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Palavras Chave Radar, afasia, gestos, comunicação, reconhecimento gestual, casa inteligente,
transfer learning, sensores não intrusivos

Abstract Os problemas de comunicação têm um efeito nocivo nas vidas das pessoas
como isolamento, depressão e perda de independência. Ao longo dos anos,
várias abordagens para atenuar estes problemas foram propostas, sendo que
a maioria tem desvantagens. Falta de versatilidade, soluções intrusivas ou a
necessidade de andar com um dispositivo são alguns dos problemas destas soluções.

O uso de radares tem visto um aumento nos últimos anos, chegando até
áreas variadas como o setor de saúde ou automóvel. Este tipo de solução é não
intrusiva, não é sensível a mudanças das condições ambientais como luz e não
invade a privacidade do utilizador como o uso de câmaras.

Nesta dissertação e no âmbito do projeto APH-ALARM, testou-se um ra-
dar no contexto do reconhecimento de gestos para apoio à comunicação no
cenário do quarto. Neste cenário, o utilizador é alguém com problemas de
comunicação, que se encontra deitado na sua cama e precisa de comunicar
com um familiar dentro ou fora de casa. O uso de gestos permite ao utilizador
ter algum apoio durante a comunicação e ajuda o mesmo a expressar as suas
necessidades.

Para reconhecer os gestos feitos pelo utilizador, é necessário capturar o
movimento humano. Para demonstrar as capacidades da tecnologia para este
contexto, foi implementada uma prova de conceito de um sistema que captura os
dados do radar e de seguida os filtra, converte-os em imagens e usa as mesmas
como entrada de um modelo para classificação de gestos.

Para avaliar a solução proposta, foram recolhidos dados de quatro pessoas
enquanto realizavam dez repetições de cinco gestos diferentes com um dos braços.
Uma solução independente do utilizador mostrou ser um caso mais desafiante
quando comparada com uma solução dependente do utilizador, em que todos os
datasets excepto um tem um acerto médio superior a 70% em que a maioria deles
supera os 90%.





Keywords Radar, aphasia, gesture, communication, gesture recognition, smart home, transfer
learning, non-intrusive sensors

Abstract Communication disorders have a notable negative impact on people’s lives, leading
to isolation, depression and loss of independence. Over the years, many different
approaches to attenuate these problems were proposed, although most come with
noticeable drawbacks. Lack of versatility, intrusive solutions or the need to carry
a device around are some of the problems that these solutions encounter.

Radars have seen an increase in use over the past few years and even
spreading to different areas such as the automotive and health sectors. This
technology is non-intrusive, not sensitive to changes in environmental conditions
such as lighting, and does not intrude on the user’s privacy unlike cameras.

In this dissertation and in the scope of the APH-ALARM project, the au-
thor tests the radar in a gesture recognition context to support communication in
the bedroom scenario. In this scenario, the user is someone with communication
problems, lying in their bed trying to communicate with a family member inside
or outside the house. The use of gestures allows the user to have assistance
communicating and helps express their wants or needs. To recognize the gestures
executed by the user, it is necessary to capture the movement. To demonstrate
the capabilities of the technology, a proof of concept system was implemented,
which captures the data, filters and transforms it into images used as input for a
gesture classification model.

To evaluate the solution, we recorded ten repetitions of five arm gestures
executed by four people. A subject independent solution proved to be more
challenging when compared to a subject dependent solution, where all datasets
but one achieved a median accuracy above 70% with most going over 90%.
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CHAPTER 1
Introduction

1.1 Context and Motivation

Communication is the act of exchanging ideas, emotions and thoughts to one another [1].
As human beings are inherently social creatures, communication is one of the most paramount
skills a person can have. In our everyday lives, we communicate with others, be it verbally or
non-verbally, in a personal or professional way. It is how we interact and make connections
with each other. And that is why communication difficulties have such a negative effect on
people. The impacts of those problems include the inability to live in society and do everyday
chores which can lead to lack of self-esteem, isolation, mental health problems, a loss of
independence, and a sense of insecurity.

According to the National Health Interview Survey from 2012, around 8% of children
in the U.S. were diagnosed with a communication disorder [2]. Plus, 7.5 million Americans
have trouble using their voice, as reported by the National Institute on Deafness and Other
Communication Disorders [2]. The American Speech-Language-Hearing Association divides
communication disorders into four types [3]:

• Speech disorder: impairs the user’s articulation and fluency;
• Language disorder: impairs the user’s comprehension or use of spoken or written symbols;
• Hearing disorder: impairs the user’s auditory sensitivity;
• Central auditory processing disorders: impairs the user’s ability to organize, transform,

store of information contained in audible signals.

One of the many possible communication disorders is known as Aphasia. Aphasia impairs
the person’s capability of understanding others and expressing themselves [4]. It can also lead
to difficulties in reading and writing. This is an acquired disorder most commonly caused by
strokes. According to the National Aphasia Association, about one third of stroke survivors
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develop the illness, with around two million Americans and 250,000 people in Great Britain
being affected by it [5]. Someone affected by the disease can still lead a regular life, although
complex social interactions are affected by the condition.

In the past years, many different processes or approaches that augment, complement or
replace speech were created to support people with communication disorders [6]. They are
usually referred to as Augmentative and Alternative Communication (AAC), and, by providing
these features, all have the same goal, to help people regain independence, self-esteem and,
at the same time, feel more secure. AAC ranges from the use of the user’s body to convey
non-verbal messages through facial expressions or voluntary motor movements (e.g., sign
language) to books or physical display boards with images and phrases or the use of electronic
devices together with software applications, like smart devices (e.g., tablet, smartphone) with
image board apps. Other AAC approaches use different devices or sensors to interact with the
user [6]. Mechanical switches or keyboards integrated into other devices, such as computers,
are very prominent in this area. As mentioned previously, the use of touchscreen on tablets or
smartphones is another possibility. Another approach is the use of cameras to track the users
head or eyes. It is also possible to translate the brains electrical impulses into a message. In
the vast majority of the cases, the output is transformed into symbols or digitized speech.

1.2 Limitations and Challenges of AAC

Although the existing AAC approaches provide acceptable solutions for most cases, there
are still some limitations present in them. In most cases, these devices require the user to
carry equipment with them. In some instances of AAC, the use of RGB cameras is present.
This use makes the tools very vulnerable to environmental conditions such as light or dust,
which can hurt their performance. Besides this vulnerability, the use of cameras comes with
privacy issues that need addressing. Picture boards have a limited number of pictures on
them, which can be detrimental in some cases.

Other types of technologies come with different disadvantages. Brain-computer interfaces
decode the users’ electrical impulses and translate the signal into a message. This method can
be invasive or non-invasive. Invasive BCIs use electrodes implanted in the brains’ peripheral
nerves. Non-invasive BCIs use flat metal discs placed in the users’ scalp. This technique
is called an electroencephalogram. Both cases offer disadvantages, one being invasive and
the other requiring the user to carry the sensors. The use of keyboards and switches is also
present in AAC. Although this approach allows for some versatility, it is not the easiest to
use while lying in bed [6].

From these limitations come a few challenges for AAC solutions:
• Being easy to carry/wear, or not requiring the user to carry the device with them at all

or wear any sensor;
• Avoid the privacy issues that come with the use of cameras;
• Being independent of environmental conditions such as light;
• Being easy to use at any time of day, including daytime and nighttime;
• Being easy to use when asking for help
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1.3 APH-ALARM Project

In this context, the ongoing project APH-ALARM – Comprehensive safety solution for
people with Aphasia (AAL/0006/2019) 1, aims at allowing people suffering from aphasia
(e.g., after a stroke) to communicate more easily with other people anywhere and anytime.
A smartphone application is under development in which the user utilizes pictograms to
communicate. In a situation where the user can not use the pictograms, the application can
also interpret gestures. The user is also able to choose to send the message to someone. The
project also includes a solution for the bedroom scenario, where the user is lying in bed. This
solution involves sensors placed on the bed, the user or scattered around the bedroom. In the
scope of this project, our main objective is to enhance communication for people with speech
difficulties, in the in-bed scenario (i.e., user lying in bed).

1.4 Objectives

The main aim of this work is to explore technologies that can be used to provide people that
have communication impairments/disorders with solutions that minimize their communication
difficulties, while also addressing some of the problems challenges mentioned above. Regarding
the explored technology, the focus is on the Radio Detection And Range (radar) for numerous
reasons. It has shown strong potential in the last couple of years for various applications. It
also does not require the user to carry an device with them or wear any device or sensor on
their body, and is not vulnerable to environmental conditions like cameras. To achieve the
defined goal the following sub-objectives were outlined:

• Perform a revision of the literature regarding communication problems to understand
and identify the challenges that need addressing, in particular, Aphasia and its effects,
as well as existing approaches for AAC and their limitations;

• Carry out a revision of the literature regarding radar and its functioning;
• Gather literature regarding gesture recognition and radar-based gesture recognition;
• Explore the radar technology’s capabilities in concerning movement detection and data

acquisition, in the context of the considered scenario;
• Design and implement a proof of concept of a system for gesture recognition aiming at

supporting communication;
• Evaluate the gesture recognition component of the proof of concept with data collected

from different subjects in a real setting, for two different types of solutions: user
dependent and user independent.

1.5 Contributions

The work described in this document yielded several contributions, which are:

• A review of the literature regarding AAC, radars and gesture recognition;
1http://www.aal-europe.eu/projects/aph-alarm/
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• Results of the initial exploration of the radar capabilities, including the most adequate
configuration parameters for data acquisition in the specific bedroom scenario;

• A proof of concept of a gesture recognition system showcasing the radar’s capabilities;
• A gesture dataset captured from multiple subjects using a radar ;
• A pipeline for gesture recognition, integrated in the proof of concept system, where

the input corresponds to data provided by a radar and the output is the name of the
gesture;

• Results of gesture recognition evaluation, based on the gesture dataset described above,
considering both the user dependent and independent cases.

Some of the contributions have already been accepted for presentation in EAI MobiQuitous
2021, the International Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services, with an article entitled "Radar-Based Gesture Recognition Towards Supporting
Communication in Aphasia: The Bedroom Scenario"(see appendix B):

• Authors: Luís Santana, Ana Patrícia Rocha, Afonso Guimarães, Ilídio C. Oliveira, José
Maria Fernandes, Samuel Silva and António Teixeira

• Title: "Radar-Based Gesture Recognition Towards Supporting Communication in Apha-
sia: The Bedroom Scenario"

• Year: 2021
• Conference: accepted for presentation in EAI MobiQuitous 2021, the International

Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services

Other contributions include the participation as co-author of two papers on work related
to this dissertation, one published [7] and another submitted to the conference PerCom 2021
International Conference on Pervasive Computing and Communications [8].

1.6 Dissertation Structure

This document is divided into six chapters.
Chapter 2 dives into some of the literature deemed appropriate for the work. To start,

several topics such as communication disorders, aphasia and AAC. After this, the chapter
tackles more technical aspects such as radar technology. These topics provide background
regarding influential subjects for the work. After providing the background, the chapter
analyses several articles with related work regarding radar and gesture recognition.

The chapter tackles several topics such as communication disorders, AAC, gesture recog-
nition and radar.

Chapter 3 defines and describes some personas and scenarios created with the purpose
of helping guide the development of the work and guarantee that it is in line with the
challenges identified in the current chapter. The personas and scenarios also helped create
the requirements for the system, including both non-functional and functional requirements,
which are also listed in Chapter 3.

Chapter 4 describes the proof of concept of a system for gesture recognition and all its
development stages. The chapter begins with an overview of the proposed systems’ architecture.
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Next comes an analysis of the chosen gestures and their description. The last sections of
the chapter describe the gesture recognition pipeline, where data captured by the radar are
acquired, processed and used as input to a model that classifies the gestures performed by the
user.

Chapter 5 describes and analyses the obtained results. The chapter dives into all the
preliminary experiments executed during the development of the proof of concept. After
describing the first attempts, the results of an evaluation concerning gesture recognition, based
on a dataset gathered from multiple subjects, are presented and discussed. The evaluation
was carried out for two different types of solutions: user dependent (one model per user) and
user independent (model trained with several subjects and tested with a never seen subject).

Chapter 6 wraps up the document with an analysis of the objectives mentioned in the
first chapter and whether or not these have been met, a short description of the development
stages and the main conclusions that can be drawn from the performed work. The chapter
also contains some future work to be done.

Appendix A contains some technical aspects of the radar that have been moved to
simplify the text.

Appendix B contains the article entitled "Radar-Based Gesture Recognition Towards
Supporting Communication in Aphasia: The Bedroom Scenario".
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CHAPTER 2
Background and Related Work

This chapter provides some background and analyses some existing literature regarding
communication problems and the methods that try to mitigate their effects. It also discusses
the advances in gesture recognition and radar technologies, as well as their advantages.

2.1 Communication Disorders

Communication disorders affect a persons’ capacity to communicate with others. These
disorders can affect several capabilities of a person such as hearing, speech and language.
As mentioned previously, communication problems have a negative effect on people that
can lead to isolation and mental health problems. These problems can have several origins,
including disorders such as aphasia. Aphasia results from damage to portions of the brain,
most commonly on the left side [9]. Its development is slow if caused by a tumour or other
progressive neurological diseases, or sudden if it originated from a stroke or head trauma. This
disorder affects the person’s linguistic capabilities, hindering production and/or comprehension
of speech and also reading and writing. As its main cause is strokes, middle-aged and older
people are more affected by the disorder, but anyone can acquire it.

As referred to in [10], many people with aphasia mention having strong emotions to deal
with in their post-diagnosis life. Emotions such as anger, sadness and sometimes shame. Some
of these come from the fact that other people do not usually understand the problem or how
to deal with it, making them not want to communicate with the Person with Aphasia (PwA).
This factor leads to exclusion and, in some cases, depression. Some aphasics also refer to a
loss of independence and/or responsibility, due to the fear of not being able to communicate
in an emergency.

2.2 Augmentative and Alternative Communication

Augmentative and Alternative Communication (AAC) comprises approaches that comple-
ment, augment or replace speech, with the intent of supporting people with communication
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disorders [6]. As mentioned before, a large number of AAC approaches that help people
with communication problems already exist. Although these are not specifically for apha-
sia, they can help mitigate some effects of it. This section will focus on some of the more
technology-driven approaches.

These approaches include devices and/or applications that rely on sensing modalities, which
can be used in a stand-alone format or in combination with one another [6]. These modalities
are associated with different types of activation methods, many of them corresponding to
sensors (e.g., keyboard, touchscreen, camera, microphone).

The sensing modalities used in AAC can be divided into the following categories, according
to the used method [6]:

• Imaging;
• Mechanical and electromechanical;
• Touch-activated;
• Breath-activated;
• Brain-Computer Interface.
Imaging methods are commonly used to support users with reduced body movement, as

they regularly rely on eye gaze or head detection and tracking as the activation method. This
method is paired with the use of cameras. A lot of devices of this kind are commercially
available, such as the ones provided by Tobii Dynavox [11]. The i-series devices are a speech
generating device that provides eye-tracking capability combined with touch access input.
They also contain various communication apps that resemble picture boards [11]. Another
example of these devices is the WinSlate 12D from Forbes AAC [12]. The device, which
provides various methods of activation, such as custom keyguards, switch access, among others
[12]. When paired with the Enable Eyes™ tracking module, the device allows the user to
simulate all mouse controls with their eyes [13].

Mechanical and electromechanical methods offer direct and indirect access to the selection
of input. This means that it can accommodate the needs of both people with limited or regular
body movement. Direct selection access revolves around mechanical switches or keyboards,
while indirect selection uses a scanning process to access the user’s options. The scanning
process can either be interval based or controlled by the user [6].

Touch-activated methods are commonly direct access methods, due to the rise of touch-
screen technologies and devices. As smartphones have become a prevalent presence in people’s
everyday lives, several AAC apps for these devices have appeared. These use the touchscreen
of the device combined with picture boards to aid the user’s communication process [6].
Examples of these apps are the Proloquo2Go from AssistiveWare [14]. This app is available for
IOS/MacOS devices only and provides symbol-based AAC and Text-To-Speech (TTS) with
a vocabulary of over 10,000 words. Another example is Predictable from Therapy Box [15].
Another TTS AAC app available for both IOS and Android that combines picture boards
with TTS capabilities. Besides this, Predictable also allows the user to select other methods
of interaction like switches and, in some devices, head tracking is also available.

Breath-activated systems use a wide range of sensors, such as fiber optics, pressure and
thermal among others, and measurements to capture the user’s respiration. The signal
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captured is then analysed and transformed into communication messages for supporting
communication. This transformation commonly occurs in one of two ways. Discrete signal
encoding consists of translating soft and heavy breathing blows to Morse code to create letters
and phrases, or zero and one combinations. Continuous signal encoding involves the analysis
of the speed, amplitude and phase of breathing during respiration of the respiration. This
analysis creates a respiratory pattern that translates to a message [6].

Finally, there are brain-computer interfaces. These interfaces have been under research
ever since the 1970s at the University of California, Los Angeles. They allow the user to control
systems using their brain signals, which is very useful for people with impaired movement
and speech. The interfaces used are of two types, invasive or non-invasive. Invasive interfaces
involve the usage of electrodes implanted beneath the user’s scalp to communicate the signals.
Non-invasive interfaces use external devices, placed on top of the scalp, to monitor the user’s
brain. These devices use methods such as electroencephalography, magnetoencephalography
and others. The signals are acquired, processed and then classified or translated. Regarding
AAC technologies, the systems process the acquired signal and use it to produce communication.
The process is a possible substitute for a switch or mechanical keyboard for an AAC device
with indirect selection [6]. Cyberkinetics originally designed BrainGate, a brain implant system
designed to help people who lost control of limbs or other bodily functions. A sensor monitors
the user’s brain activity and converts the signals into computer commands. Cyberkinetics,
now owned by BrainGate CO., is also developing technologies for assistive communication,
reporting that a user would be able to type on a virtual keyboard [16].

Discussion

Although there is no lack of technologies to support people with communication difficulties,
they often present limiting factors making them unable to assist the user in all day to day
situations:

• Graphical interface limitations;
• Privacy concerns;
• Invasiveness or instrusiveness;
• Sensitivity to changes in environmental conditions;
• Not suitable for the in-bed scenario
For example, most AAC technologies use graphical interfaces to interact with the user.

Even though this method is common and effective, there are situations where the user either
cannot get the support they need, or, in some cases, the tools were not developed to be
user-centered and do not respond to the users’ needs or scenarios.

In [17], Brandenburg et al. (2013) wrote a review regarding accessibility and potential
uses of mobile computing technology for aphasics. Several of the articles mentioned refer the
same common problems for these devices arc, i.e., . Small screens, buttons and text make
interacting with the technology very difficult. This is also mentioned in [18].

The need for the user to carry a device with them, inside their home, to communicate is a
limiting factor to these technologies as well. In [19], Russo et al. (2017), mentioned in their
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review of high-tech AAC that the most commonly used devices consist of portable computer
software, desktop computer software, and dedicated portable/desktop devices with software
applications. This means that the user has to carry these devices to get the support they
need. If for some reason, the user does not have the device present then no communication
support exists. The solutions that employ cameras also come with issues. Although these
solutions tend to be effective, some types of cameras are very much affected by environmental
conditions such as lighting. Besides this, in the past few years, privacy concerns have started
to be raised regarding solutions that employ cameras.

Besides all these factors, some of the solutions mentioned are also not the most effective
in emergency situations. If a user has an emergency while they are not in direct contact with
their device, for example during the night, it may be cumbersome or maybe even impossible
to pick up the device.

The use of gesture recognition based on non-wearable, non-intrusive sensor mitigates some
of the limitations mentioned. This type of solution allows the user to communicate with the
help of the system at a distance and does not require the user to carry a device with them.

2.3 Gesture Recognition

Gesture recognition consists of interpreting a person’s gesture through an algorithm and
data provided by one or more sensors. As already mentioned above, the recognition of gestures
carried out by a person can be an adequate alternative to other activation methods for
supporting communication in different scenarios, such as the in-bed scenario.

The general pipeline of gesture recognition proposed by Liu et al. [20] is presented in Fig.
2.1 Most of the projects that involve gesture detection use a pipeline that is, at least, similar
to the one presented.

Figure 2.1: Classic gesture recognition pipeline proposed in [20]

In the first stage, the data provided by one or more sensors are collected for further
processing. There are many different types of sensors that can be used, such as wearable
sensors (e.g., accelerometer, gyroscope), vison-based sensors (e.g., RGB, depth or infrared
cameras), and radars (e.g., Frequency Modulated Continuous Wave radar).

The gesture identification stage refers to searching the beginning of a movement that might
correspond to a gesture to recognize. Gesture tracking corresponds to tracking the movement
located in the previous stage. Only the detection of dynamic gestures requires this process
the latter step, as static gestures only require the processing of a single image. Both gesture
identification and tracking are usually only required in solutions relying on vision-based sensor
data.

The next stage is classification. During classification the gesture is matched with known
possibilities. This step is normally executed with the help of a model previously trained with
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a machine learning algorithm and a dataset with data from several subjects. Finally, gesture
mapping takes the gesture recognition result and translates it into a pre-defined action.

Gesture recognition has evolved a lot over the years and has recently spread over multiple
areas. We can see this technique present in areas such as the video game industry for
interaction with the game. It is also present in the smart home area to enable interaction
with the appliances and control them. It has also been explored in the automotive sector for
car control to avoid the use of graphical interfaces [21].

The video game industry has used sensors such as accelerometers in the controllers, for
example. One of the most famous examples is the Kinect from Microsoft. This device uses a
RGB-D camera to detect, track and identify the users’ actions. Wearable sensors have been
frequently used to control appliances in smart homes, while cameras or radars are often used
to interact with driver-assistance systems [22].

As the interest in gesture recognition has grown over the years, the list of classifiers used
has also extended. Various studies investigated a wide range of classifiers, from the more
classic machine learning algorithms, such as support vector machine (SVM), decision tree,
random forest, and K-Nearest Neighbors (KNN), to more complex deep learning algorithms,
such as Convolutional Neural Network (CNN) and Long Recurrent All-Convolution Neural
Network (LRACN) [22]–[27].

As already explained above, an area where gesture recognition is present is in the video
gaming industry. One of the first examples of this appeared in 2006 when Nintendo released
the Nintendo Wii. The Wii was a videogame console almost solely based on gesture recognition.
The user would interact with the games and the console via the Wii remote. When playing
the games, the user would have to mimic throwing a ball while holding the remote when
playing basketball or grab the remote as a steering wheel and then turn the controller to the
side to which the user wants to steer. This technology was one of the most impactful moving
forces in introducing gesture recognition to the videogame industry. As the controllers are
easy and cheap to find nowadays, people decided to try and use these in different ways than
what was intended.

In [25], [28], the authors took a Wii remote and built modules to use it as an interaction
mean with an application. In both cases, the accelerometer sensors present in the remote
provide data, which are then filtered. In [25], after filtering, a K-Nearest Neighbors (KNN)
algorithm was used to cluster the data. A discrete Hidden Markov Model (HMM) was chosen
due to its results in gesture recognition and a Bayes classifier is used in the final component
to classify gestures. The selected gestures are “square”, “circle”, “roll”, “Z” and “tennis”. Six
participants performed each gesture fifteen times, resulting in 75 gestures per participant.
The average recognition rate results vary between 85 and 95%.

In [28] a low pass filter was used to remove noise from the data recieved from the Wii
remote, and an idle threshold filter to remove low importance samples. A A dataset with
data gathered from a single person was obtained. The training/test sets contain about
50 examples for each gesture. The gestures selected are “circle”, “shake normal”, “shake
sideways”, “down”, “left”, “right”, “up” and “square”.The model used was a HMM. The class
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accuracy of recognition ranges between 80 and 100%.
In [29], the authors explore the capabilities of gesture recognition using cameras for a hand

gesture recognition system to interact with a video game. The system starts by detecting
the user’s hand in a RGB video. The Haar cascade classifier is used to locate the hand and
to classify the gestures To track the hand, CAMSHIFT and Lucas-Kanade Optical Flow
techniques were used. As the tracking occurs, the system generates hand contours. The
extended number of fingers is used to classify the gesture and map it to the appropriate
action. Three gestures are recognized by the system: “grab”, “throw”, and “punch”. Data
from fifteen subjects was used to test the system, which obtained an accuracy of 80% for the
lowest scoring gesture and 93% for the highest scoring gesture.

Another area where gesture recognition has seen a growth is the automotive area. Kopuklu
et al., [21], designed a real-time recognition framework for the in-car scenario that recognizes
micro-hand gestures. The authors created a dataset called DriverMHG that consists of data
acquired from 25 subjects while using a simulation Logitech wheel and a Creative Blaster
Senz3D camera. This camera captures RGB, infrared and depth images. For each subject, a
total of five recordings were performed, each containing 42 repetitions per hand for five different
gestures (“Swipe Right”, “Swipe Left”, “Flick Down”, “Flick Up” and “Tap”), and also “Other"
and “None" gestures (to help with continuous detection). The authors experimented with
offline and online classification and the fusion of the different captured data types. The system
achieved an accuracy of 74% online and 92% offline .

Smart-Home control is also an area where gesture detection has been employed with good
results. In [30], Chou et al. developed a smart home system for appliance control and automa-
tion that relies on with multi-sensor data fusion. The system includes functions to control
entertainment and household appliances, energy management, and real-time notifications for
temperature, CO concentration, among others. The system contains two wearable devices.
One is used to interact with the smart home, while the other helps the energy management
system. The user wears the interaction device on their wrist. The device captures the data
from an accelerometer and a gyroscope and uses the radio frequency module to send data to
the gesture recognition algorithm. The system maps these signals to a type of gesture that
controls appliances such as televisions. The signals sent by the sensors are filtered, then the
mean, standard deviation, and variance are extracted and used as input for a model built with
the Probabilistic Neural Network classifier. Gestures recognized by the system are: “move
up”, “move down”, “move right”, “move left”, “turn right”, and “turn left”. The authors did
not provide an accuracy metric for the system.

In [31], the authors implemented gesture recognition for smart home interaction using
the gyroscope sensor embedded in a smartphone. The sensor data are converted into images,
which are then used as the input for a model. The authors chose to detect six different
gestures: “Horizontal grip, up and down”, “Horizontal grip, down and up”, “Vertical grip, up
and down”, “Vertical grip, up and down”, “Turn right and left”, and “Turn left and right”.
The dataset used consists of 3,805 examples, with each class containing between 483 and 828
examples. Eighty per cent of the dataset was used for training, 10 per cent for testing and
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the rest for validation. The authors used transfer learning with Inception V3 for the system.
The results show an 89% recognition rate.

It was decided that radar technology should be explored in the context of this work due
to its decrease in cost, the good results that were obtained in different projects that used
the technology, and the fact that it is non-invasive/intrusive which is a capability that is
very important considering the scenario of the work. It was also selected to explore the full
potential of the technology.

