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Resumo Falhas provocadas por desastres, devido a causas naturais, tecnológicas
ou humanas, tornaram-se mais frequentes e abrangentes, causando uma
degradação drástica nos serviços de comunicação providenciados por redes
de telecomunicações. Este facto tem uma importância extrema, uma vez
que estes serviços de comunicação constituem uma parte com importância
crítica na nossa sociedade.

Este problema é ainda mais crítico em redes óticas pois uma única fibra ótica
pode transportar informação de uma grande quantidade de serviços da rede.
É importante não só recuperar rapidamente os elementos da rede afetados
por um desastre (problema pós-desastre) mas também avaliar e minimizar,
antes do desastre ocorrer, o impacto deste nos serviços entre nós fora da
área afetada (problema pré-desastre).

Esta tese está centrada no problema pré-desastre e visa investigar como
as redes óticas elásticas (EONs) podem ser usadas de forma eficiente, em
termos de custo, para que o impacto de falhas provocadas por desastres
seja minimizado. Esta tese considera os desastres resultantes de ataques
humanos maliciosos a alguns elementos da rede.

Primeiramente, avalia-se a vulnerabilidade de rede óticas existentes a essas
falhas, recorrendo principalmente a variantes do problema de Deteção de
Nós Críticos (CND), um problema de otimização que procura o conjunto de
nós cuja falha simultânea interrompe o maior número de serviços da rede.
Um algoritmo exato de geração de linhas é proposto para o problema CND
no contexto de redes óticas transparentes.

Em seguida, fornece-se aos operadores de telecomunicações ferramentas
para aumentar a robustez das topologias de redes óticas contra falhas
provocadas por desastres. Por um lado, investiga-se como expandir as
redes óticas existentes, recorrendo à adição de ligações, com o objetivo de
aumentar a robustez a múltiplas falhas de nós. Numa abordagem heurística,
dado um limite para o comprimento de fibra adicional, é apresentado um
algoritmo greedy aleatório e um algoritmo greedy determinístico. Numa
abordagem exata, desenvolvem-se métodos para calcular a fronteira de
Pareto do problema de otimização biobjetivo que considera a maximização
da robustez e a minimização do custo de expansão da rede. Por outro
lado, fornece-se uma seleção de custo mínimo de nós gateway para redes
de outros operadores com resiliência máxima contra multiplas falhas. O
problema de Seleção de Nós Gateway (GNS) é definido, propondo uma
metodologia exata para a obtenção de todos os ótimos de Pareto.





Resumo (cont.) Finalmente, explora-se as vantagens do planeamento e da operação de re-
des óticas com flexibilidade espectral (proporcionada por redes óticas elásti-
cas). Considerando tráfego estático e dinâmico, com uma mistura de pedidos
unicast e anycast servidos pela rede, propõem-se algoritmos de Encaminha-
mento, Modulação e Atribuição de Espectro (RMSA) resilientes a múltiplas fa-
lhas de nós. Esses algoritmos RMSA baseiam-se numa métrica introduzida,
chamada disponibilidade do caminho em desastres, que mede a probabili-
dade de um caminho não ser afetado por um ataque a vários nós.





Keywords Disaster Resilience; Elastic Optical Networks; Robust Network Design; Criti-
cal Node Detection; Routing, Modulation and Spectrum Assignment; Integer
Linear Programming, Telecommunications.

Abstract Disaster-based failures, due to either natural, technological or human causes,
became more frequent in time and wider in scope, degrading drastically the
communication services supported by telecommunication networks. This is of
utmost importance since communication services are an important part of our
society critical infrastructure.

This issue is even more critical in optical networks where a single optical fi-
ber can carry a very large amount of service demands. It is important not
only to quickly recover the failed network elements disrupted by a disaster
(post-disaster problem) but also to evaluate and minimize, before the disaster
occurs, its impact on services between nodes outside the disaster area (pre-
disaster problem).

This thesis focuses on the pre-disaster problem and aims to investigate how
Elastic Optical Networks (EONs) can be used in a cost-effective manner so
that the impact of disaster-based failures is minimized. This thesis consi-
ders the disasters due to malicious humans attacks against some network
elements.

First, the vulnerability of existing optical networks to these failures is assessed,
mainly resorting to variants of the Critical Node Detection (CND) problem, an
optimization problem that seeks the set of nodes whose simultaneous failure
mostly disrupt the network services. An exact row generation algorithm is pro-
posed for the CND problem in the context of transparent optical networks.

Then, we provide telecommunication operators with tools to enhance the ro-
bustness of optical network topologies against disaster-based failures. On
one hand, we investigate how to upgrade existing optical networks, through
link addition, aiming to enhance their robustness to multiple node failures. In
a heuristic approach, within a given fiber length budget, a multi-start greedy
randomized algorithm and a greedy deterministic algorithm are presented. In
an exact approach, methods to compute the Pareto frontier of the bi-objective
optimization problem that considers both the robustness maximization and the
minimization of the cost of upgrading the network are proposed. On the other
hand, a minimum cost gateway nodes selection to third-party networks with
maximum disaster resilience against multiple failures is provided. The Gate-
way Node Selection (GNS) problem is defined, proposing an exact methodo-
logy to obtain all Pareto-optimal solutions.





Abstract (cont.) Finally, we exploit the advantages of spectrally (provided by elastic optical
networking) flexible optical network planning and operations. Considering sta-
tic and dynamic traffic, with a mix of unicast and anycast service demands,
Routing, Modulation and Spectrum Assignment (RMSA) algorithms resilient
to multiple node failures are proposed. These RMSA algorithms are based
on an introduced metric, called path disaster availability, that measures the
probability of a routing path not being disrupted by a multiple node attack.
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Chapter 1

Introduction

Large-scale failure events are becoming a concern to telecommunications network op-
erators as such events are becoming more frequent in time and wider in scope [RH20].
Disaster-based multiple failures, due to either natural, technological or human causes, can
seriously disrupt any telecommunication network [RHC+16]. A key component when deal-
ing with these disaster-based multiple failures consists in taking into account the network
design aiming the robustness to those failures [GTE+16]. Following the work of COST Ac-
tion RECODIS [RHC+16], disaster resilience of networks involves the following three main
components: network vulnerability assessment, disaster-resilience network enhancements, and
disaster-resilient resource management.

On one hand, a natural disaster typically affects a specific area. A problem of interest is
the identification of the network areas that, upon failure, maximally degrade the network per-
formance: in [NZCM11, TKI+15], it is studied how to compute the most vulnerable network
parts, subject to geographically-correlated failures and, in [AEG+13], probabilistic failure
models are considered where nodes closer to a disaster central point have higher failure prob-
abilities. On the other hand, human attacks can involve the simultaneous failure of network
components without geographical correlation and such attacks can be even more destructive
[FWG+16].

Current networks have intrinsic design vulnerabilities affecting their resilience to disasters.
One approach to improve their disaster resilience is to design the networks so that backup
links exist when primary links become unavailable [GBHC15]. Other alternatives have been
proposed: [SVCM12] exploiting immunization strategies (i.e. fortifying certain links) by
identifying links to be immunized that minimize the impact of failures; [ZMH17] considering
shielding critical links (e.g. strengthening cables) under general and geographical failures;
[MHD14] exploiting the rearrangement of the network resources and services on a partially
damaged network; and [dSMS17] selecting some nodes that, if made robust, improve the
network resilience against multiple node failures.

Disaster-resilient resource management can be provided by path diversification [RJS14].
An example is GeoDivRP [CGL+15], a protocol able to provide multiple geographically diverse
paths to end nodes. Other examples are [dSSM17] using the concept of D-geodiverse paths
(i.e. a pair of paths with a minimum geographical distance D between them from a source to a
destination node), [TKI+15] addressing the determination of pairs of region-disjoint paths and

1



[KO14, NEM15] modeling disaster failures as a generalization of the min-cut and max-flow
problems.

In [RCM17], an interesting way to classify any multiple failure scenario on a telecommu-
nication network is proposed. It considers the following three components:

� Element: node and/or link;

� Temporal dimension: static or dynamic (epidemic-like or cascading);

� Strategy: random or targeted (sequential or simultaneous).

In this thesis, the main focus is to consider multiple failures caused by malicious human
attacks. On one hand, node shutdowns are harder to realize than link cuts. On the other
hand, in the attacker’s perspective, node shutdowns are the most rewarding as the shutdown
of a single node also shuts down all its incident links. Here, we consider mainly the scenario of
node failures since they are the most harmful cases of malicious human activities. Therefore,
in the classification proposed in [RCM17], we focus on static targeted simultaneous multiple
node failures.

Given a telecommunication network topology, in some of the addressed challenges, we are
considering a worst-case scenario approach. In such cases, we seek the set of nodes whose
simultaneous failure mostly disrupt the network services. This can be computed with the op-
timal solution of an optimization problem, commonly named Critical Node Detection (CND)
problem. For a given number c, this optimization problem consists of computing a set of
c nodes (named critical nodes) such that their elimination maximally reduces the network
connectivity according to a given connectivity metric. In the preparedness of telecommuni-
cation networks against large-scale failures, the optimal value of the CND problem has been
recently considered as a metric to evaluate the network resilience to multiple node failures, as
in [dSMS17], where some network nodes are selected, resorting to the CND optimal solution,
to be made robust such that they never fail.

The CND problem has been extensively addressed in different network contexts and dif-
ferent connectivity metrics have been considered: minimizing the pairwise connectivity, max-
imizing the number of connected components, and minimizing the number of nodes of the
largest connected component size [LTK18], among others. Moreover, alternative CND for-
mulations have been proposed with different objective functions and/or constraints, e.g. the
beta-vertex disruptor [DXT+10] and the component-cardinality-constrained variant [LTK16].
In this thesis, the focus is on the CND variant whose objective is to compute a set of c nodes
whose removal minimizes the pairwise connectivity of the network [ACEP09, SGL12, Ven12],
a variant that has been used in the vulnerability evaluation of telecommunication networks
to multiple node failures [dSS20, SdSM18].

By comparing several real telecommunication networks, in [RCM17], it is concluded that
the most robust networks under targeted attacks have high values of average nodal degree,
low values of average shortest path length, and low diameter. In order to implement a flexible
optical network, a new kind of ROADM (Reconfigurable Optical Add-Drop Multiplexer) is
required that allows flexible spectrum to be switched from the input to the output ports. This
approach is called Elastic Optical Networking (EON) and it has the following two key prop-
erties: the optical spectrum can be flexibly divided and the Bandwidth Variable Transceivers
(BVT) can generate optical paths with different bit rates [GJLY12].

In EONs, the optical spectrum of each fiber link is organized in frequency slots (FSs).
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Assuming a transparent optical network (i.e. optical network without intermediate electrical
regeneration required), each demand between a pair of nodes is routed over an end-to-end
lightpath. In the source node, data is converted from electrical to optical domain resorting to
a modulation format (MF) and emitting on a set of contiguous FSs, transmitted through a
routing path over the network and, in the target node, data is converted back to the electrical
domain. Multiple lightpaths can be set up in a way such that their FSs do not overlap on
any network fiber link.

Due to many factors that affect light transmission over fibers, in a transparent optical
network, there is the need to impose a maximum length for the routing path of each lightpath,
named transparent reach. For example, comparing the modulation formats QPSK and 16-
QAM, in a single carrier lightpath, the 16-QAM carries twice the number of bits/symbol
but imposes a shorter transparent reach. Then, in a shorter routing path, the same line
rate (in bits/second) can be transmitted by 16-QAM instead of QPSK with a half symbol
rate, occupying less FSs [JKT+10]. This is the main principle behind the distance-adaptive
spectrum allocation strategies [JKT+10, TR17].

On one hand, when the MF is fixed (i.e. all lightpaths are modeled with the same MF),
the decision on the routing path and FSs of each lightpath is known as the Routing and
Spectrum Assignment (RSA) problem. On the other hand, when multiple MFs are available,
this assignment problem has to include the MF configuration selection to each lightpath,
which is widely known as the Routing, Modulation and Spectrum Assignment (RMSA) prob-
lem [CTV11]. The support of different service demands in EONs is ruled by the RMSA
algorithm, which decides how the optical network resources are assigned to each network
service demand.

Frequently, the main goal of the RMSA algorithm is to use the EON resources in an
efficient way by keeping the spectrum resources usage as low as possible, aiming to increase
the probability of future demands being accommodated [AR17, GZLZ12, KW11, WK13].
Nevertheless, due to the continuous advances of EONs in terms of node architectures and
transceiver characteristics (e.g. higher bit rates), other goals are also important. For example,
the minimization of transceiver costs and the minimization of the network power consumption
[CSO15, GWK15, PAK+12]. In this research, a novel objective to the RMSA algorithm is
introduced, which is the minimization of the impact of disaster-based failures.

Further flexibility of EONs is provided by the novel sliceable-bandwidth variable transpon-
ders (S-BVTs). These devices can generate multiple optical carriers to support different light-
paths towards different destinations or to be merged into a single higher-rate super-channel.
This flexibility can be used to optimally set up EONs, such as in [dSTP16] where ILP formu-
lations for the minimum cost configuration of S-BVTs are presented or in [DGS+15] where
a dynamic routing, spectrum and transponder assignment scheme for dynamic EONs is pro-
posed or also in [ZZY+15] where ILP formulations for the energy-efficient traffic grooming
with S-BVTs are presented.

Figure 1.1 illustrate the spectrum savings of using the flexible spectrum provided by EON
for three examples of demands with different bit rates and transmission distances.

In the first spectrum configuration, each FS has a fixed grid of 50 GHz and operates with
the QPSK format (which carries 100 Gbps on each lightpath). On one hand, “A” represents
a demand that perfectly fits this configuration; on the other hand, both “B” and “C” require
multiple lightpaths to fit within this configuration, wasting network resources due to the use
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Figure 1.1: EON flexibility illustration for three demands: A (100 Gbps, 1000 km), B (300
Gbps, 1000 km), and C (400 Gbps, 200 km). On the top spectrum, representation of the
spectrum needs of each demand on a 50 GHz fixed grid, assuming QPSK modulation (i.e.
100 Gbps per frequency slot). On the bottom spectrum, the same demands with adaptive
modulation optimized for required bit rate and flexible spectrum (transceiver model based on
[RBMT17] and transmission reaches based on [KRS+16]).

of an inefficient MF and the use of multiple channels that require multiple guard-bands.

In the second spectrum configuration, demand “B” has been merged into a higher-rate
super-channel with the MF 8-QAM, reducing the spectrum usage from 150 GHz to 87.5 GHz.
Moreover, demand “C” has also been merged into a higher-rate super-channel with the MF
16-QAM (since it requires a shorter reach when compared to “B”), reducing the spectrum
usage from 200 GHz to 87.5 GHz. Therefore, the global spectrum saving is 175 GHz, which
allows more client demands to be served by the EON with this spectrum flexibility.

Besides the introduction, this initial chapter is organized into five sections. Section 1.1
presents the main research objectives addressed in this thesis. The thesis structure of the
remaining chapters is given in Section 1.2. The main contributions of this thesis are summa-
rized in Section 1.3, both in terms of scientific novelty and the interest of the work to the
telecommunication network operators. Section 1.4 presents the author’s contributions, and
finally, Section 1.5 presents the final considerations and possible future research directions.

1.1 Research general objectives

The main goal of this thesis is to investigate how EONs can be used in a cost-effective
manner so that the impact of disaster-based failures, mainly caused by malicious attacks
against network nodes, is minimized. This goal is composed by the following four interrelated
issues.

The first issue is on how to assess the vulnerability of existing optical networks to disaster-
based failures. Given an existing telecommunications network, one must identify the network
elements (nodes and/or links) whose simultaneous failure minimizes the network connectivity
(measure in terms of a given connectivity metric, e.g. pairwise connectivity). This issue
involves the definition of appropriate network vulnerability metrics and the development of
efficient techniques for computing the set of network critical elements that maximize these
vulnerability metrics.
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Next, the second issue is on how to upgrade existing optical networks to enhance their
robustness to multiple failures. Given an existing optical network, one must identify a set of
new fiber cables, connecting pairs of nodes that are not connected in the current network. The
goal is to develop appropriate techniques able to compute the additional network links that
maximally contribute to the network robustness to disasters, i.e. minimizing the vulnerability
metrics of the resulting upgraded network.

Contrasting with upgrading existing networks through link addition, the third issue is on
how to enhance the network disaster resilience by resorting to third-party networks for tem-
porary connectivity in a failure scenario. Given an existing optical network and considering
that there also exists, at least, one third-party network that operates in the same geographical
region, one must identify a set of gateway nodes, in order to connect both networks (tem-
porarily in a failure scenario), such that the network resilience against disaster-based failures
is maximized.

Finally, the fourth issue is on how to implement disaster-resilient resource management.
Given an EON (either an existing or an upgraded one), one must derive a resource manage-
ment strategy minimizing the number of service demands that are disrupted by the simul-
taneous failures of the critical elements. This issue involves the RMSA mechanism used to
groom all service demands on a set of lightpaths such that the impact of multiple failures is
minimized.

To summarize, each one of these interrelated issues corresponds to one of the following
main research objectives of this thesis:

1. Assessment of the network vulnerability to disaster-based failures.

2. Disaster-resilient network design through link addition.

3. Disaster-resilient network design resorting to third-party networks.

4. Disaster-resilient resource management of elastic optical networks.

In the following subsections, these four objectives are further detailed, providing insights
on the approaches and methodologies used to address each objective.

1.1.1 Assessment of the network vulnerability to disaster-based failures

The aim is to provide telecommunications network operators with tools for the vulnerabil-
ity assessment of their optical networks to disaster-based failures. The envisaged vulnerability
metric is the total demand supported when all critical elements fail. The network vulnerability
score and the set of critical network elements are the outcomes of the tool.

This task is addressed in the context of transparent optical networks (i.e. optical networks
without intermediate electrical regeneration of lightpaths required). This assessment problem
takes into account the transparent reach of each type of lightpath and exploits the EON feature
that allows the dynamical change of optical modulation formats enabling longer transparent
reaches at the cost of larger spectrum widths.

The vulnerability metrics are mainly based on optimization problems that will be ap-
proached firstly by Integer Linear Programming (ILP) methods that are potentially able to
compute optimal solutions. Starting from known ILP models for the CND problem (e.g.
[SdSM18]), we include new variables and/or constraints aiming to correctly define new CND
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problem variants that model optical networks.

To handle those large-size instances for which the ILP approach becomes computation-
ally expensive, appropriate heuristic techniques based on techniques such as local branching
(successfully used in [BdSA18a] and [AdSD16] for optical network design problems) are inves-
tigated. Moreover, since elements (nodes and/or links) in the center of the network topology
are potentially more critical, centrality metrics (for example, closeness and betweenness cen-
trality) are also exploited as a means to obtain fast efficient heuristic algorithms.

All methods are extensively tested on publicly available optical network topologies that
can be found, for example, in [KNF+11, OWPT10, Sim14].

1.1.2 Disaster-resilient network design through link addition

The aim is to provide telecommunication network operators with tools to upgrade their
optical network topologies on the next investment period and for a given available CAPEX
(Capital Expenditure) investment budget.

For a given transparent optical network, the goal is to identify a set of new fiber cables,
within the investment budget, that maximally increase the network disaster robustness to
multiple failures. It can be defined as a bi-level optimization problem: the objective of the
master problem is to select the new fiber cables maximizing the total connectivity, considering
the simultaneous failure of a set of critical elements (nodes and/or links); and, the objective
of the subproblem is to identify a set of critical elements minimizing the total network con-
nectivity (this subproblem is addressed on the previous research objective).

Firstly, this problem is addressed using heuristic methodology (resorting to stochastic and
deterministic algorithms). These methods are extensively tested on publicly available optical
network topologies. The results obtained by each heuristic are used to analyze the trade-off
between investment budget and disaster robustness gains and to understand how this trade-off
is influenced by the network topology characteristics (e.g. average node degree and average
fiber length).

Then, the proposed problem is addressed using exact approaches. Here, the main goal is to
provide to the telecommunication network operators optimal trade-offs between investment
budget and robustness gains. It consists in solving a bi-objective optimization problem:
minimizing the investment budget while maximizing the network robustness against disaster-
based failures. Resorting to robust optimization, to achieve those optimal trade-offs, we aim
to compute the Pareto frontier (either partial or complete) to this bi-objective problem.

1.1.3 Disaster-resilient network design resorting to third-party networks

In the previous objective, by upgrading the network robustness through link addition, the
focus is on the design of all working links of the network. In contrast, here the focus is on the
network design with backup links (i.e. links that are only available when a multiple failure
occurs). To achieve this objective, we consider that temporary connectivity between some
nodes (called gateway nodes) can be provided by third-party network operators that might
exist in the same geographical region.

The aim is to provide telecommunications network operators with tools to minimize the
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cost of the gateway nodes to third-party telecommunication networks white maximizing the
network disaster resilience against multiple failures. This aim is an optimization problem that
can be also formulated as a bi-level problem: here, the objective of the master problem is to
select the gateway nodes that maximize the temporary connectivity provided by third-party
operators, considering the simultaneous failure of a set of critical elements; and, once again,
the objective of the subproblem is to identify a set of critical elements that minimize the
network connectivity. To solve this kind of bi-level problem, robust optimization techniques
are required (e.g. [ACF+13, ASNP16]).

The goal is to provide to the telecommunication network operators optimal trade-offs be-
tween the cost of the gateway nodes, connecting the network to the third-party operators,
and the network resilience gains. Resorting to robust optimization, we aim to compute the
complete Pareto frontier of the bi-objective optimization problem that considers the conflict-
ing objectives of minimizing the investment budget (i.e. gateway node selection cost) and
maximizing the network robustness to multiple failures.

1.1.4 Disaster-resilient resource management of elastic optical networks

Currently, optical networks use mechanisms to guarantee full demand protection for single
link or single node failures. In a disaster failure scenario, multiple network elements may fail
simultaneously and full demand protection is not viable. So, the aim is to provide telecommu-
nication network operators with appropriate extensions to the current resource management
strategies to make their networks as resilient as possible to disaster-based failures.

The resource management task involves the RMSA of a set of lightpaths that can groom
all service demands. To implement the disaster-resilience feature, we aim to develop RMSA
algorithms, on both regular and failure states, that assign the network demands to lightpath
such that a disaster-based failure disrupts, on average, a minimum amount of service demands.

We address this task resorting to heuristic algorithms, extensively testing them on publicly
available optical network topologies. The results obtained with these algorithms can be used
to compare all different disaster resilience algorithmic approaches, to analyze the trade-off
between the total network capacity and the robustness gains of each approach, and to under-
stand how this trade-off is influenced by the topology and optical networking characteristics
of the networks (e.g. network traffic load).

1.2 Thesis structure

The structure of this thesis is based on a collection of scientific publications, namely
four papers (three already published and one recently submitted) in international journals.
Each one of the four next chapters (from Chapter 2 to Chapter 5) corresponds to each one
of these journal papers. Chapters 2, 3 and 5 present the corresponding published papers
correcting a few identified typos. Additionally, in the appendices of this thesis, the four
published conference proceedings produced within this research are presented, complementing
the content of the journal papers.

All these eight works address the research objectives defined in Section 1.1. In Table 1.1,
we present a summary of the research objectives addressed in each chapter (and appendix)
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of the thesis. In this table, the reference associated with each chapter is also presented.

Table 1.1: Research objectives addressed in each chapter (and appendix) of this thesis.

Research objectives

Chapter Reference
Vulnerability Netw. Design Netw. Design Resource
Assessment (link addition) (third-parties) Management

2 [BdSA20] 7 7

3 [BAdS21] 7 7

4 (submitted) 7 7

5 [BdSA+21] 7

A [BAdS18] 7

B [BdSA18b] 7 7

C [BdSA19a] 7 7 7

D [BdSA+19b] 7

Notice that, in general, the conference proceedings publications address identical issues
to the international journal works. However, as we will show in the following sections, the
algorithmic approach is quite different in the majority of the cases.

1.2.1 Network vulnerability assessment

Firstly, we approach the vulnerability assessment in the context of transparent optical
networks resorting to a variant of the Critical Node Detection (CND) problem. In such
networks, data is converted into light in the source node, routed through an exclusive optical
path (i.e. without any electrical regenerators), and converted back to the electric domain at
the destination node. Moreover, this routing path must be bounded by the transparent reach,
a maximum optical length value which is imposed by the optical degradation suffered by the
lightpath both on fiber links and on intermediate optical nodes.

For a given graph representing a transparent optical network, a given weight associated to
each node pair and a given positive integer c, the CND problem variant addressed in Appendix
A (i.e. [BAdS18]) is the determination of the set of c nodes that, if removed from the graph,
minimize the total weight of the node pairs that remain connected. In the context of these
networks, a node pair is considered connected only if the surviving network (i.e. network
without the critical nodes) provides it with a shortest path within the transparent reach of
the network. To solve this variant of the CND problem, we present a path-based Integer
Linear Programming model together with an exact row generation algorithm to solve it.

Although heuristics based on node centrality metrics are commonly used to quickly identify
a set of critical nodes, in the computational results presented in Appendix A, we illustrate
that these heuristics are not able to identify, in general, the optical set of critical nodes. In
the results, we also show that real backbone network topologies are not resilient to multiple
node failures.
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This work was presented on the nineteenth edition of the Congresso da Associação Por-
tuguesa de Investigação Operacional, on September 2018, in Aveiro, Portugal.

The exact row generation algorithm proposed to solve the CND problem is further used
on Appendix B (i.e. [BdSA18b]) and on Chapter 2 (i.e. [BdSA20]) to evaluate the network
robustness of transparent optical network topologies to multiple node failure. In the latter
case, we observed that, in most cases, the optimal solution of the classical CND variant (i.e.
without the transparent reach restriction imposed by our study case) is also the optimal
solution of our CND variant, since disconnecting the network into disjoint components has
the higher impact on the objective function. Moreover, the classical CND variant can be
modeled with a compact ILP model, which is solved, using a commercial solver, much faster
than using our exact row generation algorithm.

Therefore, in Chapter 2, we have considered the compact CND model to quickly find
a feasible set of critical nodes. Moreover, in Appendix C and in Chapter 3, we have only
considered the compact CND model to evaluate the network robustness to multiple failures
because it is time-efficient and due to the fact that optical networks technological evolution
in the past years (e.g. elastic optical networking) tends to increase the transparent reach to
a point where it is no longer an important feature to be considered in the study.

Finally, we also evaluate the network resilience with the Average 2-Terminal Reliability
(A2TR) against a simultaneous failure of a critical node set. The A2TR metric is defined
as the number of node pairs that remain connected if all critical nodes fail, i.e., the optimal
value of a weightless version of the CND problem.

1.2.2 Network upgrade problem

One of the main problems addressed in this thesis is the network upgrade problem. It
aims to identify a set of new fiber links, within a given budget, to be added to an existing
network in order to obtain an upgraded topology that maximizes the network robustness
against multiple node failures.

Firstly, in Appendix B (i.e. [BdSA18b]), within the context of transparent optical net-
works, a multi-start greedy randomized algorithm is proposed to generate, with a given fiber
length budget, network topologies resilient to critical node failures. After fine-tuning the
probabilities of each candidate link being selected in a way that the method efficiently gener-
ates good network topologies, the best results are obtained by guaranteeing that at least one
end-node of each added link is a node with the lowest node degree and considering probabili-
ties inversely proportional to the square of the link length (i.e. giving a higher probability to
shorter links).

Using this multi-start algorithm, we first assess the resiliency gap of existing networks,
i.e. the relative difference between the resilience of an existing network topology and of a
new network topology design to maximize its resilience with the same fiber budget. Then,
we assess how much this resiliency gap can be reduced by upgrading an existing network
topology through link addition. Testing the proposed methodology on network topologies
with publicly available information, the computational results show that the resiliency gap of
existing topologies is significantly large; however, network upgrades with only 10% additional
fiber length (that aim to maximize the network resilience against multiple node failures) can
significantly reduce the resiliency gaps.
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This work was presented on the tenth edition of the International Workshop on Resilient
Network Design and Modeling, in August 2018, in Longyearbyen, Norway. Moreover, this
work has been awarded the Best Paper Award of the conference.

In Chapter 2 (i.e. [BdSA20]), the network upgrade problem is addressed with an alter-
native method based on a greedy deterministic algorithm where the computational results
show that the new deterministic methodology obtains better solutions when compared with
the previous method (proposed in [BdSA18b]). The proposed algorithm selects iteratively a
new link among the candidate links whose end-nodes belong to two distinct components of
the surviving network topology (i.e. graph resulting by removing the optimal critical nodes
from the given topology). Each link is selected in a deterministic manner selecting either the
shortest candidate link or the candidate link with the minimum value of its length times the
sum of its end-nodes degrees. This selection stops when there is no longer a candidate link
with its length within the available budget.

Besides the publication in an international scientific journal, the content of Chapter 2 was
also presented, as an extended abstract, on the ninth edition of the International Network
Optimization Conference, in June 2019, in Avignon, France.

In both these works, we approach the problem of upgrading an existing network using
heuristic methodologies (stochastic in [BdSA18b] and deterministic in [BdSA20]). Contrarily,
in Chapter 3 (i.e. [BAdS21]), we aim to optimally enhance the robustness of networks against
multiple node failures. Here, instead of considering a given budget to upgrade a given network,
we develop methods to compute the Pareto frontier where the cost of upgrading the network
is one of the objectives. The other objective is the maximization of the network robustness
metric. Although this approach does not directly solve the problem for a given budget, we
can obtain from the Pareto frontier the optimal solution for any budget value.

In Chapter 3, the problem in modeled as a bi-objective formulation, minimizing the cost
of the added edges and maximizing the robustness of the resulting upgraded network against
multiple node failures. A general iterative framework is first presented to obtain the complete
Pareto frontier. Then, two different algorithms are proposed based on a cover model for
the edge selection problem that, when compared with a classic path formulation, proved
to be much more efficient. The computational results conducted show that the proposed
methodology based on the cover model is effective in computing Pareto solutions for graphs
with up to 100 nodes, including four telecommunication networks topologies.

1.2.3 Third-party networks approach

In telecommunication networks, full connectivity resilience against multiple failures is too
expensive. As the Pareto frontier results presented in Chapter 3 illustrate, full connectivity
resilience requires a network topology with too many redundant links. Alternatively, the
connectivity resilience of a given telecommunications network can be improved by resorting to
available third-party networks for temporary additional connectivity until the failing elements
are restored. In such an approach, some network nodes must be selected to act as gateway
nodes to available third-party telecommunication networks when a multiple failure event
occurs.

In Chapter 4, for a given network topology and considering a cost associated to each
node (i.e. cost of turning it into a gateway node), our goal with this approach is to select
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the optimal set of gateway nodes, providing simultaneously maximum connectivity resilience
and minimum total cost. Since these are conflicting objectives, this Gateway Node Selection
(GNS) problem is defined as a bi-objective optimization problem such that its Pareto-optimal
solutions represent all optimal trade-offs between the cost of selecting the gateway nodes and
connectivity resilience improvement.

Here, since we resort to the network nodes to improve its resilience to failures, the connec-
tivity resilience of a given GNS solution is evaluated by a standard variant of the Critical Link
Detection (CLD) optimization problem. An exact optimization algorithm is proposed, based
on a row generation algorithm and on set cover cuts, similar to the one presented in Chap-
ter 3. The computational results demonstrate the effectiveness of the proposed algorithm on
four well-known telecommunication network topologies. Moreover, the computational results
show that the highest resilience gains are obtained with the lowest cost values, which indicates
that smaller investments allow to obtain the highest connectivity resilience gains.

1.2.4 Resource management of elastic optical networks

The last issue addressed in this thesis is the resource management of EONs, namely
defining a RMSA policy to be adopted by the telecommunication operator such that the
impact of multiple failures is minimized.

First, in Appendix C (i.e. [BdSA19a]), this topic is addressed where an estimated set of
demands to be supported by a given EON is considered and a RMSA policy is defined to be
adopted by the operator on both the regular state and any failure state.

Here, a worst-case scenario approach is adopted to evaluate the network resilience against
multiple node failures by identifying the set of nodes whose simultaneous failure maximally
reduce the demand percentage that is supported by the network. This problem is solved
heuristically by computing two sets of failure nodes. The first set is obtained by solving a
weighted version of the CND problem, where the weight associated to each node pair is given
by the total demand between those two nodes. The second set is computed resorting to the
introduced Node Demand Centrality (NDC) metric, which measures the impact of each node
failure on the demands between all other node pairs.

Then, for the same estimated demands, the same RMSA policy, and a fiber budget equal
to the total fiber length of the existing network, we also address the design problem aiming
to determine a new EON topology maximizing the resilience metric (i.e. demand percentage
supported in the failure state imposed by its critical nodes). This optimization problem is
heuristically solved by resorting to the multi-start algorithm presented in Appendix B.

The computational results show that new network topology solutions are much more
resilient than real EON topologies against multiple node failures. The improvements provided
by these alternative topologies (with an identical total fiber length of the original topologies)
are obtained with topologies with more homogeneous node degrees, which are very different
from the node degrees distribution of the real network topologies.

This work was presented on the fifteenth edition of the International Conference on the
Design of Reliable Communication Network, in March 2019, in Coimbra, Portugal.

Next, in Appendix D (i.e. [BdSA+19b]), a RMSA policy resilient to multiple node failures
is proposed. This RMSA algorithm considers a new metric on the decision of each demand
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routing path, named path disaster availability metric, which measures the probability of each
path of the network not being affected by a multiple node failure. In this work, a static set of
demands is considered for each well-known tested topology. Each demand can represent either
a unicast service (i.e. connection peer-to-peer) or anycast service (i.e. connection between a
client and a data center).

In Appendix D, we consider a different node attack model, where an attacker “discovers”
(with some probability) a set of nodes and plans to attack them simultaneously. We assume
that the number of attacked nodes has lower and upper bounds and that the probability of
s nodes being attacked is inversely proportional to the number of attacked nodes. Then, by
generating multiple random attacks based on those probabilities, the resiliency of each RMSA
algorithm to multiple node attacks is evaluated by two parameters: the average non-disrupted
demand (i.e. demand that is not disrupted after a failure) and the average surviving demand
(i.e. demand that is still supported after a failure).

The computational results show that the RMSA decision is always better when the disaster
path availability metric is used. Moreover, the best way to use the path disaster availability
metric in the RMSA decision depends on the traffic load of the EON. For lightly loaded
networks, the best RMSA policy is the one that gives higher priority to the proposed metric in
the assignment, while for heavily loaded networks, the best RMSA policy is the one that gives
higher priority to spectrum usage efficiency. For medium loaded networks, a mix criterion
proved to be the most efficient in the RMSA assignment.

This work was presented on the eleventh edition of the International Workshop on Re-
silient Network Design and Modeling, in October 2019, in Nicosia, Cyprus.

Finally, in Chapter 5 (i.e. [BdSA+21]), we address the resource management of a dynamic
EON, where demand requests arrive randomly one at a time and the accepted demands last
in the network for a random time duration. Then, an additional goal of the RMSA policy
is to efficiently use the spectrum resources available in order to maximize the acceptance
probability of future demand requests. To obtain RMSA algorithms resilient to multiple
node failure events, we resource to the path disaster availability metric, previously used in
the offline variant of the RMSA problem (where all demands are assumed to be known at the
beginning).

Here, we exploit the use of this metric in the RMSA of dynamic EONs by combining it
with spectrum usage metrics in a dynamic way based on the network load level. The aim
is that the efficient use of the resources is relaxed for improved resilience to multiple node
failures when the EON is lightly loaded, while it becomes the most important goal when the
EON becomes heavily loaded.

Considering the attack model proposed in [BdSA+19b] and a mix of unicast and anycast
services for each simulation, the computational results show that the RMSA algorithms com-
bining the path disaster availability metric with spectrum usage metrics are the best trade-off
between spectrum usage efficiency and resilience to multiple node failures.

1.3 Research contributions

This section describes the main contributions provided by this research. These contribu-
tions are divided into two interrelated categories: scientific novelty, where one summarizes the
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models and methods developed within this research; and telecommunication network opera-
tors applicability, where one explains the techniques that telecommunication operators can
exploit in their real-world optical networks operation.

1.3.1 Scientific novelty

Here, we highlight the original contributions of this research to the scientific community,
namely models, optimal methods and heuristic algorithms proposed.

� We present an ILP model, combined with an exact row generation algorithm, to optimal
solve the variant of the CND problem that minimizes the weighted pairwise connectivity,
in the context of transparent optical networks.

� We propose a greedy randomized generation algorithm that, for a given maximum length
budget, generates network topologies with high connectivity.

� Alternatively, we propose a greedy deterministic algorithm, that also generates topolo-
gies with high connectivity. We combine this algorithm with a local search algorithm
that aims to improve the generated topology.

� We model the robust network upgrade problem (RNUP) as a bi-objective optimization
problem and propose an upgrade algorithm that computes its complete Pareto frontier.
We also prove that this approach optimally solves the RNUP (i.e., it finds all Pareto-
optimal solutions).

� We propose two efficient algorithms (based on row generation and components separa-
tion, respectively) to solve the RNUP problem, resorting to a cover formulation of the
edge selection subproblem.

� We present and model the Gateway Node Selection (GNS) problem as a bi-objective
optimization problem, proposing a general GNS algorithm that computes its complete
Pareto frontier.

� We propose an efficient row generation algorithm, based on a set cover model, that
computes all Pareto-optimal solutions of the GNS problem.

� We introduce the Node Demand Centrality (NDC) metric that, for each node of an
EON topology, measures the impact of the node failure on the demands between all
other node pairs.

� We introduce the path disaster availability metric that, for each routing path, measures
the probability of that path being available in the surviving network (i.e. reduced graph
without the failure nodes and its links). Additionally, we present a recursive algorithm
to compute this metric.

� We present multiple RMSA algorithms, with both static or dynamic traffic, aiming to
increase the disaster resilience of EONs against multiple node failures.

� Finally, all methods developed within this research are implemented in suitable software
and extensively tested resorting to publicly available optical network topologies from
[KNF+11, OWPT10, Sim14], showing the full applicability of the proposed methodolo-
gies.
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1.3.2 Telecommunication network operators applicability

Recall that the main objective of this thesis is to develop tools that allow telecommuni-
cation network operators to use their EONs in a cost-effective manner so that the impact of
disaster-based failures is minimized.

Firstly, we provide the operators with a method to assess the vulnerability of transparent
optical networks to multiple node failures. It consists of an exact algorithm for a variant of
the CND problem that takes into account the transparent reach restrictions imposed by these
optical networks.

Then, we present appropriate techniques to enhance the disaster-resilience of telecommu-
nications networks. We approach this enhancement on two alternative ways: on the design
of all working links, through link addition; and on the design with backup links, resorting to
gateway nodes connecting the network to other third-party networks.

For a given available investment budget, we propose algorithms, both stochastic and deter-
ministic, to upgrade transparent optical networks, enhancing their resilience to disaster-based
failures. Moreover, we propose methodologies that enable the telecommunication operator to
analyze the trade-off between the investment cost of upgrading the network and the gains in
terms of robustness against multiple node failures.

Finally, we provide operators with appropriate resource management strategies to make
their networks more resilient to disaster-based failures. Namely, we present RMSA algorithms
(firstly considering static traffic and then adapting those for dynamic traffic), based on real-
istic EON features (unicast and anycast demands, modulation formats, transmission reach,
grouping multiple optical channels into a single spectral super-channel, etc.), that proved to
be much more disaster-resilient than commonly used RMSA strategies.

1.4 Author’s contributions

All the works presented in this collection of scientific papers resulted from the research of
the thesis author with both supervisors. We work together on the conceptualization of each
proposed problem, the methodology used to approach each one, the selection of suitable soft-
ware to implement it, the formal and computational results analysis, the writing, reviewing,
and editing of each paper.

Exceptionally, the conference proceeding [BdSA+19b] and the international journal paper
[BdSA+21] had the contribution of two external members to this research: Dr. Krzysztof
Walkowiak and Dr. Róża Goścień, from the Wroc law University of Science and Technology,
in Poland. The external members introduced testing parameters that represent more realistic
instances to test our disaster-resilient RMSA algorithms. Namely, the introduction of rules
to calculate, for a given network demand, the most efficient MF and the number of required
contiguous FS of the lightpath. Moreover, they also proposed the distinction between unicast
and anycast traffic (i.e. traffic between clients and traffic between a client and a data center,
respectively).

On all works produced within the context of this thesis, including the ones that resulted
from an international scientific collaboration, the thesis author had exclusive responsibility
in the implementation of all methods on adequate software and elaboration of suitable illus-
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trations (tables and figures) that summarize the computational results obtained. Moreover,
specifically in the work presented in Chapter 5, the thesis author also introduced the three
mixed RMSA variants (to the regular state), from which one proved to be the best overall
RMSA algorithm.

1.5 Final considerations and future research

As humans increasingly rely on telecommunication networks in their everyday life, oper-
ators need to have reliable networks. In this research, we provide the operators with tools to
increase the resilience of EONs against disaster-based failures. These tools are divided into
two different categories: network design and resource management.

This research has made contributions both in terms of scientific novelty and applicability
to real-world telecommunication networks. We resort to different kinds of techniques, both
optimal and heuristic, to achieve the main objectives of this thesis.

The main focus of this research was on disaster-based failures caused by malicious human
attacks and, since that in the attacker’s perspective, node shutdowns are the most rewarding
than link cuts, the network resilience was mainly measured in terms of multiple node failures.
Nevertheless, in the network design approach that considers temporary connectivity provided
by third-party networks, since one resorted to gateway nodes to increase the disaster resilience,
the latter was measured in terms of multiple link failures. One research direction is to adapt
the proposed algorithms considering now multiple node failures. Additionally, since link cuts
are easier to realize than node shutdowns, another research direction is to adapt the network
design and resource management of EONs methodology to disasters based on multiple link
failures, or even a combination of failure elements (i.e. both nodes and links).

Regarding additional research directions, in general, spatial flexibility in optical networks,
also named space division multiplexing (SDM), is a novel approach that uses a space domain,
provided by cores in multi-core fibers, in which the spatial resources are flexibly assigned to
lightpaths. The fiber space dimension increases the overall transmission capacity in a cost-
effective manner [SAZS15] but the additional flexibility increases the networking complexity
requiring new optimization methods [KCG+15]. However, there are few papers concerning
EON optimization with spatial flexibility. Some examples either propose simple heuristics
for the Routing, Spectrum and Core Assignment (RSCA) problem [SPK+15, TH14] or ILP
formulations for basic versions of it [LHZ15, MZSF14].

A future research direction is to consider this spatial flexibility in the resource management
of EONs, by introducing in our disaster-resilient RMSA algorithms the core assignment com-
ponent. It would result in the RMCSA (routing, modulation, core and spectrum assignment)
problem, which is quickly becoming arguably the most important problem of EONs.

Another research direction can also be to consider a path geo-diversification approach,
similarly to [dSSM17]: for each working lightpath, a backup lightpath will be considered
such that the geographical distance between the two lightpaths has to be higher than a given
minimum distance. Then, the idea is to consider a robust approach where the set of most
disruptive disaster scenarios is firstly computed and, then, the pairs of working and backup
lightpaths must be as much disjoint as possible over all critical elements of each disaster
scenario. In this way, the solutions would enhance the reliability also multiple failures causes
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by natural disasters.

As a final remark, at the initial stage of this research, there were plans to develop methods
addressing the case of translucent optical networks (i.e. optical networks whose geographical
dimension require the use of intermediate electrical regeneration). This aim is more chal-
lenging as it increases the complexity of the studied problems when compared to transparent
optical networks since it includes the regenerator location problem (e.g. the number of addi-
tional regenerators and the network nodes to install them). However, with the technological
evolution of optical networks, the transmission reach is increasing to a point where, in many
real-world EONs, all client demands can be served exclusively on the optical level (avoiding
the high costs of intermediate regenerators), and therefore, it is no longer essential for EON
operators to use electrical regenerators.
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Chapter 2

Design/Upgrade of a Transparent Optical Network

Topology Resilient to the Simultaneous Failure of

its Critical Nodes

Abstract: This paper addresses two related problems in the context of transparent optical
networks. In the network design problem, the aim is to identify a set of fiber links to connect
a given set of nodes. In the network upgrade problem, the aim is to identify a set of new
fiber links to add to a given network topology. For a given fiber length budget, the aim in
both problems is to maximize the network resilience to the simultaneous failure of its critical
nodes. The resilience is evaluated by the Average 2-Terminal Reliability (A2TR) against a
set of critical node failures and the critical nodes are the ones that minimize the A2TR of
the network. So, the design/upgrade problem is a bi-level max-min optimization problem.
Recently, a multi-start greedy randomized heuristic was proposed for both problems. Here,
we propose an alternative method based on a greedy deterministic algorithm and we provide
computational results showing that the new method obtains better solutions. The results
show that the resiliency difference between existing network topologies and the best network
design solutions is very high but this difference can be significantly reduced by network up-
grades with small fiber length budgets.

Keywords: Transparent Optical Networks, Critical Node Detection, Resilient Network De-
sign, Disasters, Optimization, Heuristics

F. Barbosa, A. de Sousa, and A. Agra. Design/upgrade of a transparent optical network topology resilient to
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23

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21933
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21933


2.1. Introduction

2.1 Introduction

Large-scale failures can seriously disrupt a telecommunications network due to either
natural, technological or malicious human activities [RHC+16]. Two recent surveys conducted
within COST Action RECODIS are [GTE+16] on strategies to protect networks against large-
scale natural disasters and [FWG+16] on security challenges in communication networks.
When dealing with large-scale failures, it is important not only to recover from failures as
quick as possible (the post-disaster problem), but also to prepare the network to minimize
the impact of such failures (the pre-disaster problem).

This work deals with the pre-disaster problem by addressing the design (and upgrade)
of telecommunication networks aiming to enhance their resilience to large-scale failures. To
reach this goal, we first adopt a proper network resiliency metric and, then, we propose design
methods aiming to optimize the network resiliency metric. We address the design of resilient
network topologies in the context of transparent optical networks. Note that, in general,
multiple failures might involve only links or nodes and links (a node failure implies that its
links also fail). For example, in malicious human attacks, node shutdowns are harder to
realize but they are the most rewarding in the attackers’ perspective since the shutdown of
a single node also shuts down its incoming/outgoing fiber links. Moreover, power outages
can only shut down nodes since fiber links do not require power supply. Here, we consider as
large-scale failures the case of multiple node failures as they are the most harmful cases.

For a given network topology, if some nodes are considered critical due to some reason,
the network design should take it into consideration, as in [BdSA18a] where the approach
proposed in [AdSD16] is adapted to the design of a transparent optical network minimizing
the failure impact of a given set of critical nodes. Here, we consider that the resilience of a
network topology is evaluated by the Average 2-Terminal Reliability (A2TR) against a set of
critical node failures. The A2TR metric is defined as the number of node pairs that remain
connected if all critical nodes fail. The critical nodes of a network are the nodes that minimize
the A2TR of the network, an optimization problem commonly named Critical Node Detection
(CND) problem. So, the design problem is a bi-level max-min optimization problem.

CND problems have been considered in different contexts and are gaining special at-
tention in the vulnerability evaluation of telecommunication networks to large-scale failures
[GTE+16]. In [ACEP09], the CND problem is defined as the detection of a given number c
of critical nodes aiming to minimize the number of connected node pairs. Recently, this and
other variants of CND have been addressed [SdSM18, SGL12, VBP14, VPP15], but none of
these works addresses the CND problem in the context of transparent optical networks. Other
metrics have been used to evaluate the vulnerability of networks in other contexts [RCM17]
or assuming multiple geographically correlated failures [NZCM11]. There are also works on
improving the preparedness of networks to multiple failures, some by changing the network
topology [BGLR05, NYWF17, ZL12], while others by proposing strategies to recover from
failures [DTM14, STD15]. None of these works, though, uses the optimal solution of the
CND problem to assess the vulnerability of networks. On the other hand, CND was used
in [dSMS17] but resiliency improvement is exploited by optimal robust node selection on a
given network topology. The advantage of using CND is that it provides a worst case re-
siliency analysis, i.e., in any failure involving the same number of failing nodes, the resulting
A2TR is never worse than the value provided by the CND optimal solution.

In transparent optical networks, data is converted into light in the source node and trans-
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2.2. Critical node detection problem

mitted through an all optical path, named lightpath, towards the destination node. Due to
many optical degradation factors, like attenuation, dispersion, crosstalk and other non-linear
factors, there is a maximum length, named transparent reach, for each lightpath to work
properly. If a lightpath is required on a path whose length is higher than the transparent
reach, regenerators must be placed at intermediate nodes to convert the optical signal into
the electrical domain, regenerate the signal and reconvert it back to the optical domain (when
regenerators are used, the network is referred to as a translucent network). Nevertheless, the
use of regenerators is expensive and puts an additional burden on the network management
and, so, they are avoided when possible. The design of translucent networks must take into
account the cost imposed by the required regenerators, which is out of the scope of this
work. The methods proposed in this work are applicable to transparent optical networks,
i.e., optical networks whose diameter (the highest optical length among the shortest paths
of all node pairs) is not higher than the transparent reach. Note that the optical length of
a path depends both on the length of its links and on its number of hops, i.e., number of
intermediate nodes). We model the optical degradation suffered by a lightpath while travers-
ing an intermediate node as a fiber length value ∆, i.e., by considering it equivalent to the
degradation incurred due to the transmission over a fiber of length ∆. So, when accounting
for the A2TR metric, the CND problem has to consider that two nodes are connected only
if the surviving network provides them with at least one path whose optical length is within
the required transparent reach.

In [BdSA18b], a multi-start greedy randomized method was proposed to generate network
topologies, with a given fiber length budget, that are resilient to critical node failures. The
method is also adapted in [BdSA18b] to the upgrade of an existing network topology. Here,
we propose an alternative method for the same network design/upgrade problem based on
a greedy deterministic algorithm and provide computational results showing that the new
method obtains better solutions than the one proposed in [BdSA18b]. With the updated
results, we review the conclusions taken in [BdSA18b] concerning the resiliency values ob-
tained between the network design and the network upgrade solutions. The computational
results will show that the resiliency difference between existing topologies and the best net-
work design solutions is very high but this difference can be significantly reduced by network
upgrades with small fiber length budgets.

The paper is organized as follows. Section 2.2 describes a path-based Mixed Integer
Linear Programming (MILP) model defining the CND problem in the context of transparent
optical networks and a row generation algorithm that is used to solve the problem. Section 2.3
proposes deterministic algorithms to generate network topologies resilient to the simultaneous
failure of their critical nodes. The computational results are presented and discussed in Section
2.4. Finally, Section 2.5 presents the main conclusions of the work.

2.2 Critical node detection problem

Consider a transparent optical network represented by an undirected graph G = (N,E)
where N = {1, ..., n} is the set of nodes and E ⊆ {(i, j) ∈ N×N : i < j} is the set of fiber
links. For each link (i, j) ∈ E, parameter lij represents its length. The transparent reach of
the network is denoted by parameter T > 0 and the fiber length equivalent to the degradation
suffered by a lightpath while traversing an intermediate node is denoted by parameter ∆ > 0.
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We assume that lij ≤ T for all (i, j) ∈ E; otherwise, such link is worthless and can be removed
from G.

The set of all paths in G between i ∈ N and j ∈ N (with i < j and (i, j) /∈ E) with
length not greater than T is denoted by Pij . Each path p ∈ Pij is defined by the binary
parameters βpk , indicating whether node k ∈ N (which can be an end node) is in p or not,
and αpkt indicating whether link (k, t) ∈ E is in p or not. So, Pij is composed by all paths p

such that
∑

(k,t)∈E

αpktlkt + ∆
(∑
k∈N

βpk − 2
)
≤ T .

To model the CND problem, we consider for each node i ∈ N a binary variable vi indicating
whether i is a critical node or not. We consider also for each node pair (i, j), with i, j ∈ N :
i < j, a binary variable uij which is 1 if nodes i and j can be connected through a path
satisfying the transparent reach T , and 0 otherwise. Then, for a given number c of critical
nodes, a path-based formulation for the CND problem is given by the following Integer Linear
Programming (ILP) model:

min z :=

n−1∑
i=1

n∑
j=i+1

uij (2.1)

s.t.

n∑
i=1

vi ≤ c, (2.2)

uij + vi + vj ≥ 1, (i, j) ∈ E, (2.3)

uij +

n∑
k=1

βpkvk ≥ 1, (i, j) /∈ E, p ∈ Pij , (2.4)

vi ∈ {0, 1}, i ∈ N, (2.5)

uij ∈ {0, 1}, i, j ∈ N : i < j. (2.6)

The objective function (2.1) value z is the A2TR value defined as the total number of
connected node pairs in the surviving graph (i.e., the graph given by removing all critical
nodes from G). Constraint (2.2) ensures that at most c nodes are selected as critical nodes
(in any optimal solution, c critical nodes are selected). Constraints (2.3) guarantee that a
pair of adjacent nodes (i.e., with a direct link between them) is connected if none of the two
nodes is a critical node. Constraints (2.4) are the generalization of constraints (2.3) for the
node pairs that are not adjacent in G: node pair (i, j) is connected if there is one path p ∈ Pij
such that none of its nodes is a critical node. Constraints (2.5)-(2.6) are the variable domain
constraints. Note that, since variables vi are binary, constrains (2.3) and (2.4) impose uij ≥ 1
when nodes i and j are connected, which then, due to the objective function, forces uij = 1.
Therefore, constraints (2.6) can be replaced by uij ≥ 0. The resulting MILP model will be
considered henceforward and is referred to as the exact CND model.

The total number of constraints (2.4) depends on the graph topology, the link lengths
and the values of T and ∆. However, the exact CND model becomes too large (i.e., with
too many constraints) for relatively small sized instances which does not allow solution by
any available solver for reasonable sized instances. Instead, a row generation approach can
be used to solve the exact CND model as described in Algorithm 2.1.

In line 1, a MILP’ model given by the exact CND model without constraints (2.4) is
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2.2. Critical node detection problem

Algorithm 2.1 Exact algorithm for the CND problem

1: Input: G = (N,E), c. Initialize and solve MILP’ model (2.1)–(2.6) without constraints
(2.4). Let (u∗, v∗) be the optimal solution.

2: repeat
3: Set NCuts ← 0 and K ← {i ∈ N : v∗i = 1}
4: Compute subgraph GK = (N\K,EK), where EK = {(i, j) ∈ E : i, j /∈ K}
5: for all node pair (i, j) /∈ EK do
6: Compute shortest path p∈Pij and its optical length d
7: if d ≤ T and u∗ij +

∑n
k=1 β

p
kv
∗
k = 0 then

8: Add to MILP’ constraint (2.4) corresponding to path p
9: NCuts ← NCuts +1

10: end if
11: end for
12: if NCuts > 0 then
13: Solve MILP’ model with the added constraints. Update (u∗, v∗) accordingly
14: end if
15: until NCuts = 0

initialized and solved. Then, in the main cycle (lines 2–15), the separation problem associated
with constraints (2.4) is solved (lines 3–11) where the identified violated constraints (whose
number is accounted in NCuts) are added to MILP’ (lines 7-10) and, finally, MILP’ is solved
again (lines 12–14). The algorithm ends when no violated constraint is found (line 15) and
the optimal solution is the solution of the last solved MILP’ model.

The separation problem associated with constraints (2.4) is solved as follows. In line 4,
the subgraph GK = (N\K,EK) is computed by removing from G the critical nodes of set K
(determined in line 3) and the corresponding incident edges and adding ∆ to the length of
each edge in EK . Since the number of intermediate nodes of a path is equal to the number
of edges minus one, the shortest path value in GK is equal to the optical path length plus ∆.
So, between each pair of nodes i and j in N\K, such that (i, j) /∈ EK (line 5), the shortest
path p in GK is determined (by Dijkstra algorithm) and its optical length d computed as
the length of p minus ∆ (line 6) and the violation of the constraint (2.4) associated to p is
checked (line 7).

Note that if the imposition of the transparent reach T is relaxed (i.e., considering T →
+∞), we get one of the classical CND problem variants for which there are known efficient
compact MILP models. One such model, proposed in [SdSM18], is as follows. Consider for
each pair of nodes (i, j) the set Nij ⊂ N which represents the set of adjacent nodes to i (on
graph G) if the node degree of i is not higher than the node degree of j, or the set of adjacent
nodes to j, otherwise. Then, the previous constraints (2.4) can be replaced by the following
(polynomial sized) constraints:

uij ≥ u{ik} + u{kj} −1 + vk, (i, j) /∈ E, k ∈ Nij . (2.7)

In these constraints, u{ik} represents variable uik if i < k or variable uki otherwise (the
same meaning to u{kj}). Constraints (2.7) guarantee that for each pair of nodes i and j not
adjacent in G, they are connected if there is a non-critical node k ∈ Nij connected to both
i and j. The resulting MILP model, i.e., replacing constraints (2.4) by constraints (2.7), is
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2.3. Network design/upgrade problem

referred to as the compact CND model.

Note that the optimal solution value of the compact CND model is an upper bound on
the optimal solution value of the exact CND model since all node pairs that are connected
are accounted in the objective function of the compact CND model while the ones whose
shortest path length over the surviving network is higher than the transparent reach T are
not accounted in the exact problem. Nevertheless, in most cases, the optimal solution of
the compact CND model is also the optimal solution of the exact problem and its resolu-
tion is much quicker when using a standard solver (it does not require the row generation
method of Algorithm 2.1). As will be described in the next section, we use this fact to derive
computationally efficient algorithms for the network design/upgrade problem.

2.3 Network design/upgrade problem

Consider an existing network G = (N,E) with a total fiber length L and a fiber length
budget B = L + L′, with L′ ≥ 0. The Network Design Problem aims to identify a new
network topology connecting all nodes in N whose total fiber length is not higher than B.
The Network Upgrade Problem aims to identify a set of fiber links within the budget L′ to
be added to the existing topology. In both cases, the aim is to obtain a network (design or
upgrade) topology that maximizes the A2TR value of the simultaneous failure of its critical
nodes.

In [BdSA18b], a multi-start greedy randomized algorithm was proposed for this network
design/upgrade problem. The method randomly generates multiple network topologies, with a
fiber length budget given by B. Each topology is generated by a greedy randomized algorithm
that builds a network by randomly selecting one link at a time until no new link can be added
within the fiber budget B. In that stochastic method, the evaluation of each network topology
uses centrality based heuristics in a preliminary evaluation and, if necessary, Algorithm 2.1 to
compute its exact A2TR value. At the end, the method outputs the best generated topology,
i.e., the one with highest A2TR value. Here, we propose an alternative deterministic method
based on a greedy approach. The main differences when compared with the previous approach
are that a single greedy solution is generated and, on each greedy step, the selected link is
based on the critical nodes of the current partial topology (resulting from all already selected
links). As a consequence, the critical nodes must be computed at each step of the greedy
algorithm.

The proposed method is composed by three tasks which are run in sequence. In the first
task, a greedy deterministic algorithm is run so that a topology solution is computed. In
the second task, a local search method is applied to the previous solution to try to find a
better one. Both first and second tasks consider the network A2TR evaluation imposed by
the critical nodes based on the compact CND model. Finally, the third task evaluates the
previous solution in terms of optical transparency and using the exact CND model. If the
previous solution is not optically transparent and/or the evaluation provided by the exact
CND model is lower than the evaluation value provided by the compact CND model, the
third task uses the unused budget to add new links so that the network topology becomes
optically transparent and the exact A2TR value becomes as close as possible to the value
provided by the compact CND. Next, we describe the tasks in three separate subsections
and, then, describe the overall algorithms in the fourth subsection.
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2.3. Network design/upgrade problem

2.3.1 Greedy deterministic approach

In the first task, both network design and upgrade problems are conceptually modeled as
the upgrade of a network topology represented by graph G = (N,E) where E = {} in the
network design problem and E is the set of fiber links of an existing network in the network
upgrade problem. In both cases, parameter lij , with i < j, represents the length of the fiber
link between nodes i and j (either an existing link or a possible new link).

Consider the following notation. For a general graph G = (N, E) and a given set of
critical nodes K ⊂ N , consider the surviving graph given by GK = (N\K, EK), with EK =
{(i, j) ∈ E : i, j /∈ K}. The surviving graph GK might be composed by different connected
components where a node in one component has no connectivity to a node of any other
component. So, for a given set of critical nodes K ⊂ N , parameter mK indicates the number
of connected components of the surviving graph GK and the binary parameters cpK(i, j)
indicate that nodes i, j ∈ N\K are in different components of GK (if cpK(i, j) = 1) or in the
same component (if cpK(i, j) = 0).

Algorithm 2.2 presents a greedy deterministic algorithm to upgrade a network represented
by graph G = (N,E) with a fiber budget B. This algorithm iteratively selects a candidate link
among the ones whose end-nodes belong to two different components in the current surviving
network topology, i.e., the topology resulting by removing its critical nodes from the current
partial topology.

Algorithm 2.2 has four Input parameters (line 1): besides the graph G and the fiber
budget B, the algorithm has a third integer parameter c representing the number of critical
nodes of interest and a fourth parameter which is an Input set of links E′ considered as
follows. In the network upgrade problem, we consider the Input link set E′ = {}. In the
network design problem, we follow [BdSA18b] considering the Input link set E′ given by the
Relative Neighbourhood Graph (RNG) [Tou80], which is defined as follows: nodes i, j ∈ N
are connected by a link if and only if there is no other node k ∈ N\{i, j} such that lik ≤ lij
and ljk ≤ lij . The preliminary tests have shown that this set of links provides a good initial
balance between connectivity and amount of used fiber budget in the network design problem.

In line 2, some relevant variables are initialized: z̄ which represents the CND optimal value
of the current partial topology; BR which represents the amount of fiber budget still available;
and set K which includes all computed sets of critical nodes. Algorithm 2.2 is an iterative
process (lines 3-18) where each iteration is composed of two phases: an Adding Phase,
where links are added to set E′ in order to improve the CND value of the resulting topology
until the available budget is not enough to add more links; and a Removing Phase, where
all links in E′ are reevaluated and removed if their elimination does not decrease the CND
optimal value of the resulting topology. In each iteration, set E′add (and set E′rem) represents
the set of links added to (and removed from) the network in the current iteration. These sets
are initialized empty at the beginning of each iteration (line 4).

In the Adding Phase (lines 5-14), the compact CND model is solved for the current partial
topology (N,E ∪E′) (lines 6-7), its set of critical nodes is stored in set K (line 8) and the set
of network components imposed by the critical node set K is determined (line 9). In line 10, if
the number of components mK is one (the network is fully connected to any c node failures) or
if the shortest available link connecting two components is larger than the remaining budget,
no new link is added and the Adding Phase ends. Otherwise, the link (i, j) /∈ E ∪ E′ with
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2.3. Network design/upgrade problem

Algorithm 2.2 Greedy deterministic algorithm

1: Input: G = (N,E), B, c, E′

2: z̄ ← 0, BR ← B and K ← {}
3: repeat
4: E′add ← {} and E′rem ← {}
5: repeat
6: Solve compact CND model for graph G← (N,E ∪ E′)
7: Let z∗ be the optimal value and (u∗, v∗) be the optimal solution
8: z̄ ← z∗, K ← {i ∈ N : v∗i = 1} and K ← K ∪ {K}
9: Compute the mK components of graph

(
N\K, (E ∪ E′)K

)
10: if mK ≥ 2 and min(i,j){lij : cpK(i, j) = 1} ≤ BR then
11: Compute new link (i, j) corresponding to min(i,j){f(i, j) :cpK(i, j) = 1, lij ≤ BR}
12: E′ ← E′ ∪ {(i, j)}, E′add ← E′add ∪ {(i, j)} and BR ← BR − lij
13: end if
14: until no new link added to set E′add

15: if E′add 6= {} then
16: [Removing Phase]
17: end if
18: until E′add = {} or E′rem = {} or E′rem =

{
last |E′rem| links added to set E′add

}
the smallest value of a given function f(i, j) that connects two nodes belonging to different
components is selected (line 11) and the selected link is added to the current partial topology
(line 12). Function f(i, j) can be one of the two following possibilities:

(i) f1(i, j) = lij , i.e., the link length;

(ii) f2(i, j) = lij × (δi + δj), where δi and δj are the degree of nodes i and j in the current
partial topology (N,E ∪ E′).

The Adding Phase is repeated until no new link is selected (line 14). In lines 15-17, if at
least one link was added in the Adding Phase, the Removing Phase (described in Algorithm
2.3) is run. Algorithm 2.2 runs until no links are added in the Adding Phase, or no links are
removed in the Removing Phase or the last links added in the Adding Phase are the links
removed in the Removing Phase (line 18).

The Removing Phase (Algorithm 2.3) is an iterative process (lines 2-14) that evaluates
each link (i, j) ∈ E′ in decreasing order of its length lij . For each (i, j) ∈ E′, first, the
algorithm computes (in line 3) graph G′ that represents the upgraded network without link
(i, j). Then, the compact CND of G′ is solved (line 8) and if its CND value z′ is not lower
than the current resiliency value z̄ (line 10), the link (i, j) is removed from E′ since it does
not degrade the resilience of the current topology (line 11).

Our preliminary tests showed that most of the CND optimal solutions in this phase overlap
with previous solutions (stored in set K, line 8 of Algorithm 2.2). So, in order to improve the
computational efficiency of the Removing Phase, in lines 4-6 of Algorithm 2.3, the resiliency
value z′K is computed for each critical node set K ∈ K in graph G′ (i.e., the number of
connected node pairs in graph G′ without nodes K). Then, if the minimum of these values is
not lower than the current resiliency value (line 7), the algorithm needs to solve the compact
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Algorithm 2.3 Removing Phase of Algorithm 2.2

1: Input: G = (N,E), c, E′ (in decreasing order of length)
2: for all (i, j) ∈ E′ do
3: G′ ←

(
N, (E ∪ E′)\{(i, j)}

)
4: for all K ∈ K do
5: z′K ← resiliency value given by set of critical nodes K in graph G′

6: end for
7: if minK∈K{z′K} ≥ z̄ then
8: Solve compact CND model for graph G′ and set z′ as the optimal value
9: K ← {i ∈ N : v∗i = 1} and K ← K ∪ {K}

10: if z′ ≥ z̄ then
11: E′ ← E′\{(i, j)}, E′rem ← E′rem ∪ {(i, j)} and BR ← BR + lij
12: end if
13: end if
14: end for

CND model. Otherwise, we know that the current link (i, j) cannot be removed and, therefore,
we do not need to solve the compact CND model for graph G′ (line 8) which is the most time
consuming part of the algorithm.

Figure 2.1 is an illustration of Algorithm 2.2 for a graph with 9 nodes shown in (a), a
fiber budget L′ = 15%L, f(i, j) = f1(i, j) and c = 2 critical nodes. Initially, the compact
CND model is solved for the initial graph to compute its critical nodes, highlighted in red in
(a). By removing the critical nodes, it results in the surviving network in (b) with mK = 2
network components (with 3 and 4 nodes, respectively) and the selected link is the shortest
one (recall that f1(i, j) = lij) that connects both components, highlighted in dashed blue
in (b). This link is added to the topology, resulting in the upgraded graph in (c), and the
optimal critical node set is recomputed. This process is repeated once more, obtaining the
upgraded graph in (e). Then, by removing its critical nodes from the graph, there is no
candidate link to be added within the remaining fiber budget. At this stage, the Removing
Phase starts and the first added link, highlighted in dashed red in (f), is now removed because
the resulting topology in (g) has the same resiliency value as the one in (e). This removal
increases the available fiber budget BR. The Adding Phase runs again which now adds a new
link, highlighted in dashed blue in (h), obtaining the topology in (i). In this example, this
last topology has maximal resiliency, i.e., by removing its critical set of 2 nodes, the surviving
network in (j) is fully connected.

In Algorithm 2.2, each added link takes into account the set of critical nodes given by
the optimal solution of the compact CND model. A potentially better algorithm is, for each
partial topology, to consider the S best critical node sets, with S > 1, as in Algorithm 2.4.
Algorithm 2.4 has many similarities with Algorithm 2.2: lines 2-10 are similar and lines 25-31
in Algorithm 2.4 are equal to lines 12-18 in Algorithm 2.2 (which means that the Removing
Phase is also equal).

In line 11 of Algorithm 2.4, a set of variables cij are initialized to zero. These variables
count, in a weighted manner, the number of times that each candidate link (i, j) /∈ E ∪ E′
connects two components in the S alternative surviving graphs, i.e., the surviving graphs of
the S best CND solutions. Note that in line 7, z̄ is set with the solution value of the first
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Figure 2.1: Example of Algorithm 2.2, considering c = 2, f(i, j) = f1(i, j), L′ = 15%L, the
initial graph in (a). On left, graph (N,E∪E′) in each iteration, with the critical nodes in red,
links of E in black and links of E′ in blue. On right, the surviving graph in each iteration,
added link in dashed blue and removed link in dashed red.
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Algorithm 2.4 Greedy deterministic algorithm, considering S CND solutions

1: Input: G = (N,E), B, c, E′, S
2: z̄ ← 0, BR ← B and K ← {}
3: repeat
4: E′add ← {} and E′rem ← {}
5: repeat
6: Initialize and solve compact CND model for graph G← (N,E ∪ E′)
7: Let z∗ be the optimal value and (u∗, v∗) be the optimal solution. Set z̄ ← z∗

8: K ← {i ∈ N : v∗i = 1} and K ← K ∪ {K}
9: Compute the mK components of graph

(
N\K, (E ∪ E′)K

)
10: if mK ≥ 2 and min(i,j){lij : cpK(i, j) = 1} ≤ BR then
11: Initialize s ← 1 and cij ← 0, for all candidate links (i, j) /∈ E ∪ E′ such that

lij ≤ BR
12: while s ≤ S and mK ≥ 2 do
13: for all (i, j) /∈ E ∪ E′ : cpK(i, j) = 1, lij ≤ BR do
14: cij ← cij + (z̄/z∗)
15: end for
16: if s < S then
17: Add constraint

∑n
i=1 v

∗
i vi ≤

∑n
i=1 v

∗
i − 1 to compact CND model of graph G

18: Solve compact CND model. Let z∗ be the optimal value and (u∗, v∗) be the
optimal solution

19: K ← {i ∈ N : v∗i = 1} and K ← K ∪ {K}
20: Compute the mK components of graph

(
N\K, (E ∪ E′)K

)
21: end if
22: s← s+ 1
23: end while
24: Compute new link (i, j) /∈ E′ corresponding to max(i,j){cij/f(i, j) : lij ≤ BR}
25: E′ ← E′ ∪ {(i, j)}, E′add ← E′add ∪ {(i, j)} and BR ← BR − lij
26: end if
27: until no new link added to set E′add

28: if E′add 6= {} then
29: [Removing Phase]
30: end if
31: until E′add = {} or E′rem = {} or E′rem =

{
last |E′rem| links added to set E′add

}

compact CND (the lowest value among all S surviving graphs). Then, for each candidate link
(i, j) that connects two components of the current surviving graph (line 13), cij increases by
z̄/z∗ where z∗ is the solution value of the current surviving graph. Note that the ratio z̄/z∗ is
always less than or equal to 1. So, the idea behind this weighted sum is to give a lower weight
in the link selection to the links connecting two components of the surviving graphs whose
CND solution values are worst. Finally, in line 24, the link (i, j) /∈ E ∪ E′ with the largest
value of cij/f(i, j) is selected (like before, f(i, j) is set either with f1(i, j) or with f2(i, j)).

While the best CND solution of each partial topology is computed in line 6 of Algorithm
2.4, the additional alternative CND solutions are computed in the loop 12-23. This loop
ensures that the algorithm will continually compute a compact CND solution until either it
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loops S times or mk = 1 (line 12), i.e., the current surviving graph does not have multiple
components. The condition in line 16 ensures that the compact CND model is optimized at
most S times. Finally, given a set of critical nodes K, the added constraint (line 17) excludes
this set from the set of feasible solutions of the compact CND model so that, when it is solved
again (line 18), it will result in the next best set of critical nodes.

Note that, while computing the S sets of critical nodes for each partial topology, they
are computed in increasing value of the A2TR (i.e., the number of connected node pairs).
There might exist multiple optimal CND solutions, i.e., all solutions next to the first one
such that their optimal value z∗ is equal to z̄. Since these solutions are more damaging than
the subsequent ones, a meaningful alternative is to consider only the optimal CND solutions
and ignore the remaining ones. This is easily done by adding in line 12 of Algorithm 2.4 a
third condition in the form z∗ = z̄. In the computational results, we also test this algorithm
variant.

2.3.2 Local search approach

In the second task, a local search algorithm is applied to the solution provided by the
first task. Note that in the Removing Phase of Algorithms 2.2 and 2.4, a link can only be
removed if the resiliency value of the current network topology remains the same. Here, a
local search algorithm (described in Algorithm 2.5) is proposed where each link (i, j) ∈ E′
is removed and excluded from the set of candidate links while re-running either Algorithm
2.2 or Algorithm 2.4. Removing the link from the graph decreases the resiliency value z̄ but
increases the remaining fiber budget BR, which might enable to find an alternative topology
with a better resiliency value.

Algorithm 2.5 Local search algorithm

1: Input: G = (N,E), E′, z̄, BR
2: repeat
3: z̄LS ← z̄, ELS ← E′, BLS ← BR and Update ← false
4: for all (i, j) ∈ E′ do
5: G′ ←

(
N, (E ∪ E′)\{(i, j)}

)
6: Run Algorithm 2.2 (or 2.4) starting from set E′\{(i, j)}, fiber budget BR + lij and

excluding link (i, j) from the set of candidate links, obtaining a new set of selected
links E′ij , its resiliency value z̄ij and fiber budget Bij

7: if z̄ij > z̄LS or
(
z̄ij = z̄LS and Bij > BLS

)
then

8: z̄LS ← z̄ij , ELS ← E′ij , BLS ← Bij and Update ← true
9: end if

10: end for
11: if z̄LS > z̄ then
12: z̄ ← z̄LS, E′ ← ELS and BR ← BLS

13: end if
14: until Update = false

The Inputs of Algorithm 2.5 are the original topology G = (N,E), the added links E′,
the resiliency value of graph (N,E ∪ E′) and the remaining fiber budget BR of the solution
provided by the first task. The main loop (steps 2-14) ensures that the local search runs until

34



2.3. Network design/upgrade problem

the resiliency value is not improved. Variables z̄LS, ELS and BLS store the best alternative
topology in the present iteration and are accordingly updated (line 8) when a better topology
is found. The inner loop (lines 4-10) removes each link (i, j) ∈ E′ from graph (N,E ∪E′) and
runs the greedy deterministic algorithm (Algorithm 2.2 or 2.4) excluding the removed link
to be selected. If two alternative topologies have the same resiliency value, the one with the
highest remaining fiber budget is selected (line 7). Finally, in lines 11-13, the main variables
z̄, E′ and BR are updated if the best alternative topology has a higher resiliency value than
the current topology.

After running some computational tests, we observed that in the network design prob-
lem, the local search approach is very inefficient as it does not provide relevant gains in the
resiliency value and the running time becomes very high. Therefore, the second task is only
included in the overall algorithm of the network upgrade problem.

2.3.3 Transparent optical networks application

In the previous tasks, the A2TR value was computed by solving the compact CND model.
So, in the network design problem, it is necessary to check if the solution provided by the pre-
vious task is optically transparent, i.e., for each node pair, the optical shortest path between
them is not higher than the transparent reach T (this is not an issue in the network upgrade
problem since the optical transparency is guaranteed by the original network topology). If
not, the aim is to use the unused fiber budget to turn the solution optically transparent.
Moreover, it is also necessary to compute the A2TR value with the exact CND model and, if
the two values are not equal, again we use the unused fiber budget to add new links so that
the two values become as close as possible.

In our preliminary tests, we observed that, from the three stopping criteria used in Algo-
rithms 2.2 and 2.4, the most common stopping criterion is the last one: E′rem =

{
last |E′rem|

links added to set E′add

}
, i.e., the last added links do not improve the A2TR value of the

solution and, therefore, they are removed. Thus, the solutions tend to have a reasonable
amount of available fiber budget BR. Algorithm 2.6 presents a deterministic method to use
the remaining budget BR in order to make an Input topology G = (N,E) optically transpar-
ent. Initially, the shortest path distances between all node pairs without a direct link (i.e.,
(i, j) /∈ E) are computed in loop 3-5. In line 6, variable M is set to the maximum distance
between all node pairs (i, j) /∈ E and (iM , jM ) is set to such a node pair. If M exceeds the
transparent reach (line 7), the algorithm selects the shortest link (i, j) that, when added to
the current topology, turns the distance between (iM , jM ) within the transparent reach. If
the selected link is within the available fiber budget, it is added to the topology (lines 9-11).
The algorithm continues until no new link is added (line 13).

Algorithm 2.6 is run when we aim to design a new topology based on the fiber budget of an
existing optical network and the existing optical network is not 2-connected (in the context of
transparent optical networks, a topology is 2-connected if it is optically transparent for every
single node deletion). On the other hand, when the existing network topology is 2-connected,
we also require the solution obtained by the network design problem to be 2-connected.
Algorithm 2.7 is a generalization of Algorithm 2.6 aiming to use the remaining budget to
turn an Input topology G = (N,E) into a 2-connected topology. In Algorithm 2.7, instead of
computing the distance between all node pairs without a direct link in G, these distances are
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Algorithm 2.6 Network validation algorithm

1: Input: G = (N,E), BR
2: repeat
3: for all node pairs (i, j) /∈ E do
4: Compute shortest path pij∈Pij and its length dij
5: end for
6: Compute M ← max{dij : (i, j) /∈ E} and the corresponding node pair (iM , jM )
7: if M > T then
8: Compute link (i, j) /∈ E corresponding to min(i,j){lij : dijiM jM ≤ T}, where dijiM jM is

the distance between nodes iM and jM on graph
(
N,E ∪ {(i, j)}

)
9: if lij ≤ BR then

10: E ← E ∪ {(i, j)} and BR ← BR − lij
11: end if
12: end if
13: until no new link added to set E

computed in loop 3-8 for all reduced graphs Gk, i.e., graphs without node k and its links, for
all nodes k ∈ N . Then, variable M is computed (line 9) with the maximum distance between
all node pairs over all reduced graphs Gk and the selected link (i, j) is computed in a way
similar to Algorithm 2.6 but now considering the reduced graph Gk over which the maximum
distance M was computed.

Algorithm 2.7 Network validation algorithm (2-connected)

1: Input: G = (N,E), BR
2: repeat
3: for all k ∈ N do
4: Gk ←

(
N\{k}, Ek

)
, with Ek = {(i, j) ∈ E : i, j 6= k}

5: for all node pairs (i, j) /∈ Ek with i, j ∈ N\{k} do
6: Compute shortest path pkij (on graph Gk) and its length dkij
7: end for
8: end for
9: Compute M ← max{dkij : (i, j) /∈ Ek, k ∈ N}, the corresponding node pair (iM , jM )

and removed node kM
10: if M > T then
11: Compute new link (i, j) /∈ EkM corresponding to min(i,j){lij : dkM ,ijiM jM

≤ T}, where

dkM ,ijiM jM
is the distance between nodes iM and jM on graph

(
N\{kM}, EkM ∪{(i, j)}

)
12: if lij ≤ BR then
13: E ← E ∪ {(i, j)} and BR ← BR − lij
14: end if
15: end if
16: until no new link added to set E

Finally, in Algorithm 2.8, we present a method that simultaneously solves the exact CND
model (using Algorithm 2.1) and uses the remaining fiber budget BR to move the resiliency
value provided by the exact CND solution as close as possible to the resiliency value of the
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compact CND model. The Inputs of Algorithm 2.8 are the network topology G, the remaining
fiber budget BR, the target CND optimal value z̄ and all the sets of critical nodes K previously
generated by the greedy deterministic algorithm (either Algorithm 2.2 or 2.4). Similarly to
Algorithm 2.1, the MILP’ model is initialized without the path constraints (line 2). Then, in
order to accelerate the row generation process, the path constraints associated to each set of
critical nodes K ∈ K are added to MILP’ model (lines 3-11). Next, the optimal solution of
the exact CND model is solved as in Algorithm 2.1. In lines 15-17, if the exact resiliency value
z∗ is lower than the target value z̄, the algorithm uses the remaining budget to compute new
links to be added to the graph so that each component of the surviving graph induced by the
optimal critical node set becomes optically transparent (this is equivalent to run Algorithm
2.6 in this surviving graph, line 16). Algorithm 2.6 is repeated until no new link is added
(lines 13-18), which happens either if z∗ = z̄ (no need to add new links) or if no new link can
be added due to the remaining fiber budget.

Algorithm 2.8 Exact CND upgrade algorithm

1: Input: G = (N,E), BR, z̄, K
2: Initialize MILP’ MILP model (2.1)-(2.6) without constraints (2.4)
3: for all K ∈ K do
4: Compute subgraph GK = (N\K,EK) where EK = {(i, j) ∈ E : i, j /∈ K}
5: for all node pairs (i, j) /∈ EK do
6: Compute shortest path pij and its length dij
7: if dij ≤ T then
8: Add to MILP’ constraint (2.4) corresponding to path pij
9: end if

10: end for
11: end for
12: Solve the MILP’ model. Let z∗ be the optimal value and (u∗, v∗) the optimal solution
13: repeat
14: [Lines 2-15 of Algorithm 2.1]
15: if z∗ < z̄ then
16: Run Algorithm 2.6 in the surviving graph induced by the current optimal critical

nodes
17: end if
18: until no new link added to set E

2.3.4 Overall algorithm

Recall that, for a given network G = (N,E) with a total fiber length L and a fiber length
budget of B = L + L′, with L′ ≥ 0, the network design problem aims to identify a new
network topology connecting all nodes in N whose total fiber length is not higher than B
and the network upgrade problem aims to identify a set of fiber links within the budget
L′ to be added to the existing topology. So, the overall algorithm is a combination of the
previous algorithms that depends on the problem type (network design or network upgrade).
Algorithms 2.9 and 2.10 describe how the different algorithms are put together to solve the
network design and the network upgrade problem, respectively. As previously explained,
the network design algorithm (Algorithm 2.9) does not include the local search algorithm
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(Algorithm 2.5) and the network upgrade algorithm (Algorithm 2.10) does not need to run
the network validation algorithms (Algorithms 2.6 and 2.7). On both Algorithms 2.9 and
2.10, we consider six algorithm variants: (i) Algorithm 2.2, (ii) Algorithm 2.4 considering
S CND solutions and (iii) Algorithm 2.4 considering the optimal CND solutions, each case
using either f1(i, j) or f2(i, j) as the criteria to select each new link.

Algorithm 2.9 Network design algorithm

1: Input: G = (N,E), B
2: Run Algorithm 2.2 (or 2.4) for graph (N, {}), with E′ the set of links of RNG topology
3: if G is optically 2-connected then
4: Run Algorithm 2.7 for graph (N,E′), with E′ and BR resulting from the previous

method
5: else
6: Run Algorithm 2.6 for graph (N,E′), with E′ and BR resulting from the previous

method
7: end if
8: Run Algorithm 2.8 for graph (N,E′), with variables z̄, BR and K resulting from the

previous methods

Algorithm 2.10 Network upgrade algorithm

1: Input: G = (N,E), L′

2: Run Algorithm 2.2 (or 2.4) for graph G, with B ← L′ and E′ ← {}
3: Run Algorithm 2.5 for graph G, with variables E′, z̄ and BR resulting from the previous

method
4: Run Algorithm 2.8 for graph (N,E ∪E′), with variables z̄, BR and K resulting from the

previous methods

2.4 Computational results

All results reported in this section were obtained using the optimization software Gurobi
Optimizer version 8.0.0, with programming language Julia version 0.6.2, running on a PC
with an Intel Core i7-8700, 3.2 GHz and 16 GB RAM. Following [RKD+13], we have assumed
a transparent reach T = 2000 km corresponding to the use of OTU-4 lightpaths with a line
rate of 100 Gbps. Moreover, we have considered ∆ = 60 km. This value considers an optical
node architecture with an Input and an output WSS (Wavelength Selective Switch) per fiber
port and assumes an attenuation of 6.0 dB inserted by each WSS. Then, assuming that the
attenuation on each WSS is the main optical degradation factor suffered by a lightpath, an
optical node introduces a total of 12.0 dB, equivalent to the attenuation on a fiber of 60 km,
with an attenuation of 0.2 dB/km.

The network topologies used in these computational results are Germany50 [OWPT10],
PalmettoNet [KNF+11] and Missouri Network Alliance (MissouriNA) [KNF+11]. Table 2.1
presents their topology characteristics in terms of number of nodes |N | and fiber links |E|,
total number of node pairs, minimum (δmin), average (δ̄) and maximum (δmax) node degree
and an indication if the topology is (or is not) 2-connected.
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Table 2.1: Topology characteristics of each tested network.

Network |N | |E| no. Pairs δmin δ̄ δmax 2-Connected

Germany50 50 88 1225 2 3.52 5 Yes

PalmettoNet 45 64 990 1 2.84 5 No

MissouriNA 64 80 2016 1 2.50 5 No

In all cases, the geographical location of nodes is publicly available but the geographical
routes of fiber links is not known. So, we have considered that each (existing or possible) link
follows the shortest path over the surface of a sphere representing Earth. Table 2.2 presents
the resulting length characteristics in terms of minimum (lmin), average (l̄), maximum (lmax)
and total link length (L), and diameter (i.e., the highest optical length among the shortest
paths of all node pairs adding ∆ for each intermediate node). Note that the three topologies
are optically transparent for T = 2000 km since all diameter values are below 2000 km.

Table 2.2: Length characteristics (in km) of each tested network.

Network lmin l̄ lmax L Diameter

Germany50 26 100.7 252 8859 1417

PalmettoNet 19 67.0 177 4286 1298

MissouriNA 7 50.0 307 4001 1301

In the computational experiments, we have considered c ∈ {2, 3, 4, 5, 6} as the number
of critical nodes. For each network and each c, we started by computing a topology with a
fiber budget B equal to the total fiber length L of the original topology using Algorithm 2.9.
Then, we computed an upgraded topology for each original topology assuming a fiber budget
L′ = p × L with p = 10% and 20% using Algorithm 2.10. Finally, we computed a topology
with a fiber budget B = L + p × L also for p = 10% and 20% using Algorithm 2.9. These
cases are the same as the ones considered in [BdSA18b] so that we can compare the efficiency
of the methods proposed here with the ones proposed in [BdSA18b].

In all cases and in both types of problems (network design and network upgrade), we
have run the six algorithm variants (see Section 2.3.4). In the variants with Algorithm
2.4 considering S CND solutions, we present the results with S = 10 as our preliminary
tests have shown that this value is a good compromise between the running time and the
algorithm efficiency. Tables 2.3, 2.4 and 2.5 present the resiliency values of the network
upgrade solutions for the three network topologies. In these tables, in addition to the number
of critical nodes c, column ’MS’ refers to the solutions obtained by using the Multi-Start
Greedy Randomized method proposed in [BdSA18b]. Columns ’S1’ and ’S2’ refer to the
solutions obtained by Algorithm 2.2 (the values 1 and 2 mean the use of function f1(i, j) and
f2(i, j), respectively). Columns ’A1’ and ’A2’ refer to the solutions obtained by Algorithm
2.4 considering the optimal CND solutions and columns ’M1’ and ’M2’ refer to the solutions
obtained by Algorithm 2.4 considering S = 10 best CND solutions. Finally, the best values
of each problem instance are highlighted in bold.

The first and most important observation of these computational results is that, with the
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Table 2.3: Resiliency values z of the network upgrade solutions for Germany50.

Germany50, with Upgrade = 10% Germany50, with Upgrade = 20%

c MS S1 S2 A1 A2 M1 M2 MS S1 S2 A1 A2 M1 M2

2 1081 1081 1081 1081 1081 1128 1128 1128 1128 1128 1128 1128 1128 1128
3 991 991 991 991 991 991 991 1035 1035 1035 1035 1035 1035 1035
4 830 830 830 830 867 795 867 906 946 947 946 947 906 947
5 640 616 640 640 640 666 666 756 756 756 790 790 790 790
6 498 483 478 478 478 511 487 606 583 543 606 606 583 606

Table 2.4: Resiliency values z of the network upgrade solutions for PalmettoNet.

PalmettoNet, with Upgrade = 10% PalmettoNet, with Upgrade = 20%

c MS S1 S2 A1 A2 M1 M2 MS S1 S2 A1 A2 M1 M2

2 821 821 821 821 821 821 821 861 861 861 861 861 821 821
3 616 616 616 616 616 616 616 709 709 709 709 709 709 744
4 427 400 389 400 389 406 412 510 510 532 524 532 532 532
5 325 333 333 337 333 325 319 380 380 380 380 380 380 380
6 235 223 238 235 238 238 234 286 295 307 325 319 310 325

Table 2.5: Resiliency values z of the network upgrade solutions for MissouriNA.

MissouriNA, with Upgrade = 10% MissouriNA, with Upgrade = 20%

c MS S1 S2 A1 A2 M1 M2 MS S1 S2 A1 A2 M1 M2

2 1555 1659 1659 1659 1659 1371 1371 1659 1771 1771 1771 1771 1771 1371
3 1362 1362 1242 1362 1172 1362 1320 1446 1500 1500 1500 1500 1452 1500
4 762 870 870 874 870 906 895 1039 1194 1246 1246 1270 1270 1194
5 618 667 653 711 653 753 733 758 843 841 861 871 896 897
6 457 505 460 505 460 526 520 550 701 688 722 681 701 722

exception of one instance (PalmettoNet topology for c = 4 and p = 10%), the resiliency value
obtained by at least one of the proposed algorithm variants is not lower (in many cases, it
is significantly higher) than the resiliency value of the method proposed in [BdSA18b]. This
means that the best obtained upgrade topologies, in general, have an higher resiliency to
critical node failures when compared to the ones provided in [BdSA18b]. Additionally, the
comparison of the different algorithm variants (proposed in this work) does not provide clear
evidence that one of them is consistently better than the others. This means that, in practice,
we might need to run all of them to compute the best upgrade solution.

Tables 2.6, 2.7 and 2.8 present the resiliency values of the network design solutions for the
three network topologies (the meaning of each column is similar to the previous tables). In
the Germany50 network, the strikeout values represent invalid solutions where the algorithm
variant was not able to compute a 2-connected network design solution.

When comparing the results using the different algorithm variants with the method
in [BdSA18b], it is possible to observe that, in general, the network topologies obtained in this
work are much more resilient to critical node failures than the ones obtained in [BdSA18b].
In the Germany50 network, all invalid topologies were obtained using function f1(i, j). So,
in this case, it is preferable to use function f2(i, j) in the link selection. The reason for the
superior performance of f2(i, j) is because it favors the selection of candidate links connecting
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Table 2.6: Resiliency values z of the network design solutions for Germany50.

Network Design Problem Network Design Problem + 10% Network Design Problem + 20%

c MS S1 S2 A1 A2 M1 M2 MS S1 S2 A1 A2 M1 M2 MS S1 S2 A1 A2 M1 M2

2 1081 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128
3 991 1035 1035 961 1035 1035 1035 991 1035 1035 1035 1035 1035 1035 1035 1080 1035 1054 1081 1081 1081
4 830 906 947 906 947 946 906 906 947 947 947 947 947 947 906 947 990 990 990 990 990
5 640 724 790 756 787 790 826 756 790 826 826 862 826 826 790 862 826 864 903 864 903
6 498 573 631 623 651 651 658 606 631 687 658 718 717 718 658 687 718 751 745 751 751

Table 2.7: Resiliency values z of the network design solutions for PalmettoNet.

Network Design Problem Network Design Problem + 10% Network Design Problem + 20%

c MS S1 S2 A1 A2 M1 M2 MS S1 S2 A1 A2 M1 M2 MS S1 S2 A1 A2 M1 M2

2 861 861 861 861 861 861 861 861 861 902 900 903 903 903 861 903 903 903 903 903 903
3 676 709 744 709 744 709 709 709 780 744 744 781 781 744 744 781 781 820 781 781 781
4 510 510 556 556 490 556 556 582 582 610 636 640 640 640 582 605 672 669 672 640 706
5 379 373 380 380 380 380 379 409 429 380 429 461 461 444 480 461 549 444 524 549 549
6 266 295 246 315 297 325 313 322 342 337 325 342 346 337 358 346 361 367 403 391 381

Table 2.8: Resiliency values z of the network design solutions for MissouriNA.

Network Design Problem Network Design Problem + 10% Network Design Problem + 20%

c MS S1 S2 A1 A2 M1 M2 MS S1 S2 A1 A2 M1 M2 MS S1 S2 A1 A2 M1 M2

2 1714 1771 1771 1771 1771 1714 1771 1714 1830 1830 1830 1830 1771 1771 1771 1830 1830 1830 1830 1771 1830
3 1495 1550 1550 1550 1550 1550 1452 1500 1599 1654 1599 1602 1654 1654 1550 1656 1656 1656 1656 1656 1656
4 1126 1231 1231 1231 1231 1311 1311 1194 1354 1399 1354 1354 1354 1399 1311 1389 1441 1491 1495 1491 1446
5 841 931 1051 1025 951 1023 1051 917 1081 1113 1091 1147 1113 1147 1081 1113 1147 1183 1221 1261 1221
6 694 784 732 764 768 742 776 717 893 861 842 893 918 926 784 972 992 956 992 1037 1066

nodes with lower degrees. So, there is a lower chance that the generated topology has leaves
(nodes with degree one) and, even when this happens, Algorithm 2.7 needs, in general, a
lower amount of fiber budget to make it 2-connected. Nevertheless, in the other networks
(PalmettoNet and MissouriNA), there are some cases where the variants using f1(i, j) provide
the best resiliency results. So, like in the network upgrade problem, in the network design
problem there is no clear evidence that one of the variants is consistently better than the
others.

Table 2.9 presents the resiliency value z of the best topologies obtained for each instance
presented in Tables 2.3–2.8. Rows ’Original’ refer to the original topologies (in column ’0%’)
and upgraded topologies (in columns ’10%’ and ’20%’) while rows ’Alternative’ refer to the
best network design solutions with a fiber budget B = L+ p×L with p = 0%, 10% and 20%.
For each case, columns ’UB’ presents the trivial upper bound of the CND problem given by
the number of pairs of n− c surviving nodes, i.e., (n− c)(n− c− 1)/2, with n = |N |.

An initial observation of these results is that the resiliency values are lower for higher
number of critical nodes c, which is without surprise since more node failures disrupt an
higher percentage of the network. Moreover, the resilience of the upgraded topologies is
always significantly better for higher budget values.

The best topologies are always significantly better than the original/upgraded ones, with
the exception of Germany50 for c = 2 and with p = 10% and 20%, where the trivial upper
bound is reached in both cases. Nevertheless, when comparing the differences between the
original/upgraded and the best topologies, it is significantly higher for PalmettoNet and
MissouriNA topologies than for the Germany50 topology. This means that the latter topology
is significantly more resilient to critical node failures than PalmettoNet and MissouriNA. To
understand this fact, recall from the topology characteristics of the different networks (Table
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Table 2.9: Best obtained resiliency value z for all tested instances.

c Network Germany50 PalmettoNet MissouriNA

Instance 0% 10% 20% UB 0% 10% 20% UB 0% 10% 20% UB

2 Original 1036 1128 1128 1128 513 821 861 903 946 1659 1771 1891

Alternative 1128 1128 1128 861 903 903 1771 1830 1830

3 Original 711 991 1035 1081 346 616 744 861 602 1362 1500 1830

Alternative 1035 1035 1081 744 781 820 1550 1654 1656

4 Original 640 867 947 1035 284 427 532 820 455 906 1270 1770

Alternative 947 947 990 556 640 706 1311 1399 1495

5 Original 496 666 790 990 176 337 380 780 338 753 897 1711

Alternative 826 862 903 380 461 549 1051 1147 1261

6 Original 415 511 606 946 123 238 325 741 253 526 722 1653

Alternative 658 718 751 325 346 403 784 926 1066

2.1) that Germany50 is the topology with the highest average node degree and the only one
which is 2-connected. These two characteristics make this network more resilient than the
two other networks.

More important than analyzing the absolute resiliency values, we need to analyze the
resiliency gap between the original/upgraded topologies and the best topologies computed
with the same fiber budget values. Figure 2.2 plots in a bar chart these gaps, for all networks

and all values of c, computed as
zB−zO/U

zB
× 100% where zB is the resiliency value of the best

topology and zO/U is the resiliency value of the original/upgraded topology. Blue bars present
the resiliency gap between the best topology and the original topology. The resiliency gaps
between the best topologies and the upgraded topologies are presented in the red and green
bars for p = 10% and 20%, respectively.

Firstly, the blue bars of Figure 2.2 show that the resiliency gaps are lower for Germany50
(but still significant for a number of critical nodes c ≥ 3) and very large for PalmettoNet and
MissouriNA. These results reinforce the previous conclusion that Germany50 is more resilient
than the others but also show that, in general, existing network topologies are not resilient
to critical node failures. