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Resumo O aumento exponencial do volume de tráfego observado na última década tem
pressionado os opereradores de redes celulares para fornecerem serviços de tráfego
multi-gigabit de uma forma económica e ecologicamente sustentável. Como tal,
um número elevado de small cells tem sido instalado em cenários urbanos, para
aumentar a capacidade da rede e suportar os requisitos desafiantes de largura de
banda, capacidade e latência das actuais redes 5G. Contudo, a densificação extrema
da rede tem um custo elevado quando utilizadas ligações de fibra. O backhaul sem
fios oferece assim uma alternativa escalável e com uma boa relação custo-benefício
às ligações de fibra, especialmente na banda de ondas milimétricas, onde larguras
de banda grandes estão disponíveis. Ainda assim, a elevada susceptibilidade a obs-
truções nesta banda, só permite o funcionamento correcto em ambientes em que
exista linha de vista. Para assegurar uma rede resiliente, devem existir mecanismos
para mitigar o impacto negativo causado pela obstrução nas múltiplas camadas.
Esta tese foca-se na implementação de mecanismos que melhorem a fiabilidade e
resiliência de uma rede backhaul de ondas milimétricas, mais especificamente, os
ganhos que a previsão antecipada da qualidade da ligação poderia ter no aumento
da adaptabilidade da rede. Para esse efeito, foi instalada com sucesso uma testbed
WiGig controlada por SDN num cenário exterior. Os dados recolhidos num ambi-
ente real permitiram caracterizar o impacto de obstruções de curta e longa duração
em múltiplas camadas da rede. Esta análise mostrou que uma obstrução contínua
causa atrasos que podem chegar a quase um segundo e PER máximas de 40%,
mesmo em cenários com ajuste automático da modulação. Por outro lado, uma
obstrução de curta duração causou variações abruptas da taxa de dados, atrasos
máximos que podem chegar a meio segundo, e perdas de pacotes máximas de 9%.
Numa segunda etapa do trabalho, os dados reais foram também utilizados para
desenvolver um mecanismo que classifica, com uma F1-score de 97%, a qualidade
de uma ligação mmWave sob diferentes níveis de obstrução. Para além disso, foi
demonstrado que um modelo de deep learning é capaz de utilizar as métricas de
multiplas camadas de rede para detectar padrões temporais que podem ser utiliza-
dos para prever o valor das métricas mais relevantes para os próximos 3 segundos.
O erro associado à previsão de cada métrica está contido dentro do intervalo de va-
riação observado para uma ligação mmWave não obstruído. Por fim, foi explorado
o potencial de técnicas lineares de network coding em aumentar a robustez em redes
de backhaul baseadas em ondas milimétricas. Foi observado que a codificação de
pacotes com RLNC de comprimento fixo aumenta a probabilidade de atingir taxas
de entrega de 100%, com um aumento pouco significativo do overhead, em links
mmWave altamente obstruídos. Adicionalmente, o comportamento da testbed uti-
lizada foi replicado no ns-3 para desenvolver um modelo de simulação e facilitar a
validação futura dos mecanismos propostos. Numa fase futura do projecto, estes
mecanismos irão permitir conceber um backhaul de ondas milimétricas com uma
elevada resistência e tolerância a falhas.





Keywords 5G backhaul, wireless backhaul, mmWave, IEEE 802.11ad, network reliability, link
quality classification, link quality prediction, network coding

Abstract With the exponential increase of traffic volume observed in the recent decade, cel-
lular operators can no longer satisfy multi-gigabit traffic demands in an economical
and ecologically sustainable way. As such, a dense rollout of small cells is be-
ing deployed in urban scenarios to increase coverage and support the challenging
bandwidth, capacity, and latency requirements of current 5G networks. However,
extreme network densification comes at a cost since the ultra-dense urban scenar-
ios produce a massive amount of backhaul traffic in the core network, potentially
becoming the network bottleneck. Typically, small cell base stations are connected
to the core network through fiber cables, which offers high reliability at a high
cost. Wireless backhauling offers network operators a scalable and cost-effective
alternative to the wired backhaul, especially in the mmWave band, where large
bandwidths are available. Still, this band suffers high susceptibility to the obstruc-
tion, which only allows correct operation under Line-of-Sight conditions (LOS). To
ensure a truly resilient network, mechanisms should be in place to mitigate the
negative impact caused by LOS obstruction at multiple layers. This thesis focuses
on implementing mechanisms that improve the network reliability and resilience
of a blockage-prone mmWave backhaul. More specifically, the gains that predict-
ing in advance the wireless link quality could have on network adaptability. For
that purpose, an SDN-controlled testbed using the standardized IEEE 802.11ad
was successfully deployed in an outdoor scenario. The data collected in this net-
work enabled characterizing the impact of long-term and short-term blockage on
mmWave links. The conducted analysis shows that long-term obstruction causes
maximum delays of about 1 second and PERs up to 40%, even with an automatic
modulation adjustment. On the other hand, short-term blockage causes sudden
data rate decreases of a few hundred Mbps, delays up to half a second, and packet
losses up to 9%. The experimental metrics were also used as the basis for develop-
ing a new link quality classifier, which was shown to classify the wireless link quality
with a test F1-score of 97%. Moreover, a novel deep learning forecasting model
was shown to accurately detect network patterns to predict most of the relevant
link’s KPIs for the next 3 seconds. The prediction error associated with each metric
is within the variation range observed for an unobstructed mmWave link. Further-
more, it has also been found that random linear network coding techniques can be
effectively used to increase the robustness of highly variable mmWave networks.
It was shown that rateless RLNC increases the likelihood of achieving 100% data
delivery success rates, with low encoding overhead, in highly blocked links. Also,
the behavior of the experimental testbed was replicated using ns-3 to develop an
accurate simulation model that could be used for future validation of the proposed
mechanisms. In a more advanced stage of the project, the proposed mechanisms
will be used together to design a truly highly-resilient and fault-tolerant mmWave
backhaul.





Contents

List of Figures ii

List of Tables v

Abbreviations ix

1 Introduction 1

1.1 Context & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the Art 7

2.1 60 GHz networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 5G Backhaul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Data Processing and Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Improving Backhaul Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Related Work in the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Real Deployment 47

3.1 Backhaul Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Network Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Multi-layer Data Analysis 63

4.1 MAC and PHY Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Network and Transport Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Machine Learning Pipeline 83

5.1 General Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

i



Contents

5.2 Data preprocessing module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 ML module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 mmWave Modelling and Network Coding 115

6.1 Simulating a real WigGig-based backhaul . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Improving network coding performance . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Conclusions and future work 127

References 131

Appendices 143

A Multi-layer Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B Wireless Link Quality Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C KPIs forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

ii



List of Figures

2.1 Atmospheric and molecular absorption at mmWave frequencies. . . . . . . . . . . . . 9
2.2 IEEE 802.11ad’s channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 IEEE 802.11ad’s DMG PHY packet format. . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 IEEE 802.11ad beacon interval structure. . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 IEEE 802.11ad’s dynamic channel allocation. . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 IEEE 802.11ad’s beamforming training phases. . . . . . . . . . . . . . . . . . . . . . . 18
2.7 IEEE 802.11ad’s beamforming training protocol. . . . . . . . . . . . . . . . . . . . . . 19
2.8 IEEE 802.11ad’s beam refinement protocol transaction. . . . . . . . . . . . . . . . . . 20
2.9 Network densification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Architecture diagram of a LSTM-based neural network. . . . . . . . . . . . . . . . . . 28
2.11 Confusion matrix for ML classification problems. . . . . . . . . . . . . . . . . . . . . . 30
2.12 The encoding process of Random Linear Network Coding (RLNC). . . . . . . . . . . 33
2.13 TCP throughput in an obstructed mmWave link and respective receiver queue size. . 35
2.14 The SDN architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Nodes and topology of the deployed outdoor testbed. . . . . . . . . . . . . . . . . . . 48
3.2 Directional links established with the phased-array beamforming antenna. . . . . . . . 49
3.3 EMS architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Deployed Testbed Infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Metallic obstacle used for the long-term blockage scenario. . . . . . . . . . . . . . . . 61

4.1 SNR of two mmWave paths under normal, long-term blocked and short-term blocked
scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 The influence of the MCS increase in the PER for a mmWave link under long-term
blockage in automatic MCS mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Comparison between the PER obtained for a mmWave link under normal and long-term
blockage scenarios with MCS 7 fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Comparison between the PER obtained for a mmWave link under normal, long-term
and short-term blockage scenarios with automatic MCS. . . . . . . . . . . . . . . . . . 67

4.5 PER and SNR observed for two mmWave links operating in automatic MCS mode,
which are submitted to short-term blockage. . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 The influence of the SNR and PER in the dynamic MCS adjustment mechanism for a
mmWave link under short-term blockage. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 RTT in a mmWave link under normal, long-term and short-term blocked scenarios for
the automatic MCSs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

iii



List of Figures

4.8 Average RTT observed a mmWave link under normal operation and under long-term
blockage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 TCP packet losses for a mmWave path under normal, long-term blocked and short-term
blocked scenarios with the automatic MCS mode. . . . . . . . . . . . . . . . . . . . . 75

4.10 TCP packet losses for a mmWave path in the normal scenario and in the long-term
blocked scenario for the fixed MCS mode. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.11 TCP throughput of a mmWave link operating under normal, long-term and short-term
blockage conditions for the auto MCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.12 TCP throughput a mmWave link operating under normal and long-term blockage
conditions with fixed MCSs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.13 The total number of TCP retransmissions, and number of retransmission per Mbps,
measured for a mmWave link under long-term blockage when using a fixed MCS of 5. 79

4.14 Number of TCP retransmissions per Mbps and Packet Loss measured during long-term
blockage in a mmWave for different fixed MCSs. . . . . . . . . . . . . . . . . . . . . . 80

5.1 ML development pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Correlation matrix obtained with the P-A link for all experiments. . . . . . . . . . . . 89
5.3 Correlation matrix obtained with the P-B link for all experiments. . . . . . . . . . . . 89
5.4 Pairwise relationships observed for a mmWave link working in the automatic MCS mode. 92
5.5 The principle behind the Random Forest algorithm. . . . . . . . . . . . . . . . . . . . 96
5.6 Feature importance using the mean decrease in impurity (MDI). . . . . . . . . . . . . 97
5.7 Branch of a decision tree used by the best random forest model. . . . . . . . . . . . . 99
5.8 Multi-layer Perceptron (MLP) Classifier cross entropy vs number of epochs. . . . . . 102
5.9 Forecasted data by the best performing ARIMA model for one of the mmWave paths. 104
5.10 LSTM-based RNN neural network architecture used for multi-step metrics forecasting. 107
5.11 Loss function and MAE obtained during training and testing of the best LSTM-based

neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.12 MCS predicted by the forecasting algorithm for the uplink of two mmWave paths. . . 110
5.13 SNR predicted by the forecasting algorithm for two mmWave paths. . . . . . . . . . . 110
5.14 PER predicted by the forecasting algorithm for two mmWave paths. . . . . . . . . . . 110
5.15 Packet loss rate predicted by the forecasting algorithm for two mmWave paths. . . . . 111
5.16 Average RTT predicted by the forecasting algorithm for two mmWave paths. . . . . . 111
5.17 TCP throughput predicted by the forecasting algorithm for two mmWave paths. . . . 111
5.18 TCP retransmissions predicted by the forecasting algorithm for two mmWave paths. . 112

6.1 The WiGig simulation framework used. . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Phased-array antenna employed at each node’s radio. . . . . . . . . . . . . . . . . . . 120
6.3 Quasi-omni and directional radiation patterns measured by the manufacturer vs the

simulated ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4 Architecture for testing the mmWave link with and without RLNC. . . . . . . . . . . 122
6.5 PHY and transport layer metrics measured for the different MCS modes in mmWave

link suffering from long-term obstruction. . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6 Success rate obtained with 1 experience with the uncoded and coded approaches for

all MCS tested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.7 Packet overhead inserted by the encoding process in the automatic MCS for experiences

with 100% success rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

iv



List of Figures

6.8 Number of total packets transmitted with 1 experience with the uncoded approach,
and number of transmitted symbols with the coded approach for all MCS tested. . . . 125

6.9 Cumulative download time measured with 1 experience with the uncoded and coded
approaches for all MCS tested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.1 SNR of two mmWave paths under normal, long-term blocked and short-term blocked
scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.2 Predicted RX beams for two mmWave paths. . . . . . . . . . . . . . . . . . . . . . . . 157
C.3 Predicted TX beams for two mmWave paths. . . . . . . . . . . . . . . . . . . . . . . . 157
C.4 Predicted SNR for two mmWave paths. . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.5 Predicted received data rate for two mmWave paths. . . . . . . . . . . . . . . . . . . . 158
C.6 Predicted PER for two mmWave paths. . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.7 Predicted packet loss for two mmWave paths. . . . . . . . . . . . . . . . . . . . . . . . 159
C.8 Predicted number of TCP retransmits for two mmWave paths. . . . . . . . . . . . . . 159
C.9 Predicted maximum RTT for two mmWave paths. . . . . . . . . . . . . . . . . . . . . 159
C.10 Predicted mean RTT for two mmWave paths. . . . . . . . . . . . . . . . . . . . . . . 160
C.11 Predicted minimum RTT for two mmWave paths. . . . . . . . . . . . . . . . . . . . . 160

v





List of Tables

2.1 IEEE 802.11ad’s MCSs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Comparison of existing experimental measurement work for WiGig-based networks. . 40
2.3 Comparison of existing work on mechanisms for improving resilience of WiGig-based

networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Metnet mesh version 1 node specifications. . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 TCP, UDP and ping metrics collected. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Single carrier PHY mode supported by the CCS Metnet node. . . . . . . . . . . . . . 66
4.2 Statistics of the measured Packet Error Rate (PER) in the worst-performing link

between P and A for the different MCS modes and the three scenarios. . . . . . . . . 68
4.3 Statistics of the average RTT metric in the automatic MCS mode for the worst-

performing link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Statistics of the maximum RTT metric in the automatic MCS mode for the worst-

performing link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 TCP packet loss statistics of the worst-performing link under the different scenarios

for each MCS mode tested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6 TCP throughput statistics of the worst-performing link for each MCS mode tested. . 77

5.1 Aggregation functions used to produce a single metric for each 1 second entry. . . . . 86
5.2 Hyperparameter settings used during random grid search for SVM model. . . . . . . . 93
5.3 F1-score obtained with cross-validation of some of the models evaluated during grid

search for the 3-second window using the RBF, sigmoid and polynomial kernels. . . . 95
5.4 Best settings found during the tuning process for the SVM method for different window

sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 Hyperparameter settings used during random grid search for random forest assemble. 97
5.6 The best model found during the tuning process for the random forest algorithm with

different window sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.7 General hyperparameter settings used for MLP Classifier with three different solvers. 100
5.8 Tested configurations specific to each of the solvers used in the development of the

MPLC classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.9 The best model found during the tuning process for the MLP Classifier method with

different windows sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.10 Comparison of the results obtained for a 3 second time window with the best models

found for SVM, random forest and MLPC. . . . . . . . . . . . . . . . . . . . . . . . . 103
5.11 Configurations details of ARIMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.12 Settings used during hyperparameter tuning of the LSTM-based model. . . . . . . . . 106

vii



List of Tables

5.13 Settings, training and testing time of the best performing LSTM model. . . . . . . . . 107
5.14 Mean Absolute Error obtained with the best performing LSTM model. . . . . . . . . 109

6.1 CCS node radio properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Test-related parameters configured for the coded and uncoded approaches. . . . . . . 122

A.1 Statistics of the measured PER for the mmWave paths tested with different MCS modes
(fixed and automatic) for the three scenarios. . . . . . . . . . . . . . . . . . . . . . . . 144

A.2 Average RTT measured for non-blocked links. . . . . . . . . . . . . . . . . . . . . . . 145
A.3 Average RTT measured for statically blocked links. . . . . . . . . . . . . . . . . . . . 146
A.4 Average RTT measured for short-term blocked links. . . . . . . . . . . . . . . . . . . . 146
A.5 Maximum RTT measured for non-blocked links. . . . . . . . . . . . . . . . . . . . . . 147
A.6 Maximum RTT measured for statically blocked links. . . . . . . . . . . . . . . . . . . 148
A.7 Maximum RTT measured for short-term blocked links. . . . . . . . . . . . . . . . . . 148
A.8 TCP packet loss measured for non-blocked links. . . . . . . . . . . . . . . . . . . . . . 149
A.9 TCP packet loss measured for statically blocked links. . . . . . . . . . . . . . . . . . . 150
A.10 TCP packet loss measured for short-term blocked links. . . . . . . . . . . . . . . . . . 150
A.11 Throughput measured for non-blocked mmWave links. . . . . . . . . . . . . . . . . . . 151
A.12 Throughput measured for statically blocked links. . . . . . . . . . . . . . . . . . . . . 152
A.13 Throughput measured for short-term blocked links. . . . . . . . . . . . . . . . . . . . 152
B.14 Settings found for the top three SVM models for windows of size 3, 5, 7 and 10 seconds.153
B.15 Settings found for the top three Random Forest models for windows of size 3, 5, 7 and

10 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.16 Settings found for the top three MLPC models for windows of size 3, 5, 7 and 10 seconds.155
C.17 Results obtained with the best performing ARIMA models for predicting the SNR of

each mmWave path established. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
C.18 Mean Squared Error obtained with the best performing LSTM model. . . . . . . . . . 156
C.19 Root Mean Squared Error obtained with the best performing LSTM model. . . . . . 156
C.20 Partial results obtained during hyperparameter search of the LSTM-based forecasting

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

viii



Abbreviations

5G Fifth Generation

A-BFT Association Beamforming Training

AC-RLNC Adaptive Causal Network Coding with Feedback

ADDTS Add Traffic Stream

AGC Automatic Gain Control

AI Artificial Intelligence

AIC Akaike Information Criterion

ANN Artificial Neural Network

AoA Angle of Arrival

AoD Angle of Departure

AP Access Point

ARIMA Autoregressive Integrated Moving Average

ATI Announcement Transmission Interval

AWV Antenna Weight Vector

BDDP Broadcast Domain Discovery Protocol

BHI Beacon Header Interval

BI Beacon Interval

BIC Bayesian Information Criterion

BRP Beam Refinement Phase

BSS Basic Service Set

BTI Beacon Transmission Interval

ix



0. Abbreviations

CART Classification and Regression Trees

CBAP Contention Based Access Period

CBP Contention Based Period

CE Channel estimation

CM Cluster Manager

COTS Commercial Off-the-Shelf

CRC Cyclic Redundancy Check

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CTS Clear To Send

CV Cross-validation

DCF Distributed Coordination Function

DIFS Distributed Inter Frame Space

DL Deep Learning

DMG Directional Multi-Gigabit

DoF Degree of Freedom

DTI Data Transmission Interval

EDCA Enhanced Distributed Channel Access

EDMG Enhanced Directional Multi-Gigabit

EMS Element Management System

FEC Forward Error Correction

FFNN Feed-Forward Neural Network

GP Grant Period

HCCA HCF Controlled Channel Access

HCF Hybrid Coordination Function

IBSS Independent Basic Service Set

KPI Key Performance Indicator

L-BFGS Limited-memory Broyden–Fletcher -Goldfarb–Shannon

x



L2TP Layer 2 Tunneling Protocol

LDPC Low-Density Parity-Check

LLDP Link Layer Discovery Protocol

LNC Linear Network Coding

LOS Line-of-sight

LSTM Long-Short-Term Memory

LTE Long Term Evolution

MAC Media Access Control

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MCS Modulation and Coding Scheme

MEC Multi-Access Edge Computing

MIMO Multiple-Input Multiple-Output

ML Machine Learning

MLP Multi-layer Perceptron

MSDU MAC Service Data Unit

MSE Mean Squared Error

MU-MIMO Multi-user Multiple-Input Multiple-Output

NAV Network Allocation Vector

NC Network Coding

NLOS Non-line-of-sight

NVF Network Functions Virtualization

OF OpenFlow

OFDM Orthogonal Frequency Division Multiplexing

ONOS Open Network Operating System

PBSS Personal Basic Service Set

PCF Point Coordination Function

xi



0. Abbreviations

PCP PBSS central point

PER Packet Error Rate

PHY Physical Layer

PL Packet Loss

PoP Point of Presence

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RBF Radial Basis Function

RCPI Received Channel Power Indicator

RF Random Forest

RLNC Random Linear Network Coding

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

RSSI Received Signal Strength Indicator

RTS Request To Send

RTT Round-trip Time

RXSS Receive Sector Sweep

SARIMA Seasonal Autoregressive Integrated Moving Average

SBS Small cell Base Station

SC Single Carrier

SDN Software-Defined Networking

SDR Software-Defined Radio

SLS Sector Level Sweep

SNR Signal to Noise Ratio

SON Self-organising Network

SP Service Period

xii



SPR Service Period Request

SR-ARQ Selective Repeat Automatic Repeat Request

SSW Sector Sweep

STF Short Training Field

SU-MIMO Single-user Multiple-Input Multiple-Output

SVM Support Vector Machine

TCP Transmission Control Protocol

TDD Time Division Duplex

TDMA Time Division Multiple Access

TXSS Transmit Sector Sweep

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

XOR Network Coding Exclusive-OR Network Coding

xiii





Chapter 1

Introduction

1.1 Context & Motivation

The increasing popularity in bandwidth-hungry applications has led to a massive increase
in network traffic in the last few years. Today, with an annual growth of 25% of mobile users
this number is expected to reach 80 billion by 2030 [1]. To meet the high traffic demands,
5G cellular systems are currently being deployed. The Fifth Generation (5G) of wireless
communications is expected to support data rates 100 higher than the current 4G LTE, 3-5
times the spectral efficiency and 10-100 times the energy efficiency [2].

5G leverages the frequently unused mmWave spectrum (that ranges from 3-300 GHz) to
achieve multi-gigabit data rates with low latency. Furthermore, it employs different spatial
processing techniques like massive-Multiple-Input Multiple-Output (MIMO), that increase
the spectral efficiency and channel capacity even further, as it is possible (due to the higher
frequencies), to pack a large number of antennas into a smaller form factor. The leap seen in
the transition from 4G to its 5G counterpart cannot be seen as a simple upgrade of specific
technologies and techniques to increase capacity and achieve greater spectral efficiency, but
rather as a new cellular network whose inner workings are completely different owning to the
higher frequencies it uses, as well as the new services and the number of devices supported.
In reality, achieving all the benefits that 5G proposes requires huge changes in how mobile
networks work and their underlying infrastructure, especially in the backhaul/transport layer.

In order to provide increased coverage and capacity in densely populated urban areas, the
use of small cells has emerged with 5G alongside typical macrocells and femtocells stations.
Small cells are low-powered radio access nodes which can operate in both the unlicensed
and licensed mmWave frequencies that typically cover distances up to 200 meters under
NLOS conditions. Their main goal is to extend cellular networks to provide connectivity in
densely populated regions with a rapidly increasing user base. Thus, in ultra-dense small cell
deployments, the 5G backhaul must accommodate hundreds of gigabits of traffic from the core
network. As such, two different alternatives can be used to provide backhaul connectivity to
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5G small cells. Fibre connections are the most reliable option, and they provide the highest
throughput. However, they are not always a viable option due to two main reasons: 1) in
ultra-dense scenarios the CAPEX grows excessively as the number of small cells increases; and
2) fiber backhauls do not have a dynamic and re-configurable topology that can be changed
according to the specific time-dependent data capacity demands.

Several wireless alternatives exist in the sub-6 GHz and mmWave bands to provide backhaul
connectivity. Nonetheless, despite the current advances in enhancing spectrum efficiency, sub-
6GHz wireless frequencies cannot achieve data rates exceeding 10 Gbps, which may not always
be enough for the envisioned 5G networks and services. This has driven ongoing research for
mmWave-based solutions that exploit the high bandwidth available in the mmWave spectrum
to provide 5G connectivity to small cells, which fulfils the challenging bandwidth, capacity, and
latency requirements. Wireless backhauling in this band offers network operators a scalable
and cost-effective alternative to the wired backhaul.

Nevertheless, using such high frequencies inevitably leads to higher propagation losses.
Using the free space model, simply changing the frequency from 3 to 30 GHz, results in an
additional propagation loss of 20 dB for the same transmitter-receiver distance [3]. To cope
with the higher losses, steerable MIMO antenna arrays with beamforming capabilities are
usually employed to create highly directional beams where the power is focused to cover a
specific direction. Still, this is not sufficient to compensate all the additional losses. Hence,
the distances typically covered by these shorter wavelengths are lower than those covered by
previous cellular systems. However, the most critical point of mmWave communications is
its high susceptibility to blockage. Millimetre signals suffer less diffraction than microwave
signals, which makes them much more vulnerable to blockage. Therefore, a sudden obstruction
of the line of sight path is enough to cause a significant decrease in the maximum achievable
throughput and lead to maximum delays above acceptable limits for critical applications. In
the worst cases, link obstruction may even cause link failure.

To ensure a truly resilient network, there must be several mechanisms in place that allow
to mitigate the negative impact caused by LOS obstruction at both network and MAC layers.
Firstly, possible obstructions that may lead to link failures may be detected ahead of time,
so that it is possible to trigger a traffic rerouting action at layer 3, using for instance a SDN
controller to redirect it, before the negative impact of the obstruction is actually felt in the
network performance. Moreover, ahead of time, link quality predictions may be used to switch
the radio to one suffering from less interference in layer 2.

Lastly, network coding techniques can also be an interesting technology to reduce losses
and to handle the high variations of delay caused by obstructions caused by obstruction. Such
techniques can also make the use of the ahead-of-time predictions to increase or decrease the
code rate.

This thesis focuses on researching mechanisms that improve the network reliability and
resiliency of a blockage-prone 5G mmWave backhaul, more specifically the gains that predicting
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in advance the wireless link quality could have. This work aims to study the possibility of
properly classifying a mmWave link quality according to expected blockage duration, and the
possibility of predicting link quality metrics before a LOS obstruction occurs.

This work was developed in the context of the SNOB-5G project. SNOB-5G is an inniative
led by Ubiwhere, in collaboration with Instituto de Telecomunicações, Universidade de Coimbra
and the Research Laboratory of Electronics at MIT, for the development of a self-optimized,
intelligent, and fault-tolerant wireless backhaul solution for 5G networks that may use 5G units
installed in urban furniture (such as lamp posts) to meet the high bandwidth, capacity, and
latency requirements in challenging urban scenarios [4]. In the scope of this project, we intend
to leverage Artificial Intelligence (AI), Network Coding, Multipath routing, Software-Defined
Networking (SDN), Network Functions Virtualization (NVF) and dynamic caching techniques
based on Multi-Access Edge Computing (MEC) [5] to design a fully autonomous network
system apt to work in a mesh topology and capable of accommodating innovate services.
The resilience mechanisms proposed in this thesis will allow to reroute priority flows over
alternative links and to further enhance the performance of network coding techniques in a
SDN-controlled mmWave backhaul.

1.2 Objectives

The main goal of this work is the definition and implementation of new mechanisms to
improve the network resilience of a 5G backhaul under different types of induced obstructions.
These mechanisms can be used to further act in multiple layers (Transport, MAC and network)
by allowing to reroute higher priority traffic with high QoS requirements to links that are
expected to be more reliable, and by speeding up the network coding techniques designed to
improve robustness in data transmission. This thesis has the following objectives:

• Characterize the real impact caused by long-term and short-term obstruction on real
millimetre-wave backhaul links;

• Study the possibility of properly classifying mmWave link quality under different ob-
struction conditions using real datasets;

• Study the possibility to perform accurate and ahead of time predictions of the most
relevant link KPIs using real datasets;

• Explore the type of robustness improvement provided by network coding techniques in
links suffering from blockage.
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1.3 Contributions

In order to develop mechanisms to improve resiliency and reliability in a real 5G backhaul
network, it was necessary to acquire the KPIs of links for different types of obstruction. The
backhaul deployed consisted of three nodes that were installed on the roof of the Instituto de
Telecomunicações de Aveiro, a very isolated area without much interference, thus allowing for
testing under a fully controllable environment. These nodes operate in the 60GHz band and
use IEEE 802.11ad standard. The data acquired was extensively analyzed to characterize the
impact of short-term and long-term obstruction in a time-variable mmWave link. The real
dataset was then used to develop mechanisms for classifying and predicting the wireless link
quality and its KPIs in a given time window. At the final step, it was assessed the specific
improvements that network coding could provide to obstructed links and the impact that such
mechanisms could have on SDN approaches.

The lack of configuration support in the equipment and the inability to access the packets
circulating on the network make the task of simulating and testing the reliability mechanisms
a time-consuming and difficult process. To facilitate the testing process, the physical testbed’s
behavior was replicated in the ns-3 simulator. However, the chosen module still had its
limitations since it is not extended to operate with multiple radios nor supports the introduction
of static and moving obstructions in a link. Thus, work extending the ns-3 module to our
particular scenario was performed. The main contribution of this Thesis include:

1. Development of data acquisition network probes to collect both physical and transport
layer metrics;

2. Creation of a dataset which reflects the behavior of two mmWave links in three different
blockage states: non-blocked, long-term blocked, and short-term blocked;

3. Extensive characterization of the impact that different types and levels of obstruction
have on multiple layer’s KPIs (physical, network and transport metrics);

4. Machine Learning (ML) and Deep Learning (DL)-based pipeline to classify mmWave
link quality according to the type of obstruction registered in a given time window: no
obstruction, short-term blockage, and long-term blockage;

5. DL-based pipeline to forecast physical and transport KPIs that are expected to be
observed for a given mmWave link in the next 3-second window;

6. Evaluation of network coding techniques in a real prone-blockage mmWave backhaul as
a joint work between Instituto de Telecomunicações and MIT researchers;

7. Extension of the ns-3 WiGig module to simulate the real backhaul network, also as a
joint work between IT researchers. This includes the development of a new module
to simulate obstruction in a link, the extension of the original WiGig module to work
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with four radios instead of only one, and the development of new antenna codebooks to
simulate the properties of our node’s radios.

As a result of contributions 1 to 5, a scientific paper is being developed, "Improving
mmWave Backhaul Reliability: An ML-based Approach", that leverages the wireless link
quality classifier and the KPIs forecasting methods to propose a multi-layer link quality
forecasting framework that estimates the future quality of a mmWave link.

Contributions 5 and 6 will also generate two additional research papers in collaboration
with MIT during different development stages of the SNOB-5G project. Currently, a paper is
being developed, "All About Losses: Improve Millimeter-Wave Lossy Communication with
Network Coding Techniques", describing the gains that the Adaptive Causal Network Coding
with Feedback (AC-RLNC) technique provides in terms of reliability in a real mmWave network.
In the future, another research paper will explore the possibility of using the forecasted link’s
KPIs to adjust the coding rate before sudden obstruction occurs.

With respect to the latter contribution, one scientific paper has been already written,
alongside other researchers working in the SNOB-5G project, describing the processes required
to adapt the ns-3 WiGig module to represent the deployed mmWave backhaul. The development
process was validated in the real testbed through direct comparison of the measured link metrics
and those that the simulator estimates in different scenarios.

1.4 Thesis outline

This document is organized in the following manner:

• Chapter 1 - Introduction: Contextualizes the thesis’s motivation and the problem
scope. Also, it describes the main objectives and contributions provided by this work;

• Chapter 2 - State of the Art: Presents background theoretical concepts required
to understand the topics in discussion throughout the work (e.g., mmWave spectrum
properties, the IEEE 802.11ad MAC and PHY layers, DL and ML theory). More-
over, it describes state of the art in improving the reliability of millimeter wave-based
communications, in particular for the IEEE 802.11ad standard;

• Chapter 3 - Experimental Deployment: Details the backhaul infrastructure along-
side a functional description of the 60GHz network nodes. Then, it describes the process
of developing network and physical metrics data acquisition probes;

• Chapter 4 - Multi-layer Data Analysis: Provides a detailed analysis of the impact
that each of the three scenarios has on the metrics at multiple layers;

• Chapter 5 - Machine Learning Pipeline: Describes the general pipeline used for
processing the raw data acquired that is later fed to ML and DL models. After this
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description, the chapter is organized into two subsections, one per machine learning
problem. In the first subsection, the three link quality classifiers developed (Support
Vector Machine, Random Forest and Multi-layer Perceptron) are described and compared
in terms of performance for different aggregation window sizes. In the last subsection,
the processes used to select and validate a Long-Short-Term Memory (LSTM) neural
network that forecasts physical, network, and transport layer metrics for the next 3
seconds is detailed;

• Chapter 6 - mmWave Modelling and Network Coding: Presents additional
contributions that have been made in the context of the SNOB-5G research project in
order to test and validate resilience mechanisms that address the challenges of blockage-
prone mmWave based backhauls. This chapter works on two different fronts. First, the
process of adapting and extending the existing ns-3 WiGig module is presented. Then,
the potential of network coding techniques to increase the reliability of the mmWave
network suffering from obstruction is demonstrated;

• Chapter 7 - Conclusions and future work: Summarizes our findings and discusses
future research directions.
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Chapter 2

State of the Art

5G mobile networks are currently being deployed to meet challenging multi-gigabit data
rates and low latency requirements for the next generation of services and applications. Recent
advancements in MIMO and phased-arrays technologies in the mmWave spectrum make it
possible to accommodate hundreds of gigabits of backhaul traffic generated from 5G ultra-
dense small-cells, offering a scalable and cost-effective alternative to the typical fiber backhaul,
but at the expense of higher susceptibility to obstruction. Thus, several proactive resilience
and fault recovery mechanisms must be in place, in multiple layers, to ensure a truly resilient
mmWave network.

This chapter provides an overview of the background concepts that support the work
developed towards a reliable mmWave backhaul. This chapter is structured as follows. Section
2.1.1 discusses the propagation characteristics of mmWave communications in the 60 GHz band,
and presents a description of the new PHY and MAC layers of the IEEE 802.11ad/ay standards.
In the end, the architecture of a wireless 5G backhaul is described. Section 2.4 discusses how
link’s KPIs can be used alongside network coding techniques to improve the performance of an
SDN-controlled mmWave network. Section 2.5 presents a comprehensive study of experimental
works made at the 60 GHz band, in terms of hardware used, environments tested, their
main results, and respective limitations. Moreover, it discusses current network resilience
mechanisms proposed by the research community on different levels of proactiveness.

2.1 60 GHz networks

To introduce the topic, this section starts by describing the propagation characteristics of
the millimeter waves (the so called V-Band), and then presents the standards and mechanisms
available, as well as some of their limitations.
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2.1.1 The V-Band

The current demand for extremely high data rates, alongside the spectrum scarcity at the
sub-6 GHz bands, has led to an increasing interest in the mmWave frequency band (30 to
300GHz) from academia and industry. Compared with existing wireless technologies, such as
WiFi and 4G,mmWave communications provide larger bandwidths, which directly translates
to higher data transfer rates [6], and permits packing a large number of antenna elements into
a small form factor due to the decrease in wavelength [7].

There has been significant work on the V-band, located between 57-64 GHz and 64-71
GHz, due to its ability to achieve extremely high data rates with a moderate level of licensing
or no licensing at all. More specifically, the 7GHz band between 57-64 GHz has been used in
the standardised IEEE 802.11ad, a new multi-gigabit wireless standard for WiFi at 60 GHz.

Nonetheless, the 60GHz band has several drawbacks. Firstly, due to the shorter wave-
length, it suffers from high propagation losses, limiting the maximum coverage distance. This
attenuation is conditioned by the propagation environment and accounts for losses associated
with free-space propagation, rain and atmospheric and molecular absorption. For instance, the
60GHz band is subject to a free-space path loss at least 20dB higher than the attenuation in
the 2.4/5 GHz bands. Besides, as shown in figure 2.1, the oxygen absorption reaches its peak
(ranging from 15 to 30 dB/km) at the 60GHz frequency for frequencies below 100GHz [8]. At
frequencies above 10GHz, the interaction of electromagnetic waves with the atmosphere and
particles such as rain, snow, and hail also increases the attenuation. The particles’ size is in
the order of magnitude of the wavelengths used in the mmWave band and hence produces a
scattering effect on the transmitted signal [9] [10]. The 60GHz signals also suffer from higher
penetration loss when encountering obstacles like brick and the human body. For instance, the
penetration loss at 60GHz is near 6 dB for a drywall, 3.6 dB in clear glass and 10.2 dB for mesh
glass [11]. All these previously phenomenons contribute to the attenuation increase, making
the task of maintaining a reliable connection at mmWave frequencies rather challenging.

Steerable MIMO antenna arrays with beamforming capabilities are commonly employed
to counteract this strong signal attenuation. Due to its small wavelength, small electronically
steerable antenna arrays can be realized, allowing it to concentrate the signal towards a
specific direction with high gain, while keeping a very low gain in other directions. The
use of these narrow beams decreases interference and enables spatial reuse [12]. That is, the
mmWave base stations coverage areas can be overlapped with no significant system interference.
While highly directional links address the path loss issue, it also introduces other challenges.
Firstly, the transmitter and receiver must find an optimal beam combination to establish a
directional link. For that purpose, there must be some sort of beam training mechanism in
place. Secondly, relying on directional links makes the 60GHz communication much more
vulnerable to obstruction. For instance, a human in the LOS path between the transmitter
and the receiver can attenuate the signal by 20-30 dB which may result in temporary or
long-term link outage [13]. Also, relying on NLOS transmission is not always an option as
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the received signal was shown in some experiments to receive less 10 dB and 20 dB using
first-order and second-order reflected signals [14]. Thirdly, directional antennas reduce the
number of multipath components which could be used to retrieve the original signal using
equalization techniques [15]. Furthermore, recent work has shown that the mmWave channel
is sparse, as independently of the number of beam directions available, the transmitter can
only reach the receiver via a small set of dominating signal paths [16]. Therefore, systems in
the 60GHz band should be designed with all these aspects in mind to ensure that the network
can support reliable connections alongside high data rates.

Given the potential of mmWave communications, multiple international organizations
have emerged for the standardization of protocols in that band, including ECMA [17], IEEE
802.15.3 Task Group 3c [18], IEEE 802.11ad standardization task group [19], the WirelessHD
consortium [20] and the Wireless Gigabit Alliance (WiGig) [21].

Figure 2.1. Atmospheric and molecular absorption at mmWave frequencies [22].

The standardization process began in 2007 with the WirelessHD, a global WPAN standard
at 60 GHz developed for streaming high-definition multimedia content over a very short range.
The standard, which had its first release in January 2008, was designed to support data rates
up to 3.086 Gbps and was backed by a total of 26 tech companies, such as Broadcom, Intel,
LG Electronics, Samsung, Sony. However, this technology was not widely adopted due to the
fact that transmitters and receivers are expensive, have high power consumption, and can only
withstand distances up to 10 meters [23]. Two years later, the task group TG3c introduced
the IEEE 802.15.3c, a mmWave-based physical layer alternative to the existing 802.15.3
Wireless Wireless Personal Area Networks (WPANs). This standard added functionalities to
the MAC layer that allows reducing the propagation disadvantages associated with mmWave
communications, and provided three PHY operating modes for specific market segments with
mandatory data rates exceeding 1Gb/s: Single Carrier mode (SC PHY), High speed interface
mode (HSI PHY) and Audio/visual mode of the mmWave PHY (AV PHY). The Single Carrier
mode is best suited for kiosk file downloading and office desktop usages. The HSI PHY was
designed for bidirectional, NLOS, low latency communication in conference ad-hoc scenarios.

9



2. State of the Art

The AV PHY was designed to provide high throughput uncompressed video streaming [24].

In these last few years, the emergence of new applications with higher throughput and
lower latency requirements, such as Augmented Reality (AR) and Virtual Reality (VR), led to
the formation of the IEEE 802.11 Task Group ay in 2015 to further improve the performance
of WiFi at 60GHz. Built on top of its predecessor IEEE 802.11ad, the 802.11ay defines new
PHY and MAC layers that enable WiFi devices to achieve theoretical peak data rates up to
100 Gb/s by employing MIMO techniques that support up to 8 data streams, channel bonding,
improved channel access, and enhanced beamforming training. Still, it is supposed to ensure
backward compatibility and coexistence with 802.11ad DMG STAs operating in the same
band [25]. Because the standard was only approved at the beginning of 2021 [26], there is
still no IEEE 802.11ay compliant Commercial Off-the-Shelf (COTS) device available on the
market.

The following section presents the MAC and PHY layers of IEEE 802.11ad, and describes
the enhancements proposed for each of them in the next generation of 60 GHz networks.

2.1.2 WiGig Standard

The 802.11ad amendment defines a new physical and MAC layer in the 60GHz frequency
band that provides support for multi-gigabit wireless applications with throughput up to 7
GHz. The IEEE 802.11ad features include fast session transfer for seamless data fallback and
data increase between 60GHz and 2.4/5GHz PHYs, and MAC and PHY layer enhancements
which include support for directional antennas, beamforming, and spatial reuse techniques.
The main PHY layer enhancement presented by 802.11ad is the combination of two modulation
schemes, the Orthogonal Frequency Division Multiplexing (OFDM) and Single Carrier (SC).
While OFDM is designed to provide throughput up to 7 Gbps, it also requires high energy
consumption. SC also achieves high data rates (up to 4.6 Gbps) but with lower power
consumption and less complex transceivers. The standard novelty resides in the new Directional
Multi-Gigabit (DMG) PHY layer proposed that, based on multiple-antennas beamforming
techniques, is capable of compensating the increased attenuation in the 60GHz band and
possibly the interference caused by obstacles during the transmission [27]. Due to this, a
reliable communication link can only be established after the stations’ transmitting and
receiving patterns are pointed to each other. For that purpose, the IEEE 802.11ad MAC
layer implements a novel beamforming training process employing different medium access
schemes and association processes that are described in more detail later on. The directional
nature of the communication also increases spatial reuse since multiple links can be established
simultaneously with negligible interference, allowing for concurrent transmissions to occur, thus
increasing the total throughput. To exploit this capability, the amendment specifies a spatial
sharing and interference mitigation mechanism which performs its transmission scheduling
based on the assessed amount of interference in overlapped links [28]. At the MAC level,
IEEE 802.11ad continues to support the basic MAC access mechanisms of 802.11a/b/g DCF
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and PCF in addition to those of 802.11e HCF and HCCA, but also introduces an enhanced
MAC layer to achieve data rates up to 1 Gbps [29], to cope with directional communication
challenges as well as provide support for QoS and coexistence with other 60GHz systems [30].
The access during Contention Based Period (CBP) is based on the modified 802.11e EDCA
that is fined-tuned for directional communication, which ensures high throughput and delay
requirements Additionally, it also proposes a new aggregation scheme called Video Aggregation
MSDU (VA-MSDU) to support video traffic during contention-based access periods [29].

PHY Layer

The new physical layer, the so called Directional Multi-Gigabit (DMG) PHY, defines six
2.16 GHz bandwidth channels around the 60 GHz ISM band (57-66GHz), as can be seen in
Figure 2.2. An 802.11ad channel is roughly 50 times wider than the channels available in
802.11n and 14 times wider than the channels defined in 802.11ac [31]. However, some of these
are not universally available except for channel 2 (60.48 GHz), which is defined as the default
channel for the standard [32].

Figure 2.2. Channels in the 60 GHz band [32].

In the PHY layer, four procedures with different modulation and coding schemes are
able to format 60 GHz carriers: a) control PHY (MCS 0); b) Single carrier (MCS 1-12)
PHY; c) OFDM (MCS 13-24) PHY; and d) low-power SC (and MCS 25-31) PHY. The wide
choice of methods makes it possible to fulfill different requirements depending on the usage
scenario. Still, the implementation of OFDM and low-power SC is optional. The 11ad PHY
also defines four Low-Density Parity-Check (LDPC) codes that are used with these MCS, each
with a different rate (1/2, 5/8, 3/4 and 13/16) but with a common rate of 672𝑏𝑖𝑡𝑠 [33]. The
modulation schemes, code rates and PHY rates that may be associated with the different PHY
modes are summarized in table 2.1.

All DMG PHYs use a packet structure similar to the one in Figure 2.3, only differing in
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Table 2.1. IEEE 802.11ad’s MCSs [33].

MCS Modulation Code rate PHY rate

Control MCS 𝜋/2-DBPSK 1/2 (spreading factor of 32) 27.5 Mbps

SC MCS
𝜋/2-BPSK

1/2, 5/8, 3/4,

13/16
385-4620 Mbps𝜋/2-QPSK

𝜋/2-16-QAM

OFDM MCS

Spread QPSK
1/2, 5/8, 3/4,

13/16
693-6756.75 Mbps

QPSK
16-QAM
64-QAM

how individual fields for each MCS used. A Golay sequence forms each field in the packet
frame. Each physical packet starts with a preamble that consists of a STF and a Channel
estimation (CE) field which is used for packet detection, during AGC, for timing/frequency
synchronization and to specify the PHY (Control, SC or OFDM) used in the data following
the preamble.

To simplify implementation, both SC and OFDM MCSs share a common preamble. The
control MCS uses a longer preamble than the one used in both SC and OFDM PHYs in
order to operate at a lower SNR during the initial establishment of the directional links [33].
Following the preamble, there is a header that is different for every PHY that specifies the
MCS used, the length of the data field, or a checksum. Following the header, the PHY payload
transmits the actual data with the chosen MCS, which is protected by a Cyclic Redundancy
Check (CRC). An optional packet field referred to as TRN can be appended to all PHY packets
to fine-tune the AWVs of the sectors used in beamforming training, a unique trait of 802.11ad
that is described in more detail in the MAC layer description. In that case, the training type
(RX or TX) and length of the training field are also set in the packet’s header field. This
training field is transmitted using 𝜋/2− BPSK modulation for robust communication. Note
that the antenna configuration is only allowed to be changed during the transmission of these
training fields, and thus, it must remain the same during the transmission of the preamble,
head and data fields [32] [33].

Figure 2.3. IEEE 802.11ad’s DMG PHY packet format [32].
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The next generation WiGig standard, IEEE 802.11ay, enhances the DMG PHY layer
described earlier by providing support for new technologies such as channel bonding and
Multiple-Input Multiple-Output (MIMO), which enable reaching faster data rates and covering
larger distances than in IEEE 802.11ad. Channel bonding or channel aggregation refers to the
ability to create wider channels by aggregating contiguous and/or non-contiguous 2.16 GHz
channels to achieve bandwidths as high as 8.64 GHz. Multiple-Input Multiple-Output (MIMO)
is also a new technique in IEEE 802.11ay and it enables the simultaneous transmission of
multiple data streams, using either a SU-MIMO or MU-MIMO scheme. As the name implies,
in Single-user Multiple-Input Multiple-Output (SU-MIMO), the multiple streams can only
be sent to and received by a single STA (single user) at a time. In contrast, in Multi-user
Multiple-Input Multiple-Output (MU-MIMO), data streams are distributed across multiple
users that may be using the same time/frequency resources but that are spatially separable.
Therefore, increasing the overall network throughput and spectrum/space utilization. The
standard defines a maximum number of spatial streams per station of eight and a downlink
MU-MIMO transmission up to eight stations. To support MIMO transmissions and channel
bonding while also ensuring backward compatibility, IEEE 802.11ay introduces a new packet
structure that contains new fields that support both DMG and EDMG STA modes [25].

MAC Layer

Legacy IEEE 802.11 networks implement a Basic Service Set (BSS) or an Independent Basic
Service Set (IBSS) network architecture. In the BSS operating mode, one station, also known
as Access Point (AP), acts as a gateway between the wireless and wired backbone. Hence,
stations can only communicate with each other through the AP. In contrast, an Independent
Basic Service Set (IBSS) or ad-hoc network supports peer-to-peer communication, and thus
no AP is required. Any network node can communicate directly with another node within
range. However, due to the challenges of directional communication, these two architectures
do not suit most 60GHz usage scenarios. As such, the 11ad draft presented a new network
architecture named Personal Basic Service Set (PBSS) in which, similar to IBSS, stations
communicate in an ad-hoc manner, i.e., they can communicate directly with each other without
having to rely on a common access point. Unlike in the IBSS, in the PBSS, one station is
required to assume the role of PBSS central point (PCP). The PCP performs the jobs that are
typically associated with an AP such as announcing the network and controlling the medium
access. The PCP allocates service periods and contention-based periods to accommodate
traffic requests of devices as well as provides basic timing to the PBSS [33].

In the lower frequencies IEEE 802.11 networks, the medium access is divided into a
sequence of periodical beacon intervals that the AP initiates by transmitting omnidirectional
beacon frames to announce the network and maintain its timing. The remaining time is used
to transmit data between stations, usually following a contention-based scheme. The IEEE
802.11ad amendment extends this concept to directional 60 GHz networks by proposing a
new temporal organization to cope with the challenges of mmWave communications. Figure

13



2. State of the Art

2.4 illustrates a typical Beacon Interval (BI) in 802.11ad. The BI is constituted by a Beacon
Header Interval (BHI) and a Data Transmission Interval (DTI). The BHI can be further
subdivided into three periods known as Beacon Transmission Interval (BTI), Association
Beamforming Training (A-BFT) and Announcement Transmission Interval (ATI) [31]. These
three sub-intervals are used to perform the steps required to associate each station with PCP,
including forming a directional multi-gigabit link between the AP and the STA.

Figure 2.4. IEEE 802.11ad beacon interval structure [34].

During Beacon Transmission Interval (BTI), the PCP transmits a beacon frame in each
of its transmit sectors to announce the network and to perform beamforming training of its
transmitting antennas. These beacon frames mark the beginning of a BI and are transmitted
using the control MCS to enhance robustness in error-prone channels. After that, the Associ-
ation Beamforming Training (A-BFT) is used to discover the best transmit antenna sector
for each STA to communicate with the AP. The ATI sub-interval is later used for exchanging
management information between the PCP and the newly beam-trained stations. During this
period, an STA can request the AP to allocate a Service Period (SP) in the following DTI for
exchanging frames with another device. Since communication during ATI uses beam-trained
stations, a higher MCS can be used, which makes the communication more efficient [31].

During Data Transmission Interval (DTI), as the name implies, stations can exchange
data frames through a hybrid MAC scheme that comprises CBAP and scheduled SP. During
Contention Based Access Period (CBAP) multiple stations contend for the channel using a
modified IEEE 802.11 Enhanced Distributed Channel Access (EDCA) fine-tuned for directional
communication. The EDCA adopts most of the design principles of 802.11 Distributed
Coordination Function (DCF), including exponential backoff and RTS/CTS access methods
from the 802.11 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), but
improves it by providing support for frame aggregation, block acknowledgments [31] [34], and
support for quality of service using frame priority differentiation [35]. In contrast, a Service
Period (SP) is a contention-free period that works similar to TDMA in cellular networks. When
an SP allocation request is accepted by the PCP, the channel is reserved for communication
between a pair of stations during a given amount of time. Due to the directional communication
nature, simultaneous SPs can be scheduled for communication with different STAs due to the
spatial reuse ability, as long as the concurrent transmissions do not interfere with each other.
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The IEEE 802.11ad’s hybrid medium access scheme uses traditional technologies such as
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), Time Division Multiple
Access (TDMA) and Polling for channel access in directional networks. These three technologies
support contention-based channel access, scheduled channel time allocation, and dynamic
channel time allocation, respectively. Each scheme addresses different aspects of mmWave
communication, which makes it suitable for different IEEE 802.11ad use cases [31]. The
operation of these medium access modes is described in the following paragraphs.

The CSMA/CA is a legacy distributed MAC mechanism for WLAN vastly used due to its
simplicity and robustness. Under CSMA/CA, a station starts a transmission if the channel
is idle for a minimum of a Distributed Inter Frame Space (DIFS) period, and other stations
probe the channel for carrier signals. In the case the channel is sensed busy, the station starts a
backoff counter uniformly distributed in the 0, ...,𝑊𝑖 range, where 𝑊𝑖 is the contention window
at the i-th attempt. The backoff counter is decremented whenever the channel is idle for at
least a DIFS period and frozen when an ongoing transmission in the medium is detected or
when the contention-based channel access is suspended. Only after this counter reaches zero,
the station can initiate the transmission. The minimum of the contention window is doubled
whenever a collision is detected to reduce the likelihood of future collisions. In its basic form,
stations using CSMA/CA access the channel with equal probability. However, this mechanism
does not allow priority-based service differentiation nor provides guaranteed resources for
specific flows. IEEE 802.11ad ensures support for QoS during contention-based channel access
through Enhanced Distributed Channel Access which creates virtual MAC queues for each
access category (AC) [28]. This standard implements a combination of both physical and
virtual carrier sensing. Under that scheme, there is an exchange of directional RTS/CTS
messages in the initial contention-based channel access, protecting aligned beams from creating
interference as they overhear the exchanged messages. Both RTS and CTS packets contain the
proposed duration of the transmission; hence all nodes that overhear this exchange defer their
transmissions for the proposed duration by updating their Network Allocation Vector (NAV)
with the duration field. However, since these messages are being directionally transmitted,
stations pointed towards other directions do not overhear the ongoing transmissions and thus
do to defer when they should. This generates a deafness problem within the network. These
deaf nodes will try to access the channel unsuccessfully, leading to an excessive increase in
their contention windows. Because stations suffering excessive backoff have a lower probability
of winning contention, recently active stations with smaller contention windows are favored,
allowing them to transmit a high number of frames consecutively. This mainly affects short-
term fairness, but in the long run, active stations can be considered to change sufficiently
often to compensate for the frequent bursts of active stations [36]. Additionally, since wireless
stations can only listen to the medium in a particular direction, there is an increased chance
that a station detects the medium free while it is busy, which will likely cause collisions. This
deafness problem could be overcome with the employment of omnidirectional receive patterns,
but that would defeat the purpose of using directional communication in the first place [28].
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To solve these issues, WiGig defined two new access schemes that allow stations to know
in advance when a transmission between a pair of stations is expected. These schemes are
known as pseudo-static channel time allocation and dynamic channel time allocation and are
based in TDMA and Polling, respectively. Both allocate a dedicated SP within a BIs to the
communication of two specific nodes but differ in the type of traffic streams they support.

For medium allocation, the standard extends the concept of streams of IEEE 802.11 HCF.
As stated by the authors in [31], "a traffic stream is defined as a flow of MAC service data
units that has to be delivered subject to certain QoS parameters characterized by a traffic
specification." Under this mechanism, each requesting station must define its traffic demands
in terms of allocation duration and traffic stream periodicity (isochronous or asynchronous
characteristics). An isochronous stream will result in a recurring SP allocation with a constant
rate, whereas asynchronous streams will result in non-recurring SP allocation [31]. The
scheduled SPs are then propagated by the PCP at the beginning of the next BTI or ATI to
all the associated STAs so that every node not involved in the communication can go into a
power-saving mode. Also, because every station is aware of its peers due to the centralized
approach, the communicating stations can steer their antenna beams towards each other, thus
avoiding quasi-omni receiving and transmitting patterns. This makes static time allocations
very useful for predictable traffic patterns as it avoids the need for scheduling a new allocation
every time, thus limiting the signaling overhead to a minimum [37]. The main drawback is
that the channel allocation traffic demands can only be modified during the beginning of the
next BTI or ATI and not within that same BI to accommodate bursty traffic [28].

For that purpose, IEEE 802.11ad also specifies a second mechanism, dynamic channel time
allocation, that implements polling-based channel access during DTI. Built on scheduled SP
and CBAP, the dynamic channel access is an extension of 802.11’s PCF mode for directional
communication that allows polled stations to request channel time to transmit multiple frames.
During the polling period, the PCP polls the remote devices during the ATI period by sending
multiple frames, to which stations can reply with a Service Period Request (SPR) message
requesting channel time. In the SPR frame, each station declares the resource requirements
necessary to satisfy its traffic demands and its QoS constraints. The PCP then allocates
channel time within DTI according to the available resources to accommodate the SP requests
and announces each granted allocation in a separate Grant Period (GP) by sending directional
frames to the involved stations. Once again, since the PCP informs each involved station of the
allocation in advance, the receiver knows the direction of the incoming signal, thus preventing
the deafness problem. This centralized approach allows the adaptation of the scheduled time
allocation dynamically (hence its name) within a BI to react to bursty downstream traffic,
which makes it useful for unpredictable transmissions that need to be delivered under specific
QoS conditions. The dynamic mechanism can also exploit unused channel time to extend an
SP to complete an ongoing communication without additional scheduling or delay. Despite the
benefits, the dynamic allocation scheme wastes resources polling stations which adds polling
overhead. An example illustrating the dynamic channel allocation is shown in figure 2.5. In
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the schematic, it is possible to observe that the channel time allocation starts with a polling
phase at the beginning of DTI by sending frames to the associated stations, answered with
three SPR frames. After that, the PCP performs the dynamic allocations back to back, each
following its respective grant period. In case of an allocation between the PCP and non-PCP
station, only one grant frame is sent [28] [31].

Figure 2.5. IEEE 802.11ad’s dynamic channel allocation [31].

In IEEE 802.11ay networks, supporting new technologies such as channel bonding and
MIMO, introduces new challenges that need to be addressed at the EDMG MAC layer.
For instance, the channel access has to support allocation over multiple channel frequencies
and MIMO operation through spatial sharing. The IEEE 802.11ay’s medium access is also
organized in beacon intervals similar to IEEE 802.11ad’s, but now the A-BFT, ATI, DTI
are extended to use multiple channels (a primary and secondary channels). Still, to ensure
backward compatibility, network announcement and management frames are transmitted
during BHI only in the primary channel. In this new standard, the PCP can either allocate an
SP for the communication between two STAs over an aggregated channel, or the stations can
follow a CBAP and start a transmission only after obtaining a transmission opportunity. The
MIMO channel access uses physical and virtual carrier sensing mechanisms and the backoff
procedure already employed in 802.11ad to exchange RTS/CTS messages after a network
device obtains a Transmit Opportunity (TXOP). In MIMO channels, a TXOP is only obtained
after all all the antennas intended to be used to transmit the data streams are idled for a given
amount of time. The RTS messages sent indicate to the pairing STA the operating channel
frequencies, the bandwidth of the frame, whether the subsequent transmission is made using
SU-MIMO or MU-MIMO technologies, and the antenna configurations to be used [25]. This
process allows EDMG STAs to transmit multiple streams using multiple transmit antennas to
a pairing node with multiple RX antennas, which increases robustness by avoiding the outage
when one of the streams is blocked [38].

Beamforming training

In order to cope with the increased attenuation at 60GHz, IEEE 802.11ad establishes
directional links through a beamforming training process, which allows determining the ap-
propriate transmit and receive antenna sectors for communication between a pair of stations.
In 802.11ad, the AP-STA beamforming training occurs during BTI and A-BFT, while the
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STA-STA beamforming training occurs only during DTI before the actual data frame ex-
change. Beamforming consists of two phases: Sector Level Sweep (SLS) and an optional Beam
Refinement Phase (BRP), as shown in figure 2.6. In the first phase, an initial coarse-grained
antenna sector is determined for either transmission (TXSS) or reception (RXSS) between
two devices. During this process, the involved stations behave once as a transmitter and once
as a receiver, as shown in Figure 2.7. For contextualization, the station that transmits first is
called initiator while the other is known as responder [31].

Figure 2.6. IEEE 802.11ad’s beamforming training phases [39].

During Transmit Sector Sweep (TXSS) a station finds its best transmit antenna sector by
sending SSW frames (or beacons for PCP’s TXSS in BHI) frames from each of its sectors with
the pairing station configured to receive in a quasi-omnidirectional mode. The sender sets an
ID field in every SSW frame sent to identify the sectors, and the strongest one is reported to
the pairing station alongside its SNR in either a feedback sector sweep feedback field inside
the frames transmitted by the responder’s TXSS (R-TXSS) and received by the initiator, or
in a dedicated sector sweep frame at the end of R-TXSS. Conversely, during RXSS a station
finds its best-receiving antenna sector by testing different receiving patterns when receiving
SSW frames sent by the other station.

Overall, four sweep combinations can be used during beam training in Sector Level Sweep
(SLS) depending on the type of training performed and who initiated the process. These
include Transmit Sector Sweeps at both Initiator (I-TXSS) and Responder (R-TXSS) and
Receive Sector Sweeps at both stations (I-RXSS and R-RXSS, respectively). As shown in figure
2.7, when the initiating station performs a Transmit Sector Sweep, the initiator’s feedback is
carried in every frame sent during the responder sector sweep, which ensures reception even
under unknown optimum antenna configurations. In contrast, the responder’s feedback is sent
in the best transmit direction found using a single feedback SSW frame, to which the former
replies with an acknowledgment frame. If the involved stations do not have sufficient antenna
gain to establish a reliable link after transmitting sector training, usually a receive sector
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training is added to the SLS phase. Otherwise, only transmit sector training is performed at
the SLS phase, postponing receive sector training to the following BRP phase. Usually, the
last SSW ACK exchanged in SLS is also used for exchanging parameters for the next phase
[31].

Figure 2.7. Example that illustrates the beamforming training protocol [33].

The following Beam Refinement Phase (BRP) fine-tunes the antenna settings found in the
SLS phase to improve the quality of the directional communication even further. There are
several mandatory and optional mechanisms to achieve this, but this thesis only focuses on
the mandatory ones. Firstly, stations can perform receiving antenna training during the BRP
phase if not performed in the initial SLS phase. For that purpose, STAs can request transmit
or receive training by exchanging a BRP packet with either a transmit training (TRN-T)
or receive training (TRN-R) field attached, as was shown in the general packet structure
of figure 2.3. This packet transaction allows optimizing the transmit and receive AWVs
independently from the predefined sector patterns tested in SLS. Instead of requiring a frame
to be transmitted per sector as in the SLS, the BRP enables multiple antenna configurations
to be tested using the same frame, substantially reducing training overhead. Each TRN-T and
TRN-R field is transmitted or received with the antenna configuration that is being tested for
its signal quality [31]. The requesting STA sets the frame’s TX-TRN-REQ header field and
appends the number of TRN-T fields necessary to train each configuration in the same BRP
frame to perform transmitting antenna training. Alternatively, the station can wait for an
ACK frame with a TX-TRN-OK field set from the pairing node before sending a BRP frame
with the training fields attached. In the case of receiving antenna training, the requesting STA
has to set the L-RX header field of the frame to specify the number of TRN-R fields that the
pairing node has to transmit in the next frame. Figure 2.8 illustrates the BRP training stage.

The key concept to take from this interaction is that to find the optimal transmission
configurations for a given STA, it must add TRN-T fields to the frames it would typically send
to the pairing node. Conversely, to find the optimal receiving patterns for a given node, the
pairing node must add TRN-R fields to the frames it would send to it, which will be received
with different configurations. The peer node reports the transmitting setting with the highest
SNR to the node under TX training, and the best-receiving settings are known right away by
the STA since it is in receive mode. Additionally, the amendment defines an optional beam
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tracking mechanism that periodically adds training sequences (TRN fields) to the PHY frames
sent to keep track of the SNR changes and trigger new beamforming training when needed
[34].

Figure 2.8. Example of a beam refinement protocol transaction [31].

The beamforming concepts described earlier are implemented in 802.11ad by means of
different medium access schemes and association processes. Before stations are associated
with the AP, they use an adapted version of beamforming training to communicate with the
PCP that does not require any prior coordination and allows them to align theirs antenna
beams while the best direction between the two is unknown.

This process is initiated in BTI with the PCP sending beacon frames in each sector while
the non-PCP STAs listen in a quasi-omni direction. At the end of BTI, the PCP has performed
transmitting antenna sector training (I-TXSS). Then, the multiple stations use the reserved
contention-based access periods of A-BFT to perform their transmitting antenna beamforming
with the PCP (R-TXSS). As previously mentioned, the A-BFT period is used to perform the
first phase of the beamforming (SLS) training [31]. An A-BFT slot consists of a fixed-time
allocation that accounts for the transmission of multiple SSW frames (one for each sector) by
the non-AP station and one SSW feedback frame by the AP [31]. Instead of contending for
the channel access through carrier sensing, during A-BFT stations randomly select a slot to
perform its responder sector sweep (R-TXSS). Thus a collision is detected by a missing SSW
feedback frame in their respective slot. The STA that fails to receive a SSW feedback backs
off and retries later. Additionally, there are two mechanisms in place for stations in which
the number of antenna sectors exceeds the number of reserved SSW frames per slot to ensure
that every non-PCP station can finish its sector sweep: 1) the PCP can send a SSW feedback
frame with the sub-optimal transmit sector the results from the incomplete sector sweep ; and
2) the station can contend for extra slots to finish its sector sweep during the same BI or the
following; and 3) the beam training can move to a dedicated service period (SP) [31].

STAs that have successfully been associated with the PCP can proceed to perform STA-
STA beamforming training before data frame exchange during DTI to form a directional
multi-gigabit link. The beamforming training can occur during DTI following one of the
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three MAC mechanisms described earlier in 2.1.2: contention-based channel access, scheduled
channel time allocation, or dynamic channel allocation. In the contention-based channel
access, the initiator can directly begin an SLS after it gains control of the channel during a
Contention Based Access Period (CBAP). On the other hand, STAs can reserve a dedicated
SP by sending a Add Traffic Stream (ADDTS) request frame to the PCP. The PCP replies
with an Add Traffic Stream (ADDTS) response frame based on the available resources using
an admission control policy. If the allocation is accepted, the beam training parameters are
included in the extended schedule element announced by the PCP during the BTI or ATI,
which enables both nodes to begin the beamforming process once that SP is reached. STA-STA
beamforming training can also be initialized during a dynamic channel allocation. In that
case, a node requests an allocation to communicate with another device by sending a Service
Period Request (SPR) frame with the intended training parameters [31]. The PCP receives
this request during the polling phase and grants channel time by sending the grant frame
to both stations. The Data Transmission Interval (DTI) also comprises the BRP phase to
improve the signal quality of the AP-STA and STA-STA links formed during the SLS phase,
but that exchange does not require specific channel time allocation.

To support MIMO operation in future next-generation WiGig networks, IEEE 802.11ay
defines a new mandatory beamforming mechanism composed of two stages (SISO and MIMO
phases) for determining the optimal transmitting and receiving antenna configurations to
be used in simultaneous transmissions of multiple spatial streams [25]. Also, it defines an
optional partial SLS method that enables fast link recovery in low latency applications, a
group beamforming method to reduce the overhead of the training procedure by allowing
multiple stations to be trained simultaneously, support for simultaneous receive and transmit
beamforming training, and support for asymmetric beamforming training. Moreover, the
standard specifies a variant of BRP frames, known as short SSW packets, to reduce further
training overhead [40].

Since next-generation 60 GHz WiFi features mechanisms that support MIMO technologies
and reduce the overhead associated with beamforming training operations, it is expected
that the IEEE 802.11ay-based networks will be much more resilient to failures caused by
obstruction. Still, it is not yet possible to define their ability to dynamically adapt to highly
variable channels, since there are no COTS devices available. Until this point, the literature
only focuses on introducing the new technologies supported by IEEE 802.11ay.

2.2 5G Backhaul

To meet the challenging bandwidth, capacity, and latency requirements of current 5G
networks, dense rollouts of Small cell Base Stations (SBSs) are being deployed in urban
environments, as shown in figure 2.9. The employment of these low-power, low-cost, and
short-range SBSs provides an increased coverage and capacity in densely populated urban areas.
However, the extreme densification also leads to several challenges that must be addressed,
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mainly in ultra-dense scenarios where a massive amount of backhaul traffic is generated.
Because connecting this large amount of small cells to the core network with the traditional
fiber backhaul is unfeasible owing to its high cost, network operators have been looking
at wireless communications as a potential candidate for the 5G backhaul. Thanks to the
availability of huge bandwidths, it is possible to achieve fiber-like performances at a fraction
of the price using mmWave backhauls [41]. Note that, however, 5G networks are expected
to adopt a heterogeneous network (HetNet), comprising multiple radio access technologies
(RATs), where mmwave cells are overlayed traditional macrocells [42].

Figure 2.9. Network densification [43].

The IEEE 802.11ad standard presented earlier is currently being proposed by the research
community [42] [44] [45] for small cell wireless backhauling due to the support for multi-gigabit
data rates, which could be as high as 2.5 Gbps (in the SC PHY). Even with some commercial
solutions being proposed by the industry for outdoor environments, such as [46] and [47] (the
equipment that is used throughout this work).

Nonetheless, as previously described, this frequency band suffers from high propagation
loss that can only be compensated using highly directional antennas, making mmWave links
more susceptible to blockage and errors. Therefore, a sudden obstruction of the line of sight
path is enough to cause a significant decrease in the maximum achievable throughput and
lead to maximum delays above acceptable limits for critical applications.

Nonetheless, the high propagation loss in mmWave spectrum that can only be compensated
using highly directional antennas makes mmWave links more susceptible to blockage and errors.
Therefore, a sudden obstruction of the line of sight path is enough to cause a significant decrease
in the maximum achievable throughput and lead to maximum delays above acceptable limits
for critical applications, if proper resilience mechanisms are not implemented.
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2.3 Data Processing and Learning

To facilitate the understanding of the aspects covered in the following chapters, the reader
should be familiar with some time series, ML and DL-related background concepts. This
section is organized as follows. First, definitions of concepts related to time series and machine
learning are presented, adapted to the specific context of this work. Then, the theoretical
foundations of different classification algorithms used in this thesis are presented. Next, the
theoretical foundations of statistical-based forecasting methods and ML-based approaches are
presented. In the end, the evaluation metrics that can be used to measure the performance of
both forecasting and classification algorithms are described.

2.3.1 Machine Learning Definitions

The mmWave link quality metrics collected, such as Signal to Noise Ratio (SNR) and
Received Channel Power Indicator (RCPI), are examples of a time series. A time series consists
of data points collected over a defined interval of time whose values are time-dependent.
Because data points are collected sequentially, there is usually a correlation between current
and previous observations. This is what differentiates time series from cross-sectional data.
Also, the statistical properties of a time series do not change over time. Therefore, time series
with trends or seasonality components are not stationary. Usually, whenever a time series
presents a non-stationary behavior, seasonal and non-seasonal differencing is applied to the
series to make it stationary by computing, for instance, the second-order difference between
consecutive observations [48].

The task of predicting multiple time steps into the future can be classified as a multi-step
time series forecasting problem. This can be performed through recursive multi-step strategy
or direct multi-step forecast. In this work, the forecasting methods developed only apply the
direct strategy, specifically statistical-based and DL-based methods such as ARIMA and LSTM
neural networks, described in the following sections. Because a model that solves this problem
has to accept multiple time-dependent KPIs, which may be correlated, to forecast multiple
time-steps of future KPIs, it can be classified as a multi-step multivariate input-output model.

Given that IEEE 802.11ad-based networks cannot support a reliable connection under
complex environments, a proactive ML-based resilience framework is proposed in this thesis to
eliminate the need for constant beamforming training. The approach addresses two distinct ML
problems: 1) prediction of the wireless link quality according to the current KPIs, which is a
supervised classification problem; and 2) forecasting relevant KPIs based on past observations,
which is a supervised regression problem. The supervised learning label comes from the
fact that both algorithms are trained with labeled datasets. During the training stage of
a supervised Machine learning algorithm, the data fed to the model consists of a series of
inputs and the actual outputs to be predicted. This enables the algorithm to determine
the appropriate mapping function between inputs and outputs. More specifically, supervised
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learning problems are either classification or regression tasks according to the desired model
output. In our regression problem, the model’s output is a set of continuous metrics such as
the expected SNR and PER. On the other hand, in a classification problem, the model assigns
a label to the input data from a discrete set of categories. In this specific context, predicting a
scenario tag that characterizes the wireless link quality is a multi-class classification problem as
input data instances should be classified as belonging to one of three classes (normal, long-term
blocked and short-term blocked link).

Typically, collecting samples for certain classes is more complex than for others. In
this work, we have an imbalanced classification problem, as more samples were collected to
characterize links in normal or long-term blocked conditions than for short-term blocked links
due to the nature of the tests. Since most ML models are designed to work with balanced
datasets, having severe class imbalances may result in poor predictive performance, especially
in the minority class, if the appropriate evaluation metrics are not used.

The ML and DL models used have a set of model configurations known as hyperparameters
that have to be set before the learning process begins. Hyperparameters are different from
model parameters learned during the training process, such as weights and bias of neural
networks, because they cannot be estimated from the input data. Examples of hyperparameters
include the number of hidden layers in neural networks and the optimization strategy employed
to minimize the cost function during the neural network’s training. Hyperparameter tuning
is used to find the set of hyperparameter combinations that maximize model performance.
Common algorithms for performing such process include Grid Search, Random Search, and
Bayesian Optimization. Since different datasets have different optimal settings with different
impacts on the model performance, each hyperparameter combination must be evaluated on
hold-out or cross-validation datasets. The challenge of the entire process relies on how to
find a well-performing combination of hyperparameters while also keeping the search time at
its lowest. There are two main tuning strategies to address this. The first is the grid search
which exhaustively goes through each hyperparameter combination possible within a specified
user hyperparameter range. This can be a very time-consuming task, especially with large
hyperparameter subsets to search through. The second and last approach is the random search
in which each hyperparameter subset is tested randomly rather than exhaustively, decreasing
computation time. However, this does not ensure that the optimum local in that grid is found.
Throughout this work, only the Random search approach was used to find the optimal set of
hyperparameters for both classification and forecasting models. In this work, hyperparameter
tuning was used alongside cross-validation to evaluate the generalization capability of the
models developed based on results obtained for hold-out data. Thus allowing the comparison
and selection of an appropriate model for the specific task. In its basic form, the k-fold CV,
the training dataset is split into 𝑘 smaller subsets. Then, the model is trained 𝑘−1 times with
one of the 𝑘− 1 training folds, and the remaining fold is used to evaluate whether the model is
overfitting or underfitting the data. Thus, every data point gets to be in the validation dataset
at least once. The overfitting and underfitting conditions are observed when models start
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to include the data noise in the mapping between input and output variables. It is usually
a phenomenon that manifests itself in a testing score that is much higher or lower than the
training score.

2.3.2 Machine Learning Classifiers

Currently, several types of classifiers can be used to map input data into a categorical
value, which include (but are not limited to) decision trees, logistic regression, Support Vector
Machine, Artificial Neural Network, and ensemble methods. In this thesis, Support Vector
Machine (SVM), Random Forest (RF) and Multi-layer Perceptron (MLP) classifier were used.

Support Vector Machine (SVM) is a supervised Machine Learning algorithm that works
by finding the best hyper-plane in the N-dimensional space that best separates the training
data points belonging to each class. After training, this plane is used as a decision boundary
for new classifications. On the other hand, Random Forest (RF) is a supervised ML algorithm
that uses a collection of individual decision trees that work as an ensemble to predict the class
of each data point. The predictions made by each tree are compared, and the most recurring
label is used as the algorithm’s final prediction.

Multi-layer Perceptron (MLP) is another supervised deep-learning algorithm that falls
under the Feed-Forward Neural Network (FFNN) type. MLPs typically have three types of
layers (input, hidden, and output), composed of nonlinear computational units, also known as
neurons. Thanks to this nonlinear behavior, a sufficient large MLP can perform the mapping
between almost any input vector and the corresponding output vector. All the neurons in a
MLP layer are fully-connected to neurons of the adjacent layer, thus generating a connection
with a given associated weight [49]. In MLPs data flows in the forward direction from the
input to the output layer. That is, the output of combining the weighted inputs in the neurons
using the activation functions is propagated onto the next layer. However, there is more to it.
If MLP were solely based on forward propagation, it would be nearly impossible to find the
optimal set of network weights, which would lead to generally bad performing models. In order
to find the weights that minimize the error between the predicted and desired output, MLPs
uses a backward propagation mechanism. Thanks to this mechanism, the neurons’ weights
are iteratively adjusted one layer at a time from back to the front of the network, i.e., the
weights are updated starting from the output to the input layer according to the amount they
contribute to the computed error until the error is bounded to a defined threshold [50]. In
this work, instead of using an online learning technique where weights are updated for each
training sample, a mini-batch learning approach was chosen where the errors are accumulated
and updated periodically for a defined number of training samples, called a batch size. Every
time one forward pass and one backpropagation pass have occurred for all training samples, it
can be said that an epoch has passed.
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2.3.3 Time-series Forecasting

Time series forecasting is a field that the scientific community has widely researched
for stock prices forecasting, weather forecasting, and many other applications. Traditional
statistical-based methods that work with univariate series such as the popular Autoregressive
Integrated Moving Average (ARIMA) or the Seasonal Autoregressive Integrated Moving Av-
erage (SARIMA) models, exponential smoothing or GARCH have been some of the models
proposed to solve these issues. These models mostly rely on seasonal and trend decomposition
and often exploit some combination of the Moving Average, Integration, and Auto-Regressive
techniques to find patterns in the data. However, the prediction performance falls behind when-
ever it is difficult to decompose the series onto seasonal, trend, and non-seasonal components to
find patterns. Due to this, more complex modeling techniques are required. Machine Learning,
in particular LSTM-based RNNs are being used to model complex non-linear behaviours
between features. Besides extracting more complex relationships in multivariate inputs, its
main benefit comes from its ability to identify temporal data dependencies. Therefore, an
LSTM achieves superior performance over an ARIMA model at a cost of increased complexity.
In this work, two different forecasting approaches were compared: a statistical-based ARIMA
model and LSTM neural networks. This subsection describes the theoretical foundations of
both approaches.

Autoregressive Integrated Moving Average

Autoregressive Integrated Moving Average (ARIMA) is a statistical analysis model that
works on the assumption that past values have residual effects on current or future ones to
forecast future outcomes. It is usually applied to stationary time series or series that can
be made stationary through differencing. In ARIMA, the 𝐴𝑅 component stands for Auto-
Regression and is responsible for modeling the output variable’s dependence on its own lagged
observations; the 𝐼 stands for Integration and is the component responsible for differencing
non-stationary data (i.e., the statistical properties such as mean and variance of the time
series change over time); Finally, the 𝑀𝐴 component stands for Moving Average and enables
modeling the dependency with past forecasting errors in a regression-like manner. The 𝐴𝑅, 𝐼
and 𝑀𝐴 parts are represented by parameters 𝑝, 𝑞 and 𝑑, respectively, in both ARIMA and
SARIMA models [51]. Whenever there is seasonality evidence, seasonal differencing is also
applied to the time series in an attempt to make it stationary.

𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) = 𝐴𝑅(𝑝) + 𝐼(𝑑) +𝑀𝐴(𝑞) (2.1)

where parameters 𝑝, 𝑑 and 𝑞 represent:

• p: The highest order of autoregressive coefficients for the non-seasonal component of
ARIMA. Also known as the lag order;
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• q: The highest order of moving average coefficients for the non-seasonal component of
ARIMA. That is, the size of the moving average window;

• d: The order of differencing that needs to be applied in order to make a given time
series stationary. Also known as the degree of differentiating;

LSTM-based RNN

Usually, in time series, current events are dependent on what has previously happened.
For instance, under this specific context, the link is expected to remain long-term blocked
and thus face many abrupt variations in the signal quality if the link was also in that state
in previous time windows. Due to their ability to identify time sequence patterns, Recurrent
Neural Network (RNN) are a natural candidate to perform such task. The RNNs makes use
of sequential observations to learn time-dependencies which could be used to forecast future
trends accurately. This is where the memory aspect on RNN comes in hand. The network’s
hidden layers act as an internal storage unit for storing the patterns captured in earlier stages
of reading sequential data [52].

To ensure that the temporal information persists on the network, RNN ’s internal states
(memory) have recurrent connections, which allows it to exhibit dynamic temporal behavior.
During training, the algorithm is responsible for finding which inputs to keep and which inputs
to discard to produce the desired output. By backpropagating the computed error through
the network, it is possible to update the weights of every single neuron that participated in
the output calculation, including the neurons far in the back that store previous information
used by the neurons in the front. This leads to increasingly lower gradients the further the
signal error travels back in time, thus getting to a point where their values actually vanish.
This is why RNNs are described in the research community as suffering from a vanishing
problem [53], which causes them also to have long-term memory problems [54]. Because of
that, a special type of RNNs, the LSTM architecture, has been proposed. These enhanced
RNNs are composed of Long-Short-Term Memory cells that are designed to improve gradient
flow in deeper networks. What makes them so effective in time series forecasting is their
ability to decide which information to keep in its hidden state and what to discard. For that
purpose, a LSTM cell has several gates in place that protect and control the cell’s internal
state, such as the forget gate, the input gate, and the output gate [54]. These gates, which
can be observed in the cell diagram provided in figure 2.10, are based on sigmoid layers and
work by yielding a number in the range of 0 to 1, which depicts the amount of information
that is saved, discarded, and passed to next layers. For a detailed description of how each
gate in LSTM works, referrer to [54].
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Figure 2.10. Diagram with several LSTM units connected, one per time step. Each unit is composed by four
interacting layers [54].

2.3.4 Evaluation Metrics

Choosing the right metric is crucial for adequately evaluating the performance of the ML
and DL-based models. Several metrics can be used to measure the performance of classification
and regression algorithms, and the choice of one over the other only depends on the specifics
of the problem. This section presents the metrics considered for evaluating the the regression
and classification models described earlier.

Classification Metrics

There are different metrics for evaluating the performance in classification tasks such
as accuracy such as accuracy, precision, recall and F1 score. Accuracy is the most popular
metric for classification algorithms. It is calculated as the ratio between the number of
correct predictions and the total number of samples to be classified, as shown by the following
mathematical equation.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(2.2)

The 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑁 and 𝑇𝑁 metrics stand for:

• 𝑇𝑃 : True Positives;

• 𝑇𝑁 : True Negatives;

• 𝐹𝑁 : False Negatives;

• 𝑇𝑁 : True Negatives.

As the name implies, the true positives and true negatives are data points that were assigned
the correct label. On the other hand, 𝐹𝑁 and 𝑇𝑁 represent the number of data points the
model incorrectly classifies.
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However, accuracy is not suitable for evaluating the performance of models that use
imbalanced datasets, such as the one collected in this thesis. The problem comes from the way
it is computed. For instance, recall our specific problem, classifying the input’s data wireless
link quality according to one of three classes. Even if all samples (let’s say 1000) collected
for short-term blocked links are incorrectly classified as either a link in normal or long-term
blocked condition, if almost all samples from the remaining classes (let’s say 20000) are correctly
classified, you still get an accuracy of about 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (20000 + 0)/(20000 + 1000) = 0.95,
which could provide a false sense of performance. Therefore, metrics that severely penalize
misclassifications in the minority class should such as precision, recall and F1 score should be
used. The appropriate evaluation metric depends on the specific context of the problem, but
in general it is good practice to find a balance between both recall and precision using the F1
score.

Recall can be defined as the ratio of true positives to all actual positives, as shown by
equation 2.3. Therefore, it is the metric to be applied whenever there is a high cost associated
with false negatives. For multi-class problems, recall metric can be computed for each class as
the ratio between the number of correctly classified samples and the total number of samples
that in reality belonged to that class.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.3)

Precision can be defined as the ratio of true positives to the total positives observed, as
shown by equation 2.4. It can be interpreted as the percentage of actual positives among all
predicted positives and thus, may be selected whenever there is a high cost associated with
false positives. For multi-class problems, a precision value can be calculated for each class
as the ratio of the number of samples that were correctly assigned that class label to the
total number of samples classified by the algorithm as belonging to that class (which includes
the misclassified ones). This can be easily seen in figure 2.11 which represents the confusion
matrix (TP, TN, FP and FN) and the metrics that can be calculated from there.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.4)

As shown in equation 2.5, the F1 score metric performs a harmonic mean of precision and
recall scores to compute a single value that reflects a trade-off between them. Since the F1
score takes into account how data is actually distributed, it is more suitable for evaluating
models developed with unbalanced datasets. Thus, it was the metric used to select the best
performing classification model returned by the hyperparameter tuning process.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(2.5)
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Figure 2.11. Confusion matrix commonly used while solving classification problems and metrics that can be
extracted from it [55].

Regression Metrics

Accuracy and similar metrics described earlier cannot evaluate the prediction accuracy
made by a regression model as the model’s output is now a continuous value rather than a
class label. Instead, error metrics specifically designed for these type of problems have to be
used, such as Mean Absolute Error (MAE), Mean Squared Error (MSE), RMSE and MAPE.
Mean Absolute Error (MAE) (or mean absolute deviation) is the simplest error metric used
for regression problems. As the name implies, its value can be computed by averaging the
absolute error obtained in the prediction of each input sample. MAE is known for being more
robust to outliers than MSE as the high errors they cause are not squared [56].

𝑀𝐴𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒
𝑌𝑖 − ̂︀𝑌𝑖 ⃒⃒⃒ (2.6)

Mean Squared Error (MSE) is the most popular evaluation metric for regression problems.
MSE can be calculated by averaging the squared error between the true and predicted values
for all N input samples, as shown by equation 2.7. It measures the variance of residuals.
Because it is a differentiable function, it was used as the loss function to be minimized during
training of the forecasting deep learning model. However, MSE is more sensitive to outliers as
it penalizes high errors more than MAE due to its squared error operation [56].

𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

(︁
𝑌𝑖 − ̂︀𝑌𝑖)︁2

(2.7)

Root Mean Squared Error (RMSE) is simply the squared root of MSE, as shown by the
following equation. It measures the standard deviation of residuals [56].
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𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

(︁
𝑌𝑖 − ̂︀𝑌𝑖)︁2

=
√
𝑀𝑆𝐸 (2.8)

On the other hand, Mean Absolute Percentage Error (MAPE) is the percentage equivalent
of MAE, as shown by the following equation. Since the real value is used to divide the absolute
residual error, it should not be used in cases similar to ours where the real values can be zero.
For instance, both Packet Error Rate and Packet Loss KPIs can reach zero under normal
channel conditions.

𝑀𝐴𝑃𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒
𝑌𝑖 − ̂︀𝑌𝑖 ⃒⃒⃒

𝑌𝑖
(2.9)

Statistical Metrics

There are two metrics used to score and select a statistical model among a set of models
developed with the same data, the Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC). These criteria select the model which provides the best trade-off between
the log-likelihood (the quality of the model’s fit on the data) and model complexity. The AIC
is a metric score based on frequentist probability and generally tends to allow for the selection
of more complex models if that means improved performance. On the other hand, BIC is a
score metric based on Bayesian probabilities that often penalizes more complex models [57].

2.4 Improving Backhaul Reliability

In wireless networks, the propagation channel can vary significantly over time, greatly
affecting the radio’s link quality. This is especially true for mmWave networks due to their
high susceptibility to obstruction, thus, not ensuring a reliable connection, i.e., continuity of
correct service [58].

IEEE 802.1ad standard defines three reactive mechanisms to deal with obstruction. Firstly,
it can switch to an alternative beam pair by triggering a new beamforming process whenever a
signal quality decrease below a certain threshold is detected. However, beamforming training
operations have an associated high overhead, which translates directly to high delays. For
instance, in [59] the beamforming training process triggered by misalignment was reported to
be approximately 7.65 ms in an indoor IEEE 802.11ad deployment. This problem is further
aggravated in the case of high-frequency short-term obstructions. Secondly, an STA can be
used as a relay between a pair of STAs if the direct link is blocked. Lastly, because WiGig is
backward compatible with legacy WiFi, the fast session transfer mechanism can switch the
traffic to other IEEE 802.11 standards operating at lower frequencies. However, this approach
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prohibitively leads to a significant throughput degradation [60] Still, these three mechanisms
are reactive, and thus actions are taken only after a significant link quality decrease is detected.

Because these approaches cannot provide the necessary robustness to support critical
applications, proactive resilience and fault recovery mechanisms should be in place, if possible
at multiple layers, to ensure a reliable mmWave performance. The concepts associated with the
multiple reliability mechanisms proposed in this thesis are presented in the following section.

2.4.1 Network coding

In traditional networks, packets are simply cached and forwarded by devices from the
source to destination, resulting in a separate transmission flow per message being delivered. By
employing Network Coding (NC) techniques, intermediate nodes (such as switches and routers)
can leverage algebraic functions to encode information from different packets. Depending on
the encoding scheme, this packet combination may result in improved security (e.g., to packet
sniffing), resilience to losses and link failures [61] [62] and support for Quality of Service (QoS)
in both wired and wireless networks. Furthermore, NC was shown to maximize the network’s
overall throughput [63] [64] [65]. There are several coding techniques, but the most common
include Exclusive-OR Network Coding (XOR Network Coding), Linear Network Coding (LNC)
and Random Linear Network Coding (RLNC).

The main idea behind RLNC is presented in the diagram of figure 2.12 [66]. To encode
using Random Linear Network Coding (RLNC), the data source (e.g., video) is divided into
smaller chunks of equal length that are known as a "generation" of the original message. This
lowers the computational cost of the encoding and decoding operation. Each generation is
further subdivided into symbols of equal size (x bits), and the total number of symbols per
generation is commonly referred to as the generation size. Each symbol contains the same
number of bits, and its size is set according to the chosen Galois field (2𝑥). Then, the symbols
are multiplied by scalar coding coefficients 𝑤𝑖 that are drawn from be selected GF field. In
the last step, symbols are linearly combined to produce the encoded symbol. The original
symbols are then transmitted alongside the coded symbols to compensate for channel erasures.
The coefficients used to generate multiple coded symbols compose the local encoding vector.
The overall coding process from source to destination nodes forms the global encoding matrix
[66]. This encoding operation can be viewed as creating a system of linear equations formed
with random coefficients that the receiver must solve to retrieve the original data symbols.
The number of necessary DoF needs to be known prior to adding the redundancy. Thus, it is
necessary to implicitly or explicitly transmit the coding vectors from the sender to a receiver
so that the operations are reversible.

A unique trait that Random Linear Network Coding (RLNC) techniques present over
Linear Network Coding (LNC) is the ability to re-encode information without decoding it
first. Recoding enables intermediate nodes between source and destination to use already
coded symbols, alongside partially decoded symbols or uncoded symbols to generate new
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Figure 2.12. The encoding process of Random Linear Network Coding (RLNC) [66].

coded symbols. Recoded symbols and coefficient vectors have the same size as before. This
operation usually is performed in an intra-session or inter-session according to whether it only
combines packets belonging to the same session/flow or not [67]. This ability increases the
likelihood of innovative transmission to the receiver as intermediate nodes can encode packets
faster. The higher the probability of transmitting packets containing new information, the
faster the decode process progress is. Moreover, in contrast with LNC techniques, in RLNC
the local encoding vectors do not need to be computed apriori in all network nodes using the
same algorithm (e.g., polynomial-time algorithms). Instead, these vectors can be assigned in
a decentralized way [68].

Nonetheless, solely block-based coding methods such as RLNC can only achieve high
data rates at the expense of high in-order delays, which makes them unsuitable for the high-
speed, low-latency applications that the mmWave is envisioned for. Another drawback of this
operation is that it does not support live stream traffic where the data might not be fully
available from the start to create coded packets [67]. Note that by in order-delivery delay, we
mean the time that passes between the first time an information packet is transmitted in a
coded packet and the time the sender successfully decodes it [69].

Error control protocols like SR-ARQ, which use the feedback received from the sender (ACK
and NACK) to perform TCP packet retransmissions, have been contemplated by the research
community to reduce in-order delivery [69]. However, while SR-ARQ was shown to achieve
near-optimal in-order packet delivery, it still struggles in channels with high RTT fluctuations
where the feedback might be delayed [70]. Additionally, packet-level FEC mechanisms have
been proposed to introduce redundancy alongside the feedback acknowledgments to further
improve the performance of SR-ARQ in error-prone networks. These approaches are casual
(i.e., use feedback acknowledgments), but they still cannot keep up with the changes in variable
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channels (i.e., non-adaptive). When employing non-adaptive approaches, it is not possible
to adjust the number of DoF to fit the current erasure probability, possibly leading to more
or less redundancy being added than what is needed. Hence, reducing the amount of useful
throughput.

To address the aforementioned problems, MIT’s researchers have proposed in 2019 a novel
Adaptive Causal Network Coding with Feedback (AC-RLNC) for point-to-point communication
channels which optimizes both the achievable throughput and in-order delay [69]. This
technique exploits Forward Error Correction (FEC) at the packet level to ensure the required
data rates, and the sender can track the erasure pattern through the feedback it receives from
the other station to ensure low delays. The latter allows AC-RLNC to dynamically adjust the
code rate to the specific channel conditions, thus being suitable for real-time transmissions
under variable propagation channels such as mmWave ones. Their results showed that, for the
point-to-point communication channel in the non-asymptotic regime, the proposed code might
achieve more than 90% of the channel capacity. Furthermore, it was demonstrated, through
numerical simulations and experimentally obtained commercial traces for IEEE 802.11n/ax/ac
devices, that AC-RLNC could double the throughput gains and triple the gain in terms of
in-order delay in a bursty channel when compared to SR-ARQ [69]. This is due to the sender’s
ability to track the rate of the channel through feedback received and the ability to adapt
the apriori degree of freedom used during the encoding process according to the estimated
missing degree of freedom. Retransmissions are also performed according to a criterion that is
defined using the measured channel rate 𝑟, apriori DoF 𝑚𝑎 and missing DoF 𝑚𝑑 is superior
to a given threshold 𝑡ℎ, as shown by equation 2.10. Thus, it is possible to determine the
amount of posteriori DoF that should be sent to compensate variations. This approach was
later generalized for multi-path multi-hop networks in [71].

𝑟 − 𝑑 > 𝑡ℎ = 𝑟 − 𝑚𝑑

𝑎𝑑
(2.10)

The introduction of NC techniques at the network and transport layers loosens the require-
ments of the Forward Error Correction (FEC) mechanism implemented at the physical level.
This is especially useful in mmWave networks where obstruction increases the delay, packet
losses, and hence the number of normalized TCP retransmissions. As proven by author’s of
[72], for a ns-3 simulated mmWave cellular network, frequent switching between LOS an NLOS
conditions results in numerous retransmissions by the TCP’s congestion control mechanism
which effectively decreases its performance and increases delay. This observation was further
extended to IEEE 802.11ad-based networks in [73]. In that work, it was found that TCP does
not account for the round-trip timeout changes that occur whenever any of WiGig resilience
mechanisms (such as beamforming training and beam tracking) are triggered under normal
and obstructed conditions. Figure 2.13 of [74] presents experimental results that show this
phenomenon. It can be seen that the introduction of blockage at the 20-second mark causes
link failure, which in turn leads to a decrease in the amount of supported throughput and
triggers the beamforming training. During the beamforming training process, the milliliter-
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wave link fails, and packets that were in the receive queue are left unprocessed, thus increasing
the overall size of the receive queue. By the time the process ends, the packet’s timeout
has been reached, and the TCP treats the unprocessed packets as being lost. The detection
of a timeout-based loss event makes the congestion control adjust its window, leading the
throughput to be resumed to a value that is lower than its pre-loss one when the mmWave
connection is reestablished. The interaction of NC and mmWave will be addressed in this
thesis.

Figure 2.13. Throughput drop after mmWave link is obstructed (left) and the receiver queue size observed for
during blockage (right) [74].

2.4.2 Software Defined Network

Software-Defined Networking (SDN) is an emerging new paradigm that decouples the
management plane from the data plane (e.g., forwarding of packets) of network equipment
such as switches and routers. Similar to legacy IP networks, the control plane of an SDN
network performs routing, load balancing, enforces security policies, and supports end-to-end
Quality of Service (QoS). With SDN, the network control becomes directly programmable,
allowing administrators to monitor and manage network resources allocations in real-time to
optimize performance [75]. A generic SDN architecture is presented in figure 2.14.

Control of an SDN network is orchestrated by logically centralized SDN controllers that
maintain a global view of the network. These components contain the logic responsible for
translating the application requirements down to the data plane, which allows the underlying
infrastructure to be abstracted for applications and network services [76]. In this work, the
SDN controller uses Open Network Operating System (ONOS) in the reactive forwarding
mode, installing forwarding rules as new flows that are communicated by the SDN switches.
This allows flexible adding and dropping of routing policies without any prior knowledge of
the traffic [77], and thus the controller can readjust the routes to forward traffic in a specific
communication path.

As shown in 2.14, the SDN controller has to communicate with the upper and down
layers through a set of defined and standardized open interfaces. In the research community,
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Figure 2.14. The SDN architecture [78]

the interface north of the control plane is denominated northbound API and is used by the
controller to communicate with higher-level components. This interface allows the network
applications to report to the controller their requirements and enables network operators to
have direct control over the network. Popular northbound APIs include web interfaces and
REST APIs. Conversely, the interface located south of the control plane is known as the
southbound API, and its job is to establish communication between the SDN controller and
the network devices (e.g., router and switches). This interface allows the SDN controller to
manage and configure network switches’ flow tables and dynamically adjust the underlying
infrastructure to meet the real-time demands. Today the most popular southbound API
connecting data and control plane is OpenFlow (OF) [79], which is also the interface used in
our physical deployment. OpenFlow operates by adding entries in flow tables located in each
network device, which define the actions to be taken for each flow, such as dropping packets
and forwarding them to a specific port.

Despite the advantages, SDN is not fully deployed for several reasons. Firstly, some of
the networking services for legacy networks lack support in SDN. Secondly, replacing every
legacy switch in the current infrastructures with an OpenFlow-compatible device is infeasible
owing to its high-cost [80]. To address these issues, hybrid SDN networks are being proposed
where a limited number of SDN-enabled devices (which support both legacy and OF protocols)
and dedicated SDN switches are used alongside legacy equipment [80] [81]. Even so, hybrid
SDN-based approaches still have their limitations. OF messages are exchanged between the
SDN switches and controller in a full SDN deployment to report the number of interfaces,
associated capacities, and connection states of SDN devices. Furthermore, to discover the
overall network topology and keep track of its changes, the controller periodically sends LLDP
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messages to neighbor SDN switches that are supposed to be received, processed, and later
forwarded to other neighbor devices until they reach the controller once again. However, these
messages cannot reach their final destination due to LLDP packets being dropped in legacy
equipment, an issue that can only be solved by sending BDDP messages. BDDP functioning
is similar to LLDP’s with the distinction that packets are sent in broadcast, and thus can be
forwarded by legacy equipment located between two OF switches’ ports [80].

Still, similar to LLDP, BDDP can only be used by the SDN controller to gather information
regarding OF devices as the controller is not aware of the individual status of each intermediate
legacy link. This makes it difficult to detect specific failures in legacy links. Instead, the
controller only detects link failures in the overall path formed between two OF switches.
Besides, since OF messages do not have direct support for wireless hybrid-SDN networks
[79], and thereby it is not even possible to know the capacity or state of wireless devices
that are directly connected to OF switches. Support for this kind of operation is particularly
challenging in highly variable mmWave networks that mainly rely on LOS conditions to
operate. As such, the SDN controller is most likely to detect topology changes with a long
delay, leading to temporary packet losses that compromise the QoS and QoE. A way to
enhance the controller’s ability to detect topology changes, and thus to increase the overall
mmWave network reliability, is using estimations of future link qualities (made based on past
observations) to reroute priority flows over alternative backhaul links before a severe link
performance degradation happens. The estimations and predictions performed in this thesis
will be used to self-optimize the SDN controller decisions.

2.5 Related Work in the Literature

This section presents innovation works in the literature on multiple fronts towards a resilient
mmWave backhaul network. Aspects ranging from the characterization of the impact caused by
long-term and short-term obstruction in an outdoor deployment, and the use of classification
and prediction models plus network coding techniques to increase the reliability of mmWave
networks are researched. For this reason, two main strands of action can be identified and
are discussed below. In the first section, the findings and limitations of several experimental
works on 60GHz networks are listed for indoor and outdoor scenarios and compared to the
approach we will be fulfilling in this thesis. In the last section, a comprehensive study of
existing techniques to increase the reliability of WiGig-based networks is presented alongside
their shortcomings compared to the approaches that will be proposed in this thesis.

2.5.1 Work on Experimental 60 GHz Networks

Until this point, the experimental studies on the 60GHz band used wireless docking stations
with radio chipsets that Wilocity typically manufactures. Moreover, they mainly focused on
indoor measurements campaigns. In 2015, [82] investigated the feasibility of full-scale indoor 60
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GHz networks by conducting several measurements using 802.11ad-compliant COTS devices in
an indoor office environment. The authors conducted a multiple layer stack analysis using RSSI,
PHY data rate, and TCP throughput to characterize the impact of the transmitter-receiver
distance, antenna height, location, and orientation on the system’s performance. Mainly, they
found that RSSI is a weak indicator for PHY data and TCP throughput and that PHY data
rate is not always a good indicator of higher-layer performance. Furthermore, they showed
that static human blockage standing close to either the receiver or transmitter had a greater
impact on the TCP throughput than a transient blockage. In that same year, authors of
[83] presented the first in-depth beamforming, interference, and frame-level protocol analysis
of COTS mmWave hardware in an indoor environment. Most interestingly, they found that
interfering reflections from neighboring, unaligned devices may reduce the achievable TCP
throughput by more than 20%. Later in 2018, Kacou et. al. [83] presented a 60GHz channel
sounding experiment using a custom setup to compute the channel’s RSM delay spread and
associated path loss under LOS and NLOS conditions. Their practical measurements showed
that their 802.11ad equipment has a 65-70 dB of propagation loss under normal operation.
However, in the case of obstruction by a load bearing wall or by a wooden cabinet close to a
plasterboard dividing wall, at least 25 dB of additional path loss was observed for the best
non-direct path as it was not possible to establish communication. Additionally, they found
that the TCP throughput decreases from values that vary between 1.6Gbps to 2.5Gbps in LOS
conditions to values within the 0 to 1.6Gbps when faced with static obstruction from some
common construction materials. Besides, it was observed that four people blocking a LOS
path still enabled achieving a throughput greater than 1Gbps in indoor office environments
for distances up to 10 meters.

In 2020, authors of [59] reported the ability to differentiate with 96% to 97% accuracy tem-
porary from permanent blockage caused by humans in an indoor environment by analytically
analyzing sudden drops in signal quality and TCP throughput. To do so, they deployed an
experimental testbed that includes an INTEL WiGig sink chipset W13100 as the AP and the
INTEL tri-band wireless-AC 17265 wireless cards as the wireless station (STA). Based on those
observations, they proposed a handoff scheme to alternate between APs to mitigate the impact
of obstruction. However, similar to the previous listed works, the blockage characterization is
limited to a small set of metrics that include at best the TCP throughput, RSSI, and PHY
data rate since other MAC and PHY metrics are not easily accessible in most commercial
WiGig devices. To access these lower layer metrics, the authors of [84] proposed a scheme
that extracts them from control files stored inside the "Wilocity Monitory" windows service.
That work presented a preliminary study of the behavior lower layer (AGC attenuation, MCS,
data rate, and CRC failure rate) metrics for a blocked and non-blocked indoor mobility sce-
narios that use a COTS 802.11ad device. More specifically, they describe the impact that
transmit-receiver distance (up to 15 meters) has at multiple layers and define the influence of
transient blockage at different speeds on the SNR and in the beam adaption process. Their
results show that transient blockage may induce long-term suboptimal beam alignment on a
60GHz link, which causes a significant performance decrease. Later in 2019, [85] extended
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this work by providing a more in-depth analysis of static and transient blockage impact. His
extensive analysis describes how different types of blockage affect the TCP throughput, the
number of sent control packets, the MCS, and the beam pattern changes of an COTS device.
Some relevant insights are provided in [85] . Specifically, the author showed that 1) static
blockage often operates at higher MCSs than in the transient case as beam misalignment is
more likely in mobility scenarios, 2) the rate at which beam tracking methods are triggered
cannot keep up with pedestrian movement and 3) poor performance of the connection under
long-term obstruction is due to limited beam-tracking capabilities and inefficient beam-sweep.
[84] and later [85], are huge advances, as, until that point, no one had presented such a detailed
analysis of blockage-prone WiGig networks at both a PHY and MAC level. Still, it has some
limitations from a higher-layer perspective. Because it only focuses on TCP throughput, the
performance of critical mmWave indicators such as delay and packet loss are excluded from his
analysis. Furthermore, the measurements campaign was conducted indoors with equipment
whose characteristics are completely different from those intended for outdoors. Note that
most commercially available WiGig devices are designed for indoors to cover a maximum
distance of 15 meters, even after beam steering.

Nevertheless, a few studies have reported to evaluate the feasibility of typically indoor’ IEEE
802.11ad solutions on outdoor environments suffering from static and transient blockage. To
the best of this author’s knowledge, only [86] and most recently [87] address outdoor scenarios.
Zhu et al. presented in [86] the results of measurements using COTS (Wilocity) 60GHz radios
and a horn antenna emulating a 10x10 antenna array to evaluate the feasibility of 60GHz
picocells in outdoor scenarios. The work explores the range, attenuation, and interference
in urban scenarios and dispels some common myths about 60GHz communications. Their
measurements show that employing large-enough phased arrays enables covering distances up
to 79m while maintaining a 2+ Gbps data rate. Moreover, they showed that it is possible
to circumvent blockage and establish robust outdoor connectivity by electronically steering
the phased-array antennas to a reflecting-formed path, with a loss of only 5-7 dB. Also, they
found that antennas on COTS radios can maintain high data rates, even under user motion,
only needing to realign once every few seconds. This work described for the first time from
an experimental point of view the potential of WiGig in outdoor environments, though it
still has two major limitations. Firstly, the results of simulating a large array using a horn
antenna can only be considered valid in an environment with no interference. Secondly, the
cross-layer performance analysis once again only includes RSSI and TCP throughput. Most
recently, Tran et al. [87] conducted an outdoor experiment campaign in a customized mmWave
Meshed Backhaul that employs WiGig to demonstrate the potential of Mobile Edge Computing
(MEC) technology in this type of networks. The tests performed on this testbed focus on
evaluating the UDP throughput and end-to-end delay achieved in non-obstructed single-hop
and multi-hop backhaul links with a fixed MCS of 9. It is also worth mentioning that so far,
this is the only work that proposes a physical deployment for an SDN-controlled mmWave
backhaul.
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Table 2.2. Comparison of existing experimental measurement work for WiGig-based networks.

Work Date DUTs Environment Metrics Scenarios Investigated Limitations

[82] 2015

Dell Latitude E420 laptop
with wil6210 (STA)

Dell Wireless Dock D5000 (AP)

Indoor TCP throughput

Normal

Transient human blockage

Static human blockage
Lacks extensive PHY and
MAC layer cross-analysis

[83] 2018
Qualcomm 802.11ad
mini PCIe cards

Indoor TCP throughput

Normal

Static obstruction from
common construction materials

Transient human blockage

[59] 2020

INTEL tri-band wireless-AC
17265 wireless cards (STA)

INTEL WiGig sink chipset
W13100 (AP)

Indoor
TCP throughput
RSSI

Normal

Transient human blockage

[84] 2016

D5000 wireless docking
station (AP)

Dell E7440 laptop (STA)

Indoor

AGC attenuation
MCS, data rate,
SNR, CRC failure rate
and beam adaptation

Normal

Transient blockage at
different speeds

[85] 2019

D5000 wireless docking
station (AP)

Dell E7440 laptop (STA)

Indoor

TCP throughput
No. of sent control packets,
MCS
Beam pattern

Normal

Static Blockage

Transient blockage at
different speeds

[86] 2014
D5000 wireless docking station (AP)

Dell 6430U laptop (STA)
Outdoor

RSS
TCP throughput

Normal

Static blockage from
common construction materials

Transient human blockage

Lacks extensive PHY and
MAC layer cross-analysis

Uses a 60 GHz horn antenna
to simulate a 10x10 phased-array

[87] 2019
Custom setup based on
Panasonic radio transceivers

Outdoor Latency Normal

Lacks extensive PHY and
MAC layer cross-analysis

Does not study the impact of
transient and human blockage

This work 2021 CCS Metnet 60G nodes Outdoor

RSSI, SNR
PER, MCS
Beam Index TX
Beam Index RX
L2 data rate
RTT, PL
TCP throughput
TCP retransmissions

Normal

Static blockage from metal
object

Transient human obstruction

Does not include UDP metrics

Table 2.2 provides a brief summary of the aspects discussed for the existing experimental
work in the 60GHz band.

This thesis will present a more extensive PHY, MAC and transport layer measurement
campaign for either indoor and outdoor WiGig networks. Furthermore, it will join the analysis
of metrics from the transport (TCP throughput, number of TCP retransmissions, packet loss
rate, RTT) and PHY/MAC layers (RCPI, SNR, Packet Error Rate, Beam Index TX, Beam
Index RX and L2 data rate) to characterize static and transient blockage on 60 GHz links.
More specifically, this work proposes a cross-layer analysis of the impact caused by long-term
and short-term blockage on a real WiGig-based outdoor network intended for 5G backhauling.
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2.5.2 Resilience Mechanisms

The resilience mechanisms implemented in IEEE 802.11ad only allow actions to be taken
after a significant link quality decrease is detected, and after the underlying processes (such
as beamforming training) have finished, which in the case of the beam alignment process has
a high associated overhead [88] [89]. Because these methods cannot provide the necessary
robustness to critical applications, several proactive and reactive resilience mechanisms are
being reported to eliminate the need for constant beamforming training. The current research
mainly focuses on beam recovery techniques that minimize the overhead associated with the
beamforming training procedure. These approaches propose increasing mmWave reliability
by either improving the beam scanning process [90], [91], [92], [93] and [94] or by predicting
alternative beams in advance [95] and based on past records. For instance, in 2016, authors
of [90] designed and evaluated MOCA, a protocol for Mobility Resilience and Overhead
Constrained Adaptation for directional 60 GHz links. Under this protocol, several reactive
techniques are used to restore directional links with low overhead. Firstly, the authors
devised a Beam Sounding mechanism to estimate the beam quality for a few selected beams
by exchanging control frames prior to the actual data transmission. Their implementation
involves searching for alternate sectors in advance by modifying the beam refinement procedure
to assess the SNR of multiple sector pairs rather than just the strongest sector pair. Their
results show that the proposed scheme can reduce packet loss ratio and increase throughput in
several conditions in a testbed using commercial 60 GHz transceivers. On that same note, in
2018, Shao et al. [91] proposed a new beamforming training scheme for IEEE 802.11ad-based
networks that exploits the AoA sparsity of mmWave channels to enable group beam training
of all user devices attempting to connect with an access point. The proposed approach, which
was developed using a 60GHZ testbed and validated on a simulator, showed that compressed
sensing reduces the cost of sector sweep by 50%. Later in 2021, the work presented on [95]
proposed a fast beam restoration scheme, that uses past beamforming combinations observed
during blockage as input to a Long-Short-Term Memory (LSTM). The LSTM can predict the
best alternative beam directions for the next time frame, without depending on out-of-band
information. The proposed scheme was observed to maintain communication sessions, reducing
significantly the number of times the training procedure is triggered.

Another class of resilience mechanisms that has been described recently for mmWave
networks is the methods that rely on out-of-band information (provided by sub-6GHz bands)
to predict future obstruction, such as [96] and [97] . In 2019, Ali et al. [96] exploited the fact
that the Received Signal Strength Indicator (RSSI) of sub-6GHz communication crosses a
defined threshold much earlier than mmWave signals in obstructed links to propose a scheme
to detect early signs of blockage. The simulations performed using a Fresnel-diffraction-based
channel simulation tool showed that sub-6GHz signals can be used to predict the sudden
changes in mmWave channels tens of ms ahead. Also, they demonstrated the possibility of
predicting the strongest multipath component and its angle of arrival using the sub-6GHz
observations. As for [97], the authors proposed a deep-learning neural network that used 3D
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ray-tracing software to develop a dataset that can be used to extract temporal information from
sub-6GHz channels that enable predicting blockage and optimal beamforming combinations.
Specifically, they show that a mapping function can directly predict the optimal mmWave
beam (out of a codebook) from the sub-6GHz channel measurements under certain specific
conditions. However, because these approaches use out-of-band information, they do not
support standalone operational modes of mmwave bands.

To address this, some works [98] [99] are being developed to classify wireless link quality
using in-band mmWave measurements. In [98], authors leverage RSSI variations to detect
transient human blockage and link movement (between RX and TX) in an indoor environment.
The proposed scheme classifies if the link is either short-term blocked or suffering from relative
STAs movement by analyzing if the variance measured within a given time window falls below
a defined threshold. According to their experiments, a 100% classification accuracy is possible
to achieve after a 30ms time window. Besides the 30ms delay, this approach has two major
limitations. Firstly, the dataset is collected with a customized solution that uses a steerable
34 dBi horn antenna rather than electronically steerable antenna arrays. In addition, because
it is a mechanism solely based on RSSI measurements made in an indoor environment with
short distances, it is bound to fail in outdoor channels subjected to rapid fluctuations.

Later in 2021, the work in [99] proposed a new learning-based prediction framework that
leverages the measured receive and transmitted signal patterns to detect whether a mmWave
link is blocked or not. Their observations showed that more irregular patterns are observed
(with new side lobes and spikes) whenever a link suffers from obstruction due to signal
diffraction and reflection in the obstacles. The dataset in this work was collected in an indoor
testbed that uses two commercial TP-Link TALON AD7200 routers. To generate the dataset,
they used the approach described in [100] which allows extracting the phase and magnitude of
the signal patterns from coarse signal strength readings using a beamforming training process
(with a custom codebook to probe different directions). The experimental results showed
that the proposed framework can distinguish between blocked and non-blocked scenarios
with an accuracy of about 90% for the three ML models (ensemble, K-nearest neighbors,
and Support Vector Machine (SVM)). Nonetheless, because the approach relies on sequential
probing of different directions, it is unsuitable for real-life applications. Also, the nature of
the classification algorithm does not allow collecting data to identify the transient obstruction.
Thus, the method is only able to recognize long-term blocked patterns.

In contrast, this thesis proposes a ML-based approach that leverages multiple layer metrics
to classify if a mmWave link is in a non-blocked, long-term blocked or short-term blocked
state. To best of this author’s knowledge, this is the first approach that proposes using metrics
beyond RSSI to identify the state of a WiGig network as until this point, access to other KPIs
was limited by manufactures of IEEE 802.11ad COTS devices.

Even so, predicting the current link quality is not enough to ensure a reliable link quality.
The only way to have a truly proactive mechanism is by predicting future obstructions before
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their impact on the network is experienced. This requires predicting in advance the expected
value of main link KPIs such as SNR, PER, PL, throughput and RTT. Still, up to this point,
only [101] has reported to forecast metrics in mmWave, specifically operating using the IEEE
802.11ad. In [101] the predictability of the throughput in a WLAN IEEE 802.11ad network was
evaluated for real-time applications, in downloading data to an IEEE 802.11ad mobile phone
under varying mobility patterns and rotations. For that purpose, the authors proposed using a
small RNN that exploits temporal relationships between the MCS, RSSI, link status indicator,
TCP throughput, and beamforming tx and RX sectors, and pose of the user’s equipment
(pitch and azimuth) to predict TCP throughput for different time scales. Their results show
that TCP throughput prediction when the mobile phone is static can be performed with high
accuracy for the 40 to 2000𝑚𝑠 windows, with a 95th percentile error of 10.6% for the 40ms
and 5.7% for 2𝑠. Under random mobility scenarios, the 95th percentile error increased to
38.1% and 19.2% for the 10𝑚𝑠 and 2𝑠 timescales, respectively. For the 10ms timescale, that
corresponds to an error above 10% for 40% of the time.

In this thesis, the forecasting is taken a step further by proposing a DL-based framework
that can predict multiple future timesteps, even under heavy obstruction, of an extensive set
of link KPIs which includes Signal to Noise Ratio (SNR), Round-trip Time (RTT), Packet
Error Rate (PER), Packet Loss (PL), TCP throughput, RX and TX beam, among others.

Another alternative to increase the reliability of mmWave backhauls is to employ Network
Coding (NC) techniques. This approach, however, has not yet been widely explored by the
scientific community. To the best of this author’s knowledge, network coding techniques were
only proposed to improve the performance of mmWave systems in two instances [102] and
[103]. Firstly, in 2015 Motorola Mobility Limited’s researchers [102] introduced a multi-path
approach where devices transmit and received RLNC encoded packets through several access
points. Using a Monte Carlo system simulation, the authors demonstrated that for downlink,
intra-session network coding provided significant improvements efficiency-wise for individual
mmWave channels suffering from erasure due to link outage and non-line-of-sight conditions.
For instance, they showed, that using network coding over a network composed of relay nodes
deployed every 30 meters improved the data rate by 35%, thus achieving shorter transmission
times when compared with the simply forwarding approach.

The second instance was reported in 2018 by Drago et al. [103], which defined the first
reliable video-streaming architecture for mmWave networks employing multi-connectivity
between Long Term Evolution (LTE) and mmWave Radio Access Networks (RANs) using
network coding techniques. The authors use RLNC to simplify the management of the
transmission on multiple links and provide additional robustness. The performance of the
proposed architecture was evaluated using ns-3 mmWave module, real-video traces, and the
network coding library Kodo [104].

To this day, the potential of network coding has only been explored for mmWave systems
through simulation-focused approaches. Furthermore, network coding techniques have not yet
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been extended for IEEE 802.11ad-based wireless networks. Much less has an analysis been
made of the gains it may have over a traditional network approach, either at a simulation
or physical level. This thesis will present preliminary results that demonstrate that the
introduction of fixed-size block RLNC techniques can increase the robustness of a deployed
WiGig backhaul suffering from severe obstruction.

Table 2.3 provides a brief summary of the aspects discussed for the current work on the
resilience of WiGig-based networks.
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Table 2.3. Comparison of existing work on mechanisms for improving resilience of WiGig-based networks.

Work Date
Resilience Technique
Type

Proposed Validation Framework Limitations

[90] 2016
Improving beamforming
scanning process

Beam sounding mechanism to estimate
the link quality for selected beams

Preemptive Fast Recovery mechanism
from link outage

Dynamic adjustment of beamwidth
according to channel variations

Custom testbed using SDR with
60 GHz transceivers

Custom MATLAB simulator that uses
trace-based channel measurements
of the custom setup

Testbed uses different horn
antennas that do not have
beamsteering capabilities

Reactive mechanism

[91] 2018
Improving beamforming
scanning process

Group beamforming training mechanism
leveraging AoA sparsity and compressed
sensing

SNR traces in the~X60 SDR-based testbed Reactive mechanism

[95] 2021
Improving beamforming
scanning process

Fast beam restoration scheme that uses
a DL model to predict an alternative beam

Simulated analytical channel and blockage
model

Reactive mechanism

Validated only through
theoretical simulations

[96] 2019
Out-of-band
information

Mechanism that uses early signs
of blockage in the sub-6 GHz band
to identify possible obstructions in
the mmWave band

Fresnel-diffraction based channel
simulation tool

Validated only through
theoretical simulations

Does not support standalone
operational modes of mmWave
bands

[97] 2020
Out-of-band
information

Neural network that uses 3D ray-tracing
software to predict the optimal mmWave
beam and blockage status directly from
the sub-6 GHz channel

Publicly-available dataset created using
a 3D ray-tracing simulator

[105] 2015
Wireless link
quality classifier

Analytical mechanism that uses RSSI
variations to detect transient blockage

Custom testbed that uses WARP
FPGA, a 60GHz development board,
and 34 dBi horn antenna

30 ms of induced delay to
achieve 100% accuracy

Does not use electronically
steerable antennas

Only suitable for indoors

[99] 2021
Wireless link
quality classifier

DL-based model that uses the measured
receive and transmitted patterns to detect
obstruction

Tesbed using TP-Link TALON AD7200
routers

Not suitable for critical
scenarios because it relies
on sequentially probing
different directions

Only suitable for indoors

Cannot identify the transient
obstruction

[101] 2021 KPIs forecasting
DL-based model to predict TCP throughput
in a mmWave indoor channel

Testbed consisting of an ASUS ROG
Phone II and Netgear Nighthawk X10
WiFi router

Can only predict TCP
throughput in the case of
STA mobility and
not under obstruction

[102] 2015 Network coding
RLNC employed to provide additional
robustness to a mmWave backhaul

Monte Carlo System Simulation Evaluated only through
simulations

Not extended to WiGig-based
networks

[103] 2018 Network coding

RLNC employed to provide additional
robustness in a network employing
multi-connectivity between lte and
mmWave RAN

ns-3 mmWave module with Kodo

This work 2021

Wireless link quality
classifier

KPIs forecasting

Network coding

ML-based approach that uses multi-layer
KPIs to detect long-term and
short-term obstruction

DL-based forecaster to predict future
multi-layer KPIs under variable
channel conditions

Mechanism that employs fixed-size block
RLNC techniques to improve robustness in
error-prone networks

Experimental outdoor testbed using CCS
Metnet 60G nodes

Does not use UDP metrics
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2.6 Summary

This chapter introduced the background concepts that supported the work developed
towards a resilient mmWave backhaul. We first discuss the advantages and disadvantages of
radiation propagation in the 60GHz band and describe techniques used at the physical and
MAC level to overcome those limitations in WiGig standards operating in the same band. More
specifically, it was found that, although mmWave propagation allows achieving multi-gigabit
data rates with low latency, the high frequencies used results in higher propagation losses,
which can only be overcome by establishing highly directional links. For this reason, the
WiGig-based WLANs deployed in our infrastructure, such as IEEE 802.11ad/ay, introduce
new physical and MAC layers that include support for beamforming training of phased-array
antennas that allow the establishment of highly directional links between two devices.

Afterwards, a WiGig-based 5G wireless backhaul architecture was described, and potential
problems it may experience were investigated. Specifically, it was argued that the directional
nature of mmWave communication leads to increased sensitivity to obstructions that can
compromise the reliability of the network. Moreover, it was shown that the proprietary IEEE
802.11ad mechanisms are not sufficient to maintain a reliable connection as they have a high
overhead associated. Furthermore, these mechanisms are reactive, and re-training is only
triggered when performance degradation is already detected, which ends up compromising
QoS and QoE. Later, the concepts associated with the multi-layer resilience mechanisms based
on SDN-controlled networks, network coding, and machine learning for wireless link quality
classification and metric forecasting were presented.

This chapter ended by presenting a comprehensive study of existing experimental work
on 60GHz networks where metrics measurements are made in various scenarios. It was found
that this thesis presents the first extensive cross-analysis of multi-layer metrics in an IEEE
802.11ad network subjected to long-term and short-term blockage. Moreover, we present a
study of the mechanisms proposed in the literature to increase the reliability of WiGig-based
networks. Our analysis has shown that the methods proposed so far present one or more set
of limitations: they are reactive, allowing actions to be taken only after quality degradation
is detected; they are usually focused on improving particular processes, usually related to
the beamforming process; moreover, those that do not focus on beamforming training are
validated in simulation environments; those that are validated in a real environment are in
indoor environments. In contrast, the work presented in this thesis, and described in the
following chapters, proposes proactive mechanisms for SDN-controlled WiGig-based networks
that leverage the estimated wireless link quality and relevant future KPIs to act at multiple
layers; and network coding techniques to improve the robustness in error-prone channels.

46



Chapter 3

Real Deployment

This chapter details aspects related to the mmWave deployment, and is organized in
two parts that represent the first development cycle of the SNOB5G project. The first part
describes the functionalities and limitations of the equipment used, as well as the architecture
used to deploy the infrastructure in an outdoor environment. The second part depicts the
methodology employed to collect multi-layer metrics on different mmWave links under three
different blockage scenarios. The following sections describe a general overview of the deployed
network, as well as a functional description of the network operation and the available service
features.

3.1 Backhaul Infrastructure

This section describes the backhaul infrastructure, its functionalities and architecture.

3.1.1 Network Overview

The backhaul mmWave network used in this work adopts a more general architecture
than the distributed approach described in [41]. In this architecture, multiple Small cell
Base Stations (SBSs) can be connected to the core network via fiber connections at Point of
Presence (PoP) locations.

The mmWave network used throughout this work is composed of three CCS Metnet 60GHz
nodes [47], similar to the ones presented in Figure 3.1a. The system was developed for
deployment on outdoor environments, such as street furniture and lampposts. However, in
this case, they were installed on the rooftop of Aveiro’s IT branch on a support placed at the
height of about 1.5 meters. This ensures that the work is developed under a fully closed and
controlled outdoor environment. The deployed testbed is presented in figure 3.1b.

Each node has four radios covering a 90º range that overlap to cover a 300º horizontal
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(a) CCS Metnet node and its four radios. (b) Testbed used throughout this work.

Figure 3.1. Nodes and topology of the deployed outdoor testbed.

field of view, as shown in figure 3.2a. The current v1 mesh nodes leverage the standardized
802.11ad (WiGig) technology, described in Chapter 2 in Section 2.1.2, to form a wireless
5G meshed backhaul. According to the vendor, this network is able to form Self-organising
Network (SON) and self-healing links between neighbor nodes that dynamically adapt to the
specific channel conditions. However, it was observed that this feature is still very limited.

The system operates between the 57GHz and 66 GHz unlicensed band which supports
channels 1 to 4, each with a bandwidth of 2.16 GHz. The employment of a 19 dBi beamforming
steerable antenna in each radio module enables the establishment of directional links between
STAs, which ultimately allows to cope with the 60GHz channel propagation loss, reducing
interference due to spatial reuse. The 300º wide range covered by each node is further
divided into a set of 64 discrete sectors (with 5º horizontal beamwidth), that can be used
to concentrate the transmitted signal in the receiver’s direction. Each sector is implemented
using precomputed antenna weight vectors for the four modules’ phased arrays. As shown in
figure 3.2, the use of phased-arrays antennas with beamforming capabilities allows the sender
node to concentrate the signal in the best direction it has found towards the receiver (see the
training process in Chapter 2, Subsection 2.1.2).

While the standardized IEEE 802.11ad defines a point to multi-point network architecture
that requires LOS - which typically covers distances up to 300-500m with phased-arrays
antennas -, the used system takes this one step further, by engineering a multi-point to
multi-point topology. This equipment can cover distances up to 500m, depending on the
location, availability and available capacity. Additionally, the system implements a proprietary
interference avoidance technology that allows coexistence with other 60GHz devices [47].

The system’s SON allows nodes in close vincity to operate with negligible co-channel
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(a) CCS node’s multisector beamforming phased arrays
[106].

(b) Radiation pattern used by a radio’s node to establish
3 different directional beams.

Figure 3.2. Example of establishing directional links with the phased-array beamforming process.

and adjacent channel interference, thanks to its interference monitoring mechanism, dynamic
scheduling and automatic routing. Moreover, it enables automatic configuration of radios,
removing the need for manual configuration and complex frequency planning, enabling mobile
operators and broadband service providers to rapidly deploy gigabit connectivity at a relatively
low cost. This solution can also be described as scalable, since the introduction of new nodes
is automatically detected, causing the network to automatically reorganize itself. However,
the reorganization capability is still limited, since it is part of a feature that is still under
development. Additional information regarding the system’s characteristics and features is
provided in table 3.1.

In this equipment, the employment of a Time Division Multiple Access (TDMA) and
dynamic Time Division Duplex (TDD) alongside the high spectral reuse at mmWave frequencies
allows the usage of both space and time switching in the four 802.11ad channels. Optimizing
the spectrum utilization while also minimizing the interference eliminates the need for complex
frequency planning. Using TDD, the node is able to support asymmetric traffic and time-
varying uplink and downlink demands, which are commonly observed in real scenarios.

3.1.2 Functional Description

The network comprises several 60GHz mesh nodes that can be either completely wireless
or have a wired connection to the core network. A node acts as a wired node if it is connected
to a wired Gigabit Ethernet connections, or one of its 1G/10G optical ports. If the node is
not connected to the PoP, it acts as a remote node, and access to the core network is given
through one of the wired nodes. The CCS system also features an EMS, based on HTTPS
and SNMP protocol, which provides a graphical overview of the state of the nodes and the
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Table 3.1. Metnet mesh version 1 node specifications [47].

Frequency Band
60GHz mmWave unlicensed

60GHz mmWave unlicensed 57GHz to 66GHz band

Topologies
Point to MultiPoint

MultiPoint to MultiPoint (Mesh)

Capacity 10 Gbps per node

Radio Access
Metnet SON utilizing TDMA

Dynamic TDD

Antenna
Beamforming Phased array

19 dBi gain

Beam angle
Horizontal 300° electronic steerable
5° beamwidth, Vertical 20° fixed

Modulation and encoding
10 levels of adaptive encoding

MCS 0–9 up to 2.5 Gbps

Range
Up to 500m*

Dependant on location, availability, and capacity

Interfaces
Up to 4 Ethernet interfaces

2 x Fixed RJ45 100/1000 Base-T
2 x optional 10G or 1G SFP optical

Ethernet Service features

Native Ethernet
802.1Q (VLAN Tagging)

802.1p QoS (Class of service)
Differentiated Services Code Point QoS (DSCP)

802.1ad QinQ

mmWave links. Within EMS, the network is organized in clusters. In the current version,
every wired node takes part in a process to elect a cluster manager. The EMS Cluster Manager
(CM) uses the radio scans collected from nodes to optimize the network topology, as it can
perform both link and frequency planning. Hence, when a new node enters the network, the
CM is able to configure its radios and links using its whole-network view. If needed, the CM
can also re-plan the network topology, which may include changing frequency channels, or the
radios for a new set of transmitting/receiving STAs. Still, our tests showed that dynamically
changing links previously formed to use other neighbor nodes is not yet possible.

When a wired node is initialized, one L2TP tunnel is established between the EMS and
the wired node if the EMS (which is deployed on a docker container inside a virtual machine)
is accessible over the external IP network. The EMS then uses this tunnel to assign it an
IP address within its private management network. In contrast, remote nodes do not have a
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direct connection to EMS. Rather, they depend on the radio link discovery of IEEE 802.11ad
to establish the first connection to the EMS using a wired node as their gateway.

At the start-up, each remote node enters a discovery state during which it performs radio
link discovery, to find any possible node neighbor, in particular PCPs. The radio link discovery
relies on the beamforming process standardized in 802.11ad to form directional links between
STAs. In this state, the STA assumes the role of the responder in the beamforming process
with the PCP. If the station has found more than one wired connection, it will choose to
be associated with the PCP with the best link quality and later transits to a Station mode.
If no viable candidate is found, the remote node remains in discovery mode, until it finds a
connection to a wired node. After the link discovery and association is complete, an L2TP
tunnel is also established between the remote node and the EMS - through the wired node
-, allowing the EMS to assign a private IP within the private management network. Once it
joins the management plane (mplane), the node starts to report the discovered information to
the cluster manager, allowing it to be configured by the CM. As expected, the mplane traffic
reaches the wired nodes via the mmWave links established and is forwarded to the EMS using
the L2TP tunnel.

Note that there is a deamon process implemented on each node responsible for setting up
and maintaining the management network, and managing the tunneling in the wired nodes.
By default, the L2TP tunnels between wired nodes and EMS are not encrypted. However,
there is also the possibility of using IPSEC encryption if necessary.

As previously mentioned, in the firmware version deployed in the testbed (5.1.5 version),
the SON still has its limitations, since it is not possible to dynamically adjust the network
topology according to the link quality variations. The only type of topology reconfiguration
supported happens at the IEEE 802.11ad level, upon link failure or whenever a new node
is added to the network. When the transmitted signal is completely blocked, the standard
ensures that the link is reestablished, by either finding an alternative beam to communicate,
or by finding alternative routes through neighbor nodes.

Nonetheless, recent progress has been made in this direction. Version 5.8.0, released
on June’s first of 2021, includes a continuous beam measurement mechanism that works
continuously in the background, to collect data from network pairs of radio antennas. This
feature equips the cluster manager with a comprehensive set of data relating to all possible
links, that it can use in the future to build a near-optimal topology, which ultimately could
be used to adjust poorly performing links dynamically. Thus, it is expected that the vendor’s
next software releases will leverage this beam measurement information to improve the SON
algorithm. Note, however, that this adjustment is likely to be a reactive mechanism, where
decisions can only be made after a significant reduction in the link performance is detected.

Lastly, in terms of Ethernet service features, the Metnet node supports 802.11Q VLAN,
allowing the Ethernet ports to be assigned as a tagged member of multiple VLANs, or an
untagged member of a single VLAN. Each Metnet node may select from eight priority queues
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numbered from 0 (low priority) to 7 (high priority). The traffic can be mapped to the different
priority queues by either the IP Differentiated Services Code Point (DSCP) value or VLAN
802.11p tag. With both 802.1p QoS and IP DSCP, traffic is prioritized according to the class
it belongs to rather than what device and port it is being sent to, enabling scalable networking.
Additionally, each node supports 802.1ad (QinQ). In QinQ, also known as IEEE 802.1ad or
stacked VLANs, the traffic is double tagged by encapsulating the VLAN tagged traffic with
another 802.1Q tag, the service provider tag (S-tag). QinQ enables a service provider (SP)
to segregate different customers’ traffic in its infrastructure while still giving the customer
a full range of VLANs for its internal use. The buffer Size is also adjustable. The support
for QoS could be exploited in the future by the SDN controller to ensure that priority traffic
requirements are met.

3.1.3 Backhaul Architecture

As previously mentioned, the system uses the EMS to perform the tasks of node con-
figuration, software upgrades, node statistics processing, displaying, and event handling. As
shown in Figure 3.3, it has two main components:

• EMS client/frontend: the part of the system that the user interacts with. It includes
the representation of the network, link performance statistics, node health status, network
management and VLAN configuration. The information presented in the interface is
generated by the server-side of the EMS;

• EMS server/backend: the backend includes an API that generates the data displayed
in the frontend, a database to save the data, and the logic that implements the EMS
functionalities. The backend is built using Python for the server and the Golang frame-
work. The database used belongs to the document database category, more precisely to
the NoSQL database family, as it uses a JSON-like format to store structured and un-
structured documents. MongoDB scales both vertically or horizontally to accommodate
large data loads [107].

In the context of this work, the EMS server is an API that runs on a docker container,
hosted on a dedicated 64-bit Debian machine, and the EMS client is a standard web application
that can run on any PC with access to the EMS server. Since the application is designed to run
inside a docker container, installing and configuring docker inside a dedicated machine/server
(known as the EMS host) was needed. The host specifications matched the minimum required
specs to host a system, that manages a mmWave mesh network with up to 20 nodes, which
is more than enough for testing purposes. After a successful EMS deployment, the nodes’
firmware was flashed using the vendor’s built-in web configurator. A commissioning laptop
was connected to each mmWave node, via an Ethernet cable connected to the node’s Ethernet
port, for the mesh nodes provisioning. The product configurator web interface enabled the
installation of the latest approved node image at the time, the 5.1.5 version. Using this
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Figure 3.3. EMS architecture.

interface, it was possible to statically configure the EMS’s server IP so that wired nodes could
access it.

After both EMS system and nodes were correctly configured, each node was connected
to one of two SDN switches, which are also connected to a switch inside the laboratory data
center, as shown in figure 3.4. The SDN switches are controlled by a SDN controller - Open
Network Operating System (ONOS) controller -, responsible for the management and control
of the network. Thus, the logic implemented in this controller enabled the selection of a
specific traffic route, by detecting a manual transition to the inactive state of the Ethernet
port associated with the alternate path. For instance, to force traffic to flow between the PCP
and the wired node B, the port 0 of the Software-Defined Networking (SDN) switch 2 (i.e., the
port of the alternate path) was put in the inactive state, which caused the Software-Defined
Networking (SDN) controller to detect this change and force traffic to flow in the desired
route.

In order to inject the traffic within the mmWave mesh, two hosts were connected to both
start and end nodes, as can be seen by the introduction of hosts 1 and 2 in the network
diagram in figure 3.4. The Software-Defined Networking (SDN) switches then forward this
traffic according to the flow tables (installed by the Software-Defined Networking (SDN)
controller), in the desired communication path.

As previously mentioned, the wired and remote nodes form a private management network
used for internal communication between the EMS, the cluster manager entity, and the network
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Figure 3.4. Deployed Testbed Infrastructure.

nodes. Typically, this network is extended from wired nodes at PoP sites to EMS via L2TP
tunnelling. This management network carries different types of traffic, including heartbeat
messages (between CM and nodes), HTTP requests (e.g., to retrieve link statistics information
from nodes), SSH traffic, and ARP messages. Because there is no direct connection to the
EMS, the traffic from remote nodes to wired nodes is routed using the mmWave links. However,
once it reaches the wired node, it uses the L2TP channel to send it to the EMS. Because
the wired node has an Ethernet connection to the IT’s network, it also has an IP inside the
laboratory network that could be used to access both wired and remote node’s command
line via SSH. Leveraging this, it was possible to develop bash scripts that automate the data
collection process in the different scenarios, which allow testing over a long time window all
possible communication paths (i.e., the different radio combinations) between a specific pair
of stations. The process associated with this data collection is described in the next section.

3.2 Network Monitoring

This section describes the KPIs available for the testbed, and the process for data collection.

3.2.1 Multiple-layer Probing

The EMS GUI displays a set of real-time KPIs (e.g., RCPI, SNR, MCS, PER), that are
collected for each mesh link, using the information reported by each node to the CM. The CCS
Metnet web page can access these metrics stored inside the local Mongo database through the
API. Following that logic, a python script was developed to access these values outside the
web page context. The python script uses HTTP requests to access the backend API, so that
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an object containing the link metrics can be returned from the local EMS database. These
metrics were later uploaded to a collection inside a newly deployed Mongo database hosted
outside the EMS container. This database collection is composed of entries that display the
instantaneous KPIs values for a specific path, which include:

• RSSI (dBm): the Received Signal Strength Indicator. Since the vendor’s measured this
at the antenna connector, it does not account receive antenna gain;

• SNR (dB): the Signal to Noise Ratio. This is a link quality metric that directly influences
the IEEE 802.11ad standard, since it is used to select the best transmit and receive
beams/sectors during beamforming training;

• PER (%): the Packet Error Rate, i.e., the ratio (in percentage) between the number of
packets with errors after FEC and the total number of transmitted packets. An increase
of the PER is expected in the case of temporary LOS obstruction;

• MCS TX: the Modulation and Coding Scheme (0-9) used during transmission in one
direction (i.e., uplink or downlink). For more details regarding the type of modulation
performed and respective code rate, refer to Chapter 4 in Section 4.2.4.

• MCS RX: the Modulation and Coding Scheme (0-9) used during transmission in the
other direction (i.e., uplink or downlink).

• Beam Index TX (Max), Beam Index TX (Min) and Beam Index TX: the identifier of
the maximum, minimum and average beam used for transmission, respectively, in a one
second window;

• Beam Index RX (Max), Beam Index RX (Min) and Beam Index RX: the identifier of
the maximum, minimum and average beam used for reception, respectively, in a one
second window;

• Mbps TX (Max) and Mbps TX: the peak and average link transfer rate measured in
Mbps.

Additionally, each table entry has specific tags that identify the type of link formed and
the time of measurement. These are:

• Channel: the frequency channel used (1 to 4). For more information regarding each
channel carrier frequency, please refer to chapter 2, section 2.1.2.

• Channel Type: determines if sub-channelization is used. By default and in this work
context, this value is equal to zero indicating that sub-channelization is not used;

• Path ID: the communication link identifier. The uplink and downlink between each node
pair has a different tag associated;
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Table 3.2. Metrics obtained with the iperf3 ’s TCP and UDP test, and with ping command.

UDP metrics TCP metrics Ping metrics

Received Data Rate (Mbps) Received Data Rate (Mbps) No. of Transmit Packets
Jitter (ms) Transmit Data Rate (Mbps) No. of Received Packets

No. of Restransmissions No. of Packets lost
Lost packets (%) Packet Loss Rate (%)

RTT Minimum (ms)
RTT Average (ms)

RTT Maximum (ms)
RTT Mean Deviation (ms)
Packet Duplicate Count

Packet Duplicate Rate (%)

• Timestamp: the measurement time. This value is stored with a second precision.

The developed mmWave data monitoring script was set up as a service that runs in the Host
2’ background through Linux’s systemd. Hence, new mmWave link statistics were continuously
updated in the external Mongo database. Any machine with access to the database can access
the physical metrics stored referring to a given time window, and export them in a CSV or
JSON format for further processing.

To fully characterize the mmWave network behavior across multiple layers in different
scenarios, network metrics were collected simultaneously to the physical ones. For that purpose,
the iperf3 tool was used to develop a TCP and UDP-based network probe that can provide
additional information regarding link quality at the transport layer. iperf3 is a tool for active
measurements of the maximum achievable bandwidth on IP networks. For each test, it reports
the bandwidth, loss, and other related parameters [108]. The network probe developed consists
of two main components: an application server and the respective client. For the client part,
a python script was developed, which instantiates two parallel iperf3 clients whose jobs are to
collect UDP and TCP metrics. To avoid link saturation caused by TCP originated traffic, the
TCP client was configured to only use a maximum of half of the Ethernet connection capacity
(500 Mbps). Moreover, the pingparser library was used to parse the output of the system’s
ping, so that additional network metrics, such as RTT, can be obtained. The ping metrics
were calculated by averaging the metrics measured for 10 packet transmissions. Table 3.2
shows the network metrics that can be obtained with each method. Moreover, the client script
is also responsible for loading the three types of metrics at a given timestep, as a single entry
in a new collection inside the deployed Mongo database. As for the server, it was implemented
by simply running two iperf3 servers in the same ports defined by the client script.

The network-level probe described was used to obtain network data relating to the two
testbed’s links in a sequential manner. Contrary to the physical data metrics, the network
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data of each link is not possible to be obtained at the same time. Instead, individual test runs
of the network probe must be performed for each one of them, by deactivating the ethernet
port connected to the SDN switch that is associated with the alternate path. Depending on
the configured mode, the iperf3 traffic flows more in one direction than the other, meaning
the uplink or the downlink. By default, the client uploads to the server. However, the client
can be configured to operate in reverse mode, making it download from the server instead.

After the deployment of these probes, it was possible to access all the metrics in an organized
manner for a first analysis. While a capable probe was developed to load and access UDP
metrics, it was found that they stopped being loaded into the database, during intermediate
testing, due to a sporadic error. To avoid repeating these time-consuming experiments, it
was decided to leave out UDP-related metrics in the algorithms developed in the following
chapters.

3.2.2 Probing Verification

As previously discussed, mmWave-based standards, such as IEEE 802.11ad, are highly
susceptible to blockage due to the directional nature of the communication. As such, sporadic
blocking may cause a temporary decrease of supported MCS, which is further aggravated in
continuous blockage scenarios where the decrease in received power is observed for a long
duration of time. In more extreme cases, obstruction was also observed to cause total link
failure, thus compromising the QoE and QoS even further.

In order to be able to correctly characterize the consequences of different types of blockage
in our deployed backhaul’s performance, the physical and network metrics described earlier
shall be compared to distinguish the behavior under the three distinct blockage scenarios.
These scenarios are defined according to the type and duration of the blockage event crossing
the LOS path, and can be described as:

• Normal scenario: scenario where each path for each MCS mode tested operates
under a non-obstructed environment for the entire test duration (15 minutes). In this
scenario, the only factors limiting link quality are the distance between STAs and the
communication channel itself. Each physical and network metric achieves the best
possible value under normal operation. For instance, metrics that should be maximized
(e.g., SNR, RSSI and TX/RX MCS), are set with the highest possible values, and metrics
that should be minimized (e.g., PER, Packet loss) remain very low.

• Short-term blockage scenario: scenario where a link operates under temporary
LOS blockage for a short time period. During the data acquisition in this scenario, all
paths were short-term blocked for the entire experiment (5 minutes). In this scenario,
the instants at which the rapid signal quality drops occur are unpredictable. Hence,
high fluctuations relative to the average value are expected. Moreover, the greater the
frequency of obstruction, the more rapid variations are to be expected;
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• Long-term blockage scenario: scenario where each path for each MCS mode tested
operates under a continuous LOS blockage for the entire experiment (15 minutes). Under
continuous LOS blockage, the statistical behavior of each metric is expected to be similar
to the one presented by metrics collected under the normal scenario, except for the
average value, which should be lower for metrics that should be maximized, and higher
for metrics that should be minimized.

To collect the data for each scenario, the mmWave monitoring service and the network
data probe were used to measure and load the KPIs to a database. However, the firmware
version used did not provide a GUI functionality that allowed selecting specific radios that
establish the communication in each link node. Rather, the selection has to be manually
done by changing a JSON file stored inside each remote node, which can be a tedious process,
especially considering the number of different paths to be tested. To address this, a bash
script was developed to automate the selection process. Besides configuring the appropriate
parameters for testing a specific path (i.e., the radios used on each end), this script can test
different paths sequentially and register the time at which a specific path measurement began
and ended.

Thus, we tested each path and each MCS for the three scenarios for extensive periods.
Besides that, the script eliminated the waiting time observed between configuring the node to
use a particular radio and the link being effectively tested with that radio. Note that the way
the equipment is configured, if it is not possible to establish a link between a pair of STAs
using a given combination of radios, it has to wait 30 minutes for this configuration to be
cleared, and only the connection is reestablished.

The script accepts three inputs which are used to perform the required node configurations:
1) the ID of the paths1 to test; 2) a list of the MCS modes (either fixed [1-9] or dynamic)
to test each path; and 3) the duration of each experiment. For instance, to test the path
between PCP and B formed with radios 1 and 2, the script will perform the following steps
sequentially:

• Get access to node B’s command line using the wired node as a gateway;

• Change the JSON file inside node B to test a specific radio combination at node B (radio
2) and node PCP (radio 1). Note that a reboot is necessary at node B for those changes
to be applied effectively;

• Continuous monitoring if path PCP/B/2/1 has been effectively established or not after
the reboot. If that path is not formed within the first 5 minutes, the chances are that
LOS communication is not possible using the required radio combination specified. In

1The term "path" refers to the physical link formed by a specific transmit and receive radio at each end.
For example, a link between node PCP and node B could ideally have eight paths using the four radios on
either side if the LOS condition was met.
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that case, the script is instructed to wait the required 30 minutes until the JSON file is
cleared.

• On the other hand, if the path has been established, the MCS mode is configured at
each node end. The MCS mode can be configured to either be fixed at each node or
set to automatic. Note that the received signal level must be at least equal to the one
specified by the vendor to form a specific path between two stations with a given fixed
MCS.

• The test initial timestamp is registered inside a text file, as well as the end timestamp
estimate that was calculated using the test duration input.

The aforementioned steps were performed for all paths to test, thus obtaining a fully
automated test configurator tool, which iterates over all MCS modes and registers the dates
in which each experiment has started and ended. A generic description of how this testing
tool works is given in algorithm 1.

After the development and validation of the test automation tool, data collection for each
scenario was initiated. To collect the metrics in the continuous blockage scenario, a metallic
object, such as the one shown in figure 3.5 was added between the stations that form each
link. This obstacle was placed in a location where a significant reduction of the instantaneous
RSSI and SNR was observed when compared to the average value registered in the normal
scenario. The physical and network metrics for each experiment, in the long-term blockage and
normal scenarios, were collected continuously during 15 minutes using the tool described in
the algorithm 1. The short-term blockage scenario data was obtained for each path, by having
one and two people at a time, moving freely during 5 minutes, in the location corresponding
to the estimated LOS of the link being tested. These movements were sometimes made in a
completely random manner, and in other times they were performed in an alternating way
following a horizontal, vertical and diagonal line to the line where the link between the two
nodes to be tested was estimated to exist. Because obtaining data in this scenario requires
people to be blocking the link, it was unrealistic to collect data for all possible paths between
a pair of stations with all MCS modes for 15 minutes. Instead, the test was only done for a
smaller set of paths with automatic MCS for 5 minutes using the same tool.

Also, given that the tests for the three scenarios were carried out over the course of a
month (a non-continuous process), the datasets obtained already reflect the variations that
happen in the channel due to atmospheric conditions, such as wind and fog.

At the end of each experiment, the recorded timestamps that mark the beginning were
used to retrieve the transport, network, and physical metrics from the database, which were
used later to analyze the consequences of long-term and short-term blockage. This study is
presented in chapter 4. Furthermore, this data was fed to a wireless link quality classification
algorithm and a forecasting method after a processing stage, which are described in chapter 5.

Note that, there were many situations where the introduction of long-term and short-term
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blockage led to the temporary link failure, making it impossible to acquire data in extremely
blocked scenarios. In those cases, the MCS would switch back to automatic mode even when
previously set. Because of that, the data entries collected after a link failure were removed
from the fixed MCS ones, and thus were not considered neither for the analysis nor for the
machine learning algorithm, depicted in chapter 5, to avoid additional complexity.

Algorithm 1: Automating the test of different paths and MCS modes
Data: The pair of STAs to test (𝑊𝑖𝑟𝑒𝑑,𝑅𝑒𝑚𝑜𝑡𝑒)

A list of paths to test 𝑃 = [𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4, ..., 𝑝𝑛−1]
A list of MCS modes to test 𝑀 = [1, 3, 5, 7, 9 and 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐]
The experiment duration 𝐷 in minutes

Result: Text file with the start and end timestamps for each experiment
for 𝑝𝑖 in 𝑃 do

ssh 𝑅𝑒𝑚𝑜𝑡𝑒
Change JSON file to test radio combination of 𝑝𝑖
Reboot

end
𝑙𝑖𝑛𝑘𝑂𝑁 = 𝐹𝑎𝑙𝑠𝑒

while ̸= 𝑙𝑖𝑛𝑘𝑂𝑁 do
Read from database active links
if 𝑝𝑖 is established then

break;
end

end
for 𝑚𝑐𝑠 in 𝑀 do

ssh 𝑅𝑒𝑚𝑜𝑡𝑒
Change MCS TX to 𝑚𝑐𝑠

end
ssh 𝑊𝑖𝑟𝑒𝑑

Change MCS TX to 𝑚𝑐𝑠

end

end
Register 𝑡𝑠𝑡𝑎𝑟𝑡 as the current time
𝑡𝑒𝑛𝑑 = 𝑡𝑠𝑡𝑎𝑟𝑡 +𝐷

Write the 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 in the output file
end
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Figure 3.5. Metallic obstacle used for the long-term blockage scenario.

3.3 Summary

This chapter described the functionalities and limitations of the commercial solution used,
as well as the processes required for deploying a physical testbed in an outdoor environment.
More specifically, it presented the architecture used to successfully deploy a mmWave backhaul
that employs the standardized IEEE 802.11ad. Afterwards, it described the process followed
to acquire transport, network, and physical layer metrics. For this purpose, a mmWave
monitoring service was developed to continuously collect physical metrics and upload them
to a database that could be easily accessed. Furthermore, a multi-layer probe was developed,
which measures and loads higher layer metrics in a database that can be easily accessed.

Finally, it discussed the process of testing mmWave links under normal, long-term, and
short-term blockage conditions using a custom automation script. The multi-layer dataset
built - with the tools and methodologies proposed in this chapter -, allowed us to characterize
the impact of long-term and short-term blockage in a mmWave backhaul. The next chapter will
discuss the collected metrics, regarding each scenario, initiating an exploratory data analysis.
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Chapter 4

Multi-layer Data Analysis

With the metrics collected, we proceed to analyze the impact of long-term and short-term
obstruction on the quality of millimeter-wave links at multiple layers. This chapter presents
the results obtained from this analysis. The chapter is organized into two sections, one for
each type of metric measurement. The first section presents the behavior of the physical and
MAC-level KPIs under short-term and long-term blockage, while the second section details
the impact of blockage in the transport and network-layer metrics.

4.1 MAC and PHY Layers

Several conclusions can be drawn by jointly analyzing the metrics collected at the physical
layer for different paths. The next section provides insights relating to the most relevant
physical and MAC-level KPIs: Signal to Noise Ratio (SNR), Packet Error Rate (PER) and
Modulation and Coding Scheme (MCS).

4.1.1 Signal to Noise Ratio

This section discusses the results obtained with respect to the SNR. Some considerations
are depicted as follows:

1. A link suffering from either long-term or short-term blockage has a lower average SNR
when compared with the non-blocked scenario;

2. The mean SNR of the uplink and downlink of a given path may not be similar, even
in a non-blocked scenario. In fact, this is the case for almost all analyzed paths, since
they use different beams for transmitting and receiving to avoid interference. Thus, each
direction has its communication channel, which is likely to be submitted to different
conditions;
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3. The SNR of two path directions suffering from long-term blockage may not experience
the same average drop, even if both uplink and downlink have similar values under
regular operation. Depending on the location and rotation at which the obstacle is
placed, one communication channel direction may be affected more than the other;

4. The average SNR drop is not the same for all long-term blocked links, since different
paths (formed by different radios) cover different regions of the space. Thus, placing an
obstacle in the LOS connection formed by two radios facing each other is more likely to
affect the signal quality than in paths formed by radios on different sides;

5. Under short-term blockage, the uplink and downlink formed between a pair of STAs
followed a similar behavior, apart from the maximum value reached that is close to what
was registered in LOS conditions. In both directions, the LOS blockage occurred at the
same instants, although with different intensities;

6. In some cases, the SNR drops were more pronounced when the link was short-term
blocked than when it was long-term blocked. This makes sense as there is a higher
chance of achieving complete beam obstruction.

Figure 4.1a and 4.1b obtained for path paths P/A/2/2 and P/A/1/1, respectively, present
examples in which all the conditions described above are met under the three scenarios.
Firstly, the uplink and downlink’s average SNR are different in all three scenarios. Moreover,
both directions present a similar behavior for the same scenario, since the instants at which
transitions are observed are the same. Lastly, in a short-term blocked link, the SNR alternates
between a maximum value close to the non-obstructed scenario’s average and a minimum
value that may be lower than the mean registered in the long-term blocked scenario. The
minimum and maximum SNR are obtained in instants where the LOS path is crossed or not,
respectively. This behavior was also verified for the SNR of the remaining 2 paths that could
be established between node P and A, the graphs of which are shown in figures A.1a and A.1b
of the appendices.

(a) Path P/A/2/2. (b) Path P/A/1/1.

Figure 4.1. SNR of two mmWave paths under normal, long-term blocked and short-term blocked scenarios.
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Because data is acquired with a 1-second periodicity, determining the exact value of the
duration of the SNR drop caused by short-term human obstruction is not possible. Nevertheless,
since each metric collected represents the average measured for that time window, we get an
upper limit of 1 second. Therefore, it is observed that each line-of-sight obstruction is reflected,
in most cases, in the generation of a single point.

4.1.2 Packet Error Rate

This section discusses the results obtained with respect to the Packet Error Rate. Some
considerations are depicted as follows:

1. The mean PER is higher for a long-term blocked link than for a link in normal operation
when the MCS is fixed, since there is consistently lower SNR caused by a lower RSSI;

2. Even if a specific link has a SNR that is equal or superior to the established threshold
for a given MCS, supporting it with negligible PER is only possible if the RSSI is also
superior to the minimum defined in the standard;

3. Non-obstructed links operating with fixed MCS mode present negligible PER (mostly
under 1%);

4. Non-obstructed links operating in the automatic mode present a larger variability than
in the fixed mode (usually up to 10%) due to slight MCS adjustments;

5. Generally, a PER peak is detected, regardless of the scenario, at instants where a
significant signal quality decrease occurred, such as human obstruction or natural factors
(e.g., strong wind);

6. Setting a higher MCS in a long-term blocked link results in increased PER as the
channel’s margin decreases;

7. The PER of links operating in the automatic MCS mode present more significant
fluctuations when compared to the values recorded for the same scenario with the fixed
MCS. These fluctuations are due to the node’s ability to vary the modulation, and the
redundancy introduced accordingly to the measured SNR and PER;

8. As an extension of the previous statement, channels that face short-term obstruction
present a larger PER variability when compared with either long-term blocked and
non-obstructed channels. The PER remains smaller under long-term blockage scenario
because there are not as many rapid channel fluctuations;

9. Still related to the previous topic, under the short-term blockage, the PER is more likely
to achieve its maximum value at times the LOS path is unexpectedly blocked, and its
minimum value at instants where there is LOS connection;
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10. Even in non-obstructed and long-term blocked scenarios, where most SNR fluctuations
are still close to the mean, the PER may sporadically reach peak values, comparable to
those obtained with short-term blockage, due to natural causes;

11. Generally, a PER increase is observed whenever a significant SNR decrease is detected
due to natural causes or induced obstruction. However, the rapid SNR variations do not
always necessarily lead to higher error rates.

Figure 4.2 shows how the PER of the uplink A/P/2/1 is affected by the MCS increase
under long-term blockage. This specific link had an average SNR of 7.5 dB, which in theory
is enough to support modulations up to MCS 7 (table 4.1) as its threshold is set to 5.3 dB.
However, this path only received on average -75 dBm (before antenna gain), which does not
comply with the -68 dBm of MCS 7 nor the -69 dBm requirement of MCS 5. Thus, the uplink
cannot maintain a reliable connection with either one of these schemes. Figure 4.3 confirms
that, since it shows that long-term blockage has caused PERs to be contained within the
30− 100 range for the MCS 7, while in the non-obstructed environment it is null.

Figure 4.2. The influence of the MCS increase in the PER for link A/P/2/1 under long-term blockage in
automatic MCS mode.

Table 4.1. Single carrier PHY mode supported by the CCS Metnet node.

MCS Modulation FEC rate RSL min (dB) SNR (dB) Layer 2 Line Rate (Mbps)
0 DSSS 12 -84.52 -11 22.4
1 BPSK 1/2 -73.72 -0.2 308
2 BPSK 1/2 -72.52 1 616
3 BPSK 5/8 -71.32 2.2 770.4
4 BPSK 3/4 -69.92 3.6 924
5 BPSK 13/16 -69.02 4.5 1000.8
6 QPSK 1/2 -69.72 3.8 1232
7 QPSK 5/8 -68.22 5.3 1540
8 QPSK 3/4 -66.72 6.8 1848
9 QPSK 13/16 -65.72 7.9 2002.4
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Figure 4.3. Comparison between the PER obtained for uplink A/P/2/1 under normal and long-term blockage
scenarios with MCS 7 fixed.

In links that operate with an automatic MCS mode, the PER fluctuations observed are
much more controlled than those obtained with the fixed MCSs tests. Auto mode allows
the modulation scheme used by a link to be adjusted as soon as there is a significant drop
in signal quality and/or when high PERs are experienced. This capability causes instants
that follow PER peaks to exhibit lower PERs soon after the maximum, as can be seen in
figure 4.4 for link A/P/2/1. This image shows evidence that a link suffering from long-term
blockage is more likely to present larger PER variability than when it is short-term blocked
or operating in LOS conditions. Still, this relationship is not always true. The existence of
higher PERs depends on different aspects of the positioning of the transient obstacle, such as
its rotation, its distance from the transmitter or receiver, among others. Therefore, it is not
possible to estimate precisely how large the impact of the two types of obstructions will be
without knowing the specific details of the blocker’s position.

Figure 4.4. Comparison between the PER obtained for uplink A/P/2/2 under normal, long-term and
short-term blockage scenarios with automatic MCS.
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As shown by the PER statistics of table 4.2, long-term and short-term blocked scenarios
can cause PERs that can be as high as 64% and 88%, respectively. The results of this table
are further detailed in table A.1 of the appendices. Furthermore, the experiments showed that
a received power below the -70 dBm mark leads to PERs contained withing the 90 to 100%
range in relatively low fixed MCS. Note that, with -70 dBm, only a MCS equal or below 3
can be supported (table 4.1) with negligible PER.

Table 4.2. Statistics of the measured Packet Error Rate (PER) in the worst-performing link between P and A
for the different MCS modes and the three scenarios.

PER (%)

MCS Mode Scenario Mean Std dev Min Max

MCS 1
Normal 0 0 0 0

Long-term blockage 1,3 5,1 0 46,7

MCS 3
Normal 0 0 0 0

Long-term blockage 10,2 24,7 0 100

MCS 5
Normal 0 0 0 0

Long-term blockage 49,1 43,2 0 100

MCS 7
Normal 0,3 0,0060 0 1,8

Long-term blockage 66,8 33,4 0 100

Auto
Normal 1,6 1,4 0 19,0

Long-term blockage 6,4 9,3 0 64,7
Short-term blockage 2,4 4,8 0 88,2

Finally, the relationship between signal quality drops and the error rate was explored
further. Figure 4.5a demonstrates an occasion where the PER varied at a rate roughly equal
to that of the SNR. In this figure, it is possible to observe that the error measured for the
uplink A/P/2/1 during short-term blockage is lower at instants where the signal quality is
higher, and is higher when the signal quality drops. If that were true, we would expect
the error rate always to be higher whenever the SNR decreased. However, as shown by the
experimental results of uplink A/P/2/2 in figure 4.5b, SNR drops do not always translate to
PER maximums. Instead, it is necessary to describe its behavior as the result of a complex
interaction of multiple aspects, such as the code rate of the FEC mechanism at the PHY layer
used to code the packets. In other words, achieving or not a maximum PER value depends
more directly on whether the amount of redundancy introduced by the MCS at the time
when the obstruction occurs is sufficient to compensate for the additional error introduced by
natural or blockage-induced channel variations, rather than the obstruction value itself.
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(a) (b)

Figure 4.5. PER and SNR observed for two mmWave links operating in automatic MCS mode, which are
submitted to short-term blockage.

4.1.3 Modulation and Coding Scheme

This section discusses the results obtained when changing the modulation and coding
scheme. Some considerations are depicted as follows:

1. Increasing the MCS on a link enables it to transfer data at higher bit rates, if the received
signal strength and SNR meet the outlined threshold values;

2. In the automatic mode, the link MCS is dynamically adjusted according to both SNR
and PER. Therefore, a decrease in the modulation supported may be triggered by either
detecting a significant SNR loss, a high PER or both;

3. As soon as the line of sight is no longer obstructed, the MCS is reset to its pre-loss value.

The CCS mesh nodes used adjust the MCS used for a communication link according to
both the SNR and PER measured at a given instant. Figure 4.6 shows the MCS adjustment
made by the system to establish and maintain a link between node A and P (using radio 2
at both ends) that is submitted to short-term blockage. In this figure, it is clear that time
windows with fewer MCS changes are the ones that present small SNR fluctuations around
the mean value of 20 dB and a controlled small PER. In these windows, the MCS is set up to
the maximum possible value (9) for that connection, only changing occasionally to a smaller
MCS (8) due to sporadic small decreases in the signal quality.

Because dynamic MCS adjustment is performed on a instantaneous SNR and PER basis,
it was difficult to pinpoint the MCS decrease to a single metric. Instead, a careful analysis
had to be performed considering both metrics to understand the instantaneous MCS changes
properly. Under this work context, the MCS changes were either due to one of three different
conditions. Firstly, the MCS decrease can be triggered due to a significant SNR drop alongside
a high PER, as shown in instant 𝑡6 of figure 4.6, where the MCS decreases to 8. Secondly,
the MCS can be changed solely due to the presence of high error rates, as shown in instants
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𝑡2 and 𝑡4. A maximum PER of 15% and 11% was registered at 𝑡2 and 𝑡4, respectively, while
the SNR value remained practically unaltered. Thirdly, the MCS change can be triggered in
some cases due to a signal quality decrease, which is the case of instant 𝑡3. In 𝑡3, the SNR has
decreased from 20 dB to 9 dB with a 5% error rate.

Still, it is only possible to delineate a general behavior of the dynamic adjustment algorithm.
As shown in instant 𝑡1 and 𝑡5, not every decrease in signal quality and/or increase of the PER
results in a MCS adjustment.

Figure 4.6. The influence of the SNR and PER in the dynamic MCS adjustment mechanism for link A/P/2/2
under short-term blockage.

4.2 Network and Transport Layers

Once the impact of the main KPIs at the physical layer is understood, these findings are
used to detect general patterns perceptible to the human eye at the transport layer: more
specifically, the behavior of packet delay and TCP performance in highly variable millimeter-
wave networks. The following section provides insights relating to the most relevant TCP
and network-level KPIs: Round-trip Time (RTT), packet loss, TCP throughput, and TCP
retransmissions.

4.2.1 RTT

To obtain the RTT metric, the pingparser library pings the client host for a given amount of
time. In each time window, the 10 ICMP packets transmitted through the network were used to
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compute an average, maximum and minimum round-trip-time for each possible communication
path and every scenario. The following discussion presents the findings from our analysis for
the average and maximum RTT.

1. A non-blocked link has an average value that decreases as the MCS index increases (for
the fixed mode). Even so, some small fluctuations around the mean are observed due to
the varying nature of the millimeter-wave channel;

2. In a non-blocked link, the average RTT value measured with MCS 1 is 10 times higher
than any other MCS tested, since the throughput traversing the network is at least 2.2
times lower than that observed in other tested modulations;

3. Links operating with higher index MCSs (i.e., excluding MCS 1) in both modes, under
a non-obstructed environment, have a maximum average RTT that does not surpass
the 20 millisecond mark. Also, the calculated standard deviation is always lower than 3
milliseconds;

4. The average RTT of a long-term blocked link resembles the behavior observed for links
operating in the non-blocked state when the PER is low;

5. Long-term blockage and short-term blockage is observed to cause larger variability in
the mean and maximum RTT value when compared with the normal scenario;

6. A heavily blocked link can have a maximum RTT which can be in the order of one or a
few seconds;

7. Statically and short-term blocking a mmWave link using the automatic MCS mode
causes a significant increase in both the average and maximum RTT when compared
with the values registered in LOS conditions;

8. Links suffering from obstruction and high PERs present higher average RTTs for MCS
with the lowest code rates as they are less likely to compensate the error introduced by
the channel;

9. A less robust MCS will lead to an increase in the number of retransmissions;

10. The average RTT of all paths formed between a pair of stations shows similar average
values for the same MCS.

Figure 4.8 shows the RTT measured for the link A/P/2/2 in the non-blocked and long-term
blocked scenarios. Through the analysis of subfigure 4.8a, it is possible to observe that, under
normal conditions, the mean RTT is higher for lower MCS. This is expected since, as shown
by table 4.1, lower MCSs have lower associated data rates. On the other hand, it can be seen
that, under long-term blockage, the link experiences higher delays in less robust MCS (i.e.,
MCS with lower code rates). For instance, in subfigure 4.8b, a maximum RTT of 150𝑚𝑠 is
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experienced with MCS 5 (which uses a 13/16 code rate), while at MCS7 (which uses 5/8 code
rate) that value drops to 85𝑚𝑠. MCS 1 follows the same behavior observed in its non-blocked
state, since the PER is close to zero. That is, even under an obstruction, the received signal
strength is enough to maintain a reliable link for such robust modulations schemes. This figure
also demonstrates that the introduction of long-term obstruction causes high fluctuations of
the average RTT, even if the modulation scheme is fixed. This behaviour is also observed for
the case where the MCS is automatically adjusted for both long-term and short-term blocked
links, as can be seen by the graph in figure 4.7. This variability makes it difficult to estimate
with certainty the extent of the obstruction’s impact.
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Figure 4.7. RTT in link P/A/2/2 under normal, long-term and short-term blocked scenarios for the automatic
MCSs.
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Figure 4.8. Average RTT observed for the uplink A/P/2/2 under normal operation (a) and long-term blockage
(b).

Tables 4.3 and 4.4 detail the statistics of the average and maximum RTTs, respectively,
registered for the worst-performing link under non-obstructed, long-term blocked and short-
term blocked scenarios. The results in these tables show that the worst-performing links under
long-term and short-term blockage have average RTTs around 1.3𝑠, 0.8𝑠, and 0.5𝑠 and a
maximum RTT of 4.7𝑠 and 1.8𝑠 for different fixed MCSs. Note that, the final results presented
on these tables were obtained by interpreting and aggregating data from the tables presented
in the appendices. Specifically, tables A.2, A.3 and A.4 for the mean RTT; and tables A.5,
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Table 4.3. Statistics of the average RTT metric in the automatic MCS mode for the worst-performing link.

RTT Mean (ms)

MCS Mode Scenario Mean Std dev Min Max

MCS1
Normal 41,67 7,93 18,66 58,75

Long-term blockage 42,85 134,53 14,51 1324,96

MCS3
Normal 9,98 2,87 3,45 17,15

Long-term blockage 167,88 230,26 0,72 819,34

MCS5
Normal 3,09 0,72 1,47 5,83

Long-term blockage 208,18 138,27 5,66 554,03

MCS7
Normal 2,47 0,59 1,5 4,5

Long-term blockage 3,8 8,96 0,49 87,32

Auto
Normal 2,65 1,34 2,65 12,26

Long-term blockage 5,51 15,34 0,46 133,99
Short-term blockage 25,3 6,46 21,18 93,15

Table 4.4. Statistics of the maximum RTT metric in the automatic MCS mode for the worst-performing link.

RTT Max (ms)

MCS Mode Scenario Mean Std dev Min Max

MCS 1
Normal 79,33 4,57 58,44 88,7

Long-term blockage 112,5 478,62 36,29 4677,09

MCS 3
Normal 24,25 7,09 6,49 40,03

Long-term blockage 402,37 491,59 1,15 1846,55

MCS 5
Normal 7,69 3,05 3,61 21,82

Long-term blockage 684,92 323,73 13,49 1360,27

MCS 7
Normal 6,55 2,84 2,34 20,11

Long-term blockage 16,53 47,25 0,61 401,3

Auto
Normal 8,66 12,84 2,33 110,22

Long-term 32,93 105,73 0,59 897,83
Short-term 35,5 66,94 2,8 529,78

A.6 and A.7 for the max RTT. Consultation of these tables’ content is advised to anyone
who wishes to understand better the impact of obstruction in each link of the tested MCS
combinations.

Lastly, as shown in table A.2 of the appendices, the mean and max RTT remained
practically constant across all paths formed between node A and P when operating under a
non-obstructed environment.

4.2.2 Packet Loss

In our specific context, two types of retransmission mechanisms can be identified that act
at two different layers. Firstly, retransmissions can be made at the MAC layer level of IEEE
802.11ad. Secondly, TCP-based retransmissions can be also performed at the transport layer.
The following discussion presents our findings from the analysis of the packet losses at the
transport layer.

1. A non-obstructed mmWave link using both automatic and fixed MCS usually present a
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low average packet loss (less than 4%), with only some sporadic losses occurring due to
timeouts;

2. TCP is not adapted to work with the new PHY and MAC layer mechanisms of IEEE
802.11ad;

3. The higher the MCS, the more likely the link is to suffer from packet losses. In these
conditions, a higher number of TCP retransmissions will be triggered to overcome the
channel erasures;

4. Short-term blocking a link may lead to packet losses up to 9% even under dynamic MCS
adjustment;

As shown in table 4.5, a non-obstructed link usually presents a very low packet loss for
all supported MCSs. Still, some sporadic losses were observed in normal scenarios (e.g., the
11.4% losses measured in the normal scenario with MCS 1). These losses are likely caused
by the timeouts when the channel is busy performing the 802.11ad MAC mechanisms (e.g.,
beamforming training). As was reported by authors of [73], TCP does not change its timeout
limit to account for these new operations, and thus it is forced to discard any packets that were
not processed before the channel was occupied. Additionally, table 4.5 shows that long-term
blocking a mmWave link can cause average packets losses of about 98% when a high MCS is
fixed. Furthermore, it is demonstrated that short-term blocking a link can cause maximum
packet losses up to 9% in the automatic MCS, contrasting with the 3% packet losses of non-
obstructed and long-term blocked links. Figures 4.9 and 4.10 depict these aspects. It can be
seen that, on a highly obstructed link measured in the long-term blocking scenario, the higher
the MCS used, the higher the losses. Conversely, when the MCS can be dynamically adjusted
according to the channel conditions, the losses incurred are lower than those registered in with
high fixed MCSs. Moreover, it shows that long-term and short-term blocking a mmWave link
leads to higher average packet losses than in non-obstructed environments.

Tables A.8, A.9 and A.10 in the appendices present the intermediate results obtained for
each link with the fixed and dynamic MCS modes under normal, long-term and short-term
blockage conditions, respectively.
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Table 4.5. TCP packet loss statistics of the worst-performing link under the different scenarios for each MCS
mode tested.

Packet Loss (%)

MCS Mode Scenario Mean Std dev Min Max

MCS 1
Normal 4.96 2.19 1.45 11.54

Long-term blockage 1.77 0.30 01.06 2.93

MCS 3
Normal 0.93 0.46 0.012 3.96

Long-term blockage 12.45 7.49 0.01 21.77

MCS 5
Normal 0.27 0.43 0.01 2.41

Long-term blockage 49.20 36.46 2.86 100

MCS 7
Normal 0.32 0.52 0.006 2.11

Long-term blockage 97.53 09.09 37.5 100

MCS Auto
Normal 0.45 0.51 0.008 2.26

Long-term blockage 0.19 0.35 0.008 2.59
Short-term blockage 01.05 0.94 0.01 8.68
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Figure 4.9. TCP packet losses for path P/A/2/2 under normal, long-term blocked and short-term blocked
scenarios with the automatic MCS mode.
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Figure 4.10. TCP packet losses for path P/A/2/2 in the normal scenario (a), and in the long-term blocked
scenario (b) for the fixed MCS mode.
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4.2.3 TCP Throughput

The following discussion presents the findings from our analysis of the TCP throughput.

1. Increasing the MCS in a non-obstructed link leads to an increase in the maximum
achievable throughput;

2. Long-term blocking a mmWave link causes a high PER in higher index MCSs, which in
turn will decrease the average achievable data;

3. In the worst-case scenario, a heavily blocked link can have transmitted rates as low as
1 Mbps when using fixed MCSs. This means that the network’s delivery capacity is so
low that TCP reduced its congestion window from 500 to 1 Mbps. Thus, only allowing
traffic generated by the retransmissions to circulate through the network in an attempt
to deliver the traffic to its destination successfully;

4. A short-term blocked link performing dynamic MCS adjustments has larger data rate
fluctuations, as a sudden SNR decrease can make the modulation go from MCS 9 to
MCS 1 within a second.

Table 4.6 shows the results obtained for the worst-performing link for each MCS mode.
Several conclusions that validate the previous statements can be taken. Firstly, increasing the
modulation scheme index increases the achievable data rate, as we went from transmitting at a
67 Mbps rate in MCS 1 to 496 Mbps with MCS 9. Secondly, the long-term blockage caused the
average TCP throughput to drop significantly in higher index MCSs. For instance, long-term
blockage reduced the throughput from 496 Mbps in the non-blocked scenario to almost 0 Mbps
in the long-term blocked one. This observation can be further confirmed by the results of
figure 4.12 for link P/A/2/2, since both a fixed MCS of 5 and 7 were not able to transmit
more than a few Mbps when long-term blocked. Still, there was an irregularity observed for all
paths tested. More specifically, the data rate increased with the introduction of the obstacle
in the MCS of 1. Thirdly, the data rate of a link suffering from a short-term blockage varies
very quickly in the automatic MCS mode, as shown in figure 4.11. This behaviour is a result
of the sudden changes of the MCSs that are made in an attempt to control the PER.

As a final remark, tables A.11, A.12 and A.13 of the appendices should be consulted by
anyone who wants to gain a better understanding of the results.
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Table 4.6. TCP throughput statistics of the worst-performing link for each MCS mode tested.

TCP throughput (Mbps)

MCS Mode Scenario Mean Std dev Min Max

MCS 1
Normal 66,42 19,8 17,29 101,55

Long-term blockage 238,52 5,12 225,42 250,05

MCS 3
Normal 467,79 18,84 423,51 499,08

Long-term blockage 64,55 130,45 4,2 444,74

MCS 5
Normal 495,75 11,1 387,82 499,9

Long-term blockage 1,06 2,14 0 14,21

MCS 7
Normal 496,2 8,29 441,01 499,87

Long-term blockage 0 0,01 0 0,1

MCS Auto
Normal 495,23 7,27 452,59 499,87

Long-term blockage 328,76 59,99 213,14 488
Short-term blockage 273,11 82,15 75,05 365,36

Figure 4.11. TCP throughput of the P/A/2/2 link operating under normal, long-term and short-term
blockage conditions for the auto MCS.

(a) P/A/2/2 in the normal scenario. (b) P/A/2/2 in the long-term blocked scenario.

Figure 4.12. TCP throughput of the P/A/2/2 link operating under normal (a) and long-term blockage (b)
conditions with fixed MCSs.
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4.2.4 Retransmissions

To properly compare the impact of each scenario in the number of TCP retransmissions,
the obtained TCP retransmits metric was normalized using the average TCP received rate.
This enabled to remove the effect of higher modulations on the transmitted bit rate and,
consequently, in the total retransmissions. The following statements summarize the conclusions
drawn from the analysis of the data collected for the non-obstructed, long-term blocked and
short-term blocked scenarios.

1. The total number of TCP retransmissions is higher in non-blocked links (which supports
high MCS) than in blocked links. On average, non-blocked links carry a much higher bit
rate than a long-term blocked link, which means that a larger number of packets must be
delivered to the receiving STA. Thus, it takes a higher number of retransmissions every
second to deliver the information, even though the number of retransmissions required
per packet is lower;

2. The normalized number of retransmissions of links under long-term blockage is much
higher than in non-blocked environments for a fixed MCS, which implies that, on
average, more packet retransmissions are needed in order to deliver a given packet to its
destination;

3. In a long-term blocked link with high PER, setting higher MCSs increases the number
of TCP retransmissions, and thus, decreases the maximum achievable TCP throughput;

4. Heavily blocked links in the long-term blocked environment have a limited delivery
capacity when used with TCP, as it mainly carries traffic from pending retransmissions
instead from useful new information;

5. Changing the MCS to higher index MCS with lower code rates in heavily blocked
scenarios increases the number of normalized TCP retransmissions;

6. Using MCS with higher coding rates makes it less likely that the TCP performs a high
number of retransmissions in a link submitted to short-term blockage;

7. The prediction of the behavior of the number of TCP retransmissions in scenarios where
the MCS is adjustable, especially in obstructed environments, is rather challenging as the
instants at which the increases in the number of retransmissions occur are not linearly
related to the instantaneous signal quality.

Figure 4.13 shows the impact that long-term blockage has on the total and the number
of retransmissions per Mbps. At a first glance, it may appear that a non-blocked link is
somehow worse than the long-term blocked one, but that is not true. Removing the effect of
the maximum achievable throughput enables a correct analysis of the blockage impact. The
truth is that a long-term blocked link in which the MCS is fixed is unable to adjust its MCS
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whenever a high PER is detected. Thus, maintaining the MCS leads to a consistently high
PER, which in turn forces TCP to trigger a high number of retransmissions to deliver the
packets without error.

In principle, the higher the average packet losses, the higher the number of retransmissions
are needed to deliver a packet successfully. However, the collected metric is not referring
to the average number of retransmitted packets per transmitted packets, but rather to the
mean number of retransmissions required to deliver the totality of the packets. Hence, as
shown in figure 4.13, more packets are retransmitted at each second in the normal scenario
(which has a higher capacity) than for the long-term one for the same modulation scheme.
The latter observation provides evidence that CCS nodes most likely use an in-order delivery
strategy for flow control purposes. Similar to that described in [73] for a TP-Link AP based
on IEEE 802.11ad, the link-layer cannot aggregate within the same block, frames from both
retransmission and transmission queues. Therefore, the only type of traffic transiting in a
link with pending retransmissions is the traffic generated from those retransmissions. Thus
new information can only circulate after the pending packets are successfully delivered. In
our experiments, the transmitted rate was observed to be no more than 60 Mbps for heavily
blocked links, suggesting that the network mainly carries traffic from pending retransmissions
instead of useful new information.

Furthermore, the experimental results show that, even under normal conditions, the TCP
packet retransmissions still exist. According to [73], this is because the timeout value of
frames that are waiting on the received queue is not adjusted to account with the time channel
that was occupied performing frame transmissions of the IEEE 802.11ad mechanisms such as
beamforming and beam tracking.
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Figure 4.13. The total number of TCP retransmissions (a) and number of retransmission per Mbps (b),
measured for the P/A/2/2 under long-term blockage when using a fixed MCS of 5.

Figure 4.14 shows the relationship between the normalized number of retransmissions and
the PL for two links suffering from different levels of long-term obstruction. The P/A/2/2 link
has higher SNR than the P/A/1/2 link in all fixed MCS tested, resulting in a more heavily
blocked channel. In a highly obstructed link like P/A/2/2, using higher MCSs such as 5 and
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Figure 4.14. Number of TCP retransmissions per Mbps measured during long-term blockage in the uplink
A/P/2/2 (a) and A/P/1/2 (b) for five different MCS levels. Packet Loss measured for the uplink A/P/2/2 (c)

and A/P/1/2 (d) for five fixed MCS levels

7 causes an average PL of 49% and 97%, respectively, and maximums that can reach the
100% mark (see table 4.5). The high PLs triggers the TCP retransmission mechanism. On
the other hand, in a slightly blocked link similar to P/A/1/2, the number of retransmissions
is kept very low for all tested MCSs. Note that, in the A/P/1/2 link case, the maximum
retransmissions do not surpass the six mark, whereas in the heavily obstructed link, the value
is 33 times higher. This is because A/P/1/2 was observed to comply with the RSSI and SNR
requirements of MCS up to 7, which allowed it to operate with negligible PER for all MCS
tested. In this case, long-term blockage’s only consequence is the limitation of the maximum
supported throughput because it only supports MCS 7.

Furthermore, describing the behavior of the TCP retransmissions on a link using an adaptive
MCS scheme is a somewhat complex task, as an increase or decrease in the instantaneous
value of this metric can be traced to multiple sources. Firstly, since the modulation scheme is
dynamically adjusted according to the registered PER and SNR, it is expected that most of the
time, a significant SNR decrease and/or high PER will cause the MCS to be changed to a more
robust scheme. Nonetheless, suppose the code rate of the FEC mechanism used in the MCS
prior to the PER peak can correct the errors introduced by obstruction. In that case, there are
not as much losses in the channel, and thereby, the number of retransmissions should remain
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controlled. On the other hand, an increase in the TCP retransmissions could also be observed
due to pending retransmissions from previous unsuccessful instances. Thus, one cannot
conclude with certainty whether an increase or decrease in the number of retransmissions will
be observed when the MCS is dynamically adjusted.

4.3 Summary

This chapter has characterized the impact of long-term and short-term blockage on a
mmWave link (based on IEEE 802.11ad) at multiple layers (physical, network, and transport).
The analysis conducted showed that, maintaining higher modulations in long-term blocked
channels, might only be possible at the expense of high PERs (between 90% - 100%), a
maximum delay that can be in the order of one or a few seconds, high PLs at the transport
layer (between 37% - 100%), and a high number of TCP retransmissions which reduces the
throughput rates to a few Mbps. Even though dynamically adjusting the MCS leads to more
controlled PERs and PLs at the transport layer, it was still shown to reach maximum PERs
of 40% even if the SNR remains constant in a long-term blocked link. Moreover, long-term
blockage was shown to cause maximum delays of 0.9 seconds in some links, and data rates
that vary in a few hundred Mbps.

Furthermore, it has been shown that short-term blocked links are more likely to reach
maximum PERs when there are sudden decreases in signal quality and are, therefore, more
likely to adapt their MCS to a more robust scheme. Still, the MCS returns to its pre-loss
value as soon as the LOS condition is reestablished. Hence, short-term obstruction, not only
decreases the maximum throughput at the layer-2, but also causes packet losses up to 8% that
will lead to a significant decrease of the TCP congestion window, further contributing to the
decrease in the data rate. Moreover, the temporary LOS blockage led to maximum delays of
half a second in the worst-case scenario.

These aspects combined create a highly unreliable backhaul network, which comprises the
constant data rate and maximum delay requirements of both TCP-based and UDP-based
services. The lack of a retransmission mechanism in UDP to circumvent the losses introduced
by the mmWave channel makes best-effort services based on this transport protocol, like
VoIP or video transmission, suffer even more from reliability problems. Furthermore, the
conclusions drawn at the TCP-based transport layer level indicate that even support for
TCP-based services is compromised. The decrease of the TCP congestion window to values
lower than those used during the pre-loss instants, alongside the inability of the transport
layer to support new mechanisms implemented in the MAC layer of WiGig networks, makes it
even more important to search for a solution that can deal with the propagation challenges
in the 60GHz bands in a more proactive manner. Thus, to ensure a truly resilient network,
mechanisms should be in place to mitigate the negative impact caused by LOS obstruction at
multiple layers. The following chapters propose mechanisms to improve the network reliability
and resiliency of a blockage-prone mmWave backhaul.
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Chapter 5

Machine Learning Pipeline

Due to the high variability of the IEEE 802.11ad-based networks, a proactive ML-based
resilience mechanism is proposed to eliminate the need for constant beamforming training,
solving the network reliability issue. Using such approach requires the addressing of two ML
problems: 1) prediction of the wireless link quality according to the current metrics; and 2)
forecasting relevant KPIs based on past history.

This chapter describes the methodology to address these two ML problems, and the ob-
tained results. It is organized in the following way. The first section describes the preprocessing
pipeline used to produce the dataset supplied to the models. The second section describes
the methods and techniques used to produce and evaluate a model that can solve the classi-
fication and forecasting problems. This last section is subdivided into two parts. The first
subsection explores the impact of the time window selection in different classification methods,
and compares the training and testing scores obtained with the different classifiers (ML and
DL-based). The second and last subsection presents a comparative study of methodologies
commonly used in the literature for time-series forecasting. More specifically, it compares the
quality of the forecasts made by a statistical-based method like ARIMA with those made by a
LSTM-based RNN for a dataset collected from the testbed.

5.1 General Pipeline

Typically, running a machine learning algorithm involves a sequence of steps, including
data preprocessing, model fitting, and a model validation stage. These stages are usually
encapsulated within a ML pipeline, which formalizes the processes and data transformations
required to produce and deploy a functional and well-scored machine learning model.

Although solving the classification and forecasting problems requires different tools, the
input data used is the same. Therefore, both tasks share a common ML pipeline, which is
illustrated in Figure 5.1. This pipeline is composed of two main components: the preprocessing
module and the ML module. The preprocessing module comprises the workflow necessary
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to transform the raw physical and network data into a new format understandable by most
ML models. This stage involves data cleaning, data aggregation, data transformation, and
feature selection. On the other hand, the ML module is responsible for all the processes that
allow fitting, testing, and validating the developed DL and ML models. This step comprises
hyperparameter tuning to select the settings with the best performance, test and validation,
and inversion of the transformations made to the data during the preprocessing phase. The
only difference between the classification and the KPIs forecasting tasks is related to the
models implemented in this latter module, as they require completely different outputs. This
module is also responsible for formatting the input data to fit a specific model’s shape.

5.2 Data preprocessing module

This section describes the data preprocessing module and its different phases: data cleaning,
aggregation, transformation and feature selection.

5.2.1 Data cleaning

The format of the raw metrics gathered in chapter 3 is not understandable as-is by ML
algorithms. Data-specific characteristics, such as missing values and duplicate entries, make
the work with a handful of popular classification and forecasting algorithms very difficult.
To address this, the multi-layer metrics were submitted to a cleaning process, where invalid
and duplicated entries were removed, and where the missing values on each entry row were
replaced, using time-series interpolation techniques. By not simply removing invalid entries,
we are able to preserve as much information as possible. After this process has ended, the raw
data from physical, network and transport layers was ready to be aggregated.

5.2.2 Data aggregation

The aggregation process accepts the physical and network data sources, and transforms
them into a single dataset. While each physical data metrics is collected with a 1-second
sampling frequency, network-related entries were only available every 5 seconds. Thus, direct
data aggregation of those two sources was not possible. Instead, the network data was firstly
up-sampled to match the 1-second periodicity observed in the physical data, a process which
by itself generates missing values. To address this, backfilling methods were used in the
up-sampled data source to replace each missing value with the previously observed non-null
value.

Only when both datasets shared the same temporal axis, the actual aggregation process
could begin. During this stage, the network and physical metrics with the same time indexes
were concatenated, thereby making the number of features per entry in the resulting dataset
equal to the sum of the features in each dataset type. The data related to each mmWave path
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and scenario was then grouped into windows of 3, 5, 7, and 10 seconds to form a single entry
representing the link state in that time frame. To compute the value of each of the 25 metrics
in that time window, aggregation functions expressed in table 5.1 were used.

Table 5.1. Aggregation functions used to produce a single metric for each 1 second entry.

Feature Aggregation Function

Path ID
first()

Timestamp
Beam Index TX

mean()

Beam Index RX
Beam Index TX (Min)
Beam Index TX (Max)
Beam Index RX (Min)
Beam Index RX (Max)

Layer-2 Data Rate
Layer-2 Data Rate (Max)

TCP throughput
Sent Data Rate

RSSI (dBm)
SNR (dB)

min()
MCS TX
MCS RX

No. of Packet Transmitted
No. of Packets Received

Packet Error (%)

max()

TCP Retransmissions
Packet Loss Count
Packet Loss Rate

Packet Duplicate Count
Packet Duplicate Rate

RTT (Min)
RTT (Mean)
RTT (Max)

The features that were aggregated using the first() function were set with the value of
the first data entry of their respective time window, as it consists of only identifier labels;
while features using either mean(), min(), or max() methods were set to be equal to the mean,
minimum and maximum values registered in that time window, respectively.
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5.2.3 Data transformation

The data transformation stage is responsible for transforming the data aggregated from
both sources in a format more suitable for ML algorithms. Data transformations techniques
include methods for numeric data transformation such as normalization, removing noisy data
such as smoothing, and methods for data discretization. Smoothing data methods are typically
used to remove the noise from the dataset by detecting trends. However, applying such tools
in our dataset would lead to an inevitable loss of information. The large fluctuations observed,
particularly in short-term blocked links, would be treated as noise, and thus, would be removed
from the dataset. Under this work scope, the only viable data transformation method is feature
scaling/data normalization.

The dataset generated from the aggregation process is composed of several features with
different units and ranges. For instance, the transmission MCS can range from 1 to 9, while
TCP retransmissions can range from 0 to 1000, as shown in Chapter 4. Furthermore, the
acceptable RCPIs are contained in the negative -84 to -59 dBm range. Providing these features
as-is to a ML model could lead to a bad score, since distance-based models would assign larger
coefficients to features with larger values. In order to ensure that features are all given the
same importance, feature scaling was performed via a min-max scaler. This scaling operation
normalizes each feature to be contained in the range between 0 and 1, converting the data
into a more ML friendly-format. This approach was chosen because it does not change the
shape of the original distribution, nor reduces the importance of outliers (as sudden signal
quality drops would be considered outliers), as other types of scaling do. Although this is not
a required step for every model, some ML and DL methods such as SVM, logistic and linear
regression, and ANNs require the input to be normalized in order to provide good accuracy
[109]. Moreover, scaling the features lead to a faster gradient descent algorithm convergence
to a global or local optimum in ANNs, as there is a better weight initialization [110].

Once the data was scaled, the resulting dataframe was submitted to a labeling process
with a tag indicating the scenario, in which each entry was collected and added. The tag
assignment was performed by correlating the timestamps of each entry with the start and end
timestamps registered during the data collection process, as it was explained in section 3.2.2
of Chapter 3. Each data entry was labeled according to the experience; it belongs to one of
three possible labels: "0", "1" and "2", which specifies if the link is under normal operation,
suffering from short-term blockage or long-term blockage, respectively. Note that these labels
are only necessary to solve the link quality classification problem, and therefore, they must be
removed from the preprocessed dataset, before it is supplied to a forecasting method.

5.2.4 Feature selection

The aggregation of physical and network data generates a dataset with a total of 25 useful
features, which already passed a series of processes designed to improve them. In an attempt to
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speed up the development process, one may be tempted to provide this information directly to
a ML model without any additional consideration. However, passing all these metrics without
regard to what is actually there, increases the computational effort excessively beyond what is
necessary, and in some cases, may also negatively impact the model performance. Redundant
and irrelevant metrics were removed from the aggregated dataset, through a feature selection
process to ensure that this would not happen. Feature selection aims to reduce the number of
features, by maintaining only those which contribute the most for the expected output. Less
redundant data means that, there is less chance to make decisions based on irrelevant metrics
and less data to be processed, which helps reduce both overfitting and training time.

Similarly to ML algorithms, the feature selection techniques can be classified as either
supervised or unsupervised techniques. In supervised methods, the target variable is used
to identify the features which contribute the most for a correct prediction. In contrast,
unsupervised methods only use the statistical nature of the input variables, to decide which
features are dispensable and which ones are not. This work employs a correlation-based method
that belongs to the latter category. This method uses the calculated Pearson correlation
coefficient for each feature pair, to identify and remove highly correlated input variables. For
that purpose, an absolute threshold of 0.95 was established, and metrics correlated with other
input variables by an absolute coefficient equal or greater than 0.95 were removed. This
correlation threshold could have been set to a lower value. However, that may remove features
that might be important, in correctly predicting the output variable under intermittent
blockage, thus potentially decreasing the model’s performance. Setting higher correlation
thresholds lowers the chance of that happening, as only extremely correlated variables (that
existing ones can predict) are removed.

In order to discover which features should be eliminated, the correlation matrices were
computed for each physical link. Figure 5.2 and 5.3 show the correlation between input
variables for links P-A and P-B, respectively. Note that metrics can either be negatively or
positively correlated with another variable. The value is positive, if the increase in one variable
relates to an increase in the other. It is a negative value, if the increase in one variable leads
to a decrease in the other. The analysis of the Pearson’s pair correlations for both links show
that:

• The receiving and transmitting beam indexes are highly correlated with their maximum
and minimum values;

• Features that were calculated based on other features are also highly correlated with one
another. This is the case of the packet loss percentage metric, that is calculated as the
ratio of the number of transmitted packets to the number of received packets; and the
RTT mean deviation, that is calculated using the average RTT and its maximum value.

In addition, features that remained constant for the entire test duration were also removed,
as they did not provide any useful information. Hence, the features that were effectively

88



Data preprocessing module 5.2

Figure 5.2. Correlation matrix obtained with the P-A link for all experiments.

Figure 5.3. Correlation matrix obtained with the P-B link for all experiments.
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removed from the final dataset were:

• The minimum and maximum transmitting and receiving beam indexes: i.e., Beam Index
TX (Min), Beam Index RX (Min), Beam Index TX (Max) and Beam Index RX (Max);

• The total number of transmitted and received packets and packet loss count;

• Packet duplicate count and duplicate rate since their values remained constant.

Once the redundant information was removed from the final dataset, the data was finally
ready to be used by the models in the ML module.

5.3 ML module

The ML module uses the preprocessed data to produce and evaluate a model that solves
each ML task (classification and forecasting). Still, allocating the entire dataset to the model
training is not recommended, as there would be no way to evaluate whether a model is
underfitting or overfitting. One way to overcome this is to split the data into training and
testing datasets to train and test the model on different data. Testing on unseen data provides
insight into how well-generalized the model is.

In this work, the data splitting process was performed randomly for all classifiers tested,
as well as for the forecasting ANN, using a 70:30 ratio. That is, 70% of the data is allocated
for training the model, and the remaining 30% is used to evaluate its performance. Because
the data fed to ML and DL algorithms is already aggregated into time windows, temporal
patterns are maintained within a specific time frame. However, in the case of a statistical-based
model like ARIMA, the splitting process must maintain the temporal order of samples, so
that the model can predict the target variable. After splitting the dataset into two parts,
the hyperparameter tuning process is initiated to find the best-performing hyperparameter
settings for both ML and DL algorithms. Similarly, a search is done for the combination of
parameters 𝑝, 𝑑, and 𝑞 that allowed ARIMA to make effective predictions. At the last step,
the best-performing model found during the random search is submitted to a final unbiased
evaluation.

The next two sections detail the methodology used to develop models that: 1) classify the
wireless link quality, and 2) forecast the link’s main KPIs.

5.3.1 Link Quality Classifier

The process of classifying a radio link quality according to three types of scenarios can be
classified as a multi-class classification problem. In machine learning, multi-class classification
refers to the task of predicting a class label for each input’s data sample. Under this work
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context, it means assigning one of three labels ("normal link", "short-term blocked link", or
"long-term blocked link") for each sample. As previously mentioned, the preprocessed data had
a 1-second periodicity. However, predicting a class label for a 1-second entry has no interest.
Each sample would only contain information regarding each instantaneous KPI, rather than
reflect the temporal variations induced in different scenarios. Even if that were not the case,
it would be very challenging to perform any traffic redirection action in that short period of
time.

Similarly to what happens during the acquisition of most real datasets, it was impossible
to acquire an equal number of samples for the three classes. Note that it would be unrealistic
to have more than five consecutive minutes of data for each path under a short-term blockage
scenario, since the nature of the test itself would require a person to walk back and forth for
a very long time. Hence, the generated dataset is imbalanced, as more samples characterize
more non-blocked or long-term blocked links than intermittently blocked ones. To correctly
evaluate the performance of a ML algorithm that uses unbalanced datasets, it is necessary to
use evaluation metrics that, contrary to accuracy, severely penalize misclassification in the
minority class’ samples such as precision, recall, or F1-score. In this work, the precision, recall,
and F1-score values obtained for each class were macro averaged to produce a single-precision
value, that reflects the performance of both majority and minority classes.

Both ML and DL approaches were tested to perform wireless link quality classification.
According to the exploratory data analysis (EDA) presented in chapter 4, the data points
belonging to each scenario are, for the most part, not linearly separable. This is also shown
by the superimposed data points agglomerations of figure 5.4, that represents the relationship
between each feature pair. Therefore, only algorithms that supported non-linear mapping
were developed to compare the performance, which include Support Vector Machine (SVM),
Random Forest (RF) and Multi-layer Perceptron (MLP). Since F1-score provides a better
measurement of incorrectly classified cases than accuracy in imbalanced datasets, it was the
metric chosen to select the best-performing models during hyperparameter tuning, and to
evaluate the performance of the different proposed classification models. Also, considering that
there was no previous knowledge regarding the window size that provided the best predictions,
all algorithms were tested for time windows of size 3, 5, 7, and 10 seconds. The implementations
of a Support Vector Machine (SVM), Random Forest (RF) and Multi-layer Perceptron (MLP)
classifiers and the results for each window size are now going to be described.

One way to perform hyperparameter tuning is using the popular 𝑠𝑐𝑖𝑘𝑖𝑡′𝑠𝑙𝑒𝑎𝑟𝑛 python
library. This was the library chosen to find the best settings for each classifier tested through
k-fold Cross-validation (CV). Under k-fold CV, the dataset is split into k smaller sets, where
k-1 folds were used to train the model, and the remaining fold to evaluate if the model is
overfitting or underfitting on unseen data. This approach gave a chance for each dataset
sample to appear in both test and training sets. The evaluation metrics obtained for each
fold were then averaged and compared with the results obtained with other hyperparameters
settings to select the best well-performing model for all k folds runs.
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Figure 5.4. Pairwise relationships observed for the uplink P/A/2/2 working in the automatic MCS mode.

Support Vector Machine

SVM is a supervised machine learning method mainly used to solve classification problems,
though it can also be used for regression tasks. This algorithm works by finding the optimal
decision boundary, commonly called hyper-plane, which best distinguishes the different classes.
Instead of searching for the characteristics that differentiate all classes, SVM methods work
by finding similarities between samples belonging to the same scenario. In this work, the SVC
(C-Support Vector Classification) class was tested using the scikit learn python library. This
method supports multi-class classification problems by employing a one-vs-one approach in
which the original problem is subdivided into multiple smaller binary classification problems,
one for each class pair. For instance, a binary classification problem will be generated to
classify if a link is non-blocked or statically blocked, and another one to classify if that link is
in the non-blocked state or intermittently blocked state. Since the method’s input comprises
a total of 16 metrics, the best hyper-plane is the 16-dimensional vector, whose distance to
the nearest data points (i.e., support vectors) is the largest. However, increasing the distance
between the decision boundary and classes is only possible at the expense of more sample
misclassifications during training. This makes finding a good balance between the margin
distance and the number of allowed misclassifications, perhaps the most critical task during
model development. Ensuring that a model is both well-generalized and well-performing often
involves allowing more error to be present during training in an attempt to reduce over-fitting.
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To model such dependencies, SVM computes the Hinge Loss, a cost function that incorporates
the margin distance from the decision boundary in the cost computation. Hinge loss penalizes
misclassified samples, and correctly classified ones that do not have a sufficiently large margin
from the decision boundary. Keeping this in mind, several model-specific hyperparameters
need to be tuned to find the best performing model, including [111]:

• C - Regularization parameter: Controls the trade-off between the decision boundary
and the number of misclassifications allowed. The smaller the C parameter is, the more
tolerant the algorithm is towards misclassifications, and generally, larger margins are
achieved. The larger the C parameter is, the more likely the model is to over-fit as the
SVM will be more susceptible to noise, resulting in lower margins;

• Kernel: The kernel functions are used to transform the data points from a low dimen-
sional space to a higher-dimensional space. Commonly referred to as "kernel tricks",
kernel functions are used when the input data is not linearly separable;

• Gamma: It does not exist for linear kernels. It is the inverse of the radius of influence
of training samples selected by the model as support vectors. A large gamma means
that only points in close vicinity influence the computation of the decision-boundary. In
contrast, a small gamma is associated with a large area of influence, and thus far away
data points are also used to compute the optimal hyper-plane.

The scikit’s learn random search method was used to build and evaluate models using
different combinations of the parameters expressed in table 5.2, by performing k-fold cross-
validation. In this case, k was set to 3, and the combination with the highest average F1-score
for all 𝑘 runs was selected. Table B.14 of the appendices presents the configurations used by
the top three models discovered, during hyperparameter tuning for time windows of 3, 5, 7,
and 10 seconds of aggregated data.

Table 5.2. Hyperparameter settings used during random grid search for SVM model.

Kernel C Gamma Degree

Linear
[1, 100]

step = 500

–
–Gaussian

[10−4, 102]
step = 500Sigmoid

Polynomial 2, 3, 5 and 7

Note that the decision boundaries found for the best model are not presented in this
document, due to the complexity of visualizing high-dimensional data. In an attempt to solve
this, the 16-dimensional data was projected onto a 2D plane using the Principal Component
Analysis (PCA). However, reducing dimensionality generated a cluster of points even more
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dispersed than the one observed in figure 5.4 for each feature pair. Thus, a reliable representa-
tion was not being made for higher dimensions. In the N-dimensional space, it is possible to
effectively separate the points belonging to the different classes using non-linear kernels, since
high test scores were obtained.

Table 5.3 shows the train and test F1-scores obtained using 3-second time windows with
some of the SVM models tested during grid search CV with the Radial Basis Function (RBF),
sigmoid and polynomial kernel functions. The models presented in this table can be classified
as belonging to one of two levels (Best and Worst) according to the performance they achieved.
A careful analysis of the results shows that for the RBF kernel, and with the range of C
parameters tested, the gamma parameter has a more significant influence on the model’s
performance than the regularization parameter. This means that, regardless of whether
the value of C tested was 1 or 100, choosing an appropriate gamma value will lead to a
good performing model. Higher gamma values allow the hyper-plane computation to only
consider more densely concentrated point areas, thus ignoring the "outliers" for each class,
which explains better training and testing scores. Still, the testing results showed that the
combinations tested did not suffer from any visible overfitting problem, since both training
and testing scores were similar, differing no more than 2%. The same relationship seems to
be established for polynomial kernels, since for a varied range of parameters C and degree of
the polynomial, gammas smaller than 0.001 show test F1-scores of 0.22. Conversely, the best
performance is achieved with lower gammas in the case of the sigmoid kernel.

As table 5.4 shows, the RBF kernel achieved the best results for all tested window sizes
(1, 3, 5, 7 and 10 seconds). Because the data points in all tested window sizes share the
same properties (i.e., are constructed in the same manner), they are all not linearly separable.
The polynomial kernel also appears as a close third for some window sizes. It was observed
that, generally, both kernels could achieve a good test score when properly configured. In
contrast, the sigmoid kernel was shown to always lead to lower performances. For instance,
the maximum F1-score registered during the hyperparameter tuning process using that kernel
was about 0.69. The results obtained for the top three models are presented with more detail
in table B.14 of the appendices.

Note that a SVM model that uses a RBF kernel tries to maximize the euclidean distance
between the hyperparameter plane and the support vectors. Therefore, if the different features
were passed with their original ranges, that would lead to large features dominating over the
others in the distance computation. Scaling features to the same range, prior to feeding them
to the model, ensures that they all have the same influence in the computation and, thus, the
same importance.
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Table 5.3. F1-score obtained with cross-validation of some of the models evaluated during grid search for the
3-second window using the RBF, sigmoid and polynomial kernels.

Parameters Results

Kernel
Performance
Descriptor

C Gamma Degree F1 Train F1 Test

RBF

Best
81.94 3.81 - 0.99 0.97
14.94 7.41 - 0.99 0.97
10.71 3.71 - 0.98 0.97

Worst
34.60 0.001 - 0.64 0.64
40.29 0.0004 - 0.56 0.56
30.69 0.0003 - 0.56 0.56

Sigmoid

Best
57.48 0.009 - 0.71 0.70
40.67 0.005 - 0.70 0.70
31.12 0.017 - 0.70 0.70

Worst
15.57 3.15 - 0.39 0.40
19.71 6.02 - 0.36 0.36
56.17 0.69 - 0.32 0.31

Poly

Best
12.08 4.89 3 0.98 0.97
30.41 0.51 7 0.98 0.96
36.23 4.36 5 0.98 0.94

Worst
14.33 0.001 7 0.22 0.22
10.19 0.0002 2 0.22 0.22
33.50 0.0004 7 0.22 0.22

Table 5.4. Best settings found during the tuning process for the SVM method for using time windows with
size 3, 5, 7 and 10 seconds.

Window
Size

Best
Hyperparameters

Mean fit time
F1-score Macro

Train Test

3 s
kernel: rbf

gamma: 3.381
C: 81.249

3.3 s 0.988± 0.001 0.971± 0.002

5 s
kernel: rbf

gamma: 5.122
C 18.051

1.95 s 0.987± 0.002 0.967± 0.006

7 s
kernel: rbf

gamma: 3.460
C: 93.744

0.76 s 0.993± 0.002 0.971± 0.002

10 s
kernel: rbf

gamma: 4.161
C: 12.889

0.695 0.990± 0.001 0.968± 0.007
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Random Forest

The Random Forest (RF) is a supervised machine learning algorithm that uses an ensemble
of decision trees to solve complex regression and classification problems. Each individual
classifier’s prediction is used in this ensemble to find the class with the most votes, which will
be the final model’s class prediction. In most scenarios, this method produces good results,
even without hyperparameter tuning in non-linear problems such as ours. The secret lies in the
employment of many uncorrelated classifiers that outperform any of its single constituents. To
ensure that individual classifiers are in fact not correlated, bagging (i.e., bootstrap followed by
aggregation) is used while growing the trees. In this method, which is graphically represented
in figure 5.5 [112], each tree is grown in parallel using a new dataset generated from the
original dataset, using only a random subset of features from the entire feature set. In this
case, instead of splitting the data into smaller portions that are supplied to each classifier, the
new datasets are created by randomly sampling with replacement the original values. Thus,
each tree is trained with the same number of samples of the initial dataset [113].

Figure 5.5. Implementation of RF classifier on a dataset that has four features (𝑋1, 𝑋2, 𝑋3, and 𝑋4) and two
classes (Y = 1 and 2). RF classifier is an ensemble method that trains several decision trees in parallel with

bootstrapping followed by aggregation. Each tree is trained on different subsets of training sample and
features [112].

As shown in figure 5.5, a decision tree is composed of a series of nodes that start at the root
node, and that extend to various leaf nodes, representing classes to classify. A tree is grown by
iteratively splitting a node into two or more nodes according to some decision criterion defined
by the specific decision tree algorithm. In this work, the scikit’s learn random forest algorithm
employs an optimized version of the Classification and Regression Trees (CART) algorithm.
In brief, a node is split by selecting from a random subset of features of the input variable, a
single variable and its appropriate cut-off boundary, that leads to increased homogeneity in the
data samples remaining after each split. The trees are grown until the first stopping criteria is
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met, which in this work can either be the maximum depth of the tree, the minimum number
of samples necessary to split an internal node, or the minimum number of samples required in
each leaf node [114]. Similar to SVM, k-fold cross-validation was performed to search for the
optimal hyperparameters. The hyperparameters setting ranges used are presented in table
5.5. The number of features to consider when looking for the best split was set to automatic
mode (i.e., 𝑚𝑎𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =

√
17), or an integer value in the range of 1 to 17 (i.e., maximum of

available input variables). In order to compare the efficiency of both approaches, the model
was tested using both bootstrap and no bootstrap approaches. When bootstrapping was not
active, the whole dataset was used to build each tree, as previously explained.

Table 5.5. Hyperparameter settings used during random grid search for random forest assemble.

No. of estimators [100, 5000] with step=1000
Max. no. of features ’auto’, 7, 7, 10, 12, 15 and 17

Max. tree depth [10, 1000] with step=100
Min samples per split 2, 5, 10, 16, 64, 10, 150 and 256
Min. samples per leaf 1, 2, 4, 50, 64, 100, 128, 150 and 256

Bootstrap flag True and False

Unlike other classifiers, with RF it is very easy to measure the relative importance of each
feature on the prediction, by finding the variables that caused the most significant impurity
reduction in the nodes, that used that feature as a decision variable. This information is
available after training, and thus can be accessed. Figure 5.6 shows the computed feature
importance observed for the 3-second time window dataset.
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Figure 5.6. Feature importance using the mean decrease in impurity (MDI).
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Table B.15 in the appendices displays the results obtained with the three best performing
models found in the hyperparameter search. Similar to the SVM model, the best performing
models obtained for the 3, 5, 7, and 10-second datasets achieved similar performances. More-
over, it can be seen that, with and without bootstrap, similar test scores are achieved. Also, it
was found that the number of estimators does not have to be large to get good results. Both
models with few (e.g., 100) and many (e.g., 4000) estimators can perform well, as long as the
hyperparameters are correctly adjusted. However, increasing the number of estimators has
the downside of significantly increasing training times. Therefore, models that use a lower
number of estimators must be preferred in the final comparison. The results obtained with
the best performing model for each window size are summarized in table 5.6.

Table 5.6. The best model found during the tuning process for the RF method with 3, 5, 7 and 10-seconds
time windows.

Window
Size

Fit
Time

Hyperparameters F1-Score

Warm
Start

No.
estimators

Min
samples
per leaf

Max
features

Min
samples
per split

Max
dept

Bootstrap
Flag

Train Test

3 s 14.6 s True 109 1 7 16 340 False 0.980 0.955
5 s 1.13 min False 816 2 12 10 840 True 0.969 0.949
7 s 1.14 min False 1046 10 15 9 470 True 0.947 0.954
10 s 46.9 s False 1046 9 15 10 470 True 0.938 0.953

Figure 5.7 shows part of the process used to grow the 50th decision tree of the best RF
configuration. As the figure illustrates, each tree is built by further subdividing the original
dataset at each decision node based on the specific decision boundary computed. Whenever
a decision node is able to fully separate the samples belonging to the different classes, it
originates leaf nodes (one per class) that end that specific branch.

Although data normalization does not affect the RF’s output because it is not a distance-
based algorithm, its employment may decrease the computational effort.

Multi-layer Perceptron

A Multi-layer Perceptron (MLP) is a class of feed-forward neural networks. It comprises
three types of layers: the input layer, an arbitrary number of hidden layers, and an output layer.
These layers’ main building block is an element called a neuron. A neuron is a computational
unit that receives weighted inputs and produces an output by combining them according to a
specific activation function. By employing non-linear relationships, neurons can combine their
inputs in more complex ways. In principle, they can learn any mapping function between the
inputs and the desired outputs if properly configured [115].

The first layer that appears in the multi-layer structure of a MLP is an input layer, also
called the visible layer. This layer is responsible for the input data signal processing, and
it is composed of a number of neurons equal to the number of independent variables. In
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Figure 5.7. Branch of a decision tree used by the best random forest model.

this case, there are 17 preprocessing units. The input layer’s neurons forward the inputs to
the subsequent layers, rather than performing any non-linear modeling. The last layer that
appears in the structure is the output layer. This layer is responsible for effectively performing
the classification task at hand [49]. The choice of activation function is only dependent on the
problem type: regression problem, binary classification, multi-class classification. Given that
the problem of classifying the wireless link quality falls under the multi-class classification,
there was the need of having three outputs (one per class), and thus, the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function
was used. 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 computes the probability of a given input sample belonging to each class,
and outputs the class with the highest probability as the model’s final prediction [116]. Finally,
the layers that are placed between the input and output layers are called hidden layers. These
are the true computational engine of MLP, as they are responsible for properly modeling non
linearly separable data, similar to the task in hand in this work. This is possible due to the
ability of MLPs to, similarly to SVMs, find shapes/decision boundaries that allow separating
classes in high-dimensional spaces [49]. The general settings used during hyperparameter
tuning for the MLP Classifier are presented in table 5.7.

Because MLP neural networks use fully-connected layers, they are more likely to suffer
from overfitting. In an attempt to reduce this, an L2 regularization term was added to the
list of hyperparameter settings to optimize during random search. L2 regularization decreases

99



5. Machine Learning Pipeline

Table 5.7. General hyperparameter settings used for MLP Classifier with three different solvers.

Hyperparameters Values

Model

Input Layer Size 17
Number of hidden layers 1, 2, 3

Neurons 2, 4, 8, 16, 32, 64, 100, 128, 256
Output Layer Size 1

Batch Size Auto, 2, 4, 8, 16, 32, 64, 128, 256, 512
Activation Function ReLu, Tanh, Logistic

L2 regularization coefficient 0, 0.00001, 0.0001, 0.01, 0.1, 0.2, 0.3

Model Compile
Optimizers Adam, Sigmoid, L-BFGS

Losses Cross-entropy

the likelihood of overfitting, by adding a penalty term in the cost function used during the
weight updates, so that the algorithm favors smaller weights [57].

Since we did not know which weight optimization algorithm would be better for our data,
all possible solvers were considered as an option: the Limited-memory Broyden–Fletcher
-Goldfarb–Shannon (L-BFGS), an optimizer belonging to the family of quasi-Newton methods;
the sigmoid method, the classical stochastic gradient descent algorithm; and the adam solver,
a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba [117].

The solver-specific hyperparameters settings tested are also presented in table 5.8. In the
gradient descent-based solvers, such as Adam and Sigmoid, the learning rate controls how
much the weights are updated during training. Finding an optimal value for the step-wise
weight update is crucial, as significant learning rates may result in unstable models, and low
learning rates have a large computational effort. For the 𝐴𝑑𝑎𝑚 solver, only the initial learning
rate value and the number of total epochs was tuned. There was also an option for the sigmoid
solver to adjust the learning rate schedule, i.e., how the learning rate should vary along the
training process. For instance, a constant learning rate schedule meant that the value remained
unchanged through the training process, while in an Invscaling schedule, the learning rate
decreases at each time step 𝑡. For the L-BFGS solver, the only solver-specific configuration
that could be optimized was the maximum number of gradient steps. The best performing
neural network found for the MLP Classifier with these settings are presented in figure 5.9.
Table B.16 of the appendices presents the results obtained with the top three settings found
during hyperparameter tuning.

In our initial analysis, the results obtained for all time window sizes tested showed that
the best results were achieved using the L-BFGS solver. It was suspected that it may have
outperformed the typical gradient descent algorithm chosen, because it is a second-order
optimization algorithm and not a first-order method such as gradient descent. Note that,
besides using the gradient for performing weight updates, L-BFGS uses the second derivative
(Hessian matrix) to account for the curvature of the cost function, allowing it to locate the
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Table 5.8. Tested configurations specific to each of the solvers used in the development of the MPLC classifier.

Solver

Adam

Epochs
20, 30, 40, 50, 60,

80, 100

Initial Learning Rate
0.0001, 0.0005, 0.001,

0.005, 0.01, 0.05,
0.1, 0.2

𝐵𝑒𝑡𝑎1 Default = 0.9
𝐵𝑒𝑡𝑎2 Default = 0.99

Epsilon Default = 1−8

Sigmoid

Epochs 20, 30, 40, 50, 60, 80, 100

Learning Rate Schedule
Constant, Invscaling,

Adaptive

Initial Learning Rate
0.0001, 0.0005, 0.001,

0.005, 0.01, 0.05,
0.1, 0.2

Momentum for Nesterov’s
gradient descent update

Default = 0.9

LBFGS
Maximum number
of gradient steps

200, 300, 400, 500

Table 5.9. The best model found during the tuning process for the MLP Classifier method with 3, 5, 7 and
10-seconds time windows.

Window
Size

Mean
Fit

Time

Hyperparameters F1-Score

Solver
Hidden
Layers

Neurons

Batch
Size

Epochs
Activation
Function

Alpha
Warm
Start

Shuffle
Data

Initial
Learning

Rate
Train Test

3 s 11.3 s

Adam

(32, 32, 32) 256 100 Tanh 0 True True 0.01 0.963 0.955
5 s 14.2 s (128, 128) 64 60 ReLu 0 True False 0.005 0.960 0.949
7 s 15.0 s (128, 128) 512 100 Tanh 0 True False 0.01 0.965 0.949
10 s 4.9 s (128, 128, 128) Auto 60 ReLu 0 True False 0.005 0.967 0.949

minimum more easily [118]. A second analysis of the cost function convergency showed that
was not the case. The optimization algorithm did not converge with any of the configurations
used (even when the number of maximum steps was high).

Furthermore, our results show that, increasing the number of hidden layers and neurons
per hidden layer required a larger computational effort that did not lead to significant changes
in the test scores. Thus, models with lower training times were be preferred for the final
method comparison.

Final Results

For final comparison purposes, our focus is on the 3-second window. Table 5.10 presents
the training times and evaluation metrics of the model that had the best trade-off between the
test F1-score and training time for the SVM, RF and MLP classifiers using a 3-second time
window. More specifically, this table displays the F1-scores obtained for the three wireless
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link quality classes (C1 - normal link, C2 - short-term blocked link, C3 - long-term blocked
link). Also, it shows the macro-averaged value of other secondary performance metrics, such
as accuracy, precision and recall.

The analysis of this table shows that all three estimators were able to complete the
classification task successfully, as the evaluation metrics were all high. Nonetheless, as one
would expect, it is easier to distinguish situations where the link is either not blocked or fully
blocked, than identifying an intermittently blocked link. The F1-scores observed in the normal
or statically blocked examples are very close to 1 in both training and testing datasets, while
in short-term blocked samples, the test F1-score decreases to 0.93%. This is because, as was
found during the extensive data analysis presented in chapter 4, recognizing patterns in a link
subject to abrupt signal quality variations (which do not always have the same impact on the
network metrics) is a complex task. This is further exacerbated by the fact that the classifier
is generalized to recognize patterns on different links, each with their own slightly different set
of physical properties, and that, therefore, experience blockages at different intensities.

Still, the SVM and RF algorithms performed better than the neural network-based ap-
proach, especially in the minority class. They both reached a 93% F1-score in the testing
dataset for this class, which is 3% higher than what was achieved with the neural network.
Note that the hyperparameter tuning process is especially hard in neural networks, as more
hyperparameters must be configured. For instance, to properly classify the link quality, one has
to determine the optimal number of hidden layers, the number of neurons per layer, the batch
size, and many other configurations, so that both performance and algorithmic convergence
requirements are met. Besides, MLP are more likely to suffer from overfitting due to the
fully-connected nature of layers, especially if a good L2 regularization coefficient is not being
used. It is more than likely that the best settings found for the neural network are still not
the optimal ones for the specific dataset, which is causing some level of overfitting to happen,
as shown by the discrepancy between the training and testing curves of figure 5.8.
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Figure 5.8. Multi-layer Perceptron (MLP) Classifier cross entropy vs number of epochs.

Therefore, less complex methods such as SVM should be preferred over MLPC neural
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networks for solving this particular classification task, since it was proven that it achieves the
best F1-score, specifically in the minority class, in the shortest amount of time.

Table 5.10. Comparison of the results obtained for a 3 second time window with the best models found for
SVM, random forest and MLPC.

Fit Time
F1-score Accuracy Precision Recall

Train Testing Training Testing Training Testing Training Testing

Methods
SVM 3.3 s

0.997 - C1
0.971 - C2
0.999 - C3

0.993 - C1
0.932 - C2
0.995 - C3

0.997 0.991 0.9778 0.962 0.997 0.987

Random
Forest

14.6 s
0.999 - C1
0.997 - C2
0.999 - C3

0.995 - C1
0.937 - C2
0.997 - C3

0.999 0.993 0.999 0.967 0.999 0.9987

MLPC 11.3 s
0.993 - C1
0.921 - C2
0.996 - C3

0.992 - C1
0.903 - C2
0.993 - C3

0.991 0.988 0.965 0.957 0.975 0.968

5.3.2 KPIs Forecasting

The forecasting work started with the development of an ARIMA model, to determine
the suitability of the statistical-based models in making accurate multi-step ahead predictions
of the most relevant KPI (SNR), in a blockage-prone mmWave link. For that purpose, the
open-source python library Sktime library was used alongside the popular statsmodels. This
statsmodels compatible library was developed as an individual initiative by Király et al. [119]
to provide an unified, easy-to-use interface between specific ML models. In this work, the
library was used to discover the optimal set of parameters of an statsmodels’s ARIMA model,
that could potentially complete the SNR forecast task.

The search for the optimal parameters can be described as follows. The method adopted
starts by conducting a Distributed Coordination Function (DCF), to determine whether the
time series is stationary or not. If the obtained test’s p-value is superior to a defined threshold
(0.05), the null hypothesis is rejected, and the series is considered non-stationary. In that
case, the method will start testing different differencing orders 𝑑, until it finds the value that
makes it stationary. When the optimal differencing order is found, the models seek the best
set of 𝑝 and 𝑞 parameters, by searching through the ranges of orders that are defined in table
5.11. In the end, the Akaike Information Criterion (AIC) is used to select the best performing
ARIMA model out of the tested combinations. The method uses L-BFGS optimizer to find
the ARIMA model, which minimizes the AIC metric. However, due to data stationarity issues,
the method did not find a suitable model that converged, leading to very high AICs as can be
seen in table C.17 of the appendices. According to [120], this is due to ARIMA’s inability to
make the series stationary, even through high-order differentiation. Due to the SNR’s large
non-periodical variability, the method could not differentiate the series, regardless of the order.
Figure 5.9 illustrates exactly that, as the forecasts made by the best performing ARIMA model
are unable to capture the rapid changes caused by the link obstruction.
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Table 5.11. Configurations details of ARIMA.

Configurations Metric to be
minimizedp d q

[2, 10]
automatically selected
using the ACF test

[2, 10] AIC

Figure 5.9. Forecasted data by the best performing ARIMA model for one of the mmWave paths.

Furthermore, employing ARIMA models that are univariate by nature to forecast each
metric on a multivariate dataset (in this case, 17) is not a scalable option, especially in
large backhaul networks. It would be necessary to fit an ARIMA model per metric and per
path existent in the network, which would be impractical. Thus, the second part of the
forecasting work focused on investigating scalable alternatives (LSTM-based RNNs), that are
capable of detecting unexpected significant fluctuations on the relevant link’s KPIs. These
neural network-based approaches are more well-generalized alternatives, due to their ability
to extract information from data collected across several links, some measured simultaneously,
to perform more accurate forecasts of future KPIs. Moreover, DL-based models usually
perform better than statistical-based ones in complex forecasting tasks, especially in non-linear
and non-stationary datasets where no apparent trend and/or seasonality component can be
identified. RNNs including LSTMs have a higher computational cost than statistical-based
methods because they work on a sequential manner basis [54], and thus are not commonly
used for predicting a single metric such what was done with ARIMA model. However, they
are extremely useful in cases where a large number of time-series is to be predicted. Since the
focus of this study is to determine whether an accurate prediction of the most relevant KPIs
that characterize a link can be made in advance, a LSTM neural network approach was taken.

By providing all the relevant input metrics to the model, the LSTM neural network is
able to recognize the interactions between features under different blockage conditions, to
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produce more accurate forecasts than those performed by statistical-based approaches. Rather
than only using past records of a given metric to predict its future values (i.e., the univariate
approach), several link KPIs are used by the network to estimate their future values. In
theoretical terms, this means that the task of exploring the relationship between past link
metrics to predict in advance metrics, such as SNR and Packet Error Rate, can be described
as a multivariate and multi-step time series forecasting problem; and the task of predicting a
metric for a given time window can be classified as a multiple-step problem.

However, predicting metrics one step ahead has no practical interest for the type of
applications this is envisioned for. The reality is that it would be hard to perform any decision
at the SDN controller (e.g., re-directing priority traffic) in such a short amount of time. Besides
given that, the channel propagation conditions can change so rapidly, that it is more than
likely that by the time the action would have been taken on the network, it would no longer
be suitable. Therefore, a longer time window had to be selected as the model’s input. In this
case, each metric was predicted for the following 3-second time window.

In order to explore the ability of LSTM neural networks to model temporal dependencies,
the 1-second dataset was framed as a supervised learning problem. That is, the original
dataset was converted to a new format, where each new entry related to a given metric is
composed by its 12-second lagged versions. This process enabled the neural network to use the
patterns it found during training, in the other previous 12-second time windows, to predict
the next 3-seconds. The converted dataset was then split into two parts. The first part was
used during the model’s training, to find the optimal set of weights that minimize the error,
and the remaining data was saved for evaluating the model.

The LSTM-based RNN developed in this work uses the Tensorflow Keras Python framework
[121] to create a model which is capable of predicting the 16 most relevant link metrics
throughout a given time window. Recall that the final dataset collected is composed of 16
features (actually 17, but the path label that identifies each path is not being predicted) that
represent a given window size. The forecasting network is composed of an input layer that
accepts the input data; one or more adjacent hidden LSTM layers with several LSTM memory
cells, that are responsible for performing the actual mapping between the input and outputs;
followed by a standard feed-forward output layer that outputs the computed forecasts. In
order to find a good-performing model, the optimal number of LSTM units, hidden LSTM
layers, and many other parameters have to be optimized through a hyperparameter tuning
process. For that purpose, Talos [122], a TensorFlow -compatible library, was used to automate
the tuning and model evaluation processes. Among the alternatives studied, this library was
found to be the simplest, yet most effective method for rapid hyperparameter optimization,
while also providing full control of the entire process. The hyperparameters optimized and the
ranges evaluated during the tuning process are depicted in table 5.12. Dropout regularization
was applied during the best hyperparameters search at both input-to-hidden layers, hidden-
to-hidden, and hidden-to-output connections, as shown in figure 5.10, to prevent overfitting.
Dropout is a technique where neurons are temporarily dropped from the network in every
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training batch. In its simplest form, dropout is achieved by dropping each neuron with an
independent probability 𝑝 [123]. Note that, while there was also the possibility to drop recurrent
connections in LSTM cells, that may cost the ability to properly model time dependencies,
and thus this approach was avoided [124].

Table 5.12. Settings used during hyperparameter tuning of the LSTM-based model.

Model

Epochs 100

Batch Size
2, 4, 8, 16, 64,
128, 256 and 512

Number of Stacked
LSTM Layers

1, 2, 3 and 4

First LSTM layer’s neurons
16, 32, 64, 100, 128,
200 and 256

Other Hidden Layers’ Neurons
8, 16, 32, 64, 100,
128, 200 and 256

Dropout Rate
0.005, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7 and 0.9

Layer weight initializers
Uniform and normal
distributions

Learning Rate
Default, 0.0003, 0.0005, 0.003,
0.005, 0.01, 0.03, 0.05 and 0.1

Model Compile
Optimizer

Adam, RMSprop,
Nadam and Sigmoid

Losses Mean Squared Error (MSE)

After an extensive tuning process, the model which obtained the best MSE and MAE error
was selected to perform the final predictions. For exemplification purposes, table C.20 in the
appendices presents results obtained with some of the hyperparameter combinations tested,
including the one with the best performance. Table 5.13 summarizes the best hyperparameter
settings and values of other test-related parameters used to validate the model. Figure 5.10
illustrates how these hyperparameters are used to produce a LSTM architecture capable of
forecasting future 3-second time windows. This model is designed to accept multivariate
inputs (the previous 12-second time window for each of the metrics), and path ID that helps
the algorithm to differentiate between paths. After training, the neural network can use the
discovered mapping function to convert the test data into a new output sequence, that is
composed of the forecasted values of these 16 metrics for the next 3 seconds.

The losses of the best performing model are represented for each training and validation
epoch in figure 5.11a. Since the model converged at the 60 epochs mark, one may choose to
only train the model until this point in future developments. Given that the MSE train and
testing curves are almost superimposed, there is no evidence of overfitting. In addition, it can
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be seen in figure 5.11b that the MAE also achieved convergency.

... ... ... ...
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128 neurons 128 neurons

16 metrics x
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Figure 5.10. LSTM-based RNN neural network architecture used for multi-step metrics forecasting.

Table 5.13. Settings, training and testing time of the best performing LSTM model.

Data
Training Dataset Size 79 555
Testing Dataset Size 24 862

Model

Epochs 100
Batch Size 128
Number of Stacked LSTM Layers 3
First LSTM Layer’s Neurons 256
Other hidden Layers’ Neurons 128
Dropout Rate 0.2
Layer weight initializers Uniform distribution

Model
Compile

Optimizer Nadam
Loss Function MSE
Learning Rate 0.001 (default)

Performance
Training time 5 min and 21 s
Testing time 2.15 s
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(a) Mean Squared Error

MAE

MAE

(b) Mean Absolute Error

Figure 5.11. Loss function (MSE) and MAE in training and testing of the best performing model.

The Mean Absolute Error obtained with the best performing LSTM model, is shown in
table 5.14 for the 1, 2 and 3 second ahead metrics predictions. These results show that the
forecasting ANN was able to predict with average errors of less than two units (except the
average and maximum data rate), most of the physical metrics, for the totality of the 20
paths present in the dataset. Still, there are some small errors that occur for all metrics, that
associated with noise the channel introduces even under normal conditions. Recall, for example,
that even on a non-blocked link, small variations in signal quality and beam variations (within
the previous beam’s neighborhood) are observed. Therefore, to analyze the quality of the
prediction, one must have to account for normal propagation channel variability. For instance:

• An average prediction error of 1.3 units for the RX beam index in the 3-seconds ahead
predictions indicates that the algorithm can accurately predict abrupt transitions of the
receive beam when an obstruction occurs. If that were not the case, errors that may
have exceeded 50 units would have been observed;

• An 0.63 average prediction error for the SNR at 𝑡+ 2 means that, on average, for the
totality of the 20 links, our predictions do not incur a more extreme change than, for
example, a drop from 20 to 19.37 dB;

• The MAE of 32 ms at 𝑡+ 2 for the maximum RTT is within the 36 ms variation range
observed for the links in normal scenario (see table A.5 in the appendices);

• An average error of 12.45 Mbps at the 3-second ahead received rate prediction is also
again contained within the normal scenario variability of about 50 Mbps (see table A.11
in the appendices);

• The average error of 1.13% at 𝑡+ 2 for the packet loss is again included in the normal
scenario variability of maximum of 11.5% (see table A.8 in the appendices).

Moreover, as expected, forecasts further ahead in time have larger associated errors,
although they are pretty similar.
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Table 5.14. Mean Absolute Error obtained with the best performing LSTM model.

MAE (t) MAE (t+1) MAE (t+2)

Physical metrics

Beam Index RX 1.30 ± 3.80 1.37 ± 3.97 1.34 ± 3.96
Beam Index TX 0.55 ± 0.27 0.61 ± 0.33 0.59 ± 0.30
MCS RX 0.17 ± 0.18 0.17 ± 0.18 0.18 ± 0.19
MCS TX 0.15 ± 0.16 0.17 ± 0.18 0.18 ± 0.19
Mbps TX 32.41 ± 30.56 34.76 ± 33.16 37.48 ± 35.89
Mbps TX (Max) 34.35 ± 32.34 36.63 ± 35.02 39.00 ± 37.59
Packet Error (%) 1.22 ± 1.05 1.32 ± 1.10 1.39 ± 1.21
rcpi (dBm) 0.55 ± 0.17 0.56 ± 0.19 0.58 ± 0.23
SNR (dB) 0.60 ± 0.13 0.61 ± 0.14 0.63 ± 0.19

Network metrics

Sent Mbps 8.86 ± 3.18 10.49 ± 4.04 12.21 ± 5.25
Received Mbps 9.03 ± 3.09 10.67 ± 4.00 12.45 ± 5.28
TCP retransmissions 54.73 ± 22.30 72.46 ± 31.43 91.78 ± 41.42
RTT (Mean) 10.31 ± 5.79 11.15 ± 7.87 12.46 ± 11.34
RTT (Max) 26.80 ± 16.71 29.24 ± 20.28 32.33 ± 26.17
RTT (Min) 1.24 ± 0.83 1.55 ± 1.65 1.88 ± 2.65
Packet Loss (%) 0.75 ± 0.48 0.95 ± 0.63 1.13 ± 0.78

Tables C.18 and C.19 of the appendices also present the MSE and RMSE, respectively,
of the predictions. However, the interpretation of these results is not as direct as the MAE,
since they do not represent the actual forecast error (the difference between the real and
predicted values), but rather the average of the squared errors and squared root of the average
squared errors, respectively. MSE greatly penalizes errors, no matter how small they are, and
regardless of whether they are acceptable in the specific context or not.

Our observation is further reinforced by the graphical comparative analysis carried out.
Figure 5.12a and 5.12b illustrate forecasts made, for two different paths. These graphs show
that it is possible to accurately detect sudden transmit MCS changes one, two and three
seconds in advance. Similarly, figures 5.13 and 5.17 show that the developed model is able to
accurately estimate SNR and received data rate, respectively, for two uplink paths suffering
from different levels of obstruction. This is also true for the Packet Loss Rate, Average RTT
and Number of TCP Retransmissions as shown by the small prediction errors of figures 5.15,
5.16 and 5.18, respectively. Nonetheless, the PER of figure 5.14 shows that, even if the average
error remained below two units for most links’ samples, there are (at least in this specific case)
samples in which the peak value prediction is not accurate. For more graphical examples of the
quality of the predictions made by the algorithm, please refer to section C of the appendices.

Recall that, as with most time-series forecasting methods, predicting the exact value of
peaks is usually not possible for this case due to the channel noise. However, this is not a
limiting factor. Under the specific context of this work, it is more critical to identify when
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significant changes in channel conditions will occur than their exact impact on each network
metric.
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Figure 5.12. MCS predicted by the forecasting algorithm for the uplink of two mmWave paths.
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Figure 5.13. SNR predicted by the forecasting algorithm for two mmWave paths.
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Figure 5.14. PER predicted by the forecasting algorithm for two mmWave paths.
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Figure 5.15. Packet loss rate predicted by the forecasting algorithm for two mmWave paths.
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Figure 5.16. Average RTT predicted by the forecasting algorithm for two mmWave paths.
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Figure 5.17. TCP throughput predicted by the forecasting algorithm for two mmWave paths.
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Figure 5.18. TCP retransmissions predicted by the forecasting algorithm for two mmWave paths.

Thus, we can conclude that the LSTM-based RNN developed is able to capture the behavior
of the link’s KPIs suffering from long-term and short-term blockage to perform accurate 3-steps
ahead predictions. This includes metrics such as the number of TCP retransmissions and PER
(for most cases), which did not show very well-defined patterns in automatic mode during our
first analysis.

5.4 Summary

To ensure reliable network performance, an ML-based approach can be taken, which
exploits the data collected in links, under different scenarios, to predict when significant link
quality decreases are to be expected.

In this chapter, solutions were proposed to solve two specific problems associated with
blockage-prone networks: 1) how to classify wireless link quality according to the available
metrics; and 2) how to use past records to predict future link KPIs. A common ML pipeline
was proposed to solve both of these problems, which consists of a preprocessing module and a
problem-specific ML module.

In order to perform wireless link quality classification, three different approaches were
proposed, which include SVM, RF ensemble and MLP Classifier. The performance obtained
with the best settings found during hyperparameter tuning, for the three classifiers, was
compared for datasets consisting of time windows of 3, 5, 7, and 10 seconds. The test scores
achieved with these classifiers were similar, regardless of the window size, differing no more
than 2% in the F1-score of the minority class. Still, SVM was shown to reach superior
performance at a lower computational cost, surpassing even a Multi-layer Perceptron neural
network performance-wise. SVM achieved a macro-averaged F1-score of 0.989 and 0.973 for
the training and testing datasets, respectively, with a 3.3 second mean fitting time.

In the second part of the chapter, the quality of forecasts of a traditional statistical-based
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model such as ARIMA was compared, to those made by a LSTM-based RNN. It was found
that, while ARIMA models provide a lightweight approach to time series forecasting, their
inability to extract patterns from an extreme non-linear and non-stationary dataset results in
a poor-performing model. On the other hand, the LSTM-based forecasting method proposed
was shown to capture the interactions between past feature observations under different
environments to produce accurate forecasts, for 16 KPIs in the next 3-seconds time widow.
Still, some errors exist, due to the propagation channel’s variability, even in normal conditions.

The output of the proposed ML-based approaches brings many possibilities to improve
network reliability, in different field domains, improving the performance of network coding
techniques or SDN controllers. These two topics are explored in the following chapter.
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Chapter 6

mmWave Modelling and Network
Coding

Being able to test in real-life mmWave networks and their links enables the possibility to
use the data in supporting the research community. From one side, it is possible to test and
validate resilience mechanisms that address the challenges of mmWave-based backhauls, by
providing the possibility to develop a mmWave model to a simulator, such as ns-3. From the
other side, it can also be used to assess the potential of novel techniques, such as Network
Coding (NC), to improve the performance of these networks.

The structure of this chapter is as follows. The first section presents a brief description of
the extension of an existent IEEE 802.11ad/ay ns-3 module to simulate our real-life testbed. In
the second and last section, the potential of NC techniques, such as Random Linear Network
Coding (RLNC) are evaluated in the physical infrastructure.

6.1 Simulating a real WigGig-based backhaul

Commercial solutions, such as the CSS Metnet one, make the task of testing and validating
the network mechanisms proposed in the literature, a time-consuming, if not impossible, process.
Using proprietary software and firmware in each device limits the number of configurations that
can be made at both a physical and network level. Also, there is the issue that this equipment
is relatively recent and still has features under development, such as its Self-organising Network
(SON) algorithm. For instance, currently, changing the initial network topology is only possible
in the case of a link outage through the beamforming training process triggered at the MAC
layer. Furthermore, this process was observed to operate in a conservative manner. That is,
it was not possible to trigger a new beamforming training process any time the link quality
decreases to a value lower than a defined threshold as that option is left to the manufacturer.

The firmware version 5.8.0 released on the first of June of 2021 is the right step in that

115



6. mmWave Modelling and Network Coding

direction. It introduced the ability to periodically scan and measure radio links, which is
expected to be used in future releases to dynamically adjust the network topology from a
network manager perspective. However, at the time this dissertation was developed, that
feature was not implemented yet. Thus, the over-complicated testing process alongside the
inability to test large-scale networks led to the search for an accurate IEEE 802.11ad simulator
that could be used to quickly validate protocols, coding techniques, resilience mechanisms,
among many other possibilities. This kind of approach will allow the validation of the current
and future mechanisms that are being developed using IEEE 802.11ad devices in the next
generation WiGig networks (802.11ay).

Among the several network simulators that were studied, only ns-3 had a module that was
equipped to simulate WiGig WLANs. NS-3 is a free-to-use discrete-event network simulator
[125] [126], widely used for research and education purposes. It is composed of core components
and modules which are written in C++ language and that use Python for binding purposes.
However, this simulator lacks a graphical user interface, since it is not a high-level modeling
language. Instead, each simulation event is a C++ function call organized by a scheduler.

In this work, the ns-3 IEEE 802.11ad module implemented by Assasa et al. [127] is used.
This open-source simulation framework provides a high-fidelity tool for building and testing
dense wireless networks based on the IEEE 802.11ad/ay standards. As can be seen in figure
6.1, the framework consists of four main components that are [127]:

• ns-3 IEEE 802.11ad/ay model: the actual component responsible for accurately
simulating the standards’ MAC and PHY layers. It also includes the implementation of a
quasi-deterministic channel that, based on the profiles generated by 60 GHz ray-tracing
software, enables modeling real mmWave propagation environments [128];

• Codebook Generator: a MATLAB-based application that generates a file, called
beam codebook, that contains the information related with the radios. It is in this file
that the number of antenna arrays per RF chain, the number of elements per antenna
array and the radiation patterns of the phased arrays are specified. This app is not yet
available to the general public. However, it was kindly made available to us for research
purposes by Dr. Hany. This module was adapted to simulate our specific context;

• NIST Q-D Channel Realization: a MATLAB three-dimensional ray-tracing ap-
plication for accurate point-to-point indoor and outdoor mmWave channel modeling
[129]. Through this approach, complex environments with multipath propagation can
be simulated. A channel Q-D trace is generated per pair of communicating stations and
specifies the following parameters: number of multipath components, the path loss of
the channel in dB, the phase shift due to propagation, reflection and Doppler effect (in
case of mobility), the Angle of Arrival (AoA) and Angle of Departure (AoD) for each
ray [128]. This file alongside the codebook is used by the ns-3 simulator to compute the
estimated received power;
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• Q-D interpreter: python application for visualizing the simulated scenario (nodes
position and rotation, as well as the antenna array geometry and antenna beam patterns)
and the results of beamforming training [130].

Figure 6.1. The WiGig framework used [127].

As it was shown in the measurement campaign of [131], the Q-D methodology can be used
to model the CIR of a mmWave channel. In this approach, the signal power is considered
to be primarily concentrated in a set of strong direct rays and some relatively lower rays
(NLOS components) generated by reflections with a predefined distribution. Hence, D-rays are
obtained using ray tracing techniques and the R-rays by using a statistical distribution [128].

The WiGig module [127] features every functional aspect described earlier for the IEEE
802.11ad standard. This includes the support for receiving and transmitting beamforming
training in both the BHI and DTI periods, support for beam refinement operations, support
for different MCS at the PHY layer, quasi-deterministic channel modeling, dynamic and static
service period allocation, beamforming link maintenance, spatial sharing, and interference
assessment.

However, some limitations were observed during the process of simulating our testbed.
Currently, the simulator lacks support for WiGig devices with multiple antenna arrays when
using the parametric codebook class. Our tests showed that the receive beamforming training
process was only being correctly performed with one antenna phased-array. Furthermore, the
mechanism that had been previously implemented to introduce blockage worked based on
equally decreasing the signal quality for all sectors of a particular blocked communication path.
Intuitively, it is easy to understand that, depending on the blocker dimensions, blockage of
one beam may also affect the performance of others, especially beams in close vicinity. Thus,
a more accurate obstacle module was developed for adding interference to a mmWave link in
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ns-3. The pipeline used to simulate the mmWave backhaul can be summarized as follows:

1. Generation of a parametric codebook: the "IEEE 802.11ad Codebook Generator
app" was used to create a beam codebook that describes the radiation properties of the
four radios that compose the CCS nodes. To calculate the directivity of each phased-
array, a circular microstrip patch at 60GHz was considered, as it was the element used
in the real device (see figure 6.2). The generated file specifies the following parameters:

• Number of RF chains: 1;

• Number of antenna arrays per RF chain: 4;

• Number of elements per phased-array: 16x2;

• Azimuth and Elevation angles covered by each element: [-180; 180] degrees and
[-90; 90], respectively;

• The directivity of each element (for each azimuth and elevation combination);

• The steering vectors associated with each element (for each azimuth and elevation
combination): the steering matrix is composed by (361 x (2 x 181)) x (16x2)
elements;

• The quasi-omnidirectional AWVs for each element;

• The directional AWVs used in each element to generated each of the 64 sectors.

2. Generation of the Q-D files: the MATLAB 3D ray-tracing application was used to
generate a Q-D file for each pair of stations. Each Q-D file models a quasi-deterministic
mmWave channel with a given propagation loss (calculated as the free space loss) and
delay;

3. Development of a blockage module: this module is responsible for introducing
obstruction in a link formed between a pair of stations. It allows configuring the
blockage position, introduced loss according to the blocker’s material, the blocker’s
width and thickness, as well as specifying which beams are affected;

4. Simulation using the ns-3: This step entails many operations. From a WiGig
perspective, it includes configuring the number, type and position of nodes; the operation
frequency (60.48 GHz); the channel bandwidth (2.16 GHz); the transmit power (19
dBm) and the MCS. Also, it includes the configuration of the appropriate modules
to simulate the PHY, MAC, and network layers. Besides the typical object instances
that belong to the WiGig module which allows us to simulate the PHY and MAC
layers [127] (such as MacLow, UpperMac, WifiMac, DmgStaWifiMac, DmgApWifiMac,
ParametricCodebook, SpectrumDmgWifiPhy, QdPropagationLoss), other typical ns-3
classes had to be used (NodeContainer, NetDeviceContainer, BridgeNetworkDevice,
OnOffApplication) to simulate the network. In specific, the BridgeNetworkDevice was
used to connect the wired (SDN switches) and wireless part of the network (mmWave
nodes). In addition, the OnOffApplication was used to inject packets in the network.

118



Simulating a real WigGig-based backhaul 6.1

Table 6.1. CCS node radio properties that were used to generate the parametric codebook

Simulated properties of CCS nodes

Number of RF chains per node 1

Number of phased-arrays/
radios per node

4

Node’s field of view
(with total of 4 radios)

Horizontal 300º electronic steerable

Gain of each phased-array 19 dBi

Gain of each element 9 dBi

Number of elements
per antenna array

16 x 2

Radio Azimuth field of view 90º

Radio Elevation field of view 180º

Number of sector per radio 64

Azimuth 3dB beamwidth 5º

Elevation 3dB beamwidth ∼20° (+/-10°)

Moreover, it is in the ns-3 ParametricCodebook class that the parsing of Q-D file occurs for
each link as well as the computation of the directivity of each of the 64 sectors according
to the AWVs of the codebook. Additionally, changes (mainly in the DmgWifiMac) were
made to correct the lack of support for receiving beamforming training with multiple
antennas when using the Parametric codebook approach.

The radiation pattern obtained with the generated codebook and the values provided by
the manufacture for 5 sequential beams are shown in figure 6.3. These results indicate that
the simulated directional beams have similar behavior to the data obtained in the real-life
measurements. In the quasi-omnidirectional case, the simulated and real patterns vary slightly
due to the lack of knowledge of which elements were active and inactive in the manufacture’s
quasi-omnidirectional pattern. Nonetheless, the overall shape is similar. This small difference
is expected to be corrected in a near future.

A more detailed description of the modules and the process required to simulate our
physical mmWave backhaul is presented in a paper being developed alongside other SNOB-5G
project researchers. This author’s contribution on this front mainly focused on developing
a codebook that could accurately simulate the physical properties of radios, as explained
previously in this section.
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Figure 6.2. Phased-array antenna employed at each node’s radio.

(a) Quasi-omnidirectional patterns. (b) Directional patterns.

Figure 6.3. Radiation patterns measured by the manufacturer for the quasi-omni mode (left) and for 5
directional beams (right) vs the patterns of the simulated codebook

6.2 Improving network coding performance

The application of network coding concepts, in particular RLNC, has already been shown
through simulations to improve both reliability and efficiency of mmWave systems in [102]
and [103]. Still, so far, the study has mostly focused on cellular networks evaluated through a
simulator like ns-3. In this work, the rateless approach of RLNC was implemented using the
Kodo library [104] to evaluate the actual gains that NC techniques can have on a real WiGig
backhaul network.

Kodo [104] is an open-source C++ library aimed to be used in practical research studies
of network coding algorithms. To access the basic functionalities of Kodo RLNC, the high-
level API of the open-source Kodo-RLNC-C library [132] was used. Two separate modules
(an encoder and decoder) were developed with this library in the context of the SNOB-5G
project, one for each node. Additionally, a non-coded version was also deployed to compare
the performance of traditional forwarding approaches and network coding-based ones in a link
suffering from signal quality degradation due to long-term blockage.

Both the coded and uncoded approaches require an UDP session to be established between
the sender and the receiver. This UDP session is first used to inform the receiver of the
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test-related settings and later to send the coded and uncoded packets or symbols. Overall, the
proposed network coding architecture can be described as follows:

1. Send the test-related parameters that the receiver needs to decode, the received packets,
as well as to detect when the stopping criterion is met. In the coded approach, this
includes reporting the symbol size and the number of symbols that is going to be used
in the encoding process;

2. Generate random information symbols, encode those information symbols using RLNC
and transmit them on top of UDP;

3. Transmit the encoded symbols over the mmWave link tested and decode the received
symbols to retrieve the original information;

4. On the receiver side, increase the overall packet count whenever enough coded packets
have been received to successfully decode one packet;

5. End the experiment in the case the total number of symbols (of ten 1MB downloads)
have been successfully received or if a socket timeout is detected;

6. Compute the success rate, packet loss and the cumulative download time for each
experience as follows:

Success Rate =
Completed downloads

Total downloads

Packet Loss =
∑︀𝑛=10

𝑛=1 Received symbols/packets
Total symbols/packets

7. Repeat steps 2 through 6 until the total test duration for all MCS has passed.

On the other hand, in the non-coded approach, randomly generated packets are forwarded
on top of UDP over the same network link without any additional processing. In that case, an
experiment (10x1MB downloads) may end due to receiving the total number of pre-established
packets or, similarly to the Kodo-based approach, due to socket timeout if data is not being
received. Again any time an experience ends, a new one begins, and that process is repeated
until all MCSs have been tested for a 30-minute long window. The general architecture used
to test the Kodo-based and uncoded approaches is presented in figure 6.4.

Note that the concept of symbols is only valid under a coding perspective to refer to a
smaller portion of the information source. In contrast, in a traditional network, there are only
packets. Hence, to ensure a fair comparison between the two implementations, the number
and size of packets sent in the non-coded approach had to be matched to the number and size
of symbols transmitted using RLNC. These parameters are depicted for both approaches in
table 6.2. Note also that in UDP it is not possible to mitigate the losses associated with an
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UDP (Non-coded approach)

PCP

Settings: symbol size, symbol number 

ACK

Data

Stop

Received++ A

UDP with Kodo (RLNC)

PCP

NC settings: UDP data size, symbol number 

ACK

Data

Stop

Received++ A

Figure 6.4. Architecture used for testing the performance of a mmWave link using a simply forwarding scheme
(top) and a fixed-blocked RLNC technique (bottom).

mmWave channel since it does not employ retransmission mechanisms such as in TCP. As can
be seen in table 6.2, the RLNC approach employed uses a fixed blocked length (i.e., a fixed
code rate) throughout the entire test duration.

Table 6.2. Test-related parameters configured for the coded and uncoded approaches.

Network Test Scenarios
MCS = 1, 3, 5, 7, 9 and Auto during a 30-minute time-window

in a statically blocked mmWave link

UDP with Kodo (RLNC) UDP

Symbol Size: 8192 btyes
Symbol Number: 122
Download Size ∼1 MB

Packet Size: 8192
Packet Number: 122

Download Size ∼1 MB

The relevant PHY layer (RCPI, SNR, and PER) and transport layer metrics (packet
loss) measured throughout the testing process for different MCS modes (fixed and automatic)
are presented in Figure 6.5. In addition, this figure shows the minimum required levels of
SNR and RCPI for maintaining each tested MCSs. These thresholds were reported by the
node’s manufacturer in its documentation (for more details regarding the MCSs and associated
thresholds, see table 4.1). To simplify the analysis, the metallic obstacle presented earlier was
maintained at the same position (blocking the Line-of-sight signal) for the entire test duration
of all MCS modes.

122



Improving network coding performance 6.2

Figure 6.5. PHY and transport layer metrics measured for MCS 1, 3, 5, 7, 9 and Auto in mmWave link
suffering from long-term obstruction.

A quick analysis of figure 6.5 shows that the RCPI signal level is lower than the defined
threshold for almost all MCSs (except for a MCS fixed of 1 and the automatic MCS). However,
the SNR requirement is still being fulfilled most of the time. Note that sudden decreases of
the RCPI and, consequently, SNR still occurred due to slight obstacle movements caused by
strong wind. Note that these large fluctuations are way higher than those observed in 4 for
the long-term blocked, to the extent that it resembles the behavior observed for short-term
blocked links.

The results obtained in Figure 6.6 show that using RLNC increases the likelihood of
achieving a success rate closer to 100%. The improvements introduced in terms of delivery
reliability are clear for the MCS 7, where it was observed that linearly combining different
packets through RLNC allows overcoming the high packet losses, which ultimately contributes
to reducing the amount of packet errors introduced by the channel even under extreme
conditions. Moreover, network coding techniques have improved the success rate even in
automatic mode, where it is possible to adjust the MCS to reflect the propagation channel
variations. However, compensating the erasure in mmWave channels with Network Coding
techniques is only possible at the expense of a higher number of coded packet transmissions.
For instance, it can be seen in Figure 6.8 that a larger number of transmissions is needed
to consistently achieve a success rate closer or equal to 100% with network coding, which
ultimately increases the cumulative download time, as shown in figure 6.9. Note that the
higher point density observed in figure 6.9 for the coded approach comes from the fact that
coding is more likely to achieve 100% success rates. Nonetheless, the increase in the download
time was shown not to be significant, as it was only necessary to introduce a maximum of
20 additional packets to overcome high packet losses in this scenario. In fact, the additional
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overhead introduced by the encoding operation was demonstrated to be no more than 2% in
the automatic mode (see figure 6.7).

Overall, it is shown that a simple RLNC technique, which uses an apriori fixed block size,
is already able to improve the performance of real mmWave links suffering from high packet
errors rates caused by obstruction.

Higher average 
success rates with 
RLNC even under 
extreme conditions

Higher average 
success rates with 
RLNC even with 
Auto MCS

Figure 6.6. Success rate obtained with 1 experience (ten 1MB downloads) with the uncoded (right) and coded
(left) approaches for all MCS tested.

Figure 6.7. Packet overhead inserted by the encoding process in the automatic MCS for experiences with
100% success rate.
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RLNC sends 
more symbols 
to compensate 
packet loss

High Packet Loss with 
UDP in MCS9 
(1220 packets sent)

Figure 6.8. Number of total packets transmitted with 1 experience (ten 1MB downloads) with the uncoded
(right) and number of transmitted symbols with the coded approach (left) for all MCS tested.

RLNC sends more 
symbols to 
compensate packet 
loss which increases 
download time

However, RLNC 
does not cause a 
significant increase 
in download time

Fewer 
occurrences of 
success rates 

of 100%

Figure 6.9. Cumulative download time measured with 1 experience (ten 1MB downloads) with the uncoded
(right) and coded (left) approaches for all MCS tested.

However, this approach still has its limitations, since it is not able to adapt to RTT
fluctuations and loss rate. In order to support real-time transmissions in highly variable
propagation channels, the Adaptive Causal Network Coding with Feedback technique proposed
by MIT is currently being deployed in our testbed. By relying on packet-level FEC and on
the feedback it receives from the receiver, the sender can track the channel erasure pattern
to dynamically adjust the code rate, thus providing a good trade-off between throughput
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and in-order delay. However, adjusting the code rate requires waiting for a full RTT for the
receiver’s feedback. To reduce the associated overhead, a novel approach to AC-RLNC is
being proposed where the code rate is adjusted solely based on forecasted metrics by the
LSTM-based RNN. The computation of the expected average RTT and Packet Loss three
seconds ahead of time further improves the performance of AC-RLNC by controlling the
amount of inserted apriori and posteri redundancy before the impact of sudden link quality
drops is felt.

The novel approach described will generate a scientific paper in collaboration with MIT
and other IT researchers, to explore the potential of using metric forecasts (based on past
observations) to improve the performance of real-life mmWave backhauls employing AC-RLNC.

6.3 Summary

This chapter presented the extension of an existent ns-3 WiGig module to simulate our
backhaul network, and the utilization of RLNC and AC-RLNC techniques to further improve
network resilience.

This chapter began with the description of the process used to replicate the behavior of
our testbed using the WiGig ns-3 module proposed by Assasa et al. [127]. For that purpose,
a codebook was generated to define the specific radiation properties of our nodes. Overall,
the simulated directional and quasi-omnidirectional radiation patterns were shown to be in
agreement with the patterns disclosed by the radio manufacture. Also, an obstruction module
was developed from scratch to introduce blockage with different properties into a mmWave
link.

The second part of this chapter shows the potential of a fixed-blocked RLNC approach in
improving the reliability of a physical mmWave backhaul suffering from high packet loss due to
obstruction. Specifically, the test results show that linearly combining different packets through
RLNC allows overcoming the high packet losses in highly blocked channels and increases the
likelihood of achieving a success rate closer to 100%, even in the cases where MCS can be
adjusted to reflect the propagation channel variations. Moreover, it has been shown that the
overhead associated with the coding operation is no more than 2% for a network operating in
automatic MCS mode, and does not significantly increase the download time compared with
the non-coded approach.

At last, the shortcomings of a fixed-blocked RLNC were presented. We found that, although
a fixed-blocked RLNC approach can improve the success rate under extreme conditions, it
can only improve it to some extent. Because the proposed approach could not adapt the
code rate to fit the varying channel conditions, reliable delivery of all transmitted symbols is
not guaranteed. To address this, an enhanced version of AC-RLNC is being discussed where
metrics forecasted by the LSTM-based neural network, such as packet error, packet loss, and
average RTT, are used to adapt the code rate before a significant drop in signal quality occurs.
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Chapter 7

Conclusions and future work

5G mobile networks are currently being deployed to meet challenging multi-gigabit data
rates and low latency of current demands. With the introduction of the millimeter-wave
spectrum in ultra-dense scenarios, the wireless backhaul has become a key enabler for 5G
technology, by presenting a cost-effective and scalable alternative to the typical fiber backhaul.
By leveraging the frequently unused millimeter-wave spectrum, data rates comparable to those
offered by fiber connections can be obtained, but at the expense of higher susceptibility to
blockage.

In this work, an SDN-controlled backhaul using IEEE 802.11ad was successfully deployed
in a controlled outdoor scenario, which allowed collecting physical, network, and transport
layer metrics of millimeter-wave links suffering from long-term and short-term blockage. In this
work, the most extensive multi-layer measurement campaign performed to this date (to the
best of our knowledge), in WiGig-based networks was performed, which includes an extensive
cross-layer analysis of the behavior of long-term and short-term blocked 60GHz links. The
analysis conducted provided several insights into the inner operation of WiGig networks. It
was found that maintaining fixed high MCSs in long-term blocked channels may induce packet
errors as high as 100%, an RTT that can be in the order of a few seconds, and packet losses as
high 90% due to the errors. Even if dynamically adjusting the MCS is possible, instantaneous
PERs can reach the 40%, maximum delays can reach the one-second mark, and data rates
can vary by a hundred Mbps. This effect was exacerbated in short-term links, as they suffered
from more extreme MCS changes upon sudden obstructions. Temporary LOS obstruction was
shown to cause maximum delays of half a second, and PER maximum usually around 20%,
and in more extreme cases, it even led to temporary link failure.

The higher susceptibility to blockage makes it challenging to meet critical applications
with constant data rate and maximum delay requirements, in a backhaul scenario. Thus, the
work developed in the second part of this thesis focused on researching mechanisms at multiple
layers that could improve network reliability and resilience of these blockage-prone mmWave
backhauls. These include a wireless link quality classifier, a deep-learning KPI forecaster,
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and some insights of how lower layer can relax, when using random linear network coding
techniques.

A general pipeline composed of a preprocessing and an ML-specific module was proposed
to address the wireless link quality prediction and the forecasting of future KPIs. This pipeline
accepts the multi-layer metrics collected at different sampling rates under short-term and
long-term obstruction and outputs a problem-specific variable. In the case of the classification,
its output is a label that describes whether a mmWave link is under normal operation or
suffering from long-term or short-term blockage. In the case of the forecasting task, it outputs
multiple continuous values that represent the estimations for the link’s KPIs for the next
3-seconds. In the preprocessing module, the raw data passed a series of preprocessing steps
involving data cleaning, aggregation, scaling, and feature selection. The preprocessed was
then split using a 70:30 ratio for performing training and the final evaluation of the models.
During the training stage, hyperparameter tuning was used alongside cross-validation to find
the model-specific hyperparameter settings that maximize performance. For the wireless link
quality classification, the performance of three popular ML and DL-based classifiers (SVM,
RF and MLP) was compared for datasets composed of 3, 5, 7 and 10-second aggregation
windows. The test scores achieved with these classifiers were similar, regardless of the window
size, differing no more than 2% in the F1-score of the minority class. SVM still was able to
achieve the best performance in the shortest amount of time. The results obtained found that
it is possible to use a SVM to classify with a 98% F1-score the quality of a millimeter-wave link
(in a 3-second time window), according to the type of obstruction it faces (non-blocked, short-
term blocked, and long-term blocked links). For the metrics forecasting task, the estimations
performed by a statistical-based model like ARIMA were compared with those performed by
a LSTM-based neural network. It was found that ARIMA is unable to extract complex time
dependencies, due to the non-stationary nature of the SNR time series. Moreover, employing
ARIMA models that are univariate by nature implies fitting a model to forecast each KPI,
thus having scalability issues. Besides, it cannot leverage the correlation between metrics to
enhance its prediction capabilities. On the other hand, an LSTM-based neural network was
shown to accurately detect temporal patterns for multiple link KPIs under normal, long-term
blocked and short-term blocked scenarios, but at the cost of increased complexity. The average
prediction error of the developed forecaster was contained within the maximum absolute
deviation, presented by links operating in a non-obstructed environment.

The ability to test in a real-life mmWave network enabled exploring, for the first time, the
performance of NC techniques in a experimental mmWave channel suffering from erasures.
In this work, the rateless approach of RLNC was deployed in the nodes of a mmWave link
using the Kodo library, and was compared with the performance obtained with traditional
forwarding approaches using UDP. Our preliminary results show that the coding approach
allows overcoming the high packet losses in highly blocked links, and increases the likelihood
of achieving a success rate closer to 100%, even in the cases where the MCS is adjusted
accordingly to the channel fluctuations.
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Furthermore, the data obtained in a real-life mmWave network was leveraged to produce
an accurate model of our outdoor testbed that employs IEEE 802.11ad, using the ns-3
simulator. This provides a way to quickly test and validate protocols, coding techniques,
resilience mechanisms, and many other possibilities, without the constraints of proprietary-
based solutions. Overall, the simulated directional and quasi-omni patterns are aligned with
the radiation patterns disclosed by the manufacturer.

The work developed throughout this thesis allows to draw valuable conclusions about
the behavior of mmWave networks. It was demonstrated the potential of network coding
techniques to increase network robustness. It was also shown that it is possible to detect
patterns in multi-layer metrics to detect short-term and long-term blockage, with the help
of ML techniques, even in situations indistinguishable to the human eye. The possibility of
detecting short-term obstruction, even in temporal windows that do not present significant
variations of SNR, leads us to think that the negative impact of obstruction can be felt
sometime after it happens. Furthermore, this "system memory" combined with the short-term
obstruction history results in the possibility of detecting future unexpected LOS obstructions
and their impact on multi-layer KPIs quite precisely.

In the future, the integration of the SVM classifier and the LSTM forecasting methods will
enable producing a framework capable of forecasting the future wireless link quality. This will
allow SDN switches to redirect the traffic generated by critical applications to radio links, that
are predicted to be under normal conditions, and capable to meet its requirements. Beyond
that, the ability to perform ahead-of-time forecasts of values such as RTT, SNR, and PER
brings many other possibilities to improve network reliability. For instance, the predictions
made for the average channel RTT may be used to further increase the performance of AC-
RLNC coding techniques when employed in a real millimeter-wave backhaul. Furthermore,
the proposed resilience mechanisms can now be easily tested on a network simulator without
the physical hardware limitations. In summary, possible directions for future research are:

• Development of a ML-based framework that uses the wireless link quality and KPIs
forecaster pipeline to forecast future link states;

• Leveraging the estimates of future links qualities to trigger traffic rerouting actions at the
network layer by the SDN controller. This will allow high priority traffic to be rerouted
through more reliable links, which can still fulfill the throughput and maximum delay
requirements;

• Leveraging the forecasted KPIs to further increase the robustness of MIT’s AC-RLNC on
mmWave links experiencing obstruction. This approach will be used to adjust the coding
rate before the blockage is experienced, no longer requiring waiting a full round-trip
time for the receiver’s feedback;

• Qualifying in the ns-3 testbed the impact caused by an obstruction in a millimeter-wave
backhaul, using the SDN’s dynamic rerouting traffic actions;
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• Collecting data in a larger deployment installed in an urban setting;

• Extend the proposed mechanisms to the next generation WiGig networks (IEEE 802.11ay).

In the near future, maintaining a reliable connection in a WiGig-based network may
require deploying a set of hybrid multi-layer techniques to achieve redundancy. This can be
accomplished in multiple ways, for instance, by employing network coding techniques at the
transport layer or by using an SDN controller that leverages the expected link quality to
dynamically adapt the routes at layer 3. In a more advanced version, physical links with other
neighbors may also be established to achieve this purpose. These mechanisms do not replace
the beamforming training operations defined in IEEE 802.11ad and, more recently, in IEEE
802.11ay, but rather complement them. Re-training at the MAC layer is the last resort and is
expected to be triggered only when all other resilience techniques fail. The new generation of
WiGig networks defines new PHY and MAC layers that support technologies to decrease the
training overhead, such as group training. Nonetheless, this remains a reactive mechanism,
and thus, adjustments are only performed when signal quality is effectively degraded.

Since there are no COTS devices available in the market that support IEEE 802.11ay, it is
not possible to evaluate the overhead of the new types of beamforming training. Nevertheless,
only sub-optimal adjustments can be performed due to the lack of knowledge of the entire
network topology in each node. As such, the resilience mechanisms proposed in this master’s
thesis should be evaluated in future 60 GHz networks.
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Appendices

This section presents additional results that further detail the findings described in the
previous chapters. It is organised into three main sections. Firstly, some results are presented
to complement the multi-layer analysis. In the second section, additional results obtained
during the development of the classifier of the quality of a mmWave link are presented. In the
last section, results regarding the prediction of the main KPIs of a link are presented.

The main takeaways from the analysis of these results have been described throughout the
thesis in their respective chapters.

A Multi-layer Analysis

In the following section results that complement the multi-layer analysis of the chapter 4
are presented.

A.1 Signal to Noise Ratio

(a) Path P/A/1/2. (b) Path P/A/2/1.

Figure A.1. SNR of two mmWave paths under normal, long-term blocked and short-term blocked scenarios.
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A.2 Packet Error Rate

Table A.1. Statistics of the measured PER for the 4 uplink paths between node P and A with different MCS
modes (fixed and automatic) for the three defined scenarios.

Path MCS mode Scenario
Packet Error (%)

Min Mean Max Std dev

A/P/1/1

1
Normal 0 0 0 0
Static 0 1.3 46.7 5.1

3
Normal 0 0 0 0
Static 0 10.2 100 24.7

5 Normal 0 0 0 0

7 Normal 0 0 0 0

9 Normal 0 0.01 0.3 0.003

Auto
Normal 0 1.8 11.4 1.2
Static 0 6.4 64.7 9.3

short-term 0 2.4 88.2 4.8

A/P/1/2

1
Normal 0 0 0 0
Static 0 0.01 3.6 0.16

3
Normal 0 0 0 0
Static 0 0.003 0.5 0.002

5
Normal 0 0 0 0
Static 0 0.03 0.7 0.09

7
Normal 0 0 0 0
Static 0 0.18 1.5 0.25

9
Normal 0 0.02 0.3 0.04
Static 0 1.2 5.4 1.3

Auto
Normal 0 1.8 15.8 1.4
Static 0 3.0 25.6 3.1

short-term 0 1.7 18.0 1.7

A/P/2/1

1
Normal 0 0 0 0
Static 0 0.002 2.5 0.06

3
Normal 0 0 0 0
Static 0 0.02 3.23 0.15

5
Normal 0 0 0 0
Static 0 34.5 99.2 36.6

7
Normal 0 0.0003 1.8 0.006
Static 0 66.8 100 33.4

9 Normal 0 0.12 1.22 0.18

Auto
Normal 0 1.6 16.7 1.3
Static 0 1.05 17.0 1.6

short-term 0 2.0 20.8 2.3

A/P/2/2

1
Normal 0 0 0 0
Static 0 0 0 0

3
Normal 0 0 0 0
Static 0 1.4 96.4 8.1

5
Normal 0 0 0 0
Static 0 49.1 100 43.2

7
Normal 0 0 0 0
Static 0 62.1 100 36.6

9 Normal 0 0.06 0.7 0.1

Auto
Normal 0 1.6 19.0 1.4
Static 0 2.8 64.3 3.7

short-term 0 1.9 17.3 1.9
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Table A.2. Average RTT measured for all paths between node A and P under normal operation.

MCS mode Link
Average RTT (ms) MCS

Mean Std dev Min Max MCS range MCS mean

MCS 1

A/P/1/1 40.83 7.79 19.17 56.46 - -
A/P/1/2 41.04 7.61 24.67 54.15 - -
A/P/2/1 41.67 7.93 18.66 58.75 - -
A/P/2/2 41.23 7.40 24.67 54.15 - -

MCS 3

A/P/1/1 9.98 2.87 3.45 17.15 - -
A/P/1/2 9.40 2.65 4.43 14.86 - -
A/P/2/1 9.54 2.95 3.00 16.49 - -
A/P/2/2 9.79 2.90 3.10 16.37 - -

MCS 5

A/P/1/1 2.93 0.75 2.93 5.25 - -
A/P/1/2 2.90 0.58 1.56 4.13 - -
A/P/2/1 3.11 0.75 1.90 5.53 - -
A/P/2/2 3.09 0.72 1.47 5.83 - -

MCS 7

A/P/1/1 2.52 0.64 1.27 4.17 - -
A/P/1/2 2.62 0.62 1.40 4.42 - -
A/P/2/1 2.47 0.59 1.50 4.50 - -
A/P/2/2 2.56 0.58 1.28 4.42 - -

MCS 9

A/P/1/1 2.48 0.66 1.28 4.69 - -
A/P/1/2 2.38 0.59 1.23 4.68 - -
A/P/2/1 2.44 0.60 1.25 4.21 - -
A/P/2/2 2.37 0.56 1.36 3.52 - -

MCS Auto

A/P/1/1 2.83 1.15 1.19 6.86 8 - 9 8.99
A/P/1/2 2.95 1.60 1.40 9.72 8 - 9 8.98
A/P/2/1 2.65 0.98 1.15 7.43 8 - 9 8.99
A/P/2/2 2.65 1.34 2.65 12.26 8 - 9 8.99
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A.3 Round-trip Time

Table A.3. Average RTT measured for all paths between node A and P under long-term blockage.

MCS mode Link
Average RTT (ms) MCS

Mean std dev Min Max MCS range Mean MCS

MCS 1

A/P/1/1 26.64 4.96 16.69 38.44 – –
A/P/1/2 42.85 134.53 14.51 1324.96 – –
A/P/2/1 27.86 7.38 9.31 48.89 – –
A/P/2/2 28.14 6.31 11.16 41.74 – –

MCS 3

A/P/1/1 167.88 230.26 0.72 819.34 – –
A/P/1/2 2.37 0.66 1.36 4.25 – –
A/P/2/1 2.34 0.62 1.26 4.53 – –
A/P/2/2 6.79 16.95 1.07 114.54 – –

MCS 5

A/P/1/1 – – – – – –
A/P/1/2 3.63 17.42 0.44 147.59 – –
A/P/2/1 208.18 138.27 5.66 554.03 – –
A/P/2/2 21.80 35.40 0.51 164.84 – –

MCS 7

A/P/1/1 – – – – – –
A/P/1/2 1.34 0.33 0.81 2.71 – –
A/P/2/1 2.11 5.92 0.46 46.29 – –
A/P/2/2 3.80 8.96 0.49 87.32 – –

MCS Auto

A/P/1/1 1.13 1.37 0.52 8.35 6 – 9 7
A/P/1/2 5.73 3.88 1.04 20.81 8 – 9 8.98
A/P/2/1 5.51 15.34 0.46 133.99 2 – 7 4.57
A/P/2/2 8.90 5.98 1.36 29.89 1 – 6 3

Table A.4. Average RTT measured for all paths between node A and P under short-term blockage.

MCS mode Link
Average RTT (ms) MCS

Mean std dev Min Max Range Mean

MCS Auto

A/P/1/1 7.04 6.73 1.84 34.17 1 – 9 8.39
A/P/1/2 9.59 9.07 1.43 57.02 1 – 9 8.72
A/P/2/1 6.76 0.89 1.55 27.60 1 – 9 8.81
A/P/2/2 25.30 6.46 21.18 93.15 3 – 9 8.99
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Table A.5. Maximum RTT measured for all paths between node A and P under normal operation.

MCS mode Link
Maximum RTT (ms) MCS

Mean std dev Min Max Range Mean

MCS 1

A/P/1/1 57.27 10.64 34.59 74.91 – –
A/P/1/2 112.5 478.62 36.29 4677.09 – –
A/P/2/1 60.51 13.9 15.2 87.8 – –
A/P/2/2 61.04 13.04 18.21 81.53 – –

MCS 3

A/P/1/1 402.37 491.59 1.15 1846.55 – –
A/P/1/2 6.6 2.78 2.02 12.4 – –
A/P/2/1 7.03 2.94 2.75 18.51 – –
A/P/2/2 42.79 143.1 1.94 1066.15 – –

MCS 5

A/P/1/1 – – – – – –
A/P/1/2 18.57 121.93 0.66 1026.44 – –
A/P/2/1 684.92 323.73 13.49 1360.27 – –
A/P/2/2 119.63 205.15 0.58 1009.97 – –

MCS 7

A/P/1/1 – – – – – –
A/P/1/2 3.4 1.86 1.2 13.33 – –
A/P/2/1 9.93 44.46 0.54 351.2 – –
A/P/2/2 16.53 47.25 0.61 401.3 – –

MCS 9

A/P/1/1 – – – – – –
A/P/1/2 4.91 4.08 1.3 22.7 – –
A/P/2/1 – – – – – –
A/P/2/2 – – – – – –

MCS Auto

A/P/1/1 5.45 13.53 0.63 78.42 6 – 9 7.26
A/P/1/2 29.41 20.48 1.74 106.13 8 – 9 8.98
A/P/2/1 32.93 105.73 0.59 897.83 2 – 7 4.57
A/P/2/2 43 33.29 3.21 246.91 1 – 6 2.98
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Table A.6. Maximum RTT measured for all paths between node A and P under long-term blockage.

MCS mode Link
Maximum RTT (ms) MCS

Mean std dev Min Max Range Mean

MCS 1

A/P/1/1 57.27 10.64 34.59 74.91 – –
A/P/1/2 112.5 478.62 36.29 4677.09 – –
A/P/2/1 60.51 13.9 15.2 87.8 – –
A/P/2/2 61.04 13.04 18.21 81.53 – –

MCS 3

A/P/1/1 402.37 491.59 1.15 1846.55 – –
A/P/1/2 6.6 2.78 2.02 12.4 – –
A/P/2/1 7.03 2.94 2.75 18.51 – –
A/P/2/2 42.79 143.1 1.94 1066.15 – –

MCS 5

A/P/1/1 – – – – – –
A/P/1/2 18.57 121.93 0.66 1026.44 – –
A/P/2/1 684.92 323.73 13.49 1360.27 – –
A/P/2/2 119.63 205.15 0.58 1009.97 – –

MCS 7

A/P/1/1 – – – – – –
A/P/1/2 3.4 1.86 1.2 13.33 – –
A/P/2/1 9.93 44.46 0.54 351.2 – –
A/P/2/2 16.53 47.25 0.61 401.3 – –

MCS 9

A/P/1/1 – – – – – –
A/P/1/2 4.91 4.08 1.3 22.7 – –
A/P/2/1 – – – – – –
A/P/2/2 – – – – – –

MCS Auto

A/P/1/1 5.45 13.53 0.63 78.42 6 – 9 7.26
A/P/1/2 29.41 20.48 1.74 106.13 8 – 9 8.98
A/P/2/1 32.93 105.73 0.59 897.83 2 – 7 4.57
A/P/2/2 43 33.29 3.21 246.91 1 – 6 2.98

Table A.7. Maximum RTT measured for all paths between node A and P under short-term blockage.

MCS mode Link
Maximum RTT (ms) MCS

Mean std dev Min Max Range Mean

MCS Auto

A/P/1/1 34.45 40.04 3.23 245.70 1 – 9 8.39
A/P/1/2 35.50 66.94 2.80 529.78 1 – 9 8.72
A/P/2/1 27.92 28.97 2.92 92.22 1 – 9 8.81
A/P/2/2 67.08 60.68 9.14 283.11 3 – 9 8.99
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A.4 Packet Loss

Table A.8. TCP packet loss measured for all paths between node A and P under normal operation.

MCS mode Link
Maximum RTT (ms) MCS

Mean std dev Min Max Range Mean

MCS 1

A/P/1/1 57.27 10.64 34.59 74.91 – –
A/P/1/2 112.5 478.62 36.29 4677.09 – –
A/P/2/1 60.51 13.9 15.2 87.8 – –
A/P/2/2 61.04 13.04 18.21 81.53 – –

MCS 3

A/P/1/1 402.37 491.59 1.15 1846.55 – –
A/P/1/2 6.6 2.78 2.02 12.4 – –
A/P/2/1 7.03 2.94 2.75 18.51 – –
A/P/2/2 42.79 143.1 1.94 1066.15 – –

MCS 5

A/P/1/1 – – – – – –
A/P/1/2 18.57 121.93 0.66 1026.44 – –
A/P/2/1 684.92 323.73 13.49 1360.27 – –
A/P/2/2 119.63 205.15 0.58 1009.97 – –

MCS 7

A/P/1/1 – – – – – –
A/P/1/2 3.4 1.86 1.2 13.33 – –
A/P/2/1 9.93 44.46 0.54 351.2 – –
A/P/2/2 16.53 47.25 0.61 401.3 – –

MCS 9

A/P/1/1 – – – – – –
A/P/1/2 4.91 4.08 1.3 22.7 – –
A/P/2/1 – – – – – –
A/P/2/2 – – – – – –

MCS Auto

A/P/1/1 5.45 13.53 0.63 78.42 8 – 9 8.99
A/P/1/2 29.41 20.48 1.74 106.13 8 – 9 8.98
A/P/2/1 32.93 105.73 0.59 897.83 8 – 9 8.99
A/P/2/2 43 33.29 3.21 246.91 8 – 9 8.99
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Table A.9. TCP packet loss measured for all paths between node A and P under long-term blockage.

Link Mean Std dev Min Max MCS Range MCS mean Number of samples

MCS 1

A/P/1/1 1.74 0.28 0.96 2.74 – – 590
A/P/1/2 1.72 0.29 0.87 2.61 – – 833
A/P/2/1 1.77 0.30 1.06 2.93 – – 830
A/P/2/2 1.76 0.32 0.89 2.83 – – 826

MCS 3

A/P/1/1 12.45 7.49 0.01 21.77 – – 452
A/P/1/2 0.04 0.04 0.006 0.27 – – 832
A/P/2/1 0.04 0.037 0.008 0.29 – – 832
A/P/2/2 0.28 0.56 0.008 4.74 – – 833

MCS 5

A/P/1/1 – – – – – – 0
A/P/1/2 10.66 9.28 1.10 66.7 – – 836
A/P/2/1 0.04 0.09 0.006 0.953 – – 823
A/P/2/2 49.20 36.46 2.86 100 – – 839

MCS 7

A/P/1/1 – – – – – – 0
A/P/1/2 97.53 9.09 37.5 100 – – 872
A/P/2/1 0.04 0.09 0.006 0.87 – – 826
A/P/2/2 60.7 45.17 6.01 100 – – 839

MCS Auto

A/P/1/1 0.12 0.33 0.007 2.22 6 – 9 7 832
A/P/1/2 0.19 0.35 0.008 2.59 8 – 9 8.98 834
A/P/2/1 0.42 0.31 2.51 2.5 2 – 7 4.57 834
A/P/2/2 0.7 0.40 0.29 2.36 1 – 6 3 836

Table A.10. TCP Packet loss measured for all paths between node A and P under short-term blockage.

Link Mean std dev Min Max MCS Range MCS mean Number of samples

MCS Auto

A/P/1/1 1.01 0.78 0.02 3.95 1 – 9 8.39 284
A/P/1/2 0.67 0.62 0.01 2.41 1 – 9 8.73 285
A/P/2/1 1.05 0.94 0.01 8.68 1 – 9 8.81 683
A/P/2/2 1.23 0.66 0.07 3.9 3 – 9 8.90 344
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A.5 TCP throughput

Table A.11. Throughput measured for all paths between node A and P under normal operation.

MCS mode Link
TCP throughput MCS

Mean std dev Min Max Range Mean

MCS 1

A/P/1/1 74.39 37.31 23.74 238.51 – –
A/P/1/2 67.39 19.65 10.30 101.69 – –
A/P/2/1 66.42 19.80 17.29 101.55 – –
A/P/2/2 64.12 19.09 15.95 108.42 – –

MCS 3

A/P/1/1 472.53 17.03 416.03 498.39 – –
A/P/1/2 469.41 18.18 407.71 499.27 – –
A/P/2/1 467.79 18.84 423.51 499.08 – –
A/P/2/2 472.61 18.22 389.35 499.75 – –

MCS 5

A/P/1/1 496.32 6.04 471.78 499.88 – –
A/P/1/2 495.75 11.10 387.82 499.90 – –
A/P/2/1 497.19 4.67 477.26 499.89 – –
A/P/2/2 496.44 6.67 457.32 499.85 – –

MCS 7

A/P/1/1 496.47 5.42 473.16 499.88 – –
A/P/1/2 496.20 8.29 441.01 499.87 – –
A/P/2/1 496.24 6.64 459.82 499.88 – –
A/P/2/2 497.00 5.21 470.81 499.90 – –

MCS Auto

A/P/1/1 495.12 7.94 451.38 499.91 8 - 9 8.99
A/P/1/2 494.70 8.15 453.63 499.89 8 – 9 8.98
A/P/2/1 495.23 7.27 452.59 499.87 8 – 9 8.99
A/P/2/2 495.68 7.63 461.62 499.89 8 – 9 8.99
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Table A.12. Throughput measured for all paths between node A and P under long-term blockage.

MCS mode Link
TCP throughput MCS

Mean std dev Min Max Range Mean

MCS 1

A/P/1/1 252.42 6.92 222.40 265.90 – –
A/P/1/2 238.52 5.12 225.42 250.05 – –
A/P/2/1 239.47 5.13 226.80 253.19 – –
A/P/2/2 238.82 5.62 222.30 251.31 – –

MCS 3

A/P/1/1 64.55 130.45 4.20 444.74 – –
A/P/1/2 499.74 0.18 498.50 499.89 – –
A/P/2/1 499.69 0.69 491.94 499.90 – –
A/P/2/2 483.37 62.03 19.89 499.88 – –

MCS 5

A/P/1/1 – – – – – –
A/P/1/2 496.81 34.64 90.43 499.90 – –
A/P/2/1 13.76 17.11 0.04 115.61 – –
A/P/2/2 1.06 2.14 0.00 14.21 – –

MCS 7

A/P/1/1 – – – – – –
A/P/1/2 499.72 0.43 495.55 499.91 – –
A/P/2/1 0.00 0.01 0.00 0.10 – –
A/P/2/2 2.38 2.31 0.00 4.69 – –

MCS Auto

A/P/1/1 477.51 23.50 409.92 499.91 6 – 9 7
A/P/1/2 409.86 35.56 329.75 487.57 8 – 9 8.98
A/P/2/1 495.79 10.44 433.83 499.89 2 – 7 4.57
A/P/2/2 328.76 59.99 213.14 488.00 1 – 6 3

Table A.13. Throughput measured for all paths between node A and P under short-term blockage.

MCS mode Link
TCP throughput MCS

Mean std dev Min Max Range Mean

MCS Auto

A/P/1/1 417.09 90.55 145.48 499.81 1 – 9 8.39
A/P/1/2 453.09 42.13 229.46 499.91 1 – 9 8.73
A/P/2/1 432.21 94.60 167.11 499.87 1 – 9 8.81
A/P/2/2 273.11 82.15 75.05 365.36 3 – 9 8.90
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B Wireless Link Quality Classifier

In the following section results that complement the wireless link quality classification
analysis of chapter 5 section 5.3.1 are presented, including intermediate results obtained with
the SVM, Random Forest and MLP classifiers.

Table B.14. Settings found for the top three SVM models for windows of size 3, 5, 7 and 10 seconds.

Window
Size

Best
Hyperparameters

Mean fit time
F1-Score

Mean std dev

Train Test Train Test

3 s

kernel: rbf
gamma: 3.381

C: 81.249
3.276 0.988 0.971 0.001 0.002

kernel: rbf
gamma: 7.409

C: 14.940
5.441 0.987 0.971 0.001 0.004

kernel: rbf
gamma: 3.708

C: 10.717
3.581 0.979 0.968 0.001 0.003

5 s

kernel: rbf
gamma: 5.122

C 18.051
1.951 0.987 0.967 0.000 0.006

kernel: rbf
gamma: 0.306

C: 72.397
2.430 0.961 0.951 0.003 0.004

kernel: poly
gamma: 0.867

degree: 5
C: 31.116

16.161 0.990 0.950 0.001 0.006

7 s

kernel: rbf
gamma: 3.460

C: 93.744
0.756 0.993 0.971 0.001 0.002

kernel: rbf
gamma: 4.358

C: 12.365
0.852 0.984 0.969 0.001 0.003

kernel: rbf
gamma: 1.813

C: 31.696
0.604 0.983 0.967 0.000 0.003

10 s

kernel: rbf
gamma: 4.161

C: 12.889
0.695 0.990 0.968 0.001 0.007

kernel: rbf
gamma: 2.181

C: 37.771
0.521 0.990 0.966 0.001 0.005

kernel: rbf
gamma: 1.989

C: 10.093
0.533 0.983 0.963 0.001 0.005
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Table B.15. Settings found for the top three Random Forest models for windows of size 3, 5, 7 and 10 seconds.

Window Size Best Hyperparameters Mean fit time
Test F1-Score

Mean std dev

3 s

warm_start: False, n_estimators: 938
min_samples_split: 2, min_samples_leaf: 1

max_features: auto, max_depth: 400
bootstrap: False

55.7 s 0.982 0.000

warm_start: False, n_estimators: 4779
min_samples_split: 2, min_samples_leaf: 1

max_features: 10, max_depth: 740
bootstrap: False

10.4 min 0.982 0.000

warm_start: True, n_estimators: 109
min_samples_split: 16, min_samples_leaf: 1

max_features: 7, max_depth: 340
bootstrap: False

14.6 s 0.980 0.001

5 s

warm_start: False, n_estimators: 4862
min_samples_split: 2, min_samples_leaf: 1

max_features: 10, max_depth: 190
bootstrap: True

5.9 min 0.973 0.005

warm_start: False, n_estimators: 816
min_samples_split: 10, min_samples_leaf: 2

max_features: 12, max_depth: 840
bootstrap: True

1.13 min 0.969 0.005

warm_start: True, n_estimators: 1978
min_samples_split: 16, min_samples_leaf: 1

max_features: 15, max_depth: 960
bootstrap: False

5.5 min 0.963 0.003

7 s

warm_start: False, n_estimators: 1046
min_samples_split: 10, min_samples_leaf: 9

max_features: 15, max_depth: 470
bootstrap: True

1.14 min 0.947 0.005

warm_start: True, n_estimators: 4705
min_samples_split: 57, min_samples_leaf: 5

max_features: 7, max_depth: 520
bootstrap: True

2.75 min 0.946 0.006

warm_start: True, n_estimators: 1909
min_samples_split: 89, min_samples_leaf: 11

max_features: 10, max_depth: 690
bootstrap: False

2.17 min 0.944 0.005

10 s

warm_start: False, n_estimators: 1046
min_samples_split: 10, min_samples_leaf: 9

max_features: 15, max_depth: 470
bootstrap: True

46.9 s 0.938 0.001

warm_start: True, n_estimators: 4705
min_samples_split: 57, min_samples_leaf: 5

max_features: 7, max_depth: 520
bootstrap: True

1.9 min 0.935 0

warm_start: True, n_estimators: 1909
min_samples_split: 89, min_samples_leaf: 11

max_features: 10, max_depth: 690
bootstrap: False

1.49 min 0.931 0.002
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Table B.16. Settings found for the top three MLPC models for windows of size 3, 5, 7 and 10 seconds.

Window
Size

Mean
Fit

Time

Hyper-parameters F1 Score

Solver
Hidden

Layers Neurons
Batch
Size

Epochs
Activation
Function

Alpha
Warm
Start

Shuffle
Data

Initial
Learning Rate

Train
Mean

Test
Mean

Train
std dev

Test
std dev

3 s
16.6 s

Adam

(50, 50) 128 60 Tanh 0.001 True True 0.003 0.963 0.966 0.005 0.060
11.3 s (32, 32, 32) 256 100 Tanh 0 True True 0.01 0.963 0.955 0.002 0.005

1.8 min 128 8 60 ReLu 0 False False 0.001 0.961 0.954 0.002 0.007

5 s
4 min (128, 128, 128) 8 50 ReLu 1e-5 False True 0.0001 0.965 0.953 0.000 0.006

3.9 min (32, 32, 32) 2 100 Tanh 1e-5 True True 0.001 0.964 0.953 0.006 0.002
14.2 s (128, 128) 64 60 ReLu 0 True False 0.005 0.960 0.949 0.004 0.002

7 s
15.0 s (128, 128) 512 100 Tanh 0 True False 0.01 0.965 0.954 0.008 0.002
50.9 s (64, 64) 8 60 ReLu 0 False True 0.001 0.963 0.950 0.008 0.001

2.6 min 128 2 50 ReLu 1e-5 True False 0.0005 0.954 0.943 0.008 0.002

10 s
33.7 s (64, 64, 64) 4 60 ReLu 1e-5 True True 0.001 0.965 0.953 0.002 0.012

1.4 min (128, 128) 4 80 ReLu 0 True True 0.001 0.971 0.951 0.004 0.006
4.9 s (128, 128, 128) Auto 60 ReLu 0 True False 0.005 0.967 0.949 0.005 0.009

C KPIs forecasting

In the following section results that complement the KPIs forecasting analysis of the
ARIMA and LSTM-based RNN models, of chapter 5 section 5.3.2, are presented. Examples of
predictions made by the LSTM neural network for two other mmWave paths are also shown.

Table C.17. Results obtained with the best performing ARIMA models for predicting the SNR of each
mmWave path established.

Path
ID

Path
Name

Configurations
Order

Metrics

p d q AIC

1 P/A/0/2 1 1 1 6929.644
2 A/P/2/0 0 1 2 8008.633
3 A/P/1/1 2 1 1 15620.335
4 P/A/1/1 0 1 2 9801.333
5 A/P/2/1 1 1 3 17194.189
6 P/A/1/2 1 1 1 17102.137
7 A/P/1/2 3 1 1 24176.161
8 P/A/2/1 1 1 2 23757.950
9 A/P/2/2 0 1 2 16720.983
10 P/A/2/2 0 1 2 16002.159
11 P/A/3/1 2 1 2 13809.592
12 A/P/1/3 0 1 2 10188.548
13 P/B/1/1 0 1 1 2039.078
14 B/P/1/1 0 1 1 680.995
15 B/P/2/1 4 1 5 9437.029
16 P/B/1/2 3 1 1 9185.718
17 B/P/1/2 1 1 1 5130.811
18 P/B/2/1 4 1 3 6518.607
19 B/P/2/2 0 0 0 1027.869
20 P/B/2/2 0 0 0 944.172
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Table C.18. Mean Squared Error obtained with the best performing LSTM model.

MSE (t) MSE (t+1) MSE (t+2)

Physical metrics

Beam Index RX 24.09 ± 95.52 25.18 ± 101.62 25.02 ± 100.86
Beam Index TX 1.38 ± 1.84 2.30 ± 4.32 1.66 ± 2.64
MCS RX 0.27 ± 0.30 0.31 ± 0.35 0.35 ± 0.43
MCS TX 0.23 ± 0.28 0.27 ± 0.33 0.29 ± 0.32
Mbps TX 4409.60 ± 4415.92 5068.61 ± 5215.88 5748.62 ± 5835.69
Mbps TX (Max) 4729.37 ± 4803.50 5432.87 ± 5563.34 5950.92 ± 6020.35
Packet Error (%) 18.50 ± 27.85 21.61 ± 28.07 24.40 ± 33.70
RCPI (dBm) 0.81 ± 0.52 0.90 ± 0.75 1.01 ± 1.07
SNR (dB) 0.80 ± 0.36 0.93 ± 0.60 1.02 ± 0.80

Network metrics

Sent Mbps 295.44 ± 151.94 448.58 ± 268.61 615.03 ± 383.13
Received Mbps 297.29 ± 151.70 450.04 ± 266.60 620.93 ± 387.39
TCP retransmissions 12411.95 ± 10680.55 19932.62 ± 17659.82 28143.20 ± 25000.92
RTT (Mean) 1332.91 ± 2195.41 4175.40 ± 12178.61 7148.64 ± 23314.91
RTT (Max) 7876.01 ± 12255.11 17183.57 ± 38121.04 27151.44 ± 70721.41
RTT (Min) 86.65 ± 259.23 273.00 ± 793.06 489.52 ± 1514.44
Packet Loss (%) 7.92 ± 6.49 13.82 ± 13.36 17.76 ± 17.64

Table C.19. Root Mean Squared Error obtained with the best performing LSTM model.

RMSE (t) RMSE (t+1) RMSE (t+2)

Physical metrics

Beam Index RX 2.12 ± 4.43 2.08 ± 4.57 2.05 ± 4.56
Beam Index TX 1.02 ± 0.59 1.18 ± 0.96 1.08 ± 0.71
MCS RX 0.47 ± 0.22 0.49 ± 0.26 0.51 ± 0.29
MCS TX 0.43 ± 0.22 0.46 ± 0.24 0.48 ± 0.23
Mbps TX 48.42 ± 45.45 51.53 ± 49.13 54.67 ± 52.53
Mbps TX (Max) 50.24 ± 46.96 53.49 ± 50.72 55.69 ± 53.38
Packet Error (%) 3.22 ± 2.85 3.61 ± 2.92 3.73 ± 3.24
RCPI (dBm) 0.86 ± 0.28 0.88 ± 0.35 0.92 ± 0.42
SNR (dB) 0.88 ± 0.19 0.92 ± 0.29 0.95 ± 0.35

Network metrics

Sent Mbps 16.60 ± 4.46 20.24 ± 6.25 23.63 ± 7.54
Received Mbps 16.67 ± 4.41 20.29 ± 6.18 23.75 ± 7.54
TCP retransmissions 100.98 ± 47.06 127.50 ± 60.63 150.94 ± 73.22
RTT (Mean) 28.29 ± 23.08 39.73 ± 50.96 47.14 ± 70.19
RTT (Max) 70.90 ± 53.37 93.91 ± 91.45 108.65 ± 123.88
RTT (Min) 5.18 ± 7.73 8.04 ± 14.43 10.16 ± 19.66
Packet Loss (%) 2.47 ± 1.35 3.19 ± 1.90 3.61 ± 2.18
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Table C.20. Examples of the results obtained with some of the settings tested and for the best-performing
model (green) during hyperparameter tuning for the LSTM-based RNN.

Hyperparameters Results

No. hidden

Layers

First

layer neurons

Other hidden

layers neurons

Dropout

Rate

Kernel

Initializer

Batch

Size
Solver

Learn

Rate

Round

Epochs

Loss (MSE) MAE

Train Test Train Test

4 100 128 0.40 uniform 64 rmsprop 0.1000 5 0.2421 0.2417 0.3344 0.3341

3 64 200 0.05 uniform 512 rmsprop 0.1000 9 0.1492 0.1497 0.2415 0.2420

3 100 64 0.60 normal 32 sgd 0.0001 100 0.1442 0.1441 0.3505 0.3504

1 16 100 0.50 normal 128 nadam 0.1000 100 0.0062 0.0249 0.0420 0.0915

3 32 256 0.70 uniform 8 sgd 0.0003 100 0.0781 0.0779 0.2537 0.2535

2 64 64 0.05 uniform 8 sgd 0.0030 100 0.0585 0.0585 0.1835 0.1836

3 256 64 0.05 uniform 512 adam 0.1000 21 0.0297 0.0285 0.1079 0.1074

3 128 32 0.60 uniform 2 sgd 0.0300 100 0.0279 0.0255 0.1124 0.1070

3 64 8 0.70 normal 512 nadam 0.0100 49 0.0302 0.0253 0.1128 0.1049

5 256 64 0.05 uniform 128 adam 0.0050 43 0.0024 0.0021 0.0220 0.0203

5 32 100 0.20 uniform 64 rmsprop 0.0010 100 0.0027 0.0021 0.0234 0.0202

4 16 200 0.10 normal 64 rmsprop 0.0010 100 0.0021 0.0019 0.0192 0.0175

4 16 200 0.10 normal 64 rmsprop 0.0010 100 0.0021 0.0019 0.0192 0.0175

3 100 128 0.30 normal 32 nadam 0.0003 83 0.0020 0.0018 0.0200 0.0173

3 100 128 0.30 normal 32 nadam 0.0005 83 0.0020 0.0018 0.0200 0.0173

3 128 100 0.20 normal 256 nadam 0.0010 100 0.0018 0.0017 0.0183 0.0162

3 256 128 0.20 uniform 128 nadam 0.0005 100 0.0017 0.0017 0.0170 0.0154
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Figure C.2. Predicted RX beams for two mmWave paths.
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Figure C.3. Predicted TX beams for two mmWave paths.
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Figure C.4. Predicted SNR for two mmWave paths.
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Figure C.5. Predicted received data rate for two mmWave paths.
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Figure C.6. Predicted PER for two mmWave paths.
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Figure C.7. Predicted packet loss for two mmWave paths.
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Figure C.8. Predicted number of TCP retransmits for two mmWave paths.
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Figure C.9. Predicted maximum RTT for two mmWave paths.



. Appendices

0 1 2 3 4 5 6
Time (min)

0

100

200

300

400

500

RT
T 

(M
ea

n)

Path:5.0

Real
Pred (t)
Pred (t+1)
Pred (t+2)

(a)

0 1 2 3 4 5 6
Time (min)

0

100

200

300

400

500

600

700

RT
T 

(M
ea

n)

Path:11.0

Real
Pred (t)
Pred (t+1)
Pred (t+2)

(b)

Figure C.10. Predicted mean RTT for two mmWave paths.
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Figure C.11. Predicted minimum RTT for two mmWave paths.
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