2.4 Radar

Radio Detection And Range (radar) is a system that uses radio waves to detect objects
plus their velocity, range and angle. [32] The first reports of technology remotely similar to
the radar as we know today come from 1897 when Alexander Stepanovich Popov, inventor of
the antenna, noticed the reflection of the wireless signal he was transmitting. The creation of
the radar has been very discussed but the credit to the invention goes to Christian Hülsmeyer
[33]. According to [34], Nikola Tesla is the one responsible for bringing the invention to the US.
Twenty years later, in December 1934, Robert M. Page tested an experimental 60 Hz radar
that was able to track a plane 1.6 km away [34]. Over the following years, this technology
would see an amazing increase in performance due to its importance in WWII as all nations
involved invested in research in this area [34]. After the war was over, the technology had
evolved well beyond what was thought capable [34]. This technology has evolved drastically
since its early days, and radars now have higher ranges of distance and velocity. There has
also been a growth in the hardware capabilities required to process the signals returned by the
radar. These advancements allowed the technology to spread to various areas. It is present
in aircrafts to warn of obstacles in its path, and marine vessels to measure distances to help
with navigation. Meteorologists also use radar to monitor precipitation, wind and more severe
weather events, such as tornados, thunderstorms and more.

This technology contains various theoretical concepts that help understand its functioning
and the data it captures. For simplicity, some of these concepts are described in Appendix A.

Radar Work in Different Areas

In the past years, research and work using radar technology has led to several contributions
in areas such as the automotive and health sector, the videogame industry, smart home control
and gesture recognition [35]–[40]. Some of the contributions are described below.

In [35], an implementation of a gesture recognition system for the user to interact with
their smart home appliances is present. The authors present a gesture recognition pipeline
similar to the one shown before Fig. 2.1 based on signals captured using radar sensors. A radar
sensor captures time-domain signals for the speed of the movement, for example. Initially,
the authors recorded 20 repetitions for five familiar motions. These were “no movement”,
“shaking head”, “nodding”, “hand lifting”, “hand pushing”. As the authors concluded that the
results obtained could be improved, the Doppler values were introduced as a feature. The
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results increased substantially, from a classification rate of 83 to 97% when using a 10 fold
cross-validation approach.

As described in [36], the medical area has seen various uses of radar due to its capabilities
of non-invasive or intrusive sensing. The radar can detect small variations in movement,
meaning that its capable of sensing vital signals [37], [38]. Both articles build upon it to create
systems capable of detecting heartbeat and respiratory signals by measuring the difference
in phase from a signal emitted by the radar and the reflected signal. In [41], the radar was
also used to track tumours during radiotherapy, leading to advantages such as a decrease
in healthy tissue exposed to the radiation beam and the fact that the process requires no
markers, thus being non-invasive.

Besides the medical area, radars have also been extensively used in the automotive industry.
As presented in [39], the technology was used in cars to detect stationary objects such as
road signs and stopped cars, or even moving targets such as pedestrians. The use of radars in
this situation has advantages in comparison to cameras, as no environmental factors affect
radars. Even though this approach brings benefits, it also comes with some flaws, including
the problem of ghost targets and missing targets in a multi-target situation as described in
[42], [40].

As mentioned before, radar has advantages when compared to other means of data capture,
such as the fact that it is not affected by environmental conditions, such as light, and does
not go against privacy violations, unlike most cameras. Due to this, and to its growth in
the previous years, radar has become a very compelling option when it comes to gesture
recognition.

2.5 Gesture Detection with Radar

In this section, the focus is on the literature more closely related with the work of this
dissertation, more specifically on contributions aiming at the recognition of hand or arm
gestures based on data provided by radars. A summary of these contribution is presented in
Table 2.1, which includes the main relevant characteristics of each work. By examining the
table, we can see that the data extracted from the radar can be used for gesture recognition
with good results.

In [44], presents a review of some of the types of radars used and their applications. From
the different available radar types, the focus in this section will be on Frequency-Modulated
Continuous Wave (FMCW) radars, since this type of radar has been vastly used in for gesture
recognition, making it a viable option for this work. An FMCW radar emits a continuous
wave with a varying frequency over time, allowing to obtain information on the position
and velocity of moving targets. More information about this kind of radar can be found" in
Appendix A.

One of the contributions mentioned in [44] reports to have used a FMCW radar to create
a driver assistance system [22]. The authors of this contribution used a multi-sensor approach,
which consisted of a FMCW radar, a RGB camera, and a depth camera. This use of mixed
sensors makes the presented system very robust when dealing with environmental conditions
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Ref Radar # subjects # gestures # examples
per gesture

Classifier Accuracy (%)

[22] FMCW 3 10 plus
random hand

motions

10-20 CNN 94

[23] FMCW 5 4 50 Random Forest 92
[26] IR-UWB — 6 — NN1 99
[43] FMCW 3 3 1000 CNN 99
[24] FMCW 10 training, 5

testing
5 150 training,

600 testing
LRACN 98

1 Type of neural network was not specified.

Table 2.1: Summary of the contributions analysed in this section, including information on the used
dataset and classifier, as well as the obtained accuracy for gesture recognition.

such as light. The radar in this system retrieves range and Doppler data. The authors assume
that a gesture occurs when the radar detects motion. After the radar detects a gesture, the
cameras switch on. The behaviour described occurs because the radar requires less power
when compared to the cameras, making the system more power-efficient.

After capturing the gesture, the data obtained are filtered and the depth and RGB images
are used to obtain the hand region mask, which is then normalized to the range [0, 1]. The
authors use the depth camera images to obtain the hand region mask. The values of the region
go through a normalization process to a range of [0, 1]. The image from the colour camera
goes through a similar process, converting an RGB image to the same range of values as before.
Next, the radar data are mapped to the depth data, allowing the authors to extrapolate the
angular velocities for the depth images using Voronoi tessellation. After overlapping the hand
region mask with the previous image, the authors obtained the angular velocity values for
the hand region. All resulting images are resized for model training. The classifier used to
build a model for recognition of dynamic gestures is a convolutional Convolutional Neural
Network (CNN). This network consists of two 3D convolutional layers, which automatically
learn discriminatory spatiotemporal filters to reduce the dimensionality of the input gesture
data. The authors recorded a dataset that consisted of a total of 1,714 gestures executed by 3
subjects. The gestures included “left/right/up/down” palm motion, “shaking” of the hand,
“Clockwise/Counter-clockwise” hand rotations, “left/right swipe”, and “calling”. These were
recorded both outdoors in a real car and indoors in a driving simulator. The best overall
performance of the system achieved was an accuracy of 94.1% with a combination of all three
sensors.

In [23], the authors present the system Soli, a high-resolution, low-power and compact
gesture sensing technology for human-computer interaction, based on a FMCW radar. In
this work, the authors focus on exploiting the temporal accuracy of the radar, as gestures
can be recognized directly from temporal variations in the signal. The authors also focus on:
maintaining a high throughput of the sensor to minimize latency; exploiting the advantage of
using multiple antennas to reduce noise, maximizing Signal to Noise Ratio (SNR); providing
continuous and discrete gesture recognition; and being computationally efficient. The authors
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claim that some features are extracted due to intuition and radar knowledge, and that the
most relevant features are automatically detected and selected during the learning phase. The
authors choose to use the random forest algorithm for recognition, due to it being effective
and fast. A Bayesian filter was used to process the raw predictions, decreasing false positives.
In total, the dataset included 2,000 gesture examples (5 participants × 4 gestures × 50
repetitions × 2 sessions) with a 1000 examples used for training and testing. The gestures are
the “virtual button”, “virtual slide”, “horizontal swipe” and “vertical swipe”. Accuracy values
of 87% and 92% were achieved when using unfiltered and filtered predictions, respectively.

In [26], present a proof of concept of a gesture recognition system using an impulse radio
ultrawideband radar without being applied to a given context. The raw signal captured by
the radar is filtered to remove background noise. Both the unfiltered and filtered signals
are used in the classification process to improve accuracy. The system uses two machine
learning techniques, the unsupervised Principal Component Analysis (PCA) technique to
extract features from the signal, and supervised learning using a neural network to classify
gestures. PCA allows the authors to use only the ones with the most variability and therefore
avoid overfitting the model and reducing the model complexity and size. The authors selected
six gestures for detection , one being a control gesture where no movement occurs. The
training and test sets consisted of 2,200 and 500 examples, respectively. The authors report
an accuracy of 100%.

In [43], the authors take a more usual approach to the work. Three hand gestures are
distinguished, and for each of them 1,000 spectrograms were generated from micro-doppler
values. The distinguished gestures are “beckoning”, “swipe” and “wave”. The authors decided
to use a CNN for classification, as these have proven to be very effective. The CNN used
consists of 10 layers and two input channels corresponding to the real and imaginary part of
the spectrogram to provide both amplitude and phase information for gesture recognition.
The training, test, and validation sets contained 90%, 5% and 5% of the dataset (900, 50,
and 50 spectrograms per gesture), respectively. After training and validation, the authors
obtained a classification accuracy of 99% over the test set.

In [24], the authors propose a short-range gesture recognition system using a millimetre
wave radar. Range-Doppler images are created and used as input for the classification model.
Each pixel’s intensity in these images represents the reflected energy from each point. For
feature extraction and classification, the system uses a Long-Term Recurrent All-Convolutional
Network. In this type of network, fully connected layers are replaced with convolutional
layers to mitigate the effects of overfitting when using a small dataset. The authors decided
to use five gestures for detection “grab”, “finger rub”, “swipe”, “up-down”, “circle”. Ten
subjects recorded 150 sequences. Due to the limited size of the dataset, the authors used
data augmentation techniques. These techniques create synthetic images with variance to
the originals to resolve generalization problems. The network used a training-validation split
of 80%-20%. Regarding the test set, it included 600 sequences acquired from five different
subjects to use as a testing dataset. The obtained results show an accuracy ranging from 85
to 98%.
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2.6 Conclusion

This chapter presented some background and a revision of the state of the art in the areas
relevant to this dissertation, including communication disorders, aphasia, radar and gesture
recognition. The analysis of this information was essential to understand the technologies and
the target users and served as the basis for the work presented in the next chapters.

For example, it was possible to conclude that although many assistive technologies for
communication disorders already exist, these still face some limitations and challenges, such
as privacy concerns, invasiveness or lack of versatility. Either the user is required to carry
a device with them, or the solution is not versatile enough to be used at all times, or it is
cumbersome to use.

As an alternative to the existing solutions, the use of gestures allows a more versatile
and natural way for supporting communication at a distance. As for the sensor to be used
for recognizing the gestures, an unobtrusive sensor, such as a radar, revealed to be the most
appropriate solution, due to being low-cost, unlike RGB cameras it does not require light to
function and is not affected by other environmental conditions.
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CHAPTER 3
Personas, Scenarios and

Requirements

Even though the work is exploratory, it was important to get to know the problem better
and approach the research, as best as possible, from a human-centred perspective. This
required the help of some literature concerning communication disorders, as well as the
consideration of methods supporting a human-centred approach. As such, the use of tools like
personas and scenarios allows the identification of the needs of people with those disorders,
leading to the creation of better requirements. Additionally, it serves as a brief illustration of
the envisioned scenarios for the work. They also help make sure that the work is moving in
the right direction when it comes to assisting people with communication difficulties.

3.1 Personas

Personas describe the target user for the work. This tool helps us understand the needs
and behaviours of the users.

In the following paragraphs, we describe three different personas, scenarios and motivations.
Each one of these depicts a different aphasic person and different scenarios that they face.

3.1.1 Persona 1: João

João: Male, 44 years old. João is a 44-year-old male from Aveiro. João has worked as a
teacher in Universidade de Aveiro for 15 years. Outside of work, João has a very active social
life and often goes out with friends. Due to his profession and social life, communication is a
crucial part of João’s life and is something that he enjoys. Around a year ago, João was the
victim of a stroke that left him with aphasia. The condition left João with serious difficulties
communicating. As communication was such a vital aspect of João’s life, these difficulties
took a toll on his self-esteem, leading him to a more isolated lifestyle.

Motivation: João wants to regain some of his communication abilities, and to do so
requires some help communicating.
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3.1.2 Persona 2: Raquel

Raquel: Female, 50 years old. Raquel is a 50-year-old female from Aveiro. She lives alone
as her son, Luís, has grown up and moved out of the house. Raquel worked for 25 years as a
chef in a local restaurant. She has always lived a very active life and has taken care of herself
ever since her son moved out. This busy life includes doing groceries, cleaning the house,
among other things. A few months ago, while doing groceries, Raquel tripped and hit her
head. Unfortunately, this accident affected her brain resulting in aphasia. The disorder takes
a toll on Raquel’s day-to-day life as she no longer has the confidence to live the active life she
led before.

Motivation: Raquel wants to regain her independent lifestyle and, to do this, she needs
to get some confidence back. As she has trouble communicating, this is a difficult task.

3.1.3 Persona 3: Rui

Rui: Male, 60 years old. Rui is a 60-year-old male from Aveiro and has worked for 30
years as a mechanic. Rui lives with his wife Rita, who is 64 years old. They live alone in
a small house in the city. They have been married for 27 years and are still very much in
love. A year ago, Rui was in a car accident. Due to complications regarding a concussion, Rui
developed aphasia. The communication difficulties that arise from the condition have taken
an impact on Rui’s day to day life and his relationship. Due to the illness, Rui and Rita have
a lot of difficulties communicating with each other. These difficulties have taken an impact
and left both with an extreme sense of anger and sadness.

Motivation: Rui wants help communicating so that he and his wife can recover some of
their old lives back, and improve his quality of life.

3.2 Context Scenarios

Context scenarios describe situations where, in this case, a user requires support or
assistance. These scenarios describe contexts where a user interacts with the system we
envision. They help understand the main focus that the system should have and how its
features should assist the user.

Different possible scenarios are described below. For each scenario, it is indicated which
personas are involved, and information of where, when and how the scenario takes place is
also provided.

3.2.1 Scenario 1: João

Where: Bedroom.
When: During a friend’s visit, in the afternoon.
How: With his friend, both in the bedroom.
To get some assistance while communicating, João decides to install the system in his

bedroom. When his friends or family come to visit João, he is finally able to communicate
better. During a visit, João’s friend asks him a question. To help express his answer, João
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performs a gesture which the system recognizes and translates into a message, which is
presented using speech output (relying on a speaker included in the system) to audio output.

This kind of assistance allows João to have an easier time maintaining and participating
in a conversation, allowing him to regain some of his old social life.

3.2.2 Scenario 2: Raquel

Where: Inside the house.
When: Afternoon. Evening
How: Lying in bed, carer in the living room.
After Raquel’s accident, her inabilities to communicate forced her to live with a carer. As

Raquel led an independent life before the accident, living with a carer is a challenge. One
day Raquel decides to install the system in her apartment. The interaction with the system
allows for an easier time expressing her needs and wants to her carer. One afternoon, while in
bed, Raquel uses the system to signal that she requires assistance.

In this situation, the system helps Raquel during the interaction, thus making the whole
process easier.

3.2.3 Scenario 3: Raquel/Luís

Where: Inside the house.
When: Night.
How: Raquel lying in bed, alone. Luís outside the house.
One night, while lying in bed alone, Raquel starts feeling discomfort in her chest. After a

while, the irritation turns to pain, and Raquel realizes that she needs assistance. With this
realization, Raquel signals the system that she requires assistance. After interpreting the
gesture, the system sends a message to Raquel’s son Luís, who calls an ambulance and then
goes to his mother’s house.

In this situation, the system allows for a much easier interaction in case of an emergency.
Using other kinds of devices is complicated or sometimes impossible in emergencies. Raquel
and Luís realize that the system can help her in emergencies, leaving both more at ease and
allowing Raquel to be more independent.

3.2.4 Scenario 4: Rui/Rita

Where: Inside the house.
When: Morning.
How: Rui Lying in bed, with his wife Rita.
Sometime after the accident, Rui decides to install the system in his bedroom. One

morning, Rita asks Rui what he would like to eat for breakfast. Even though this is a simple
question, Rui has a troublesome time responding due to his difficulties. However, with the
system’s help, Rui can now express his wants and needs to his wife and is able to answer her
questions.
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This help is very valuable to Rui, as having a conversation with his wife is something he
loves. Without the system, the conversations are short, complicated and even frustrating for
both parties.

3.3 Requirements

The personas and context scenarios depicted previously allowed for the creation of the
necessary requirements for the work. These requirements fall into two categories, functional
and non-functional. Functional requirements define what the system requires to work as
intended. Non-functional requirements focus on the main features of the system, regardless
of how they should be implemented. In this case, non-functional requirements dive into the
interaction between user and system.

3.3.1 Non-Functional Requirements

• Gestures that are simple, easy to perform and remember: The system supports
people with communication problems. One of the leading causes of aphasia are strokes.
When selecting gestures for the system to recognize, it is necessary to consider this fact.
The movement needs to be simple enough to execute to ensure that even people who
suffer from aftereffects from a stroke can do it. The selection of gestures also needs to
consider that the user is in bed while performing the movement. Finally, as the user
will use the system every day and maybe in emergencies, the gestures should be easy to
remember to minimize response times.

• Appropriate feedback after gesture execution: After executing a movement, the
system needs to provide feedback to ensure the user’s command is recognized. This
feedback can be a sound or a speech generated sentence.

• Non-invasive and non-intrusive: The system should not be invasive for the user,
i.e., it should not require the user to carry or wear a device to interact with the system,
and it additionally should not put their privacy at risk.

• Suitable for the bedroom scenario - The system should be easy to deploy and used
in the context of the bedroom, more specifically when the user is lying in bed, whether
it is during day or night-time.

3.3.2 Functional Requirements

• Appropriate technology for the system: Based on the non-functional requirements
mentioned above, the system should be non-invasive and non-intrusive and capable
of being used at night or during the day. Given these requirements, the use of radar
technology is the best option.

• Suitable radar configuration for the scenario: The radar detects various degrees
of motion at different distances, making it a versatile tool. However, to achieve better
results, the configuration in use needs to be appropriate for the considered scenario i.e.,
the user’s bedroom.

22



• Processing unit capable of all processing stages: It is required to have a processing
unit capable of acquiring the data provided by the radar and transform them into features
that are useful for gesture classification.

• Model capable of radar-based gesture recognition: The system requires a model
that is capable of recognizing gestures from the data sent by the radar. To obtain that
model, machine learning techniques can be used (including deep learning and transfer
learning). Model training also involves a dataset gathered from one or more subjects
while they carry out the gestures to be recognized.

• Continuous operation during both day and night: The system should be able to
work continuously during both day and nigh to provide round the clock support to the
user. For this, the choice of radar and power supply are paramount.

3.4 Conclusion

Even though the work is exploratory, we felt the need to explore the literature around
communication disorders and aphasia. This literature helped gain a better understanding of
the problems faced by the ones afflicted by these problems. The gained knowledge allowed
for the creation of personas and scenarios that demonstrate some of those challenges. These
scenarios show the situations where the solution described could help people. The personas
and scenarios helped shape the main requirements for the work. They helped define the
main characteristics of the system. The non-functional requirements also helped defined the
functional requirements, such as the choice of technology to use.
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CHAPTER 4
Radar-Based Gesture Recognition

System

This chapter presents the proposal of a system for gesture recognition that aim at aiding
communication when the user is alone in a bedroom, lying in bed, and may need to communicate
with other people (e.g., caregiver, family member) to ask for help, for example. It depicts the
design and development of said proof of concept.

4.1 System Overview

As a proof-of-concept, we implemented a first prototype that relies on the setup shown in
on the left side of Fig. 4.1, which includes a bed and a radar, in this case, a AWR1642 FMCW
radar from Texas Instruments. The radar is elevated 0.55 m from the ground, and placed at 1
m from the bed, on the left side of the subject, parallel to the longest side of the bed. The
radar’s 2D coordinate system is shown in Fig. 4.1.

Figure 4.1: Architecture of the proposed system, including a possible setup for the bed and radar, as
well as the pipeline for gesture recognition.

The overall architecture of the system is depicted in Fig. 4.1. A radar captures data from
the detected moving targets, in this case the human body. These data are sent to a processing
unit, where they are pre-processed by removing outliers. Features are then extracted and used
to recognize the gesture being carried out. After classifying the gesture, the system maps the
gesture to a notification, which is sent to a smartphone.
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For the processing unit, any computing device with data processing capabilities is usable.
In this prototype, we used a computer, but this can be replaced by a device such as a Raspberry
Pi for the deployment in real scenarios. The radar connects to the processing unit via USB.
For the radar we used version 2.1 of the MMWave SDK and the Demo Visualizer application
to capture the data. To extract the data, we used a Matlab script. The Matlab version used
was R2020b.

4.2 Gestures

The gestures that the system is able to recognize are listed and described in Table 4.1,
where only the four first gestures are meant to be used for supporting communication. These
involve the use of one of the arms and were selected aiming at simplicity and based on initial
feedback from therapists and carers on the gestures’ suitability for aphasic patients lying
in bed. Moreover, they can be used for generating simple messages (e.g., I need help") and
"Yes/No" answer. "Rotate" and "Knock" were also chosen due to the interaction between the
movement and the environment. "Rotate" is also considered a "no gesture" as we are only
detecting arm movement. This gesture was recorded due to being a common movement to
happen as the user is lying in bed.

Table 4.1: Arm gestures considered for the system’s prototype. All gestures begin with the subject’s
arms resting on the bed, extended and parallel to the body.

Gesture Description
Wave Move the arm and hand from left to right and back, starting with the

arm parallel to the body.

Raise Arm Raise the arm until a 90º angle is formed with the body and then lower
it back to initial position.

Back and Forth Move the forearm towards the arm making an angle below 90º, start-
ing with the arm extended, parallel to the body, and returning to full
extension.

Knock Move the forearm towards the arm making an angle around 90º, and
then lower it down, knocking the mattress.

Rotate Starting with both arms resting on the bed, rotate your body towards
one direction and back.

4.3 Radar Configuration

Before using the system, it is necessary to define a suitable radar configuration for the
scenario. Several configurations were tested with the goal of obtaining the best configuration
for the in-bed scenario. The testing of the configurations was done using a simplified scenario
of the bedroom scenario. The configuration chosen was the one that had the best ratio of
information and noise. Table 4.2 contains the chosen values for each parameter used in the
proof of concept.
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Table 4.2: Radar configuration parameters

Parameter Value
Scene selection:
Frame rate (fps) 20
Range resolution (cm) 4
Maximum range (m) 10.28
Radial velocity resolution (m/s) 0.22
Maximum radial velocity (m/s) 3.47

Object detection:
Range direction NO
Doppler direction YES
Remove static clutter NO

As we can see in the first section of the table named "Scene selection", the radar was
configured to capture data with a sampling rate of 20 fps (frames per second). Targets with
a maximum radial velocity of 3.47 m/s are detected up to a distance of 10.28 m. In this
configuration, range and radial velocity resolutions are 4 cm and 0.22 m/s, respectively, where
these resolutions refer to the minimum distance and radial velocity required between two
targets for the radar to be able to distinguish them.

The second section of Table 4.2, named "Object detection", refers to the peak grouping
capabilities of the radar. Peak grouping is the ability to report a single point instead of a
cluster of neighboring points. Range direction and Doppler direction differ on the criteria
for the clusters. The first focuses on points with the same range direction, while the second
focuses on Doppler direction. If one of these options is selected, then the radar detects a
cluster of points and only considers the one with the highest relative power detected. As
we were trying to reduce the amount of pre-processing done to the data by the radar, the
option "Remove static clutter" was disabled. This was due to the fact that we did not want
the radars processing to remove any information that might have been useful.

4.4 Data Acquisition and Preprocessing

When recording, the radar captures movement and sends this to a processing unit in the
form of packets. The data from the radar packets is extracted, filtered and is transformed
into grayscale images. These images are used as the inputs for the system.

Each data sample provided by the radar includes three different data types:
• X Coordinate
• Y Coordinate
• Doppler Index
The X and Y coordinates correspond to the distance between the target and the radar, in

the coordinate system shown in Figure 4.1. The Doppler index gives us information about
the movement, with the value of the index depicting the intensity of the movement and its
sign depicts the direction of the movement.
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The data from the radar comes in the form of packets, which contain a header and the
Tag Length and Values (TLV)s, depicted in 4.2 and 4.3.

Figure 4.2: Description of the output
packets. Image taken from
Texas Instruments techni-
cal documents

Figure 4.3: Description of the detected
objects field. Image taken
from Texas Instruments
technical documents

The acquired data are processed using a sliding window of 5 s without overlap. For each
window, pre-processing consists of removing outliers corresponding to unwanted reflections
or noise. A detected target is considered as an outlier if its Euclidean distance to the radar
is outside a selected interval or its velocity is very close to 0 m/s. All data with X and Y
coordinates outside given intervals were also discarded. These intervals where chosen according
to the setup.

4.5 Feature Extraction

The feature extraction step corresponds to generating three different maps from the filtered
data, one for each data type versus the elapsed time (X-Time, Y-Time, and Doppler-Time
maps). An example of the X-Time, Y-Time and Doppler-Time maps for a repetition of "Back
and Forth" is presented in Figs. 4.4a,4.4b, 4.4c respectively, where the colour represents the
number of detected targets (bright yellow corresponds to the maximum value for each map,
while dark blue corresponds to no detected target). Please note that the beginning and ending
of the feature extraction window where no movement is detected are discarded.

The matrix associated to each map is used to obtain a normalized greyscale image. The
three images are then combined into a single image (X-Time above Y-Time above Doppler-
Time). This combination is done in order to use all three data types as input for the model.
Figure 4.4 shows examples of three combined images for gestures "BackAndForth" (a), "Knock"
(b) and "Wave" (c), respectively.
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(a)

(b)

(c)

Figure 4.4: Example of the X-time (a), Y-Time (b) and Doppler-time (c) maps for a repetition of
the "Back and Forth" gesture performed by a given subject.
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(a) (b) (c)

Figure 4.5: Examples of combined images for gestures "BackAndForth" (a), "Knock" (b) and "Wave"
(c).

4.6 Gesture Recognition

The images resulting from feature extraction are fed into a model that performs gesture
recognition. Several classifiers have been tested and used. This model is previously trained
using the transfer learning method, relying on a pre-trained deep neural network model for
image classification, and a given dataset with gesture data collected from one or more subjects.
After analysing the results in 5.12, the most appopriate model for the scenario is MobileNetV2,
which was used for all the tests performed in section 5.4.

Due to the restrictions imposed by the COVID pandemic, it was not possible to gather a
large dataset. To mitigate this problem, it was decided to use a technique called offline data
augmentation. Data augmentation consists of increasing an existing dataset by generating a
larger number of lightly modified copies of the original dataset. In this case, the technique
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modifies the initial images by adding noise to obtain new ones. Two different types of noises
were considered for augmentation. The first uses classic noises, such as Gaussian, Poisson,
and salt and pepper. For each image, a random noise or a combination of the three is chosen
randomly. The second approach creates "noise blocks" with random intensities and locations.
This type of augmentation was created for this work to try to simulate the presence of a
target other than the user’s arm or a reflection detected by the radar.

(a) Example of an image from the
original dataset

(b) Example of the original im-
age augmented with classic
noises

(c) Example of the original im-
age augmented with gener-
ated noise blocks

Figure 4.6: Comparison between original and augmented images.

The language selected for the classification process is Python due to its capabilities in
data processing for machine learning and various available packages that facilitate the process.
The pre-trained models used for transfer learning are available with libraries Keras, and the
data processing and organization functions used were based on Tensorflow and Python.

4.7 Conclusion

This chapter presents a prototype of a system for gesture recognition based on radar
technology with the aim of assisting communication for people with difficulties. The prototype
recognizes four gestures based on arm movement, and a "no gesture", which is a common
movement for a person lying in bed. The criterium for choosing the gestures was the ease of
use while lying down in bed. The radar captures information such as the X, Y coordinates
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and Doppler indexes of the detected targets. A filter sifts the data and removes all the
unwanted reflections and noise. This filtering process consists in removing all points that have
a Doppler index close to zero. As the Doppler index represents the intensity and direction of
the movement, if a target has a Doppler index of zero, it is not moving and thus not a part
of the gesture. The sifted data should now only contain information regarding the subject’s
movement. Next the data is transformed into images. After creating images for each data
type, these are grouped into a single one. These combined images are the input for the model.
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CHAPTER 5
Results

The development of the system presented in the previous chapter went through various
stages during its lifecycle. All the different stages and experiments are depicted throughout
this chapter.

5.1 Radar Exploration

The first stage consisted in understanding how the radar worked and getting acquainted
with the format of its data packets. This theoretical knowledge required a lot of research and
reading, meaning that it took some time before the radar was up and running.

After understanding the data and how the captures work, it was necessary to extract the
different samples and data types from the packets. A Matlab script was created to extract
the data from each capture. For the data extraction from packets to work correctly, it was
necessary to know the exact size of each component of the packets. Meaning that, once again,
some research was required.

After analysing the literature needed, the first experiments were carried out. These
involved capturing data and analysing its components and creating different visualization
forms to search for patterns to see if the approach was viable for gesture recognition. The
following section goes more into detail about these experiments.

5.2 Preliminary Experiments

5.2.1 Data Exploration

After the software to capture radar data was up and running, the first data capture was
made and it was finally possible to extract the data and start the preliminary experiments.
Three gestures were recorded, "BackAndForth", Wave and Raise Arm. Now it was necessary
to start testing the data to see if the project’s goals were attainable. The first experiments
consisted of data exploration to find any visible patterns. The following figures 5.1, 5.2 show
the gathered data in the form of a scatter plot.
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Figure 5.1: Unfiltered X coordinate (in meters) versus the elapsed time for the "Back and Forth"
gesture.

Figure 5.2: Unfiltered Y coordinate (in meters) versus the elapsed time for the "Back and Forth"
gesture.

Looking at the images we can see that the data contains a large number of detected
targets. As some do not vary their position it is safe to assume that these targets are unwanted
noise and reflections that are unnecessary. As the data contains a lot of unwanted noise
and reflections that may make it harder to distinguish between different movement patterns.
Therefore, The data needs to be filtered. This filtering consists in removing points that are
not moving. These points will have a Doppler index outside of interval [1e−5, 10] and will
be removed. In all experiments described in this chapter, the filtering process also included
the removal of points outside of the expected of [-1.5, 1.5] m and [0, 2.25] m for X and Y
coordinates, respectively. The only exception is the last experiment, where filtering relies only
on on the Doppler index.

The following figures 5.3 and 5.4 shows the same data after being filtered. As most of the
noise was removed, it is much easier to see the arm movement and the corresponding patterns.

34



Figure 5.3: Filtered X coordinate versus the elapsed time for the "Back and Forth" gesture.

Figure 5.4: Filtered Y coordinate versus the elapsed time for the "Back and Forth" gesture.

After establishing that the data extracted from the radar contains different patterns for
each gesture, it was time to start experimenting with classification. In this next preliminary
experiment, the first experiment used a classic approach to classification.

5.2.2 First Experiment with Classification

After establishing that the gestures generate different patterns between each other, it was
time to experimenting with classification. For this experiment a pipeline from data capture to
testing was created. The complete implemented pipeline with all the stages is present below.

Figure 5.5: Scheme of the classification pipeline.

The first two stages have already been described in chapter 4. The following stages are
described below.

Seven features are extracted from the signals corresponding to a gesture repetition, for
each data type (i.e., X coordinate, Y coordinate, Doppler index): minimum, maximum, mean,
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median, standard deviation, variance and covariance.
As seven features for each of the three data types generates a large number of data to

use in the model, we decided to use PCA. Principal Component Analysis is a technique
that allows us to reduce the dimensionality of the dataset while maintaining most of the
information. The technique transforms large sets of variables into smaller ones [45]. PCA
is helpful as dimension reduction allows for a smaller load on the model while preserving
variation in the data.

Figure 5.6: 3D Plot showing the variation between the 3 principal components.

Figure 5.7: Explained variance of the features where PCA was applied. As we can see, the first three
contain over 98% of the variance in the data

As we can see in Fig. 5.6, the first two components show a lot more variability than the
third. It is also possible to see that even though the first two have approximately the same
variability, there are more points scattered along the first component axis, meaning that this
component will account for more variability in the data. These conclusions are verified by Fig.
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5.7, which shows us the variability of the components present in the data. As we can see, the
first three components account for more than 98% of the total variability.

After reducing the dimensionality of the dataset, the resulting dataset was used to
explore the possibility of using a classic classifier for distinguishing between different types of
gestures. K-Nearest Neighbors was the classifier used in this preliminary experiment,due to its
simplicity. To obtain the best possible model, we tuned the classifier’s hyperparameters during
its evaluation. The hyperparameters tuned are described in Table 5.1. Hyperparameter tuning
consists in choosing the best hyperparameter for a classifier. This process was automated and
we used function "RandomSearch" for Matlab.

Several parameter combinations were tested, but none led to an accuracy value over 65%
as present in Table 5.2.

Parameter Definition

Distance
Defines the distance
metric used by the algo-
rithm.

Weighted Distance
Defines whether to use a
distance weighing func-
tion and which one.

Exponent

This parameter is only
used if the algorithm
uses the "Minkowski"
distance.

Number of neighbours

Defines the number of
neighbours to find for
classifying each point
when predicting.

Standardize

If true, then the soft-
ware centres and scales
each column of the pre-
dictor data by the col-
umn mean and standard
deviation, respectively.

Table 5.1: Description of the hyperparameters for KNN algorithm.
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Numb.
Neighbors

Distance Distance
Weight

Exponent Standardize Accuracy
(%)

116 Minkowski Inverse 0.67337 True 63.4
107 Chebychev Squared in-

verse
N/A False 59.7

150 Euclidean Squared in-
verse

N/A True 61.1

128 Euclidean Inverse N/A True 62.8
136 Chebychev Inverse N/A False 64.9

Table 5.2: Accuracy achieved for KNN and 5 test runs when using the for the random search optimizer
for hyperparamter tuning.

After having the best possible combination of hyperparameters it was time to partition the
dataset into train and test sets. This was a 80/20 split with 80% of the data being used for
training and the rest for testing. The results obtained were not promising, so it was decided
to try a new approach using Dynamic Time Warping, to further explore the data in a more
visual way.

5.2.3 Experiments with Dynamic Time Warping

It was decided that it was best to start this stage with a simple technique, so we chose
Dynamic Time Warping (DTW) due to its simplicity and that it allows us to calculate the
similarities between timeseries which vary in speed. The Python library used is called fastdtw.
After obtaining the vectors with the doppler indexes, each of the vectors was compared with
another. This process was repeated for all vectors. It was decided to use doppler indexes
as this is the data type where the differences in the patterns were more visible. Figure 5.8
represents the comparison between the Doppler vector of two different "RaiseArm" captures ,
in terms of Euclidean distance obtained with DTW.

Figure 5.9, shows the result of the comparison between captures of "RaiseArm" and "Wave".
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Figure 5.8: Distance between Doppler indexes from different "RaiseArm" captures.

Figure 5.9: Distance between Doppler indexes from different "RaiseArm" and "Wave" captures.

As expected, when comparing vectors from different gestures, the distance obtained is
much higher than before. In this case, almost double the previous comparison. Table 5.3
shows the distances between repetition 1 of "Raise Arm" and all repetitions of "Back and
Forth".
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Repetitions Compared Euc. Distance
1-1 1830
1-2 576
1-3 197
1-4 1237
1-5 1144
1-6 616
1-7 943
1-8 263
1-9 1981
1-10 725
1-11 812
1-12 1484
1-13 1682
1-14 847

Table 5.3: Distances obtained when comparing "RaiseArm1" with all repetitions of "Back And Forth"

The average distance was 1024.1 with a standard deviation of 559.69, a maximum value
of 1981 and a minimum of 197. The next table show the distance between a few selected
repetitions of one gesture compared to all repetitions of other gestures. Table 5.4 shows the
distances between repetition 1 of "Raise Arm" and all repetitions of "Wave".

Repetitions Compared Euc. Distance
1-1 408
1-2 294
1-3 265
1-4 581
1-5 299
1-6 430
1-7 199
1-8 269
1-9 426
1-10 366
1-11 349
1-12 351
1-13 744
1-14 286

Table 5.4: Distances obtained when comparing "RaiseArm1" with all repetitions of "Wave"

The average distance was 376.2143 with a standard deviation of 141.75, a maximum
value of 744 and a minimum of 199. At first the results seemed promising as the comparison
between different gestures yielded a high distance value. However, Table 5.4 yields much
smaller distance values while comparing different gestures.

After obtaining these results, we realized that storing the data from the radar as vectors
means losing some information relative to the patterns. So it was decided to transform the
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data into images. The images were obtained using the methods described in section 4.5. Also,
it was decided to use a different library to calculate DTW and obtain the cost matrix and
warping curve, called tslearn. This change is due to the fact that tslearn allows for better
visualization of the results.

The following images show the plots obtained by the tslearn library. The two figures 5.10
and 5.11 show the results obtained from the comparisons. Figure 5.10 shows the comparison
between repetitions of the same gesture while 5.11 shows the comparison between different
gestures. The top-right and top-left plots show the images compared, bottom-left shows the
warping curve and the cost matrix. The warping curve is the white line which depicts the
differences along the images. The closer this lines is to a diagonal, the smaller the distance
between compared images.

Figure 5.10: Visual representation of the cost matrix and warping curve (bottom-left) obtained with
DTW, when comparing two repetitions of the "Back and forth" gesture. The associated
distance is also indicated (bottom-right). The images corresponding to the two gesture
repetitions are shown at the top of the figure.

Image 5.11 shows the comparison between repetitions of different gestures.
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Figure 5.11: Visual representation of the cost matrix and warping curve (bottom-left) obtained with
DTW, when comparing one repetition of the "Back and forth" and Wave gestures. The
associated distance is also indicated (bottom-right). The images corresponding to the
two gesture repetitions are shown at the top of the figure.

As expected, the comparison between different gestures yields a higher distance and a less
diagonal warping curve. This conclusions go according to what was expected, and show us
that there is enough differences in the patterns of the gestures to differentiate them. It also
gives us confidence that using images for classification was the right approach to take.

5.3 Initial Evaluation with a Single Subject

Due to the good results obtained from using DTW with images, we decided to explore
the possibility of using transfer learning to see whether pre-trained deep learning models for
image recognition are able to adapt to their capabilities to the gesture images. An initial
evaluation was performed with a single Subject to explore that possibility.

5.3.1 Experimental Setup and Protocol

Radar data were captured from a 23-year-old, right-handed male Subject. The used setup
is the one included in Fig. 4.1, where the Subject was lying on the bed on their back. Three
different gestures, "BackAndForth", Wave and RaiseArm, were executed 50 times each. Even
though the Subject is right-handed, all gestures were performed with the left arm, due to
the radar being on the left side of the bed. For each repetition, data recording was initiated
before the gesture execution and stopped automatically after 5 seconds.

5.3.2 Dataset

For each capture corresponding to a gesture repetition, an image was generated as explained
in section 4.5 The obtained dataset includes 150 images (50 per gesture). Since deep learning
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requires a large dataset to obtain reasonable results, we expanded the dataset relying on
offline dataset augmentation, which is explained in section 4.6. In this case, two different
dataset were obtained from the original dataset: dataset augmented 1 and 2. Both datasets
were generated using the classic noises approach.

5.3.3 Model Evaluation

To obtain a model that recognises the considered gestures, we used the transfer learning
method. Since our aim is to run gesture recognition in a processing unit with limited memory
and computing capability, from the pre-trained models directly available in Keras [46], we
explored three that achieved a top-5 accuracy equal or greater than 90% (on ImageNet
validation dataset) and have less than 10 million parameters: MobileNetV2, NASNetMobile,
DenseNet121.

For each pre-trained model, the top layers only were replaced by a single fully connected
layer with 256 neurons (using ReLU as its activation function) and an output layer with 3
neurons (softmax activation function). The used optimizer was ADAM (default parameters).
Crossentropy was used as the loss function, and accuracy as the metric to be evaluated during
training and validation.

Each model was evaluated using a variation of the the 10-fold cross-validation approach,
where 80% of the dataset is used for training, 10% for validation, and 10% for testing, in each
iteration. Cross-validation splits the data into mini train-test sets allowing the test sets to
be data unseen. Training is stopped when the validation loss has not decreased more than
0.1 for 5 epochs. This is called early stopping. Early stopping is a way to stop a learning
iteration based on a condition. The technique stops the iteration at a point where the models
ability to generalize can not improve. The resulting model is evaluated on the test data of the
corresponding iteration.

The results presented in 5.3.4 were obtained with Google Colaboratory, a service that
allows the user to write Python code in their web app and have access to machines to execute
the said code. In this case, an Intel(R)Xeon(R) CPU running at 2.30 GHz provided the results.
As Google Colaboratory shares the machines with all users, the service allocated only one
core to our testing.

As there is no way to guarantee that the machine allocated by Google Colaboratory is
always the same, we ran the evaluations with multiple Subjects locally (section 5.4). We
obtained the results with a computer with an AMD Ryzen 5 5600X with six cores, twelve
threads running at 3.7GHz.

5.3.4 Results and Discussion

Results were obtained for the three pre-trained models listed above and for three different
datasets: original (150 images); augmented 1 (750 images); augmented 2 (1500 images). The
boxplots for the accuracy, F1 score, train time, and prediction time per image, considering all
cross-validation folds, are shown in Fig. 5.12.

Examining the boxplots present in Fig. 5.12 allows for several observations. The graphs
show the effects of different pre-trained models and types of augmentation. Increasing the
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Figure 5.12: Boxplots for the accuracy (left-top), F1 score (right-top), train time (left-bottom), and
prediction time (right-bottom), for each model and dataset.

size of the dataset has a positive outcome on the accuracy and F1 score. This was expected,
as the model has more data to use in the training process. Although augmentation increases
performance, the train times increase when the size of the dataset increases, as expected.

Regarding accuracy and F1 score values, the best combination present is DenseNet121
and augmented dataset 2. This model however does have the most variability in accuracy
and F1 score when using the original dataset. Although the model shows the best values
in terms of accuracy and F1, ti is also the slowest model, with high training and prediction
times. MobileNetV2 and NASNetMobile show very similar results between each other with
the main difference being for augmented dataset 2 where MobileNetV2 has a slightly higher
accuracy and F1 score. When regarding training and prediction times, the difference among
datasets is lower for the MobileNetV2 model, which also has the lowest median train and
prediction times: 35 to 252 s and 0.03 to 0.08 s, respectively, versus 84 to 639 s and 0.08
to 0.32 s for NASNetMobile, and 185 to 1177 s and 0.14 to 0.27 s for DenseNet121. This
was also expected, since MobileNetV2 is the smallest of the three pre-trained models (≈3.5
M parameters), followed by NASNetMobile (≈5.3 M parameters; DenseNet21 has ≈8.1 M).
Despite of its smaller size, MobileNetV2 still leads to a model with a median accuracy and
F1 score similar to the other models (≥99% for all datasets). This model is a convolutional
neural network architecture that contains the initial fully convolution layer with 32 filters,
followed by 19 residual bottleneck layers [47]. Although these results are quite good, it can be
because only three gestures were considered and all used data came from the same Subject.
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5.4 Evaluation with Multiple Subjects

With the aim of verifying the previous results, and exploring the possibility of having a
user independent solution, a new experiment was carried out with data acquired from more
than one Subject.

5.4.1 Participants and Gestures

For this evaluation, we obtained data from 4 different Subjects (two male and two female)
with an ages ranging from 23 to 33 and an average of 26. All four Subjects used their right
arm to perform the gestures. We decided to added two more gestures compared with the
previous evaluation with a single Subject (i.e., 5 gestures were considered). A description of
all captured movements was presented previously in table 4.1.

Before each recording session, the participants signed a declaration of consent. This
declaration described the objectives of the experiment, the procedure, among others. All
Subjects had an unique identifier assigned to guarantee anonymity and confidentiality.

5.4.2 Experimental Protocol

The used setup was the same as the one used in the previous evaluation (section 5.3.1).
Regarding the protocol, all Subjects had access to a table describing the gestures and were
encouraged to execute the movement freely, varying speed and amplitude.

During the sessions presented in the previous section (section 5.3), many captures ended up
being unusable due to some of the data being corrupted. This meant repeating the captures,
which took a lot of time. It was decided to change the capture procedure to save time. To
check whether the data are corrupted or not, we created a Python script that reads the packet
header while the recording session is still in progress. This verification allows the Subject to
stop executing the gesture repetitions, if needed, and start a new capture without losing too
much time. The Subjects would execute ten repetitions of the same gesture in each capture.
The Subjects were also instructed to count to five between each repetition in order to have an
interval between repetitions. The repetitions are segmented and extracted.

5.4.3 Dataset and Evaluation Method

As explained above, each capture includes ten repetitions of a given gesture. For each
gesture, 2 captures were performed. Therefore, 10 captures were carried out with each Subject,
which corresponds to 40 captures in total. For capture, the different repetitions were segmented
based on the absence of movement during intervals around five seconds.

To have a balanced dataset in terms of both class (gesture) and group (Subject), the same
number of repetitions per gesture were selected randomly for each Subject. In this case, ten
repetitions were chosen per gesture and Subject, resulting in a dataset with two hundred
examples or images.

To evaluate the influence of data augmentation and the performance of the proof of concept
regarding the Subjects, the types of evaluation are divided into Subject dependent, Subject
independent in which several approaches to data augmentation are used.

45



5.4.4 Subject Dependent

Two different evaluations were made for this section:
• Subject dependent 1 (Sub.Dep.1): Train and test a model for each Subject separately;
• Subject dependent 2 (Sub.Dep.2): Train and test a model using data from all Subjects

(for both training and testing);

5.4.5 Subject Independent

Two different evaluations were made for this section:
• Subject independent 1 (Sub.Indep.1): Train a model using data from all Subjects

except one and test it with data from the remaining Subject, and repeat the process for
all Subjects;

• Subject independent 2 (Sub.Indep.2): Train a model using data from one Subject
and test it with data from the remaining Subjects, repeating the process for all Subjects;

5.4.6 Data augmentation

For all evaluations, six different datasets were obtained from the original dataset by using
different types of offline augmentation. The types of augmentation were:

• Shift augmentation: Images are augmented by performing a horizontal shift (the
amount is chosen randomly between (-0.5 and 0.5) pixels over the original image, which
simulates a sliding window;

• Noise augmentation 1: Images are augmented by adding classic noise(s) to the
original image as explained in 4.6;

• Noise augmentation 2: Images are augmented by adding noise blocks to the original
image as explained in 4.6.

The datasets are the following:

• Dataset without augmentation (200 images) - Original dataset, without any aug-
mentation;

• Dataset augmented 1 (1000 images) - Dataset resulting from shift augmentation over
the whole original dataset (5 new images per original image);

• Dataset augmented 2 (5040 images) - Dataset resulting from shift augmentation over
the whole original dataset (5 new images per original image) and then noise augmentation
1 over the training set only (5 new images per augmented image);

• Dataset augmented 3 (5040 images) - Dataset resulting from shift augmentation over
the whole original dataset (5 new images per original image) and then noise augmentation
2 over the training set only (5 new images per augmented image);

• Dataset augmented 4 (9840 images) - Dataset resulting from shift augmentation over
the whole original dataset (5 new images per original image) and then noise augmentation
1 over the training set only (10 new images per augmented image);

• Dataset augmented 5 (9840 images) - Dataset resulting from shift augmentation over
the whole original dataset (5 new images per original image) and then noise augmentation
2 over the training set only (10 new images per augmented image);
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According to the results of section 5.3, the pre-trained model used in all these evaluations
was the MobileNetV2.

5.4.7 Subject Dependent 1 Results

Figure 5.13: Sub.Dep.1: Boxplot for the ac-
curacy obtained for each Subject,
when using the dataset without aug-
mentation

Figure 5.14: Sub.Dep.1: Boxplot for the ac-
curacy obtained for each Subject,
when using the dataset augmented
1

Figure 5.13 shows the boxplot for the accuracy values obtained for each Subject, when
using the dataset without any augmentation. This boxplot shows us that the accuracy values
from one Subject to another do not vary much. Subjects 2, 3 and 4 all have a median accuracy
of around 80%, while dataset one has 70%. Subject 1 also has a higher variability due to
presenting a high maximum value and a low minimum value. One possible explanation for
these values is a higher difference in gesture execution for Subject 1 comparing with the other
Subjects. As the recording session progressed, this Subject may have slightly changed the way
one or more gestures were carried out movement for a gesture, making the different repetitions
for the same gesture different among them.

Figure 5.14 shows the accuracy values for the same Subjects, but this time, the used data
corresponds to dataset augmented 1. Instantly, we can see the benefits of data augmentation.
The median accuracy is elevated, with the lowest value increasing to around 93%. Once again,
Subject 2 reaches an accuracy around 100%. Besides the median, Subject 3 shows a higher
variability with a minimum value around 83%.
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Figure 5.15: Sub.Dep.1: Boxplot for the ac-
curacy obtained for each Subject,
when using the dataset augmented
2

Figure 5.16: Sub.Dep.1: Boxplot for the ac-
curacy obtained for each Subject,
when using the dataset augmented
3

Both Fig. 5.15 and 5.16 show the accuracy values for each Subject, with Fig. 5.15
corresponding to dataset augmented 2 and Fig. 5.16 to dataset augmented 3.

Augmenting the training set with classic noise or noise blocks yielded positive results, with
all Subjects of figure 5.15 showing a median accuracy equal or above 95%. In figure 5.16,
all Subjects had a median accuracy above 93%. It is also possible to see that the variability
in both boxplots is similar, with Subject 1 from 5.15 and Subject 3of 5.16 having the same
minimum of around 83% and maximum of 100%. It is also to note that Subject 2from 5.15
shows very little variability.

When using the dataset augmented 4 and dataset augmented 5,no considerable changes to
the median, minimum or maximum accuracy values have appeared.

Figures 5.17 to 5.22 show the same results as figures 5.13 to 5.16 when considering the
F1 score. After analysing the plots, we can see that the F1 score values are similar to the
accuracy from before.

Figure 5.17: Sub.Dep.1: Boxplot for the F1
score obtained for each Subject,
when using the dataset without aug-
mentation

Figure 5.18: Sub.Dep.1: Boxplot for the F1
score obtained for each Subject,
when using the dataset augmented
1
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Figure 5.19: Sub.Dep.1: Boxplot for the F1
score obtained for each Subject,
when using the dataset augmented
2

Figure 5.20: Sub.Dep.1: Boxplot for the F1
score obtained for each Subject,
when using the dataset augmented
3

Figure 5.21: Sub.Dep.1: Boxplot for the F1
score obtained for each Subject,
when using the dataset augmented
4

Figure 5.22: Sub.Dep.1: Boxplot for the F1
score obtained for each Subject,
when using the dataset augmented
5

The following boxplots show the different values for train and predict times as the type of
augmentation changes. Figures 5.23 and 5.24 illustrate the train and predict times, respectively,
for the non-augmented dataset. As the dataset is relatively small, both operations are quick.
The median for training time is around six seconds long except for with Subject 3 having a
slightly higher median of eight seconds. As for the prediction time per image, all datasets
have medians around 68 to 70 milliseconds.

As we increase the size of the dataset, training time increase. This is to expected as there
are mode data to train. In Fig. 5.23 we see median times ranging from 5 to 8 seconds. I Fig.
5.25, we see this interval rise to 24 to 26 seconds. The prediction times per image although,
decrease in Fig. 5.26 when compare to Fig. 5.24. All median values are within 18 to 19
milliseconds. As the training set in larger, the model has more data to train with, leading to
faster prediction times per image. Fig. 5.25 shows an increase in interquartile range and in
variability when compared to 5.23.
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Figure 5.23: Sub.Dep.1: Boxplot for the model
train time for each Subject, when
using the dataset without augmen-
tation

Figure 5.24: Sub.Dep.1: Boxplot for the model
prediction time per image for each
Subject, when using the dataset
without augmentation

Figure 5.25: Sub.Dep.1: Boxplot for the model
train time for each Subject, when
using the dataset augmented 1

Figure 5.26: Sub.Dep.1: Boxplot for the model
prediction time per image for each
Subject, when using the dataset
augmented 1

Figure 5.27: Sub.Dep.1: Boxplot for the model
train time for each Subject, when
using the dataset augmented 2

Figure 5.28: Sub.Dep.1: Boxplot for the model
prediction time per image for each
Subject, when using the dataset
augmented 2
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Figure 5.29: Sub.Dep.1: Boxplot for the model
train time for each Subject, when
using the dataset augmented 3

Figure 5.30: Sub.Dep.1: Boxplot for the model
prediction time per image for each
Subject, when using the dataset
augmented 3

Figures 5.27 to 5.30 show the training and prediction times for augmented dataset 2
to augmented dataset 3. Figures 5.27 and 5.28 had the training set augmented with Noise
augmentation 1, while the two latter figures used Noise augmentation 2.

When comparing the training times from augmented dataset 2 (Fig. 5.27) and 3 (Fig.
5.29) we see that the values are very similar. In Fig. 5.27 the median values range from 70 to
83 seconds. In Fig. 5.29 the median values range from 80 to 90 seconds. As expected, when
we compare these datasets to augmented dataset 1 and the dataset without augmentation,
there is a considerable increase in training times. However, this is not the case for prediction
times, as shown in Figs. 5.28 and 5.30. These values are very similar to the ones presented in
Fig. 5.26.

Figure 5.31: Sub.Dep.1: Boxplot for the model
train time for each Subject, when
using the dataset augmented 4

Figure 5.32: Sub.Dep.1: Boxplot for the model
prediction time per image for each
Subject, when using the dataset
augmented 4
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Figure 5.33: Sub.Dep.1: Boxplot for the model
train time for each Subject, when
using the dataset augmented 5

Figure 5.34: Sub.Dep.1: Boxplot for the model
prediction time per image for each
Subject, when using the dataset
augmented 5

Increasing the the number of new images generated per image from 5 to 10 when augmenting
the training set yields an increase in training times and similar results for prediction times.
When we compare Fig. 5.33 to Fig. 5.29 the increase in training times is clear to see. The
median values increase from a range of 80 to 90 seconds to an interval of around 130 to 160
seconds. Fig. 5.31 shows an even higher interval with values ranging from 145 to 190 seconds.

Regarding prediction times, once again the median values range from 18 to 19 milliseconds.

5.4.8 Subject Dependent 2 Results

As mentioned in chapter 5.4.3, this evalution uses data from all Subjects.
For this evaluation, Fig. 5.35, 5.36, 5.37, 5.38 show the boxplot for the accuracy, F1

score, training time, and prediction time per image, respectively, obtained for each considered
dataset.

Figure 5.35: Sub.Dep.2: Boxplot for the accuracy values obtained for each dataset.

Looking at Fig. 5.35, it is clear to see, once again, the benefits of data augmentation.

52



The median value for each augmentation dataset is similar, as all augmented datasets are
within 93 to 100%, with a slight decrease for the dataset without augmentation whose median
value is around 80 to 85%. These results match with the ones from section 5.3, as once again
the augmented datasets have similar accuracy regardless of the number of generated images.
This may be due to the fact that the augmented images are slightly modified versions of the
originals, meaning that the variability of the dataset increases slightly at best. As the increase
in variability is very limited, the model is able to get similar accuracy from both types of
dataset.

Figure 5.36: Sub.Dep.2: Model f1-score for each degree of augmentation
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The F1 score values are similar to the accuracy values.

Figure 5.37: Sub.Dep.2: Model training times for each degree of augmentation
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As the dataset contains the data for all Subjects, we anticipated an increase in training
times. In test 1, section 5.3, the maximum value for the training time was around 250 seconds
when using dataset 4 and 5 which are the datasets that include the highest number of images.
Due to a higher dataset size, we see training times above 200 seconds with augmented dataset
3, with this dataset including an outlier above 900 seconds. Besides this, the same conclusions
are visible as before, i.e., the higher the dataset size, the higher the training times, which is
according to the initial expectations.

Figure 5.38: Sub.Dep.2: Model prediction times for each degree of augmentation
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Fig. 5.38 allows for the same conclusions for prediction times as the first Subject-dependent
evaluation. The dataset with no augmentation shows a prediction time per image of 25
milliseconds. These values are halved as soon as an augmented dataset is used. All other
datasets have prediction times ranging from 10 to 13 milliseconds.

After analysing the accuracy and f1-score values, we came to the conclusion that training
a model with each Subject individually and all Subjects yield similar results. This may be
due to the fact that the same Subject executed all gestures, meaning that all repetitions will
be similar, mitigating the effect of a smaller dataset. Training all Subjects together allows for
a much larger dataset, but will also have slightly different executions for the gestures which
can impact performance.

As expected, training each Subject individually allows for shorter training times.
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5.4.9 Subject Independent 1 Results

The accuracy, F1 score, training and prediction time results obtained for each considered
dataset, for the first Subject-independent evaluation, are shown in Fig. 5.39, 5.40, 5.41, 5.42,
respectively.

Figure 5.39: Sub.Indep.1: Model accuracy values for each degree of augmentation

Figure 5.40: Sub.Indep.1: Model f1-score for each degree of augmentation

Looking at Fig. 5.39, we see that the median accuracy values do not increase a lot when
dataset augmentation is performed, as it happened in the Subject depedent evaluations. All
median values range from 50 to 55%. Nevertheless, the increase in the number of images
due to augmentation does have a positive effect. When comparing the values for the dataset
without augmentation to the augmented ones, it is clear that the interquartile range is smaller,
meaning there is less variability when more data are used.
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Figure 5.41: Sub.Indep.1: Model training times for each degree of augmentation

Figure 5.42: Sub.Indep.1: Model prediction times for each degree of augmentation

Figure 5.40 allows for the same observation as Fig. 5.39. The increase in dataset size leads
to a decrease in interquartile range when comparing to a dataset with no augmentation. Once
again, the median values do not vary much, from 45 to 55%.

Regarding training times, these are not very different from the ones in the second Subject-
dependent evaluation, since the number of Subjects used for training is similar. Predictably,
the datasets with higher augmentation had longer train times. It is interesting to note that
there is an increase in outliers, including one close to 2,500 seconds.

Prediction times show values that almost double the ones in the previous evaluation for
augmented datasets. The biggest increase is in the no augmentation dataset that rises from 24
to 70 milliseconds. These results are expected, as they are very similar to the ones obtained in
evaluation one, section 5.4.7, as the dataset used for training has the same size in both tests.
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5.4.10 Subject Independent 2 Results

The accuracy, F1 score, training and prediction time results obtained for each considered
dataset, for the first Subject-independent evaluation, are shown in Fig. 5.43, 5.44, 5.45, 5.46,
respectively.

Figure 5.43: Sub.Indep.2: Model accuracy values for each degree of augmentation

Figure 5.44: Sub.Indep.2: Model f1-score for each degree of augmentation

Looking at Fig. 5.43, once again, we see that augmentation increases the median results,
from 40% for dataset without augmentation and between 45 and 50% for the augmented
datasets. It does also, have an impact on the variability of the results, as the dataset with no
augmentation has a much higher maximum value and a lower minimum than the others.
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Figure 5.45: Sub.Indep.2: Model training times for each degree of augmentation

Figure 5.46: Sub.Indep.2: Model prediction times for each degree of augmentation

The F1 score backs up the conclusion exposed in the last paragraph, as Fig. 5.44 shows
similar factors. Train times suffered a considerable decrease relative to the results from the
previous test, which is explained by the size of the training set. As in this evaluation, the
model uses only data from one Subject for training, this phase is shorter.

For the prediction times, not much has changed. Once again, the dataset with no
augmentation has the highest prediction time, while the augmented datasets show similar
median values.

Is is also important to note that the accuracy results are lower than the ones from the
evaluations before. This may be explained by the fact that a dataset from a single Subject
does not contain enough variability within itself to be able to properly train a model to
recognize never before seen data from other Subjects.
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5.5 Conclusion

This chapter describes the development stages for the prototype of the system. These
include the initial exploration of the radar and its capabilities, the first data captures,
exploration of the data captured, and finally classification with a single and later with multiple
Subjects.

The first experiments aimed to further our understanding of the radar and the data it
captured. After performing the first captures, the data was processed to try and find patterns
or features. These then helped us decide what techniques to use for gesture recognition. It
was decided to use transfer learning to train a model and use images created from the radar
data as input.

The first evaluation used only data from a single Subject. This evaluation allowed us to
test several models and eventually choose the most adequate, which was MobileNetV2. This
model was also used in the following evaluations, which now involved data from multiple
Subjects. These evaluations considered Subject-dependent and Subject-independent solutions.
The results obtained allow us to conclude that the Subject-dependent solution allows for
higher accuracy and F1 score with the highest median accuracy around 99%. The highest
median accuracy value for a Subject-independent solution was around 58%.

These evaluations also allowed us to come to conclusions regarding data augmentation. In
all cases, data augmentation has a positive effect on performance, except when considering
training time which is to be expected. However, the increase in performance stagnates after a
certain dataset size, so a moderate approach to the data augmentation technique used is the
most appropriate.
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CHAPTER 6
Conclusion

6.1 Work summary

This work consisted in gathering and reviewing literature regarding several important
topics such as communication disorders, aphasia, gesture recognition, radar and developing a
proof of concept of a radar-based gesture recognition system. With this in mind, the objectives
of this dissertation have been met.

The development of dissertation went through several stages. As the work calls for an
assistive system for people with communication difficulties, the first stage was to review
literature regarding communication disorders and aphasia. This stage is essential as it helped
us understand the target users and the problems that need addressing. Understanding the
challenges the users face helps guarantee the system evolves towards answering these problems
and provides support in the right areas. Besides this, it allows us to make choices that are
better suited to the target users. For example, after reading the literature, realizing that
strokes are one of the primary causes of aphasia, it became apparent that the gestures need
to be easy to execute as stroke survivors can have motor limitations.

The next stage also revolved around reviewing literature, which helped understand how
FMCW radar’s function and the data it provides.

After understanding the basic relevant theory behind radar, it was time to start exploring
the technology and its capabilities. This stage took quite some time as it was not easy to
get started. After acquiring data, we created methods to process it. These methods allowed
for a better understanding of these data and the possibilities for them. The data processing
underwent various changes until eventually it was decided to transform the data into images
to use as input for the model.

Now it was time to create a pipeline for gesture recognition to use as a proof of concept. ´
We explored several approaches to the problem before settling with the final one. The data
captured goes through a filter to remove unwanted noise. After this, they are transformed
into an image per data type (X, Y coordinates and Doppler index). The images are combined
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into one and the final image is used as input for the model. This model was trained with
transfer learning and carries out gesture recognition.

The final stage consists in evaluating the prototype of the radar-based gesture recognition
system from the previous step. First, a single subject was recorded repeating three gestures.
These captures yielded favourable results, but to ensure the functioning and ability of the
system, it was necessary to capture data from different subjects. Recording sessions were
setup with volunteers to gather data using the prototype of the system. These recording
sessions yielded three more datasets to use. With these data, we were now able to confirm
the results obtained for a single subject and to investigate the performance regarding subject
dependent and independent solutions.

6.2 Main results

This work yielded several results. As the early stages of developments consisted in gaining
theoretical knowledge, one of the results was a review of the literature regarding topics such
as communication disorders, aphasia, gesture recognition and radar technology.

This work also resulted in a proof of concept system for gesture recognition using radar
with encouraging results in classification.

As mentioned in the contributions, the exploration of the radar’s capabilities and initial
evaluation results also allowed the writing of an article entitled "Radar-Based Gesture Recog-
nition Towards Supporting Communication in Aphasia: The Bedroom Scenario", recalling
the development of the prototype. The article has also been accepted for publication at the
conference EAI MobiQuitous 2021, the International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services.

Regarding the evaluation with a single subject, the results obtained are encouraging. All
explored datasets and pre-trained models presented a median accuracy of ≥99%. Although
these values are good, the same subject performing all gestures limits variability in the dataset,
which may skew the results. Another factor to consider is that the recording process involved
only three gestures. Regarding augmentation, the results show that although the median
accuracy is very similar in all cases, the rise in dataset size lowers the variability both in
accuracy and F1 score with the downside of requiring a larger training duration.

Regarding the evaluations with multiple subjects, they show the system’s weakness.
Training the model with each subjects data yields high median accuracies, with the lowest
being 70% for the dataset without augmentation. All augmented datasets had median
accuracies above 90%. These results support the ones obtained for evaluations with a single
subject. Although the results are positive so far, this changes when we consider the results of
the subject independent solution. This change lowers the median accuracy values to around
50 to 55%, which allows us to conclude that the prototype does not deal well with unseen
data. In contrast, a subject dependent solution yields a relatively good performance: median
accuracy of between 93 and 98% when performing dataset augmentation and considering an
individual model for each user. Nonetheless, it is relevant to note that this type of solution
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has implications when used in the real world since it requires data to be acquired for each
new user.

6.3 Future Work

The work carried out established the grounds for exploring other approaches to better the
results obtained and to expand in other directions.

Creating an online pipeline with the integration of the stages mentioned should be the
priority for future work. With a few changes to the current code, and the addition of a single
board of hardware, the DCA1000EVM from Texas Instruments, that connects to the radar,the
pipeline can be updated from offline to online. This board allows real-time data capture
and streaming. These changes, plus the addition of a smaller processing unit, for example
a Raspberry Pi, would transform the prototype into a system much closer to a commercial
solution.

Besides automating the pipeline and making the system run in real-time, adding more
gestures to the set the system is able to recognize is also something to consider. The recognition
of more gestures would allow the system to be more versatile and create more ways to assist
the user. Another priority is also to gather more data from a greater number of subjects.
Besides increasing the examples used to train, which can improve the results, it would also
increase the variability of the gestures. The latter would allow the system to perform better
with gesture data obtained from never-seen subjects.

Another feature to add to the system would be appropriate feedback to the user after
the recognition of a gesture. This could be an audible cue such as sound, a simple sentence
identifying the output of the gesture or even translating the meaning of the gesture into a
speech generated sentence.

Finally, it is also possible to transform the skeleton of this prototype to work in different
divisions besides a bedroom or even into a solution with a different purpose, such as a way to
interact with appliances inside a house.
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APPENDIX A
Radar Fundamentals

For this work, the radar selected is the AWR1642 from Texas Instruments. It is an
integrated single-chip Frequency Modulated Continuous Wave (FMCW) radar sensor capable
of operating in the 76 to 81 GHz band.

This model of radar, AWR1642 is a system with two transmitting (2TX) and four receiving
(4RX) antennas and is equipped with an integrated C674x Digital Signal Processing (DSP)
subsystem for radar Signal processing. The following image presents the axis of coordinates
for the radar.

Figure A.1: Radar axis system. Taken from the Texas Instruments SDK doxygen

The most commonly used waveform for FMCW radars is the sawtooth with a linear
increase in frequency. This type of signal is known as a chirp. In Fig. A.2, we can see a
representation of the signal, where Tc represents the time interval, fc represents the start
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frequency, B bandwidth of the signal and the slope S, which characterizes the change in
frequency [48].

Figure A.2: Chirp signal, with frequency increase over time. Taken from [48].

A.1 Signal Generation

The radar contains a synthesizer module (module 1 in fig.A.3) which, as the name indicates,
generate the chirps. Then, it uses the transmit (TX) antenna (module 2 in fig.A.3) to transmit
the signal. These chirps will be reflected off objects in the way and received by the receive (RX)
antenna (module 3 in fig.A.3). Both chirps are mixed (module 4 in fig.A.3). The resulting
signal is called an Intermediate Frequency (IF) signal. This configuration is depicted in Fig.
A.3.

Figure A.3: Synthesizer, Transmission and Mixer modules. Taken from [48].

We can obtain the IF signal using the difference between the frequencies of the RX and
TX signal. As the RX signal is a replica of the TX signal with a time delay, the IF signal
obtained for a single object will be a constant frequency, as present in the images included in
[48]. The process to obtain the IF signal is depicted in Fig. A.4.
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Figure A.4: RX, TX and IF signals. Taken from [48].

A.2 Fourier Transforms

The Fourier Transform is a mathematical transform that takes signals that are time or
space-dependent and transforms them into frequency signals. As an example, a continuous
sinusoidal wave produces only one peak in frequency, as can be seen in Fig. A.5.

Figure A.5: Fourier Transform example. Taken from [48].

Applying this knowledge to a practical example, if the radar signal gets reflected by a
target, then we can expect to see a peak in the frequency. Following this logic, if there are
multiple targets in front of the radar there should be three peaks in the frequency. This
behaviour is accurate if the targets are distant enough from each other, as similar distances
will lead to similar IF frequencies [48].

A.3 Range Resolution

The concept of Range Resolution refers to the ability of the radar to distinguish targets
and the minimum distance between them required to do so. A way to diminish the required
minimum distance is to have a lengthier IF signal, as this allows for the waves of both targets
to demonstrate their differences in frequency leading to two distinct peaks. The usual way to
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increase the length of the IF signal is to increase the bandwidth of the chirp. This leads to
the conclusion that the greater the bandwidth, the better the resolution [48], [49].

A.4 Signal Digitizing

After capturing data, these are converted from an analogue to a digital signal thanks to
the Analogue-to-Digital Converter (ADC) module. This allows for further processing, for
which the radar uses the Digital Signal Processing (DSP) module. This module produces the
FFTs mentioned before [48], [49].

A.5 Velocity Measurement

For the radar to measure velocity, the adopted strategy is two transmit two chirps.
The reflected chirps turn into IF signals and go through the range-FFT. According to the
information present in section A.2, a single target will produce a single peak in the range-FFT.
To extract velocity from a single peak in the range-FFT it is necessary to view this peak in a
phasor notation [48], [49].

A.5.1 Phasor and Phasor Notation

A phasor, or phase vector, is a complex number that represents a sinusoidal wave, which
in this case, contains the amplitude and phase of the sinusoid in each value [48], [49].

A.5.2 Single Target

After generating the range-FFT for both chirps, the peak value will be in the same
frequency but with different wave phases. The velocity of the target represents the phase
difference of the peak values in both range-FFTs [48], [49].

A.5.3 Multiple Targets

Unfortunately, the strategy applied before is only successful when trying to get the velocity
for a single point. As mentioned previously, when multiple targets are equidistant from the
radar, the range-FFT will return only a single peak. To get the velocity of various targets, the
radar needs to transmit more than only two chirps. The adopted strategy uses a frame, which
consists of a set of equally spaced chirps. These chirps are processed, the range-FFT returns
a set of identically located peak values, each with the phases of the different targets. Finally,
another FFT is applied, now to the peak values, called doppler-FFT. This FFT resolves the
multiple targets and returns the velocity values [48], [49].

A.5.4 Velocity Resolution

The concept of Velocity Resolution refers to the ability of the radar to distinguish targets
and the required minimum velocity between them to do so.
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APPENDIX B
Paper

The following article has been accepted for publication in EAI MobiQuitous 2021, the
International Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services (November 8-11, 2021).
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Abstract. Aphasia and other communication disorders affect a person’s
daily life, leading to isolation and lack of self-confidence, affecting inde-
pendence, and hindering the ability to express themselves easily, includ-
ing asking for help. Even though assistive technology for these disorders
already exists, solutions rely mostly on a graphical output and touch,
gaze, or brain-activated input modalities, which do not provide all the
necessary features to cover all periods of the day (e.g., night-time). In
the scope of the AAL APH-ALARM project, we aim at providing com-
munication support to users with speech difficulties (mainly aphasics),
when lying in bed. Towards this end, we propose a system based on ges-
ture recognition using a radar deployed, for example, in a wall of the
bedroom. A first prototype was implemented and used to evaluate ges-
ture recognition, relying on radar data and transfer learning. The initial
results are encouraging, indicating that using a radar can be a viable
option to enhance the communication of people with speech difficulties,
in the in-bed scenario.

Keywords: Smart environments · Communication · Gestures · FMCW
radar · In-bed scenarios · Aphasia.

1 Introduction

People suffering from communication impairments have much more difficulty ex-
pressing their needs in ways that other people can understand. These difficulties
can lead to problems socialising and limit the person’s independence, namely in
asking for help when needed.

Existing assistive technology for augmenting or replacing speech includes de-
vices providing a graphical interface and relying on non-verbal interaction modal-
ities, such as touch, gaze, or brain-activated, together with speech-generation [2].

?
This work was supported by EU and national funds through the Portuguese Foundation for Science
and Technology (FCT), in the context of the project AAL APH-ALARM (AAL/0006/2019) and
funding to the research unit IEETA (UIDB/00127/2020).
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These solutions require interacting with a given device (e.g., tablet), which may
not be easily reached in some situations (e.g., lying in bed), rely on the use of
cameras, which raises privacy concerns, and/or are too intrusive.

An alternative approach for assisting communication at a distance is the use
of gestures. However, most contributions focus specifically on sign language [8].
Gesture recognition has also been explored in the context of human-computer
interaction, relying on wearable sensors [5], vision-based sensors [7], or radars
[1,3,9,4]. The latter have advantage of being the less intrusive and also preserving
the user’s privacy.

The ongoing project APH-ALARM aims at allowing people suffering from
aphasia (e.g., after a stroke) to communicate more easily with other people
anywhere and anytime. In the scope of this project, our main objective is to
enhance communication for people with speech difficulties, in the in-bed scenario
(i.e., user lying in bed).

Towards this goal, we propose a system based on a Frequency Modulated
Continuous Wave (FMCW) radar for supporting communication through ges-
tures, in the considered scenario. A first prototype, where gesture recognition is
performed by a model obtained through transfer learning and radar data, was
developed to explore the viability of the technology. To the best of our knowl-
edge, gesture interaction for the in-bed scenario, where some patients may spend
a large part of their time, has not yet deserved much attention.

2 Radar-Based Gesture Recognition System

We propose the architecture of a system that aids communication when the user
is alone in a bedroom, lying in bed, and may need to communicate with other
people (e.g., caregiver, family member) to ask for help, for instance. As a first
step towards a novel communication support system for patients with aphasia,
we present a first prototype for radar-based gesture recognition.

2.1 General Architecture

An overview of the system is depicted in Fig. 1. A radar captures data from
the detected targets, in this case the human body. These data are sent to a
processing unit, where they are pre-processed by removing outliers. Features
are then extracted and used to recognize the gesture being carried out. A final
decision is made and sent to a smartphone.

2.2 First Prototype

As a proof-of-concept, we implemented a first prototype that relies on the setup
shown on the left side of Fig. 1, which includes a bed and a radar. The radar
is elevated 0.55 m from the ground, and placed at 1 m from the bed, on the
left side of the subject, parallel to the longest side of the bed. The radar’s 2D
coordinate system is shown in Fig. 1.
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Fig. 1: Overview of the proposed system, including a possible setup for the bed
and radar, as well as the pipeline for gesture recognition.

The radar is a Frequency Modulated Continuous-Wave (FMCW) radar from
Texas Instruments, the AWR1642, with notable configurations entailing: frame
rate (20 fps); resolution for range (4 cm) and radial velocity (0.22 m/s); maxi-
mum range (10.28 m) and radial velocity (3.47 m/s); for object detection, peak
grouping in the Doppler (on) and range (off) directions, without clutter removal.

Data Acquisition: The data provided by the radar includes the X and Y
coordinates, as well the Doppler index, for each detected moving target. In this
first prototype, the data captured by the radar are saved to a computer.

Pre-Processing: The acquired data are processed using a sliding window
of 5 s without overlap. For each window, pre-processing consists of removing
outliers corresponding to unwanted reflections or noise. A detected target is
considered as an outlier if its Euclidean distance to the radar is outside the
interval [0.5, 3] m or its absolute Doppler index is outside the interval [1e−5,
10]. All data samples with X and Y coordinates outside the intervals [-1.5, 1.5]
m and [0, 2.25] m, respectively, were also discarded.

Feature Extraction: From the filtered data, three different maps are
created, one for each data type versus the elapsed time (X-Time, Y-Time, and
Doppler-Time). The beginning and ending of the window where no movement is
detected are discarded. An example of the X-Time and Doppler-Time maps for a
repetition of the third gesture described below (“Back and Forth”) is presented in
Fig. 2, where the colour represents the number of detected targets (bright yellow
corresponds to the maximum value for each map, while dark blue corresponds
to no detected target). The matrix associated to each map is used to obtain a
normalized greyscale image. The three images are then combined into a single
image (X-Time above Y-Time above Doppler-Time).

Gesture Recognition: The images resulting from feature extraction are
fed into a model that performs gesture recognition. This model is previously
trained using the transfer learning method, relying on a pre-trained deep neural
network model for image classification, and a given dataset. For this prototype,
the focus was on the recognition of the following three arm gestures, all starting
with the arm parallel to the body and resting on the bed: (a) Wave – Move
the arm and hand from left to right and back, starting with the arm parallel to
the body; (b) Raise Arm – Raise the arm until a 90°angle is formed with the
body and then lower it back to initial position; (c) Back and Forth – “Come
to me” motion, where the forearm is moved towards the arm making an angle
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Fig. 2: Example of X-Time (left) and Doppler-Time (right) maps, for the “Back
and Forth” gesture.

below 90°, and then returning to full extension. These gestures were selected
aiming at simplicity and based on initial feedback from therapists and carers on
the gestures’ suitability for aphasic patients lying in bed. Moreover, they can be
used for generating simple messages (e.g., “I need help”) and “Yes/No” answer.

3 Evaluation

An initial evaluation of the prototype was performed to explore the possibility
of recognising the defined gesture set using radar data together with transfer
learning, in the context of the in-bed scenario.

Subject and Experimental Protocol: Radar data were captured from
a 23-year-old, right-handed male subject. The used setup is the one included in
Fig. 1, where the subject was lying in bed on their back. Each considered gesture
was executed 50 times. Even though the subject is right-handed, all gestures were
performed with the left arm, due to the radar being on the left side of the bed.
For each repetition, data recording was initiated before the gesture execution
and stopped automatically after 5 seconds.

Datasets: The obtained dataset includes 150 images (50 per gesture). Since
deep learning requires a large dataset to obtain reasonable results, we expanded
the dataset relying on offline data augmentation, to obtain a better performance
and avoid overfitting. For each image in the original dataset, 5 or 10 new im-
ages were created by adding noise to that image (resulting in two augmented
datasets). The type of noise added to the image is chosen randomly and can be
a combination of the following types: Gaussian, salt and pepper, and Poisson.
For all except Poisson, the amount of noise was limited to a proportion of image
pixels to replace of 0.002 (chosen empirically).

Gesture Recognition Models: To obtain a model that recognises the
considered gestures, we used the transfer learning method. Since our aim is to
run gesture recognition in a processing unit with limited memory and com-
puting capability, from the pre-trained models directly available in Keras [6],
we explored three that achieved a top-5 accuracy equal or greater than 90%
(ImageNet validation dataset) and have less than 10 million parameters: Mo-
bileNetV2, NASNetMobile, DenseNet121. For each pre-trained model, the top
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layers were replaced by a single fully connected layer with 256 neurons (ReLU as
the activation function) and an output layer with 3 neurons (softmax activation
function). The used optimizer was ADAM (default parameters). Crossentropy
was used as the loss function, and accuracy as the metric to be evaluated during
training and validation.

Evaluation Method: Each model was evaluated using the 10-fold cross-
validation approach, where 80% of the dataset is used for training, 10% for
validation, and 10% for testing, in each iteration. Training is stopped when the
validation loss has not decreased more than 0.1 for 5 epochs. The resulting model
is evaluated on the test data of the corresponding iteration.

4 First Results

Results were obtained for the three pre-trained models listed above and for three
different datasets: original (150 images); augmented 1 (750 images); augmented 2
(1500 images). The boxplots for the accuracy, F1 score, train time, and prediction
time per image, considering all 10 folds, are shown in Fig. 3.

Fig. 3: Boxplots for the accuracy (left-top), F1 score (right-top), train time (left-
bottom), and prediction time (right-bottom), for each model and dataset.

We can see that augmenting the data has an overall positive effect when
it comes to the variability of accuracy and F1 score, for all three models. On
the other hand, the train time increases when the size of the dataset increases,
as expected, but the prediction time per image decreases. For both train and
prediction times, the difference among datasets is lower for the MobileNetV2
model, which also has the lowest median train and prediction times: 35 to 252
s and 0.03 to 0.08 s, respectively, versus 84 to 639 s and 0.08 to 0.32 s for
NASNetMobile, and 185 to 1177 s and 0.14 to 0.27 s for DenseNet121. This
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was also expected, since MobileNetV2 is the smallest of the three pre-trained
models (≈3.5 M parameters), followed by NASNetMobile (≈5.3 M parameters;
DenseNet21 has ≈8.1 M). Despite its smaller size, MobileNetV2 still leads to a
model with a median accuracy and F1 score similar to the other models (≥99%
for all datasets). Although these results are quite good, it can be because only
three gestures were considered and all used data came from the same subject.

5 Conclusion and Future Work

Our long-term research goal is the implementation of gesture-based communi-
cation support system for people with speech difficulties, such as aphasics. This
system would provide its users with a more assisted and independent life, in-
cluding at night-time. Our initial results on gesture recognition are in line with
those reported in other similar contributions using radar (in scenarios different
from the in-bed setting) [3,9,4]. They show the feasibility of recognising a simple
set of gestures, in the specific in-bed scenario, based on a radar, which is not
invasive or intrusive and can be placed in the environment.

Our study has some limitations, such as a small dataset limited to one subject
and three gestures. However, we intend to obtain a larger dataset including more
gestures and data from a greater number of subjects. This dataset will allow us
to investigate if a model trained with data from a given subject can be used to
recognise gestures performed by never seen subjects.
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