
Universidade de Aveiro
2021

João Manuel
André Coelho

Logistic and Mobility Management Holistic Platform
Plataforma Holística de Gestão Logística e de Mobilidade

Universidade de Aveiro
2021

João Manuel
André Coelho

Logistic and Mobility Management Holistic Platform
Plataforma Holística de Gestão Logística e de Mobilidade

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em Engenharia de Computadores e Telemática,
realizada sob a orientação científica do Doutor Hélder Troca Zagalo, Professor Auxiliar do
Departamento de Eletrónica, Telecomunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor Augusto Marques Ferreira da Silva
Professor Associado da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Fernando Joaquim Lopes Moreira
Professor Catedrático da Universidade Portucalense Infante D. Henrique

Prof. Doutor Hélder Troca Zagalo
Professor Auxiliar da Universidade de Aveiro

agradecimentos Em primeiro lugar, quero agradecer aos meus orientadores, Doutor Hélder Zagalo, ao
Cristiano Vagos e João Pedrosa, pela confiança que em mim depositaram, por toda a
dedicação e pela motivação incondicional.

Aos meus amigos e colegas, por todo o encorajamento e amizade que proporcionaram
durante este longo percurso.

Ao Gabriel e ao Pedro, um especial obrigado pela motivação, que para além de ami-
gos, são colegas de trabalho a quem eu desejo muito sucesso.

Por último, o meu profundo e sentido agradecimento à minha família, por toda a
força e por estarem sempre presentes ao longo da minha vida académica. Sem eles, não
sei se conseguiria terminar esta etapa da minha vida.

palavras-chave Plataforma holística, mapa interativo, tempo-real, mobilidade, gestão logística, visualização
de dados

resumo A monitorização em tempo-real é um requisito essencial para todo o tipo de sistemas, cujo
objetivo é fornecer feedback ao utilizador da forma mais rápida possível, facilitando assim
a tarefa de gestão. Este trabalho define e demonstra algumas soluções similares ao produto
final solicitado pela empresa, bem como a análise de diferentes tecnologias. A análise e
o estudo de diversas frameworks e bibliotecas resultam num trabalho mais complexo e de
melhor qualidade, melhorando a experiência do utilizador. Passa também pela definição de
uma proposta de solução, o seu desenvolvimento e testes finais. Esta dissertação tem como
principal objetivo o estudo, a análise e a implementação das melhores metodologias para
o desenvolvimento de uma plataforma holística de gestão logística e de mobilidade. Esta
plataforma fornece uma solução frontend-backend de forma a ser possível a visualização
num mapa as suas operações, dando suporte em tempo-real à equipa de gestão logística da
empresa.

keywords Holistic Platform, interactive map, real-time, mobility, logistic management, data visualiza-
tion

abstract Real-time monitoring is an essential requirement for all types of systems, whose objective is
to provide feedback to the user as quickly as possible, thus facilitating themanagement task.
This research work defines and demonstrates some similar solutions to the final product
requested by the company, as well as the analysis of different technologies. The analysis
and study of different frameworks and libraries result in a more complex and better quality
work, improving the user experience. It also involves the definition of a solution proposal,
its development and final testing phases. This dissertation has as its main objective the
study, analysis and implementation of the best methodologies for the development of a
holistic platform for logistics and mobility management. This platform provides a frontend-
backend solution in order to be able to visualize their operations on a map, providing real-
time support to the company’s logistics management team.

ii

Contents

Contents iii

List of Figures vii

List of Tables ix

Acronyms 0

1 Introduction 1
1.1 Context . 1
1.2 LUGGit . 2
1.3 Problems and Challenges . 3
1.4 Objectives . 4
1.5 Document structure . 4

2 State of the Art 7
2.1 Data Visualization and its importance . 7
2.2 Static Reporting vs Real-time Reporting . 11
2.3 Real-time Data Visualization . 11

2.3.1 Advantages of Real-Time Data . 13
2.4 Data Processing in Data Visualization . 14

2.4.1 Types of Data Processing . 15
2.5 Data visualization Systems . 15

2.5.1 The Pipeline of Data Visualization . 17
2.6 Related Technologies . 18

2.6.1 Interactive Map Solutions . 18
2.6.1.1 Deck.gl . 19
2.6.1.2 Mapbox GL JS . 19
2.6.1.3 Comparison between options 19

2.6.2 Web Map Frameworks . 20
2.6.2.1 Mapbox . 20
2.6.2.2 OpenStreetMap . 21
2.6.2.3 Google Maps . 21
2.6.2.4 Comparison between options 21

2.6.3 Web Interface Frameworks . 22
2.6.3.1 Angular . 23
2.6.3.2 React . 23

iii

2.6.3.3 Vue . 23
2.6.3.4 Comparison between options 24

3 Solution Proposal and System Design 27
3.1 Solution Proposal . 27
3.2 Stakeholder’s Requirements . 27
3.3 Use Cases . 28

3.3.1 General Use Case . 28
3.3.2 Use Case 1 . 29
3.3.3 Use Case 2 . 30
3.3.4 Use Case 3 . 31
3.3.5 Use Case 4 . 31

3.4 Non-Functional Requirements . 31
3.5 System Architecture Design . 32

3.5.1 Data Processing Component . 34
3.5.1.1 Functional Requirements . 34
3.5.1.2 Internal Architecture . 35

3.5.2 Holistic Platform Component . 36
3.5.2.1 Functional Requirements . 36
3.5.2.2 Internal Architecture . 37

3.6 Mockups . 37
3.6.1 Mockup 1 - First Landing Page . 38
3.6.2 Mockup 2 - Operation Areas Page . 38
3.6.3 Mockup 3 - Keeper’s Routes . 39
3.6.4 Mockup 4 - Operators Filtering . 39
3.6.5 Mockup 5 - Additional features . 40
3.6.6 Mockup 6 - Landing Page final design 40

4 Development 43
4.1 Development Requirements . 43

4.1.1 Development Environment . 43
4.1.2 Planning, Project Management and Versioning 44
4.1.3 Local Code Testing and Development 45
4.1.4 Deployment . 46

4.2 Used Technologies . 47
4.2.1 TypeScript . 47
4.2.2 Next.js . 48
4.2.3 Mapbox . 48
4.2.4 Mapbox GL JS . 48
4.2.5 React . 49
4.2.6 Koajs . 49
4.2.7 Redis . 49
4.2.8 NATS . 50
4.2.9 Resgate . 50

4.3 System Development . 50
4.3.1 Holistic Platform Component . 51

4.3.1.1 Features . 51

iv

4.3.1.1.1 Filter . 51
4.3.1.1.2 Request . 52
4.3.1.1.3 Draft . 52
4.3.1.1.4 Information Sidebar 52
4.3.1.1.5 Popups . 56
4.3.1.1.6 Map Legend . 58
4.3.1.1.7 City Clock . 58

4.3.1.2 Connection to the other Component 58
4.3.2 Data Processing Component . 59

4.3.2.1 REST Endpoints . 59
4.3.2.2 Event-based Communication 60
4.3.2.3 Storage . 61

4.4 Validation Tests . 62
4.4.1 User Stories . 62
4.4.2 Stakeholder . 63
4.4.3 Technological . 64

5 Conclusion 67
5.1 Future Work . 67

Bibliography 69

v

vi

List of Figures

1.1 Some types of Real-time Monitoring [3]. 2
1.2 The Retool Platform Solution . 3

2.1 The Peutinger Map [6]. 8
2.2 Tableau Poléometrique [7]. 8
2.3 Situation Report of Covid-19 in Portugal on Oct 16, 2020 [10]. 9
2.4 Advertising Campaign made in 2014 by Google [10]. 10
2.5 The LOF caption . 12
2.6 The LOF caption . 13
2.7 The LOF caption . 14
2.8 Real-time transit map of central New York in TRAVIC[23]. 16
2.9 Example of a Google Analytics Analytics dashboard [24]. 17
2.10 The data visualization pipeline [27]. 18

3.1 General Use Case . 28
3.2 Use Case 1 - Filter out elements in the map view. 29
3.3 Use Case 2 - View elements’ information (Keepers, Operation Centers, Requests

and Drafts). 30
3.4 Use Case 3 - Filter Keepers and Operation Centers by Operators. 31
3.5 Use Case 4 - View Notification of new Drafts and Requests. 31
3.6 High-Level System Architecture. 33
3.7 Data Processing Component Architecture . 35
3.8 Holistic Platform Component Architecture . 37
3.9 Mockup 1 - Landing page . 38
3.10 Mockup 2 - Multiple Operation Areas at the same time 39
3.11 Mockup 3 - Keeper’s Route and Operator’s Information 39
3.12 Mockup 4 - Highlight Operators with different colors 40
3.13 Mockup 5 - Additional feature of Weather . 40
3.14 Mockup 6 - Notifications and Menus more defined 41

4.1 Development Environment with Visual Studio Code. 44
4.2 Clickup’s Dashboard with this project’s tasks. 44
4.3 GitLab’s versioning system. 45
4.4 Docker compose file example. 46
4.5 Architecture of publish-subscribe messaging model [51]. 50
4.6 Example of the dashboard with active Keepers, Drafts and Requests. 51
4.7 Keeper Details Information Sidebar. 53

vii

4.8 Draft Details Information Sidebar. 53
4.9 Request Details Information Sidebar. 54
4.10 Logistic Center Details Information Sidebar. 55
4.11 Operator Details Information Sidebar. 55
4.12 Example of a Keeper’s Popup. 56
4.13 Example of a Request’s Popup. 57
4.14 Example of a Draft’s Popup. 57
4.15 Example of a Logistic Center’s Popup. 58
4.16 Global Architecture of REST Endpoints. 59
4.17 Example of a Unit Test. 65
4.18 Results of a Unit Test. 66

viii

List of Tables

2.1 Comparative Table between Web Map Framework Solutions 22
2.2 Comparative Table between Web Interface Framework Solutions 25

ix

x

Acronyms

ATC Air Traffic Controller

IT Information Technology

WebGL Web Graphics Library

GPU Graphics processing unit

CPU Central processing unit

LISATM Lisbon Air Traffic Control Management System

NAV Navegação Aérea de Portugal

TRAVIC TRAnsit VIsualization Client

AMQP Advanced Message queuing Protocol

JMS Java Message Service

FIFO First In First Out

HTML Hypertext Markup Language

CSS Cascading Style Sheets

API Application Programming Interface

UI User Interface

SDK Software Development Kit

JS JavaScript

JSX JavaScript XML

XML Extensible Markup Language

OSM OpenStreetMap

URL Uniform Resource Locator

JSON JavaScript Object Notation

REST REpresentational State Transfer

YAML Yet Another Multicolumn Layout

Chapter 1

Introduction

1.1 Context

Real-time monitoring is an essential piece in every type of system. The goal of real-time
monitoring is to deliver as soon as possible instant feedback to the user and thus, making it
beneficial. It is a system that can have customizable real-time notifications and that allows
the immediate at-a-glance view and ensures an instant notification of potential issues. Conse-
quently, the troubleshooting of the potential issues is faster and more frequent giving enough
time to fix them without causing major meaningful damage. These features also benefit from
an economic standpoint since it can reduce the time of fixing serious issues, there is a better
chance of keeping the productivity higher and cutting revenue losses.

Nobody likes to waste time whether it is watching a football game or monitoring a real-
time aircraft system. When someone is watching a football game, they expect to see every
little detail of the match. When someone buys something on Ecommerce online stores, they
expect to know immediately if something is out of stock so an alternative can be selected. In
our personal lives, we expect as well real-time media consumption and online experiences [1].

In many situations, there is the necessity of keeping track of everything that is going on.
It is possible to observe the importance of the example of the air traffic controllers (ATC) who
direct aircraft on the ground and through controlled airspace and that can provide advisory
services to aircraft in non-controlled airspace. Their primary purpose is to prevent collisions,
organize and expedite the flow of air traffic, and provide information and support for pilots
as referred in [2].

Lastly, real-time monitoring also allows to help building historic data over time which can
be beneficial to identify patterns, investigate issues more effectively and predict outcomes [1].

1

Figure 1.1: Some types of Real-time Monitoring [3].

1.2 LUGGit

LUGGit1 is a technological mobility platform that offers luggage collection and delivery
service in real-time in several cities, carried out by drivers (denominated Keepers). The multi-
platform allows anyone through a mobile app or by integrating with third-parties to request a
Keeper (driver) in real-time to pick up their luggage and deliver it at the place and time they
choose.

A Keeper is the driver who collects, stores and delivers luggage back to the customers.
After collection on the location chosen by the customer, the luggage is stored in a logistics
center, as the period of time between collection and delivery may justify keeping the luggage
stored, freeing up space in the Keeper’s vehicle for new services. Drafts are a premature
version of Requests. A Draft can be made by a user and serves the purpose of showing the
price and the details of locations and times of the Request. The user can decide whether to
proceed and convert the Draft into a Request or to not use the service. An Operation Area is
the geographical determined location where operations take place. Requests and Drafts can
only occur within its borders.

The entire process related to the service, from the client request to the delivery by the
Keeper and everything in between, must be monitored in order to accompany in real-time all
of its phases. This allows an easy way to obtain general and personalized views about the
status of the operations.

LUGGit uses two mobile applications: the user application, which requests the service;
and the application of the Keeper, who is responsible for carrying out the service.

The platform focuses on the transport and storage of the luggage, allowing users (the
majority tourists and travellers) to request the baggage collection in real-time through its
mobile application, scheduling its delivery by the time and place the user pretends. In this

1https://luggit.app/

2

way, the user will be able to travel without its luggage, removing the responsibility and the
discomfort when carrying it.

1.3 Problems and Challenges

The main problem of LUGGit is the lack of a good interface regarding the logistic opera-
tions of the company. Their current solution consists on a platform that is not customizable,
disorganized and unresponsive, in regards to performance.

LUGGit currently does not have a platform capable of displaying the current operation of
its fleet. It is not possible to show the map and knowing how the data analysis options are
run and displayed. It is also not possible to know if the Keepers are synchronized.

As more data is required to be displayed and further logic ahead, using a third-party
platform limits their usage, making it ineffective for custom integrations within the company’s
internal services. As a consequence of the rapid company’s expansion, a solution providing a
faster awareness of risks and errors in real-time during the operation was an important task.

The need to visualize useful data to improve the operations monitoring has become indis-
pensable for this task. At this moment, LUGGit addresses the problem displaying their fleet
and current Requests’ data by using a logistic platform solution that is based on a drag and
drop system called Retool2.

Figure 1.2: The Retool Platform Solution

Map coordinates are important features for analysis and for error detection and correction,
for example, but in the context of the LUGGit platform, it is better to display the information
in a way that is more easily understandable and recognizable. Visualizing this information in
a map is more intuitive and can be better perceivable by anyone.

Also, having the possibility to visualize an end-to-end LUGGit Request directly on a map,
displaying its key locations and entities that are responsible for the service in an interactive
way, is less time consuming and more practical than searching on a table with many rows.

2https://retool.com/

3

LUGGit decided to propose this dissertation in order to solve this problem. The goal is to
build a platform using open-source technologies, making it sustainable and highly customiz-
able. Along with the eminent LUGGit’s expansion, more information will have to be displayed
in the dashboard simultaneously, which comes with a complex technological challenge of with-
standing a high amount of elements.

The major challenge is to build a solution that better helps the company by allowing the
operations team to know and view instantly the whole state of the operation.

Another challenge includes processing data that comes from LUGGit’s API and goes di-
rectly to the dashboard. This part involves storing data in a cached system to retrieve data
that is seemingly fast and fluid.

Dealing with new technologies I have never used before, is going to be challenging but a
huge learning opportunity. These challenges consist of learning new technologies and program-
ming languages that were not introduced in my academic career. This project will give me a
better understanding of building a whole system, from the requirements to the development
and the associated difficulties that come with it. In terms of personal growth, it will be highly
beneficial, and at the same time, I will be able to help the company grow, as it is crucial in a
startup.

1.4 Objectives

The main objective of this dissertation is to create and build a platform capable of being
used in a real context that allows an effective way to provide a end-to-end visualization of the
company’s logistics operation, which operates in the context of real-time, in order to obtain a
holistic view of the entire operation, as well as help in decision making through data analysis
and visualization.

The solution currently used by LUGGit shows many sources of data including some internal
ones: information about Keepers, partners, logistic centers, past and recent Requests and
Drafts. The new solution must provide the same type of information, but displayed in a visual
and a better organized way, gathering all data for real-time scenarios.

This monitoring must be shown in a platform that is easily readable and highly customiz-
able for the purpose of allowing a close tracking of the informations related to the operations of
LUGGit, and consequently facilitating the management and better decision making regarding
to Keepers and services.

1.5 Document structure

The remainder of this document is organized as follows.
Chapter 2 presents an overview of background and related work regarding the topics cov-

ered by the work carried out, namely the importance of data visualization, real-time data
visualization and , data processing, data visualization systems and related technologies re-
quired to build one system.

Chapter 3 presents the solution proposal and system design, architecture and its detailed
elements and the system’s wireframes.

Chapter 4 includes the development process, as well as the required tools and technologies
used to build the solution. It also mentions features and how each component was built and
some software and user tests to the platform.

4

Finally, chapter 5 presents the conclusions about this work, summarizing and discussing
the main contributions. It is concluded with some ideas deemed relevant for future work.

5

6

Chapter 2

State of the Art

This chapter introduces the overview of holistic platforms of management in order to better
understand what they represent and what they do.

Additionally, and considering the goals of this work, this chapter has the intention of
describing the current knowledge about the topic matter through the analysis of similar or
related published work. This analysis consists on debating the technologies of each solution,
summary of recent research and its presentability.

2.1 Data Visualization and its importance

Human mind can understand and process visual information in a better and less time
consuming way than a non-visual information (sound, for example). Our eyes are drawn to
colours and patterns, making data visualization an ancient need. A team of neuroscientists
from MIT has found that the human brain can process entire images that the eye sees for as
little as 13 milliseconds. They also concluded that the fact that a person can do that at these
incredible speeds, demonstrates that vision is finding concepts at all instants. During all day,
the brain is trying to understand what we are seeing at each moment [4].

Since humans cannot translate binary code or quickly digest written information, data
visualization helps to form a easier way to understand, highlighting the trends and outliers.
A good graphical representation of data tells a story removing the noise from information and
highlighting the useful part.

It is very common to think data visualization is a relatively modern technique used in
technology but history has shown us that the earliest map-making and visual depiction, and
later thematic cartography, was and still is important with tremendous applications in many
fields, like science, medicine and many others. Many types of data visualization were important
in order to make breakthroughs within the human race. Creating pictographic images, in
Maya and Egyptian civilizations, to communicate within social classes and across generations,
drawing maps to strategically conquer and explore more land (the most antique map dates
from 2500 B.C) [5].

During the days when all roads led to Rome, the so-called Peutinger Map, 2.1, would have
served as a handy guide to the Empire’s transportation network. The Peutinger Map depicts
the course of more 60,000 miles of Roman roads stretching from Western Europe to the Middle
East. An additional section also shows India, Sri Lanka and other parts of Asia. Much like a
modern travel guide, the map includes the locations of more than 500 cities along with some

7

3,500 other points of interest such as way stations, temples, forests, rivers and even spas [6].

Figure 2.1: The Peutinger Map [6].

During the eighteenth century, the growing urban population in Europe started to attract
the attention of local authorities. Decisions on the extension of existing cities or to build new
cities became critical to make. Methods to assess and evaluate the situation were important
and in 1782, a French mathematician named Charles Louis de Fourcroy published work using
a visual diagram to classify towns by their surface area. The diagram is entitled Tableau
Poléometrique and revolutionized the way to visualize data, using patterns, colors, and shapes
[7].

Figure 2.2: Tableau Poléometrique [7].

These and other breakthroughs contributed to the wide usage of data visualization to-

8

day and the advancements in so many areas like mathematics, statistics, data collection and
technology allowed for simpler and more efficient ways of visualizing data.

All organizations, from medicine to real estate, finance to government, use data visualiza-
tion to drive their business decisions through data. They need to visualize the collected data
in a way that shows what is relevant in the "bigger picture" [8]. Each organization type needs
its own unique visualization strategy with a purpose in mind.

In healthcare, data analysis is present in a day-to-day basis. Physicians, nurses and other
health professionals need to interact with health databases and interfaces, generate reports,
and review patients’ information. Their job was eased since data visualization appeared and
it is even debatable that the health industry nowadays could not survive without it. Since
every patient’s record is digitalized, sometimes it is important to understand how many people
in a country have a vaccine or how many will need a specific medicine and quickly visualize
it. One study showed that the development of a dashboard to visualize electronic health
record data resulted in a 65% reduction in time spent on data analysis in the first year alone,
with further gains projected for the future [9]. Analysing large sets of data this way can
save time and most importantly, help saving lives. In fast-paced medical settings, such as
when physicians are reading Electroencephalographies (diagnostic test) in emergency rooms,
the most important information needs to stand out quickly in a visualization, which can be
obscured by a static of unnecessary data.

There is also a good example of the importance of data visualization in the middle of
the coronavirus pandemic. An easy way to transmit the most important geographical and
statistical informations about the daily report of the pandemic in Portugal to the general
public, can be shown in the Figure 2.3. It is very intuitive to know which country areas have
more people affected by the virus, the group age and how the number of new cases have been
evolving since the beginning of the pandemic.

Figure 2.3: Situation Report of Covid-19 in Portugal on Oct 16, 2020 [10].

9

Science aims to solve humankind problems and bring better solutions to our world. In order
to do so, scientists must communicate with the population on quicker and simpler bases. A
trend in science is to produce graphical abstracts to accompany the articles, allowing the
reader to get an overview of the study in a glimpse. Software programs that enable scientists
and designers to visualize microbiological forms and molecules by using interactive interfaces
are becoming more common.

Data visualization can be surprising in the sense of realizing that one thing that is thought
as not important is actually really important, and vice versa, especially in marketing. This also
happens in other areas, like in the tech industry and health companies, for example. Without
these tools, marketing would be just making a campaign and be done with it without any
feedback, not knowing on what to improve next [11]. Some of the advantages that come
with this technique are the possibility of knowing where customers are in the world, what
social networks are driving the most traffic, whether or not customers are buying the product
through a marketing campaign and how web traffic varies by time of day and day of the
week. Data visualization may also be a great tool considering that when you have a statistic
that proves that the product brings actual value and has improved the lives of its customers,
that data will be a very important and valuable feature. It might be important to avoid the
traditional pitch to sell, but instead share data with customers in the form of engaging data
visualizations [11]. In fact, when companies are promoting a product, they want to present
a simple approach to the customer, in order to let them know that it is the best product for
them to purchase. The data insights from different test campaigns helps them to compare
and apply the right one.

Figure 2.4: Advertising Campaign made in 2014 by Google [10].

In the advertising campaign 2.4 of the Google Play Music1 app, data is used in an inter-
active way to show the most popular music genres among Google Play Music users. Using a
fun and illustrative music timeline, users can click on each stripe to listen to different song
genres, each with its own breakdown by artist and/or album.

1https://play.google.com/music/listen

10

There is a tremendous number of data visualization types, some of them being pie charts,
maps, histograms, and tables and, for example, with the help of charts, trends can be identi-
fiable over time, critical moments in the health of site traffic being able to react accordingly,
and the biggest drivers of the business’ success. Every company needs to maximize efficiency
in order to stay competitive. Careful data analysis can offer critical insights on production
and other vital measures.

As we can see, the communication of data in a visual manner comes with extensive usage
cases due to this high number of types. Many companies rely heavily on data visualization
to assess and improve their potential moves. Some of them employ a specific visual commu-
nication team to illustrate their data usually with custom interactive dashboards. Hiring a
team to make the most of the available data is necessary in order to bridge the gap between
analyst and knowledge as a simple and fast way of describing large data sets and complex
phenomena. Since the data is now easily visualized by anyone, the analyst does not require to
have deep knowledge on what is behind the data, thus being able to recognize patterns and
hazards more efficiently.

Data visualization allows for a more efficient transfer of information within an organization
which will serve to make a business more efficient. Data information is a really important
feature for companies [12] and it has been proved to be the difference between the success and
failure of a business. Using an efficient, effective and capable business intelligence tool that
offers data visualization capabilities is a non-negotiable for companies looking to succeed into
the future [12].

2.2 Static Reporting vs Real-time Reporting

With the introduction of new technologies, the real-time systems tend to be the ones that
are most used globally. Static systems include static information or a set of resources that
are generated periodically ??. A static report illustrates trends, data and information over a
predetermined period and it is usually used for the purposes of historical data analysis.

Contrarily, dashboards on real-time reports are dynamically created and they offer a con-
tinuously access to the most up to date information while enabling the user to interact with
data through functionalities, such as interactive features, for example. These dashboards are
continually refreshed and most of the dynamic real-time platforms are powered by machine
learning capabilities, meaning that they are intuitive and live decision-making.

Real-time data is important when decisions in a company may be need to be made in
seconds and there is a need to track and update information in the least time possible and
that is why it the most system used by companies. It enables more accessibility to displayed
data information, as the users can log into a dashboard from anywhere across multiple devices
for instant analysis and more scalability, as it is possible to improve and update information
over time.

2.3 Real-time Data Visualization

A variety of live public transit maps were developed recently, displaying the actual positions
of certain vehicles. Several other transit agencies provide small live maps for their service
range.

11

Live maps for various kind of vehicles are available nowadays in form of web applications,
like for example the flight radar for planes and live train movement visualizations. There are
also live maps for local traffic; for instance, subways in Munich, or tubes and buses in London.
Several transit agencies provide position visualizations of their vehicles. One transit agency
that displays a live map is the London underground2. It was built in August 2018 by Matthew
Somerville3, providing three map variants: geographic, skyfall and schematic.

Figure 2.5: Real-time London Underground Schematic4 of Nov 26, 2020 [13].

Unfortunately, most existing live maps are either restricted to a very small area or to a
certain type of vehicle (e.g. bus, metro). Moreover, most live maps do not feature smooth
vehicle movements, but vehicles "jump" in certain intervals. However, global live maps would
be beneficial in many aspects. From an operator’s point of view this would provide a useful
tool to supervise the complete system, track single vehicles, and observe non-scheduled stops or
delays immediately. The coverage of an area (at a certain time) can also be estimated well if all
vehicles passing through are displayed and also for evaluating how well-synchronized vehicles
from different agencies can be. From a user perspective, the easy retrieval of all vehicles that
are near-by can help to decide for a certain transportation mode or e.g. a particular bus to
take. Also it can tell if you should hurry to catch your selected bus. In combination with a
route planner, a live map can inform about delays of relevant vehicles neatly, and may give a
hint about alternative transfers [14].

A person is needed to make sure everything is running as smoothly as possible and a
platform with real-time information allowing easy access to edit some operations is essential.
The most important feature that a visualization must have is that it should be interactive,
which means that users should be able to interact with the visualization and personalize it.
Whether be it time-frame updating or choosing which data to display, visualization must be
adaptable to users’ needs using relevant information.

One example of a real-time platform that integrates data across private and public clouds
is Striim5. It is an end-to-end and enterprise-grade platform that delivers instant insights from
high-volume and high-velocity data. It offers interactive and live dashboards with automatic
refresh. It enables to view and compare historical data and keyword search on streaming data.
The platform also ingests and processes structured and unstructured data from databases, log
files, message queues and sensors.

2https://tfl.gov.uk/
3https://dracos.co.uk/
5https://www.striim.com/

12

Figure 2.6: Dashboard of Striim Platform [15].

2.3.1 Advantages of Real-Time Data

In the sections above, real-time data has been described as one of the most important
features considering using it in many areas, like in companies and in marketing, for example.
It can have a very important impact on the outcome of a project and it is possible to have
many advantages using real-time data [16]. Some of them are described below:

• Productivity

Projects with real-time data visualization will have a better productivity, as the infor-
mation flow and the decision-making is faster. The time that is saved can then be used
in other areas that are more delayed, which will lead to a more productive outcome.

• Money

Real-time data makes companies saving money. Instead of writing information data
by pen and paper and using physical resources to do it, it can be used a real-time
information technology solution. Reorganizing strategies and projects to solutions with
real-time data will lower projects costs and flow of resources.

• Accuracy

Inserting, updating and removing data manually can lead to human errors. These mis-
takes can be avoided with real-time data technologies. If the information is created,
updated and shared in real-time, the information data will be more accurate and less
prone to errors.

• Time

Using solutions with real-time information will save time for workers and projects.
Recording data in a project will save time to the worker, as the data will be created in
less time.

• Decision-making

If there is an error on information data, the flow of communication and information
between workers and supervisors must be faster. With real-time data, decision making
is improved and allows to make a better and faster decision with more precise results.

13

2.4 Data Processing in Data Visualization

Data processing is the conversion of data into usable and desired from meeting ones’ needs.
Processing data can be done manually or automatically, for example, with computers and the
output can be plain text files, graphs and charts, tables, vector and image files, audios or
other formats. These output forms depend on the software or method of the data processing
used [17].

Even though it seems as simple as using the provided data to show what is pretended in
the dashboard, it can be rather complex. Data often comes in a raw form and it is noisy,
inaccurate, incomplete and sometimes contradicting. Therefore, it is important to familiarize
with the process to clean and process data, to extract useful information out of it. The raw
data is collected, filtered, sorted, processed, analyzed, stored and then presented in a readable
format.

The collection of raw data is the first step of the data processing cycle and it is carried
out across a variety of data types [18]. Data preparation is the process of sorting and filtering
the raw data to remove unnecessary and inaccurate data. In the third step, the raw data
is converted into a machine readable form and it is fed into the processing unit, usually in
the form of an input source. The raw data is subjected to various data processing methods
using algorithms in order to generate a desirable output. The data is finally transmitted and
displayed to the user in a readable form like graphs, dashboards, video, documents, etc. The
last step of this cycle is the storage, where data is stored for further use [19].

Figure 2.7: Data pre-processing steps [20].

14

2.4.1 Types of Data Processing

There are many methods and techniques used in data processing. The method used de-
pends on the requirements, software and hardware used and time availability [17]. Some of
them are described below:

• Batch Processing

It is an efficient and sequential offline processing, where the information that is going
to be organized is sorted into groups. The information data is processed by the order
received, which helps in reducing the processing cost.

• Real-Time Processing

It is a method that responds very quickly to the signals to acquire and process infor-
mation. Although this method has a higher processing cost than the batch processing
method, the results are displayed immediately and the time saved is maximum.

• Online Processing

It needs an Internet and equipment attached to a computer. In this method, the data
information is processed at the same time that it is received. It is mostly used for
information recording and research.

• Distributed Processing

It is mainly utilized by remote workstations connected to a big server, for example.
Like ATMs, they use the same information and sets of instruction from a fixed software
located at a specific place.

• Multiprocessing

Multiprocessing is the most used type of data processing. It makes use of various avail-
able CPUs that can done tasks parallely within the mainframe, thus increasing efficiency
and throughput.

• Time sharing

This method consists of all users sharing the same CPU, but the time allocated to all
the users might differ. It can be done by providing a terminal for their link to the main
CPU and the time available is calculated by dividing the CPU time between all the
available users as scheduled.

2.5 Data visualization Systems

Nowadays, the technology industry has a lot of real-time data monitoring systems. One of
those examples is the platform used by air traffic control teams. The purpose is to visualize
in real-time where the planes are and where they intend on landing [21]. This is greatly
simplified when the visualization occurs in a map with animations and statistics in real-time.
Being able to quickly check which flights are on time and which are not, it is not only useful
but impressive. These teams try to maximize the overall efficiency of air space, minimizing
the air traffic transfer and coordination costs between the different regional control centres
and implementing better and more direct routes. This will lead to a more safety and security

15

environment to all the logistic operations of an airport. The LISATM (Lisbon Air Traffic
Control Management System) was developed by a NAV Portugal team and it is constantly
changing towards up-to-date technology [22].

The University of Freiburg6 together with geOps7, a geospatial company, have created
an interactive map of the world’s major mass transit systems incorporating over 200 data
feeds, showing the real-time movement of public transportation i.e. buses, trains, trams,
etc. TRAVIC (Transit Visualization Client) provides movement visualization of transit data
published by transit agencies and operators from all over the world. The movements are mostly
based on static schedule data. The real-time data information is included in the visualization
[14].

Figure 2.8: Real-time transit map of central New York in TRAVIC[23].

TRAVIC presents a client implementation that, in combination with a suitable clien-
t/server architecture, can display many thousands of smooth vehicle movements projected
onto a map. TRAVIC makes use of Leaflet8. , an OpenSource JavaScript library for interac-
tive web maps. Leaflet can handle most of the available map tile formats, but is mostly used
with Google Maps or OpenStreetMap tiles.

Two well known business analytics services are from two of the biggest technology com-
panies: Google9 and Microsoft10. The former hosts a platform called Google Analytics11

showcasing statistics on how users are using a certain platform. One of the most common use
cases for using an analytics platform is to get a report of an online store traffic. This feature
allows to monitor how many customers were attracted to the website from which source, like
a campaign or a social media. It is also possible to know the users’ geographic locations, how
many pages are viewed from each location and how many people are actually buying from the
ones that add to the cart. Also, measures from campaigns, events, social media posts’ perfor-
mance can be acquired and if they’re driving traffic to your website or not. These statistics

6https://ad.informatik.uni-freiburg.de/
7https://www.geops.de/
8https://leafletjs.com/
9https://about.google/

10https://www.microsoft.com/
11https://marketingplatform.google.com/about/analytics/

16

can be helpful in analysing the user experience in the store.

Figure 2.9: Example of a Google Analytics Analytics dashboard [24].

Google Analytics tries to focus on colors and other data visualization types for an easier
user experience. Any small company or freelancers, who are not tech-savy, will easily under-
stand and make use of the traffic data on their website. This figure 2.9 shows where the most
users are getting into the website and in which category, users spend the most time. It is
easily readable that the most traffic comes from organic search but people that come from
social media platforms, spend the most time.

The latter platform, Power BI [25], is a similar tool more focused on medium to large
companies that enables users to monitor their business from every device at any time and
shares insights from analysed data. Power BI is a cloud-based business analytics service and
acts as a powerful as well as a flexible tool for connecting with and analyzing a wide variety
of data.

Power BI’s ease of use comes from the fact that it has a drag and drop interface. This fea-
ture helps to perform tasks like sorting, comparing and analyzing, very easily and fast. Power
BI is also compatible with multiple sources, including Excel, SQL Server, and cloud-based
data repositories which makes it an excellent choice for Data Scientists [26]. An innovative
feature of this platform is the ability of building a custom data visualization dashboard on a
drag and drop basis. Any person over viewing this tool, can choose which types of graphs to
use, the amount of data to display and in which position to display it.

2.5.1 The Pipeline of Data Visualization

In the figure below, it is possible to visualize the steps of a typical iterative data visual-
ization pipeline [27].

17

Figure 2.10: The data visualization pipeline [27].

The first step consists of retrieving data information from a specific source. Then, it is
needed to prepare the imported data for visualization, by for example, normalizing all values
and correcting errors. After the "Data Import" and "Data Preparation" steps, the data
needs to be grouped and joined to select the information that it is required to be visualized.
The "Mapping" process is to map the collected data to geometric primitives, like for example,
points and lines, together with their attributes. Finally, it is needed to transform the geometric
data into visual representations, like for example, plain text files, graphs and charts.

2.6 Related Technologies

In pursuance of obtaining a graphical interface displaying updated data in real-time within
the framework of logistics operation, several technologies must be considered. Each technology
must deliver detailed solutions as all important tasks make up a great overall solution. This
section is presented with the necessary technologies to build a real-time holistic solution in
order to provide a set of custom options in a web map framework. This system will give the
real value in used data to issue a user friendly interface with lots of information.

2.6.1 Interactive Map Solutions

In an attempt to feature an easy-to-grasp visual compositing paradigm, interactive map
solutions have to be considered. Apart from the need of displaying a web map, it is also
necessary to show information on top of it, called layers. The layers enable developers and
designers to quickly prototype through composition, while the framework offers comprehensive
data handling and interaction mechanisms for building production-ready analytical solutions.

In terms of scalability, the solution should facilitate visualizing data at scale [28]. This
should be done in a way that the visualization design presents relevant features and also filters
out irrelevant data. The software should handle dynamic data, as to prevent unnecessary data
processing while also providing the flexibility for fine grained controls over the procedure.

Usability is another feature that must be taken into consideration. It is hard to model the
mapping between data and visual representations, especially when the dimension of the domain
is large. A good composition model would help shorten the learning curve for decomposing an
existing visualization design and reconstructing a new design that fits the platform’s needs.
When presented with a data set, one common practice for data visualization is to seek and
apply existing designs for a quick prototyping. Besides the main functionality, the library
should come with standalone examples that allow developers to plug in their data and search
for salient patterns. These examples will not be the final product, but they are useful to start
the exploration process of its technology.

A visualization framework should be a handy tool to facilitate the problem-solving process.
Instead of building a solution with a steep learning curve, it is more desirable if prior knowledge

18

of existing tools can be used. The framework should focus on the points that are not already
solved and be interoperable with other existing solutions [29].

Considering all these points, some solutions that better suit LUGGit’s needs will be referred
below.

2.6.1.1 Deck.gl

Deck.gl12 is a project, that was open sourced in 2016 by the company Uber13, with the
intention of visualizing all on-call cars in a metropolitan area, while monitoring hundreds of
millions of moving points. It was specifically designed for exploring and visualizing data sets at
scale and it lets us extract both historical and real-time insights from large and complex data
sets, allowing us to think in 3D. Now it is a robust WEBGL-powered (Web Graphics Library)
framework being highly customizable. All layers come with flexible APIs to allow program-
matic control of each aspect of the rendering. All core classes such are easily extendable by
the users to address custom use cases [30].

It is composed by an extensive documentation with lots of integrations and layers with
multiple use cases and it is constantly getting new updates and improvements. It can be also
integrated with other open-source mapping platforms, such as Mapbox and Google Maps.

2.6.1.2 Mapbox GL JS

Mapbox GL JS14 is a JavaScript library for interactive, customizable vector maps based
on WebGL. Its performance, real-time styling and interactivity features set the bar for anyone
that wants to build fast and immersive maps on the web.

Layers are built with vector tiles and Mapbox styles. Rendering runs with WebGL so it is
fast, even with a ton of data. Mapbox GL JS provides building blocks to add location features
like maps, search, and navigation into any experience that is required.

This library is part of the cross-platform Mapbox GL ecosystem, which also includes
compatible native SDKs (Software development kit) for applications on Android, iOS, macOS,
Qt, and React Native.

2.6.1.3 Comparison between options

Mapbox GL JS became proprietary as of version 2.0 and cannot be used without accepting
the Mapbox service terms. This move has produced shock waves in the geospatial industry
and many organizations are using Mapbox GL JS directly or using a previous version and
improving from it. Previously open source, Mapbox GL is a great solution, and could be used
with many different data sources, so it became one of the best ways to render basemaps [31].
On the other hand, Deck.gl is supported by Uber and it is open source.

Both projects are maintained and updated regularly with an extensive amount of examples
and detailed documentation. Outside of their official resources, Deck.gl leads with how to start
guides as it is the most popular option. They use WebGL to render dynamically complex data
by composing new visualizations into existing layers.

Despite of their lack of differences, Deck.gl and Mapbox GL JS are frequently used together
to create compelling geospatial visualizations, each providing their unique advantages. They

12https://www.deck.gl/
13https://www.uber.com/
14https://www.mapbox.com/mapbox-gljs

19

serve somewhat different purposes but they do have similar features. Mapbox GL JS usually
serves the purpose to build interactive maps, as Deck.gl is a library for visualizing large data
sets.

2.6.2 Web Map Frameworks

The traditional way of displaying maps in a web browser is by downloading various images
from a server and lay them side by side to make up a map. If any information on the map was
changed, new images had to be downloaded and it was not done on the client. This meant
lots of data transfer from the client and a slow presentation.

The introduction of WebGL15 opens up a whole new world of delivering advanced graphics
content to the end user in a web browser. Using this technology for displaying maps means
only the source data is sent to the web browser where the map gets rendered using the device’s
GPU. This adds a number of benefits such as the ability of changing the map appearance on
the client, adding new features to the map and often less data is transferred. However, it sets
higher expectations of the client device’s hardware as it needs to render the map at a high
enough frame rate to not appear slow and unresponsive [32].

There are some web map frameworks, each one with its own advantages and disadvantages.
A better knowledge of them provides us points to later decide the best one for this project.

2.6.2.1 Mapbox

The startup Mapbox was created as a part of Development Seed (team that creates data
visualization solutions) in order to offer map customization for non-profit customers, in 2010.

Mapbox is the creator and a significant contributor to some open source mapping libraries
and applications, including the Mapbox GL JS JavaScript library, the MBTiles specification,
the TileMill cartography IDE, the Leaflet JavaScript library and the CartoCSS map styling
language and parser.

Some known companies that used this map API are Foursquare, Lonely Planet, Facebook,
the Financial Times, The Weather Channel and Snapchat. Since 2010, it has rapidly expanded
the niche of custom maps, as a response to the limited choice offered by map providers such
as Google Maps.

Developers will have access to comprehensive location information to create and customize
dynamic and static maps, resources offered by the Mapbox tilesets. The styled maps can be
embedded into web applications with the provided JavaScript library or to mobile apps.

The data is taken from open data sources, such as OpenStreetMap and NASA16, and
from purchased proprietary data sources, such as DigitalGlobe. The technology is based on
Node.js17, Mapnik18, GDAL19, and Leaflet20.

Mapbox uses anonymised data from telemetry pings, such as Strava and RunKeeper, to
identify likely missing data in OpenStreetMap with automatic methods, then manually applies
the fixes.

15https://www.khronos.org/webgl/
16https://www.nasa.gov/
17https://nodejs.org/en/
18https://mapnik.org/
19https://gdal.org/
20https://leafletjs.com/

20

2.6.2.2 OpenStreetMap

Open Street Maps21 is an open source project maintained by the OpenStreetMap Com-
munity that provides free editable maps of the whole world. This project’s motivation was to
make a restriction free mapping solution that can be used for commercial and non-commercial
usage without any limitation. It was launched in 2004 by Steve Coast as a non-profit orga-
nization and its data is a perfect alternative compared to other solutions. Open Street Maps
contains almost all the services that most web map frameworks offer with the advantage of
customizability.

2.6.2.3 Google Maps

Google Maps22 is a proud product of Google and is a major part of their services. The
service was publicly launched in 2005 and since then has become a giant product with so many
features, like for example user end API services such as routing, direction, map tiles design
customization and many advanced layers.

The sudden increase of popularity of Google Maps began when people were able to integrate
their map solution in their websites. Now it is common to see almost every single website with
a section of Google Maps showing up their location in the view represented by some markers.

2.6.2.4 Comparison between options

There are many other web map integration APIs available to developers, but these three
represent the most robust and flexible options. Regarding their similarities, they all have a
good core map functionality, having static or dynamic maps. They show accuracy, in-depth
geographic and local data in several views. The navigation displays real-time directions that
account for traffic, route optimization and time of arrival estimation and they all have advanced
search options, with automatic prediction and location-based suggestions. When competing
to each other, the three web map solutions do not show any considerable advantage on these
points.

Google Maps supports many types of data layers which include, for example, earthquakes,
heat maps and fusion tables. It also provides data layers for traffic, transit and bicycle paths.
Although Mapbox does not have as many data layers as the previous solution, the basic ones
such as traffic and satellite are still provided. In OSM (OpenStreetMap) these layers are not
part of the project and can only be fetched from Mapbox or third party services [33].

According to a developer who has had experience with both technologies, the possibility
to combine the framework Mapbox GL JS with Mapbox, provides the best solution in terms
of fast load speeds and performance compared to other solutions. Thanks to its tileset archi-
tecture and the optimization of Mapbox GL JS, it is expected that the integrated web map
loads quickly and renders smoothly, particularly if complex sets of data are used [34].

Despite of new custom styles being rolled out, Google Maps API currently supports limited
options for creating a unique look for an integrated map when compared with the other APIs.
So contrary to Google Maps, there is OpenStreetMap, which is possible to download the whole
solution and edit it without any restriction, due to being open source [33]. Finally, the Mapbox
API provides the functionalities of adding objects, choosing the layers to be displayed and

21https://www.openstreetmap.org/
22https://cloud.google.com/maps-platform/

21

changing colors. Fonts can also be done with a few simple clicks and the resulting map is
always a sight to behold [35].

Mapbox relies on collective mapping, with OpenStreetMap being its major source of data.
While the OSM project has enjoyed remarkable growth over the past decade, its coverage in
regions like India and China still needs some work [35]. Contrarily, Google Maps supplies
excellent global and local data quality. Over the years of its existence, Google Maps has
become the leader of mapping services and collected unfathomable volumes of information on
the local level.

Mapbox OpenStreetMap Google Maps

Data Layers Incorporated
(Not as many)

Incorporated
(Not as many)

Incorporated
(The most complete)

Direction Service Mapbox Directions API Third Party Services Google Direction API

Performance Fastest (when combined
with Mapbox GL JS) Intermediate Slowest

Type API provided by
private company

Collaborative Open
Source Project

API provided by
private company

Map coverage Weak Coverage Less Coverage (like in
United States and Japan) More Coverage

Table 2.1: Comparative Table between Web Map Framework Solutions

2.6.3 Web Interface Frameworks

JavaScript23 started out as a small scripting language in 1995 when the World Wide
Web was still a new invention. When it all started, the requirements for this language were
dynamism, a readily understood syntax and powerful . Now, for the eighth consecutive year,
JavaScript has maintained its stronghold as the most commonly used programming language,
according to a survey made by Stack Overflow24 .

Before JavaScript was invented, web pages were shown with just HTML and CSS which
meant the content was static. For example, if a website provided real-time updates of a sports
event, a user could only see the updated information by refreshing the page. There was not a
possible way of seeing the updates in real-time without having to reload the content manually.
With the creation of JavaScript and its libraries and frameworks, the needed dynamism for
real-time updates was introduced in websites. When changes occur to the underlying data, the
framework renders the complete UI (User Interface) component. The displayed data should
be up-to-date at any point in time. New concepts such as client-side rendering, server-side
rendering and pre rendering came into discussion, changing the way websites are updated.

There are plenty of JavaScript solutions able to solve this problem. In this section, some
of the most popular technologies that deliver reactions to the updated events in real-time are
discussed and later compared.

23https://www.javascript.com/
24https://www.stackoverflow.com/

22

2.6.3.1 Angular

Angular25 was originally created by Google in 2008. Back then it was referenced to as
AngularJS and developed in plain JavaScript. This was at a time when the majority of
websites where based on the multi-page application approach: when a user clicked on a link,
the browser had to retrieve the requested HTML document from the server. Depending on
the internet connection and the responsiveness of the server, it could take a fair amount of
time until the user could view the new page. Gradually user devices increased in overall
performance so that application logic could be executed in the browser. This led to the
approach of single-page applications in many websites [36].

Angular, like many other frameworks, is component-based. This means that components
are the main building blocks and they can display information, render templates and perform
actions on data. The best practice suggests that components consist of three separate files: a
HTML file for the template, a CSS file for the styling and a TypeScript26 file for the controlling.
By following this approach, a separation of concerns is implemented and it provides a more
organized project structure and code [37].

2.6.3.2 React

React27 is a JavaScript library for building user interfaces developed by Facebook. It
earned a lot of popularity since its launch in 2013 being used by many websites like Net-
flix28, Instagram29, Airbnb30, among many others. While React is often connected to web
development, its core (the react package) is a standalone library and can be used in a variety
of scenarios including native applications (iOS and Android). Only in combination with the
react-dom, UIs for the web can be developed. JavaScript is an inherent part of the framework
because it is the main development language [36].

The core of React is made of components and their composition. The overall goal is to
transform a certain state of the application to a view which can be displayed in the browser.

2.6.3.3 Vue

Vue.js31 is a front-end library written in JavaScript. This library allows an easily creation
of web applications based on Model-View-ViewModel. Every application using the frame-
work Vue.js consists of components that contain JavaScript code to be executed within the
component, CSS style and HTML code that make the view layer.

Working with Vue.js begins with the creation of a new instance of Vue with the help of the
constructor. This allows to visualize the changes that occur in a given component. Then, the
Vue instance takes a template variable that will be used to get the view to render. Components,
which are essentially parts of the user interface, help develop basic HTML elements and
implement reusable code [38].

25https://www.angular.io/
26https://www.typescriptlang.org/
27https://www.reactjs.org/
28https://www.netflix.com/
29https://www.instagram.com/
30https://www.airbnb.com/
31https://www.vuejs.org/

23

Vue features a reactivity system that uses plain JavaScript objects and optimized re-
rendering. Each component keeps track of its reactive dependencies during its render, so the
system knows precisely when to re-render and which components to re-render.

Components extend basic HTML elements to encapsulate reusable code. At a high level,
components are custom elements to which the Vue’s compiler attaches behavior. In Vue, a
component is essentially a Vue instance with pre-defined options.

2.6.3.4 Comparison between options

The solutions shown above were selected due to being the most used between the com-
munity in development and companies required to implement similar use cases. Nonetheless,
other viable options were taken into consideration but they were not worth to pursue further.
A benchmark comparison between these solutionswas made in great detail in 2020 [39] and
a detailed comparison with compelling points between the referred frameworks was made in
2018 [36].

Regarding the differences of these frameworks, they do not differ very much as all of them
are component based, which is already a relevant part of their overall philosophy. However,
there are also some differences that can be subjective and it depends on the developer pref-
erence. These differences include strategies concerning file concepts (single versus multiple)
or the main development language. While Vue is flexible, offering developers more than one
way to write their code, Angular is more restrictive. Its official resources as well as most
of the available tutorials and code snippets require the usage of TypeScript. React is also
quite restrictive by enforcing the use of JSX (JavaScript XML) for developing even though it
definitely is the most diverse approach of all three frameworks as JSX implies that HTML is
strongly interconnected with JavaScript [36].

Vue and Angular share a relatively similar approach to structuring their components.
They split up template (HTML), style (CSS) and logic (JS) although both offer the option
to handle these parts either in one file or in three separate. The preference in Angular is the
separation while Vue emphasises the single file approach even offering a special file extension
for this purpose. Single file components have the advantage as it is easier for the developer
to write components ensuring simplicity and re-usability. React focuses on having a single file
architecture.

One important thing that is always mentioned when comparing these technologies is the
classification. While Angular is the only fully-featured technology in this comparison which it
is called a framework, React and Vue are just view libraries that are often named in the same
contexts as frameworks because they offer best practices for a complete development setup.
On one hand, while Angular provides a full set of homogeneous features and helpful strategies
for development, it also leaves less room for own decisions. When a team or a company tends
to adapt this framework, it means that a lot of mindset has to be adjusted to cover Angular’s
structure. On the other hand, React and Vue are very liberal and flexible. They can be
used in various scenarios and technology can only be integrated to handle the view part of
an application, for example. This freedom of choice, however, also requires a high level of
responsibility and experience from the project leaders. All decisions have to be made on an
elaborate basis and accounting for future proof [36].

Regarding the support topic, it is also important to analyze who supports these technolo-
gies. React is controlled by Facebook and Angular is controlled by Google. Despite being
reassuring when companies are financially supporting a certain software, it has always to be

24

considered that these companies are still based on profit which, of course, impacts their de-
cision making. The project of Vue is completely supported by the open source community
where the developers’ requests and concerns have a higher chance of aligning with the users.
Notwithstanding that it can be a great community, the risk of failure is higher in comparison
with larger companies.

In terms of accessibility, Vue has a small learning curve being the easiest among the
three. It focuses on well proven practices and offers a great documentation online which is
co-developed with the community. React is easy to adapt for developers with a background
in or an extensive knowledge of the JavaScript language as almost everything is adjusted to
using JSX. Furthermore, the state management especially for larger projects can have a high
complexity. Angular has the steepest learning curve among the discussed frameworks [36].

When talking about front-end development, performance is influential. However, it is very
hard to find solutions that will work for every situation only based on speed. According
to Levlin [39] in his thesis and to Camargos, Coelho, Aramuni, et al. [40], React has few
weaknesses and performed consistently well in the benchmarks. From his benchmarks, React
was the best performing of the three frameworks referred.

Angular React Vue

Languages TypeScript
(Restrictive)

JSX(similar to HTML)
(Flexible)

HTML, JavaScript
(Flexible)

Structure
Preference on multiple file:
template (HTML), style
(CSS) and logic (JS)

Single file Preference on single
file (.vue)

Support TypeScript
(Restrictive)

JSX(similar to HTML)
(Flexible)

HTML, JavaScript
(Flexible)

Type JavaScript Framework Open Source
JavaScript Library

Progressive JavaScript
Framework

Easy to learn Difficult Moderate Easy
Performance Slowest Fastest Intermediate

Table 2.2: Comparative Table between Web Interface Framework Solutions

25

26

Chapter 3

Solution Proposal and System Design

After reviewing the state of the art regarding several data visualization solutions in real-
time, it is expected with this dissertation to deliver the user a platform that envisions the data
visualization in real-time with the most accurate results and also with a user-friendly design
so that the user can quickly understand and observe the outcome.

The key to a successful project is a proper planning, design, and a thorough understanding
of the requirements, from existing conditions to end goals, and afterward, proper planning and
design. Consequently, this chapter will focus on all these topics, including requirements (both
functional and non-functional), use cases, architecture, and design.

3.1 Solution Proposal

The solution proposal for this dissertation starts with planning the main use cases that
will be used in the system design. Then, the system architecture will be designed with all the
technologies involved and how they will be connected. The technologies that will be used will
be the ones that are more efficient and with the outcome as most accurate as possible.

Before the platform development, there will be designed mockups for the various function-
alities that the platform will include.

After that, the platform will start to be developed and reviewed with various iterations.
It will be developed a platform to manage and visualize all data in real-time. It was decided
to take the approach of building a "dashboard" type platform. This way, the user has easier
control over options in a sidebar menu while continuing to see the main map.

Being able to receive real-time occurrences can genuinely make a difference when talking
about hard decisions. For instance, if a customer requests a LUGGit’s service, he expects it to
be executed reasonably fast, but if there are no Keepers around that area, it can take longer
than usual. In this situation, the LUGGit’s operation team will take action and contact the
fastest Keeper to take the Request.

After the platform development, various tests will be done in order to have a robust and
precise real-time platform.

3.2 Stakeholder’s Requirements

There are some important requirements defined by the LUGGit’s head of operations for
this project, like for example, the possibility of a simple visualization in real time of the various

27

services and the access of their data information. Some functionalities that are required are the
visualization of the Keepers in real time on the map, the delivery and the collection services,
the Keeper’s routes, the location of the emergent services (Drafts) and the response’s data
information in real time (availability and collection time). It is also important to have a search
functionality by service status. Some other functionalities that are needed to develop in this
project are the possibility of visualizing all the Keeper’s data information when clicking on
him or her. The data information of the Keeper that needs to be shown is the name, entity,
vehicle’s availability, affected service, affected time and contact line. When clicking on the
User (on the delivery or collection point), it should be possible to view its data information,
like the name, affected service, affected Keeper, estimated time of conclusion and contact
line. When clicking on the Trajectory, it should be shown the data information of the time
and distance of the route and an estimate if the route will be successfully fulfilled or not.
Another important requirements are the creation of alerts that allow anticipate problems,
such as services without responses, services with responses superior to N, delayed responses
and the possibility of Keepers being out of time or out of the route.

3.3 Use Cases

Use cases are a representation of how users will perform tasks on the platform. It will be
illustrated in the subsections below the various actions that users can perform.

Use cases are beneficial to this project since they clarify how the system should act while
also helping to discuss what may go wrong. They are the first step of the system design,
presenting a set of objectives, which may be used to calculate the system’s complexity. In this
case, LUGGit can then negotiate which functionalities become requirements and are built.

3.3.1 General Use Case

Figure 3.1: General Use Case

This use case describes what all the following use cases illustrate, which are based on the set
of objectives discussed to build the platform. The user can choose which elements (Keepers,
Drafts, Requests and Operation Centers) to be displayed on the map. He can also check
information about any element, through a platform’s action, allowing it to happen at any time.
The user can choose what elements to be displayed on the map according to its Operators,
namely Keepers and Operation Centers. Finally, the user receives a notification when a new
Draft or Request occurs, which allows him to click on it displaying its corresponding locations.

28

3.3.2 Use Case 1

Figure 3.2: Use Case 1 - Filter out elements in the map view.

The user can choose which and how many Keepers, Operation Centers, Requests, or Drafts
to display on the map. By doing so, he has the instant ability to see their respective locations
and IDs (acro_list). The user is allowed to do this at any moment.

29

3.3.3 Use Case 2

Figure 3.3: Use Case 2 - View elements’ information (Keepers, Operation Centers, Requests
and Drafts).

The use case 2 describes the platform user’s action to know more about any element in
the map view. With a mouse hover over each element, the user will see a detailed popup with
short information. Upon mouse click event, the detailed information popup appears on the left
side of the dashboard. The user can then interact with clickable elements to take advantage
of dynamic interaction buttons.

30

3.3.4 Use Case 3

Figure 3.4: Use Case 3 - Filter Keepers and Operation Centers by Operators.

The user can choose certain operators allowing Keepers belonging to that Operator to be
displayed in the map highlighted by a specific color. Excluding an operator means that their
associated operation centers and Keepers will no longer be displayed on the map.

3.3.5 Use Case 4

Figure 3.5: Use Case 4 - View Notification of new Drafts and Requests.

Use case 4 describes that whenever a new Draft or Request occurs, as explained in section
1.2, a popup notification appears to warn the user of its occurrence. Once the user is notified,
this notification can lead to the Draft/Request’s location.

3.4 Non-Functional Requirements

Non-functional Requirements define system attributes such as security, reliability, perfor-
mance, maintainability, scalability, and usability. They serve as constraints or restrictions on

31

the design of the system across the different backlogs [41].
These are the non-functional requirements of this project, considering the structure fol-

lowed by LUGGit:

1. Availability - The platform can be used at any time of the day. The application will not
be available in situations like unplanned system downtime and updates.

2. Redundancy - In the event of internal errors, the service must recover from them and
continue their execution, providing the reason for its occurrence.

3. Security - The service should only allow authorized users to use it, and all communica-
tions must be made using network protocols that allow secure communication.

4. Performance - The system must have low response times at the loading stage of the
website, and all the system features load time should not be more than one second
for users. The overall platform must be optimized to prioritize performance as the
smooth rendering of the map and the user’s computer hardware can limit its elements.
As the number of requests, Keepers, and Drafts grows, the platform must sustain the
performance effectively without noticing any hiccups.

5. Scalability - The service must be scalable to match the speed of response expected
(real-time), regardless of the amount of data that needs to be displayed.

6. Usability - The application interface has to be user-friendly and easy to use by any user,
independent of its personal or professional background.

7. Documentation and Versioning - The project must provide documentation for the set
of features and endpoints for easier use and understanding. It should also implement a
sound versioning system.

3.5 System Architecture Design

Since LUGGit’s prominent global architecture is implemented with the micro-service style,
it was decided to follow this style for the system architecture implementation. This architec-
ture style has a big advantage, as it is a service that can be built independently and the
communication between blocks is apart.

This architectural style is an approach that structures an application as a highly maintain-
able collection, independently deployable, and loosely coupled. It brings many advantages to
this project, such as each service being independent of each other and the testability, deploy-
ability, and maintainability are more straightforward than other architectures. They can be
used in other projects without the need for many configurations. In Figure 3.6, it is presented
the global architecture of the platform proposed to be implemented and it is divided into
several components.

32

Figure 3.6: High-Level System Architecture.

The system architecture represents the entities in a typical workflow that are intercon-
nected. In Figure 3.6, it is possible to see two components on the top, which are going to be
developed in this project. The Holistic Platform Component retrieves information from the
Data Processing Component, in order to be displayed to its user. The latter communicates
to two entities: the first being NATS which consequently retrieves data from LUGGit’s APIs
and, the second being the company’s Backend APIs directly. Finally, the LUGGit’s Backend
APIs get information from its internal data sources, which is outside of this project’s scope.

The Data Processing Component is intended to be the core of data. It is responsible for
receiving events and data from LUGGit’s internal APIs, storing it in a caching system and
then, transmitting it into the dashboard. This cached database provides data as soon as the
dashboard is accessed to avoid slowdowns on startup, which will be explained in detail in the
next chapter.

The other micro-service, represented in the Figure 3.6 as Holistic Platform Component,
constitutes the UI platform that the user is going to use. This platform can listen to new
events sent in real-time, process them into data objects, and display them. This service is
vital since it turns raw data into visual elements that humans can easily recognize.

Furthermore, it will be discussed the characteristics of each component. Adding up the
establishment of communication between these two components, we can then recognize a
complete system that can process and display data.

33

3.5.1 Data Processing Component

This section will perform a detailed presentation on a typical service, presenting its inner
structure, functional requirements, and connections with other services. This component,
which was named as Data Processing Component, is the service that retrieves data from
LUGGit’s APIs and sends it to external sources while storing it. Therefore, it is a service
to abstract all the data flow between services and the data coming from LUGGit’s APIs.
Whenever a service inside or outside of this project’s context needs data from any operations’
elements, it only needs to request it from the Data Processing component.

The component will retrieve real-time data, and by doing so, also handles the storage of
information in the database. It is connected to LUGGit’s APIs infrastructure and this always-
on connection is a gateway for information to be streamed. In such a manner, this module
is always listening to new potential data that might arrive, making it reliable for real-time
updates. It then proceeds to store it in the database and send a new update to the clients
who always listen for new data.

This approach creates a more generic service with great flexibility, thus improving data
flow performance using a cache, data normalization and Publish/Subscribe scenarios.

3.5.1.1 Functional Requirements

1. The component must provide an accessible API through a URL.

2. The component must provide six API endpoints to obtain the lists of elements’ data
stored in the cache system. Each endpoint concerns about:

• Logistic Centers, more specifically their IDs, names, locations and Operator IDs;
• Operation Areas, including their IDs, names, and polygon locations form the avail-

able operation area in the map;
• Operators, more specifically, their IDs, names, emails, phone numbers, list of Keep-

ers and the list of Logistic Centers;
• Keepers, specifically their IDs, names, locations, requests’ list, luggage available ca-

pacity, rating, status, operator IDs, phone numbers, license plate numbers, brands,
models and schedules;

• Drafts, specifically their IDs, customer names, start and end times/locations, dis-
tance and luggage occupation in the automobile;

• Requests, with the same information of Drafts also adding their designated Logistic
Center ID, Keeper ID and status.

3. The service must retrieve data from LUGGit’s API, check for errors and react accord-
ingly. The data retrieval includes two forms: one that expects an event to arrive and is
always listening, and another that requests data from an endpoint when required;

4. The service must provide an event-driven system in order to retrieve real-time data. A
new event is sent from LUGGit’s API to this service every time a new attribute changes.
This event-based communication occurs when:

• a new Keeper comes online, or when one of its attributes change, like location,
status, requests list, capacity or schedule;

34

• a new Draft is submitted;

• a new Request is submitted, or when one of its attributes change, like Keeper ID,
status or any other details.

5. The service must be able to store data seemingly in a cached system. This means that
all data arriving from LUGGit’s API is stored in a database, and after a predetermined
amount of time, data is removed;

6. The service must send data through event-based communication as soon as it receives
such information. This allows for a fast information transfer between LUGGit’s servers
and the platform component;

7. Each endpoint must have security and authentication protocols implemented to provide
extra control on who can access these endpoints.

3.5.1.2 Internal Architecture

Figure 3.7: Data Processing Component Architecture

This section describes the internal architecture of the Data Processing Component. For
an improved understanding of the diagram illustrated in the Figure 3.7, a numbered list
representing each interaction will be presented below:

1. Subscribe Resource: It is the process of subscribing to a specific subject, representing
the data produced by a resource. This process is initiated as soon as the Data Processing
Component is started, and it is always running, waiting for new events to arrive;

2. Publish Event: The LUGGit’s container generates a publishing process, which will send
data to a previously defined message subject;

3. Process Data: It represents the data normalization and determining which data will be
stored and which is helpful to send as an event;

35

4. Publish Event: Whenever the component receives new events, it will notify all clients
and deliver the new content to them;

5. Store Data: For caching purposes, the new data will be stored in a Redis database using
the RedisJSON module.

3.5.2 Holistic Platform Component

The Holistic Platform Component is the platform that the user will interact with, so it
needs the most focus in the entire project. This component has built-in features to make
the task of visualizing real-time data easier for the user. These features can bridge the gap
between raw data and elements understood by the human eye. Instead of having a table with
raw data, this interface comprises a map that displays elements representing the real-world
scenario.

Just like the data processing component, this service is always listening for new events and
it updates them in real-time. Then, data is automatically displayed when is recently updated.
For instance, when a new Keeper’s location is received, react updates it in the correct object
using its ID, and it is instantly refreshed in the map view. Regarding data that is not updated
as often, the platform sends a REpresentational State Transfer (REST) request of all the
elements it needs on boot. This is done without many bottlenecks since the data is stored in
a cache, making it faster to retrieve.

3.5.2.1 Functional Requirements

The platform must:

1. Be accessible through a Uniform Resource Locator (URL).

2. Lay out a map view of the operation areas.

3. Provide a map legend of all the present elements.

4. Include Keepers, Operation Centers, Drafts and Requests’ real-time location with their
start and destination points.

5. Show an optional side panel with detailed information about elements that are clicked
on the map. The detailed information is dynamic and can be clickable, leading to other
elements’ side panel.

6. Show Keepers’ activity information, including their contact, name, rating, and active
Requests.

7. Real-time information about Drafts’ activity, including their customer name, rating,
status, and pending Requests.

8. Illustrate Requests’ activity information, including their contact, designated Keeper and
their status.

9. Show information about Operation Centers’ activity, including their contact, designated
Operator, status, and pending Requests.

36

10. Present Operators’ activity information, including their contact, Keepers, Operation
Centers and active Requests.

11. Filter in real-time what is displayed in the map, specifically Operators, Operation Cen-
ters, Keepers, Requests and Drafts.

3.5.2.2 Internal Architecture

The diagram illustrated in Figure 3.8 is the internal architecture of the Holistic Platform
Component and has a numbered list representing each interaction that will be presented below:

1. Request Resources: As soon as the service boots up, it will request all the initial
resources to populate the map with elements. This is done with REST protocol requests to
the Data Processing Component.

2. Update application state: It is the process of creating new elements and their according
states with the requested data in the previous step.

3. Access URL: This is where the user accesses the website to use it. Some data is already
present since some elements’ state was already updated.

Display website: This item is not numbered because after the user accesses the platform
through an URL, the website is constantly being displayed.

5. Subscribe Resource: It represents the moment after the user has opened the platform
and in which the service subscribes to new data changes.

6. Update application state: Once again, this is updating the elements’ states when new
data is received. Whenever the component is alerted that new events were published, it will
process data and translate it into the existing objects already defined in step 2.

Figure 3.8: Holistic Platform Component Architecture

3.6 Mockups

The first steps of the solution proposal for this dissertation consists of the planning of the
main use cases and the design of the mockups for the various functionalities that the platform
will include.

37

Planning the main use cases that will be used in the system design and following with the
mockups are important steps for the platform development. It is part of the system design
work to investigate and prototype the UI concepts.

The objective is to interpret the defined use cases and the company’s requirements to come
up with mockups. These will bring value later on in the development process.

As a holistic logistics platform for LUGGit’s operations, it will control several Keepers,
Drafts, Requests, Operation Centers and Operators. It will be possible to search, add and
remove from the view all of these elements and see more real-time information about them.
Therefore, it is essential to keep all these interfaces easily accessible without compromising
usability.

The mockups that are illustrated and explained in the subsections below are the first
designed mockups, which were later sent to the company’s team and after some reviews, there
were made some changes.

3.6.1 Mockup 1 - First Landing Page

The mockup shown in Figure 3.9, was the first one to be made and it is possible to visualize
that the center screen has a map with several elements inside it. It is possible to see multiple
car icons that represent the Keepers and their real-time locations and three markers: the
green one represents the pickup point of a request, the red one is the drop off location and
the purple represents the location where luggage is stored. This final marker happens to be in
an Operation Center, meaning that luggage is stored in that location. Then, a small popup
above a Keeper shows some information about it, like its name, ID, status, Operator and
Operator ID. Finally, there are three menus with options. The top bar has several options to
filter Requests, Keepers, status and Operators, but it was later adjusted to a different location
to improve usability. The sidebar menu is just displaying some information about Drafts and
Requests and the bottom menu has different toggles about additional features to the map.

Figure 3.9: Mockup 1 - Landing page

3.6.2 Mockup 2 - Operation Areas Page

The second mockup represented in Figure 3.10 already shows a different location for the
search and the filter buttons (left side), which already improves the user’s effectiveness and
engagement in finding these options. This mockup has the primary purpose of demonstrating

38

the splitting Operation Areas in the screen. This way, the user can pay attention to two cities
simultaneously.

Figure 3.10: Mockup 2 - Multiple Operation Areas at the same time

3.6.3 Mockup 3 - Keeper’s Routes

In Mockup 3, in Figure 3.11, we can see what happens after a user clicks on a Keeper, in
this case, Vítor. The Keepers that belong to the same Operator are highlighted with the same
colour as the one clicked, and just like in the first mockup, there is an information popup on
top of the car icon.

The main differences are the right sidebar that shows information about this particular
Operator and the route this Keeper is taking at the moment. We can easily see that Vítor is
going to the Request’s drop off location and which route he will take.

Figure 3.11: Mockup 3 - Keeper’s Route and Operator’s Information

3.6.4 Mockup 4 - Operators Filtering

The mockup in Figure 3.12 has two active toggles: the Operations Centers and Operators
(by colours). This means, respectively, that Operation Centers are shown on the map and
that Keepers are coloured according to which Operator is active.

39

On the left sidebar menu, there is also the option to choose which Operators to display on
the map, giving a greater sense of customization.

Each Operator is defined by a colour on the right sidebar, allowing a quick glimpse of how
many Keepers by Operator and where they are on the map.

Figure 3.12: Mockup 4 - Highlight Operators with different colors

3.6.5 Mockup 5 - Additional features

The mockup in Figure 3.13 shows that only one toggle option is active, and it is the weather
one. This is intended to check if there are more delays in a particular Operation Area due to
the weather. This is where the map has more precipitation and less since there is a legend
map with colour on the right side.

Figure 3.13: Mockup 5 - Additional feature of Weather

3.6.6 Mockup 6 - Landing Page final design

The final mockup in Figure 3.14 is the closest to the final version of the dashboard. It has a
top bar menu with three possible pages within the website: "Live Map", "Requests List", and
"Analytics", notifications, settings and search icons. Here, the options menu is on the right
side with the drop-down form for each option. It is possible to hide/show whatever elements
the user wants without leaving the page or opening a popup. The additional features toggle

40

menu is now on the bottom since it is not as important as all the other primary attributes.
The page seems much more organized and with a more appealing design than the previous
mockups.

A significant difference is the presence of notifications. They appear on the top right side
of the map and with a different colour, depending on if it is a Request or a Draft.

Figure 3.14: Mockup 6 - Notifications and Menus more defined

The design of the mockups was a very significant step for the platform development. It
was designed the visual concept for the main functionalities that will be developed, but also
with a user-friendly visual design.

41

42

Chapter 4

Development

This chapter intends to show the development of the solution proposal that was described
in the previous chapter. This part will discuss the development process and its technical ap-
proach, focusing on the technologies used, the required tools, and the solution’s functionalities.
It is important to note that this implementation was carried out in a business environment.
The paths to follow in the development of the solution were made in partnership with the
company in question. Due to its experience in developing web applications, it was valuable to
choose the best tools and technologies to develop and conceptualize the product itself.

4.1 Development Requirements

This section will cover technologies that were used to help address the workflow and
objectives to be reached. I was given the freedom of choice to pick the technologies I figured
that were best suited to find a solution to the problem. As this dissertation has to be in the
company’s context, some technologies were already integrated with the company’s solutions.

Since most of these technologies were not taught in my academic course, I found in this
dissertation an opportunity to be great for my personal growth as a developer. In addition to
improving my skills and experience, what led me choosing these technologies, in particular,
was their versatility.

4.1.1 Development Environment

The development environment chosen was Visual Studio Code1, developed by Microsoft.
This open-source editor is intended to be used with multiple languages and it was used on a
Linux operating system.

1https://code.visualstudio.com/

43

Figure 4.1: Development Environment with Visual Studio Code.

4.1.2 Planning, Project Management and Versioning

Clickup2 was the tool used to provide task management and project planning. It is LUG-
Git’s primary tool for project management, and as such, this project also took part in this
platform. LUGGit follows a specific structure in development management, being that for
each project is created a new section. In each section, it is possible to add new tasks and their
priority and assigned workers. As it is possible to see in the example of this project’s Clickup
page in Figure 4.2, there is also a deadline for each task and respective progress.

Figure 4.2: Clickup’s Dashboard with this project’s tasks.

For the storage of codebase, it was used GitLab3 for the two different components. GitLab
is an open source web-based tool that provides a Git repository manager. Git4 is a free
and open source distributed version control system and it was used for versioning control
of both codebases. Each version is submitted using a branch, representing an independent

2https://clickup.com/
3https://gitlab.com/
4https://git-scm.com/

44

line of development. Branches modifications are recorded in the history using commits, each
following the Conventional Commits5 method, being a standard followed by the company for
other projects. In Figure 4.3, there is an example of GitLab’s commits for this project.

Figure 4.3: GitLab’s versioning system.

4.1.3 Local Code Testing and Development

After developing the Holistic Platform Component and the Data Processing Component,
each executed in its own server, there was a need to integrate the communication between these
components and the database, locally. This was done using Docker Compose6, a tool that
allows the instantiation of a stack of programs, using Docker as a virtualization tool. By this
way, the installation, the configuration and the integration of external software components
were easier to handle all at once.

5https://www.conventionalcommits.org/en/v1.0.0/
6https://docs.docker.com/compose/

45

Figure 4.4: Docker compose file example.

4.1.4 Deployment

After talking about how each component was built and its features, this section will men-
tion how the deployment process was done. The initial deployment strategy, throughout the
development process, was to run everything locally. Firstly, running the Holistic Platform
Component’s server and, after that, the Data Processing Component’s server and docker-
compose with NATS and Resgate containers for the communication between the two.

On an intermediate stage of this project, there was the need to facilitate the continuous
integration and deployment of all software, thus deciding to automate this process using
GitLab CI/CD7.

This tool provides a way of compiling, packaging, testing, and deploying the application,
all in a single pipeline, and it is activated when a code change occurs. These tasks are called
stages, and if one of them fails, the pipeline does not proceed and outputs an error.

After the pipeline process, the application is compiled into a Docker image to be executed
in a container.

The rest of the configuration is composed of a set of YAML files, which are compiled by
Helm8 and deployed on Google Kubernetes Engine9.

This way, all the deployment process is automated and executed in LUGGit’s servers.

7https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
8https://helm.sh/
9https://cloud.google.com/kubernetes-engine

46

4.2 Used Technologies

In this section, it will be mentioned which technologies were used and why they were the
better options compared to others.

From now on, there will be some technological terminology referred throughout this chap-
ter. The terms frontend and backend refer to the separation of concerns between the presenta-
tion layer (frontend), and the data access layer (backend) of a piece of software. An endpoint
is an interface exposed by a communication channel, in order to provide data transfer when
requested.

TypeScript10 was the chosen language to develop both the frontend and the backend of this
project. This decision was carried out because TypeScript is more reliable, easier to refactor
and because the vast majority of LUGGit’s projects were written in this language, allowing
better supervision from my mentors and coherency throughout the codebase.

For the map solution, Mapbox was used as it provided long-term interoperability between
the project’s technologies and the tools needed for the platform. In parallel to this, the
technology used to render interactive maps was Mapbox GL JS.

Other technologies used in web development were Next.js11 and Reactjs12, which allow the
website to load faster.

Regarding the backend part of the solution, Koajs13 was the web framework used to provide
endpoints, processing data, storing data, and sending data in real-time.

The technology used to store data from the backend was Redis14. Redis implements an
in-memory cache to decrease data access latency and it is supported by an extensive and
helpful documentation.

The communication throughout the entire project was established using two technolo-
gies: NATS15 and Resgate16. These technologies were used to provide fast and reliable
real-time communication between the backend and the frontend was necessary. These are
well-established projects among the developer communities.

4.2.1 TypeScript

TypeScript is an open source programming language developed and maintained by Mi-
crosoft that first appeared in 2012. It is seen as a strict syntactical extension of JavaScript,
by being transcompiled to the latter. The source code of a program written in TypeScript is
converted to an equivalent source code in JavaScript [42]. This attribute makes all existing
JavaScript programs valid TypeScript programs.

TypeScript may be used to develop JavaScript applications for both client-side and server-
side execution (as with Node.js). This allowed a single programming language used in the two
different scenarios of this dissertation, backend and frontend.

While JavaScript is a dynamically typed language, which means that types are checked,
and datatype errors are spotted only at the runtime, TypeScript introduces optional strong
static typing: once declared, a variable does not change its type and can take only specific

10https://www.typescriptlang.org/
11https://nextjs.org/
12https://reactjs.org/
13https://koajs.com/
14https://redis.io/
15https://nats.io/
16https://resgate.io/

47

values. The compiler alerts developers to type-related mistakes, so they have no opportunity
to hit the production phase[43]. This results in less error-prone code and better performance
during execution. Actually, a study shows that 15% of all JavaScript bugs can be detected by
TypeScript [44].

According to all the advantages mentioned above and maintaining a bigger coherency
between all the frontend projects within the company, this language was chosen to develop
the micro-services.

4.2.2 Next.js

Next.js is an open-source React frontend development web framework created by Vercel17

and is now maintained by the community. It runs on top of Node.js18 and provides func-
tionalities such as server-side rendering and generating static websites for React-based web
applications, allowing developers to create static and dynamic websites quickly.

Next.js is one of several recommended toolkits available when starting a new React app,
all of which provide a layer of abstraction to aid in everyday tasks. However, the downside
of traditional React apps is that the rendering is all done in the client-side browser. At the
same time, Next.js is used to extend this functionality to include applications rendered on the
server-side. This technology is clever enough to load the JavaScript and CSS needed for any
given page. This makes for much faster page loading times, as a user’s browser does not have
to download unnecessary Javascript and CSS. This increases performance as there is less for
the user’s browser to download, and the user benefits from seeing the page content quicker
[45].

4.2.3 Mapbox

Mapbox is one of the largest providers of custom-designed maps for websites and mobile
apps, and this service is used by well-known delivery and transportation companies.

Mapbox uses openly available data to build its platform and supports a community of vol-
unteer mappers, who help provide information and build data about locations. The platform
uses OpenStreetMap19 as the base map and lets developers add different markers, lines, and
polygons, as well as layers from external sources (in GeoJSON, GPX, and other formats)[46].
This led to an easier decision, as this technology provided the necessary tools to develop the
intended solution of this dissertation.

Mapbox is a good tool when it comes to mapping out clean and concise data with a
medium-to-high level of complexity. Plus, its maps are pleasantly appealing. This mapping
approach seemed to be the best to use for these reasons.

4.2.4 Mapbox GL JS

Mapbox GL JS is a JavaScript library that uses WebGL20 to render interactive maps from
vector tiles and Mapbox styles. It is part of the Mapbox GL ecosystem[47].

It has a real-time styling and it has many interactivity features that makes this library
with a very good performance.

17https://vercel.com/
18https://nodejs.org/en/
19https://www.openstreetmap.org/
20https://get.webgl.org/

48

4.2.5 React

As already explained in chapter 2, React (also known as React.js or ReactJS) is an
open-source, frontend JavaScript library for building user interfaces or UI components. It
is component-based, meaning that each component manages its state and, together, builds a
more complex UI. When we look at a webpage entirely built using React, we can see the UI
is divided into multiple components, making the code easier to debug. For instance, having a
navigation bar, sidebar, and a map as single components, their properties and functions are
also separated.

React’s main advantage is being declarative because it is possible to write the code, and
the technology will efficiently update and render the right components when the data changes.

Also, it is essential to note that it is the most popular technology among frontend devel-
opers, and many LUGGit’s projects were developed with React.

4.2.6 Koajs

Koa.js is a minimal and flexible Node.js web application framework that provides a robust
set of features for web and mobile applications. It is an open source framework developed and
maintained by the creators of Express.js, currently the most popular node web framework.

What differentiates Koa from other Node.js frameworks is that it has a simplified use, which
is crucial as it serves as the middleware between LUGGit API and the frontend dashboard.
Koa.js both simplifies and improves error handling by using middleware more effectively. The
framework’s built-in catchall for errors assists developers in avoiding website crashes. Even
without writing additional code, programmers may report errors with a simple ’try/catch’
command. Developers can also configure error handling in Koa.js by simply modifying the
default setting [48].

Koa further allows developers to encapsulate the response and request objects into a sin-
gle object using Context. The unified object helps developers build web applications and
APIs more efficiently by using many helpful methods and accessors. When developing with
JavaScript, there is even the option to create a context per request and refer to the context
as the receiver in the middleware [49].

After mentioning these points, we can see that this framework has many advantages and
it is a good framework to develop the server to make everything run smoothly, from the
endpoints to the real-time publish-subscribe messaging models.

4.2.7 Redis

Redis, which stands for Remote Dictionary Server, is a fast, open-source, in-memory key-
value data store for use as a database, cache, message broker, and queue.

All Redis data resides in memory, in contrast to databases that store data on disk. In-
memory data stores avoid seeking time delays and access data in microseconds by eliminating
the need to access disks. Redis features versatile data structures, high availability, transac-
tions, on-disk persistence, and cluster support, making it simpler to build real-time internet-
scale apps.

I choose to use Redis because it simplifies code by allowing fewer lines of code to store,
access, and use data in applications. For example, if an application has data stored in a data
structure and there is the need to store it in a data store, the Redis hash data structure
stores the data accurately. A similar task on a data store with no hash data structures would

49

require many lines of code to convert from one format to another. Redis comes with native
data structures and many options to manipulate and interact with data. Over a hundred
open source clients are available for Redis developers, and supported languages include Java,
Python, C, C++, C#, JavaScript, Node.js, Ruby, R, Go, and many others [50].

4.2.8 NATS

NATS is an open-source messaging system developed and supported by Synadia21. It
is a simple, secure and performant communications system for digital systems, services and
devices.

Client libraries to interface with the server are available for dozens of major programming
languages. NATS has many concepts and functionalities, but the main one implemented in
this project is the publish-subscribe.

Figure 4.5: Architecture of publish-subscribe messaging model [51].

As we can see in the figure 4.5, this publish-subscribe message distribution model consists
of a publisher sending a message on a subject and an active subscriber listening on that
subject receives the message. This is an example of a NATS messaging model, among others
available. The core design principles of NATS are performance, scalability and ease of use
[52]. Therefore, it is perfect for a real-time event-driven solution where data must be instantly
available to be displayed.

4.2.9 Resgate

Resgate is a real-time API gateway that allows synchronization between all application
clients. Clients will connect to Resgate, using either HTTP or WebSocket, to make requests.
These requests are sent to the micro-services that will serve each request over the NATS server,
and Resgate will keep track of which resource each client has requested. Whenever there is a
change to the data, the responsible micro-service sends an event. Resgate will use this event
to update its cache and ensure each subscribing client is kept up-to-date.

4.3 System Development

It was decided to divide this project into two components for the reasons previously men-
tioned, one to gather and process data and the other to display the data visually in a web
dashboard. Also, having separate components brings significant advantages of using these
pieces of software and technology later in different context solutions.

21https://synadia.com

50

This section will refer to how each component was technically built, its functionalities/fea-
tures and their purpose in the project.

4.3.1 Holistic Platform Component

This component’s objective is to provide its functionalities in an web interface allowing
the user to have a holistic overview of the company’s logistics. These functionalities include:
displaying visual feedback when a new Draft or Request is made in real-time, displaying where
Keepers are placed on the Operation Area, and displaying where other elements are on the
map, as well as others mentioned below. At the same time, he can better inform the customer
regarding the Keeper’s delay, while keeping track of his location, heading to the customer’s
pickup place.

The technologies used to develop this interface, considering all the research done before
this point, were Next.js combined with React, Mapbox, and Mapbox GL JS. In order to make
the connection between components, it was used Resgate.

Figure 4.6: Example of the dashboard with active Keepers, Drafts and Requests.

4.3.1.1 Features

It is possible to manage and visualize real-time data information in the platform. It was
taken into consideration a user-friendly design and a platform that the user can use and
manage it easily with various functionalities.

The user have the possibility of filter out elements from the map view, make requests and
drafts and visualize information. When using the platform, the user can also have feedback
by some appearing popups on specific mouse hovers. To facilitate the user’s usability, it was
also developed a city clock and a map legend.

These features will be explained with more details in the subsections below.

4.3.1.1.1 Filter

The purpose of the filter functionality is to be able to filter out elements from the map view.
This feature can be accessed on the right sidebar, with a dropdown menu for each category,
including Active Requests, Drafts, Keepers, Operators, Logistic Centers, and Operation Areas.
There are two ways of removing an option from the sidebar, either by using the checkboxes or
the remove button on one of the names/IDs displayed on each list, taking effect on the map.

51

If the user decides to use the checkbox, the icon associated with its name disappears from the
map. The close button can be clicked, making the name disappear from the list and the map.
If there is a need to add a new element to the map, the user can use the search bar. This
search bar, when used, will show a list of available elements that can be added to the list and
consequently to the map. It uses an auto-complete mechanism that diminishes the available
list as long as the user keeps writing, narrowing it to the desired choice.

4.3.1.1.2 Request

Whenever a new Request enters the system, a green notification pops up on the top right
corner of the map, warning the user. The notification has information about the customer’s
name, Request ID, and start time. Immediately, it will appear the Request markers as seen
in Figure 4.12. The green marker represents the Request’s pickup position. The red one
represents the dropoff point of the luggage, and the number inside them has the purpose of
helping the user identify which green marker corresponds to its associated red one.

As soon as the Request shows on the map, both markers will blink for a short amount of
time to make it easy for the user to notice it as a new Request.

4.3.1.1.3 Draft

Whenever a new Draft is executed, a similar notification pops up in the same place with
a different color (blue). The notification contains the same information as a Request. The
Draft’s pickup location will appear on the map with a ripple effect circle so that the user can
see, in real-time, where a possible Request might happen in the future. This can help with
better tools for a possible LUGGit’s service request from a customer. After a defined amount
of time, the ripple effect will disappear and show a grey circle. All the popups will still work,
allowing the user to see more information, and if the mouse hovers the circle, it will again
show the ripple effect.

4.3.1.1.4 Information Sidebar

The information sidebar is located on the left side of the map for all elements, and it allows
the user to visualize more information at a specific time while, at the same time, also viewing
the element’s real-time position. This section will display some figures in order to understand
each one of them and how they work.

52

Figure 4.7: Keeper Details Information Sidebar.

After clicking in a Keeper’s icon, the sidebar shown in Figure 4.7 opens up and it is possible
to see the detailed information about that driver’s operation. Apart from seeing his name,
ID, current status, license plate, vehicle’s brand, model, and schedule, some other helpful
information can be interacted. This includes a phone number, so that the user can quickly
call the Keeper if necessary. It also shows the Operator name and its ID, allowing to open a
new information sidebar about it.

Figure 4.8: Draft Details Information Sidebar.

53

Like the Request details information sidebar, the Draft’s one has similar information but
without a few topics. In Figure 4.8, all essential information about a Draft is there, including
its customer name, ID, phone number, and time and location of each of the points of a potential
Request (pickup and dropoff).

Figure 4.9: Request Details Information Sidebar.

In Figure 4.9,there is an information sidebar from a random Request. Again, just like the
Keeper’s sidebar, there are some clickable elements, including phone number, Logistic Center,
and its associated Keeper. If the user decides to click on the phone number, it redirects him
to make a call through his phone, and if he clicks on one of the other options, the map zooms
in to those respective elements, and a new sidebar is opened. Aside from these options, there
is the usual information like its ID, customer name, and status. Specific information about
this Request can also be found, such as the total distance, the current and previous status,
how much luggage belongs to it, and the pickup and dropoff date and location.

54

Figure 4.10: Logistic Center Details Information Sidebar.

In Figure 4.10, there is the Omega’s Logistic Center details information sidebar. There
are two clickable options, namely the service phone number and the Operator. Clicking the
Operator option, it zooms out to display all the icons belonging to that Operator, and it opens
a new sidebar regarding it. It is also possible to see the Logistic Center’s name, ID, schedule,
and luggage stored in the building.

Figure 4.11: Operator Details Information Sidebar.

There is the Operator information sidebar in Figure 4.11. From this figure, there is the

55

map is zoomed out to show the icons belonging to this Operator and the sidebar. It shows
its name, ID and, just like the others, it has clickable elements. These include all Logistic
Centers, phone number, email, and online Keepers, allowing to interact with the system in a
helpful way managing logistics.

4.3.1.1.5 Popups

Every element on the map, whether Request markers, a Draft marker, Operation Centers
or Keepers, has a popup. This popup is activated when the mouse hovers the icon and displays
a set of general information. This is a great way to view just the primary information about
a specific element without opening the complete detailed information sidebar. Here are all of
the available popups during a typical operating day.

Figure 4.12: Example of a Keeper’s Popup.

In Figure 4.12, there is a Keeper’s popup in service. It shows its name, capacity load of
the vehicle, rating, average acceptance time, the profit earned that day, and its Requests list,
including its ID, occupation, and departure hour. The significant difference between Keepers
and other elements is that the Keeper always has an active popup. When the mouse hovers
the car icon, it shows the popup that is in Figure 4.12; otherwise, it shows a similar popup to
the Draft’s one that is in Figure 4.14, with just its ID.

56

Figure 4.13: Example of a Request’s Popup.

In Figure 4.13, it is possible to see how the popups’ implementation was carried out.
When the mouse hovers either one of the markers (red or green), two popups are activated:
the dropoff location and the other the pickup point. This was intended for the user to have
an easier time understanding which markers belong to each Request. In both popups, there is
the primary information about a Request, including its ID, customer name, Keeper, distance,
occupation, and start and end times.

Figure 4.14: Example of a Draft’s Popup.

In Figure 4.14, we can see a simple popup above the circle with an active ripple effect.
The popup displays the Draft ID when the mouse hovers it to overwhelm the user with too
much information about Drafts.

57

Figure 4.15: Example of a Logistic Center’s Popup.

Regarding the Logistic Center Popup, it is the same as other popups. Above the logistic
center icon, it shows information in regards to its ID, name, and current occupation, as seen
in Figure 4.15.

4.3.1.1.6 Map Legend

The legend map is set up in the bottom left corner of the map, and it is helpful for a
new user to know what each element means. The user, with a glance, can now understand
the meaning of each icon displayed on the map. The legend map can be seen in Figure 4.6,
showed previously.

4.3.1.1.7 City Clock

Although this feature seems simple, it was developed to facilitate the user’s usability.
Since Requests and Drafts have the times associated with them, the user needs a quick way to
compare them. The local time city clock is displayed on the top right corner of the dashboard,
as seen in Figure 4.6, and it is dynamic, changing according to the Operation Area displayed.
It uses a light JavaScript library that looks up time zones given the name of a city. With
the user’s local time and the time zone of the given city, it is then calculated the time of the
Operation Area’s city.

4.3.1.2 Connection to the other Component

As mentioned earlier, the connection between components was achieved through Resgate
and REST Endpoints. Whenever it is necessary to retrieve non-real-time data, the component
makes a REST request. This data not only includes Logistic Centers, Operation Areas, and
Operators but also incorporates data that is seemed as real-time, like Keepers, Drafts, and
Requests. This is built to make the dashboard always have data available as soon as the user
turns it on, allowing it to have fast boot time. Another option would be having to request
data when the dashboard was accessed, which would make it slower to load.

In regards to real-time data, this component uses Resgate to listen for new events coming
from outside sources. It listens to a topic already pre-defined and updates data when it is
received.

58

4.3.2 Data Processing Component

The Data Processing Component provides the project’s backend to support communica-
tion between LUGGit’s APIs and the Holistic Platform Component. The backend has many
features and functionalities, and it is an essential piece of work. The REST endpoints allow
data retrieval from other components and can even be extended to other solutions. When a
request comes through an endpoint, the provided data is fetched from the storage solution,
as will be detailed below. For real-time data communication, events are sent on a pre-defined
subject, with the purpose of clients getting that data almost immediately.

This section will include details about each endpoint and its purpose, an explanation of
the event-based communication used, and storage.

4.3.2.1 REST Endpoints

This component possesses multiple endpoints for providing data to outside sources. Every
endpoint is accessible and working through a defined URL containing a wealth of information,
making it very easy to fetch information from this component’s server. All information fetched
from these endpoints comes with the JSON format, composed of the JSON API guidelines
and the conventional status code and the rest of the requested data.

In Figure 4.16, it is possible to see the several endpoints that will be mentioned above.

Figure 4.16: Global Architecture of REST Endpoints.

getLogisticCenters

This endpoint’s name is very straightforward as it supplies all the Logistic Centers’ data.
This data includes their IDs, names, locations, and Operator IDs. This information does

59

not need to be updated regularly as it only changes when there are new Logistic Centers to
LUGGit’s operation.

getOperationAreas

The getOperationAreas endpoint is responsible for providing data regarding Operation
Areas and their attributes. It consists of their IDs, names, and polygon locations, forming the
available operation area on the map.

getOperators

This REST endpoint, when requested, delivers data about all Operators and their IDs,
names, emails, phone numbers, list of Keepers, and the list of Logistic Centers.

getKeepers

This endpoint and the next two were built to provide a way to access data stored in the
database. Most of these elements are updated in real-time through event-based communica-
tion, as will be discussed next, but there was also a need to retrieve static data as soon as the
dashboard was accessed.

Keepers’ data include their IDs, names, locations, requests list, luggage available capacity,
rating, status, operator IDs, phone numbers, license plate numbers, brands, models, and
schedules.

getDrafts

The getDrafts endpoint provides all stored Drafts in the database, specifically their IDs,
customer names, start and end times/locations, distance, and luggage occupation in the au-
tomobile.

getRequests

Like the two previous endpoints, getRequests provides an address to retrieve information
about Requests in the storage unit. Each Request has the same Drafts information, also
adding its designated Logistic Center ID, Keeper ID, and status.

4.3.2.2 Event-based Communication

This communication type was used for real-time data fetching between the components
built in this dissertation and between the Data Processing Component and LUGGit’s APIs.
This is done with the technology NATS through subject-based messaging and events. This
subject is just a string of characters that form a name the publisher and subscriber can use
to find each other.

Using a TypeScript Node.js client for the NATS messaging system, this component will
subscribe to the defined subject from LUGGit’s APIs to listen to new events. It will start
listening as soon as the service starts, and it will always stay on. These events can arrive at
any time, and when they do, the service will send the same event to another subject, occurring
a data transmission ripple effect.

Three subjects will be talked about in further detail in this section.

60

Keepers

The subscription of new Keepers’ events uses the subject "logistic-platform-api.requests"
and will listen to all updates regarding Keepers. All new events include six different situations,
and they are executed when LUGGit’s API publishes them. The one that happens first is
when a new Keeper goes online in the system. Immediately, a new event is published so that
this platform can receive it in real-time. After that, all new information updated regarding
that Keeper is published as a new event that the Data Processing Component then receives.
Every time a new location, status, request list, capacity, or schedule are updated, real-time
data is essential for the user to know.

After data is processed and normalized, it is sent through the subject "event.logistics-
dashboard.keepers.change" to communicate with the other component. The "event." and
".change" are obligatory to use since the frontend component uses the technology Resgate to
communicate. These words are a requirement of communication, and without them, it would
not work.

Requests

When it comes to Requests, the subject used to communicate between LUGGit’s API is
"logistic-platform-api.requests". Apart from receiving events when a new Request is published,
it also receives its Keeper ID, details about times and locations, or its status change. The rest
of the steps are the same as the other topics.

Just like the Keepers topic, after data is normalized, it is sent through the subject
"event.logistics-dashboard.requests.change".

Drafts

Since Drafts do not have much data to be changed, LUGGit’s API sends the entire Draft’s
information and the verification if a new one is executed in the Holistic Platform Component.
It subscribes to new events with "logistic-platform-api.drafts" and it publishes the same data
with the subject "event.logistics-dashboard.drafts.change".

4.3.2.3 Storage

A big part of this component is storage, and for this area, it was decided to use Redis
because of the reasons already mentioned in the previous chapter. Keeping storage as a cache
means that all data is stored for a defined amount of time, called Time To Live, which is
later removed not to overflow the database with unnecessary resources. Time to live directly
impacts the server’s load time (cached data loads faster), as well as content freshness (data
cached for too long can become stale), and due to this, a resource’s cache time to live should
be adjusted based on how often it is used. Considering these points, it was decided that the
amount of time data is stored in this cached database is 6 hours.

As soon as a new event is received, it is stored in the database using a Redis module called
RedisJSON. This module allows storing, updating, and fetching JSON values from Redis keys,
making it easier and faster to access data.

Conceptually, Redis is based on the key-value database paradigm meaning that every piece
of data is associated with a key, either directly or indirectly. All data stored in this project
follows the key-value structure. Every key is composed by its element type followed by the

61

ID; for instance, a Request with an ID "REF123" is stored in "requestREF123", facilitating
the way data is retrieved.

4.4 Validation Tests

In this section it will be mentioned all the validation tests that were obtained throughout
the development process, including user and technological tests. These include quality unit
tests of all software components as well as tests done by the project’s user/stakeholders. It
will also incorporate user stories based on what the platform can provide to the user. These
user stories will guide the unit tests, as well as the stakeholder’s validation, focusing on each
topic and on each functionality that the platform can provide.

4.4.1 User Stories

The user stories that are going to be described below led to the automatic tests of the
platform. This system is designed to be used by a final user, meaning that a person with
access to the credentials can use it. This user or an administrator is responsible for controlling
LUGGit’s logistic operations. He or she will be using the platform to understand better what
happens in the company’s operation area.

This dissertation’s main focus is to build a holistic logistics platform, relying on the user
interface to achieve it. The authentication process is not related to the objectives and chal-
lenges and, because of that, these user stories are based on the supposition that the user is
already authenticated. These user stories are about the system administrator after he or she
is authenticated and ready to use the dashboard:

1. As an authenticated user, I can see how many Keepers, Operation Centers, and Opera-
tors are in operation at any given time. I can also verify how many Drafts and Requests
are active whenever I want.

2. As an authenticated user, I can check the locations of Keepers, Requests, Drafts, and
Operation Centers at any given time.

3. As an authenticated user, I can filter out one or more Keepers between all available.

4. As an authenticated user, I can filter out one or more Operation Centers between all
available.

5. As an authenticated user, I can filter out one or more Requests between all available.

6. As an authenticated user, I can filter out one or more Drafts between all available.

7. As an authenticated user, I can filter out Keepers according to their Operator.

8. As an authenticated user, I can verify when a new draft or request is made.

9. As an authenticated user, I can check Keeper’s information about his vehicle occupation,
his requests, and the according to times and positions.

10. As an authenticated user, I can check a Draft’s information about its point locations,
customer details, and times.

62

11. As an authenticated user, I can check a request’s information about its point locations,
customer’s details, and its associated Keeper.

12. As an authenticated user, I can check an Operator’s information about its Keepers and
its Operation Centers.

13. As an authenticated user, I can check an Operation Center’s information about its
associated requests, capacity, and Operator.

4.4.2 Stakeholder

The stakeholder’s feedback can make a big difference when talking about incremental
improvements in functionalities, as well as when validating this dissertation’s work. The
development processes of this dissertation were iterated with the continuous help of LUGGit’s
logistic team and that was the best solution for the validation tests. This was a great help as
it provided the essential feedback to improve. Every iteration and advancement was carefully
analyzed and reviewed by their team. The stakeholder’s feedback was provided according to
the user stories pre defined before.

With those iterations and the feedback from LUGGit’s logistic team, it was possible to
make the platform better, in terms of efficiency, usability and overall design.

Regarding the user story number 2 in respect to the visualization of the Keepers in real
time on the map, the stakeholder’s feedback is that the Keeper moves correctly in real time,
but there is no interaction when a Keeper is going online or offline. There is also a positive
feedback by displaying the informations on "KeeperInfo", on "KeeperPopup" and the "Request
List", that shows all the requests that are being made by the Keeper, when referring to the
user story number 9. The collection and delivery services, the list of the services are being
shown and the informations on "RequestInfo" and "RequestPopup" are fine.

The stakeholder also referred that the routes of the Keepers should be well defined and
with different colors to have a better perception. The idea was to have the possibility to
visualize the services and the locations that the Keepers were going through and could be a
future work.

When performing the user story number 6, the locations of the emergent services (Drafts)
are well displayed with all the information data, but could also have the responses data, the
Keepers availability and the estimated collection time by the system. Conforming to the user
story number 3, when clicking on the Keeper, it is possible to see his or her information data
and it should also have displayed a synthesis of the services, the affected time and the route
information. When referring to the user story number 10, regarding to the User, it is possible
to visualize the distance and time data, but it also should be possible to see an estimation if
the estimated time will be successfully fulfilled or not.

Concerning the alerts that provide to anticipate the problems, the alerts of new Requests
and Drafts are well defined, but it should have, in future work, warnings of potential problems,
like for example, if the Keeper has the car’s luggage full, he or she should leave the bags in
the warehouse or when happens a Draft out of the route of the Keeper.

In conclusion, the overall stakeholder’s feedback is that the project has a good concept, the
user stories pre defined before were reflected on the platform and it is better than the actual
solution of operations with the objective of being in real time, but it should have a better
visual design to facilitate the operation. The future work should consist in implementing

63

warnings to be able to make decisions and have more informations displayed in the visual
design.

4.4.3 Technological

The technological tests were made to every part of software available, inside of Data
Processing Component and Holistic Platform Component. These tests were built throughout
the development process in order to facilitate and automate error checking in newly added
system functionalities. Unit tests in Data Processing Component focused on testing endpoints
and real-time communication, and tests in the Holistic Platform Component focused on every
type of component, including buttons, activation of graphical control elements, and other
usability features.

The main testing framework used for both Components was Jest22, in conjunction with
other more scenario-specific tools, like nats-mock23 to test real-time communication, redis-
mock24 to test database connection and enzyme25 to test React components’ output. Jest is
an open source unit testing framework for JavaScript that does not depend on other JavaScript
frameworks or web browsers, and it is able to test both JavaScript versions used in website
development and in Node.js-based applications.

These tools simulate connections to the database, input, or any other type of object that
is required to execute a component. Initially, a controller is created, which will serve as the
connection between the mock objects and the component to be tested. Then, the tests are
created, which are composed of specific expectations, whether be it responses, errors, or data.
Once all this is configured, the tests can be executed, and the results are displayed, showing
if it fails or if it passes.

In Figure 4.17, it is possible to see an example of a unit test, which is performed in the Data
Processing Component. This test, in particular, is testing an endpoint, more specifically its
connection to the database and if the response obtained is the expected with all its properties.

22https://jestjs.io/
23https://www.npmjs.com/package/mock-nats-client
24https://www.npmjs.com/package/redis-mock
25https://www.npmjs.com/package/enzyme

64

Figure 4.17: Example of a Unit Test.

In the case of Data Processing Component, each unit test focuses on the functionality of
one endpoint individually. This specific one is about getKeepers and it starts by creating a
new user context and simulating a connection to the database, Redis. Then, it tries to call the
method getKeepers with the previously created context as an argument. If it fails, it throws
immediately an error, otherwise it moves to the next phase. After verifying that there are no
errors, the status code is ’OK’ and that it has a property named keepers, it checks if each
object Keeper has all its elements accordingly, namely name, short ID, location and many
others.

65

Figure 4.18: Results of a Unit Test.

In Figure 4.18, it is possible to see all the files composed by the Data Processing Component
on the left column. The files shown with a green color are the ones that were used to run
this specific test and we can see that the test passed, meaning it ran successfully without any
errors. Since the unit test was making sure every functionality of the endpoint getKeepers,
we can acknowledge the endpoint works.

66

Chapter 5

Conclusion

At the end of this dissertation, it is time to talk about the general overview of this work
project. At the beginning of this work I started by defining the problems, challenges and
objectives, alongside explaining where LUGGit enter in the technology realm. Afterwards,
I familiarized ourselves with the data processing, data visualization techniques and related
technologies, that are standard tools in almost every holistic platform project. Then I started
approaching the problem by defining use cases and requirements, with the logistics team’s help.
After that, it was easier to construe the system architecture and the platform’s wireframes,
which would later help the development process. The platform was designed and implemented
with separation of concerns in mind, separating data processing from frontend service imple-
mentation. During this process, I came to the conclusion that feedback throughout each work
iteration helps greatly the development process, making it faster and with better quality.

However, the main goal of this dissertation was to create a Holistic Logistics Platform in
order to replace LUGGit’s previous solution, which consisted in a non-customizable inefficient
data displaying platform. In that regard, interaction with a customized working holistic
logistics platform was accomplished, creating a complete set of workflows to display real-time
data.

At the end of the development process, the platform was tested by LUGGit’s operations
team and the platform was adjusted according to their feedback. The backend part was
thoroughly tested in all its features and services, with automated unit testing. Finally, the
architecture design, allow extensibility by abstracting the data flow from the service, creating
a content focused development where data access is effortlessly available.

5.1 Future Work

I believe this work has many different changes, adaptations, and experiments for future
work. They were not possible due to time limits. Learning from the beginning all these new
technologies can be very time-consuming, and because of that, I believe that I will be more
efficient in the future.

To a large extent, this project was based on the frontend of the application, and it was
left with some ideas of that matter that I would have liked to implement. These ideas are:

1. A helpful feature that could be implemented in the future is a routing system of each
driver considering the traffic in real-time. If a Keeper is following a path that has more

67

traffic than another, the dashboard’s user can alert the Keeper to take the better route.
This system can be built using machine learning to improve the learnability of new
routes, in view of efficiency.

2. The platform has two tabs that were not developed further, namely "Request List" and
"Analytics". These features were not the main focus of a real-time holistic dashboard,
however in the future, a page for each of these tabs would come handy to the analytics
for LUGGit’s team.

3. The application was made in a way, so that was intuitive. If we see the legend map,
we can easily understand the map’s information. Initially, this is perfect for the person
who is using it, but it can be not very pleasant in the long run since the person gets
experienced and does not need to see the Legend Map info anymore. So it could be
interesting in the future to add the functionality hide/show the specific object.

4. Similar to the previous point, the adaptation I will talk about now also needs a hide/show
specification. The adaptation for the future I am talking about is the possibility to
hide/show the sidebar.

5. Regarding the Keeper route, it has the pickup and the dropoff locations. A future step-
up would be to draw the path between them in a non-confusing way to the eye to be a
little wiser to the user.

6. Usually, an application with a notification system can access previous ones, and, unfor-
tunately, that is not the case with this application. Nevertheless, I believe it was not a
crucial feature, so time was given to other matters.

7. Using other forms of data to benefit their visualization, can drastically improve logistics’
performance and organization. For example, using meteorological data in relation to the
number of requests and how it can impact them or using data about traffic in a certain
area can indicate that it might not be the fastest route for a Keeper to take.

These are the improvements that, with the help of LUGGit’s team, came up with. Nev-
ertheless, there is the possibility of other experiments that can be exploited in the future to
improve the system’s capabilities.

68

Bibliography

[1] K. Jackson, “What is real-time network monitoring? | helpsystems,” 2020. [Online].
Available: https://www.helpsystems.com/blog/what-does-real-time-network-
monitoring-mean-exactly (visited on 09/27/2020).

[2] “Chapter 2. general control,” [Online]. Available: https://web.archive.org/web/
20100607105632/http://www.faa.gov/air_traffic/publications/atpubs/ATC/
atc0201.html (visited on 12/30/2020).

[3] “Real-time monitoring,” [Online]. Available: https://www.next4biz.com/real-time-
monitoring/ (visited on 06/22/2021).

[4] A. Trafton, “In the blink of an eye | mit news | massachusetts institute of technology,”
2014. [Online]. Available: https://news.mit.edu/2014/in-the-blink-of-an-eye-
0116 (visited on 10/20/2020).

[5] M. Aparicio and C. J. Costa, “Datavisualization_acm_sigdoc_cdq-3-1-nov-2014.pdf,”
2014. doi: 10.1145/2721882.2721883. [Online]. Available: https://www.researchgate.
net/publication/269103846 (visited on 10/18/2020).

[6] “8 remarkable early maps - history,” [Online]. Available: https://www.history.com/
news/8-remarkable-early-maps (visited on 10/19/2020).

[7] M. Mekhatria, “Tableau poléometrique - highcharts.” [Online]. Available: https://
www.highcharts.com/blog/tutorials/156- tableau- poleometrique/ (visited on
11/11/2020).

[8] “How data visualization designers make content across industries,” [Online]. Available:
https://killervisualstrategies.com/blog/category/data-visualization-in-
industry (visited on 10/23/2020).

[9] J. G. Stadler, K. Donlon, J. D. Siewert, T. Franken, and N. E. Lewis, “Improving the
efficiency and ease of healthcare analysis through use of data visualization dashboards,”
Big Data, vol. 4, pp. 129–135, 2 Jun. 2016, issn: 2167-6461. doi: 10.1089/big.2015.
0059. [Online]. Available: http://www.liebertpub.com/doi/10.1089/big.2015.0059
(visited on 10/23/2020).

[10] “Ponto de situação atual em portugal - covid-19,” [Online]. Available: https://covid19.
min-saude.pt/ponto-de-situacao-atual-em-portugal/ (visited on 10/16/2020).

[11] “3 ways the most successful marketers use data visualization,” [Online]. Available: https:
//killervisualstrategies.com/blog/digital-marketer-data-visualization.
html (visited on 11/04/2020).

69

https://www.helpsystems.com/blog/what-does-real-time-network-monitoring-mean-exactly
https://www.helpsystems.com/blog/what-does-real-time-network-monitoring-mean-exactly
https://web.archive.org/web/20100607105632/http://www.faa.gov/air_traffic/publications/atpubs/ATC/atc0201.html
https://web.archive.org/web/20100607105632/http://www.faa.gov/air_traffic/publications/atpubs/ATC/atc0201.html
https://web.archive.org/web/20100607105632/http://www.faa.gov/air_traffic/publications/atpubs/ATC/atc0201.html
https://www.next4biz.com/real-time-monitoring/
https://www.next4biz.com/real-time-monitoring/
https://news.mit.edu/2014/in-the-blink-of-an-eye-0116
https://news.mit.edu/2014/in-the-blink-of-an-eye-0116
https://doi.org/10.1145/2721882.2721883
https://www.researchgate.net/publication/269103846
https://www.researchgate.net/publication/269103846
https://www.history.com/news/8-remarkable-early-maps
https://www.history.com/news/8-remarkable-early-maps
https://www.highcharts.com/blog/tutorials/156-tableau-poleometrique/
https://www.highcharts.com/blog/tutorials/156-tableau-poleometrique/
https://killervisualstrategies.com/blog/category/data-visualization-in-industry
https://killervisualstrategies.com/blog/category/data-visualization-in-industry
https://doi.org/10.1089/big.2015.0059
https://doi.org/10.1089/big.2015.0059
http://www.liebertpub.com/doi/10.1089/big.2015.0059
https://covid19.min-saude.pt/ponto-de-situacao-atual-em-portugal/
https://covid19.min-saude.pt/ponto-de-situacao-atual-em-portugal/
https://killervisualstrategies.com/blog/digital-marketer-data-visualization.html
https://killervisualstrategies.com/blog/digital-marketer-data-visualization.html
https://killervisualstrategies.com/blog/digital-marketer-data-visualization.html

[12] “The analytics advantage we’re just getting started.” [Online]. Available: https://www2.
deloitte.com/content/dam/Deloitte/global/Documents/Deloitte-Analytics/
dttl-analytics-analytics-advantage-report-061913.pdf (visited on 11/10/2020).

[13] M. Krisper, S. Oberauer, and T. Schlager, “Open data vis in browser,” 2012. [Online].
Available: https://courses.isds.tugraz.at/ivis/surveys/ss2012/g3-survey-
open-data-vis.pdf (visited on 11/26/2020).

[14] H. Bast, P. Brosi, and S. Storandt, “Travic: A visualization client for public transit data,”
vol. 04-07-November-2014, Association for Computing Machinery, Nov. 2014, pp. 561–
564, isbn: 9781450331319. doi: 10.1145/2666310.2666369. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2666310.2666369 (visited on 11/14/2020).

[15] “Real-time data visualization and data exploration,” [Online]. Available: https : / /
www.striim.com/real- time- data- visualization- data- exploration/ (visited
on 06/24/2021).

[16] R. Novotny, “What is real time data? how real time information is essential in the field,”
Aug. 2018, unpublished. [Online]. Available: https://esub.com/blog/what-is-real-
time-data-why-real-time-information-is-essential-in-the-field/ (visited on
06/25/2021).

[17] “Everything about data processing | definition, methods, types & application,” [Online].
Available: https://planningtank.com/computer-applications/data-processing
(visited on 06/26/2021).

[18] M. Baron, “Everything about data processing | definition, methods, types and appli-
cation,” [Online]. Available: https://datascience.foundation/sciencewhitepaper/
raw-data-collection-2020-principles-and-challenges (visited on 06/26/2021).

[19] “What is data processing: Types, methods, steps of data processing cycle,” [Online].
Available: https://www.simplilearn.com/what- is- data- processing- article
(visited on 12/17/2020).

[20] “What are the differences between data processing, data preprocessing and data wran-
gling?,” [Online]. Available: https://www.i2tutorials.com/what-are-the-differences-
between-data-processing-data-preprocessing-and-data-wrangling/ (visited on
06/28/2021).

[21] J. M. C. D. Cruz and R. Público, “Simulador de mensagens aftn e oldi-transmissãƒo,”
2010. [Online]. Available: https://repositorio.ul.pt/bitstream/10451/9256/1/
ulfc104703_tm_Jo%c3%a3o_Miguel_Cruz.pdf (visited on 11/17/2020).

[22] “Lisatm,” [Online]. Available: https : / / www . nav . pt / en / nav / air - navigation -
services-1/traffic-management-systems/lisatm (visited on 11/05/2020).

[23] P. Brosi and H. Bast, “Real-time movement visualization of public transit data,” 2014.
(visited on 11/19/2020).

[24] . [Online]. Available: https://themeisle.com/blog/google-analytics-interface-
explained/#:~:text=The%5C%20Google%5C%20Analytics%5C%20interface%5C%
20explained,tables%5C%2C%5C%20charts%5C%2C%5C%20and%5C%20graphs (visited on
12/14/2020).

[25] “What is power bi?,” [Online]. Available: https : / / powerbi . microsoft . com / en -
us/what-is-power-bi/ (visited on 06/28/2021).

70

https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Deloitte-Analytics/dttl-analytics-analytics-advantage-report-061913.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Deloitte-Analytics/dttl-analytics-analytics-advantage-report-061913.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Deloitte-Analytics/dttl-analytics-analytics-advantage-report-061913.pdf
https://courses.isds.tugraz.at/ivis/surveys/ss2012/g3-survey-open-data-vis.pdf
https://courses.isds.tugraz.at/ivis/surveys/ss2012/g3-survey-open-data-vis.pdf
https://doi.org/10.1145/2666310.2666369
http://dl.acm.org/citation.cfm?doid=2666310.2666369
http://dl.acm.org/citation.cfm?doid=2666310.2666369
https://www.striim.com/real-time-data-visualization-data-exploration/
https://www.striim.com/real-time-data-visualization-data-exploration/
https://esub.com/blog/what-is-real-time-data-why-real-time-information-is-essential-in-the-field/
https://esub.com/blog/what-is-real-time-data-why-real-time-information-is-essential-in-the-field/
https://planningtank.com/computer-applications/data-processing
https://datascience.foundation/sciencewhitepaper/raw-data-collection-2020-principles-and-challenges
https://datascience.foundation/sciencewhitepaper/raw-data-collection-2020-principles-and-challenges
https://www.simplilearn.com/what-is-data-processing-article
https://www.i2tutorials.com/what-are-the-differences-between-data-processing-data-preprocessing-and-data-wrangling/
https://www.i2tutorials.com/what-are-the-differences-between-data-processing-data-preprocessing-and-data-wrangling/
https://repositorio.ul.pt/bitstream/10451/9256/1/ulfc104703_tm_Jo%c3%a3o_Miguel_Cruz.pdf
https://repositorio.ul.pt/bitstream/10451/9256/1/ulfc104703_tm_Jo%c3%a3o_Miguel_Cruz.pdf
https://www.nav.pt/en/nav/air-navigation-services-1/traffic-management-systems/lisatm
https://www.nav.pt/en/nav/air-navigation-services-1/traffic-management-systems/lisatm
https://themeisle.com/blog/google-analytics-interface-explained/#:~:text=The%5C%20Google%5C%20Analytics%5C%20interface%5C%20explained,tables%5C%2C%5C%20charts%5C%2C%5C%20and%5C%20graphs
https://themeisle.com/blog/google-analytics-interface-explained/#:~:text=The%5C%20Google%5C%20Analytics%5C%20interface%5C%20explained,tables%5C%2C%5C%20charts%5C%2C%5C%20and%5C%20graphs
https://themeisle.com/blog/google-analytics-interface-explained/#:~:text=The%5C%20Google%5C%20Analytics%5C%20interface%5C%20explained,tables%5C%2C%5C%20charts%5C%2C%5C%20and%5C%20graphs
https://powerbi.microsoft.com/en-us/what-is-power-bi/
https://powerbi.microsoft.com/en-us/what-is-power-bi/

[26] “Data visualization with power bi - datacamp,” [Online]. Available: https : / / www .
datacamp . com / community / tutorials / data - visualisation - powerbi (visited on
12/15/2020).

[27] X. Qin, Y. Luo, N. Tang, and G. Li, “Making data visualization more efficient and
effective: A survey,” The VLDB Journal, doi: 10.1007/s00778-019-00588-3. [Online].
Available: https://doi.org/10.1007/s00778-019-00588-3 (visited on 07/01/2021).

[28] H. Zhu, M. Zhu, Y. Feng, D. Cai, Y. Hu, S. Wu, X. Wu, and W. Chen, “Visualizing
large-scale high-dimensional data via hierarchical embedding of knn graphs,” Visual
Informatics, vol. 5, pp. 51–59, 2 Jun. 2021, issn: 2468502X. doi: 10.1016/j.visinf.
2021.06.002. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S2468502X21000292 (visited on 07/01/2021).

[29] Y. Wang, “Deck.gl: Large-scale web-based visual analytics made easy,” 2017. (visited on
12/26/2020).

[30] “Deck.gl | introduction,” [Online]. Available: https : / / deck . gl / docs (visited on
10/22/2020).

[31] “Our thoughts as mapboxgl js v2.0 goes proprietary | carto blog,” [Online]. Available:
https://carto.com/blog/our-thoughts-as-mapboxgl-js-2-goes-proprietary/
(visited on 12/23/2020).

[32] O. Eriksson and E. Rydkvist, “An in-depth analysis of dynamically rendered vector-
based maps with webgl using mapbox gl js.” (visited on 11/04/2020).

[33] “Google maps vs open street maps comparison. who is winner?,” [Online]. Available:
https://agilestorelocator.com/blog/google- maps- vs- open- street- maps-
comparison/ (visited on 12/28/2020).

[34] “From google maps to mapbox - dev,” [Online]. Available: https://dev.to/korovka/
from-google-maps-to-mapbox-4nfk (visited on 12/28/2020).

[35] “Choosing a map api: Mapbox vs openstreetmap vs google maps,” [Online]. Available:
https : / / relevant . software / blog / choosing - a - map - amapbox - google - maps -
openstreetmap/ (visited on 12/29/2020).

[36] im Studiengang Bachelor, B. PrÃ¼ferin, U. S. Zweitgutachter, M. B. geb Knoblauch,
and E. Wohlgethan, “Supporting web development decisions by comparing three major
javascript frameworks: Angular, react and vue.js,” 2018. [Online]. Available: https:
//reposit.haw-hamburg.de/bitstream/20.500.12738/8417/1/BA_Wohlgethan_
2176410.pdf (visited on 12/08/2020).

[37] E. Saks, “Javascript frameworks: Angular vs react vs vue,” 2019. [Online]. Available:
https://www.theseus.fi/bitstream/handle/10024/261970/Thesis-Elar-Saks.pdf
(visited on 12/08/2020).

[38] “View of perfomance analysis of frameworks angular and vue.js,” 2019. [Online]. Avail-
able: https://ph.pollub.pl/index.php/jcsi/article/view/1577/1263 (visited on
12/09/2020).

[39] M. Levlin, “Dom benchmark comparison of the front-end javascript frameworks react,
angular, vue, and svelte,” Ãbo Akademi University, 2020. [Online]. Available: https:
//www.doria.fi/bitstream/handle/10024/177433/levlin_mattias.pdf?sequence=
2&isAllowed=y (visited on 12/22/2020).

71

https://www.datacamp.com/community/tutorials/data-visualisation-powerbi
https://www.datacamp.com/community/tutorials/data-visualisation-powerbi
https://doi.org/10.1007/s00778-019-00588-3
https://doi.org/10.1007/s00778-019-00588-3
https://doi.org/10.1016/j.visinf.2021.06.002
https://doi.org/10.1016/j.visinf.2021.06.002
https://linkinghub.elsevier.com/retrieve/pii/S2468502X21000292
https://linkinghub.elsevier.com/retrieve/pii/S2468502X21000292
https://deck.gl/docs
https://carto.com/blog/our-thoughts-as-mapboxgl-js-2-goes-proprietary/
https://agilestorelocator.com/blog/google-maps-vs-open-street-maps-comparison/
https://agilestorelocator.com/blog/google-maps-vs-open-street-maps-comparison/
https://dev.to/korovka/from-google-maps-to-mapbox-4nfk
https://dev.to/korovka/from-google-maps-to-mapbox-4nfk
https://relevant.software/blog/choosing-a-map-amapbox-google-maps-openstreetmap/
https://relevant.software/blog/choosing-a-map-amapbox-google-maps-openstreetmap/
https://reposit.haw-hamburg.de/bitstream/20.500.12738/8417/1/BA_Wohlgethan_2176410.pdf
https://reposit.haw-hamburg.de/bitstream/20.500.12738/8417/1/BA_Wohlgethan_2176410.pdf
https://reposit.haw-hamburg.de/bitstream/20.500.12738/8417/1/BA_Wohlgethan_2176410.pdf
https://www.theseus.fi/bitstream/handle/10024/261970/Thesis-Elar-Saks.pdf
https://ph.pollub.pl/index.php/jcsi/article/view/1577/1263
https://www.doria.fi/bitstream/handle/10024/177433/levlin_mattias.pdf?sequence=2&isAllowed=y
https://www.doria.fi/bitstream/handle/10024/177433/levlin_mattias.pdf?sequence=2&isAllowed=y
https://www.doria.fi/bitstream/handle/10024/177433/levlin_mattias.pdf?sequence=2&isAllowed=y

[40] J. G. C. D. Camargos, J. F. Coelho, P. Aramuni, and H. F. Villela, “Uma análise com-
parativa entre os frameworks javascript angular e react,” Sep. 2019. [Online]. Available:
http://www.fumec.br/revistas/computacaoesociedade/article/view/7307 (vis-
ited on 12/23/2020).

[41] “Nonfunctional requirements - scaled agile framework,” [Online]. Available: https://
www.scaledagileframework.com/nonfunctional-requirements/ (visited on 07/01/2021).

[42] “What is a transcompiler?,” [Online]. Available: https://www.computerhope.com/
jargon/t/transcompiler.htm (visited on 05/13/2021).

[43] “Pros and cons of typescript: When and why it’s better than plain js | altexsoft,” [Online].
Available: https://www.altexsoft.com/blog/typescript-pros-and-cons/ (visited
on 05/10/2021).

[44] “To type or not to type: Quantifying detectable bugs in javascript,” [Online]. Available:
https://earlbarr.com/publications/typestudy.pdf (visited on 05/11/2021).

[45] “Next.js; what is it and why do we use it?,” [Online]. Available: https://www.clock.co.
uk/insight/next-js-what-is-it-and-why-do-we-use-it (visited on 05/13/2021).

[46] “Which tool your logistics app needs: Mapbox or google maps platform,” [Online]. Avail-
able: https://yalantis.com/blog/mapbox-maps-ready-mobile-apps/ (visited on
05/14/2021).

[47] “Mapbox gljs,” [Online]. Available: https://www.mapbox.com/mapbox-gljs (visited on
05/14/2021).

[48] “Introduction to koa.js. what is koa.js? | by mohammed rishard | geek culture | medium,”
[Online]. Available: https://medium.com/geekculture/introduction-to-koa-js-
c332931c6b24.

[49] “What is koa.js?. as a cross-platform server-side runtime. . . | by mindfire solutions |
medium,” [Online]. Available: https://medium.com/@mindfiresolutions.usa/what-
is-koa-js-fc677df30795 (visited on 05/14/2021).

[50] “Redis: In-memory data store. how it works and why you should use it,” [Online]. Avail-
able: https://aws.amazon.com/redis/ (visited on 05/13/2021).

[51] “Publish-subscribe - nats docs,” [Online]. Available: https://docs.nats.io/nats-
concepts/pubsub (visited on 05/13/2021).

[52] “Introduction - nats docs,” [Online]. Available: https://docs.nats.io/ (visited on
05/14/2021).

72

http://www.fumec.br/revistas/computacaoesociedade/article/view/7307
https://www.scaledagileframework.com/nonfunctional-requirements/
https://www.scaledagileframework.com/nonfunctional-requirements/
https://www.computerhope.com/jargon/t/transcompiler.htm
https://www.computerhope.com/jargon/t/transcompiler.htm
https://www.altexsoft.com/blog/typescript-pros-and-cons/
https://earlbarr.com/publications/typestudy.pdf
https://www.clock.co.uk/insight/next-js-what-is-it-and-why-do-we-use-it
https://www.clock.co.uk/insight/next-js-what-is-it-and-why-do-we-use-it
https://yalantis.com/blog/mapbox-maps-ready-mobile-apps/
https://www.mapbox.com/mapbox-gljs
https://medium.com/geekculture/introduction-to-koa-js-c332931c6b24
https://medium.com/geekculture/introduction-to-koa-js-c332931c6b24
https://medium.com/@mindfiresolutions.usa/what-is-koa-js-fc677df30795
https://medium.com/@mindfiresolutions.usa/what-is-koa-js-fc677df30795
https://aws.amazon.com/redis/
https://docs.nats.io/nats-concepts/pubsub
https://docs.nats.io/nats-concepts/pubsub
https://docs.nats.io/

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Context
	LUGGit
	Problems and Challenges
	Objectives
	Document structure

	State of the Art
	Data Visualization and its importance
	Static Reporting vs Real-time Reporting
	Real-time Data Visualization
	Advantages of Real-Time Data

	Data Processing in Data Visualization
	Types of Data Processing

	Data visualization Systems
	The Pipeline of Data Visualization

	Related Technologies
	Interactive Map Solutions
	Deck.gl
	Mapbox GL JS
	Comparison between options

	Web Map Frameworks
	Mapbox
	OpenStreetMap
	Google Maps
	Comparison between options

	Web Interface Frameworks
	Angular
	React
	Vue
	Comparison between options

	Solution Proposal and System Design
	Solution Proposal
	Stakeholder's Requirements
	Use Cases
	General Use Case
	Use Case 1
	Use Case 2
	Use Case 3
	Use Case 4

	Non-Functional Requirements
	System Architecture Design
	Data Processing Component
	Functional Requirements
	Internal Architecture

	Holistic Platform Component
	Functional Requirements
	Internal Architecture

	Mockups
	Mockup 1 - First Landing Page
	Mockup 2 - Operation Areas Page
	Mockup 3 - Keeper's Routes
	Mockup 4 - Operators Filtering
	Mockup 5 - Additional features
	Mockup 6 - Landing Page final design

	Development
	Development Requirements
	Development Environment
	Planning, Project Management and Versioning
	Local Code Testing and Development
	Deployment

	Used Technologies
	TypeScript
	Next.js
	Mapbox
	Mapbox GL JS
	React
	Koajs
	Redis
	NATS
	Resgate

	System Development
	Holistic Platform Component
	Features
	Filter
	Request
	Draft
	Information Sidebar
	Popups
	Map Legend
	City Clock

	Connection to the other Component

	Data Processing Component
	REST Endpoints
	Event-based Communication
	Storage

	Validation Tests
	User Stories
	Stakeholder
	Technological

	Conclusion
	Future Work

	Bibliography

