
Universidade de Aveiro
2021

Gabriel
Silva

Algoritmos de Análise de Alinhamento de Ofertas
do Mercado de Trabalho

Universidade de Aveiro
2021

Gabriel
Silva

Algoritmos de Análise de Alinhamento de Ofertas
do Mercado de Trabalho

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia In-
formática, realizada sob a orientação cient́ıfica de Doutor Mário Rodrigues,
Professor Adjunto da Universidade de Aveiro e de Doutor Armando Pinho,
Professor Catedrático do Departamento de Electrónica, Telecomunicações
e Informática da Universidade de Aveiro

o júri / the jury

presidente / president Doutora Ana Maria Perfeito Tomé
Professora Associada, Universidade de Aveiro

vogais / examiners committee Doutora Liliana da Silva Ferreira
Professora Catedrática Convidada, Faculdade de Engenharia da Universidade do

Porto

Doutor Mário Jorge Ferreira Rodrigues
Professor Adjunto, Universidade de Aveiro (Orientador)

agradecimentos /
acknowledgements

Gostaria primeiramente de agradecer à minha faḿılia por me ter apoiado
durante todo este ciclo de ensino superior e em segundo lugar à minha
namorada por me ter aturado durante os altos e baixos que se foram apre-
sentando durante este percurso.

Um especial agradecimento também aos Professores Mário Rodrigues e Ar-
mando Pinho pela excelente orientação que deram durante este ano inteiro.

Palavras Chave Mercado de Trabalho, Ontologia, ESCO, Random Forest, Probabilidade
Estacionária, NLP

Resumo A adoção de tecnologias digitais tem prometido a aceleração e agilidade
das atividades laborais, processos e modelos de negócio. No entanto, as
promessas de ganho estão associados a uma forte necessidade de profis-
sionais qualificados que possuam a capacidade de aplicar o potencial da
tecnologia de forma eficiente.Os contextos de trabalhos estão a ser remod-
elados à medida que novos modelos de interação e integração humana e
tecnológica evoluem. Para ser posśıvel aumentar a prontidão do mercado
de trabalho em contextos de rápida mudança, é importante que os inter-
venientes nas empresas, profissionais e responsáveis por poĺıticas públicas
estejam cientes da dinâmica e das necessidades do mercado de trabalho.
Isto pode ser observado pela lista de anúncios de emprego, contudo, o seu
elevado número, requer ferramentas eficientes com o objetivo de os analisar
e simplificá-los para que, consequentemente, seja posśıvel retirar conclusões
atempadamente e corretamente.

Como as propostas de emprego possuem formulações distintas para pos-
tos semelhantes, dependendo das empresas que estão a contratar, surge
o desafio de estabelecer um equiĺıbrio para a comparação de propostas de
emprego. Neste trabalho, foi feita uma tentativa de mapeamento das pro-
postas de emprego nas ocupações da ESCO (European Skills/Competences,
qualifications and Occupations). ESCO é uma ontologia publicada pela
União Europeia e as suas ocupações traduzem-se em cargos num determi-
nado emprego e têm associadas as competências essenciais e facultativas
ao exerćıcio da ocupação. A ELK (Elasticsearch, Logstash, Kibana) stack
foi usada para lidar com o grande volume de propostas de emprego. ELK
é uma ferramenta estável que gere avultadas quantidades de dados e, a
camada do Kibana, possibilita a rápida exploração dos dados e a criação de
painéis de visualização. Os resultados mostram que a ELK stack é uma fer-
ramenta adequada para providenciar uma interpretação visual das dinâmicas
do mercado de trabalho.
Foram testadas várias formas de alinhamento entre ofertas reais de emprego
e as ocupações ESCO. Os melhores resultados revelaram um f1-score de mais
de 0.8 no mapeamento de ofertas de emprego de ocupação de ńıvel 1 da
ESCO e uma exatidão de 63.75% quando houve a tentativa de prever a
ocupação de ńıvel 5. Estes resultados estão alinhados com o estado da arte
presente na literatura e são bastante promissores, especialmente quando
comparado ao patamar inicial de 40%, e mostra que a ESCO é um bom
candidato para estabelecer esse equiĺıbrio em que permite a comparação das
dinâmicas no mercado de trabalho para ambientes distintos.

Keywords Labor market, Ontology, ESCO, Random Forest, Steady State Probability,
NLP

Abstract The adoption of digital technologies promises to accelerate the transforma-
tion and the agility of processes, work activities and revenue models. Yet,
the promised gains come together with dramatic needs for qualified profes-
sionals who can effectively leverage the technology potential. Job contexts
are being reshaped as new models for the interaction and integration of
humans and technologies take shape. To increase the readiness of the job
market in fast-changing contexts all stakeholders–companies, professionals,
policymakers must be aware of the job market dynamics and needs. These
dynamics can be observed from the collection of job announcements, but
its high volume requires effective tools for analyzing and simplifying it to
draw timely and correct conclusions.

As job announcements have distinct formulations for similar roles, depend-
ing on the hiring company, this raises the necessity of establishing a common
ground for comparing the job offers. In this work, an attempt at mapping
job offers to ESCO (European Skills/Competences, qualifications and Oc-
cupations) occupations is made. ESCO is an ontology published by the
European Union and its occupations are job positions with the mandatory
and optional skills associated. ELK (Elasticsearch, Logstash, Kibana) stack
was used for dealing with the high volume of job announcements. ELK is
a stable tool that can manage large quantities of data and has an effec-
tive text search algorithm, the Kibana layer enables the rapid exploration of
data and creation of visualization dashboards. Results show that the ELK
stack is a suitable tool for providing a visual interpretation of the job market
dynamics.

Several strategies were tested to align real job offerings with ESCO occupa-
tions and the best one revealed an f1 score of over 0.8 in mapping job offers
to level 1 ESCO occupations and an accuracy of 63.75% when trying to
predict the level 5 Occupation. These results are comparable to the state-
of-the-art and are very promising, especially when compared to the baseline
of 40%, and shows that ESCO is a good candidate as common ground to
enable the comparison of job market dynamics for distinct environments.

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Objectives . 2

1.2 Dissertation Structure . 2

2 State of the Art and Background Knowledge 5

2.1 Background Knowledge . 5

2.1.1 Semantic Web . 5

Ontologies . 6

Triples . 6

Synsets . 6

2.1.2 ESCO . 7

2.1.3 Job Offers . 8

API . 11

Web Scraping . 11

2.1.4 Machine Learning . 11

2.1.5 Document-Oriented Databases . 12

2.1.6 Markov Chain . 12

2.2 State of the art . 13

3 Resources and tools used 17

3.1 Introduction . 17

3.2 Tools Used . 17

3.2.1 ELK Stack . 17

Elasticsearch . 17

Kibana . 18

3.2.2 GraphDB . 18

3.3 Wordnet . 18

3.4 NLTK . 19

3.5 Scikit-Learn . 19

3.6 Tree Tagger . 20

i

4 Developed Work 21
4.1 Introduction . 21
4.2 Data Collection . 21

4.2.1 Preparatory Work . 22
4.2.2 Data Preparation . 22

Data Model . 22
ITJobs Conversion . 23
CareerJet Conversion . 23

4.2.3 Handling Duplicates . 24
4.3 Algorithm . 24

4.3.1 Main Components . 25
Dataset . 25
Elasticsearch Scoring . 26
Graph Centroids . 27
Wordnet . 28
Taxonomical Similarity . 28

4.3.2 Occupation match as a multi-class problem 29
Feature Vector . 29
Testing . 30

4.3.3 Occupation match as multiple binary classification problems 30
Feature Vector . 30
Machine Learning . 31

4.4 Testing . 34
4.4.1 Binary Classification . 34
4.4.2 Binary classification results as transition probabilities 34

5 Results 37
5.1 Results . 37

5.1.1 Data Collection and visualization . 37
5.1.2 Machine Learning . 38
5.1.3 Occupation Transition Matrix . 42

Different Diagonal Estimator . 51
5.1.4 API . 51

5.2 Discussion . 52

6 Conclusion 57
6.1 Summary of the developed work . 57
6.2 Main Results . 58
6.3 Future Work . 58

Bibliography 61

ii

List of Figures

2.1 Example of two triples [21]. 7

2.2 Example of ESCO Structure [20]. 8

2.3 Software Engineer occupation from the ESCO website [7]. 9

2.4 Job offer taken from CareerJet for a ”Júnior Software Engineer (m/f/d)”. . . 10

2.5 Example of a probability graph. 12

2.6 Probabily matrix of the graph shown in Figure 2.5. 13

4.1 Data Information Flowchart [32]. 21

4.2 Example of a job description. 25

4.3 Example of an ontology graph with the nodes returned by the query ”Software
Engineers”. 27

4.4 Example of the path for each occupation in the ”Software Engineers” query. . 29

4.5 Example of the feature vector for the job offer titled ”Software Engineers”. . 31

4.6 Probability of each class defeating one another according to a Random Forest
model. This example was for the ”” hilti ” subdivision salesman” query. . . . 33

4.7 Matrix example to help explain how the probability matrix was calculated. . 34

4.8 Markov Training flowchart. 36

5.1 Dashboard with occupations (until the 3rd level) and skills (4th level) for the
Aveiro region for the past 90 days. 38

5.2 Dashboard with skills (until the 4th level) for the Aveiro region for the past 90
days. 38

5.3 Example of dashboard updating by clicking one specific occupation. 39

5.4 Difference between the correct occupation score and the predicted score using
the Random Forest algorithm. 42

5.5 Accumulated errors for the Random Forest Model. 43

5.6 Matrix example to help explain how the probability matrix was calculated. . 43

5.7 ”Art Editor” probability matrix for the Random Forest model. 44

5.8 ”Art Editor” probability matrix for the Neural Network model. 44

5.9 ”Art Editor” probability matrix for the Decision Tree model. 45

5.10 ”Art Editor” probability matrix for the KNN model. 45

5.11 Markov decisions per percentage. 47

5.12 Accumulated percentage of errors when computing the steady state probability
based on the transition matrix. 47

5.13 Difference between the correct occupation score and the predicted score using
the transition matrix. 48

iii

5.14 Accumulated percentage of differences for the transition matrix. 48
5.15 Box plot with the state of the art EFT results [23]. 50
5.16 Number of occurrences for the difference between the predicted score and the

chosen score for Version 2. 51
5.17 Accumulated Percentage of difference between the predicted score and the cho-

sen score for Version 2. 52
5.18 Example of two queries with ”noise” to test the API. 53
5.19 Dashboard with occupations and skills (until the 3rd level) for Europe made

by the CEDEFOP [13]. 55

iv

List of Tables

4.1 Example of ambiguous offers that match more than a single ESCO occupation. 26
4.2 Parameters tested for each algorithm. 32

5.1 Grid search results for the different machine learning algorithms. 39
5.2 Best parameters found for each algorithm. 40
5.3 Confusion Matrix for the best scoring random forest model for the first fold. . 40
5.4 Confusion Matrix for the best scoring neural network model for the first fold. 40
5.5 Confusion Matrix for the best scoring decision tree model for the first fold. . 41
5.6 Confusion Matrix for the best scoring KNN model for the first fold. 41
5.7 Accuracy for each ESCO level. 41
5.8 Random Forest confusion matrix for every ESCO first digit Occupation . . . 41
5.9 Random Forest F-Score for each individual ESCO first-digit occupation. . . . 41
5.10 Accuracy for each ESCO level using the different algorithms. 46
5.11 Accuracy for the decision being on the Top 2, 3, 4 or 5 decisions made by the

algorithm. 49
5.12 Confusion matrix for every ESCO first-digit Occupation obtained when using

the state transition matrix. 49
5.13 F-Scores for individual single-digit ESCO occupations obtained using the state

transition matrix . 50
5.14 Results for the 2nd version of transition matrix. 51

6.1 Final Results attained by the algorithm . 58

v

vi

Chapter 1

Introduction

Digitalization is one of the most popular topics in the agendas of companies and pol-
icymakers. For companies, the adoption of digital technologies promises to accelerate the
interconnectedness and the agility of processes, work activities and revenue models [34]. Yet,
the promised gains come together with dramatic needs for qualified professionals who can
effectively leverage the technology potential. Job contexts are being reshaped as new models
for interaction and integration of human talent and technologies take shape, and as enormous
volumes of data are generated at every operation [14].

The demand for qualified professionals that are able to make sense of such accelerated
and interconnected work systems is already evident, notably in the explosive growth of job
announcements in social media and online platforms. The challenge lies in the fact that
many of the professional profiles are in growing demand and require new qualifications and
unique combinations of technical and behavioural competences that are hard to find in the
current job market [6, 19]. Several of these new jobs, such as app developers, cloud computing
specialists, data scientists, drone operators, data brokers, cyber security specialists, among
many, were nonexistent in the last decade. For both companies and professionals, this is a
critical moment to make sense of the new professional profiles and demands that are emerging,
in order to adjust recruitment and qualification and career strategies.

The popularity of online media for recruitment, and the abundance of job postings an-
nounced every day, offers a rich setting to learn about the characteristics of the new profes-
sional profiles that are in demand to meet the digitalization across all business sectors [37, 15].
Moreover, the understanding of the changes taking place in workforce demand is critical for
the society as a whole, in order to develop detailed knowledge about the forthcoming skills
requirements and support the development of adequate education and training programs in a
timely manner. This study offers a contribution in such a direction. We developed tools that
allow for the extraction and the analysis of large volumes of data from online job announce-
ments, with the purpose of advancing in the understanding about the emerging demands
for competences and skills. Hence, it brings together the rich information concerning the
emerging demand for professional profiles that is scattered across new job announcements,
and the existing structured knowledge about skills, competences, qualifications and occupa-
tions relevant for the EU labour market that is organized in ESCO [7], the European Skills,
Competences and Occupations classification system.

The creation of a tool that automatically collects data and qualifies them to a given
framework, in this case ESCO, would allow for comparison between regions or even countries

1

all across Europe. This was the main goal of this study, i.e., to create a tool that offers the
capability to detect trends of where the industry is moving towards and help managers build
better job offers for candidates.

1.1 Objectives

The main objective of this work is the development of a tool to collect and automatically
classify job offers, according to the ESCO framework in order to rapidly understand the most
required skills at any moment.

The system should be able to fetch job offers from different regions and countries and
automatically attribute them an ESCO occupation based on an algorithm adaptable to un-
foreseen job posts. It should also allow the creation of varied dashboards depicting distinct
dimensions, analyse trends in jobs as of late, historically analyze how a certain industry is
doing, among other options.

There is also another part of the system that should be able to, given a query, attribute
it an ESCO occupation. This would be helpful to, for example, recruiters trying to build job
offers for potential candidates. Having a tool like this, would allow managers and recruiters
to create more accurate job offers when it comes both to the name of the position wanted for
the company as well as the skills needed to fill out that position.

The development of such system makes use of many techniques, such as using different
job offer sources API (Application Programming Interfaces), as well as creating its own,
web scrapping and document-storage databases for the data collection system. For the de-
velopment of the classification algorithm, when it comes to engineering the feature vector,
knowledge of ontologies and how to navigate them (both vertically as well as horizontally)
is needed. Some natural language processing techniques are also used, such as the seman-
tic similarity, and the usual pre-processing pipeline of removing stopwords, tokenization and
lemmatization of words. For the classification part of the algorithm, knowledge of machine
learning algorithms, as well as Markov chains, is necessary.

For an user to have to test and visualize the work done there will be a visualization tool
for the dashboards, where an user can access and create their own visualizations, as well as
aggregate all of the created visualizations in a dashboard. For the sole purpose of testing the
algorithm there, will also be a website where an user is allowed to enter queries and see the
results according to the classification algorithm.

1.2 Dissertation Structure

This document will feature six chapters, where each chapter will feature a brief introduc-
tion and present a relevant part of this work. It provides the background knowledge needed
to understand this system, introduces the state of the art, as well as related work done in this
area of work showcasing their results and achievements, showcase how the work was developed
and which steps were took to ensure the best possible results, talk about the results obtained
as well as the comparing them to the state of the art, lastly, present the conclusions reached
as well as talk about the future work to better develop the work here shown.

The chapters following this initial one will be the following:

• Chapter 2 - State of the Art and Background Knowledge

2

• Chapter 3 - Resources and Tools used

• Chapter 4 - Developed Work

• Chapter 5 - Results

• Chapter 6 - Conclusion

The second chapter, as the title implies, will present the state of the art for this area, as
well as show the essential base concepts necessary to understand this work. This chapter will
start off by talking about these base concepts and move one to a collection of studies done in
the past that approach this topic of automatically classifying job offers or even curriculum’s
into frameworks.

The third chapter will focus on describing the several tools used when developing the work
and the decision process behind using these instead of existing alternatives. A description of
how these are used and their purpose when it comes to this work will be given.

On the fourth chapter, all the developed work will be presented. Starting from building
up the data collection system, explaining the data model, where the data comes from, how
it is transformed until the algorithm and the all that was tried when it comes to machine
learning and to tuning the final model.

The fifth chapter will showcase the results achieved for both the data collection and
visualization, as well as the algorithm created. Examples of dashboards will be shown for
the ”Aveiro” region of Portugal, as well as the best results the algorithms achieved when
classifying the job offers into ESCO occupations, while comparing them to the state of the
art.

To end this work, the ”Conclusion” chapter will give a brief summary of the work devel-
oped, show the main results achieved and discuss the future work so that all that was here
shown could be improved upon.

3

4

Chapter 2

State of the Art and Background
Knowledge

The focus of this section will be to discuss the background knowledge needed to understand
the work that will be presented further ahead in the document as, well as give a summary of
the current state of the a art.

The chapter will start with the background knowledge and concepts about the semantic
web and machine learning followed, by the state of the art and the related works.

2.1 Background Knowledge

The background knowledge section will mention ways of representing information and
general information needed to understand the work that will be presented further ahead.
Topics such as ontologies, machine learning algorithms, the framework used will be displayed
in this section.

2.1.1 Semantic Web

The Semantic Web could be considered an extension of the existing, and widely used,
World Wide Web. The Semantic Web concept means that content in the Web should be
structured in such a way that both humans and machines can easily understand [2]. This
is done by adding machine-interpretable metadata of the already published information and
data, so that the machines can make similar connections that humans are already able to do.

Connected to the semantic web there is the linked data concept. Linked open data is a
structured data modeled as a graph and distributed in such a way that allows for connec-
tions between different servers and databases. This concept enables people and machines to
access data from different servers and make sense of it more easily. This takes the semantic
web to another level, where instead of simply having linked documents, now there is linked
information. Creating this type of data allows both humans and machines to interpret data
in similar ways which is exactly the goal [8, 36].

Linked open data, usually, uses a defined structured data type to publish the data called
RDF (Resource Description Framework). This standard offers a way to share graph data
with both people and machines. Once this standard was recognized by W3C (World Wide
Web Consortium), a large collection of tools started being built around it [4, 31].

5

The RDF is a standard used to describe web resources and data interchange. It works by
defining relationships between data and objects through triples. These triples consist of three
linked data pieces: a subject, a predicate and an object. Having such a simple and uniform
structures that allows information to be express using simple statements, connecting pieces of
information together, lets any resource be identifiable, disambiguated and interlinked [2, 31].
It allows resources to not be ambiguous, by treating everything as a resource and attributing
it a unique identifier called an URI (Universal Resource Identifier). These work similarly
to URL (Universal Resource Locators) which are, in fact, a form of URI, but for uniquely
identifying webpages. Now, instead of identifying web pages, the goal of URIs is to have
resources be uniquely identifiable by machines and serve as the building of data structures.
Also, it helps knowing exactly which resource the machine is looking at and how it relates to
other pieces of data.

Ontologies

Ontology has varied definitions in different fields, however, when it comes to the Semantic
Web meaning of ontology, it is a document that contains the description of concepts and their
relationships. They are meant to model the structure of a given system [18].

Ontologies usually have a taxonomy and inference rules. Taxonomies are what defines
the concepts and their relationships, it is what gives the ontology structure and terminology,
so while an ontology identifies concepts and relationships, the taxonomy formalizes these
hierarchical relationships among the concepts and how they should be referred to. It allows
”lower-level” concepts to obtain the properties of the ”higher-level” concepts. The inference
rules work to find these relationships and make ontologies a more powerful tool, for example,
the author of [2] gives the following example: ”If a city code is associated with a state code,
and an address has a city code, the address will also have the state code associated with it”.

Triples

RDF files are structured in triples. Each triples must have a subject, a predicate and an
object and can be represented using XML (eXtensive Markup Language) tags. On the RDF
file the triples make specific affirmations, such as the ones shown in Figure 2.1. In this Figure,
the subject would be Tim, the predicate both ”birthPlace” and ”birthDate”, with the objects
being ”1995-06-08” and London. However, in this case, London also contains an URI to some
other value and is not just a literal value like the birth date.

This structure offers great simplicity and a natural way of describing things and, more
importantly, a way that machines can understand and help them process these large amounts
of data. Anyone can define new concepts and create new triples, as long as they create the
appropriate URI for the subject, object and predicate.

Synsets

A synset is a group containing many words that can be used to describe the same con-
cept. These are synonymous words that can freely be interchanged with one another between
contexts [11]. One word can belong to several synsets for varied reasons.

When it comes to lexical terms these can have several relationships between themselves.

6

Figure 2.1: Example of two triples [21].

• Synonyms - Two different words that have the same meaning. For example: fine and
good are two different words that have the same meaning.

• Hypernyms - Describe more abastract terms. For example: Flower is a hypernim of
rose since flower can encompass many species.

• Hyponyms - Describe more specific terms. For example: Rose is a hyponym of flower
since a rose is a type of flower.

• Polysemy - The capability of the same word to have one or more meanings. For example:
Newspaper can refer to both the object we read or the company that prints it.

synsets take all these into account when building their structure making them a very
powerful lexical tool.

2.1.2 ESCO

Creating an algorithm that can map occupations to job offers was set as a goal for this
project. In order to do this, there was a need to find a framework that contained descriptions,
titles and skills needed for each occupation, so that these could be mapped to job offers.

European Skills, Competences, Qualifications and Occupations (ESCO) is a multilingual
classification of skills, competences, qualifications and occupations. It describes, identifies
and classifies professional occupations, skills and qualifications inside the European Union
labour market. ESCO describes 2942 occupations and 13485 skills linked to these occupations
translated into 27 languages. The ontology works by having different levels of occupations
from more ”general” concepts such as ”Professionals” to finer-grained occupations on the last
levels like ”Software Developer”. Figure 2.2 shows an example of the ESCO structure. This
is given as an ontology that is free to download and work with by everyone [7].

Besides this, once the algorithm is finely tuned, ESCO allows for easy comparisons between
different countries or regions due to being a base model that classifies occupations. It also
allows for the clustering industries and see how they are developing per country or per region.

With all this in consideration, ESCO seemed like the ideal framework to use when trying
to match job offers to a certain occupation and it would also allow us to develop a more
robust work and expand which directions we can follow.

7

Figure 2.2: Example of ESCO Structure [20].

In Figure 2.3 it is possible to see an example taken from the ESCO website of what an
occupation looks like and the fields that come with the ontology, such as essential skills and
competences, alternate names, etc. On the left side there is the path taken to reach ”software
developer” which is the fifth level occupation. The path taken to get to software developer is
the following, in order from first to fifth: Professional, Information and communications tech-
nology professionals, Software and applications developer and analysts, Software developers
and lastly Software developer.

2.1.3 Job Offers

In order to develop a system that can collect and categorize data from job offers into
different ESCO occupations, as well as create different dashboards, first there is a need to
look into job offers and see what can be extracted from them.

Looking at Figure 2.4 as an example taken from the ”CareerJet” website, job offer postings
contain many fields that can be extracted. The job title, company offering the job, location,
contract status, description and date when the offer was made are the first ones that pop out
to the end user.

Most of this information can be obtained using the different companies public API as well
as more information that is not right away displayed on their page.

For the dashboard creation part of this work, the information here seen is relevant. It
allows the creation of several different dashboards that could be useful to analysing a country
labour force or to compare regions of the same country. Things such as having more permanent
contracts as opposed to timed ones, or number of jobs posting in the past X days, are useful
for this purpose.

For the classification part, the decision was to try and use only the job offer title, in

8

Figure 2.3: Software Engineer occupation from the ESCO website [7].

9

Figure 2.4: Job offer taken from CareerJet for a ”Júnior Software Engineer (m/f/d)”.

10

the case of the example ”Júnior Software Engineer (m/f/d)”. However, this can prove to
be difficult seeing as the real world job offers even the titles contain information that is not
relevant to the classification and there are, sometimes, misspellings.

API

An API is a piece of software that allows two applications to talk to each other. The
purpose of an API is to answer a request made by a machine and return what was asked for,
provided the correct parameters were given and it has authorization to do so.

These follow certain standards. Nowadays API are typically REST (Representational
State Transfer), and are easily accessible and understood. The most common use for an API
is to provide some type of data, given some parameters it was designed to take. These can
be used internally or be exposed to the world for anyone to query and fetch data.

Web Scraping

Since some API do not return the full information of the job offer postings, for example,
CareerJet truncates their descriptions past a certain number of characters, web scraping
methods were used to extract the rest of the information from the job offer postings.

Web scraping refers to the practice of automatically extracting information and gathering
data by any means that are not having a program interact with an API [25]. The most common
form of web scraping is to fetch a web page HTML (HyperText Markup Language) code and
write a program that will parse it and extract the relevant bits of information the user wants.
This can be automated by having the program navigate between web pages automatically,
requesting the HTML from the server, and parsing the files it gets back. Parsing this data
can encompass many techniques such as, for example, NLP (Natural Language Processing),
data analysis, information security, etc.

In general, if we can view the data on the web, it can be extracted using web scraping
methods. These methods also offer the advantage of being able to cross-reference information
from different websites and create new data from the extracted one.

2.1.4 Machine Learning

Machine Learning is a subset of Artificial Intelligence and it was defined by Arthur Samuel
in 1959 as a field of study that gives computers the ability to learn without being explicitly
programmed [29]. In today’s world, machine learning is becoming more and more relevant
each day as the amount of data available increases tremendously and it would be very hard
to analyze all of it without such techniques.

This is a very vast field that includes supervised learning (learning through pre-labelled
inputs which act as targets) and unsupervised learning (training set does not contain any
targets and the algorithm tries to group similar examples).

We used the following supervised learning algorithms:

• Random Forest

• Neural Network

• Decision Tree

11

• K-Nearest Neighbours (KNN)

• ADA Boost

• Support Vector Machines (SVM)

Although some of these were not used as extensively as others, they were all, at some
point, tested and trained with. The metrics used to evaluate these models were their accuracy,
precision, recall, and f1-score.

2.1.5 Document-Oriented Databases

Document-Oriented databases are part of the growing technology that is NoSQL Databases.
These are seeing more common use cases everyday, especially when it comes to big data an-
alytics. These have seen a rise due to data becoming more complex when it comes to both
volume and structure (unstructured data is becoming more common) and the need for speed,
the need for all of these makes NoSQL databases become more attarctive than more tradi-
tional Relational Database Management Systems (RDBMS) [26].

Document-Oriented databases saw their niche carved out in the NoSQL world by being
able to store and retrieve semi-structured data. These are a subset of key-value store databases
with the key difference being how data is processed. In Document-oriented databases the
document structure metadata is used by the database engine to perform optimizations when
it comes to search and retrieve speeds.

As the name suggests, these revolve around documents. These assume that data is encoded
in a standard format or encoding, such as XML or JSON (JavaScript Object Notation). Not
every document needs to have every field filed and some engines even allow for mix and
matching of encodings, like uploading both XML and JSON files to the same database.

2.1.6 Markov Chain

The idea behind using Markov chains is to take advantage of the probabilities for each
class given by the machine learning models. By using a stationary Markov model, it is possible
to get a probability that each class is the correct one based on the matrix shown in Figure 2.6.

Figure 2.5: Example of a probability graph.

12

A B
A 0.3 0.7
B 0.2 0.8

Figure 2.6: Probabily matrix of the graph shown in Figure 2.5.

With the objective of calculating the stationary probability of a Markov chain, a system
of linear equations needs to be solved. Figure 2.5 shows an example of a probability graph to
calculate the stationary probabilities. The first step is to convert the graph into a probability
matrix, such as the one shown in Figure 2.6

Once we have obtained the probability matrix, the way to attain the stationary probabil-
ities for this model is through matrix multiplication:

[pA pB]

[
0.3 0.7
0.2 0.8

]
= [pA pB]

where, in the end, pA and pB are the stationary probabilities for this model. The way to solve
this is to convert it into three different linear equations such as the ones following:

0.3 pA + 0.2 pB = pA

0.7 pA + 0.8 pB = pB

pA + pB = 1

Solving these equations will give us the stationary probabilities for both A and B.
When it comes to the problem at hand, the first step is to build the probability matrix as

shown in Figure 2.6.
After getting the full probability matrix, the stationary probabilities are calculated, which

ends up being a vector with the probability of each occupation being the ”correct” one. Mixing
the two models, machine learning and Markov, yielded better results, that will be presented
in Chapter 5.

2.2 State of the art

In this section, literature related to either extracting job information from postings or
resumes is presented, as well as articles using frameworks such as ESCO.

In [12], the authors develop a framework called eSkills Match. The framework attempts
to align the existing work done by the European Union with the European e-Competence
Framework (e-CF), ESCO and the Information and Communication (ICT) Body of Knowledge
(BoK) into a single model. This model uses e-CF as the reference framework, tries to relate
the BoK directly with it. The authors also use ESCO and relate it with the e-CF framework
through skills and knowledges. In the end, the authors had a set of 10 ICT job profiles that
were used to test the matching method with only 4 of these being present in the article. The
authors identify the difficulties in matching different frameworks, requiring external validation
from experts at times as well as the need to include more jobs.

In a second article [5] the authors attempt to extract information from resumes. The
authors identify two steps needed to extract information from resumes which are not stan-
dardized neither in format nor layout. The first step takes as input a resume where the raw

13

text is extracted followed by identifying the composition of each line and using adaptive seg-
mentation in order to output semi-structured data comprised of several key-value pairs. To
help generate this data, the authors design a novel feature called “Writing Style”. The second
step is called “Resume Facts Identification”, where the previously generated semi-structured
data is taken as an input, passed through a multiple category text classifier and the result is
structured output resume data containing facts about the resume that was used as an input.
The results are compared with PROSPECT and CHM, with this method beating both in
almost every test done with the added benefit of needing less hours of annotations.

A different approach to extracting information from resumes and converting it into struc-
tured data can be seen in [38]. An ontology-driven algorithm is used to extract information
and match it with concepts. The methodology is based on concept-matching and ontological
rules so that semantic analysis and data parsing can be performed on the resumes. Extracting
information such as experience, features and business/education information and converting
it onto an ontology. The authors propose two algorithms that can be used to accomplish this
task and test them on both English and Turkish résumés.

E-Recruitment systems try and give the best possible match between candidates and job
descriptions. In [1], the authors propose a new approach to building these systems. The
system created extracts the job description text and segments with the help of dictionaries
(that are a combination of rules and lists). This segmentation then passes through a Natural
Language Processing (NLP) pipeline (sentence splitting, part-of-speech tagging, named enti-
ties extraction and compound words extraction) they are then sent to the ”Context Builder”
and ”Enrichment” processes before being stored in the Knowledge Base. This approach is
compared with other information extraction software, such as OpenCalais and Alchemy, and
beats them both by quite a margin in all the metrics used (precision, recall and F1) and tests
done (job title and requirement extraction).

In the workshop [22] the author presents his work on several topics related to the job
market, including classifying them according to ESCO. This presentation touches on the fol-
lowing topics: Occupation and Skill Discovery, Soft/Digital/Hard Skill rates, New Emerging
Occupations, Training Course Design and Taxonomy Extension. It provides several key ideas
on how to build these kind of systems and analyze the data.

GraphLMI [16] is an attempt at leveraging the emerging field of study called Labor Market
Intelligence. The authors of this paper attempt to create a system that will organize labor
market information as a graph and use this information to enrich and expand upon ESCO
with emerging new occupations and skills, so that it better fits the labor market. Data was
collected between 2018 and 2019 for 3 countries (France, Germany and United Kingdom). The
resulting graph can be queried by experts to better understand the labor market dynamics
and compare different markets. However, this work focused only on ICT related occupations
and is being worked on to expand to other occupations.

Another paper that looks at ICT-related online job vacancies is MEET-LM [20]. In this
paper, the authors define and formalise a method to evaluate and select embeddings that try
and perserve domain-specific taxonomy. They also create a novel metric to evaluate ”hier-
archical semantic relatedness between concepts of taxonomy”. To show the practical results
of this work, the authors trained a neural network classifier with the purpose of classifying
co-hyponym relations while using the embeddings extracted as features. The results show an
accuracy of 99.4%, however, the f1-score is 86.5%.

Going back to skills, Skills2Job [17] is a proposed recommender system that looks at a
user skillset and tries to identify the suitable job occupations for that user that are in a

14

large database of online job vacancies. A dataset of over 2 million examples from 3 countries
was used to train several embeddings and compute measures of skill importance for each
occupation per country. Three models were built, one for each country, which are used to
feed a graph database that which will serve as the heart of the recommender system. The
final results look promising, achieving high precision values.

The work that is more directly related to the one developed in this study is shown on [23].
While this is meant as an introductory guide to using big data when it comes to labour market
intelligence, the authors of this guide trained a model that does what this work aims to do.
Match job offers to ESCO occupations. Throughout the guide the authors give an overview
of the current state of the field and talk about several key topics when utilizing big data such
as architecture components, state-of-the-art, the role of AI and plenty of other topics. For
the comparable work done in this document, the authors present a box-plot with their results
for classifying occupations into first-level ISCO groups (the same that ESCO uses). This was
done by training an SVM on over 60 000 job vacancies and the claim is that it reached an
overall accuracy of 90%.

15

16

Chapter 3

Resources and tools used

3.1 Introduction

The tools and resources used to develop this work will be presented in this chapter. From
the stack used to store and visualize data to the libraries used for the machine learning models
are going to be presented.

3.2 Tools Used

This section will focus on programs or stacks of programs used while developing the work.
The extensively used ELK Stack will be the first one talked about, followed by GraphDB.

3.2.1 ELK Stack

The ELK stack is a powerful combination of tools namely, Elasticsearch, Logstash and
Kibana. These tools allow data consumption from different sources, as well as allowing
searching information and creating reports. While Logstash was not used, both Elasticsearch
and Kibana were extensively used and now integrate the working prototype developed in this
work. The process of processing data and creating meaningful and beautiful visualizations
was made simpler due to these tools and what they allow users to do.

Elasticsearch

Elasticsearch serves as a storage for JSON documents and makes use of Lucene [9] for its
search engine, allowing both storage and complex search of documents. It provides an HTTP
web interface in order to perform searches or store and retrieve documents.

Elasticsearch in this project is used for both the storage potential, in addition to the
search. It is used to store the transformed data that is retrieved from the different data
sources, and the ability to get results from any field of the document is a key feature while
dealing with ESCO. It also powers the visualizations that are made by kibana.

The decision to use Elasticsearch over other more popular document-storage databases
was the integration in the ELK stack, making the creation of visualizations a smooth process,
as well as being easy to manipulate with Python.

17

Kibana

Kibana is a visualization tool that can be used to create graphs and dashboards for
Elasticsearch. Users can connect to an Elasticsearch cluster and create several visualizations
(bar, line and scatter plots for example) on top of data. Kibana also has a ”lens” feature that
allows suggestions on which graphs would better suit the data that was selected.

Here, Kibana is used to analyze the job posting data from the different sources. It is used
to answer several questions and create dashboards that help visualize current status of the
job market. More examples of how Kibana is used and the questions it answers will be shown
in Section 5.1.

Kibana provides several different modules that can be used to explore data, however, in
this work not all of them were used. The modules used were the following:

• Visualize - Used to create different visualizations from the data gathered

• Dashboard - Aggregator of the differente visualizations created, provides an overall
overview of the data.

• Discover - Used to check the data in tabular form and export it to .csv when needed.

• Lens - Similar to Visualize, the Lens module allows the creation of visualizations based
on the data, however, lens provides suggestions and different types of graphs to choose
from.

3.2.2 GraphDB

ESCO provides their data in an RDF (Resource Description Framework) format, which is
a standard format for data interchange. In order to access it and pull data from the model,
an engine capable of understanding this data format was needed.

The engine chosen was GraphDB. It allows easy querying of data by using SPARQL,
which is the usual methodology used when dealing with ontologies, and visualization of the
different relationship between attributes. It provides an easy-to-use API that allows data to
be pulled from whichever model was imported onto it.

The ease-of-use of their API, as well as the simplicity of GraphDB, were the main consid-
erations taken when choosing it. GraphDB was used initially before making the decision to
try and upload ESCO onto Elasticsearch, however, this tool did not suite our needs, since it
would not be efficient, because there is no prior knowledge about which classes or paths on
the graph are relevant to the queried concept. It was useful to set a different plan on how
to approach this problem, since the regular methods of navigating ontologies did not fit the
needs of the project.

3.3 Wordnet

Wordnet is a lexical database, first developed in english, but now adapted to many other
languages, that groups nouns, verbs, adjectives and adverbs into sets of synonyms also known
as synsets (which were talked about before in Section 2.1). These synsets are organized
and linked together by their semantic and lexical relations to form a network that can be
queried [11]. Wordnet works by grouping up words according to their meanings.

18

The use of wordnet was done through the library NLTK (Natural Language ToolKit). This
library also provides a way to find the similarity between two wordnet synsets, by calculating
the Wu-Palmer Similarity between them, or using other alternatives of similarity metrics
also supplied, and returning a score between 0 and 1, where a score of 1 means the words
have the same meanings and 0 that they are completely unrelated. This similarity takes into
consideration the depth of the two synsets in the WordNet taxonomies and the depth of the
LCS (Least Common Subsumer).

3.4 NLTK

NLTK [3] is a Python library that supports a wide arrange of standard NLP procedures,
such as text classification, tokenization, stemming, tagging, etc. It also includes plenty of
datasets for users to test around with and interfaces to interacting with several corpora and
lexical resources, such as wordnet and it does so not only using the english language which
would better fit the point of this work.

There were two methods used from this library, the previously mentioned wordnet method,
that provides an interface to work with wordnet and fetch synsets for different words, as well
as allows to calculate the similarity between these by using the Wu-Palmer Similarity, and
the stopwords method for removal of these stopwors from titles when needed. The library is
thoroughly documented and for such a big and complex library it was easy to use, navigate
and understand [3, 28].

3.5 Scikit-Learn

Scikit-learn or sklearn [27], much like the previously presented NLTK, is an open-source
Python library that acts as an interface to a lot of methods, more concretely, related to
machine-learning and data analysis. It provides resources to do supervised learning, unsuper-
vised learning, model selection and evaluation, dataset transformation among many others.

This project made use of the supervised learning and model selection modules by using
their implementation of the machine-learning algorithms, along with the gridsearch that was
conducted to find the best parameters for each algorithm. Scikit-learn played an integral part
of this work, by providing simple and clean interfaces to the algorithms that were used, a good
documentation filled with examples on how to use them and an active, helpful community.

Scikit-learn is an extensive library that contains many methods and there were plenty
used in this work. The three main categories of methods used were the following:

• Machine Learning Models - The different interfaces provided by sklearn to all the ma-
chine learning models that were tested (Neural network, SVM, ADA Boost, Random
Forest, KNN and Decision Trees)

• Model Selection - Interfaces that provide tools to split the dataset. In this case the
methods used were train test split and gridsearchCV.

• Metrics - Used to create confusion matrices of the models.

Further explaining on the Model Selection part, the train test split module was used
initially to split the dataset into an 80/20 split of training and testing data respectively while
the gridsearchCV allows for an exhaustive search of the parameters of the several different

19

algorithms that were tested while also providing cross validation, in our case 5-fold. Both of
these were integral when finding the best models for the algorithms that will be presented
further ahead.

3.6 Tree Tagger

Tree Tagger [30] is a tool that was developed in 1994 with the purpose of annotating text
with part-of-speech and lemma information. Tree Tagger is available in several languages and
adaptable to other as long has there is a lexicon and a tagged training corpus. This tool takes
words or sentences and returns individual words and their part-of-speech and the lemma.

The point of using a tool like this is to convert words into their lemma, for example, ”is”
would be converted into ”be”. It makes it so that the matching between ESCO and the job
offers is easier by converting, what could be, different words representing the same concept
into the same one or to a smaller set of forms. However, this implies that ESCO had to pass
through TreeTagger and a lemmatized version be uploaded instead of the one provided by
default.

While TreeTagger is given as a standalone tool to use through the command line tool
with separate parameter files to download, we have used one of the several Python wrappers
available for the command tool.

20

Chapter 4

Developed Work

4.1 Introduction

This chapter will be used to describe the work developed, along with how it was developed.
It will showcase the main components and how everything was tested and fitted together.

There will be two main discussions in this Section, one to showcase the work done to
collect data and process it, handling duplicates and converting different data sources into
a single data model. The second Section will refer to the algorithms developed in order
to match an ESCO occupation to every job offer, how the datasets were classified, how to
match alternatives that were represented in the feature vectors and the experiments done
with different machine learning algorithms.

4.2 Data Collection

Working with different data sources is always a challenging task. Every source has its
own schema, attributes, and naming conventions. At the beginning of this project was set
the goal of creating an adaptive system that could easily ingest data from any source. Instead
of ingesting data from every API and adding the documents as they were onto the database
system, the decision was to create a data model that these documents could be converted to.
Figure 4.1 shows the flow of data in the system that was created.

Figure 4.1: Data Information Flowchart [32].

The creation of this shared data model allows for easier data crunching, inclusion of
additional sources of data, as well as duplicate detection since the model is the same. Overall,

21

it allows for better control over data and which fields can be used later for analysis.

4.2.1 Preparatory Work

With the intention of developing this work, the first step taken was to find websites that
had job offerings and see if there was an API provided so that data could be extracted and
stored on our end.

The first websites considered were the following:

• LinkedIn

• CareerJet

• ITJobs

• Net-Empregos

• Sapo Empregos

From these websites, only CareerJet and ITJobs had APIs that provided listings to every job
posted on their respective websites. LinkedIn also had an API that could be used, however,
this would be against their terms of service, meaning the accounts could be shut down at
any time, so it could not be used as a source for data extraction. The last two sources, Net-
Empregos and Sapo Empregos, do not have an API that can be used, so the only solution
would be using web-scrapping techniques to extract information. While this is an effective
technique, if anything changes on those websites the data extraction process will fail and need
to be revisited, which is not a desired outcome.

In the early stage of development and testing, only ITJobs and CareerJet are being con-
sidered, since they are the ones that offer more direct access to the information displayed
on their websites. These websites offer, for example, the following information about a job
posting: Posting Date, Company Information, Job Title, Job Description and Job Location.

Unfortunately, only ITJobs gives the complete Job Description which contains relevant
information. CareerJet cuts the Job description after a set number of characters making it so
that web scrapping had to be used in conjunction with their API as to get full descriptions
and automate the whole process.

4.2.2 Data Preparation

Before diving into the different attempts at tackling the problem, the data needed to be
prepared and collected. This subsection focus on the steps taken to make sure the data was
ready to use.

Data Model

Since every data source gives different fields with different names, it was necessary to
create a unified model under which it was possible to convert the results obtained from API
calls to both ITJobs and CareerJet rose.

This Data model should be comprehensive and extensive, but also easily expansible, so
that everything was in accordance to the needs of the project. This model was worked on

22

with people from a managerial role instead of a technical one to ensure their needs were being
met.

Looking at the data gathered by both ITJobs and CareerJet, the data model ended up
having the following fields:

• Source - Website it came from

• Location - Location of the job

• Date Posted - Date in which the job was posted in a year, month, day format

• Job Posting - Link to where the job was posted

• Title - Job title

• Description - The job description written by the company

• Company - Name of the recruiting company

• Website - Recruiting company website

• Contact - Recruiting company contact

• Allow Remote - If the work can be done remotely

• Salary - Salary ranged the company posted with the job.

• Type - Whether it’s a full time job or part time.

• Contract - If the job is temporary or not

• Number of Words - Number of words the job description had

With this model in mind, it is now needed to convert the results obtained by both ITJobs
and CareerJet and standardize the data.

ITJobs Conversion

The response obtained by the ITJobs API did not need much conversion to our proposed
data model.

The API managed to return almost every field data structure had, with the exception
of Source and Job Posting, however, there were ”incomplete” postings that did not contain
every field, with salary being the most frequent omission. Besides having to fill in the fields
that were not provided, the date also had to be converted.

CareerJet Conversion

CareerJet was the more troublesome API. The job description had a fix number of charac-
ters after which the whole description was truncated. As a means to solve this, web scrapping
methods were used. The API returned the link to the job posting which is then used to
extract the whole job description.

Besides the trucated job descriptions, the API does not return a lot of information that
would be useful in our model. CareerJet is lacking the following fields:

23

• Contact

• Type

• Allow Remote

• Contract

4.2.3 Handling Duplicates

It was crucial that our data extraction algorithm could handle duplicates, since most of the
times companies don’t post only on a single website, but instead post to several and at times
even repeat the job postings on the same website. The first step towards achieving duplicates
detection was to make both the job title as well as the company name lower-cased. This was
done so that in case the websites handled things differently, for example, some websites like
to capitalize the beginning of every word in the title. After standardizing titles and company
names, the date a job was posted is also looked at as a possible duplicate detection. The
month is checked to account for companies that post jobs at different points in time, which
could have a multitude of reasons behind, such as, they need more people to fill that role
or because they haven’t found anyone within a month time frame which could be significant
to identify a lack of specialized employees in that area. Since ElasticSearch uses the Lucene
search engine behind, a score is attributed to documents based on their similarity to the
query. Having no control over how this similarity score is calculated, in this algorithm, every
document returned by the query is looked at as a possible duplicate. In short, the algorithm
is as follows:

Algorithm 1: Job posting duplicate detection

Query ElasticSearch for documents with the same title as the new job
for Every document retrieved from the query do

if New job posting title and company name MATCH the job in the database then
if Month the new job was posted MATCHES the month of the job in the
database then

Return True

Return False

In case the algorithm returns a “True” value this means that there is already a job posting
in ElasticSearch with the same exact title, from the same company and posted in the same
month, so this document will not be added. However, in case the algorithm returns a “False”
value this means that ElasticSearch could not find any document like the new one and it
should be added.

4.3 Algorithm

The goal of the algorithms shown in this sections is to classify a given job offer into an
ESCO occupation, by using only the job title and no other information about the job offer
at hand. The reason for this is that most job descriptions are poor and mainly contain
information about the merits of the company that is trying to recruit the person. Figure 4.2
shows an example of a job posting description.

24

Figure 4.2: Example of a job description.

This is a task that proved to be challenging, seeing as titles are usually short and prone
to human errors, such as writing mistakes, or have extra information on them that is not
relevant.

4.3.1 Main Components

While developing the algorithms, there were certain components that remained constant
throughout all the different algorithms and attempts at solving the problem. The first one
are the datasets that were used. These remained the same for all the solutions developed,
and the second part are four different components that made up the feature vectors tested,
namely:

• Elasticsearch Scoring

• Link Navigation

• Wordnet Scoring

• Occupation Similarity

Dataset

There were two datasets used when testing the different algorithms.
The first one was a dataset collected by us as shown in Section 4.1. This dataset had

100 entries that were independently classified into ESCO occupations by two different human
classifiers to be used as the Gold Standard. The options given to the classifiers were the ones
returned by the initial Elasticsearch query, so the search space was already narrowed down
to a maximum of 15 ESCO occupations per job offer, instead of the 2500+ that comprise
ESCO. This option was made since ESCO already retrieves good results and often the best

25

Job Offer Title Matching ESCO Occupations

Receptionist/ Secretary Receptionist Secretary

Graphic Designer and Animator/ Web Developer web developer graphic designer animator

Designer industrial designer set designer graphic designer

Table 4.1: Example of ambiguous offers that match more than a single ESCO occupation.

hipothesis was already in this set, although not always ranked in the first place(s). In case
where the human classifiers did not agree on one classification, a third person had to untie it
and pick one. If none of the options given seemed suitable this job offer would be taken out
of the dataset completely. In the end there were 79 job offers classified and ready to be used.

The second dataset was taken from kaggle [35] and it contains 19 000 job posting taken
from the Armenian human resource portal CareerCenter which was the only quality job
posting dataset found publicly available.. From these 19 000 a subset of 1 000 was randomly
picked and classified by a single individual, using the same process as before of querying
Elasticsearch to narrow the search space, according to ESCO occupations. Of these 1 000
chosen occupations, 169 had no match from our initial query leaving us with 831 examples that
had a corresponding ESCO occupation match returned from the initial Elasticsearch query.
This dataset was classified so that the same job offer could have different ESCO occupations
associated with it. This was a change from the previous classification process due to the fact
companies often want one person to have different responsibilities and this would many times
translate into one job offer having several corresponding ESCO occupations associated with
it making it impossible to just pick one. In Table 4.1 there are a few examples of these job
offer titles that show the problem at hand well. These match several ESCO occupations to
the point where a human couldn’t decide between them, since the job offer title is ambiguous.

Another common problem found within both datasets was the misspelling of words. Cases
such as recruiters writing ”mobilar developer” instead of ”mobile developer” have a negative
impact on our first query to Elasticsearch, which would end up impacting the results produced.
However, considering that misspelling is a common mistake, even if any were found on the
datasets, they would not be corrected due to the goal of having as much real-life like data as
possible so the algorithms would encode such situations.

The algorithms developed were tested with these datasets of 79 and 824 examples.

Elasticsearch Scoring

As was shown in Section 2.1.2 ESCO is a framework comprised of over 2500 occupations.
This framework is provided as an ontology for free and instead of going over the traditional
methods of querying an ontology, for example, using SPARQL, the approach was to upload
it into Elasticsearch.

Uploading the ontology onto Elasticsearch allows for an initial filtering by querying the
title of the occupation and getting back a reduced number of ESCO occupations which words
were more similar to the query just made.

The Elasticsearch Scoring function uses the BM-25 algorithm to match and score docu-
ments [10]. It attributes a ranking to each document, which in this case represents an ESCO
occupation, of how likely they are to match the given query. This allows us to narrow our
search space from 2500+ occupations to only a few and the score attributed to each document
will be a feature for our feature vector in both models.

26

There was also another upload of this ESCO into Elasticsearch, but this was a processed
version of it that was run through TreeTagger [30] in order to lemmatize the words, so that the
matching done between the job offers title and the ESCO occupation was made easier, as the
queries would be the lemmas and not the whole words. This works by reducing the quantity
of word forms, meaning that every word sharing the same lemma would be represented by
that lemma. An example would be the different grammatical conjugations there are for the
same word.

Graph Centroids

While Elasticsearch attributes a score to each returned document, these could be one of
two types, ESCO skills or ESCO occupations. The goal of this component is to search the
ontology through the skills and their connections to each occupation.

Each skill has occupations associated with it, these occupations are extracted and matched
against the ones returned by the initial Elasticsearch query. If there are any matches, a score
is attributed to this metric, otherwise it will be 0.

The scoring is done as follows:

R = number of relevant occupations that came from the skills

N = Number of times an occupation showed up on the skills

Score = N/R

N represents the number of times a specific occupation showed up throughout the skills
that were in the query and R represents the total number of occupations that showed up on
these same skills.

This link navigation allows us to transverse horizontally through the ontology. The goal
is to try and promote singular occupations that are relevant in not only the occupations
category of ESCO but also in the skills category.

Figure 4.3: Example of an ontology graph with the nodes returned by the query ”Software
Engineers”.

27

For example, looking at Figure 4.3, the query for ”Software Engineers” returns these
results with ”software tester” being the highest score on Elasticsearch query, however, this was
labeled as belonging to ”software developers”. It is possible to see that there are nodes coming
from the skills returned that connect to the occupations ”software developer”, ”software
architect” and ”software tester”. The dashed arrows from right to left show that the software
developer occupation is mentioned in more skills, it should be rewarded since it is more
relevant to the query made even if it did not come first in Elasticsearch score.

Wordnet

The third feature in our feature vector makes use of Wordnet to find the semantic similarity
between the query title and the occupation title. The score increases with the semantic
similarity of words.

A simplified version of how this is done can be found in Algorithm 2.

Algorithm 2: Wordnet Similarity Score

while There are documents do
Extract the occupation title from the document
Split the title into individual words
Fetch the synsets for each word (document synsets);
while There are document synsets do

while There are query synsets do
Calculate the wup similarity between the synsets
Save the highest similarity result for each word.

Similarity Score = sum of max similarities for each word / length of the query title

These scores indicate how semantically similar the query title and the occupation title
are. A similarity score of 1 would indicate that both titles are the same, while a score of 0
would indicate no correlation between them.

Taxonomical Similarity

The fourth and last metric that is used by the feature vectors was called Occupation
Similarity.

Each ESCO occupation has a code associated with it and each digit of this code represents
a level. The goal of this similarity is to attribute a score based on how similar the occupation
codes are between the ones returned by the initial ElasticSearch query and the ones found on
skills. The more digits they have in common the higher the score attributed is so that deeper
levels of similarity are promoted. However, since this is a generic approach to navigating
ontologies, due to the structure ESCO has some occupations might seem similar on a surface
level but their respective codes will differ starting on the first digit.

Figure 4.4 shows the path for 5 different occupations obtained by the ”Software Engineers”
query.

This navigation allows us to go through the ontology vertically and find similarities be-
tween occupations even if, on the last level, these occupations are different.

28

Figure 4.4: Example of the path for each occupation in the ”Software Engineers” query.

4.3.2 Occupation match as a multi-class problem

The first attempt at this problem was a multi-class classification problem with 15 classes,
the number of hypotehsis returned by ESCO, in which the classification label would discrim-
inate which hypothesis is the best match.

Feature Vector

After having the dataset ready and classified, the feature vector needed to be constructed.
This feature vector would make use of the features as described in Section 4.3.1.

Each feature vector is made up of 60 features and 1 target. The 60 features come in sets
of four, each representing the Elasticsearch score, link navigation score, wordnet score and
occupation based score for each ESCO occupation for one job offer. In case Elasticsearch does
not give 15 different options for a given job offer, we would have a vector filled with zeroes
until the 60 features were met.

This feature vector construction has a lot of features, however, a lot of the last features are
filled with zeroes, due to Elasticsearch not always returning the same number of documents
for each query (in case there aren’t 15 relevant documents it will only return the appropriate
number of relevant documents to a given query).

The target is a number between 1 and 15, corresponding to the correct ranking of the
document returned by Elasticsearch, this is, with the documents ordered by Elasticsearch
score a target of 4 would mean that the correct ESCO occupation would be the 4th document
that was returned by this query.

Since the datasets used in this body of work did not have that many examples (79 and
824) having a feature vector with 60 features and 15 possible different targets might be a
problem due to the lack of data. It was observed that there were even classes that had no
representation and plenty vectors were sparse leading to a very imbalanced dataset. Having

29

a machine learning algorithm work this data out could be difficult due to the nature of it.

Testing

A machine learning approach was taken when it came to trying to find an algorithm
that could classify this data into the respective categories. The objective that was set for
this approach was to beat the initial Elasticsearch score of 40% accuracy, which came from
comparing the first Elasticsearch query result with what was defined as the Gold Standard,
and see if the machine learning approach was suitable for this problem despite all the dataset
limitations previously presented.

The algorithms tested were the following:

• Random Forest

• Support Vector Machine

• Neural Network

• ADA Boost

• Decision Tree

With the goal of finding the best parameters, a grid search was conducted to find the
model that would best fit our data, the models were tested with a 5-fold cross-validation and
the best results were the Random Forest, that achieved an accuracy of 58.6% and the Neural
Network with a result of 52.7% which showed an improvement of about 10 percentual points
over the baseline of Elasticsearch.

4.3.3 Occupation match as multiple binary classification problems

While the multi-class approach managed to slightly improve the results from 40% to
58.6%, there was another approach that could be tried. In this approach instead of having
multiple classes at once and have the machine learning algorithms try and learn which class is
the correct one, despite the obvious issues with the feature vector, there are only two classes
at a time (one against the other) and the result is binary to predict which one is more likely
to be the more relevant one to the job offer in question.

Feature Vector

The feature vector for this model follows the same pattern as the last one, the features that
were created in Section 4.3.1 are still used, however, instead of having 60 features the base
model for this approach has only 12 features, 8 describing both alternatives (2x4 features)
plus 4 representing the differential of scores between both alternatives. This implied the
expansion of our dataset as each multiple class vector needed to be represented by a set of
binary class vectors.

Since this model puts ESCO occupations returned by the initial Elasticsearch query
against one another the feature vector consists of:

• 4 Score results (Elasticsearch scoring, link navigation, Wordnet, occupation similarity)
for the first occupation

30

• 4 Score results (Elasticsearch scoring, link navigation, Wordnet, occupation similarity)
for the second occupation

• Normalized difference between the scores of the same category divided by the max value
of the two.

difference =
Score1 − Score2

max(Score1, Score2)

This feature vector would then have a target of 0 or 1 depending on which occupation
won the ”duel”. In Figure 4.5 there is the example of a feature vector for a job offer that was
labeled ”Software Engineers”.

Figure 4.5: Example of the feature vector for the job offer titled ”Software Engineers”.

In an attempt to generate the dataset, we take the labeled data, extract the name of the
correct ESCO occupations and start putting the other occupations returned by the query
against the correct ones. The way the dataset generation is setup makes it so that if there are
occupations with a higher Elasticsearch score than the labeled one, the scores corresponding
to these will show up in the first four slots of the feature vector while the ”correct” one will
be the second four slots with a target of 1. When the correct one has a higher Elasticsearch
score than the remaining query results it will become the first four results and the target will
promptly be 0 since it is supposed to ”win the duels”.

Seeing as Elasticsearch does not return a fixed number of occupations per query, only a
maximum number, this approach already seems more robust. There are no sparse matrices,
the target is binary (there is no need to have an example for each of the classes like in the
one tested on Section 4.3.2) and the dataset could be extended from the 824 examples for the
previous attempt to over 6000.

At later stages and so as to try and improve the results several other feature vectors
were tried with small changes into this baseline. For example, trying to incorporate more
information about the occupation levels into this vector. However, in the end, the baseline
was the model that performed better.

Machine Learning

Just as in the previous attempt, the first action was to use machine learning on the new
dataset. In order to train the model we split the data into 80% training data and 20% test
and made sure every model used the same training data. The models were also trained using
a 5-fold cross-validation on the 80% training data with the remaining 20% being used purely
for testing.

The different combinations of parameters tested can be found on Table 4.2.

As a means to better differentiate between the ”winners” and ”losers” of the duels, there
was also a rule applied to the dataset. The rule was in case the winner was the second
occupation at least one of the score differences had to be negative, meaning that the second

31

Algorithm Parameters

Random Forest Number Estimators 50, 100, 200, 500

Minimum Samples Split 2, 3, 4, 5

Criterion Gini, Entropy

Max Features Auto, Sqrt, Log2

Max Depth Auto, 5, 10 ,20

SVM C 0.06, 0.125, 0.25, 0.5, 1

Gamma scale, auto

Kernel linear, poly, rbf, sigmoid

Neural Network Hidden Layer Size 5, . . . , 25

Max Iterations 1000, 1200, 1400, 1600, 1800, 2000

Solver lbfgs, sgd, adam

ADA Boost Algorithm SAMME, SAMME.R

Learning Rate 0.5, 1, 1.5

Number Estimators 50, 100, 150, 200

Decision Tree Criterion Gini, Entropy

Max Depth Auto, 5, 10 ,20

Max Features Auto, Sqrt, Log2

Minimum Samples Split 2, 3, 4, 5

Splitter best, random

KNN Neighbors 2,...,30

Weights Uniform, Distance

algorithm Auto, Ball tree, Kd tree, Brute force

Table 4.2: Parameters tested for each algorithm.

32

option needed to have a higher score in at least one of the features therefore justifying it being
a best fit.

Using only these machine learning algorithms and finding the best parameters was not
enough to get a significant increase in results when compared to previous models. It was
observed that the algorithms had to give a result of 0 or 1 no matter how close the decision
had to be, for example, one occupation being selected with 99% confidence would have the
same meaning of being selected with 51% confidence, so the next step was to look at the
probabilities of each ESCO occupation winning against each other rather than dealing in
absolutes (it either wins or loses). In Figure 4.6 we can observe the probabilities of each class
winning against one another. It is possible to observe that some occupations are really close
to one another, for example, occupation 2 and 4 while others are clear winners.

Figure 4.6: Probability of each class defeating one another according to a Random Forest
model. This example was for the ”” hilti ” subdivision salesman” query.

With this type of model, however, there is not a single index that will give us the result
since it will the only result obtainable is whether or not an occupation ”won” against another.
The way these algorithms were tested will be explained further in Section 4.4.

33

4.4 Testing

While the initial attempt at testing the machine learning algorithm was easy and straight-
forward, with 15 classes each representing the index of a different occupation, testing the
machine learning algorithm in the 1v1 model is different.

As it was mentioned before, the data was split into 80/20, training and testing respectively.
On top of the training split the models were also trained using a 5-fold cross-validation in
order to try and not overfit the models and get as good of a generalized model as possible.

4.4.1 Binary Classification

The machine learning model has two ways of being tested. The first one is the how
good it is at evaluating the duels, how consistently does it pick the right winner. This is
a straightforward way since there is only the need to look at targets and the output of the
algorithm. The second way is to test how good it is at predicting the correct occupation.

For this second option, and before implementing an algorithm that interprets these prob-
abilities as transition probabilities in Markov Models thus allowing to compute steady state
probabilities, the way to test the accuracy of the model was to put up the occupations against
one another and calculate the ratio of how many ”fights” they won. The occupation with the
better ratio would be the picked one. In case there was a tie the occupation with the highest
BM-25 score would be the picked one.

4.4.2 Binary classification results as transition probabilities

If we consider each occupation alternative as a state in a Markov Model, then the probabil-
ity of an occupation against the other would represent the steady state probabilities between
those states. So, based on these probabilities, a Markov Transition matrix is built using
those probabilities as transition between the two states, and the states’ self-transitions were
estimated by two distinct ways:

• As the intersection of the complementary transition probabilities.

• As the complementary of the sum of the transition probabilities.

Figure 4.7 helps understanding how this Markov Transition matrix is built. When con-
ducting a binary classification between states A and B, the machine learning algorithm es-
timates the probability of being the state A or the state B. As the evaluation universe is A
plus B, then the values obtained are estimates of PA

(PA+PB) and PB
(PA+PB) respectively. As such,

a transition matrix can be built as depicted in Figure 4.7. Then is necessary to estimate the
self state transitions and to normalize the rows for its values add up to 1.

A B C

A PAA
PB

PA+PB

PC
PA+PC

B PA
PA+PB

PBB
PC

PB+PC

C PA
PA+PC

PB
PB+PC

PCC

Figure 4.7: Matrix example to help explain how the probability matrix was calculated.

34

With this in mind, the data could not just be split into 80/20 as it was for the multi-class
model. Because now the same job offer had more than one feature vector associated with
it, the split had to be done by job offer title instead of randomly picking vectors out of the
dataset. The risk associated with randomly picking vectors of the dataset and training with
a regular 80/20 and cross-validation is that, while training the model won’t see every duel for
a single job offer title, it will see part of them making it so that the testing results can not be
trusted due to the algorithm ”already knowing” some results for some duels. So the dataset
is instead splint into 5, an 80/20 split still, by job offer titles, removing all the respective
feature vectors from the training dataset.

In order to test the model a query is made to Elasticsearch where all options for a given job
offer are presented. The feature vector is built using the features presented in Section 4.3.1.

These feature vectors go through a machine learning algorithm, in the case of our testing
it goes through 5 different algorithms, where instead of getting a single result for the duel
the probabilities that one wins over the other are extracted. These probabilities will then
build the initial probability matrix (As an example, see Figure 4.6). After going through
the Markov chain process the result will be a probability vector with a probability for each
occupation returned by the initial query. The vector is ordered the same way the occupations
were returned by the elasticquery, that is, if the highest probability occupation is the 3rd
index in our vector this directly relates to the 3rd occupation returned by the initial query.

For example, taking into consideration the example for the initial query into Elasticsearch
for ”Software Engineers” would return the occupations ”software tester”, ”software analyst”,
”software developer”, ”software architect” and ”ICT operations manager” ordered by their
BM-25 score. This would mean that ”software tester” would be the index 0. The final
probability vector is:

[0.2043, 0.1943, 0.3491, 0.1559, 0.0964]

With the highest probability being the 3rd index this would mean that the occupation
picked by the Markov model is ”software developer”.

Knowing this, it is now possible to extract all the details needed from the ESCO occupation
and compare it to our targets and evaluate whether it hit or missed. Figure 4.8 has a flowchart
of how the testing works for this model.

35

Figure 4.8: Markov Training flowchart.

36

Chapter 5

Results

This chapter will serve to discuss the results obtained from both the data collection, and
the visualizations that were made with it, as well as the results from the algorithms to classify
the job offers into ESCO Occupations.

5.1 Results

5.1.1 Data Collection and visualization

Ever since the system was developed it has been collecting data on job postings for the
Aveiro region of Portugal. As of the writing of this document, the system has collected
over 12 000 job offers that have all been categorized as ESCO occupations by the algorithms
explained here. Besides being classified as ESCO Occupations, the necessary and optional
skills for each one of them has also been extracted.

What this data classification and extraction permits us to do is create fully dynamic
dashboards about specific regions of the world, for example, to compare how regions are
doing and get an idea of the needed occupations or skills at each moment, or to try to
forecast jobs that are on the rise and allow education institutions to adapt their curriculum
based on the skills/knowledge identified in these dashboards. From a recruitment perspective
it allows recruiters to better name their job postings and identify the necessary skills and
competences to look for in the job market. These dashboards are updated in real time as
soon as data gets added on Elasticsearch making it a very powerful analysis tool.

In Figures 5.1and 5.2 there are two examples of such dashboards. Despite the algorithm
used classifying occupations up to ESCO fifth level, the standard to display, according to
the state of the art [23], is the third level, hence these dashboards only show the first three
levels. As said before, these dashboards are fully dynamic and it is possible to dig deeper, by
simply selecting the desired occupation/skill to look deeper into it will automatically update
the other graphs too, Figure 5.3 showcases an example of this by selecting ”Technicians and
associate professionals” on the ”1 Digit Occupations” graph. The goal of these graphs were
to showcase that dashboards like the ones made by the European Centre for the Development
of Vocational Training (CEDEFOP) [13] can easily be made for the data gathered by the
system made.

Besides this, the creation of graphs that use any of the fields defined on the data model is
possible, since these are all indexed when new data is added onto Elasticsearch, making these
dashboards a very powerful managerial tool.

37

Figure 5.1: Dashboard with occupations (until the 3rd level) and skills (4th level) for the
Aveiro region for the past 90 days.

Figure 5.2: Dashboard with skills (until the 4th level) for the Aveiro region for the past 90
days.

5.1.2 Machine Learning

This section will focus on the machine learning results for the best model, that is the one
versus one model previously described in Section 4.3.3.

As was mentioned previously, on Table 4.2 there are several algorithms and combinations
of parameters tested for each algorithm. The first few rounds of testing used all of the
algorithms shown, however, with time a pattern started forming, where both the SVM and
the ADA Boost algorithms did not perform well compared to the rest so, they were dropped
in the final stages of testing. Dropping these left us with the following algorithms:

38

Figure 5.3: Example of dashboard updating by clicking one specific occupation.

Algorithm Max Score Min Score Avg Score Std Deviation

Random Forest 0.829 0.801 0.819 0.008

Neural Network 0.794 0.699 0.774 0.017

Decision Tree 0.791 0.737 0.765 0.011

KNN 0.779 0.728 0.763 0.011

Table 5.1: Grid search results for the different machine learning algorithms.

• Random Forest

• Neural Network

• Decision Tree

• KNN

As a reminder from Section 4.4 the models were training using 80% of the data with a
5-fold cross-validation and all the models were trained using the same data in order to have
consistency. The results here are for the binary classification portion of the algorithm and
not for the occupation identification classification since that is not the point of these machine
learning algorithms. For this portion of the work the dataset was also balanced to ensure
there was no bias occurring.

In Table 5.1 the best results for the training phase are shown.
Looking at the results obtained, every model is relatively stable, not having big differences

between the best and the worst results. The Random Forest came in first with almost a 4%
lead over the next best algorithm, the Neural Network. The Random Forest winning was also
better in the next part of the algorithm. In Table 5.2 there are best parameters found for
each one of these algorithms.

The algorithms were tested using the remaining 20% of the data that was not eeven seen
during the training phase. Tables 5.3 5.4 5.5 5.6 have the confusion matrices results using

39

Algorithms Parameters

Random Forest Criterion Gini

Max Depth 20

Max Features Log2

Min Samples Split 5

Number of Estimators 200

Neural Network Hidden Layer Size 29

Max Iterations 1400

Solver adam

Decision Tree Criterion Entropy

Max Depth 5

Max Features Square Root

Min Samples Split 4

Splitter Best

KNN Algorithm auto

Number of Neighbors 21

Weights Distance

Table 5.2: Best parameters found for each algorithm.

Random Forest

0 1

0 1455 97

1 183 285

Table 5.3: Confusion Matrix for the best scoring random forest model for the first fold.

the testing set for the best parameters of each algorithm. These values were obtained for the
first fold during the algorithm training.

The initial training tests show that this method could be a potential good approach to the
problem so the results were further explored. Testing the machine learning prediction results
using the best performing algorithm (Random Forest) yielded the results shown on Table 5.7
and the corresponding confusion matrix for each 1st ESCO level can be seen on Table 5.8.

From this confusion matrix it is possible to calculate the precision, recall and F-Score.
For the 1st ESCO level the model attained a precision, recall and F-Score of 0.7649. In
Table 5.9 the F-Score for each class is shown, however, as seen on the confusion matrix the
latter examples are not as represented as the first classes so any error or hit on these could
drastically change these numbers.

While these results may seem promising, they were comparable to the ones previously

Neural Network

0 1

0 1441 111

1 257 211

Table 5.4: Confusion Matrix for the best scoring neural network model for the first fold.

40

Decision Tree

0 1

0 1511 41

1 281 187

Table 5.5: Confusion Matrix for the best scoring decision tree model for the first fold.

KNN

0 1

0 1423 129

1 280 188

Table 5.6: Confusion Matrix for the best scoring KNN model for the first fold.

Level 1 Level 2 Level 3 Level 4 Level 5

Random Forest 0.764855 0.668774 0.620733 0.572693 0.551201

Table 5.7: Accuracy for each ESCO level.

Prediction

1 2 3 4 5 6 7 8 9
1 91 26 8 0 2 1 1 0 1
2 24 347 39 3 7 1 11 0 0
3 14 16 104 5 2 0 0 1 0
4 2 4 2 34 2 0 0 0 0
5 1 0 3 0 13 1 0 0 0
6 0 0 0 0 0 2 0 0 0
7 0 4 0 0 0 0 8 0 0
8 1 1 1 0 0 0 0 3 1

Chosen
(Truth)

9 0 0 0 0 1 0 0 0 3

Table 5.8: Random Forest confusion matrix for every ESCO first digit Occupation

First-Digit F-Score

1 0.6920

2 0.8361

3 0.6957

4 0.7907

5 0.5778

6 0.5714

7 0.5000

8 0.5455

9 0.6667

Global 0.7649

Table 5.9: Random Forest F-Score for each individual ESCO first-digit occupation.

41

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

Difference

N
u

m
b

er
of

O
cc

u
rr

en
ce

s
Predicted Score-Chosen Score

Figure 5.4: Difference between the correct occupation score and the predicted score using
the Random Forest algorithm.

attained by the multi-class problem. Looking at the difference in scores between the predicted
occupation and the correct occupation gives the results on Figure 5.4 which does not bode
well. In 44 cases, which is the highest count, the correct option did not even stand a chance
to be the correctly picked one.

The next step taken to improve the algorithm was to build a state transition matrix on
top of these results. Instead of looking at the algorithm decision as binary, the goal is to
fetch the percentage of one winning over the other and build a state transition matrix. While
doing this there was also an interesting observation where the random forest model had some
close decisions on certain ”duels” while the other algorithms were much more certain of their
decision, which ends up working out in favour of what is trying to be accomplished with the
state transition matrix and probabilities of each occupation being the correct one for a given
job offer title.

5.1.3 Occupation Transition Matrix

Building the transition matrix after machine learning is where matching job offer titles
with ESCO occupations comes to fruition. After having a model that can decide between two
occupations based on the features described on Section 4.3.3 the probability matrix had to
be built.

Referencing back the matrix used in the previous Chapter, Figure 5.6 will be used to help
explain how the probability matrix was built.

42

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Score

A
cc

u
m

u
la

te
d

E
rr

o
r

P
er

ce
n
ta

ge

Accumulated Percentage of Errors

Figure 5.5: Accumulated errors for the Random Forest Model.

A B C

A PAA
PB

PA+PB

PC
PA+PC

B PA
PA+PB

PBB
PC

PB+PC

C PA
PA+PC

PB
PB+PC

PCC

Figure 5.6: Matrix example to help explain how the probability matrix was calculated.

The probability matrix was built using comparisons between two alternatives, where
PXi

PXi
+PXj

is obtained directly from the comparison between alternatives Xi and Xj , and PXiXi

is estimated by the joint probability of the complimentary events:

PXiXi =
∏
j;j 6=i

(
1 −

PXj

PXi + PXj

)
After building the probability matrix using this methodology, the end result is shown in

Figure 4.6, the end result will be a probability vector of each occupation being the ”correct”
one. Figure 4.8 shows what the testing process looks like for a single occupation. This process
is done for each of the four algorithms presented above so that finding the best fit is possible.

Looking at examples for each of the algorithms probability matrices, there are some con-
clusions to be taken already. Figures 5.7, 5.8, 5.9 and 5.10 have examples for the query ”Art
Editor”.

In these Figures, the Random Forest and Neural Network algorithms have much closer
percentages for the ”duels” than the KNN or the Decision Tree algorithms, meaning that they
are more certain that the decision they made is the correct one, while in the neural network
and random forest models there is some doubt in their decisions which means that the latter
two models would, in theory, be a better fit for generating the Markov model.

The testing was done by querying 800 (160 at a time for different folds) different job offer
titles and trying to match them to a given ESCO occupation. The results were split into

43

Figure 5.7: ”Art Editor” probability matrix for the Random Forest model.

Figure 5.8: ”Art Editor” probability matrix for the Neural Network model.

the different ESCO levels. The goal is to predict the level 5 correctly, however, looking at

44

Figure 5.9: ”Art Editor” probability matrix for the Decision Tree model.

Figure 5.10: ”Art Editor” probability matrix for the KNN model.

what the authors of [23], which use only the first ESCO level on their published results, it is

45

Algorithm Level 1 Level 2 Level 3 Level 4 Level 5

Random Forest 0.8850 0.8100 0.7725 0.7375 0.7150

Neural Network 0.7675 0.6738 0.6338 0.5775 0.5413

Decision Tree 0.7825 0.6938 0.6413 0.6088 0.5813

KNN 0.7825 0.6725 0.6213 0.5713 0.5463

Table 5.10: Accuracy for each ESCO level using the different algorithms.

important to get these numbers out and compare them to the current state of the art. Besides
this, other questions arose: In cases where the algorithm fails the classification how far from
first was the correct answer ?

Would it be in the top 3 choices the algorithm would make?

This analysis allows the creation of tools for continuous improvement of the algorithms
and to have defined cutoff points for when the algorithm is absolutely certain it got the
occupation correctly versus when it needs human help deciding. In these cases it is possible,
for example, to display the best three decisions the algorithm made.

The start of this analysis will focus on the four algorithms and finding the best one of
the four, then doing a deeper analysis of the results for the best performing algorithm. This
deeper analysis will focus on the aspects mentioned before. Table 5.10 shows the accuracy
for each ESCO level using the different algorithms.

Despite the neural network having closer percentages when it came to the duels, adapting
them to the transition matrix it did not work out well since it was the worst performing one.
Much like in the previous section, the random forest also came out on top by a close to a
6% margin over the next best algorithm, the Decision Tree. With that being said, the model
that will be explored more is the Random Forest, since it achieved the best results.

The first thing to take a look at is, when the algorithm failed, how badly did it fail? Since
the model returns percentages, failing when the algorithm is 100% sure it picked the correct
option is a lot worse than the model failing when the algorithm was only 25% sure it picked
the correct option. In Figure 5.11 there is a stacked chart showing the percentage with which
the algorithm made the choice, both the correct and the incorrect decisions can be seen.

Looking at the stacked chart, we can observe that when the algorithm picks a wrong
answer these come out as being a low-probability choice which is the best case scenario. In
Figure 5.12 the accumulated percentage of errors is seen. Around 80% of errors occur when
the algorithm picks a response with a score of 0.35 while a score of 0.5 or lower represents
about 90% of the errors the algorithm makes. Knowing this is useful to know when to display
more than one ESCO occupation. Of the 160 decisions the algorithm made with a score above
0.7 it got 149 correct and 11 wrong for an accuracy of 93.125%. The higher the score the
more likely the algorithm is to be correct by a good margin.

It is also important to figure out when the algorithm makes mistakes, how well did the
correct option do? Was its score too far off from the one that was picked? Figure 5.13 has
a bar chart showing the difference between the predicted score and the chosen score and
Figure 5.14 has the accumulated percentage for this difference.

Most of the time when an error occurs the difference in scores between the picked option
and the correct option is really small, 80% of the time it is lower than 0.35 meaning that,
probably, the correct answer is among the top 3 best rated choices the algorithm could have
picked. Picking a cutoff where the system decides to show more than one answer ends up

46

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

Score

N
u

m
b

er
of

O
cc

u
rr

en
ce

s

Corrects / Incorrects

Corrects
Incorrects

Figure 5.11: Markov decisions per percentage.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Score

A
cc

u
m

u
la

te
d

E
rr

or
P

er
ce

n
ta

ge

Accumulated Percentage of Errors

Figure 5.12: Accumulated percentage of errors when computing the steady state probability
based on the transition matrix.

47

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

Difference

N
u

m
b

er
o
f

O
cc

u
rr

en
ce

s

Predicted Score-Chosen Score

Figure 5.13: Difference between the correct occupation score and the predicted score using
the transition matrix.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Difference

A
cc

u
m

u
la

te
d

P
er

ce
n
ta

ge

Accumulated Percentage of Differences

Figure 5.14: Accumulated percentage of differences for the transition matrix.

48

Top2 Top3 Top4 Top5

Random Forest 0.8225 0.87 0.9025 0.93

Table 5.11: Accuracy for the decision being on the Top 2, 3, 4 or 5 decisions made by the
algorithm.

Prediction

1 2 3 4 5 6 7 8 9
1 103 19 7 0 3 1 1 0 0
2 15 382 28 5 3 1 4 0 0
3 9 11 113 1 4 0 0 1 0
4 1 1 3 41 2 0 0 0 0
5 1 0 1 0 13 1 0 0 0
6 0 0 0 0 0 1 0 0 0
7 0 2 0 0 0 0 10 0 0
8 0 1 0 0 0 0 1 4 1

Chosen
(Truth)

9 1 0 0 0 0 0 0 0 4

Table 5.12: Confusion matrix for every ESCO first-digit Occupation obtained when using the
state transition matrix.

being very viable if that is the case. Table 5.11 has the accuracy for the correct decision being
in the top 2, 3, 4 and 5 decisions being made by the algorithm.

In this Table we see that the accuracy jumps from 71.5% when considering only the first
decision made by the algorithm to 82.3% when considering the Top 2 highest percentage job
offers and even reaching a maximum of 93% accuracy when dealing with the Top 5. When
it comes to absolute numbers this means that for top 2 there were 142 errors in 800 distinct
examples that were tested.

Comparing these results to the state of the art would mean going back to the level 1
results since that is what the authors of [23] released for their models. There are no concrete
numbers to compare ourselves too, however, there is a box plot with the F-Score for the
first-digit level. The latter classes do not contain many examples due to dataset limitations
making it so that their precision and recall values can fluctuate very heavily with just the
addition of 2 or 3 examples. With a bigger dataset this problem could have been solved.

In Table 5.12 it is shown the confusion matrix relating to the first-digit occupations from
ESCO. This confusion matrix shows the clear improvements over the baseline, which would
be the results labeled as ”1”. The F-Score for each individual class can be consulted on
Table 5.13 as well as a global F-Score for the model. It is worth noting that the models
precision and recall were equal and attained values of 0.8388.

The results obtained by ETF (European Training Foundation) are shown in Figure 5.15.
They used an SVM with a dataset of 60 000 labeled examples compared to our Random
Forest / Markov mixed model with just 800 labeled examples and the results obtained by this
work almost reached state of the art levels despite the clear difference in number of labeled
examples to train the models between the two. The algorithm here developed also has the
advantage of being easily adaptable to new languages. There are also problems with the latter
classes not having as much representation on our dataset which could affect the results had
these had more examples to look at.

49

First-Digit F-Score

1 0.7803

2 0.8946

3 0.7766

4 0.8632

5 0.6341

6 0.4000

7 0.7143

8 0.6667

9 0.8000

Global 0.8388

Table 5.13: F-Scores for individual single-digit ESCO occupations obtained using the state
transition matrix

Figure 5.15: Box plot with the state of the art EFT results [23].

It is not possible to compare numbers for each class directly since these were not released
in the report. The only results that were officially released are displayed in the box plot and
these are only for the first-digit. Training a model to identify first-digit occupations only
instead of the existing 2600+ that ESCO has to offer could yield better results.

50

Level 1 Level 2 Level 3 Level 4 Level 5

Random Forest Accuracy 0.81125 0.73125 0.69000 0.66000 0.63750

Table 5.14: Results for the 2nd version of transition matrix.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

Predicted Score-Chosen Score

Figure 5.16: Number of occurrences for the difference between the predicted score and the
chosen score for Version 2.

Different Diagonal Estimator

There was also another attempt at bettering the results using a different diagonal estimator
than the one shown at the start of this section, the estimator used for this section was the
following:

PXiXi = 1 −
∑
j;j 6=i

(
pXj

pXi + pXj

)
The use of this estimators makes it so that the algorithm is ”greedier” with its classification

in an attempt to make it more certain of its decisions since in the previous algorithm most
of the fails came from a difference between the picked score and the correct score of less than
0.2. The algorithm was tested using the same data for the previous one.

The results are on Table 5.14 and it shows that trying a ”greedier” approach only exac-
erbated the problem that was previously prevent.

Figure 5.16 shows the graph portraying the difference between the chosen score and the
picked score. For this version, this difference between the two is higher than on the other one,
while on the first version a difference of 0.2 would mean around 80% of difference between
the picked and the correct one, in this version a value of 0.2 only amounts to about 60% of
the differences as seen on Figure 5.17.

5.1.4 API

Currently, there is an API to test the developed algorithm, as well as a website that
makes use of this API to display the results in a very crude way. The website is available

51

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Difference

A
cc

u
m

u
la

te
d

P
er

ce
n
ta

g
e

Accumulated Percentage of Differences

Figure 5.17: Accumulated Percentage of difference between the predicted score and the chosen
score for Version 2.

at http://aal.ieeta.pt/oea-ws/ and one can query job titles of their choosing (in either
portuguese or english), pick a language to be displayed (currently only supports portuguese
and english) and ether the relevant skills should or not be displayed as well as the occupation
description. It is even possible to query in english and obtain portuguese results and vice-
versa.

The API makes use of what was talked before, a cutoff for the decisions it is unsure of.
In case the score is not past a certain threshold this API will return three possible ESCO
occupations matching the given query. These queries take about a second to display results
due to the amount of queries to Elasticsearch that need to be done, with a proper service
implemented these queries could take less time due to how scalable Elasticsearch is.

Figure 5.18 has an example of two queries from the website. One that returns an exact
match, and one that makes use of the cutoff to display three different occupations. The queries
were made to contain some ”noise” to simulate real world job offer titles, these queries were
”tradutor frances” and ”software engineer aveiro”.

5.2 Discussion

Producing this kind of results was no easy task. Working with data like these is hard,
especially when it comes to trying to match it to the real world. Job offers with titles such
as ”designer para aveiro” or ”mobilar developer” make this task that much harder due to the
noise introduced by recruiters in the title or the typos produced by humans. Classifying a
dataset like this into ESCO occupations by a human is challenging enough, and two different
people could have drastically different views on what ”designer para aveiro” could mean.
Besides this, there is also implicit knowledge that is inherent to a country or to a specific
region making classification of this type of data harder. To add on to these problems, the
ESCO structure itself can also be confusing at times. Occupations that seem similar and feel

52

http://aal.ieeta.pt/oea-ws/

Figure 5.18: Example of two queries with ”noise” to test the API.

like they should have a similar occupation path start off in completely different.

Overall, the results were good taking everything into consideration, there are some points

53

where better results could have been achieved with more resources, like the using more than
one person to annotate the larger dataset, annotate more examples of the dataset. Training a
model while having only 800 usable occupations and achieving a balanced F1-score of 83.839%
with both a precision and recall of 83.839% can be considered a success. These results are
good enough to be trustable, especially when it comes to the higher levels (1 to 3), which is
the default used by both the ETF and the CEDEFOP (European Centre for the Development
of Vocational Training), instead of the 5th. The results are also comparable to the state of
the art shown in [23] that achieved an accuracy of 90% while aiming to only identify the first
ISCO level, instead of trying to go for the 5th level.

Looking at the results after the algorithm has classified them, some decisions made by the
algorithm can still be considered valid even if they were not classified as correct on the initial
annotation. Looking at the numbers after evaluating the decisions made by the algorithm
there were 66 more possible correct decisions it took, making the accuracy for level 5 jump
from 63.38% to 72%.

There are also systems that can be created to further improve the model and make dataset
annotation easier so that more data can be consumed by the algorithms. A system where if
an occupation attains a low score is flagged and sent into a queue for human revision could
help with this. After X amounts of revision the, model could be retrained and it would turn
a fully supervised model into a semi-supervised model where the algorithm makes a choice,
it is reviewed by a human, and then trained again.

The goal with the data visualization was to create dashboards similar to the ones made
by the CEDEFOP. The example dashboards are shown in Figures 5.1 5.2 and the one made
by CEDEFOP can be seen in Figure 5.19. The data presented by both dashboards is similar,
albeit with different type of graphs, however, the dashboard made by CEDEFOP can only
accomodate results until the 3rd ESCO level while with the algorithm here described there
are results until the 5th level for both skills and occupations.

Besides this the web-service that was developed can already be a useful tool by itself. Given
a free query this web-service uses our algorithm to fetch the relevant ESCO occupations for
the given query (in case there are any). It can return results in both portuguese or english
and the person querying the system can choose what it wants to see. This can be a useful
tool for, for example, recruiters when trying to write a job offer fetching skills/knowledge or
the description for the said job offer. This API is going to be used on the Observatório do
Emprego de Aveiro (http://observatoriodoemprego.web.ua.pt/en/) website to provide
classification to queries made. Moreover, the developed technology was also considered robust
enough by a GOVCOPP (Research Unit on Governance, Competitiveness and Public Policies)
research team which is using it to assess the competencies related to the industry 4.0 demand
in the North region of Portugal.

54

http://observatoriodoemprego.web.ua.pt/en/

Figure 5.19: Dashboard with occupations and skills (until the 3rd level) for Europe made by
the CEDEFOP [13].

55

56

Chapter 6

Conclusion

6.1 Summary of the developed work

The project started by creating a tool that would allow collection of data related to
job offers for the ”Aveiro” district of Portugal. This tool was created and currently pulls
information from two different data sources converting them into a single, uniform data
model. The data pulled is then uploaded to elasticsearch where the creation of graphs and
dashboards is possible and made simple. These dashboards and graphs allows comparison
between regions to know, for example, where the industry of a particular district or country
is headed. As long as there is data these comparisons and dashboards can be created and
updated in real-time due to the elasticsearch-kibana integration.

The next step in the project was to match these job offers with an ESCO occupation using
only the job title. This task presented several challenges such as, lack of classified datasets,
misspellings or useless information in job titles, ambiguous job offers that could match one
or more occupation as they are defined in ESCO, the structure of ESCO having seemingly
related occupations with completely different paths.

The general method used is to query the ESCO Elasticsearch instance for the job title
and narrow down the search space from the 2500+ occupations ESCO has to a mix of 20
occupations and skills. From this initial query the feature vector is built based on the BM-25
score, link navigation, semantic similarity, and occupation similarity. On top of these results
a model is applied to improve the BM-25 results.

There were two models tested one using a fully machine-learning model that was a multi-
class problem and a mix of machine learning and state transition matrices that featured a
series of binary classifications between the occupations to which the result was a percentage
of chance of the occupation being the correct one.

For the first approach, the datasets were classified onto a multi-class problem and a feature
vector was engineered with 60 features and 15 targets. This approach was not very successful
even though it improved on the baseline (which was the Elasticsearch search) due to not
having enough data, a huge class imbalance and the feature vector being sparse with many
fields being equal to zero due to ESCO returning a different number of occupations for each
query.

The second method used was a binary classification approach, this approach consists of
instead of having a multi-classification model like before, we break these into a series of one
versus ones and have a binary decision where the only thing to be decided is which occupa-

57

Algorithm Level 1 Level 2 Level 3 Level 4 Level 5

Random Forest 0.8113 0.7313 0.69 0.66 0.6375

Table 6.1: Final Results attained by the algorithm

tion, between two, is most likely to match the query. Instead of getting absolute results from
this model, the probabilities of an occupation winning over the other are extracted. These
probabilities will then be used to build a probability matrix which will in turn be used to com-
pute the steady state probabilities. This approach assumes that each candidate occupation
is a state in a Markov model and the binary classification probabilities are approximations
to state transition probabilities. The stationary probability is calculated and the final model
gives a vector of probabilities for each occupation returned by the initial query being the
correct one. This model achieved considerably better results than the previous ones and than
the baseline so it was the best and final model.

As a proof of concept and to test out the algorithm, a very basic website was made where
users can type out free queries and the algorithm will give out an answer, if it finds any. To
test this website there were, as shown, studies made to find a good cut-off for when to display
only one ESCO occupation, when the algorithm is absolutely positive this is the correct one,
and when to display more than one, in the case of this website there are three currently being
displayed when the algorithm is uncertain of which one to pick.

6.2 Main Results

While building the system from the ground up was challenging and met with many dif-
ficulties along the way, the final results were comparable to the state of the art while not
having the resources to classify a big dataset. The fact that the model here presented per-
formed so well with as few examples as it has and can easily be adapted to accommodate
several languages (currently works in Portuguese and English), with little effort and as long
as there are semantic similarity tools for the given language, is a major point in favor of this
algorithm. Comparing this to the the results given by both the ETF and the CEDEFOP our
whole system allows for a finer analysis, by city or region of a country, instead of going only
by country and comparatively with the other state of the art articles here presented the focus
was on ICT-related occupations while the work here shown tries to use ESCO as a whole.

The results obtained allow for a statistically significant analysis due to the metrics it
reached and how similar they are when compared with the state of the art results. These
final results can be seen on Table 6.1.

This work was already published at the 19th International Conference on WWW/Internet [32]
and there are currently two Q1 journal publications being prepared.

6.3 Future Work

Right now there are plans for the future to build on the API and website. There are
already tools in place to automatically generate the datasets (provided it is an already annoted
dataset), classify the occupations and index them all in ESCO so it can be visualized as soon
as the data is collected. This new API would improve on the first part of dataset generation
and classification.

58

It would collect job offers and classify them, however, if the algorithm wasn’t sure of its
answer this job offer would be flagged and enter a queue system so that it could be reviewed
by a human. The human would look at the options given by the algorithm and pick one or
more as correct, so that it could enter the training dataset. After a given number of manual
classifications, a new dataset would be generated with new and past job offers and the model
would be retrained in order to, hopefully, get rid of these errors.

Adding more data sources to the data collection system is also a goal, however, this is a
challenging one due to having to talk with different companies and request permissions either
to get their data from an API or to webscrape which can prove to be difficult. LinkedIn would
be the main one to add followed by net-empregos.

To improve on the algorithm results, a next step, would be to replace wordnet with word
embeddings [24]. These are a more recent development on the natural language processing
field that look at the positions of words in a text in order to classify them as being equal
or not instead of using their semantic similarity. The decision to use wordnet was made at
the start of the development due to the assurance that with Wordnet was possible to have
fast enough runtime with the hardware that was available for the task. The use of brat [33]
for annotations and trying to select the relevant bits of information from titles could remove
clutter from the initial query and yield better results too.

It would also be worth testing trying to parse job descriptions using NLP and, for example,
extracting useful words or skills from them to add on to the initial Elasticsearch query to see
if this improves results or if it just adds noise to the queries.

59

60

Bibliography

[1] Malik Nabeel Ahmed Awan, Sharifullah Khan, Khalid Latif, and Asad Masood Khattak.
A new approach to information extraction in user-centric e-recruitment systems. Applied
Sciences, 9(14), 2019.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web: A new form of web
content that is meaningful to computers will unleash a revolution of new possibilities.
ScientificAmerican.com, 05 2001.

[3] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python.
O’Reilly Media, Inc., 1st edition, 2009.

[4] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard
Cyganiak, and Sebastian Hellmann. Dbpedia - a crystallization point for the web of data.
Web Semant., 7(3):154–165, September 2009.

[5] Jie Chen, Chunxia Zhang, and Zhendong Niu. A two-step resume information extraction
algorithm. Mathematical Problems in Engineering, 2018:1–8, 2018.

[6] George Chryssolouris, Dimitris Mavrikios, and Dimitris Mourtzis. Manufacturing sys-
tems: Skills & competencies for the future. Procedia CIRP, 7:17–24, 12 2013.

[7] European Comission. European skills, competences, qualifications and occupations.
https://ec.europa.eu/esco/portal/home, January 2021.

[8] Danica Damljanovic, Milan Agatonovic, and Hamish Cunningham. Freya: An interactive
way of querying linked data using natural language. In Raúl Garćıa-Castro, Dieter Fensel,
and Grigoris Antoniou, editors, The Semantic Web: ESWC 2011 Workshops, pages 125–
138, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[9] Elastic.co. Information out: search and analyze. https://www.elastic.co/guide/en/

elasticsearch/reference/current/search-analyze.html. Accessed on 14/06.

[10] Elastic.co. Similarity module. https://www.elastic.co/guide/en/elasticsearch/

reference/7.x/index-modules-similarity.html. Accessed on 27/05.

[11] C. Fellbaum. Wordnet : an electronic lexical database. Language, 76:706, 2000.

[12] Luis Fernández-Sanz, Josefa Gómez-Pérez, and Ana Castillo-Mart́ınez. e-skills match:
A framework for mapping and integrating the main skills, knowledge and competence
standards and models for ict occupations. Computer Standards & Interfaces, 51:30–42,
2017.

61

https://ec.europa.eu/esco/portal/home
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-analyze.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-analyze.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/index-modules-similarity.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/index-modules-similarity.html

[13] European Centre for the Development of Vocational Training. Skills-ovate: Skills
online vacancy analysis tool for europe. https://www.cedefop.europa.eu/en/

data-visualisations/skills-online-vacancies/occupations/skills, 2021.

[14] Daniela Freddi. Digitalisation and employment in manufacturing. AI & SOCIETY,
33(3):393–403, August 2018.

[15] Aileen Gelpi. Focus on social media as vital element of graduate recruitment campaigns.
Recruiting & Retaining Adult Learners, 21(10):12–12, 2019.

[16] Anna Giabelli, Lorenzo Malandri, Fabio Mercorio, and Mario Mezzanzanica. Graphlmi:
A data driven system for exploring labor market information through graph databases.
Multimedia Tools and Applications, 06 2020.

[17] Anna Giabelli, Lorenzo Malandri, Fabio Mercorio, Mario Mezzanzanica, and Andrea
Seveso. Skills2job: A recommender system that encodes job offer embeddings on graph
databases. Applied Soft Computing, 101:107049, 2021.

[18] Nicola Guarino, Daniel Oberle, and Steffen Staab. What Is an Ontology?, pages 1–17.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[19] Andrej Jerman, Mirjana Pejić Bach, and Ana Aleksić. Transformation towards smart
factory system: Examining new job profiles and competencies. Systems Research and
Behavioral Science, 37(2):388–402, 2020.

[20] Lorenzo Malandri, Fabio Mercorio, Mario Mezzanzanica, and Navid Nobani. Meet-lm: A
method for embeddings evaluation for taxonomic data in the labour market. Computers
in Industry, 124:103341, 2021.

[21] Joep Meindertsma. A brief introduction to linked data. https://ontola.io/

what-is-linked-data/, July 2018. Accessed on 23/06.

[22] Fabio Mercorio. Can we use big data for skills anticipation and matching? The case of
online job vacancies, 08 2019.

[23] Mario Mezzanzanica and Fabio Mercorio for the European Training Foundation. Big
data for labour market intelligence: An introductory guide, 2019.

[24] Tomas Mikolov, Kai Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. In ICLR, 2013.

[25] Ryan Mitchell. Web Scraping with Python: Collecting Data from the Modern Web.
O’Reilly Media, Inc., 2nd edition, 2018.

[26] A. B. M. Moniruzzaman and Syed Akhter Hossain. Nosql database: New era of
databases for big data analytics - classification, characteristics and comparison. CoRR,
abs/1307.0191, 2013.

[27] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Machine learning in python.
CoRR, abs/1201.0490, 2012.

62

https://www.cedefop.europa.eu/en/data-visualisations/skills-online-vacancies/occupations/skills
https://www.cedefop.europa.eu/en/data-visualisations/skills-online-vacancies/occupations/skills
https://ontola.io/what-is-linked-data/
https://ontola.io/what-is-linked-data/

[28] Mário Jorge Ferreira Rodrigues and António Joaquim da Silva Teixeira. Advanced Appli-
cations of Natural Language Processing for Performing Information Extraction. Springer,
2015.

[29] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3(3):210–229, 1959.

[30] Helmut Schmidt. Probabilistic part-of-speech tagging using decision trees. 1994.

[31] Toby Segaran, Colin Evans, and Jamie Taylor. Programming the Semantic Web. O’Reilly
Media, Inc., 2009.

[32] Gabriel Silva, Mário Rodrigues, Marlene Amorim, Angélica Souza, Marta Dias, and
Armando Pinho. Assessing job market dynamics using ELK stack. In 19th International
Conference on WWW/Internet 2020, pages 91–98, 11 2020.

[33] P Stenetorp, Sampo Pyysalo, Goran Topic, Tomoko Ohta, Sophia Ananiadou, and
Jun’ichi Tsujii. brat: a web-based tool for nlp-assisted text annotation. pages 102–
107, 04 2012.

[34] Andrea Szalavetz. Industry 4.0 and capability development in manufacturing sub-
sidiaries. Technological Forecasting and Social Change, 145:384–395, 2019.

[35] Udacity. Armenian online job postings. https://www.kaggle.com/udacity/

armenian-online-job-postings, 2017. Accessed on 14/06.

[36] Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, Daniel
Gerber, and Philipp Cimiano. Template-based question answering over RDF data. In
Proceedings of the 21st International Conference on World Wide Web, WWW ’12, page
639–648, New York, NY, USA, 2012. Association for Computing Machinery.

[37] Marysol Villeda, Randy McCamey, Eyo Essien, Christian Amadi, and Rajunor Anani.
Use of social networking sites for recruiting and selecting in the hiring process. Interna-
tional Business Research, 12:66, 02 2019.

[38] Duygu Çelik, Askýn Karakas, Gülsen Bal, Cem Gültunca, Atilla Elçi, Basak Buluz,
and Murat Can Alevli. Towards an information extraction system based on ontology to
match resumes and jobs. In 2013 IEEE 37th Annual Computer Software and Applications
Conference Workshops, pages 333–338, 2013.

63

https://www.kaggle.com/udacity/armenian-online-job-postings
https://www.kaggle.com/udacity/armenian-online-job-postings

64

	Contents
	List of Figures
	List of Tables
	Introduction
	Objectives
	Dissertation Structure

	State of the Art and Background Knowledge
	Background Knowledge
	Semantic Web
	Ontologies
	Triples
	Synsets

	ESCO
	Job Offers
	API
	Web Scraping

	Machine Learning
	Document-Oriented Databases
	Markov Chain

	State of the art

	Resources and tools used
	Introduction
	Tools Used
	ELK Stack
	Elasticsearch
	Kibana

	GraphDB

	Wordnet
	NLTK
	Scikit-Learn
	Tree Tagger

	Developed Work
	Introduction
	Data Collection
	Preparatory Work
	Data Preparation
	Data Model
	ITJobs Conversion
	CareerJet Conversion

	Handling Duplicates

	Algorithm
	Main Components
	Dataset
	Elasticsearch Scoring
	Graph Centroids
	Wordnet
	Taxonomical Similarity

	Occupation match as a multi-class problem
	Feature Vector
	Testing

	Occupation match as multiple binary classification problems
	Feature Vector
	Machine Learning

	Testing
	Binary Classification
	Binary classification results as transition probabilities

	Results
	Results
	Data Collection and visualization
	Machine Learning
	Occupation Transition Matrix
	Different Diagonal Estimator

	API

	Discussion

	Conclusion
	Summary of the developed work
	Main Results
	Future Work

	Bibliography

