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ABSTRACT 

The future of road transportation systems faces fundamental changes concerning technological 
progress and business models. Automated and electric vehicles are coming into the market and 
evolving towards a service-based mobility system with promises to tackle energy and environmental 
issues in the mobility sector. Although recent studies have begun to explore the potential impact of 
shared and privately owned automated and electric vehicles (AEVs) mostly from an operational 
perspective, little is known about the life cycle impact of such future transport systems. To fill this gap, 
this paper aims to compare the life cycle environmental impacts of shared vs privately owned AEVs in 
a regional context. A life cycle assessment (LCA) approach is developed to appraise impact categories 
with a direct effect on human health, ecosystems, and resources availability. Given that automated 
vehicles are not yet being used massively, the LCA is applied to synthetic travel demand data to assess 
the characteristics of privately-owned AEVs and the results of an optimization model that determines 
the vehicle fleet and driving patterns of shared AEVs serving a regional case-study in the central region 
of Portugal. Two different vehicle seating capacities - one passenger (non-ridesharing) and four 
passengers (ridesharing) – are considered to evaluate shared mobility systems. Results show that 
shared mobility systems yield a potential reduction of up to 42% (with 4 passengers per vehicle) of the 
system’s environmental impacts compared to privately owned automated vehicles. Human toxicity, 
mineral resource scarcity, and marine and freshwater ecotoxicity are the impact categories with a 
higher potential of reduction. 
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1. INTRODUCTION 

The transportation sector is a major contributor to several environmental issues, such as air pollution 
and global warming. In fact, it is responsible for 24% of direct CO2 emissions in which road 
transportation represents nearly 75% of those [1]. Important transformations such as vehicle 
automation, electrification and shared mobility are expected to affect positively the environmental 
and health aspects of road transportation [2], [3]. On this base, a scientific and technical rebuttal is 
rising about the effective sustainability and related consequences of the emerging mobility systems. 



In general, the transition from internal combustion engine vehicles (ICEVs) to electric vehicles (EVs) 
seems to hold widely recognized potential to decrease the amount of greenhouse gas (GHG) emissions 
by the sector [4]. For instance, based on a normalized vehicle lifetime mileage (150,000 km) the total 
lifecycle GHG emissions of a medium-size EV can vary in the range between 10 and 52.5 tons while an 
ICEV varies between 26 and 68.7 tons of CO2 equivalent [5]. However, the environmental and energy-
related performance of EVs strongly depends on the carbon intensity of the electricity mix [6], [7], [8], 
[9], battery production [10], [11], [12], [13] and disposal [14], [15]. Besides that, at the current level 
of EVs technological development, it seems that this technology may lead to an increase in the levels 
of eutrophication, ecotoxicity, and human toxicity when compared to ICEVs mainly due to the 
production phase [16], [17], [18]. 

From a life cycle perspective, according to Gawron et al. in [19], adding high levels of vehicle 
automation features can increase vehicle primary energy use and greenhouse gas (GHG) emissions by 
3–20% due to an increase in power consumption, weight, drag, and data transmission. In the same 
manner, Kemp et al. in [20] reported that vehicle automation features of an SUV or van can increase 
2.7% of GHG emissions compared with non-automated EVs. This impact can be offset by operational 
effects such as eco-driving, platooning, and intersection connectivity that may reduce 9% of the 
energy use and GHG emissions [19]. From a traffic management point of view, a high level of 
automated vehicles (AVs) adoption may transform road transportation in several dimensions entailing 
far-reaching social implications and a consequent, high degree of uncertainty regarding environmental 
performance. According to the literature, automation can reduce half or increase in double the 
Greenhouse Gases (GHG) emissions and energy use, predominantly depending on deployment 
strategies, energy efficiency due to vehicle performance, and consumer behavior [21], [22]. 

The potential environmental benefits of automated and electric vehicles (AEVs) are reinforced with 
the promotion of shared mobility [23], [24], [25], [26]. Chen and Kockelman in [27] suggest reductions 
in energy use and GHG emissions by approximately 51% compared to private-owned vehicles. By 
replacing 50% of the private cars, a carsharing service is able to reduce 20% of the global warming 
potential (GWP) of which the distance and number of passengers are crucial factors [28]. The primary 
concerns related to SAEVs are the limited vehicle range, the configuration of charging infrastructure, 
and managing the vehicle fleet [29], [30], [31], [32]. Several studies have developed optimization-
based models applied to SAEVs to optimally meet urban travel demand considering fleet composition, 
relocation problems, and parking demand problems [33], [34], [35], [36], [37]. Although most studies 
have considered SAEVs at an urban scale, vehicle automation is expected to increase long-distance 
travel because of the decrease in generalized travel costs [38], [39]. Optimization-based models are 
commonly used to face problems related to routing optimization and fleet sizing in public transport 
operations where large size networks need to be considered. 

Despite the variety of perspectives offered by the previous studies, there is a need for a full 
understanding of the life cycle environmental burdens of SAEVs considering manufacturing, 
operation, and end-of-life (EOL), as well as energy supply. It should be highlighted that major research 
gaps in the existing literature undermine the potential usage of SAEVs. Firstly, most of the previous 
studies have been considering that SAEVs operate only at an urban level. Secondly, most of the 
currently available life cycle assessments (LCA) of mobility systems often consider greenhouse gas 
(GHG) emissions to be the only environmental indicator whereas the available evidence 
overwhelmingly points to the importance of other pollutants. Future research on LCA of mobility 
systems should provide a comprehensive overview to support adequate policymaking. 

This paper proposes an approach that compares an LCA of SAEVs with an LCA of privately owned AEVs. 
An optimization model whose objective is to maximize the profit of a company operating in a regional 
context (intercity trips) is used to design the fleet size and vehicle movements needed to meet the 
travel demand. The LCA framework of shared and privately owned AEVs is developed considering 
eighteen midpoint impact categories that cover the three main areas of protection: damage to human 



health, ecosystems, and resource availability. To the best of the authors’ knowledge, this work is the 
first that presents a full application of LCA to the context of comparing different fleets of AEVs used 
as private or shared transport. Moreover, part of the innovation of this paper is also related to the 
regional application of such mobility system, which has been mostly overlooked. Due to the contrast 
in the socio-economic development of the population and consequent travel modes, private vehicle 
ownership and passenger behavior, the future trends of inter-city trips will vary significantly when 
compared to urban mobility. Providing SAEVs at a regional scale could make transport more inclusive, 
increasing accessibility options for all citizens, especially those that may lack suitable public transport 
services in low-demand areas but also an effective action for decarbonization of the road transport 
sector [40], [41]. 

The results of this study culminate with the application of the proposed framework in the current 
context of a regional mobility case study. Integrating this capacity to consider different operational 
scenarios and assess life cycle impacts of different fleet technical options intends to benefit decision-
makers and assist vehicle engineers in designing more energy-efficient mobility systems and reduce 
the overall environmental footprint. The findings of this study also provide to the scientific community 
the magnitude and comparative weight of the wide range of energy and environmental impacts 
involved in the deployment of an AEV fleet. 

This paper is structured as follows. In section 2, the methodology is proposed emphasizing the 
mathematical programming model and the lifecycle assessment approach. Section 3 discusses the 
methodology applied to the regional case study of Aveiro (Portugal). Results from this study are 
presented in section 4. The paper ends with section 5 which highlights the most important findings 
and provides directions for future research. 

 

2. METHODOLOGY 

This paper proposes a methodology that comprises two main parts: a mathematical programming 
model and an LCA approach. The mathematical programming model enables to obtain the AEV 
characteristics that optimally meet the interurban mobility. By adjusting the fleet characteristics to 
the functional unit of 150,000 km travelled per vehicle over 5 years, an LCA is then applied to compare 
three established scenarios: privately owned AEVS (scenario S0 – Baseline scenario) and shared 
mobility scenarios considering a vehicle seat capacity of 1 passenger (scenario S1) and 4 passengers 
(scenario S2). Fig. 1 shows the generalized framework of such a methodology. 

Reference optimized fleet sizes and vehicle movement data serving the regional case study demand 
for the different scenarios are retrieved from a flow-based optimization approach. This is done for a 
typical day, however, the optimal fleet size is then estimated for a service period duration (i.e., 5 years) 
considering that each vehicle in the fleet needs to be renewed according to their lifetime (i.e., 150,000 
km). The number of vehicles used during the SAEV service period is divided into two groups: the group 
of vehicles (number and characteristics) that reaches its lifetime mileage, and the group of vehicles 
that never reach their lifetime under the period of 5 years which is the time horizon of our analysis. 
For the last group, a percentage of usage was considered, which is applied to their impacts to produce 
valid comparisons between scenarios (see Fig. 2). 



 



 

According to Fig. 2, a fleet of 100 vehicles travelling on a daily average of 200 km/vehicle will reach a 
vehicle lifetime of 150,000 km after 750 days. On a 5-years basis is possible to estimate that 200 
vehicles reach their lifetime (Group 1) and the last fleet of 100 vehicles only used 43% of their capacity 
(Group 2). Fig. 2 is a representative example of the estimation of the two different groups of vehicles. 
This estimation is made according to the characteristics of each scenario. Moreover, the daily 
distances traveled, divided by the vehicle kilometers traveled with passengers (VKTp) and vehicle 
kilometers traveled for relocation (VKTr), in the case of shared mobility, are used to calculate the 
odometer distance and define the vehicle groups. After having the fleet characteristics on the same 
comparison base, the proposed LCA is performed with a cradle-to-grave approach, comprising 
production, use, and EOL phases. The number of vehicles used to sustain the optimal fleet size for 
target service duration (5 years) affects the three life cycle phases, and VKT (divided by VKTp and VKTr) 
directly impacts the use phase. The impact assessment follows the Recipe Midpoint method, 
evaluating 18 midpoint impact categories (see Fig. 1 and Table 1) with damage to three main areas of 
protection: human health, ecosystems, and resource availability [42]. The mathematical programming 
model and LCA are detailed in section 2.1 and section 2.2 respectively. 

2.1. Mathematical programming model 

Currently, it is not possible to find such a SAEV system in operation in a regional context, hence the 
need to assess such a system by using mathematical models. To do so, a flow-based optimization 
approach is proposed to determine the fleet size and optimal vehicle movements of a SAEV system 
that serves the trip demand between the cities of the region in a day. This approach uses a similar 
integer programming model to the one proposed by Santos and Correia in [40]. 

The model considers a region divided into cities (i ∈ I), each city represented by a centroid, and time 
divided into time instants (t ∈ T). It is built upon a two-dimensional time–space network I × T, where 
the nodes n ∈ N represent time–space instances (i, t), and the arcs a ∈ A, with coordinates (i1, i2, t1, 
t2), represent three types of flows: the flow of moving SAEVs transporting users (subset Au⊂A) from 
city i1 to i2 (i1 ≠ i2) starting at time t1 and finishing at t2 = t1 + ui1 i2 , being ui1 i2 the travel time to 
transport users from i1 to i2; the flow of vehicle relocations (subset Ar ⊂A) from city i1 to i2 (i1 ≠ i2) 
starting at time t1 and finishing at t2 = t1 + ri1 i2 , being ri1 i2 the travel time to relocate from i1 to i2; and 
the flow of idle vehicles (subset Ai⊂A) associated with stopped vehicles at city i from t1 to t2 (in this 
case i1 = i2). 

The demand d(i, j, s), expressed in number of passengers, is characterized by having an origin at city i 
∈ I, destination at city j ∈ I, and intended trip start at time instant s ∈ T. Each vehicle has a seating 
capacity of m passengers. The travel times between origins and destinations are known constants. 
This is not a limitation in a regional application where intercity trips do not experience significant 
traffic congestion. 

It is assumed that the SAEV system serves all the intercity trips. Users travel directly from the city of 
origin to the city of destination, meaning that the passengers sharing a vehicle for a certain trip, share 
the same origin and destination cities. In the case of transporting over one passenger, intra-city 
movements are performed to pick-up and drop-off the additional passengers. The added time related 
to the intra-city movements is included in the travel time of arcs a ∈ Au, the same for the added 



distance in the arcs’ distances. The added time and added distance values of arcs a ∈ Au, are 
determined considering the most conservative scenario of a full car, which guarantees that the 
modeled driving times to pick up (at the origin) or drop-off (at the destination) the passengers are 
always sufficient for any number of transported passengers. Lastly, the model considers that the 
adopted technology allows recharging vehicles during their idle time, not affecting the vehicles’ 
movements with passengers or relocation operations. 

The decision variables of the problem are the flows expressed in the number of vehicles on each arc, 
flow(a), and the total number of vehicles composing the fleet, v. 

The mathematical formulation is: 

 

The objective function (1) maximizes the profit of a SAEV system, being the revenues associated with 
the price charged per passenger and the costs related to the movement of the vehicles (energy costs), 
and fixed costs (such as vehicle leasing, insurance, cleaning, and maintenance). Constraint (2) 
guarantees the conservation of flow at each node of the time–space network. Constraint (3) ensures 
that the aggregated capacity of vehicle flow serving the considered demand can transport all 
passengers. Constraint (4) determines the total number of vehicles of the fleet, ensuring that the sum 
of flows that leave at the first instant is equal to the total number of vehicles in the fleet. Constraints 
(5) and (6) are related to the variables’ domain, ensuring that all variables are non-negative integers. 

The integer programming (IP) model output values related to vehicle flows should be post-processed 
to increase their precision, include a correction for flows with empty seats, and determine the average 
travel time experienced by passengers. 

The model uses time discretized in time instants, and consequently, the output time values are 
expressed in time step units. To increase the precision of the output values, the original travel times 
(before transforming them into time steps) were multiplied by the optimal vehicle movement list, an 
output of the IP model, to compute the final realistic travel times. 

The travel times associated with flows are model parameters defined for vehicles moving at full 
capacity, being the added pick-up and drop-off component of time tadij = tadi +tadj calculated considering 
a car that fills up all seats. In an optimal flow, the e can be empty seats (less than m-1, related to 
constraint 3), corresponding to a vehicle partially empty that, in reality, experiences a reduction of the 
modeled travel time because it has fewer passengers. To correct the value of the travel time related 
to this vehicle moving with empty seats (which has a different impact on the LCA), the added pick-up 
and drop-off component of time tadij (initially calculated for the most conservative scenario where m 
seats are fully used) was fractionated according to the number of passengers transported, k, and 
capacity, m, using the expression (k-1)/(m-1). Therefore, the travel time for a vehicle traveling 



between cities i and j transporting k passengers is given by tintercityij + (k-1)/(m-1) tadij, form > 1, being 
tintercityij the travel time between cities i and j without considering the added time to pick-up and drop-
off extra passengers. If m = 1, this correction is not needed since a vehicle can only carry one passenger 
(not having additional time to pick-up and drop-off extra passengers). A similar process was used for 
the vehicle movement distances. 

Different passengers, sharing the same vehicle, experience different travel times. To transform 
optimal vehicle flows into passenger travel time, the average travel time experienced by each 
passenger in a vehicle was estimated using proportional weights applied to the pick-up and drop-off 
travel time component, tadij. The weight of each passenger, p, traveling inside a vehicle follows an 
arithmetic progression with pth term equal to (p-1)/(m-1), being p ≤ m. Using the sum of this 
progression, the aggregated passenger travel time experienced by k passengers transported in a 
vehicle, with capacity m, between cities i and j is equal to k × tintercityij +k(k-1)/(2(m-1)), tadij . If m = 1, 
this correction is not needed. 

The optimal results obtained from this model, namely fleet size and vehicle distance traveled (VKTp 
and VKTr) are used as an input of the LCA. Different characteristics of fleet vehicles, namely seat 
capacity and battery type, can be used to formulate scenarios since it directly affects the life cycle 
phases (production, use, and EOL). 

 

2.2. Life cycle assessment 

An attributional LCA is developed to assess the impacts of shared and privately owned AEVs applied 
to a regional demand context. The methodology described encompasses the production, use, and EOL 
life cycle phases. The LCA framework is described in three steps following the international standards 
[43]. The first is the definition of goal and scope which include the setting of the functional unit and 
reference flow. The second step describes the system boundary covered in this study. The third and 
last step characterizes the impact assessment approach and impact categories evaluated. 

 

2.2.1. Goal and scope 

The goal is to estimate the life cycle impacts of a fleet deployment of optimized privately owned and 
shared AEVs in a regional context. The scope includes a comparative analysis between privately owned 
AEVs (scenario S0) and two alternative scenarios of shared AEVs based on vehicle seat capacity: one 
passenger (scenario S1) and four passengers (scenario S2). 

The functional unit of this study is an AEV fleet with a service life of 150,000 km per vehicle (assumed 
as the useful driving distance of vehicles in corporate fleet operations [44]), developed to optimally 
meet the total of the current travel demand of the regional case study, over 5-years timeframe. The 
flow-based optimization model used to estimate the number and vehicle characteristics composing 
the fleet aims to maximize the profit considering that the mobility service is operated by a company. 
The 5-years scenario timeframe was chosen to include multiple fleet replacements and to provide a 
comparison basis. 

 

2.2.2. System boundary 

The system boundary covers the life cycle phases of vehicle production, use, and EOL and the impacts 
related to the production and use of the energy needed to operate the vehicle under intercity trips. 
On the production phase, the AEV is an assembly divided into four main sub-assemblies: the glider, 
which represents the vehicle body and chassis; the powertrain, compounded by the electric motor, 



charger, inverter, power distribution unit and converter; lithium-ion battery package; the sensors and 
computing systems (See Fig. 1). The Ecoinvent database (version 3.7.1) was used as a background 
inventory database [45]. Individual component characteristics of sensing and computing subsystems 
that equip the level 4 AVs were obtained based on [19] and the material composition selection based 
on the authors' technical knowledge of the materials. 

The use phase accounts for energy consumption, maintenance, vehicle and battery wear, and non-
exhausted emissions (brake, tire, and road wear). This process is parameterized in terms of vehicle 
and battery mass, energy consumption, and vehicle and battery lifetime (expressed in kilometers). 
Moreover, the direct effects of sensing and computing subsystems, and the direct effect of vehicle 
automation such as eco-driving, platooning and intersection connectivity was considered based on 
existing data [19]. Indirect mobility level effects such as vehicle kilometers of relocation, high-intensity 
utilization due to carsharing are taken into consideration. SAEVs potential effects such as lightweight, 
rightsizing, higher travel demand, and congestion mitigation are out of the study scope. 

The end-of-life phase consists of vehicle dismantling and recovery of the main plastic and ferrous-
metal components. Regarding the lithium-ion battery treatment, a hydrometallurgical process 
consisting of metals extracted at low temperatures was considered [46]. Electronic components 
(sensing and computing systems devices) require manual dismantling and mechanical treatment. This 
phase is modeled considering the cut-off approach, which means that the environmental burdens of 
recycled materials are not accounted for the impacts of the disposed products, but to the next product 
generation. The main processes and materials involved in the life cycle inventory are listed in 
supplementary material - S.M.1. 

 

2.2.3. Impact assessment 

The LCA is carried out using SimaPro LCA software package (version 9.2), a widely used LCA tool. The 
impact assessment is developed based on ReCiPe midpoint method, considering a hierarchical 
perspective [42]. Table 1 describes the environmental impact categories included in the evaluation. 
The impact assessment relies on commonly established midpoint impact categories instead of more 
aggregated endpoints. 

In total, 18 midpoint impact categories were evaluated with impact to the three main areas of 
protection: human health, damage to ecosystems, and resource availability (see Fig. 1). 

 

3. APPLICATION OF THE METHODOLOGY TO THE AVEIRO REGION IN PORTUGAL 

The proposed methodology is applied to the Region of Aveiro, Portugal, composed of 11 municipalities 
with 1,693 Km2 and 370 thousand inhabitants- Fig. 3 [47]. Each municipality has between 95 and 525 
inhabitants per square kilometer. 

This study analyses the intermunicipal trips between the municipalities in the region, a total of 118 
thousand trips per day [47]. For the current application, the municipalities of Aveiro, represented by 
its centroids, correspond to the cities of the mathematical programming model. The aggregated data 
from the Intercity Report of Aveiro Region (IRAR) - [47] was used to generate the synthetic travel 
demand, a consequence of not having access to the raw data. A Poisson process was used to generate 
the trip demand which respects the OD matrix values and the hourly trip distribution for the entire 
region. To increase the realm of the synthetized values, the disaggregation of the hourly trip 
distribution for each municipality was made. This disaggregation had, as structural references, some 
municipalities selected from a neighbour region for which raw trip data is available. The selected 
municipalities share similar characteristics with the ones of the Aveiro region, particularly the number 
of daily trips and distance to the most important municipality of the region. The Furness method [48] 



was used to guarantee that the border conditions from the IRAR (total trips per hour, and daily total 
trips per municipality) are simultaneously respected. 

 

 

To apply the mathematical programming model, the distances and travel times were obtained from 
Google Maps [49]. It is assumed that travel times are constant throughout the day. Considering the 
scenario of the privately owned vehicle, all the intermunicipal trips are considered commuting trips 
performed by car in which the occupancy rate is 1.2 passengers [50]. Regarding shared mobility 
services, the added time and added distance to pick-up and drop-off passengers were obtained using 
an intra-municipality simulation on each municipality i ∈ I. To perform this simulation, the parishes of 



each municipality have been represented by centroids. Requests were generated for each parish of a 
certain municipality using the inverse transform sampling method applied to the population ratio of 
each parish in the municipality population. The number of generated requests is equal to the vehicle 
capacity (a condition assumed in the model description). The shortest distance between requests is 
determined using a simulated annealing algorithm. This simulation is repeated one hundred times for 
each municipality, being the average used to process the added time, as well as the added distance 
for the referred arcs. 

The cost coefficients of the mathematical programming model are set as follows. The driving cost, 
associated with vehicles' movements, considers the kWh price in Portugal, which is approximately 
0.20€ [51]. The vehicle's daily cost, a fixed expense per vehicle, includes the daily depreciation value 
based on the 20% depreciation rate per year [52], and the daily cost of maintenance, taxes, insurance, 
and cleaning. The service price charged to passengers is the only source of revenue considered for 
shared mobility systems. The adopted price is 0.10 €/km for the service with polling (a maximum of 4 
passengers per vehicle), and 0.15€/km for the service without pooling (one passenger per vehicle). 
The service price charged to passengers (revenue) minus running costs (particularly related to vehicle 
movements) and vehicle daily costs (depreciation, maintenance, taxes, insurance, and cleaning), 
reflect the company profit. 

The fleet consists of compact-size passenger vehicles similar to Renault Zoe, 1845 kg of curb weight, 
52kWh battery capacity, 150,000 km of battery lifetime and 20kWh/100 km energy consumption [45], 
[53], [54]. The characteristics of the compact-size passenger vehicles are considered the same for all 
the scenarios. Sensing and computing features were assumed to increase raw materials consumption, 
vehicle weight by 16.5 kg and vehicle power consumption by 2%. Life cycle inventory data is displayed 
at supplementary material – S.M.1. 

The LCA is modeled considering an average vehicle for scenario S0. At scenarios S1 and S2 two 
different average vehicles are considered: one that reaches the lifespan and another one that does 
not reach it respectively. The production and EOL phase are mainly influenced by the number of AEVs 
comprising the fleet. Different scenarios of vehicle occupancy influence particularly the size of the 
fleet as well as the VKTp and VKTr during the use phase. For the VKTp the extra weight of passengers 
for all scenarios is considered. For that purpose, the average weight of 60 kg per passenger is assumed 
[55]. The AEVs energy consumption during the use phase is modeled based on the Portuguese 
electricity generation mix (data from 2014) which is supplied by 31.8% hydro, 23.4% wind, 23.1% coal, 
13.2% natural gas, 5.4% biofuels, 2.6% oil, and 0.5% geothermal power [56]. 

 

4. RESULTS 

4.1. Mathematical programming model 

Table 2 presents the optimal results of the mathematical programming model considering the demand 
of the regional case study for scenario S0: private AEVs with an average occupancy rate of 1.2 
passengers; scenario S1: SAEVs with an occupancy rate of 1 passenger (non-ridesharing) and scenario 
S2: SAEVs with an average occupancy rate of 3.0 passengers per vehicle (ridesharing). 



 

Scenario S0 is the baseline scenario and intends to reflect the optimized characteristics of the actual 
fleet operating in the Aveiro region. To optimally meet the travel demand, 49,857 privately owned 
vehicles are needed, traveling an average of 35.6 km/day. The scenarios of shared mobility (S1 and 
S2) indicate a reduction of 81% and 93% of the fleet size, respectively. The reduction in terms of the 
number of vehicles is offset by a high vehicle-use intensity. Compared with scenario S0 (baseline), 
vehicles traveled in average 6 times and 12 times more kilometers per day on scenario S1 and scenario 
S2, respectively. 

Considering the weight of costs in the representative system scenarios, the cost of the fleet 
composition is the most important. Profit wise, scenario S0 where no revenue is considered, the use 
of privately owned vehicles represents an aggregated cumulative loss of around one million euros per 
day. In contrast SAEVs systems, replacing the same passenger movements, under scenarios S1 and S2 
have a profit of 33,549€ and 70,817€ per day, respectively. From a user perspective, the increase of 
15 min' travel time per passenger in scenario S2 when compared to scenarios S0 and S1 is an indicator 
of the reduction of service quality. 

The previous optimization results consider a typical day of operations, though vehicles need to be 
replaced after each vehicle reaches the lifetime (150,000 km). A 5 years-period of analysis to verify 
the impacts of maintaining the optimal daily fleet size was used. At the end of this period, there will 
be some vehicles that do not reach the lifetime. For those, the relative value of the impacts was 
considered by applying the percentage value of lifetime used (rate of the mileage used relatively to 
the total mileage to reach the lifetime). Table 3 reflects these results used as input to the life cycle 
assessment (Section 4.2). 

 

 



When considering a lifetime of 150,000 km per vehicle unit over 5 years, the differences between fleet 
composition under the three scenarios are reduced since it provides the normalization between 
vehicle-use intensity and vehicle lifespan. When compared to the baseline scenario S0, the total 
number of vehicles needed to guarantee the necessary fleet size during the 5-year period of analysis 
reduced 44% and 52% for scenarios S1 and S2, respectively. 

 

4.2. Life cycle assessment 

Table 4 reports the results of the impact assessment of each scenario under evaluation. According to 
these results, shared mobility discloses a potential to reduce 20–31% of the impacts when non-
ridesharing is considered – scenario S1 and 32–42% when ridesharing is considered – Scenario S2. The 
impact categories with the most reduction potential are human toxicity, mineral resource scarcity, 
and marine and freshwater ecotoxicity, mainly influenced by the production phase and the wear of 
the vehicle (use phase). Comparing the two scenarios of shared mobility vehicle capacity, scenario S2 
can reduce the value of the impact categories by 14–16% compared with scenario S1. Indeed, the 
better lifecycle performance of scenario S2 is closely related to the reduction of the number of vehicles 
composing the fleet (Table 3). 

 

The production and use are the life cycle phases with the highest contributions to the impact 
categories, being the impact of EOL almost negligible. Moreover, the relative impact of each life cycle 
phase is roughly the same when considering a non-ridesharing (S1) or a ridesharing (S2) shared 
mobility system. As mentioned before, the total reduction of impact categories between the two 
scenarios of shared mobility is closely related to fleet composition. Fig. 4 shows the relative 
percentage of each impact category to life cycle phases. The relative percentages reflect the 
contributions of the three life cycle phases to each impact category. 

The production phase accounts for 59 to 79% of the impact categories in scenario S0 and around 41% 
to 65% in the shared mobility scenarios (S1 and S2). The production phase is the higher contributor to 
the impact categories such as mineral resource scarcity (79% for scenario S0 and around 64% for 
scenarios S1 and S2) and human non-carcinogenic toxicity (78% for scenario S0 and around 63% for 
scenarios S1 and S2). An in-depth look at the process contribution can reveal that the production of 
the lithium-ion battery and powertrain are the main responsible for these impacts. This contribution 
is mainly related to the metals and chemicals used in the production of powertrains and high voltage 
batteries. Results related to the process contribution are in line with data reported on supplementary 
material (S.M.2). 



 

Although the production phase is the life cycle phase with the highest impact in scenario S0 for all the 
impact categories, the same does not happen in shared mobility scenarios. For scenarios S1 and S2 
the use phase represents 35% to 58% of the impact categories while in the baseline scenario is 
responsible for at most 40%. Because of the high-intensity use of the vehicle, the use phase is a larger 
contributor for 8 out of the 18 impact categories for scenarios S1 and S2. At the use phase, emphasis 
is given to impact categories such as ozone formation (terrestrial ecosystems and human health), 
terrestrial acidification, and fossil resource scarcity. Most of the impacts at the use stage are 
particularly related to electricity consumption and vehicle wear (supplementary material S.M.2). The 
end-of-life phase (EOL) accounts only for a maximum of 7% of the impact categories for the three 
scenarios. At this phase is noticed that impact categories related to the hydric resources damage such 
as marine eutrophication, freshwater, and marine ecotoxicity are the most relevant. 

4.3. Sensitivity analysis 

A sensitivity analysis of three key parameters involved in the AEVs LCA was performed to better 
understand their impacts. The variables for the analysis were selected based on uncertainty and 
variability. The first parameter is the electrical grid carbon intensity. Considering the massive impact 
of electricity consumption during the use phase, different electricity generation conditions were 
tested besides the country mix (PT): electricity generation only from coal, wind, and photovoltaic 
power systems. Compared with the country electricity mix (PT) an electricity generation based on coal 
can significantly increase the value of 10 out of the 18 impact categories considered. In contrast, 
impact categories such as ionizing radiation, ecotoxicity, land use, mineral resource scarcity, and water 
consumption can benefit from this change. These impact reductions can be explained by geothermal 
energy (particularly related to emissions of ionizing radiation) and natural gas power (particularly 
associated with impacts on ecotoxicity) both present in the electricity country mix [57]. Furthermore, 
electricity generation based on coal energy source is the primary energy source associated with less 
land use and water consumption [57], [58]. Electricity generation based on photovoltaic power can 
reduce most of the impact categories except for land use and terrestrial ecotoxicity which present a 
slight increase. The increase of land use on photovoltaic power is related to high metal resources used 
and the direct effect of ground-based systems. Electricity generation based on wind generation power 
revealed a significant reduction in all the impact categories under evaluation. Fig. 5 is a representative 
demonstration of the percentages of variation between the electric grid carbon intensity scenario 
applied to scenario S0. The percentages of reduction between impact categories for the three mobility 
scenarios can be seen in supplementary material S.M. 3. 

 

 

 



 

 

The second parameter examined was the vehicle consumption, including the automation power 
requirements. Considering the uncertainty related to the technological advance of automated vehicles 
features and their power requirements, the effect of vehicle consumption on life cycle performance 
was tested by varying 20% of this value. A lower bound assumes consumption of 0.163kWh/km, while 
an upper bound assumes consumption of 0.245kWh/km. A reduction of the vehicle consumption 
resulted in a maximum of 6% lower life cycle impacts, while an increase of 20% in vehicle consumption 
corresponds proportionally to an increase of 6% in life cycle impacts. The impact categories most 
affected by this variation are fossil resource scarcity and terrestrial acidification. The detailed results 
of this analysis can be seen on supplementary material S.M.4. 



The third key parameter assumed was the vehicle lifetime. By reducing 50,000 km of vehicle lifetime 
it was observed an increase in the impact categories up to 19% for human carcinogenic toxicity. On 
the other hand, by increasing 50,000 km the impact categories decreased 3 to 5% for scenario S0 and 
5 to 10% for scenarios S1 and S2. Considering a vehicle lifetime of 200,000 km, human non-
carcinogenic toxicity shows a decrease of up to 10%. Fig. 6 demonstrates the variation reported for 
scenario S2. The detailed results of this analysis for the three scenarios under evaluation can be seen 
in the supplementary material S.M.5. 

In sum, the sensitivity analysis demonstrates that a better life cycle performance of AEVs can be 
achieved if electricity generation is based on renewable sources, namely if wind generation power can 
be considered during the vehicle use phase (vehicle charging). Moreover, investment should be made 
to increase vehicle and battery lifespan. 

 

5. CONCLUSIONS AND FUTURE WORK 

This paper proposed a method to assess the life cycle environmental impact of AEVs used for private 
and shared mobility in an intercity context. To the best of the authors’ knowledge, this is the first 
paper that compares shared and privately owned AEVs from a life cycle point of view and that 
considers the application in a regional intercity context. Moreover, this work proposed a novel 
methodology by combining an optimization model as input data of the LCA approach. The 
optimization model is used to estimate the system fleet size and usage patterns of its vehicles under 
a profit maximization requirement. The LCA of AEVs is then applied to the synthetic travel demand 
data to assess the characteristics of a privately owned fleet scenario, as well as to the results of the 
optimization model for two SAEV service scenarios differing in the vehicle seat capacity: 1 and 4 
passengers (ridesharing). 

To optimally meet the travel demand with the level of service of a privately owned vehicle, shared 
mobility considering a single-passenger reveal to reduce 81% of the vehicles when compared to the 
privately-owned fleet scenario. This reduction in fleet size has a direct effect on economic savings for 
society and lifecycle impacts. However, this is offset by a high vehicle intensity use. 

Transitioning from a privately owned to a shared mobility system reveals a potential to reduce 20–
31% of the environmental impacts under the conditions of one passenger vehicle capacity, and 32–
42% under the conditions of four-passenger vehicle capacity. The impact categories with the most 
potential for reduction are human toxicity, mineral resource scarcity, and marine and freshwater 
ecotoxicity. These impact categories represent the three main areas of protection and are mainly 
influenced by the production phase and the vehicle wear. 

 

Regarding the two scenarios of shared mobility, the 4-seat vehicle service can reduce over 15–16% of 
the environmental impacts compared to the 1-seat vehicle service, meaning no ridesharing. Indeed, 
the better lifecycle performance of high levels of vehicle occupancy on shared mobility is related to 
the reduction of the fleet. However, the use of ridesharing on shared mobility systems increases the 
average travel time per passenger (from 21 to 36 min) resulting from the pick-up and drop-off of extra 
passengers which can be an indicator of a mobility service quality reduction. Opting between 
ridesharing and non-ridesharing mobility system should not only consider the environmental 
performance but also economic and service quality aspects. 

 

Assuming that a scenario of shared mobility using AEVs will be considered in the future of intercity 
mobility systems for indisputable economic and environmental reasons, special emphasis should be 
given to impact categories such as ozone formation, fossil resource scarcity, and global warming 



potential. The lower potential for reduction of these impact categories particularly depends on energy 
consumption and the supply chain of electricity generation. Electricity generation based on wind 
power is the most promising to reduce environmental impacts with the potential to reduce 27% of 
GWP compared to the Portuguese electricity mix. From a lifecycle perspective, the lifespan of the 
vehicle should be considered during the production and maintenance since diminishing this lifetime 
may incur a significant decrease in the lifecycle performance. On the other hand, even if the future of 
vehicle automation will reflect a rise in vehicle consumption, this does not seem to preclude the 
potential gains. 

Reliable background information is offered by linking a mobility system optimization model to life 
cycle impact assessment. The established methodology can, in the future, provide decision-makers 
with comprehensive data on the environmental implications of on-demand transport services. 
Nowadays, considering automated and electric vehicles a developing technology, special emphasis 
should be given to the importance of reducing private-vehicle ownership and promoting ridesharing 
mobility. The potential of shared mobility can even be underestimated in this case study since it 
considers the optimal use of privately owned vehicles which does not reflect the reality. The global 
reduction of the fleet seems the most fundamental way to face environmental challenges within the 
road transportation sector. Furthermore, the decarbonization of electricity generation systems should 
be a higher global priority for the future of SAE mobility. 

A limitation of performing LCA of future technologies is the lack of consistent information for inventory 
data; still, the results of this study provide a fair identification of impact categories. Future work should 
consider the expected transition whereby conventional, automated, shared and private mobility will 
coexist in the network environment which may diminish the potential environmental benefits [59]. 
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