orientação cient́ıfica de João Alexandre Dias de
Oliveira, Professor Auxiliar do Departamento de Engenharia Mecânica
da Universidade de Aveiro, e de Victor Fernando Santos Neto, Professor
Auxiliar do Departamento de Engenharia Mecânica da Universidade de
Aveiro.

Este trabalho foi apoiado pelos projetos UIDB / 00481/2020 e
UIDP/00481/2020 - FCT - Fundação para a Ciência e a Tecnologia; e
CENTRO-01-0145-FEDER-022083 - Programa Operacional Regional do
Centro Portugal (Centro2020), no âmbito do Acordo de Parceria POR-
TUGAL 2020, através do Fundo Europeu de Desenvolvimento Regional.

o júri / the jury

presidente / president Prof. Doutor Ricardo José Alves de Sousa
Professor Auxiliar c/ Agregação da Universidade de Aveiro

Doutor João Filipe Moreira Caseiro
Investigador do Centimfe - Centro Tecnológico da Indústria dos Moldes, Ferramen-

tas Especiais e Plásticos

Prof. Doutor João Alexandre Dias de Oliveira
Professor Auxiliar da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Os meus sinceros agradecimentos ao meu orientador, Professor João Alexan-
dre Dias de Oliveira, e ao meu co-orientador, Professor Victor Fernando
Santos Neto, por me guiarem durante este processo, pela sua disponibil-
idade, acompanhamento, rigor, boa disposição, apoio e por me ajudarem
a desenvolver um esṕırito cŕıtico no desenvolvimento tanto neste processo
como para a minha futura carreira.
Á minha mãe Natália, ao meu irmão Francisco e á minha madrinha Lúcia,
os meus pilares, por me apoiarem no meu percurso pela Universidade, de
se certificarem de que era feliz enquanto o fazia, e de, principalmente, me
aturarem.
Aos meus amigos, tanto da Universidade como não, em especial ao Micael,
ao José Carlos, ao Bruno, ao Filipe e ao Eduardo, pela companhia, apoio,
por partilharem o seu conhecimento comigo, por me ajudarem a crescer
como pessoa e como engenheiro. Por todas as aventuras durante o meu
percurso académico, e por me fazerem sentir em casa, estando tão longe
da minha.
Á minha namorada Clarisse, pelo apoio, carinho, dedicação, por me fazer
querer ser melhor para mim mesmo, por estar na minha vida e por me fazer
feliz.
A todos com quem cruzei caminhos durante a Universidade, mesmo os
que, por pena minha, já não tenho contacto, por partilharem os momentos
comigo e por me ajudarem a desenvolver como pessoa e engenheiro.

keywords Algorithmic Design; Parametric Design; Generative Design; Additive Man-
ufacturing; Customizable Products; Scripting; Fusion360

abstract The constant development of computer technologies led to novel ways of
designing products in order to adapt to an always changing industry and
customer requirements. A contribution to this development is the greater
of availability and quality of additive manufacturing technologies, which
brought new possibilities of tailoring products to the customers needs, due
to its digital nature, wide range of available materials, low cost, reduced
production times and ability to manufacture geometries of increased com-
plexity.
Two approaches, parametric and generative design, have gained traction in
recent years. They seek to assist in the design process, by assisting with
alternative exploration, and tailoring products to certain specifications, uti-
lizing computing power as a medium to assist in the decision making pro-
cess. A third approach, algorithmic design, has received attention in recent
years mostly in the field of architecture. It proposes utilizing scripts, either
through a text or visual-based programming language as algorithms, to form
a basis for inferring knowledge, interfacing with other tools and simplifying
the process of product customization through customized user interfaces.
In the present work, the concepts of parametric, generative and algorith-
mic design are reviewed in the light of engineering design, to ascertain the
activities and processes which constitute them, as well as the relationship
between them. With algorithmic design as the focus, the scripting capa-
bilities of Autodesk’s Fusion360 are used to explore shape creation and the
possibility of added customization through custom user interfaces, while also
inferring knowledge from additive manufacturing and outlying the benefits
of integrating such an approach inside a software tool’s ecosystem.
A novel methodology is proposed to address a design problem using algo-
rithmic design, by creating drone models based on user inputs through a
user interface. The methodology focuses on simplifying design exploration
for the early stages of a typical engineering design process, and prepares
the model for the final shape creation by integrating other software tools,
namely, Autodesk’s Generative Design.
This work scratches only the surface of algorithmic design, and does not
go into deterministic approaches as much as possible, as a way to demon-
strate the possibilities it entails without being limited by specific approaches.
Therefore, it serves as a basis for future works which seek to explore alter-
natives or optimize solutions using the methodology as a basis.

palavras-chave Design Algoŕıtmico; Design Paramétrico; Design Generativo; Fabrico Adi-
tivo; Produtos Customizáveis; Programação; Fusion360

resumo O constante desenvolvimento de tecnologias computacionais originou novas
maneiras de desenhar produtos para se adaptarem a uma industria em con-
stante mudança. Uma contribuição para este desenvolvimento é a maior
disponibilidade e qualidade de tecnologias de fabrico aditivo, que devido
á sua natureza digital, grande variedade de materiais disponiveis, baixo
custo, tempo de fabrico reduzido e capacidade de fabricar gemotries de
elevada complexidade, proporcionaram novas possibilidades de adaptar pro-
dutos para as nessecidades do consumidor.
Duas abordagens, design paramétrico e design generativo, têm ganho
relevância em anos recentes. Ambas propõem auxiliar no desenvolvimento
de um design, ao auxiliar na exploração de alternativas e ao adaptar produ-
tos a especificações do consumidor, utilizando poder de computação como
intermediário para assistir no processo de tomar decisões. Uma terceira
abordagem, design algoŕıtmico, tem recebido atenção principalmente no
ramo da arquitetura. Esta abordagem propõe utilizar scripts, tanto através
de uma linguagem de programação visual ou de uma textual como algorit-
mos, os quais formam uma base para inferir conhecimento, ligar a outras
ferramentas de software, e simplificar o processo de customização do pro-
duto através de interfaces de customização.
No presente trabalho, os conceitos de design paramétrico, generativo e al-
goŕıtmico são revistos á luz de design em engenharia, para avaliar as ativi-
dades e processos que os constituem, assim como a relação entre eles. Com
design algoŕıtmico como foco, as capacidades de programação do Fusion360
da Autodesk são usadas para explorar a criação de formas e a possibilidade
de adicionar customização através de interfaces de utilizador customizadas,
ao mesmo tempo inferindo conhecimento sobre fabrico aditivo e realçando
os benef́ıcios desta abordagem quando integrada no ecossistema de uma
ferramenta de software.
Uma metodologia é proposta para responder a problemas de design uti-
lizando design algoŕıtmico, criando modelos de drones baseados em inputs
do utilizador através de uma interface. Esta foca-se em simplificar a ex-
ploração de alternativas nos primeiros estágios de um processo de design de
engenharia t́ıpico, e prepara o modelo para a criação de forma final ao inte-
grar outras ferramentas de software, nomeadamente, o Generative Design
da Autodesk.
Este trabalho é apenas toca na superf́ıcie das abordagens de design al-
goŕıtmico, evitando ao máximo abordagens determińısticas, como forma
de demonstrar as suas possibilidades sem limitá-la a aplicações espećıficas.
Desta forma, serve de base para futuros trabalho que procurem explorar
alternativas ou otimizar soluções usando a metodologia como base.

Contents

I Theoretical Foundation 1

1 Introduction 3

1.1 Framework and Objectives . 3

1.2 Methodology . 3

1.3 Document Structure . 4

2 Design Methods 5

2.1 The use of Computing Power in the Design Process 6

2.1.1 Parametric Design . 7

2.1.2 Generative Design . 8

3 Algorithmic Design 11

3.1 Literature Review and Definition . 11

3.1.1 Literature Review . 11

3.1.2 Algorithmic Design Definition . 12

3.1.3 The Relation between AD, PD and GD 12

3.1.4 Integration in the Design Process 13

3.2 Software Availability . 14

3.2.1 Fusion 360 . 14

3.2.2 Rhinocerous 3D . 15

4 Additive Manufacturing and Customizable Products 17

4.1 Prototyping and the Birth of Additive Manufacturing 17

4.1.1 Quick Overview of AM Technologies 18

4.1.2 The Manufacturing Process . 19

4.2 Design for Additive Manufacturing . 20

4.2.1 DFAM Methodologies . 21

4.3 Customizable Products . 23

II Exploration 25

5 Exploration and Validation 27

5.1 Tool and Language Selection . 27

5.2 Exploring Parametric and Generative Approaches 27

i

5.2.1 Creating Objects Parametrically 28
5.2.2 Generative Thinking . 29

5.3 Working with the API . 30
5.3.1 Exploring Algorithmic Shape Generation 31
5.3.2 Applying DFAM Concepts . 35

5.4 Exploring Built-in Tools . 35
5.4.1 AGD Methodology . 36

6 Case Study 41
6.1 Proposing a Methodology . 41
6.2 Case Study . 43
6.3 Script Development . 45

6.3.1 Design Constraints . 45
6.3.2 Algorithmic Description . 45
6.3.3 Evaluation and Selection . 46

6.4 Second Stage . 48
6.4.1 Creating Finished Models . 48
6.4.2 Prototyping . 50

6.5 Script Additions . 51
6.5.1 Generative Design Variation . 52

6.6 Discussion . 52
6.7 Future Developments . 53

6.7.1 Design Library . 53
6.7.2 Algorithmic Geometries . 54
6.7.3 Including Design Considerations 54

7 Final Remarks 55
7.1 Parametric, Generative and Algorithmic Approaches 55
7.2 On Additive Manufacturing and Customization 56

Bibliography 56

A Code Examples 63
A.1 Building the Interface . 63
A.2 Building the Model . 70

ii

List of Figures

2.1 The followed engineering design process followed throughout this work,
adapted from [of Colorado 2021]. 5

3.1 Proposed domains of AD, GD and PD withing Computational Design. . . 13

3.2 An example of a Grasshopper program with its respective output [Guidera
2011] . 15

4.1 Summary of several AM technologies, separated by initial material state
and associated technology, adapted from [Abdulhameed et al. 2019] 19

4.2 Schematic of the functional components of the FDM process [Mwema
and Akinlabi 2020] . 20

4.3 Generic process of design for AM, although some variation can occur from
technology to technology. 20

4.4 Possible part orientations obtained from the algorithm, red being most
suited, followed by green and then blue [Zwier and Wits 2016]. 23

4.5 Customizable tablet with replaceable modules, as proposed by [Stanciu
et al. 2019]. 24

5.1 Parametric variation of a rectangular parallelepiped’s dimensions. 28

5.2 Parametric bolt created using the API, along with interface for real time
modification. From Fusion’s built-in library. 28

5.3 Generative solution set with height variation, showing 100 results. 29

5.4 A different Generative solution set in Figure 5.3, with results with a vol-
ume of over 2500 cm3 removed from the solution space. 30

5.5 Generative solution set where each object’s height follows an exponential
function, with some results filtered based on their volume. 30

5.6 Sketch feature availability (in green) when using the API [Erinks 2015] . . 31

5.7 Spline generation based on a exponential function through algorithmic
means. 32

5.8 Rods created using splines, using the sweep feature. 32

5.9 Geometries placed following an exponential function, and color coded
based on their area. Green represents geometries under 600 cm2, yel-
low between 600 and 1000 cm2, red between 1000 and 3000 cm2, and blue
are over 3000 cm2. 33

5.10 Mesh surface generation based on a terrain height map. 33

5.11 Automated voronoi sketch generation applied as a cut feature [Kellner 2016] 34

5.12 Interface for the included add-in Spur Gear, which creates gears based on
user inputs. 34

iii

5.13 A flat plate with customizable height and layer height, where the part
height is automatically adjusted to be a multiple of the layer height to
improve printing tolerances. 35

5.14 The prepared CAD model for the Motorcycle Triple Clamp example. a)
Chassi connecting rod; b) Right suspension arm; c) Left suspension arm;
d) Preserved geometry during the generation process. 36

5.15 Filtered results containing some of the parts manufactured using only
stainless steel and titanium, sorted by recommendation. 38

5.16 Scatter plot. 39
5.17 Top view of Outcome 42 showing the first iteration of the creation process

with the preserved geometry shown in green (Top), and the stress map of
the last iteration (Bottom). 39

6.1 Proposed methodology for solving design problems using Algorithmic De-
sign. 41

6.2 Main components of a quadcopter drone [Liang 2021]. 44
6.3 Example sketch representing the quadcopter layout (with some compo-

nents) which the frame is based upon, based on the layout from [Liang
2021]. 46

6.4 Generic model for a hexacopter obtained from all the extracted parameters. 47
6.5 The interface built to interact with the model. 47
6.6 Selected model for further refinement. 48
6.7 Two solutions for the frame section, after application of the Voronoi Script. 48
6.8 Three unique solutions obtained from AGD, ordered by recommendation. 49
6.9 An assembled model containing both frames and all arms. 49
6.10 Another possible solution with a different set of arms and a different

voronoi profile applied. 50
6.11 Sliced arm geometry in the Cura environment. 51
6.12 Alternative arm geometry, sliced in the Cura environment. 51
6.13 Generative modification to the script, returning four alternatives based

on user defined components, which the designer can then choose from. . . 52

iv

Part I

Theoretical Foundation

1

Chapter 1

Introduction

1.1 Framework and Objectives

Algorithmic Design (AD) has been the subject of research within the field of architecture
for some time, usually paired with the use of Parametric Design (PD) and Generative
Design (GD). The relative novelty of the concept eventually led to some ambiguity in
its definition, where the line between AD, PD and GD became blurred. What is most
agreed upon is that AD involves a great deal of scripting to assist with the early stages
of design exploration.

Scripted approaches have several benefits. In essence, they allow the user to cus-
tomize the experience, enabling the design to be made customizable by an end user
through the use of an interface, which will guide the user through the design process.
Additionally, interfacing can also be done between software tools, allowing the designer
to connect different tools within the same script for a more informed design process.
Other benefits include the automation of modeling tasks, which can even be optimized
for certain performance goals.

Having customizable designs means that each design may be different from the pre-
vious, which complicates the tooling required to manufacture them, as each variant has
to be accounted for. To remedy this, Additive Manufacture (AM) is presented as a cost-
effective way to produce customizable designs, due to its ability to manufacture complex
shapes in a shorter amount of time, and the digital nature of the models required.

This work was conducted in order ascertain the true nature of an AD approach to a
design problem, and its potential use in the field of engineering, while studying additive
manufacturing as a way of producing customizable designs enabled by the scripting
workflow.

1.2 Methodology

Initially, a literature review is conducted on the use of Computational Design in which
PD, GD and AD are inserted, followed by definition proposals for each and their rela-
tionship to each other, as well as situating AD in the design process. Some software
tools which are of interest to the exploration of AD’s capabilities are also selected. Sub-
sequently, additive manufacturing and customizable products are approached to show-
case their relevance inside an AD approach. This is followed by experimentation and

3

4 1.Introduction

validation using a scripting environment inside a software tool relevant to engineering
problems, but keeping the examples used as simple as possible as a means to demonstrate
the capabilities of such an approach, without drifting into a specialized field. Lastly, a
case study is selected to bring all components of this work together, showcasing the use
of AD to solve a specific design problem, while integrating it with its environment.

1.3 Document Structure

Setting aside the present chapter, which contains the introductions and intentions of
this work, the remainder of this dissertation is divided into seven chapters. To assist the
reader in accessing the content within, this document was organized with the following
structure:

• Chapter two — Contains the background for this work, and provides a distinction
between Computer Aided Design (CAD) modeling and using it to infer on the
design process. The definitions for the two more common approaches, PD and GD
are also provided.

• Chapter three — Introduces AD with a literature review, defines it and its rela-
tionship with the other two approaches, as well as its place in the design process
and a small selection of software tools appropriate for the application of AD.

• Chapter four — Discusses AM and its technologies with the intent of establishing
a basis for its connection with an AD approach. Attention is also given to Design
for Additive Manufacturing (DFAM), an important stage in the AM process, to
identify how it could benefit from AD. Lastly, it discusses Customizable Products,
the design of which can be heavily influenced by AD approaches.

• Chapter five — In this section, a programming language and software tool is chosen
based on the tools described in Section three, followed by a demonstration of
PD and GD approaches by resorting to extremely simple examples. Next, the
process of scripting in a CAD software is described as a basis for the AD approach,
again limited to simple geometries and pre-built examples. Some attention to the
application of DFAM concepts is also given inside this chapter.

• Chapter six — A case study is performed. Instead of a specific application inside
the field of engineering, a methodology is proposed for the use of an AD approach
to solve a design problem. This methodology is then applied to drone building as
a demonstration of problem tackling using a scripted basis.

• Chapter seven — The final comments on the PD, GD and AD concepts, as well as
AM and Customization.

Rodrigo Rocha Lopes da Fonseca Master Degree

Chapter 2

Design Methods

Successful product design and development involves aspects of creativity, experimen-
tation, field knowledge and problem solving to meet product requirements both aes-
thetically and functionally [Mountstephensand and Teo 2020]. These requirements are
translated into measurable specifications, and are then used in the design process to
iteratively generate, refine and test a wide range of solutions until a final design is cho-
sen [Mountstephensand and Teo 2020]. It is difficult to find a single generic formula for
the design process, as it is usually tailored to the field of its application. As such, this
work considers an engineering design approach, which follows the process depicted in
Figure 2.1, a generic approach to solving design problems using an engineering mind-
set. Of note is that in most depictions of the engineering design process, researching,
exploring and testing solutions will consist in approximately half the total tasks.

Figure 2.1: The followed engineering design process followed throughout this work,
adapted from [of Colorado 2021].

[Mountstephensand and Teo 2020] divide the design process into two stages, concep-
tual and detailed. The conceptual stage generates the most design possibilities through

5

6 2.Design Methods

exploration, experimentation and evaluation, while the detailed stage is dedicated to ap-
plying functional information and testing. Representing design solutions in these stages
is naturally distinct. Concepts are traditionally hand-drawn, as Computer Aided Design
(CAD) models require exact information and are generally slower and more laborious to
design [Mountstephensand and Teo 2020, Dino 2012]. For this reason CAD models are
confined to the detailed design stage, where a design has been selected and its physical
properties are already known. In this way, CAD tools are only used as a way to increase
efficiency and automate drafting (or modelling), as well as for design analysis [Dino
2012,Krish 2011,K. Terzidis and Srinivasan 2004]. Since designers dedicate a large por-
tion of the development process to finding the necessary information for a particular
design [Ye et al. 2008], it stands to reason that placing both design stages within the
same design platform would allow for informed decisions during the design exploration
process which would greatly reduce the time-to-market of a product, as well as its total
development costs. Here enter Computational Design (CD) methodologies, in which the
conceptual stage blends with the detailed design stage through the use of computational
capabilities, specifically using CAD based software to explore design solutions.

2.1 The use of Computing Power in the Design Process

Terms such as CD and Digital Design (DD) have been used for some time to describe
the use of computers in the design process, and the exponential increase to the number
of scientific literature regarding the use of these terms without a proper definition has
naturally led to ambiguity in their utilization [Caetano et al. 2020]. According to [Cae-
tano et al. 2020], DD comprises the use of “computer tools in the design process” while
CD “entails the use of computation to develop designs”. [Ramos and Melgosa 2020]
depict how CAD design is taught with a strong emphasis on DD, as mechanical en-
gineering students are expected to be able to transfer a certain part design into the
digital format as a part of their education. Modifying a design built manually through
CAD features can be time consuming, as the designer performs constant changes and
evaluations [Eltaweel and SU 2017]. Since latter stages of design, which correspond to
a very small amount of the total development time, incur a significant amount of the
development costs, there are benefits to optimizing the workflow on the earlier stages of
design [Gardan and Schneider 2015].

Another issue is related to the ever increasing complexity of models. [Biedermann
and Meboldt 2020] state that increasingly complex structures require more complex
design tools for use with Additive Manufacturing (AM), and how this “manual, low-
level process limits rapid and iterative design changes, as well as the [...] variety of
design concepts”. CD approaches have promising applications in fields requiring in-
creasingly complex micro structures, such as biomimetic morphology, as geometries may
be abstracted as they have an underlying algorithmic logic [Symeonidoua 2019]. Several
approaches were developed to address these issues, aiming to automate and expand the
design process. [Biedermann and Meboldt 2020] propose an automated design method
based on object-oriented programming and parametric features, while [Oxman 2017] ex-
panded by considering its use in the design process, rather than just a simple drawing
tool.

Overall, the most complete definition for CD is given by [Caetano et al. 2020], who

Rodrigo Rocha Lopes da Fonseca Master Degree

2.Design Methods 7

provides four activities for a design process to be considered computational design: au-
tomation of design features (be it by deduction or induction), adaptability towards
multiple software, ease of incorporation of changes, and assisting the designer in form-
finding processes. [Caetano et al. 2020]’s description provides the most complete scope of
activities of CD present in recent literature, it will be the one used for the development
of this dissertation.

Methods of improving and expanding the design process are ever-growing, but the
most common terms in computational design literature are Parametric Design (PD)
and Generative Design (GD), with a recent addition called Algorithmic Design (AD).
Much like CD, instead of defining and establishing clear boundaries, it it much more
appropriate to define the scope of activities which each approach entails.

2.1.1 Parametric Design

The conventional way of CAD modeling involves setting dimensions, constraints, orien-
tation and many other variables to form a coherent shape. These variables are often
considered as parameters which lead to the denomination of CAD tools as parametric
software tools. An important distinction must then be made between what is considered
PD and what is considered Parametric Modelling (PM). Early definitions of PD focus
on the ability to model based on parameters which can be updated and visualized in real
time [Caetano et al. 2020]. [Kolarevic 2004] expanded on this by considering parametrics
as a way to create “an infinite number of similar objects”, using parameters as a range
of possibilities. This process allows different components of each part to be related,
updating the model as a whole on each modification. [Zardo et al. 2019] refers to PD as
“visual programming language tools” capable of creating complex geometries, improving
workflow, allowing the analysis of several design possibilities and consequent selection of
optimized solutions in the early stages of the design process. Similarly, [Dino 2012] re-
gards PD as an algorithm based method to achieve a wide variety of solutions for design
exploration. [Eltaweel and SU 2017] describe PD as a mathematical design where the
design elements are related to each other using parameters that can generate complex
geometries, which update in real-time by manipulating the parameters. Comparatively,
PM is considered as the act of translating a specific design into a 3D using parameters,
at a stage where design is more or less finalized and there is little to no need for studying
other alternatives, therefore it does not constitute a CD approach.

The most recent definition of PD, from [Caetano et al. 2020], is “an approach that
describes a design symbolically based on the use of parameters”, removing associative
geometry as a requirement of PD, but acknowledging its natural occurrence during the
design process. This definition would invalidate the concept of CD, being instead more
closely related to PM. To more closely fit within the CD concept, parameters are consid-
ered distinct from variables, as the later are values that change inside a system, while the
former are entities that connect variables [Gunagama 2018]. Therefore, parametric de-
sign is considered as the use of parameters or constraints in the design process, allowing
the real-time creation of several distinct design alternatives, iterative design refinement
and simplified modification for parts of the design. It is an automated workflow, in
which the constituent parts of the design are also related by parameters, allowing the
design to be updated as a whole by modifying only one of its elements.

For example, updating an extrusion feature in CAD is a simple affair, but only if there

Rodrigo Rocha Lopes da Fonseca Master Degree

8 2.Design Methods

are no other associated geometries to this feature. If such is the case, each geometry will
have to be modified accordingly to correspond to the new extrusion feature. Using a PD
approach to this problem, the modification to the extrusion feature would automatically
equate to a change in the associated geometries. In this way, PD provides good design
adaptability for complex designs with changing requirements [Dino 2012].

2.1.2 Generative Design

Generative Design (GD) is often mistakenly associated with a shape generation technique
rather than an approach to design, mostly due to the improved capabilities of current
engineering software tools such as Autodesk’s Generative Design (AGD), which can give
an organic look to a geometry, much like it was “grown” rather than created. However,
GD is fact a design approach which aims to simplify the process of exploring alternative
solutions to a design problem, relying on computing power to explore large amounts of
viable solutions which the designer can then select from [Guidera 2011], rather than a
defined process of giving shape to an object.

Several authors have provided their own insight on this topic, and most discrepan-
cies occurs in the actual process of generating the alternatives. [Buonamici et al. 2020]
defines GD as an approach that can generate a “series of plausible solutions for a de-
sign problem”, by satisfying design constraints and maximizing a goal function. [Kr-
ish 2011] focuses on the creative design aspect, portraying GD as way of solving ”cre-
ative design problems” brought by the subjectivity of each designer, and guiding them
through a large number of design possibilities constrained by certain performance crite-
ria. [Oh et al. 2019] states GD as a design exploration method “performed by typically
varying design geometry parametrically and assessing the performance of output de-
signs”. This view is shared by [Dino 2012], which describes parametric modelling as
a generative design tool, with a focus on encoding the design procedure rather than
creating a physical object. [Krish 2011] considers GD as an approach where a generic
model is created and its parameters varied in order to generate alternatives, then filtering
these results based on their geometry, manufacturing and costs. Similarly, [Buonamici
et al. 2020] proposes a similar method of GD: a generic CAD model is created and its
dimensions stored in a design table. Value ranges are then set, randomized and used
to produce a set number of design possibilities, based on the random variation of the
stored values. Each design then has its performance evaluated by a previously set func-
tion. This function is an ambiguous way to refer to the application of filters to be able
to narrow down solutions.

Far from being confined to parametric variation, other authors consider the use of
algorithms in the GD process. Here, algorithms can be considered as a “step-by-step
guide” on how to generate a solution, and as such has unlimited potential on shape gener-
ation approaches [Gunagama 2018]. For [Mountstephensand and Teo 2020], GD creates
pieces or entire objects through algorithms, either interactively or automatically, while
generating a large number of alternatives for exploration which a human designer could
not achieve manually in a reasonable amount of time. Parallel to parametric approaches
are evolutionary ones [Caetano et al. 2020]. These methods involve incorporating meta-
heuristic algorithms in the generation process, such as [Oh et al. 2019] propose a method
using Topological Optimization (TO) as a “design generator” instead of the more com-
mon parametric approach, to develop parts merging engineering performance with good

Rodrigo Rocha Lopes da Fonseca Master Degree

2.Design Methods 9

aesthetics. At some point, TO started to be named as a necessary component when
discussing GD, primarily due to software tools such as Autodesk’s Generative Design,
but this addition is largely incompatible with the available literature.

In the end, as GD is a design process, much like PD, the shape generation process
matters little in regards to the methodology. [Dino 2012] states that generative design
focuses on encoding the design procedure, rather than creating an object. As such, be it
created through an algorithmic or parametric base, GD is considered as an automated
approach in which the goal is to generate a large number of design alternatives to assist
with early design exploration. As an automated approach, GD allows the application
of filters based on the physical characteristics (or metrics derived from them) of each
solution to better aid with selecting a solution to further develop.

Rodrigo Rocha Lopes da Fonseca Master Degree

.

Intentionally blank page.

Chapter 3

Algorithmic Design

3.1 Literature Review and Definition

3.1.1 Literature Review

Algorithmic Design (AD) is found in literature as early as 2004, with a strong link to
architecture. [K. Terzidis and Srinivasan 2004] portrays AD as new direction in architec-
ture design. While previous utilization of computation power was limited to presenting
or storing an idea already present in the designers mind, this new form of design sought
to code the design intention by use of existing 3D software. [K. Terzidis and Srinivasan
2004] further refers to algorithmic design as a conceptual methodology for “the explo-
ration of forms, structures and processes” usign mathematical or logical methods, while
outlying the systems “consistency, structure, coherency, traceability and intelligence”.

Another mention of algorithmic design as a “conceptual design method” is given
by [Bukhari 2011], emphasizing its use in the earlier stages of the design process as
a collaborative effort between human creativity and computational capability, and the
benefits of “A rapid means of customising designs for local circumstances”. [Zboinska
2015] outlines the lack of use of computational capabilities in the earlier stages of design
exploration, and proposes algorithmic design based on parametric tools, allowing tasks
“such as quick generation, exploration and evaluation of large design spaces, containing
geometrically-complex solutions.”

Through a comprehensive review of scientific texts, [Caetano et al. 2020] outlines
the difficulty of differentiating algorithmic design from generative design, and proposes
algorithmic design as “a design paradigm that uses algorithms to generate models”,
thus considering it generative. As proposed by [Caetano et al. 2020], the differentiating
aspect of AD, when compared to GD, comes down to the strong correlation between the
shape generating algorithms and its outputs, underlining its “finer degree of control”
over certain aspects of the final shape. Unfortunately, this provides little insight to
what an AD approach might consist of, and how it would differ over a GD approach
in practice. [Martinho et al. 2020] offers a more practical application for AD: a script
based tool which interfaces with CAD and analysis tools, although in this case modeling
is done manually, with the script only serving as an interface which updates the model.

11

12 3.Algorithmic Design

3.1.2 Algorithmic Design Definition

The literature on AD shows a distinct ambiguity on its application. While most authors
agree on its use as a conceptual and design exploration tool [K. Terzidis and Srinivasan
2004,Bukhari 2011,Zboinska 2015], little attention is given to its actual process, resulting
in confusion in regards to its application. As algorithms are sets of rules or instructions
aimed at achieving a particular solution, one could argue that using a CAD tool would
constitute AD [Caetano et al. 2020]. However, such processes have no input in the design
process, and as such are excluded as AD. [K. Terzidis and Srinivasan 2004] explored AD
possibilities using “constraint based stochastic search”, which is based on GD processes,
and which results in generally unpredictable outcomes. Such algorithms can be part
of an AD process. For example, [Caetano et al. 2020] considers a program capable of
modeling a building by “creating slabs, columns, beams, walls” and other elements to be
AD. Hence, even if some of the components of a certain design are based on evolutionary
approaches, each element of the design can be directly traced to a specific part of the
algorithm, and is considered AD. Algorithmic ambiguity is not limited to GD processes,
but PD ones as well. [Symeonidoua 2019] used parametric based algorithms to generate
biomimetic surfaces for building skins, in which the generated skin could adapt to the
complex shapes of the required buildings. Such examples contribute to the difficulty
of defining AD in light of PD and GD processes. [Caetano et al. 2020] defines AD as a
subset of GD and PD. Although AD does generate design possibilities, it does not require
a performance evaluation of the finished design, and thus there can be AD without GD.
In the same way, AD does not require a PD base, as design generation can be achieve
through other processes other than parameter variation.

For the scope of the work, Algorithmic Design is defined as the use of algorithms,
scripts or pieces of code created by the designer with the specific intent of solving a
design problem, allowing the generation of designs which can be modified and tuned by
the designer. By crafting algorithms specifically for a design goal, be they generative,
parametric or otherwise, it provides the designer with control over the generated solution
and allows iterative design refinement, modification and analysis, as every component of
the design is linked to a specific piece of code and can be controlled through it. Much like
what [Martinho et al. 2020] describes, such an approach is not limited to CAD modelling,
and can be used to interface with other tools or programs to simplify or inform a design
process. Additionally, like [Bukhari 2011] reported, controlling all aspects of design also
facilitates the customization of the design for specific circumstances.

3.1.3 The Relation between AD, PD and GD

It is difficult to establish a clear line between each approach. In fact, when describing GD
approaches, some use parameters to achieve variation, resulting in a merging between
PD and GD techniques. The main degree of separation between these two techniques
would be the automation GD requires. Similarly, an AD approach can consist of using
parameters to automatically generate models while interfacing with different tools, which
also uses PD and GD techniques. Conversely, these approaches can also be thought of
separately: an AD approach can solely consist of interfacing between software tools to
solve a design problem, or it can make use of parameter variation exclusively as a PD
approach. The same applies to GD approaches, which need not be based in parameters to
generate alternatives. Despite this, to single-handedly use one approach while excluding

Rodrigo Rocha Lopes da Fonseca Master Degree

3.Algorithmic Design 13

the other requires conscient effort, and is far more natural for techniques from different
approaches to be used together during a design process. Therefore, it is more accurate
to represent the domain of each of these approaches inside CD as illustrated in Figure
3.1, which represent sets of activities which are linked to each of the approaches, but are
not limited to just one approach.

Figure 3.1: Proposed domains of AD, GD and PD withing Computational Design.

3.1.4 Integration in the Design Process

Scripting is the main activity of an AD approach. To best apply this type of approach,
it is necessary to identify where in can be best applied. So far, this work identified three
ways scripting can influence the design process: by directly building geometries, by
interfacing between software tools, and by allowing for design customization. Although
the focus of using CD techniques is in the early design process, AD need not be limited
to it. In fact, the limitations of using AD during the design process are connected to
the design complexity and the capabilities of the script to interface between the different
tools. Theoretically, AD reaches its peak if the designer can interface between CAD,
Computer Aided Engineering (CAE) and Computer Aided Manufacturing (CAM) tools,
as well as the manufacturing and testing equipment. This application would contain
the modelling, analysis and manufacturing inside a script tailored for the specific design
problem. The main obstacle to such implementation is the fact that CAD, CAE and
CAM software tools are proprietary, working with different file formats and sometimes
different programming languages. In some cases, software tools that posses CAD, CAE
and CAM do not allow interfacing between them, and creating geometries using only
scripting can also be laborious if the design is complex. However, AD is well suited
to automating design exploration. Having access to the features of such software tools
through scripting can help automate and reduce the time expenditure of the early design
stages. The creation of multiple scripts tailored for certain tasks, along with creating
interfaces for direct manipulation of the design can also help reduce the total load on
the designer. Lastly, the ability to integrate design customization means that designs

Rodrigo Rocha Lopes da Fonseca Master Degree

14 3.Algorithmic Design

which integrate CAD, CAE and customization can be made, further exarcebating the
potential of such an approach.

3.2 Software Availability

In order to validate the AD concept within an engineering design process, software tools
with a Application Programming Interface (API) and a well documented programming
language are considered. This restriction was made to take advantage of the design
capabilities of existing software tools such as CAD tools, but simpler approaches using
programming by itself are also possible. Two tools with promising API’s were considered:
Autodesk’s Fusion 360 (or Fusion for short), and Rhinocerous (also known as Rhino 3D
or simply Rhino). There are many more CAD software tools which would be appropriate
for testing AD, but the two described above are the most accessible at the time of writing,
and present interesting capabilities which will be described shortly. This section describes
these tools and their potential when using an AD approach.

3.2.1 Fusion 360

Fusion is cloud-based software tool, combining CAD, CAE, and CAM in a single product,
along with freeform modeling, sculpting, parametric features, material and manufactur-
ing data [Pradhan 2019]. It is available with a Free or Educational License, although
Free users have limited access to features, and use of CAE features requires at least an
educational license.

Being a cloud service, Fusion allows for several users to collaborate on projects no
matter their location. As all information is automatically stored in the cloud, along with
the ability of integrating manufacturing and design in a single tool, it allows concept
exploration and prototyping to be much faster than its competitors [Suhada et al. 2018].
Fusion also features an API [Pradhan 2019] based on Python, which is a high-level
programming language, focusing on ”ease of use and reliability”, and with vast libraries
on multiple subjects [Meurer et al. 2017]. Research has been conducted on using Python
to overcome engineering challenges, such as analysis and optimization of electrical power
systems [Thurner et al. 2018] and adaptive truss layout optimization [He et al. 2019],
which demonstrate Python’s as a valuable asset in any engineers tool set.

One of Fusion’s included features is Autodesk’s Generative Design (AGD) which,
according to [Autodesk 2020], is a tool that assists in creating, testing and evaluating the
best possible outcomes for a specific design scenario. AGD uses algorithms to automate
the generation of a large number of solutions which can be further refined by the designer.
The process uses two types of geometries, preserve and obstacle, to identify geometries
to keep and zones to avoid, respectively. The user can then specify loads and constraints,
as well as objectives (minimize mass or maximize stiffness), manufacturing methods and
materials in order to optimize the design. AGD is used to generate optimized solutions
for a particular design solution from which the designer can then filter based on a different
number of parameters. As a GD tool, it isn’t meant specifically for design exploration,
rather to explore optimized solutions to a specific problem, but its use of algorithms as
its basis for creating shape, while using parameters to better define the design problem
shows value as a tool to implement with an AD approach. Since scripts can be made
to interact with AGD inside Fusion, it presents a good candidate for a software tool for

Rodrigo Rocha Lopes da Fonseca Master Degree

3.Algorithmic Design 15

also combining PD and GD, where design exploration is carried out through algorithmic
means, and the final design is ran through AGD.

3.2.2 Rhinocerous 3D

Rhinocerous 3D (Rhino) is a 3D modeling software tool based on Non-Uniform Rational
B-Splines (NURBS) [Lee and Song 2021]. Its ability to produce complex surfaces at-
tracted great attention in the field of architecture [Guidera 2011] and is much expanded
through its plugins, some of which include environment simulation [Lee and Song 2021].
Besides the availability of scripting with Python and RhinoScript, that makes Rhino
an interesting tool for an algorithmic approach is Grasshopper, a plugin which provides
a novel way of interacting with geometry, allows for environmental simulation, lighting
and energy optimization through the use of additional components [Lee and Song 2021].
It is a visual programming interface [Lee and Song 2021] which references geometry in
Rhino, allowing a different control over the geometry and real time updating of any
changes made to it [Guidera 2011].

Using Grasshopper involves determining initial parameters and connecting them to
”blocks” to generate a final output, which lead to the use of Grasshopper as a PD
tool. These ”blocks” represent algorithmic operations which can be customized by the
designer, and several ”blocks” can be connected to each other to further add complexity
to the design. Figure 3.2 is an example of a geometry created using extrude and offset
operations in the Grasshopper environment [Guidera 2011].

Figure 3.2: An example of a Grasshopper program with its respective output [Guidera
2011]

Although Grasshopper uses a visual interface compared to the text based one from
Fusion, both seek to interact with the tool using algorithms. These follow a simple
structure, in which an input is passed through a function to obtain a desired output.
The functions can be mathematical equations or sets of rules, which allows for not only
shape creation, but also for task automation. Arguably, interacting with Grasshopper is
easier due to its visual nature, and each block can be modified by resorting to Python
or RhinoScript, but text based scripting provides more freedom to the designer, as well
as the possibility of creating their own plugins to interface with other tools. In the end,
the choice to use either is dependant on designer preference.

Rodrigo Rocha Lopes da Fonseca Master Degree

.

Intentionally blank page.

Chapter 4

Additive Manufacturing and
Customizable Products

The inherent digital nature of Algorithmic Design (AD) approaches, along with their
focus on design exploration, present a few challenges for manufacturing. Since an AD
approach can obtain several solutions which can have varying degrees of complexity and
may require prototyping and testing, it is essential to select an appropriate manufac-
turing method. To better understand how solutions obtained from AD approaches can
be effectively produced, Additive Manufacturing (AM) is looked at as a digital based
method that can satisfy the requirements of such an approach.

Additionally, AD approaches are based on scripting an thus customizable by nature.
Combined with a manufacturing technique like AM, AD approaches can simplify the
process of building customizable products and producing them in a timely and cost-
effective manner.

4.1 Prototyping and the Birth of Additive Manufacturing

When attempting to develop a product, it is often necessary to build and test a pro-
totype. These serve a multitude of functions, including (but not limited to) functional
testing, concept exploration, customer feedback, and evaluation of design fidelity [Cam-
burn et al. 2017]. Traditional manufacturing techniques can be classified in four distinct
groups: Subtractive, such as machining, which removes layers of material to create ge-
ometry, and are usually automated; Joining, such as welding; Dividing, such as cutting
or shearing; Transformative, in which the mass of the object remains unchanged, such as
forging [Abdulhameed et al. 2019] or hydro-forming. Subtractive processes are common
for prototyping, but require large amounts of energy and have high “buy-to-fly” ratios,
(the relationship between the mass of the starting billet to the finished part) [Watson
and Taminger 2018], while the increase in part complexity leads to higher complexity
of the manufacturing equipment, which in turn limits the use of Transformative and
dividing processes.

Originally developed for prototyping, a fifth class, Additive Manufacturing (AM), al-
lows for greater energy efficiency and lower material consumption [Watson and Taminger
2018]. Parts manufactured through this method allow production of complex geometries
from a selection of tailored materials while reducing material waste [Bikas et al. 2016].
Contrary to Subtractive manufacturing, this process consists in joining materials by

17

18 4.Additive Manufacturing and Customizable Products

adding successive layers, based on a pre-existing 3D model, using 3D printers [Abdul-
hameed et al. 2019,Zafar and Zhao 2020].

While initially confined to rapid prototyping, AM quickly transitioned to rapid tool-
ing, creating tools for traditional manufacturing methods. Advances in technology as
well as the greater range of materials available mean that multi-material, fully functional
end user products are now possible. The constant decrease in the price of 3D printers
made the technology available to all business sizes, and some large electronic retailers
provide dedicated 3D printing services. As 3D printers became more common for low-
volume production, the unit cost reduced accordingly [Holmström et al. 2016], which led
to a newfound success in home fabrication, as large retailers started selling 3D printers
and other associated components [Rayna and Striukova 2016]. Recent research on AM
technologies focus on innovation and customization, while also showing promise in the
optimization of factory operations, by containing production in a single build envelop
and therefore greatly reducing tooling costs [Holmström et al. 2016].

Aside from increased complexity of geometries, AM allows for the manufacture of
non-removable assemblies and the use of multiple materials during printing to optimize
the parts performance. New possibilities also come with new limitations, and AM pro-
cesses must take into account factors such as temperature control, build orientation for
improved mechanical performance and built time reduction, support generation and re-
moval to ensure correct fabrication and machine limitations [Salem et al. 2020]. The ma-
terial selection is wide and ever increasing, with metals polymers, concrete, composites
and even edible materials such as chocolate [Mwema and Akinlabi 2020]. Common appli-
cations for AM technologies include medical industries (implants, functional body parts,
biotech), construction (components or entire buildings [Garćıa-Alvarado et al. 2021]), as
well as food, automotive, research and aerospace industries [Wickramasinghe et al. 2020].

The structural complexity which AM allowed led to a natural integration of TO into
the AM design process. AM removes the constraints of traditional manufacture method,
while also creating “lightweight, high-performance” parts [ZHU et al. 2021].

4.1.1 Quick Overview of AM Technologies

AM technologies can be classified in several different ways. [Abdulhameed et al. 2019]
uses the initial material state to separate different technologies. This is a common
description of AM technologies, as the initial material state will dictate which process
can be used for manufacturing. Following this logic, Figure 4.1 depicts a selection of
materials and associated process of AM.

The choice of AM technology is dependant of weighing their advantages and disad-
vantages with of the required design specifications, along with material and mechanical
considerations, such as impact resistance, ease of printing, heat resistance and visual
quality, among others. [Wickramasinghe et al. 2020] overviews some of the methods
present in Figure 4.1, but as they are far too many to go into detail, and the intricacies
of each are not the subject of this work. Instead, Fused Deposition Modeling is used as
a reference example of what a designer should consider when designing a part with an
AM method in mind.

Fused Deposition Modeling, also known as FDM, is the most common extrusion based
technology for AM, being low technology, easy to operate, and cheap to maintain and
resupply [Medellin-Castillo and Zaragoza-Siqueiros 2019]. In this process, string shaped

Rodrigo Rocha Lopes da Fonseca Master Degree

4.Additive Manufacturing and Customizable Products 19

Figure 4.1: Summary of several AM technologies, separated by initial material state and
associated technology, adapted from [Abdulhameed et al. 2019]

solid material (filament) is passed through a metal nozzle which melts and deposits it
layer by layer into a build plate. Multiple nozzles can be used if the printer and slicer
support it, for cases in which multi material or support material is needed, such as soluble
supports [Wickramasinghe et al. 2020]. Common materials include PLA, ABS, PETG,
Nylon, composite materials, carbon fiber [Wickramasinghe et al. 2020], and even flexible
materials, wood and chocolate. FDM is also the most prevalent in home fabrication, as
printers became small enough to fit on desktops.

4.1.2 The Manufacturing Process

Producing a part for AM follows a digital based methodology: Initially, a digital model
of the part is required. These can be created using 3D modeling software (such as
CAD) or using 3D scanning technologies [Rayna and Striukova 2016]. In this first phase
Computer Aided Engineering (CAE) can be used to simulate the material response
to certain types of loads and constraints [Wickramasinghe et al. 2020], optimizing the
geometry through fast iterations, with AM allowing for the production of the resulting
complex geometry [Remache-Vinueza et al. 2021]. The model is then converted into
a triangle mesh which can be stored into an .STL file format, then passed through a
”slicer” software, which generates a layered tool-path and converts it into commands for
the 3D printer [Steuben et al. 2016]. The ”slicer” allows for customization of most printer
parameters, such as layer height, temperature, and part orientation, depending on the
AM process. After the part is prepared, the manufacture process occurs autonomously
and requires little supervision (and some 3D printers come prepared with monitoring

Rodrigo Rocha Lopes da Fonseca Master Degree

20 4.Additive Manufacturing and Customizable Products

Figure 4.2: Schematic of the functional components of the FDM process [Mwema and
Akinlabi 2020]

equipment to facilitate supervising work over distances). When the parts are finished
printing, they are removed, and excess material is discarded and additional processing
(such as sanding or polishing) is done, if required [Vaneker et al. 2020].

Figure 4.3: Generic process of design for AM, although some variation can occur from
technology to technology.

4.2 Design for Additive Manufacturing

As with traditional manufacturing methods, AM also benefits from designing a product
with insight from the desired AM process. The increase in product complexity and client
expectations, both of quality and modularity, necessitates for a manufacturing process
that responds accordingly [Salem et al. 2020].

Designing without insight from the manufacturing process can incur extra costs dur-
ing development if the product were to fail during manufacture, or if it required modifi-
cation in the later stages. With the continuous advancement of computer technologies,
came the possibility of creating a symbiotic relationship between design and manufac-
turing. [Gebisa and Lemu 2017]

This process, called Design for Manufacturing (DFM), attempts to reduce cost and

Rodrigo Rocha Lopes da Fonseca Master Degree

4.Additive Manufacturing and Customizable Products 21

complexity of a part, simplifying the process of its manufacture by minimizing the com-
plexity of manufacturing operations and reducing the number of tight tolerances [Du-
rakovic 2018]. A DFM methodology contains rules, guidelines and tools which aim to as-
sist in creating a design adapted for a specific manufacturing process, while acknowledg-
ing the importance of having such considerations early in the design process [Medellin-
Castillo and Zaragoza-Siqueiros 2019].

Design for Additive Manufacturing (DFAM) is based on the same principles as DFM
(and as such, is an integrated methodology), but seeks only to optimize a product for
a specific AM process. Products optimized in this way can be produced more reliably,
require less manufacturing time and are more cost effective [Vaneker et al. 2020], as they
have fewer and customizable parts, are more cost effective and have simplified assembly
procedures, when compared to parts manufactured without DFAM [Durakovic 2018].
The goals for DFAM are the same as those for DFM, although the unique capabilities of
AM presents new challenges as each AM technology has its own constraints which must
be accounted for [Medellin-Castillo and Zaragoza-Siqueiros 2019].

[Salem et al. 2020] separates the information necessary for a DFAM methodology into
four categories to successfully manufacture optimized parts for a specific AM machine:

• Material knowledge — Considering material shrinkage, constraints and anisotropy,
as well as removing unnecessary geometries and defining their orientation.

• Process knowledge — Printer specifications (such as layer thickness for the ma-
chines resolution, and other material considerations, such as purity and tempera-
ture) and build orientation.

• Product knowledge — Adding functional information to the model and apply
Topology Optimization (TO).

• Procedural knowledge — Optimizing production, reducing material and time costs,
and accounting for the production volume.

4.2.1 DFAM Methodologies

Several frameworks have been proposed over the years, although the relatively recent
acknowledgement of AM as a production technology, the varied production methods
which are optimized differently and lack of education in the subject result in no single,
generic framework for all design situations [Vaneker et al. 2020], [Medellin-Castillo
and Zaragoza-Siqueiros 2019]. [Salem et al. 2020] proposes a five step methodology for
DFAM:

• Client Specifications — Converting requirements and constraints given by the client
into workable data, such as dimensions, functional surfaces, tolerances and loads.

• Functional Domain — Functional surfaces and volumes are created taking into ac-
count the necessary manufacturing tolerances (such as minimum thickness), which
may vary depending on part orientation and the chosen process.

• Process Domain — Integrating the process details and constraints and choosing
the appropriate material, based on machine and part constraints, such as part ori-
entation and thermal considerations, to ensure the functional part in the previous
process can be manufactures successfully;

Rodrigo Rocha Lopes da Fonseca Master Degree

22 4.Additive Manufacturing and Customizable Products

• Optimization — Using TO to optimize the part volume, reduce weight, material
usage, cost and operation times.

• Simulation — The manufacturing process, as well as the mechanical properties of
the part are simulated to ensure adequate manufacture of the part.

Each AM technology has different considerations in regards to the Functional and
Process domains. The FDM process is notorious for needing supports for overhanging
parts that are over a 45º angle, while others dispense with supports entirely [Wickramas-
inghe et al. 2020], but the methodology is maintained throughout the different processes.
Other geometric considerations must be taken into account, such as part size, minimum
wall thickness and build orientation, which can influence the final part’s visual and me-
chanical characteristics, and therefore cost and production time [Medellin-Castillo and
Zaragoza-Siqueiros 2019].

The digital nature of the AM process allows the use of algorithms to assist in au-
tomating such procedures. [Briard et al. 2020] proposes an automated methodology based
on GD combined with TO, providing better insight on possible solutions for the final
part design, while also maintaining a similar methodology to the one described above.
The methodology involves constant looping during each step to ensure that the selected
designs are optimized before continuing to the next step, and can be summarized in four
steps:

• Translation — Converting all part data into the required GD software data (such
as dimensions, loads and tolerances).

• Initialization — Optimization, refinement and analysis using GD tools.

• AM Guidelines — Integrating AM constraints and production optimization based
on material and process.

• Refinement — Further refinement of obtained solutions, and final analysis.

Using GD techniques allows the designer to obtain unconstrained models in the
initialization step, and looping the process allows the designer to return to an earlier
model, if the next iteration wasn’t satisfactory. The same process applies to the next
two steps, where only new information is added (such as manufacture constraints in AM
Guidelines), and further looping is performed to guarantee the best possible result.

In practice, automating such methodologies requires key points of each process to
be addressed. [Zwier and Wits 2016] utilizes an algorithm to find the optimal build
orientation and minimize the support volume needed, by using the convex hull principle
and comparing it to the parts mesh model. The algorithm provides several solutions for
part orientation, and utilizes the best one to orientate the part in the build plate, as
demonstrated in Figure 4.4

In summary, although there is no single accepted DFAM baseline methodology, their
principles remain the same, and the digital nature of the AM process provides the nec-
essary framework to automate several steps in these methodologies using an algorithmic
approach.

Rodrigo Rocha Lopes da Fonseca Master Degree

4.Additive Manufacturing and Customizable Products 23

Figure 4.4: Possible part orientations obtained from the algorithm, red being most
suited, followed by green and then blue [Zwier and Wits 2016].

4.3 Customizable Products

A customizable product is a product designed with input from the user, and which
can have its features or properties modified after the product has already seen its first
use, allowing the user to change the products performance to meet their specifications
[Colombo et al. 2020]. It is distinct from product personalization, as in this case a
product is tailored to a specific customer, often without their input, while customization
implies that the customer has had input in the product development process [Deradjat
and Minshall 2017]. A common example for personalization is marketing, in which
costumer information is used to produce advertisement targeted to a specific consumer
demographic [Pallant et al. 2020].

[Pallant et al. 2020] show an increasing preference for the majority of U.S.A. online
shoppers to acquire customized products or services, revealing how customizing adds
value to a product, which can be sold at higher prices and with costumers accepting
longer wait times. Many large companies allow some form of customization for their
products, such as Nike, which allows a consumer to customize their sneaker, and Dell
which offers a large level of customization (with regard to other brands) when choosing a
desktop computer or laptop. However, applying a customization model to large volumes
of production, know as mass customization, requires a deep level of understanding of
the underlying market [Bernhardt et al. 2007]. The shoe company Shoes of Prey, which
started making fully customizable shoes based on customer specification in 2009, entered
liquidation in 2019 due to the high cost of the customization model used, as well as the
”inability to achieve mass market customer adoption” [Pallant et al. 2020].

Additive Manufacture technologies present a new way of tackling the high costs
of manufacturing a customized product [Deradjat and Minshall 2017]. A new trend,
Direct Digital Manufacturing (DDM) investigates the use of AM technology for the local
manufacture of customized goods [Srinivasan et al. 2018]. AM’s high degree flexibility is
one of the main reasons for its use with customizable products [Srinivasan et al. 2018].
As AM allows manufacturing of end-user products, allied with an ability to work solely
of 3D models, it presents a faster alternative to producing such a product. Additionally,
the reduced tooling costs, the ability to work with small batch sizes without extra costs,
the use of multiple materials and reduced need to keep inventory (as some parts can be
produced on demand) are other reasons why AM has great potential in producing mass
customized products [Srinivasan et al. 2018].

Rodrigo Rocha Lopes da Fonseca Master Degree

24 4.Additive Manufacturing and Customizable Products

Displayed in Figure 4.5 is a 7-inch tablet developed by [Stanciu et al. 2019], complete
with manufacturing process, which allows users to modify any of its six modules to
suit their needs. Such modules include, but are not limited to, a bluetooth speaker, a
flashlight, additional battery capacity, and several cosmetic options. Included are also
several manufacturing options for the tablet frame.

Figure 4.5: Customizable tablet with replaceable modules, as proposed by [Stanciu
et al. 2019].

When developing customized products, it is also important to dedicate resources to
the interface in order to guide the user through the creation process, as demonstrated
by [R. Pescaru and Oancea 2017]. Attention should be given to how the information
is displayed, and which should be present, as functionality is an important part of a
customizable product [Felfernig et al. 2001]. As such, it is important to not saturate the
user with information, and a careful selection of information should be undertaken.

Rodrigo Rocha Lopes da Fonseca Master Degree

Part II

Exploration

25

Chapter 5

Exploration and Validation

With the concepts now discussed, this chapter will focus on validating each approach
using simple examples, and exploring AD’s capabilities and its presence in currently
available software tools. Initially, the CAD tool and programming language are se-
lected, followed by testing shape creation using Parametric, Generative and Algorithmic
techniques, and ending with use of existing software tools to help solve design problems.

5.1 Tool and Language Selection

The choice between Fusion and Rhino comes down to two factors: the type of license
available, and the feature set provided through scripting. Fusion is a full fledged CAD
software, with several extras such as Topology Optimization (TO) or Autodesk’s Gener-
ative Design (AGD), and is more adequate for solving engineering problems, as Fusion’s
solid based models also allow for design tolerances and general dimensions to be applied
to models, which make it ideal for functional models. The text-based Application Pro-
gramming Interface (API) used by Fusion is based on Python, which potentially allows
for integration of other tools inside the same script due to Python’s large and grow-
ing community which provide free and paid plugins. As for Rhino, its comprehensive
surface based modeling, although powerful, is less adequate for solving engineering prob-
lems. The main interest in Rhino for this work comes from Grasshopper, with its visual
programming interface, which can also be customized with python.

The choice was made to use Fusion, as it has an educational license which grants
access to its comprehensive analysis tools and is more adequate for solving engineering
design problems.

5.2 Exploring Parametric and Generative Approaches

Experimentation is carried out on Fusion to test the validity of the parametric and
generative techniques to better understand how to use them to solve design problems.
The initial tests were dedicated to establishing a set of activities which can be identified
as either Parametric Design (PD) or Generative Design (GD), and highlighting some gray
areas that occur in their interaction. Testing was done resorting to simple geometries,
as the focus of these approaches is not how its shape is generated, but how a design
problem is tackled with each approach.

27

28 5.Exploration and Validation

5.2.1 Creating Objects Parametrically

To model a rectangular hexahedron in a parametric way, its 3 dimensions are used
as parameters. Fusion allows for lists to be created through its “Change Parameters”
option, and each dimension assigned a variable, length, width, and thickness with a
base value of 100mm. A sketch is then drawn using length and width as dimensions,
and extruded with thickness to form a perfect cube. The presence of a fx prefix when
sketching in Fusion indicates that this dimension is set by a parameter. By altering
the parameters directly, the cube alters shape accordingly in real time. In contrast,
modifying shape traditionally requires modifying the initial sketch and extrude feature
to achieve the same result. Furthermore, these parameters can be related to each other,
modifying the model as a whole with only one parameter. In Figure 5.1, the thickness is
set at half the sum of the other two dimensions, and the overall shape can be manipulated
by modifying its length and width.

Figure 5.1: Parametric variation of a rectangular parallelepiped’s dimensions.

The same approach can used with more complex shapes. Figure 5.2 shows Bolt.py,
one of Fusion’s inbuilt examples, which creates a bolt based on inputs by the user, and
allows real time modification of its shape. The methodology is the same as the previous
example, where the user controls key parameters to obtain design variation, instead of
resorting to manual modification of the model.

Figure 5.2: Parametric bolt created using the API, along with interface for real time
modification. From Fusion’s built-in library.

Although the previous examples are simple in nature, they showcase the parametric
way of approaching a design problem: selecting key parameters from the multiple design
variables, achieving design variation according to the designer’s intent to use as param-

Rodrigo Rocha Lopes da Fonseca Master Degree

5.Exploration and Validation 29

eters. This type of workflow simplifies the process of modifying the model by having
it adapt to changes immediately, while also establishing relationships between multiple
components to ensure the model adapts correctly.

5.2.2 Generative Thinking

Exploring the generative approach can be done by expanding the parametric example
into a fully automated routine. Multiple variations of the initial cube can be achieved
by automatically varying the desired parameters and displaying each outcome to the
user. Fusion lacks this feature as a built-in, but the same effect is achieved by using
Fusions API. Firstly, the basic cube shape is programmed in python, and configuring
one if its dimensions as a height parameter, randomly generated within a 50 mm to 500
mm range. These basic instructions are then placed in a cycle to generate 100 variations
with a pseudo-random height. Running the script returns each iteration displayed to
the user as a separate body. Notably, the process of creating a cube based solely on
programming is much more laborious compared to the traditional method, but allows
automating the generation of multiple alternatives. The result is depicted in Figure 5.3.

Figure 5.3: Generative solution set with height variation, showing 100 results.

Generative approaches benefit greatly from automation, as filters can be applied to
help select alternatives with the right characteristics. Fusions API allows access to all
attributes of the object body, including its material, so results can be tailored to fit
any parameter imposed by the designer. Mathematical equations can also be used, as
long as its output corresponds to a valid attribute of the object body, such as height,
mass or length. For demonstrative purposes, the example in Figure 5.4 was obtained by
generating and filtering out all objects with a volume greater than 2500 cm3.

In the example from Figure 5.4, a parameter was set within a range to obtain vari-
ation. However, parameters aren’t limited to variables which describe the geometry,
they can also be mathematical equations. In Figure 5.5, the parameter that controls the
object height was changed instead to follow the curve of an exponential function with
each iteration. Much like the previous example, some solutions were filtered out based
on their volume.

These examples were both parametric and generative in nature, as the object creation
was achieved through parameter variation and several results were generated and filtered.
As it requires the use of the API, and therefore was scripted, it also constitutes an

Rodrigo Rocha Lopes da Fonseca Master Degree

30 5.Exploration and Validation

Figure 5.4: A different Generative solution set in Figure 5.3, with results with a volume
of over 2500 cm3 removed from the solution space.

Figure 5.5: Generative solution set where each object’s height follows an exponential
function, with some results filtered based on their volume.

algorithmic approach. To note that in the previous examples, each geometry represents
a a possible solution for the designer to choose, rather than a single model made from
smaller geometries.

5.3 Working with the API

Programming shapes through scripting is analogous to the process used to generate a
cube for the generative testing, but, in this section, the process of creating shapes and
automating tasks is explored in-depth. Complex shapes are increasingly difficult to cre-
ate while relying solely on algorithmic descriptions when compared to using the GUI
due to the need of re-running the script with every modification. However, there are
benefits for using a scripted approach, namely in task automation, the ability to inte-
grate pertinent design knowledge through mathematical equations, or assist in exploring
solutions through automatic model generation for conceptual work. Hence, the focus

Rodrigo Rocha Lopes da Fonseca Master Degree

5.Exploration and Validation 31

of the this section is in programming scripts that can be interactive with the designer,
either automating or providing insight about the model.

Two options for programming are available. The first, Scripts, selects and executes a
single script. Depending on the script, inputs may be required for it to function properly,
but it can also be ran independently from the user. The second option is Add-ins, which
can be loaded automatically when Fusion starts and used to create commands tailored
to assist the user in certain situations. Add-ins are best suited to assist during the design
process as they remain in Fusions toolbar and are easier to access.

Not all features can be accessed using the API, most notably, access to other modules
inside Fusion such as Topology Optimization (TO)1 or Autodesk’s Generative Design
(AGD), and to a select few features including Mirror and the measure tool is restricted,
as depicted in Figure 5.6. This means that to make use of some features from Fusion’s
library an intermediary step between running the script and obtaining a result is done
manually. Features with full functionality can be freely accessed through scripting, while
those with limited functionality may not be as complete as with manual interaction.

Figure 5.6: Sketch feature availability (in green) when using the API [Erinks 2015]

5.3.1 Exploring Algorithmic Shape Generation

Tackling a problem using a scripted approach allows sketches to be drawn based on
mathematical equations. Alternatively to expressing profile sketches as separate points
in space, these can be expressed as functions, either 2D or 3D, and used to create very
intricate surfaces. In the next example, several splines are expressed as multiples of an
exponential function and expanded into the third dimension to give a slanted look to
the splines. Running this in a loop creates several splines with a increasingly steeper
incline. From here, the shape is developed further by adding Perpendicular splines to
create a weave effect in the object as seen in Figure 5.7. These can be swept using a

1The Topology Optimization module is named Shape Optimization inside Fusion360, which is not
entirely correct in the scope of structural optimization

Rodrigo Rocha Lopes da Fonseca Master Degree

32 5.Exploration and Validation

profile and set to automatically fillet edges, creating rods as is seen in Figure 5.8, but
other features such as lofting are available.

Figure 5.7: Spline generation based on a exponential function through algorithmic
means.

Figure 5.8: Rods created using splines, using the sweep feature.

Both examples were created with parametric characteristics in mind. The number of
splines, their length, the number of spline fitting points and the strength of the curvature
are used as parameters to modify the final shape produced by the script.

As each spline fitting point corresponds to a point defined by its spatial coordinates,
the positional information from the exponential function can instead be used to place
objects and generate abstract shapes. The example from Figure 5.9 was created from
the spline examples, but instead of creating a spline point, a cube was placed at each
spline location, using exponential functions for the splines. It shares some similarities
to the generative solution set from Figure 5.5, without solution filtering. Instead, each
geometry is evaluated and automatically color coded according to its total area, using
the API to interact with the Appearances module of Fusion.

The same procedure can be used to extract relief information using height maps.
Each pixel of a height map usually contains contains displacement (or height) data which
can be translated into a mesh object using the API, providing a reliable reproduction
of the surface topography captured by the image, and allowing images to be converted
into meshes. These maps are usually black and white, but can also be in gradients, with
lighter colors representing a protuberance and darker colors representing depressions Fig-

Rodrigo Rocha Lopes da Fonseca Master Degree

5.Exploration and Validation 33

Figure 5.9: Geometries placed following an exponential function, and color coded based
on their area. Green represents geometries under 600 cm2, yellow between 600 and 1000
cm2, red between 1000 and 3000 cm2, and blue are over 3000 cm2.

ure 5.10 depicts one add-in example, Image2Surface.py, a script which automatically
converts any height maps into a 3D shape, either a mesh or a surface [Kellner 2016].

Figure 5.10: Mesh surface generation based on a terrain height map.

Texture maps can also be used to generate or edit shape. Instead of using the height
data, in this example it is used to create profiles and apply them to a sketch selected
by the user. The example from Figure 5.11 automatically generates profiles fitting the
selected sketch profile. The profile shape, size, and number can be modified by the user
before publishing the design to fusion. Once in fusion, the generated sketches will behave
as any other sketch. The generated profiles were then used to cut a pre-built cube.

It is clear that using AD has a steep learning curve, necessitating programming
background and API knowledge, although applying an AD perspective to certain exam-
ples can be beneficial when attempting to automate specific design tasks and inferring

Rodrigo Rocha Lopes da Fonseca Master Degree

34 5.Exploration and Validation

Figure 5.11: Automated voronoi sketch generation applied as a cut feature [Kellner 2016]

mathematical knowledge upon them, rather than attempting to create a fully completed
design using just AD. However, features that require modification or customization can
be built using AD principles, as it provides an interface to make alterations, as well as
simplifying the modification process.

Figures 5.10 and 5.11 used elaborate interfaces created with the API. These are
essential for enabling the customization of the design, as they enable the user to interact
with the model in a simple way through the use of parameters, reducing the time needed
to perform modifications when compared to manually updating the script and running
it again. Simpler interfaces can be made, much like in Figure 5.12 from the included
add-in Spur Gear. Aside from the options for the interface shown, others are available,
including text boxes, sliders, radio buttons and even images, allowing the user not only
customization of the design, but also the ability to tailor the interface for the desired
design exploration.

Figure 5.12: Interface for the included add-in Spur Gear, which creates gears based on
user inputs.

Rodrigo Rocha Lopes da Fonseca Master Degree

5.Exploration and Validation 35

5.3.2 Applying DFAM Concepts

Additive Manufacture (AM) benefits greatly from automation, hence building rules for
AM into a script will adapt geometries for specific manufacturing techniques. These are
dependant of the manufacturing process and the complexity of the design. For example,
parts for Fused Deposition modelling (FDM) benefit from no overhangs to limit the
construction of supports and therefore reduce print time. Complex scripts can be built
which can orientate the part to reduce the amount of supports, such as described in
sub-section 4.2.1, but these are complex programs. A simple automation is the control
of the part height in rengards to the layer height used by the printer. Each printer has
a layer height defined in the slicer settings, which can be adjusted to account for several
factors, such as nozzle diameter. Although not strictly necessary, if the layer height is
set for a given, the height of the part should be a multiple of this to ensure the finished
products printing tolerances are correct. Figure 5.13 depicts one such example: a script
which creates a flat plate with a customization interface to allow the user to set its height
and a desired layer height. The value the user inputs is automatically set as close to a
multiple of the layer height as possible to ensure correct printing.

Figure 5.13: A flat plate with customizable height and layer height, where the part
height is automatically adjusted to be a multiple of the layer height to improve printing
tolerances.

5.4 Exploring Built-in Tools

Besides interacting with Fusion and creating geometry using scripts, there is also interest
in its built-in tools, namely for their engineering applications, for the possibility that
they might also include activities related to AD, and for the possibility of interacting
with it through scripting. The tool selected for this is Autodesk’s Generative Design
(AGD), a module focused on alternative generation for specific design problems. AGD’s
inputs include loads, constraints, manufacturing methods, materials and a design goal.
Although namely a Generative Design (GD) approach, it is a good candidate for inter-
facing using scripts since it is included in the Fusion environment, and therefore can
constitute part of an Algorithmic Design (AD) approach.

Rodrigo Rocha Lopes da Fonseca Master Degree

36 5.Exploration and Validation

5.4.1 AGD Methodology

The example chosen to test its design capabilities is a sample from the built in library
in Fusion, a ”Motorcycle Triple Clamp”, depicted in Figure 5.14.

Figure 5.14: The prepared CAD model for the Motorcycle Triple Clamp example. a)
Chassi connecting rod; b) Right suspension arm; c) Left suspension arm; d) Preserved
geometry during the generation process.

In this example, the goal is to design a clamp between the chassis linkage point and
the suspension arms of a motorcycle. Colored red are the chassis pickup points (FIG a)
as well as the suspension arms (Fig b and c), indicating they are obstacle geometry in
which material cannot be placed. Green geometry indicates that it is to be preserved
during the creation process, and represents the initial geometry from which the algorithm
will use to create shape. The central preserved ring has its constraints set to fixed, and
a load case of 4500 N in the -Oz direction applied (perpendicular to the length of the
obstacle geometry represented by the yellow arrow). Two additional bodies are placed
vertically as obstacle geometry, one at each end of the preserved geometries, to guarantee
that the finished solutions do not extend past this region.

The manufacturing methods selected were 2 axis cutting, 2.5, 3 and 5 axis milling, as
well as additive and an Unrestricted fabrication method. AGD does not place limitations
on the type of material used for a manufacturing method. As the amount of design results
is dependant of the number manufacturing processes and materials used, the materials
were chosen while taking into account their possibility of manufacture, but should merely
be seen as illustrative of the entire process:

• 2 axis cutting and milling — Titanium 6Al-4V, Stainless Steel, Bronze, Brass, and
Aluminium 7075, Aluminium 6061-O.

• Additive — ABS Plastic, PET Plastic, PC Plastic, Nylon 6, Titanium 6Al-4V,
Aluminium and Poliamide.

• Unrestricted — Aluminium 6061-O, Titanium 6Al-4V, Stainless Steel, Bronze, and
Brass.

The materials for the 2-axis cutting and all the milling alternatives provided are
identical, while Additive included thermoset plastics, and the Unrestricted method dis-
pensed with Aluminium 6061-O. It is important to note that some materials are not
ideal for the situation or for the manufacture method, but the interest of this example
is to explore AGD’s capabilities and to generate the most possible solutions for this

Rodrigo Rocha Lopes da Fonseca Master Degree

5.Exploration and Validation 37

design problem, they were still kept as possibilities. Fusion also provides cost estimates
based on production volume, but does so to a limited number of materials available, and
plastics such as ABS or PET are not among these. However, to provide more realistic
materials for the Additive process, and since the library of additive materials for plastics
is extremely limited, they were still included in the example.

The next step involves selecting the objective for the creation process, and AGD
allows the user to select two goal functions, either minimize mass or maximize stiffness.
The user can then set constraints for them, either the safety factor for the minimize mass
goal function, or safety factor and mass target for the maximize stiffness goal function.
In the interest of simplifying the process, the goal was set to minimize mass with the
default safety factor. The example can now be run through Autodesk’s cloud service,
which frees the designer from using their own machine to compute results, while at the
same time leaving the designer dependant of the cloud service’s ability to process the
request.

Once complete, the process yielded 48 total outcomes, called “studies”. Each out-
come went through several iterations until it either converged, or the process terminated.
AGD evaluates how well suited each result is to the design conditions, represented by a
percentile recommendation under each result. These results can be filtered and sorted
using a different number of available metrics, including volume, mass, material, and
maximum displacement, as well as selecting which manufacture methods will be dis-
played at one time. The best recommended 3 studies of this process, selected from the
titanium and stainless steel studies are displayed in Figure 5.15. Each study provides
detailed information about its cost, process and mechanical properties, along with the
study recommendation for their application.

To better visualize the totality of studies performed by AGD, the designer can select
scatter plot view, and define the axis to be any of the same metrics available. Figure
5.16 contains a scatter plot with 8 studies, with mass as the X-axis and maximum
displacement as the Y-axis, with the ”thumbs-up” icon representing a recommended
study. Hovering over each plot displays information similar to Figure 5.15 without
having to access another screen. For 3D viewing of the model, AGD can also display
a stress reference map, providing insight on its mechanical properties, as depicted in
Figure 5.17.

Taking a closer look at the solution creation process, although the final shape appears
to have been ”grown” from the initial preserved geometry, the process actually consists
in creating a structure that covers the rough shape of the part and avoids the defined
obstacle geometry. To this Fusion applies a layer of Topological Optimization (TO), with
further iterations refining the shape until the termination criteria is achieved, however
the algorithm does not account for buckling, which may result in unrealistic results in
pure compression or tension situations [University 2021]. At its core, AGD uses a level-
set approach which is based on surface area, so additional outcomes can be achieved by
simply varying the area of the preserved geometries [University 2021]. The total amount
of outcomes obtained will vary depending on how the process is customized, but one
can generally achieve a large solution space with relatively optimized parts for different
manufacturing methods. This generative process avoids the deterministic approach of
TO to finding the optimal solution, and instead focuses on displaying a wide arrange of
options, but still reaps the benefits of TO by optimizing for different sets of conditions
given by the user.

Rodrigo Rocha Lopes da Fonseca Master Degree

38 5.Exploration and Validation

Figure 5.15: Filtered results containing some of the parts manufactured using only
stainless steel and titanium, sorted by recommendation.

In summary, AGD performs not only within the concept of a GD software, but also
with an algorithmic base. However, it cannot be considered as a fully AD software,
as the control given to the designer is rather limited. Although AGD does generate a
considerable amount of alternative solutions for the proposed constraints, if the designer
wants to modify the part to accommodate different types of suspensions with different
dimensions, he will have to perform these modifications manually, before beginning the
process all over again. In this way, AGD does not truly promote early stage design
exploration, rather generating shapes for a single solution provided by the designer.

Rodrigo Rocha Lopes da Fonseca Master Degree

5.Exploration and Validation 39

Figure 5.16: Scatter plot.

Figure 5.17: Top view of Outcome 42 showing the first iteration of the creation process
with the preserved geometry shown in green (Top), and the stress map of the last
iteration (Bottom).

Rodrigo Rocha Lopes da Fonseca Master Degree

.

Intentionally blank page.

Chapter 6

Case Study

6.1 Proposing a Methodology

To demonstrate an AD approach to a design problem, a practical application was devel-
oped using the methodology proposed in Figure 6.1. This process is to be applied in the
early design stages, when it is necessary to explore different design alternatives, and as
such is geared towards reducing the overall time spent exploring designs by automating
menial tasks, as well as inferring knowledge relating to a specific products design, while
providing a degree of expandability based on a good coding workflow. Due to its scripted
nature, such approach allows for interfacing with other software tools, be they in the
same ecosystem or not. It is of note that the particular object of this case study is not to
develop a final product, rather to demonstrate the use of the methodology as a generic
approach to a design problem.

Figure 6.1: Proposed methodology for solving design problems using Algorithmic Design.

The proposed methodology is divided in two stages. The first stage is the most
important, as it involves creating a script based on previously identified rules which

41

42 6.Case Study

describe the design object, as well as an interface to allow for direct manipulation of
the design. Since the script will control the design exploration, it should be tailored in
order to achieve the desired results, although it is always possible to perform further
improvements to the script. The second stage is dedicated to generating the final shape
and prototyping, which is not directly linked to design exploration. However, since such
an approach results in several design alternatives, it is always possible to explore alter-
natives at this stage by combining several different solutions. The first stage comprises
four steps:

• Step 1: Identifying Design Constraints — In this task, all important infor-
mation relating to the design is collected. Selecting components, identifying their
main dimensions and defining characteristics, key parameters which will allow for
the desired design variation, as well as a design goal. A manufacture process is
selected, along with a tool for shape generation in the second stage. After a tool
is selected, any additional components necessary for its use are also identified. For
example, using AGD as a second stage tool will necessitate the creation of preserve
and obstacle geometry which needs to be identified before hand.

• Step 2: Algorithmic Description — After collecting all necessary information,
a generic model of the design object is created, along with the customization
interface which will allow the designer to edit the model. This interface should
contain the parameters the designer believes to be necessary to achieve design
variation in the intended manner. At the same time, it should be clear and guide
the designer through the design exploration by limiting or advising about the
desired parameters. Geometry generated at this stage should be simple in nature,
mostly due to the long time needed to code complex shapes. The generic model
is only a mockup of the general component layout, along with all other created
geometries.

• Step 3: Evaluation and Selection — The actual design exploration stage, and
a central step for this methodology. The script is run, and the designer uses the
customization interface to explore different design alternatives. Running the script
multiple times should also allow for side by side comparisons between several de-
sign alternatives. Alternatively, a GD dimension can be added by automatically
generating the results based on a goal function. Other design considerations, ini-
tially missed or now apparent, can be added to the script to further enhance the
exploration stage. After exploring alternatives, a design is selected to proceed to
the second stage and the final shape generation.

• Step 4: Code Review — While exploring different alternatives in Step 3, other
design considerations may be identified, or it may be made apparent that the alter-
natives generated are less than ideal. In this step, the newly identified constraints
are added to the script to help better tailor the alternative generation.

Once the obtained alternatives are satisfactory, the second stage can begin. Since it
is possible to have several different alternatives in this stage, this stage can create great
variety by matching different components. This stage includes three steps:

• Step 4: Shape generation — The final object shape is created using the tool
specified in step one of the first stage. There is no limitation on what this tool can

Rodrigo Rocha Lopes da Fonseca Master Degree

6.Case Study 43

be. It can be manual modelling based on the the Mockup stage, an AGD or TO
based generation, another scripted approach created by the designer, or even other
software tools which can use the exported model created in the first stage. Since
the script was tailored for this process, it is important that this choice is made
early in the first stage. If the results obtained for the object’s shape is unrealistic
or undesired, it is recommended to review and return to Step 3 in order to generate
better solutions.

• Step 5: Shape Review — If the final shape is not satisfactory, it is also rec-
ommended to review and identify the possible problems, then return to Step 3
to attempt to generate better alternatives. At this point, if no other promising
alternatives can be generated, the script should be reviewed.

• Step 6: Prototyping — With the final shape generated, all that is left is to
produce the model with the selected manufacturing method to test the prototypes
functionality and its manufacture feasibility.

6.2 Case Study

The case study selected applies the proposed methodology to custom drone construction,
specifically on multicopters. These Unmanned Aerial Vehicles (UAV) are know for their
agility and versatility which makes them suitable for use in areas of difficult access [Rible
et al. 2020, Carney et al. 2021]. Applications include search and rescue, surveillance
[Carney et al. 2021], topography, agriculture, sports [Vepa and Sagar 2019], cargo
transport and forest fire detection [Ononiwu et al. 2016], and building inspection [Eiris
et al. 2021,Donghai et al. 2021], among others.

Figure 6.2 contains some of the necessary components to build a quadcopter, with
the exception of the battery. Since the frame is used to attach all components, it is chosen
as the design object. Several authors have tackled the issue of frame building for drones.
[Bright et al. 2021] sought to optimize an existing frame by using generative design,
while others used FEM analysis to produce optimized frames [Vepa and Sagar 2019,Wei
et al. 2015]. These examples all focus on building a frame for chosen components, but
they do not allow for exploration of different combinations. Quadcopter frames alone
can have a number of configurations in relationship to its arms [Bright et al. 2021],
and components, although standard, can vary quite a bit in size and mounting location.
The goal is then to create a frame which support the main components, as well as arms
which support the motor and propellers which interface with the frame. However, it
should be noted that the main focus is achieving design variation, rather than following
a deterministic approach to be able to select the best possible solution.

The wide range of hobby-level drone components make it an excellent candidate for
application of a customizable interface, where the user can input the specifications of
each component to achieve different solutions. Thus, to automate design exploration,
a customizable frame that can produce a large number of alternatives is created using
Python. Design modularity is fundamental, so to better use Python’s wide spread avail-
ability, the code developed for this example features several quality-of-life improvements
to assist with adding further modules down the line.

The script generates design alternatives for combinations of drone components, as

Rodrigo Rocha Lopes da Fonseca Master Degree

44 6.Case Study

Figure 6.2: Main components of a quadcopter drone [Liang 2021].

well as their mounting points and functional surfaces, and utilizing manufacturing con-
siderations for the FDM manufacturing process. In the interest of demonstrating the
capabilities of an AD approach, three methods were used for the final stage: an AGD ap-
proach to generate the arms, an algorithmic approach, consisting of script based shape
generation for the frame, and a manual approach to add the final details mostly for
aesthetic purposes. While the number of main components can vary depending on the
intended application, there are seven which are essential for any drone build:

• Motors — Each provides a rated amount of thrust for a specific propeller, while
the number of motors will dictate the maximum lifting capacity and the overall
shape of the frame.

• Propeller — Matched with specific motors, they provide the needed thrust for
lifting.

• Battery and power distribution cables - Provides the power necessary for the motors
and on-board electronics. Its capacity will dictate total flight time, which can be
calculated by using the rated power for each motor.

• Propellers - Matched with specific motors, they provide the needed thrust for
lifting.

• Electronic Speed Controller (ESC) — Allows for controlling motor speed individ-
ually.

• Flight Control Unit (FCU) — The main control unit of the drone, it manages all
other electronic components, as well as user inputs to enable drone flight. Contains
components such as gyroscopes and accelerometers to enable altitude and attitude
control. FCU’s can vary greatly in complexity, and some can be configured for
automatic functions such as path following. Some FCU’s also come in four-in-one
configuration, in which the ESC and FCU are ”stacked” on top of each other to
reduce required space.

Rodrigo Rocha Lopes da Fonseca Master Degree

6.Case Study 45

• Radio transmitter and antenna — Responsible for receiving inputs from a trans-
mitter on the ground to allow for drone control.

Quadcopters are the only type of drone available with ”stacked” FCU and ESCs.
Other types of multicopter require a separate ESC for each motor, which is then in-
terfaced to the FCU. To simplify the design process, no particular action was taken for
these types of ESCs as they can be attached anywhere, although they are most commonly
attached to the arms.

6.3 Script Development

6.3.1 Design Constraints

Much like other design processes, the first step involves identifying which components
are necessary, their initial mounting location, physical dimensions, general design con-
siderations and predicted loads on the system, with most components being provided
with detailed schematics which can be used to extract their characteristics. Since the
most complex method of shape generation is AGD, it is also necessary to create obstacle
and preserve geometry, which will be used for the algorithmic and manual approach as
well.

After identifying the required components, parameters are selected to allow for de-
sign variation. In this case, as the script is intended to work with primitive shapes,
each component is simplified into a shape that will contain it. For example, motors
and propellers are simplified to cylinders, while the battery and FCU are represented
by rectangular parallelepipeds. Each components dimensions are converted to parame-
ters, as well as variables indicating their location in relation to others, which allows for
customizing each individual component for the users needs.

The components provide a general layout upon which to build the frame. Figure 6.3
represents a possible layout for a quadcopter from which was used for initial parameter
extraction. Three main parameters control the number of motors (and, with this, the
number of arms), the arm length measured from the center of the frame, and in the case
of quadcopters, the angle to the horizontal. For other types of multicopter there is little
to gain in controlling the angle directly, as these focus on stability and as such should
have their motors equally spaced. Together with the component related parameters,
they control the main design variation. To add further detail, other geometries are
considered, mainly the support points for the motors, the arm connection to the frame,
along with supports for the components within it. These geometries hold the secondary
purpose of serving as obstacle and preserve geometry for AGD latter in the second
stage. In addition, several holes were made to be able to mount the motors, FCU and
the frame-arm connection using screws.

6.3.2 Algorithmic Description

With all parameters extracted, a generic model is built, as well as the customization
interface to interact with them. Since the model is intended as a representation, rather
than a final product, all geometric shapes were kept as simple as possible. The resulting
model is depicted in Figure 6.4, with each body being color coded to facilitate iden-
tification. Green bodies are the frame sections, blue bodies correspond to the frame

Rodrigo Rocha Lopes da Fonseca Master Degree

46 6.Case Study

Figure 6.3: Example sketch representing the quadcopter layout (with some components)
which the frame is based upon, based on the layout from [Liang 2021].

and motor supports, yellow are the motors and red are the propellers, and the standard
components are default gray. For illustration purposes, a propeller body and the top
frame section were hidden.

In the interest of facilitating 3D printing for prototyping, the frame was separated
into a top and bottom sections, which are flat with no overhangs to avoid the use of
supports when printing. They differ only in the mounting holes for the FCU which are
present in the bottom frame, but absent from the top frame. Separation is achieved
through frame supports (in blue) which are also the attachment points for the arms,
providing clearance for the components between frame sections.

Interfacing with each parameter is done through a customization interface, which is
separated into tabs, each with a small description for ease of use, depicted in Figure 6.5.
The first tab contains the main parameters related to the frame, with the four following
tabs controlling each component corresponding to each component, as well as general
frame dimensions and mounting holes.

Due to its scripted nature, it is possible to improve the interface further by having
the script respond to incorrect inputs, or provide warnings for conflicting geometries, in
order to further guide the user.

6.3.3 Evaluation and Selection

With the script complete, the exploration process can begin. After some experimenting,
a quadcopter solution was selected, depicted in Figure 6.6. It was selected due to its
symmetric nature, which necessitates only one-fourth of the final design to be completed
to arrive at the final solution.

The solution followed common guidelines for drone building. Starting with the frame

Rodrigo Rocha Lopes da Fonseca Master Degree

6.Case Study 47

Figure 6.4: Generic model for a hexacopter obtained from all the extracted parameters.

Figure 6.5: The interface built to interact with the model.

size, which is measured from tip to tip of each motor, the maximum propeller size
corresponds to half the the frame size to avoid propeller interface. For multicopters
above four motors, this rule isn’t particularly accurate, but serves as a basis. Motors
are then chosen based on propeller size, with ESC’s and batteries chosen based on
motor power requirements. The FCU is then chosen to connect all these components.
The frame and its supports are automatically sized by the script to accommodate the
chosen components. The intricacies of the calculations needed for drone design are
omitted from this process as it is not the intended goal of this case study. As such,
the solutions are not an optimized way of drone building and should only be seen as a
design approximation, but serve the purpose of allowing unorthodox drone designs. Most
importantly, the interface allows for quick and easy editing, while taking into account
component relationships, which ensures that the whole model will react to changes in a
logical way.

Rodrigo Rocha Lopes da Fonseca Master Degree

48 6.Case Study

Figure 6.6: Selected model for further refinement.

6.4 Second Stage

After arriving at the desired solution, it it put through further development throughout
the second stage. At this stage the model is far too simple to be functional, so this
stage generates the final shape before prototyping. The frame sections will be generated
through a mix of algorithmic (scripts) and manual approaches, while the arms will be
created using AGD. Thanks to the models symmetry, only one arm needs to be designed
to arrive to the final model.

6.4.1 Creating Finished Models

Starting with the frame sections, they were prepared for application of the Voronoi script
from Section 5.4.1. At this point, further design alternatives can be created by creating
several complete models an matching components between them, before selecting a final
version. The process of preparing the sections consisted of filleting desired locations
and creating a boundary sketch within the frame section to avoid interfering with areas
containing mounting holes. After the frame was prepared, the Voronoi script was applied
several times to achieve several solutions, two of which are depicted in Figure 6.7.

Figure 6.7: Two solutions for the frame section, after application of the Voronoi Script.

Rodrigo Rocha Lopes da Fonseca Master Degree

6.Case Study 49

This process served three main purposes: to reduce the total amount of material and
time needed to print the frame sections while still retaining some structural strength,
to make the model more aesthetically pleasing, and to create more alternatives before
picking a final design. Once the frame was complete, an arm was created from the motor
and frame supports (in blue), using the process described in Section 5.4.1, making use
of the geometries built with the script and color coded in blue. Although AGD is meant
to obtain a range of solutions for a specific structural problem, in this case it was rather
used to generate several geometries to choose from. Three visually unique solutions are
presented in Figure 6.8.

Figure 6.8: Three unique solutions obtained from AGD, ordered by recommendation.

Lastly, the final models can be assembled from these parts. Although the frame
sections were ready for assembly, some artifacts resulted from the AGD process, ne-
cessitating for some post-processing before final assembly. This consisted of reopening
the screw holes which were closed during shape generation, as well as refining contact
surfaces to guarantee proper assembly. Due to the different alternatives generated for
each part, several finished models can be obtained by simply switching parts. One re-
sult depicted in Figure 6.9 has the arms built following an unrestricted manufacturing
method, while the one depicted in Figure 6.10 was created based on Additive Manufac-
turing (AM). For illustrative purposes all other components were removed to provide a
clearer visualization.

Figure 6.9: An assembled model containing both frames and all arms.

Rodrigo Rocha Lopes da Fonseca Master Degree

50 6.Case Study

Figure 6.10: Another possible solution with a different set of arms and a different voronoi
profile applied.

6.4.2 Prototyping

The final step in the proposed AD methodology is prototyping the final model. Both
frame sections are flat with few details, but each arm is a complex geometry, which is
where AM is advantageous. Resorting to AM technologies in cases such as these allows
timely fabrication of the arm structure using only one machine. The arms and frame
sections were specifically designed with this AM in mind, specifically FDM, as it is the
most common method. To demonstrate how these parts are fabricated, Ultimaker Cura
(shortened to Cura) was used to slice them and prepare them for printing.

Throughout the development of this case study, the subject of engineering a product
was deliberately avoided in order to be able to focus on exploring design alternatives,
rather than producing the best possible solution. However the use AGD and AM allows
for objective comparison of solutions in terms of their functionality, hence the arm so-
lutions obtained with AGD from Figure 6.9 and Figure 6.10 are compared. Regarding
the frame sections, these were designed to be easily printed without the use of support
structures, and as such present no significant challenge for this type of manufacturing.,
with a printing time of under two hours per section.

The first arm solution, now sliced, is depicted in Figure 6.11, with the support
structures represented in cyan, the walls in red, the filling in yellow, and with a total
printing time of seven hours. Although this specific arm solution was not obtained for
use with AM (rather, this solution is for an unrestricted method), Cura shows that it
is still possible to manufacture such a complex geometry, however it necessitates the
extensive use of support structures which are not ideal, but produce a functional model
in the end.

As for the other arm solution, this time optimized (through AGD) for AM, and
depicted in Figure 6.12 with the same color coding. This solution should be as functional
as the one presented in Figure 6.11, but requires far less supports and as such has a
final printing time of just two hours. Notably, the underside of the arm geometry, which
contacts the building surface of the printer, is now perfectly flat to improve adhesion
and reduce the amount of supports needed.

Since the goal has always been to generate alternative solutions, any of the finished

Rodrigo Rocha Lopes da Fonseca Master Degree

6.Case Study 51

Figure 6.11: Sliced arm geometry in the Cura environment.

Figure 6.12: Alternative arm geometry, sliced in the Cura environment.

models could be used to develop a final product, but since they were created for design
exploration rather than engineered to solve a problem, not much can be said about
their actual functionality. To improve these models, other structural considerations
should be taken into account when using AGD, and additional care with manufacturing
methods and materials should be taken. Despite their possibly lackluster performance,
both solutions achieve their goal of actually being possible to manufacture. However,
if a decision had to be made, AGD provides most of the information needed to be able
compare both solutions, such as mass, maximum stress, predicted cost and maximum
displacement. With Cura providing information about each models manufacturing time
and cost, plus the customization inherent in a slicer software, the designer has tools to
assist in making an informed selection of solutions throughout the process.

6.5 Script Additions

One of the strengths of using an AD based approach is the ability to tailor the scripts
to better explore design alternatives. The script used for this case study was built
on a parametric basis, using parameters to control the intended design variation while

Rodrigo Rocha Lopes da Fonseca Master Degree

52 6.Case Study

maintaining the capability of manually altering them, resulting in a combination of both
PD and AD. To better portray the capabilities of scripting inside a CAD tool like Fusion,
the initial script was modified to include a generative process together with the PD and
AD approaches already present.

6.5.1 Generative Design Variation

To achieve the desired GD process with the same parametric base, the main parameters
relating to frame dimensions, the number of arms, their length and their angle to the
horizontal, are now calculated automatically by the script, instead of being manually
introduced by the user. All remaining parameters relating to off-the-shelf components,
like the battery or FCU are kept as user inputs so as to serve for a basis for the design.

The result is depicted in Figure 6.13, with four total design outcomes from which
the designer can choose from. For each solution presented, the angle and length of each
arm is randomized to achieve the desired design variation. However, the arm length
was made a function of the propeller diameter to ensure proper clearance between the
propellers and the central frame sections.

Figure 6.13: Generative modification to the script, returning four alternatives based on
user defined components, which the designer can then choose from.

Randomizing is one of many ways design variation can be achieved using this ap-
proach. Using functions as a basis to achieve variation, or having the script iterate until
it achieves an optimum value for these parameters. This parameter optimization is not
limited to GD approaches, as the original script is also a good candidate to its applica-
tion. However, the goal was to explore different design solutions, rather than optimize
results for a specific case, so no optimization was included in the script.

6.6 Discussion

Creating a scripted tool for design exploration proved to have its challenges, the main
of which was establishing the connection between scrip and actual model. Locating
each body in spatial coordinates is simple when dealing with simple and few geometries,

Rodrigo Rocha Lopes da Fonseca Master Degree

6.Case Study 53

but once more geometries were added, it became difficult to keep track of geometric
relationships and the coordinates associated to them. This also complicates the process
of designing complex shapes, hence the reason why shape generation is relegated to other
tools. However, once the actual script was developed, it largely simplified the process of
exploring solutions, in which a design can be edited easily to meet changing requirements
through the design process. This process is further expedited by the use of the interface,
which although laborious to build, is easily expanded with new variables and edited to
provide other ways of altering the design, such as direct manipulators.

The time benefit in following the proposed methodology when compared to a com-
pletely manual approach is dependant of several factors, such as the design complexity,
the designers previous coding experience, and the intended use of the script. The nature
of complex designs will define its ease of implementation, as reducing a geometry to
mathematical equations with splines or using primitive geometries proves easier than
manually editing. Another factor is the scripts intended use. If it is only required for
a single use case, and the design is complex in nature, this methodology is not ideal.
However, building a tool which supports expandability, either by the designer or other
parties, using a well known programming language such as Python, can improve upon
such a tool with much more integrated knowledge.

Throughout the script design process, a certain similarity was recognized to programs
such as Grasshopper. In Grasshopper, geometries are created by feeding parameters
through rule sets which will perform different tasks. Much in the same way, when
scripting for use within Fusion, functions were created to simplify the process of creating
geometries. Since geometries were simple cylinders and paralelipipeds, this required only
two functions which received parameters such as cartesian coordinates, extrusion height,
and type of operation (such as join, cut or new body). These functions serve as the rule
sets used by Grasshopper, as they take in parameters to perform certain tasks, further
reinforcing the use of scripting as an Algorithmic approach.

Lastly, following this methodology revealed that not only did it became possible to
generate alternatives easily, but also greatly simplified the process of evaluating and
selecting these alternatives. The result is several finished models with some degree of
modularity, further expanding the alternatives made available to the user.

6.7 Future Developments

Expandability was always the focus of the case study, so to provide better insight to
what could be done to improve the drone building tool in particular, this section will
cover some of the immediate works that could be done to provide an improved design
exploration experience.

6.7.1 Design Library

There is a limited number of components available for drone builds. As such, it is
entirely possible to create a library within the script to store the values relating to each
component, made simpler if this tool is divulged within a community which can work to
improve it. This way, the user could simply select their desired component from a list
instead of manipulating the values directly. Adding to the component list, and taking
advantage of several users using the tool, the same could be done to the frame parts

Rodrigo Rocha Lopes da Fonseca Master Degree

54 6.Case Study

generated during the design process, further increasing the total designs available for
exploration.

6.7.2 Algorithmic Geometries

Since the final shape generation did not utilize an algorithmic or scripted procedure,
an additional future work would be to contain this stage within the script itself. The
exploration process would then be fully contained within a single tool, removing the
necessity of resorting to external means for shape creation and allowing a more finalized
view of the model during design exploration. Other additions can include geometries for
fine tuning the AGD process. The case study within this work utilized only the necessary
geometries for its use to maintain the scripts simplicity, but it can be improved by further
adding geometry to the model solely for this purpose.

6.7.3 Including Design Considerations

The general guidelines used to build a drone can be directly implemented into the script.
Since the main goal was to simply generate alternatives and show the potential of such
an approach, other functionalities were left out during development. For future devel-
opments, instead of leaving all decisions to the designer, some of the parameters would
be automatically calculated by the script, based on rules for drone design.

Rodrigo Rocha Lopes da Fonseca Master Degree

Chapter 7

Final Remarks

7.1 Parametric, Generative and Algorithmic Approaches

This work was started to evaluate the concept of Algorithmic Design (AD) approaches
when applied to engineering design, a topic relatively recent in architecture, while at the
same time understanding its relevance within Additive Manufacturing (AM), in order
to create truly customizable products. From the literary review, two design approaches
stood out as interconnected with the use of AD: Parametric Design (PD) and Generative
Design (GD).

PD often generated confusion, as Computer Aided Design (CAD) software tools are
generally parametric, hence one could argue that all CAD models were made using PD.
However, here the distinction between variable and parameter is important: a variable
is any value which represents a specific measure, while a parameter is a variable deliber-
ately chosen to introduce variation into the design, usually introduced with relationships
to other parameters to ensure proper model adaptation without errors. Therefore, a PD
approach is different from CAD modelling, as its purpose is to explore and not to tran-
scribe an already finalized designed into the digital workspace.

The other approach with relation to AD is GD. Here several designs are generated at
the same time for the user to select from. Autodesk’s Generative Design (AGD) makes
for an excellent example, generating several part solutions based on structural loads and
constraints, with a layer of Topological Optimization (TO) to optimize the design, and
then allows the user to filter the design outcomes to reach the best solution. However,
software tools such as AGD, as great as they may be for engineering applications, may
cause users to perceive GD as an approach which requires TO, when the reality is that
GD approaches seek only to automate the process of generating several solutions.

When compared to GD, AD provides more freedom of choice. AD approaches are
based on algorithms, in this case scripts, which can be specifically tailored towards as-
sisting with early design exploration. They allow for design automation, while providing
unique ways of interacting with the design. Due to their scripted nature, AD approaches
can also include parametric and generative processes, while also integrating important
information into the design through mathematical functions or optimizations. However,
AD approaches suffer from a steep learning curve, not only do they require program-
ming experience, but they also complicate the creating of complex shapes using only
scripted methods. Therefore, AD approaches are useful in most stages of design, either
to automate tasks or for design exploration, but should be used mainly as a early stage

55

56 7.Final Remarks

exploration tool when designing complex 3D models.

7.2 On Additive Manufacturing and Customization

Much like what was demonstrated with the case study, AD approaches allow for cus-
tomization of the design. By setting parameters as a way to achieve design variation and
placing them in an interface, the designer has real time control over the design aspects
and can tailor it for any number of situations. Moreover, this type of approach allows
the creation of multiple design alternatives in a relative short amount of time.

To take advantage of the ability to customize the designs, Additive Manufacturing
(AM) was used to ensure that parts could be manufactured in a timely manner, and
to allow for a never-ending customization of the design. Furthermore, by integrating
scripts with other tools, complex, organic-like structures can be created, which AM is
capable of producing at reduced costs when compared to other more traditional methods
such as multi-axis machining. Tool integration can help offset the difficult process of
accurate shape creation using scripts, but it is in itself a complex procedure, which might
require interfacing between two or more different software tools. Notwithstanding, even
if tool integration is not possible automatically, scripts can also help create the necessary
conditions for the use of such tools, even if manual input is required. This was the process
followed for the case study, which not only generated fairly complex results for the drone
arms, but also optimized them for use with 3D printers, greatly reducing total print time
and cost.

Lastly, what is most notable about an AD approach, besides its ability of constantly
updating and improving the scripts, is the ability of integrating it with other approaches
to facilitate or improve the design, resulting in a more complete development process.
Hence, CD approaches, such as the ones described throughout this document, must not
be thought as isolated inside product design, but as a way to enhance the development
process with different techniques.

Rodrigo Rocha Lopes da Fonseca Master Degree

Bibliography

[Abdulhameed et al. 2019] O. Abdulhameed, A. Al-Ahmari, W. Ameen and S. H. Mian.
Additive manufacturing: Challenges, trends, and applications. Advances in Mechan-
ical Engineering, 11(2), 2019.

[Autodesk 2020] Autodesk. Demystifying Generative Design. https://damassets.

autodesk.net/content/dam/autodesk/www/solutions/generative-design/

autodesk-aec-generative-design-ebook.pdf, 2020. Accessed: 2021-07-14.

[Bernhardt et al. 2007] D. Bernhardt, Q. Liu and K. Serfes. Product customization.
European Economic Review, 51(6):1396–1422, 2007.

[Biedermann and Meboldt 2020] M. Biedermann and M. Meboldt. Computational de-
sign synthesis of additive manufactured multi-flow nozzles. Additive Manufacturing,
35, 2020.

[Bikas et al. 2016] H. Bikas, P. Stavropoulos and G. Chryssolouris. Additive manufac-
turing methods and modeling approaches: A critical review. International Journal
of Advanced Manufacturing Technology, 83(1-4), 2016.

[Briard et al. 2020] T. Briard, F. Segonds, and N. Zamariola. G-DfAM: a methodolog-
ical proposal of generative design for additive manufacturing in the automotive
industry. International Journal on Interactive Design and Manufacturing, 14(3),
2020.

[Bright et al. 2021] J. Bright, R. Suryaprakash, S. Akash and A. Giridharan. Optimiza-
tion of quadcopter frame using generative design and comparison with DJI F450
drone frame. IOP Conference Series: Materials Science and Engineering, 1012,
2021.

[Bukhari 2011] F. A. Bukhari. A Hierarchical Evolutionary Algorithmic Design (HEAD)
System for Generating and Evolving Building Design Models. 2011.

[Buonamici et al. 2020] F. Buonamici, M. Carfagni, R. Furferi, Y. Volpe and L. Governi.
Generative design: An explorative study. Computer-Aided Design and Applications,
18(1), 2020.

[Caetano et al. 2020] I. Caetano, L. Santos and A. Leitão. Computational design in
architecture: Defining parametric, generative, and algorithmic design, 2020.

[Camburn et al. 2017] B. Camburn, V. Viswanathan, J. Linsey, D. Anderson, D. Jensen,
R. Crawford, K. Otto and K. Wood. Design prototyping methods: State of the art
in strategies, techniques, and guidelines. Design Science, 3, 2017.

57

https://damassets.autodesk.net/content/dam/autodesk/www/solutions/generative-design/autodesk-aec-generative-design-ebook.pdf
https://damassets.autodesk.net/content/dam/autodesk/www/solutions/generative-design/autodesk-aec-generative-design-ebook.pdf
https://damassets.autodesk.net/content/dam/autodesk/www/solutions/generative-design/autodesk-aec-generative-design-ebook.pdf

58 BIBLIOGRAPHY

[Carney et al. 2021] R. Carney, M. Chyba, C. Gray, G. Wilkens and C. Shanbrom.
Multi-agent systems for quadcopters. Journal of Geometric Mechanics, 0(0), 2021.

[Colombo et al. 2020] E. F. Colombo, N. Shougarian, K. Sinha, G. Cascini and O. L.
de Weck. Value analysis for customizable modular product platforms: theory and
case study. Research in Engineering Design, 31(1), 2020.

[Deradjat and Minshall 2017] D. Deradjat and T. Minshall. Implementation of rapid
manufacturing for mass customisation. Journal of Manufacturing Technology Man-
agement, 28(1), 2017.

[Dino 2012] I. Dino. Creative design exploration by parametric generative systems in
architecture. Metu Journal of the Faculty of Architecture, 29(1), 2012.

[Donghai et al. 2021] L. Donghai, X. Xietian, J. Chen and L. Shuai. Integrating Building
Information Model and Augmented Reality for Drone-Based Building Inspection.
Journal of Computing in Civil Engineering, 35(2), 2021.

[Durakovic 2018] B. Durakovic. Design for additive manufacturing: Benefits, trends and
challenges. Periodicals of Engineering and Natural Sciences, 6(2), 2018.

[Eiris et al. 2021] R. Eiris, G. Albeaino, M. Gheisari, W. Benda and R. Faris. InDrone: a
2D-based drone flight behavior visualization platform for indoor building inspection.
Smart and Sustainable Built Environment, 2021.

[Eltaweel and SU 2017] A. Eltaweel and Y. SU. Parametric design and daylighting: A
literature review, 2017.

[Erinks 2015] B. Erinks. Get started with Fusion 360 API, 2015. Accessed: 2021-04-20.

[Felfernig et al. 2001] A. Felfernig, G. Friedrich and D. Jannach. Conceptual modeling
for configuration of mass-customizable products. Artificial Intelligence in Engineer-
ing, 15(2), 2001.

[Garćıa-Alvarado et al. 2021] R. Garćıa-Alvarado, G. Moroni-Orellana and P. Banda-
Pérez. Architectural evaluation of 3d-printed buildings, 2021.

[Gardan and Schneider 2015] N. Gardan and A. Schneider. Topological optimization of
internal patterns and support in additive manufacturing. Journal of Manufacturing
Systems, 37, 2015.

[Gebisa and Lemu 2017] A. W. Gebisa and H. G. Lemu. Design for manufacturing to
design for Additive Manufacturing: Analysis of implications for design optimality
and product sustainability. Procedia Manufacturing, 13, 2017.

[Guidera 2011] S. Guidera. Conceptual design exploration in architecture using para-
metric generative computing: A case study. In ASEE Annual Conference and
Exposition, Conference Proceedings, 2011.

[Gunagama 2018] G. M. Gunagama. Generative Algorithms in Alternative Design Ex-
ploration. SHS Web of Conferences, 41, 2018.

Rodrigo Rocha Lopes da Fonseca Master Degree

BIBLIOGRAPHY 59

[He et al. 2019] L. He, M. Gilbert and X. Song. A Python script for adaptive layout
optimization of trusses. Structural and Multidisciplinary Optimization, 60(2), 2019.

[Holmström et al. 2016] J. Holmström, M. Holweg, S. H. Khajavi and J. Partanen. The
direct digital manufacturing (r)evolution: definition of a research agenda. Opera-
tions Management Research, 9(1-2), 2016.

[K. Terzidis and Srinivasan 2004] J. Isorna K. Terzidis and V. Srinivasan. Algorithmic
Design: a Paradigm Shift in Architecture? 2004.

[Kellner 2016] Hans. Kellner. Fusion 360 Image 2 Surface Add-In. https://github.

com/hanskellner/Fusion360Image2Surface, 2016.

[Kolarevic 2004] B. Kolarevic. Architecture in the digital age: Design and manufactur-
ing. 2004.

[Krish 2011] S. Krish. A practical generative design method. CAD Computer Aided
Design, 43(1), 2011.

[Lee and Song 2021] K. S. Lee and H. K. Song. Automation of 3D average human body
shape modeling using Rhino and Grasshopper Algorithm. Fashion and Textiles,
8(1), 2021.

[Liang 2021] Oscar Liang. How to Build an FPV Drone Tutorial (DJI FPV System).
https://oscarliang.com/build-fpv-drone-dji/, 2021.

[Martinho et al. 2020] H. Martinho, I. Pereira, S. Feist and A. Leitão. Integrated Al-
gorithmic Design in Practice. Anthropologic: Architecture and Fabrication in the
cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, 1(Septem-
ber), 2020.

[Medellin-Castillo and Zaragoza-Siqueiros 2019] H. I. Medellin-Castillo and J. Zaragoza-
Siqueiros. Design and Manufacturing Strategies for Fused Deposition Modelling in
Additive Manufacturing: A Review, 2019.

[Meurer et al. 2017] A. S. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık, S. B. Kirpichev,
M. Rocklin, A. T. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig,
B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pe-
dregosa, M. J. Curry, A. R. Terrel, S. Roučka, A. Saboo, I. Fernando, S. Kulal,
R. Cimrman and A. Scopatz. SymPy: Symbolic computing in python. PeerJ Com-
puter Science, 2017(1), 2017.

[Mountstephensand and Teo 2020] J. Mountstephensand and J. Teo. Progress and chal-
lenges in generative product design: A review of systems, 2020.

[Mwema and Akinlabi 2020] F. M. Mwema and E. T. Akinlabi. Basics of Fused De-
position Modelling (FDM). In SpringerBriefs in Applied Sciences and Technology.
2020.

[of Colorado 2021] University of Colorado. Engineering Design Process. https://www.

teachengineering.org/populartopics/designprocess, 2021. Accessed: 2021-
08-25.

Rodrigo Rocha Lopes da Fonseca Master Degree

https://github.com/hanskellner/Fusion360Image2Surface
https://github.com/hanskellner/Fusion360Image2Surface
https://oscarliang.com/build-fpv-drone-dji/
https://www.teachengineering.org/populartopics/designprocess
https://www.teachengineering.org/populartopics/designprocess

60 BIBLIOGRAPHY

[Oh et al. 2019] S. Oh, Y. Jung, S. Kim, I. Lee and N. Kang. Deep generative design:
Integration of topology optimization and generative models. Journal of Mechanical
Design, Transactions of the ASME, 141(11), 2019.

[Ononiwu et al. 2016] G. Ononiwu, O. Onojo, O. Ozioko and O. Nosiri. Quadcopter
Design for Payload Delivery. Journal of Computer and Communications, 04(10),
2016.

[Oxman 2017] R. Oxman. Thinking difference: Theories and models of parametric de-
sign thinking. Design Studies, 52, 2017.

[Pallant et al. 2020] J. Pallant, S. Sands and I. Karpen. Product customization: A
profile of consumer demand. Journal of Retailing and Consumer Services, 54, 2020.

[Pradhan 2019] R. S. Pradhan. INDUSTRIAL DESIGN AND CLOUD-BASED 3D VI-
SUALIZATION TOOL – AUTODESK FUSION 360. International Journal of En-
gineering Applied Sciences and Technology, 04(04), 2019.

[R. Pescaru and Oancea 2017] G. R. Pescaru, P.Kyratsis and Oancea. Software tool
used for automated design of customizable product. In MATEC Web of Conferences,
Vol. 137, 2017.

[Ramos and Melgosa 2020] B. Ramos and C. Melgosa. Cad learning in mechanical en-
gineering at universities. Computer-Aided Design and Applications, 18(1), 2020.

[Rayna and Striukova 2016] T. Rayna and L. Striukova. From rapid prototyping to
home fabrication: How 3D printing is changing business model innovation. Tech-
nological Forecasting and Social Change, 102, 2016.

[Remache-Vinueza et al. 2021] B. Remache-Vinueza, K. Dávila-Cárdenas and M. Za-
pata. CAD/CAE Tools and Additive Manufacturing to Reduce the Impacts of
Critical Equipment Shutdown on Production Planning. 2021.

[Rible et al. 2020] G. P. Rible, N. A. Arriola and M. Ramos. Modeling and implemen-
tation of quadcopter autonomous flight based on alternative methods to determine
propeller parameters. Advances in Science, Technology and Engineering Systems,
5(5), 2020.

[Salem et al. 2020] H. Salem, H. Abouchadi and K. El Bikri. Design for additive man-
ufacturing. Journal of Theoretical and Applied Information Technology, 10(19),
2020.

[Srinivasan et al. 2018] R. Srinivasan, V. Giannikas, D. McFarlane and A. Thorne. Cus-
tomising with 3D printing: The role of intelligent control. Computers in Industry,
103, 2018.

[Stanciu et al. 2019] S. G. Stanciu, G. Sergiu, R. E. Petrusel and B. C. P̂ırvu. Develop-
ment Overview of a Smart Customizable Product. ACTA Universitatis Cibiniensis,
70(1), 2019.

Rodrigo Rocha Lopes da Fonseca Master Degree

BIBLIOGRAPHY 61

[Steuben et al. 2016] J.C. Steuben, A. Iliopoulos and J. G. Michopoulos. Implicit slicing
for functionally tailored additive manufacturing. CAD Computer Aided Design, 77,
2016.

[Suhada et al. 2018] R. T. Suhada, S. Ariyanti, A. V. Fajar and A. Komalasari. TRAIN-
ING AUTODESK FUSION 360 FOR TEENAGE OF SENIOR HIGH SCHOOL
GRADUATES IN IMPROVING ABILITY IN DISASTERS. ICCD, 1(1), 2018.

[Symeonidoua 2019] I. Symeonidoua. Epidermis: Algorithmic Design Based on
Biomimetic Morphology. Nexus Network Journal, 21(1), 2019.

[Thurner et al. 2018] L. Thurner, A. Scheidler, F. Schafer, J. H. Menke, J. Dollichon,
F. Meier, S. Meinecke and M. Braun. Pandapower - An Open-Source Python Tool
for Convenient Modeling, Analysis, and Optimization of Electric Power Systems.
IEEE Transactions on Power Systems, 33(6), 2018.

[University 2021] Autodesk University. Fusion 360 Introduction to Generative Design,
2021. Accessed: 2021-08-21.

[Vaneker et al. 2020] T. Vaneker, A. Bernard, G. Moroni, I. Gibson and Y. Zhang. De-
sign for additive manufacturing: Framework and methodology. CIRP Annals, 69(2),
2020.

[Vepa and Sagar 2019] K. S. Vepa and N. V. S. S. Sagar. Design, optimization and man-
ufacturing of quad copter frame using FDM. International Journal of Engineering
and Advanced Technology, 8(5), 2019.

[Watson and Taminger 2018] J. K. Watson and K. M. B. Taminger. A decision-support
model for selecting additive manufacturing versus subtractive manufacturing based
on energy consumption. Journal of Cleaner Production, 176, 2018.

[Wei et al. 2015] P. Wei, Z. Yang and Q. Wang. The Design of Quadcopter Frame Based
On Finite Element Analysis. In Proceedings of the 3rd International Conference on
Mechatronics, Robotics and Automation, Vol. 15, 2015.

[Wickramasinghe et al. 2020] S. Wickramasinghe, T. Do and P. Tran. FDM-Based 3D
printing of polymer and associated composite: A review on mechanical properties,
defects and treatments, 2020.

[Ye et al. 2008] X. Ye, H. Liu, L. Chen, Z. Chen, X. Pan and S. Zhang. Reverse inno-
vative design - an integrated product design methodology. CAD Computer Aided
Design, 40(7), 2008.

[Zafar and Zhao 2020] M. Q. Zafar and H. Zhao. 4D Printing: Future Insight in Additive
Manufacturing, 2020.

[Zardo et al. 2019] P. Zardo, L. A. Ribeiro and A. Q. Mussi. APLICAÇÕES DE
BIM E DESIGN PARAMÉTRICO PARA EFICIÊNCIA ENERGÉTICA DAS
EDIFICAÇÕES: UMA ANÁLISE DE APLICAÇÕES PRÁTICAS. Arquitetura
Revista, 15(2), 2019.

Rodrigo Rocha Lopes da Fonseca Master Degree

62 BIBLIOGRAPHY

[Zboinska 2015] M. A. Zboinska. Hybrid CAD/E platform supporting exploratory ar-
chitectural design. CAD Computer Aided Design, 59, 2015.

[ZHU et al. 2021] J. ZHU, H. ZHOU, C. WANG, L. ZHOU, S. YUAN and W. ZHANG.
A review of topology optimization for additive manufacturing: Status and chal-
lenges, 2021.

[Zwier and Wits 2016] M. P. Zwier and W. W. Wits. Design for Additive Manufactur-
ing: Automated Build Orientation Selection and Optimization. In Procedia CIRP,
Vol. 55, 2016.

Rodrigo Rocha Lopes da Fonseca Master Degree

Appendix A

Code Examples

In order not to saturate the main body of this document with code, all examples used for
the case study are presented here. This appendix describes how to replicate the script
to achieve the same result as the one obtained in the case study.

A.1 Building the Interface

One of the main features of this case study was the interface built to interact with the
model, which was done using event handlers. The command created event handler is is
triggered by running the script, and is used to create the interface itself and define its
default values, depicted in Listing A.1. Although the one created is simple, there is a
large range of options for taking inputs or showing information. This section of code is
extensive as it requires for all of the chosen parameters to be identified and named.

1

2 import adsk.core , adsk.fusion , traceback

3 import math

4

5 default_arm_l = 20

6 default_arm_n = 6

7 default_angleValue = 30 * (math.pi / 180)

8 default_mot_sup_off = 0

9 default_mot_sup_d = 2

10 default_mot_sup_t = 0.5

11 default_frame_sup_l = 7

12 default_frame_sup_t = 1

13 default_frame_sup_r = 2

14 default_frame_t = 0.5

15 default_frame_sup_d = 2

16 default_prop_d = 10.16

17 default_motor_d = 1.5

18 default_motor_h = 2

19 default_batt_l = 6

20 default_batt_w = 3

21 default_batt_t = 1.5

22 default_fcu_l = 2

23 default_fcu_w = 2

24 default_fcu_h = 1.5

25 default_fcu_dist = 2

26 default_fcu_mh_l = 2

63

64 A.Code Examples

27 default_fcu_mh_w = 2

28 default_fcu_mh_r = 0.2

29 default_motor_mh_n = 4

30 default_motor_mh_bd = 1.4

31 default_motor_mh_d = 0.3

32 default_frame_mh_n = 3

33 default_frame_mh_bd = 1.2

34 default_frame_mh_d = 0.3

35 default_rear_bat_d = 1

36 default_rear_l = 2

37 default_rear_w = 2

38 default_rear_h = 2

39

40 # global set of event handlers to keep them referenced for the duration

of the command

41 handlers = []

42 app = adsk.core.Application.get()

43 if app:

44 ui = app.userInterface

45

46 newComp = None

47

48 class BoltCommandCreatedHandler(adsk.core.CommandCreatedEventHandler):

49 def __init__(self):

50 super ().__init__ ()

51 def notify(self , args):

52 try:

53 cmd = args.command

54 cmd.isRepeatable = False

55 onExecute = BoltCommandExecuteHandler ()

56 cmd.execute.add(onExecute)

57 onExecutePreview = BoltCommandExecuteHandler ()

58 cmd.executePreview.add(onExecutePreview)

59 onDestroy = BoltCommandDestroyHandler ()

60 cmd.destroy.add(onDestroy)

61 # keep the handler referenced beyond this function

62 handlers.append(onExecute)

63 handlers.append(onExecutePreview)

64 handlers.append(onDestroy)

65

66 #define the inputs

67 inputs = cmd.commandInputs

68

69 # Creating all necessary tabs.

70 # These refer each to its own component , to avoid just making

a giant list

71 tabCmdInput1 = inputs.addTabCommandInput(’tab_1 ’, ’Overall ’)

72 tabCmdInput2 = inputs.addTabCommandInput(’tab_2 ’, ’Motors and

Propellers ’)

73 tabCmdInput3 = inputs.addTabCommandInput(’tab_3 ’, ’Battery ’)

74 tabCmdInput4 = inputs.addTabCommandInput(’tab_4 ’, ’FCU’)

75 tabCmdInput5 = inputs.addTabCommandInput(’tab_5 ’, ’Rear

Components ’)

76 tabCmdInput6 = inputs.addTabCommandInput(’tab_6 ’, ’Mounting

Holes’)

77

78

79 # Get child inputs

Rodrigo Rocha Lopes da Fonseca Master Degree

A.Code Examples 65

80 tab1ChildInputs = tabCmdInput1.children

81 tab2ChildInputs = tabCmdInput2.children

82 tab3ChildInputs = tabCmdInput3.children

83 tab4ChildInputs = tabCmdInput4.children

84 tab5ChildInputs = tabCmdInput5.children

85 tab6ChildInputs = tabCmdInput6.children

86

87 ###

88 # Default Inputs

89 ###

90

91 init_arm_angle = adsk.core.ValueInput.createByReal(

default_angleValue)

92 init_arm_lenght = adsk.core.ValueInput.createByReal(

default_arm_l)

93 init_arm_n = adsk.core.ValueInput.createByReal(default_arm_n)

94 init_mot_sup_off = adsk.core.ValueInput.createByReal(

default_mot_sup_off)

95 init_mot_sup_d = adsk.core.ValueInput.createByReal(

default_mot_sup_d)

96 init_mot_sup_t = adsk.core.ValueInput.createByReal(

default_mot_sup_t)

97 init_frame_sup_l = adsk.core.ValueInput.createByReal(

default_frame_sup_l)

98 init_frame_sup_t = adsk.core.ValueInput.createByReal(

default_frame_sup_t)

99 init_frame_sup_r = adsk.core.ValueInput.createByReal(

default_frame_sup_r)

100 init_frame_t = adsk.core.ValueInput.createByReal(

default_frame_t)

101 init_prop_d = adsk.core.ValueInput.createByReal(

default_prop_d)

102 init_motor_d = adsk.core.ValueInput.createByReal(

default_motor_d)

103 init_motor_h = adsk.core.ValueInput.createByReal(

default_motor_h)

104 init_batt_l = adsk.core.ValueInput.createByReal(

default_batt_l)

105 init_batt_w = adsk.core.ValueInput.createByReal(

default_batt_w)

106 init_batt_t = adsk.core.ValueInput.createByReal(

default_batt_t)

107 init_fcu_l = adsk.core.ValueInput.createByReal(default_fcu_l)

108 init_fcu_w = adsk.core.ValueInput.createByReal(default_fcu_w)

109 init_fcu_h = adsk.core.ValueInput.createByReal(default_fcu_h)

110 init_fcu_dist = adsk.core.ValueInput.createByReal(

default_fcu_dist)

111 init_motor_mh_n = adsk.core.ValueInput.createByReal(

default_motor_mh_n)

112 init_motor_mh_bd = adsk.core.ValueInput.createByReal(

default_motor_mh_bd)

113 init_motor_mh_d = adsk.core.ValueInput.createByReal(

default_motor_mh_d)

114 init_frame_mh_n = adsk.core.ValueInput.createByReal(

default_frame_mh_n)

115 init_frame_mh_bd = adsk.core.ValueInput.createByReal(

default_frame_mh_bd)

Rodrigo Rocha Lopes da Fonseca Master Degree

66 A.Code Examples

116 init_frame_mh_d = adsk.core.ValueInput.createByReal(

default_frame_mh_d)

117 init_default_fcu_mh_w = adsk.core.ValueInput.createByReal(

default_fcu_mh_w)

118 init_default_fcu_mh_l = adsk.core.ValueInput.createByReal(

default_fcu_mh_l)

119 init_default_fcu_mh_r = adsk.core.ValueInput.createByReal(

default_fcu_mh_r)

120 init_rear_bat_d = adsk.core.ValueInput.createByReal(

default_rear_bat_d)

121 init_rear_l = adsk.core.ValueInput.createByReal(

default_rear_l)

122

123 ###

124 # Tab 1 Inputs - Overall

125 ###

126

127 # Create a read only textbox input.

128 tab1ChildInputs.addTextBoxCommandInput(’readonly_textBox_1 ’,

’Description ’, ’In this tab you can set the main dimensions and

features of the drone. Setting the arm angle can be done using the

mouse.’, 2, True)

129

130 # Create integer slider input with two sliders and a value

list

131 # Defines the number of motors

132 tab1ChildInputs.addValueInput(’arm_n ’, ’Number of Motors ’, ’’

, init_arm_n)

133

134

135 # Create angle value input

136 # Defines the angle of the drone arm to its frame support

point

137 tab1ChildInputs.addAngleValueCommandInput(’angleValue ’, ’Arm

Angle’, init_arm_angle)

138

139 # Define Arm Lenght.

140 tab1ChildInputs.addValueInput(’arm_l ’, ’Arm Lenght ’, ’mm’,

init_arm_lenght)

141

142 # Define Motor support thickness.

143 #tab1ChildInputs.addValueInput(’mot_sup_thic ’, ’Motor Support

Thickness ’, ’mm’, adsk.core.ValueInput.createByReal (0.0))

144 tab1ChildInputs.addValueInput(’mot_sup_t ’, ’Motor Support

Thickness ’, ’mm’, init_mot_sup_t)

145

146 # Define Motor support height offset.

147 tab1ChildInputs.addValueInput(’mot_sup_off ’, ’Motor Support

Offset ’, ’mm’, init_mot_sup_off)

148

149 # Define Motor support Diamenter.

150 tab1ChildInputs.addValueInput(’mot_sup_d ’, ’Motor Support

Diamenter ’, ’mm’, init_mot_sup_d)

151

152 # Define Frame Thickness.

153 tab1ChildInputs.addValueInput(’frame_t ’, ’Frame Thickness ’, ’

mm’, init_frame_t)

154

Rodrigo Rocha Lopes da Fonseca Master Degree

A.Code Examples 67

155

156 ###

157 # Tab 2 Inputs - Motors and Props

158 ###

159

160 # Create a read only textbox input.

161 tab2ChildInputs.addTextBoxCommandInput(’readonly_textBox_2 ’,

’Description ’, ’Here you can set the values relating to motor and

propeller dimensions.’, 2, True)

162

163 # Define Propeller Diameter.

164 tab2ChildInputs.addValueInput(’prop_d ’, ’Propeller Diameter ’,

’mm’, init_prop_d)

165

166 # Define Motor Diameter.

167 tab2ChildInputs.addValueInput(’motor_d ’, ’Motor Diameter ’, ’

mm’, init_motor_d)

168

169 # Define Motor Height.

170 tab2ChildInputs.addValueInput(’motor_h ’, ’Motor Height ’, ’mm’

, init_motor_h)

171

172

173 ###

174 # Tab 3 Inputs - Battery

175 ###

176

177 # Create a read only textbox input.

178 tab3ChildInputs.addTextBoxCommandInput(’readonly_textBox_3 ’,

’Description ’, ’Here you can set the values relating to battery

dimensions.’, 2, True)

179

180 # Define Battery Lenght.

181 tab3ChildInputs.addValueInput(’batt_l ’, ’Battery Lenght ’, ’mm

’, init_batt_l)

182

183 # Define Battery Width.

184 tab3ChildInputs.addValueInput(’batt_w ’, ’Battery Width’, ’mm’

, init_batt_w)

185

186 # Define Battery Thickness.

187 tab3ChildInputs.addValueInput(’batt_t ’, ’Battery Thickness ’,

’mm’, init_batt_t)

188

189

190 ###

191 # Tab 4 Inputs - FCU

192 ###

193

194 # Create a read only textbox input.

195 tab4ChildInputs.addTextBoxCommandInput(’readonly_textBox_4 ’,

’Description ’, ’Here you can set the values relating to FCU dimensions

.’, 2, True)

196

197 # Define FCU Lenght.

198 tab4ChildInputs.addValueInput(’fcu_l ’, ’FCU Lenght ’, ’mm’,

init_fcu_l)

199

Rodrigo Rocha Lopes da Fonseca Master Degree

68 A.Code Examples

200 # Define FCU Width.

201 tab4ChildInputs.addValueInput(’fcu_w ’, ’FCU Width’, ’mm’,

init_fcu_w)

202

203 # Define FCU Height.

204 tab4ChildInputs.addValueInput(’fcu_h ’, ’FCU Height ’, ’mm’,

init_fcu_h)

205

206 # Define FCU Distance to Battery.

207 tab4ChildInputs.addValueInput(’fcu_dist ’, ’FCU Distance to

Battery ’, ’mm’, init_fcu_dist)

208

209 ###

210 # Tab 5 Inputs - Rear Components

211 ###

212

213 # Create a read only textbox input.

214 tab5ChildInputs.addTextBoxCommandInput(’readonly_textBox_5 ’,

’Description ’, ’Here you can set the values relating to the Rear

components.’, 2, True)

215

216 # Define Distance to battery.

217 tab5ChildInputs.addValueInput(’rear_bat_d ’, ’Distance to

battery ’, ’mm’, init_rear_bat_d)

218

219 # Define Rear component lenght.

220 tab5ChildInputs.addValueInput(’rear_l ’, ’Rear component

lenght ’, ’mm’, init_rear_l)

221

222 # Define Rear component lenght.

223 tab5ChildInputs.addValueInput(’rear_w ’, ’Rear component width

’, ’mm’, init_rear_l)

224

225 # Define Rear component lenght.

226 tab5ChildInputs.addValueInput(’rear_h ’, ’Rear component

height ’, ’mm’, init_rear_l)

227

228

229 ###

230 # Tab 6 Inputs - Mounting Holes

231 ###

232

233 # Create a read only textbox input.

234 tab6ChildInputs.addTextBoxCommandInput(’readonly_textBox_6 ’,

’Description ’, ’Here you can set the values relating to the mounting

hole position , available for the frame , motors and FCU.’, 2, True)

235

236 # Define Motor Mounting Hole Number.

237 tab6ChildInputs.addValueInput(’motor_mh_n ’, ’Number of Motor

Mounting Holes ’, ’’, init_motor_mh_n)

238

239 # Define Motor Mounting Hole Bounding Circle Diameter.

240 tab6ChildInputs.addValueInput(’motor_mh_bd ’, ’Motor Mounting

Hole Bounding Circle Diameter ’, ’mm’, init_motor_mh_bd)

241

242 # Define Motor Mounting Hole Diameter.

243 tab6ChildInputs.addValueInput(’motor_mh_d ’, ’Motor Mounting

Hole Diameter ’, ’mm’, init_motor_mh_d)

Rodrigo Rocha Lopes da Fonseca Master Degree

A.Code Examples 69

244

245 # Define Motor Mounting Hole Diameter.

246 tab6ChildInputs.addValueInput(’frame_mh_d ’, ’Frame Mounting

Hole Diameter ’, ’mm’, init_frame_mh_d)

247

248 # Define FCU mounting hole size

249 tab6ChildInputs.addValueInput(’fcu_mh_r ’, ’FCU Mounting Hole

Radious ’, ’mm’, init_default_fcu_mh_r)

250

251 # Define FCU mounting x

252 tab6ChildInputs.addValueInput(’fcu_mh_w ’, ’FCU Mounting Hole

Ox position ’, ’mm’, init_default_fcu_mh_w)

253

254 # Define FCU mounting y

255 tab6ChildInputs.addValueInput(’fcu_mh_l ’, ’FCU Mounting Hole

Oz position ’, ’mm’, init_default_fcu_mh_l)

256

257 except:

258 if ui:

259 ui.messageBox(’Failed :\n{}’.format(traceback.format_exc ()

))

Listing A.1: Creating the interface using event handlers.

With the interface built, it it now necessary to have the model update to each form
input, which is done through a command execute handler, as depicted in Listing A.2.
Every time the user inputs a new value, the input is identified and passed to the Bolt()
function, where shape creation is done. Additionally, a destroy command handler is also
defined to close the interface when the program is terminated.

1

2 class BoltCommandExecuteHandler(adsk.core.CommandEventHandler):

3 def __init__(self):

4 super ().__init__ ()

5 def notify(self , args):

6 try:

7 unitsMgr = app.activeProduct.unitsManager

8 command = args.firingEvent.sender

9 inputs = command.commandInputs

10

11 bolt = Bolt()

12 for input in inputs:

13 if input.id == ’arm_l ’:

14 bolt.arm_l = unitsMgr.evaluateExpression(input.

expression , "mm")

15 elif input.id == ’angleValue ’:

16 bolt.angleValue = unitsMgr.evaluateExpression(input.

expression , "deg")

17 elif input.id == ’arm_n ’:

18 bolt.arm_n = int(inputs.itemById(’arm_n ’).value)

19 #bolt.angleValue = unitsMgr.evaluateExpression(input.

expression , "")

20 elif input.id == ’mot_sup_thic ’:

21 bolt.mot_sup_thic = unitsMgr.evaluateExpression(input

.expression , "mm")

22 elif input.id == ’mot_sup_off ’:

23 bolt.mot_sup_off = unitsMgr.evaluateExpression(input.

expression , "mm")

Rodrigo Rocha Lopes da Fonseca Master Degree

70 A.Code Examples

24 elif input.id == ’mot_sup_d ’:

25 bolt.mot_sup_d = unitsMgr.evaluateExpression(input.

expression , "mm")

26 elif input.id == ’mot_sup_t ’:

27 bolt.mot_sup_t = unitsMgr.evaluateExpression(input.

expression , "mm")

28 elif input.id == ’frame_sup_l ’:

29 bolt.frame_sup_l = unitsMgr.evaluateExpression(input.

expression , "mm")

30

31 %(...)%

32

33 bolt.buildBolt ();

34 args.isValidResult = True

35

36 except:

37 if ui:

38 ui.messageBox(’Failed :\n{}’.format(traceback.format_exc ()

))

39

40 class BoltCommandDestroyHandler(adsk.core.CommandEventHandler):

41 def __init__(self):

42 super ().__init__ ()

43 def notify(self , args):

44 try:

45 # when the command is done , terminate the script

46 # this will release all globals which will remove all event

handlers

47 adsk.terminate ()

48 except:

49 if ui:

50 ui.messageBox(’Failed :\n{}’.format(traceback.format_exc ()

))

Listing A.2: Handler responsible for receiving inputs and updating the code real time,
as well as its destroy handler responsible for closing down on program termination.

A.2 Building the Model

With the interface completed, and with all parameters collected, all that is left is the
Bolt() function, in which the actual shape creation takes place. To simplify the process of
building each shape, three functions were created: two to perform extrude, cut, join and
create new bodies, one for center-point rectangles and another for center-point circles,
and a function to create new components automatically. Each function, displayed in
Listing A.3, needs the object coordinates and the desired extrude height, along with a
mode variable which controls the desired operation, either cut, extrude or new body.

1

2 def createCylinder(Comp , x, y, z, radious , extrude_height , mode):

3

4 # Set mode to 0 to cut instead of extrude

5 sketches = Comp.sketches

6 sketch = sketches.add(Comp.xZConstructionPlane)

7 #sketchlines = sketch.sketchCurves.sketchLines

8 circles = sketch.sketchCurves.sketchCircles

Rodrigo Rocha Lopes da Fonseca Master Degree

A.Code Examples 71

9 extrudes = Comp.features.extrudeFeatures

10 body = circles.addByCenterRadius(adsk.core.Point3D.create(x, y, z),

radious)

11 prof = sketch.profiles.item (0)

12 extrude_dist = adsk.core.ValueInput.createByReal(extrude_height)

13 if mode == 1:

14 extrude_motor = extrudes.addSimple(prof , extrude_dist , adsk.

fusion.FeatureOperations.NewBodyFeatureOperation)

15 else:

16 extrude_motor = extrudes.addSimple(prof , extrude_dist , adsk.

fusion.FeatureOperations.CutFeatureOperation)

17

18 return extrude_motor

19

20 # This function creates blockout components such as battery , FCU , antenna

, receiver

21 def createBlocks(Comp , center , corner , height , mode):

22 sketches = Comp.sketches

23 sketch = sketches.add(Comp.xZConstructionPlane)

24 sketchLines = sketch.sketchCurves.sketchLines

25 extrudes = Comp.features.extrudeFeatures

26

27 block_sketch = sketchLines.addCenterPointRectangle(center , corner)

28 prof_block = sketch.profiles.item (0)

29 extrude_dist_block = adsk.core.ValueInput.createByReal(height)

30 if mode == 1:

31 extrude_motor = extrudes.addSimple(prof_block ,

extrude_dist_block , adsk.fusion.FeatureOperations.

NewBodyFeatureOperation)

32 elif mode == 0:

33 extrude_motor = extrudes.addSimple(prof_block ,

extrude_dist_block , adsk.fusion.FeatureOperations.CutFeatureOperation)

34 elif mode == 2:

35 extrude_block = extrudes.addSimple(prof_block , extrude_dist_block

, adsk.fusion.FeatureOperations.JoinFeatureOperation)

36

37 # This function creates new components

38 def createNewComponent ():

39 # Get the active design.

40 product = app.activeProduct

41 design = adsk.fusion.Design.cast(product)

42 rootComp = design.rootComponent

43 allOccs = rootComp.occurrences

44 newOcc = allOccs.addNewComponent(adsk.core.Matrix3D.create ())

45 return newOcc.component

Listing A.3: Functions created to easily create rectangular hexahedrons and cylinders.

A class is then created to set all variables. Since this is a repetitive process, only
part of the code is shown in Listing A.5. Inside the class, the actual function to build
the drone is buildDrone(), in which all components are created based on the functions
from A.3.

1

2 class Bolt:

3 def __init__(self):

4 # Default values

5 self._arm_l = default_arm_l

Rodrigo Rocha Lopes da Fonseca Master Degree

72 A.Code Examples

6 self._arm_n = default_arm_n

7 self._angleValue = default_angleValue

8 self._mot_sup_off = default_mot_sup_off

9 self._mot_sup_d = default_mot_sup_d

10 self._mot_sup_t = default_mot_sup_t

11

12 %(...)%

13

14 #properties

15 @property

16 def arm_l(self):

17 return self._arm_l

18 @arm_l.setter

19 def arm_l(self , value):

20 self._arm_l = value

21 #########

22 @property

23 def arm_n(self):

24 return self._arm_n

25 @arm_n.setter

26 def arm_n(self , value):

27 self._arm_n = value

28 #########

29 @property

30 def angleValue(self):

31 return self._angleValue

32 @angleValue.setter

33 def angleValue(self , value):

34 self._angleValue = value

35 #########

36 @property

37 def mot_sup_off(self):

38 return self._mot_sup_off

39 @mot_sup_off.setter

40 def mot_sup_off(self , value):

41 self._mot_sup_off = value

42 #########

43

44 %(...)%

45

46 def buildDrone(self):

47

48 # Get a reference to an appearance in the library.

49 lib = app.materialLibraries.itemByName(’Fusion 360 Appearance

Library ’)

50 libYellow = lib.appearances.itemByName(’Plastic - Matte (Yellow)’

)

51 libRed = lib.appearances.itemByName(’Plastic - Matte (Red)’)

52 libGreen = lib.appearances.itemByName(’Plastic - Matte (Green)’)

53 libBlue = lib.appearances.itemByName(’Plastic - Matte (Blue)’)

54

55 global motorComp

56 global propComp

57 global mot_sup_Comp

58 global arm_sup_Comp

59 global frame_sup_Comp

60 global batt_Comp

61 global fcu_Comp

Rodrigo Rocha Lopes da Fonseca Master Degree

A.Code Examples 73

62 global rear_Comp

63 motorComp = createNewComponent ()

64 propComp = createNewComponent ()

65 mot_sup_Comp = createNewComponent ()

66 arm_sup_Comp = createNewComponent ()

67 frame_sup_Comp = createNewComponent ()

68 batt_Comp = createNewComponent ()

69 fcu_Comp = createNewComponent ()

70 rear_Comp = createNewComponent ()

71

72 for x in range(1, self.arm_n +1):

73 if self.arm_n == 4:

74 arm_angle = self.angleValue *57

75 if x == 1:

76 arm_angle = self.angleValue * 180/ math.pi

77 elif x == 2:

78 arm_angle = 180 - self.angleValue * 180/ math.pi

79 elif x == 3:

80 arm_angle = 180 + self.angleValue * 180/ math.pi

81 elif x == 4:

82 arm_angle = - self.angleValue * 180/ math.pi

83 else:

84 arm_angle = x*360/ self.arm_n

85

86

87

88 arm_width = self.arm_l*math.cos(math.radians(arm_angle))

89 arm_height = self.arm_l*math.sin(math.radians(arm_angle))

90

91 frame_sup_width = self.frame_sup_l*math.cos(math.radians(

arm_angle))

92 frame_sup_height = self.frame_sup_l*math.sin(math.radians(

arm_angle))

93

94 # Create top and bot frame

95 # Check for max frame size:

96 front_l = self.batt_l /2 + self.fcu_l + self.fcu_dist + 1

97 rear_l = self.batt_l /2 + self.rear_l + self.rear_bat_d + 1

98

99 if front_l > rear_l:

100 frame_corner = front_l

101 else:

102 frame_corner = rear_l

103

104 top_frame_h = 0.0

105 # Check for the tallest component:

106 if self.batt_t >= self.fcu_h and self.batt_t >= self.rear_h:

107 top_frame_h = self.batt_t + 0.3

108 elif self.fcu_h >= self.batt_t and self.fcu_h >= self.rear_h:

109 top_frame_h = self.fcu_h + 0.3

110 elif self.rear_h >= self.batt_t and self.rear_h >= self.fcu_h

:

111 top_frame_h = self.rear_h + 0.3

112

113 # Create extensions for the frame

114 # Set extension size based on screw hole size

115 ext_size = 2*self.frame_mh_d + self.batt_w /2 + 1.2

116 ext_l = frame_sup_height + self.frame_mh_n * self.frame_mh_d

Rodrigo Rocha Lopes da Fonseca Master Degree

74 A.Code Examples

117 center_point_sup_bot = adsk.core.Point3D.create(0,

frame_sup_height , 0)

118 corner_point_sup_bot = adsk.core.Point3D.create(ext_size ,

ext_l , 0)

119 createBlocks(frame_sup_Comp , center_point_sup_bot ,

corner_point_sup_bot , -self.frame_t ,1)

120

121 center_point_sup_top = adsk.core.Point3D.create(0,

frame_sup_height , top_frame_h)

122 corner_point_sup_top = adsk.core.Point3D.create(ext_size ,

ext_l , top_frame_h)

123 createBlocks(frame_sup_Comp , center_point_sup_top ,

corner_point_sup_top , self.frame_t ,1)

124

125 # Create motor component

126 createCylinder(motorComp ,arm_width ,arm_height ,self.mot_sup_t

+ self.mot_sup_off , self.motor_d , self.motor_h , 1)

127

128 # Create propeller component

129 createCylinder(propComp ,arm_width ,arm_height ,self.motor_h +

self.mot_sup_t + self.mot_sup_off , self.prop_d/2, 1, 1)

130

131 # Create motor support

132 createCylinder(mot_sup_Comp ,arm_width ,arm_height , self.

mot_sup_off , self.mot_sup_d , self.mot_sup_t , 1)

133

134 # Coloring components for easier identification

135 # this cycle runs through all bodies in a component

136 for k in range(0, motorComp.bRepBodies.count):

137 motor_body = motorComp.bRepBodies.item(k)

138 prop_body = propComp.bRepBodies.item(k)

139 motor_sup_body = mot_sup_Comp.bRepBodies.item(k)

140 #arm_sup_body = arm_sup_Comp.bRepBodies.item(k)

141 frame_sup_body = frame_sup_Comp.bRepBodies.item(k)

142 motor_body.appearance = libYellow

143 prop_body.appearance = libRed

144 motor_sup_body.appearance = libBlue

145 # setting colors for frame supports

146 frame_sup_body.appearance = libGreen

147

148

149

150 # After the motors and frame supports are created , create the

mounting holes for the motors

151 for h in range(1,int(self.motor_mh_n +1)):

152 # Calculating necessary variables

153 screw_angle = h*360/ self.motor_mh_n# (h-1) *90+ arm_angle

154 screw_ex_height = self.mot_sup_t + self.mot_sup_off

155 screw_z = self.mot_sup_off

156

157 pos_hole_width = self.motor_mh_bd*math.cos(math.radians(

screw_angle)) + arm_width

158 pos_hole_height = self.motor_mh_bd*math.sin(math.radians(

screw_angle)) + arm_height

159

160 createCylinder(mot_sup_Comp , pos_hole_width ,

pos_hole_height , screw_z , self.motor_mh_d /2, screw_ex_height ,0)

161

Rodrigo Rocha Lopes da Fonseca Master Degree

A.Code Examples 75

162

163

164 # Create frame

165 center_point_bot_frame = adsk.core.Point3D.create(0, 0, 0)

166 corner_point_bot_frame = adsk.core.Point3D.create(self.batt_w /2 +

1, frame_corner , 0)

167 createBlocks(frame_sup_Comp , center_point_bot_frame ,

corner_point_bot_frame , -self.frame_t ,2)

168

169

170 center_point_top_frame = adsk.core.Point3D.create(0, 0,

top_frame_h)

171 corner_point_top_frame = adsk.core.Point3D.create(self.batt_w /2 +

1, frame_corner , top_frame_h)

172 createBlocks(frame_sup_Comp , center_point_top_frame ,

corner_point_top_frame , self.frame_t ,2)

173

174

175

176 # Create the arm supports

177 for x in range(1, self.arm_n +1,2):

178

179 if self.arm_n == 4:

180 arm_angle = self.angleValue *57

181 if x == 1:

182 arm_angle = self.angleValue * 180/ math.pi

183 elif x == 2:

184 arm_angle = 180 - self.angleValue * 180/ math.pi

185 elif x == 3:

186 arm_angle = 180 + self.angleValue * 180/ math.pi

187 elif x == 4:

188 arm_angle = - self.angleValue * 180/ math.pi

189 else:

190 arm_angle = x*360/ self.arm_n

191

192 frame_sup_width = self.frame_sup_l*math.cos(math.radians(

arm_angle))

193 frame_sup_height = self.frame_sup_l*math.sin(math.radians(

arm_angle))

194 ext_l = frame_sup_height + self.frame_mh_n * self.frame_mh_d

195 center_point_sup_bot = adsk.core.Point3D.create(0,

frame_sup_height , 0)

196 corner_point_sup_bot = adsk.core.Point3D.create(ext_size ,

ext_l , 0)

197

198 support_hole_x = ext_size - 1.5* self.frame_mh_d

199

200 createBlocks(mot_sup_Comp , center_point_sup_bot ,

corner_point_sup_bot ,top_frame_h ,1)

201

202 createCylinder(mot_sup_Comp , support_hole_x , frame_sup_height

-self.frame_mh_d *1.5, -self.frame_t , self.frame_mh_d /2, 30,0)

203 createCylinder(mot_sup_Comp , support_hole_x , frame_sup_height

+self.frame_mh_d *1.5, -self.frame_t , self.frame_mh_d /2, 30,0)

204 createCylinder(mot_sup_Comp , -support_hole_x ,

frame_sup_height -self.frame_mh_d *1.5, -self.frame_t , self.frame_mh_d

/2, 30,0)

205 createCylinder(mot_sup_Comp , -support_hole_x ,

Rodrigo Rocha Lopes da Fonseca Master Degree

76 A.Code Examples

frame_sup_height+self.frame_mh_d *1.5, -self.frame_t , self.frame_mh_d

/2, 30,0)

206

207 for k in range(0, mot_sup_Comp.bRepBodies.count):

208 motor_sup_body = mot_sup_Comp.bRepBodies.item(k)

209 motor_sup_body.appearance = libBlue

210

211

212 # Cut the supports to fit the frame

213 createBlocks(frame_sup_Comp , center_point_bot_frame ,

corner_point_bot_frame , top_frame_h , 0)

214

215 # Last step is creating other components such as battery , FCU ,

antenna , receiver

216 # Create center and corner points for the battery

217 center_point_batt = adsk.core.Point3D.create(0, 0, 0)

218 corner_point_batt = adsk.core.Point3D.create(self.batt_w/2, self.

batt_l /2,0)

219

220 # Create rear components

221 center_point_rear = adsk.core.Point3D.create(0, -(self.batt_l /2 +

self.rear_l /2 + self.rear_bat_d), 0)

222 corner_point_rear = adsk.core.Point3D.create(self.rear_w/2, -(

self.batt_l /2 + self.rear_l + self.rear_bat_d), 0)

223 createBlocks(rear_Comp , center_point_rear , corner_point_rear ,

self.rear_h ,1)

224

225 # Create battery

226 createBlocks(batt_Comp , center_point_batt , corner_point_batt ,

self.batt_t ,1)

227

228 # Create center and corner points for the FCU

229 center_point_fcu = adsk.core.Point3D.create(0, self.batt_l /2 +

self.fcu_l /2 + self.fcu_dist , 0)

230 corner_point_fcu = adsk.core.Point3D.create(self.fcu_w/2, self.

batt_l /2 + self.fcu_l + self.fcu_dist , 0)

231

232 # Create FCU

233 createBlocks(fcu_Comp , center_point_fcu , corner_point_fcu , self.

fcu_h ,1)

234

235 # Cutting the holes for FCU mounting

236 createCylinder(fcu_Comp ,self.fcu_mh_w/2, (self.batt_l /2 + self.

fcu_l/2 + self.fcu_dist) - self.fcu_mh_l , 0, self.fcu_mh_r , -self.

frame_t ,0)

237 createCylinder(fcu_Comp ,self.fcu_mh_w/2, (self.batt_l /2 + self.

fcu_l/2 + self.fcu_dist) + self.fcu_mh_l , 0, self.fcu_mh_r , -self.

frame_t ,0)

238 createCylinder(fcu_Comp ,-self.fcu_mh_w/2, (self.batt_l /2 + self.

fcu_l/2 + self.fcu_dist) - self.fcu_mh_l , 0, self.fcu_mh_r , -self.

frame_t ,0)

239 createCylinder(fcu_Comp ,-self.fcu_mh_w/2, (self.batt_l /2 + self.

fcu_l/2 + self.fcu_dist) + self.fcu_mh_l , 0, self.fcu_mh_r , -self.

frame_t ,0)

Listing A.4: The beginning of the class function, where each parameter is converted into
a property.

Rodrigo Rocha Lopes da Fonseca Master Degree

A.Code Examples 77

The last remaining piece is the run function, which is responsible for calling all other
functions at the script start, depicted in Listing

1

2 def run(context):

3 try:

4 product = app.activeProduct

5 design = adsk.fusion.Design.cast(product)

6 # This changes the model so it’s no longer capturing the

parametric history.

7 # increases speed and declutters history

8 design.designType = adsk.fusion.DesignTypes.DirectDesignType

9 if not design:

10 ui.messageBox(’It is not supported in current workspace ,

please change to MODEL workspace and try again.’)

11 return

12 commandDefinitions = ui.commandDefinitions

13 #check the command exists or not

14 cmdDef = commandDefinitions.itemById(’Drone Builder ’)

15 if not cmdDef:

16 cmdDef = commandDefinitions.addButtonDefinition(’Drone

Builder ’,

17 ’Drone Builder ’,

18 ’Drone Builder.’,

19 ’./ resources ’) # relative resource file path is

specified

20

21 onCommandCreated = BoltCommandCreatedHandler ()

22 cmdDef.commandCreated.add(onCommandCreated)

23 # keep the handler referenced beyond this function

24 handlers.append(onCommandCreated)

25 inputs = adsk.core.NamedValues.create ()

26 cmdDef.execute(inputs)

27

28 # prevent this module from being terminate when the script

returns , because we are waiting for event handlers to fire

29 adsk.autoTerminate(False)

30 except:

31 if ui:

32 ui.messageBox(’Failed :\n{}’.format(traceback.format_exc ()))

Listing A.5: The beginning of the class function, where each parameter is converted into
a property.

Rodrigo Rocha Lopes da Fonseca Master Degree

	I Theoretical Foundation
	Introduction
	Framework and Objectives
	Methodology
	Document Structure

	Design Methods
	The use of Computing Power in the Design Process
	Parametric Design
	Generative Design

	Algorithmic Design
	Literature Review and Definition
	Literature Review
	Algorithmic Design Definition
	The Relation between AD, PD and GD
	Integration in the Design Process

	Software Availability
	Fusion 360
	Rhinocerous 3D

	Additive Manufacturing and Customizable Products
	Prototyping and the Birth of Additive Manufacturing
	Quick Overview of AM Technologies
	The Manufacturing Process

	Design for Additive Manufacturing
	DFAM Methodologies

	Customizable Products

	II Exploration
	Exploration and Validation
	Tool and Language Selection
	Exploring Parametric and Generative Approaches
	Creating Objects Parametrically
	Generative Thinking

	Working with the API
	Exploring Algorithmic Shape Generation
	Applying DFAM Concepts

	Exploring Built-in Tools
	AGD Methodology

	Case Study
	Proposing a Methodology
	Case Study
	Script Development
	Design Constraints
	Algorithmic Description
	Evaluation and Selection

	Second Stage
	Creating Finished Models
	Prototyping

	Script Additions
	Generative Design Variation

	Discussion
	Future Developments
	Design Library
	Algorithmic Geometries
	Including Design Considerations

	Final Remarks
	Parametric, Generative and Algorithmic Approaches
	On Additive Manufacturing and Customization

	Bibliography
	Code Examples
	Building the Interface
	Building the Model

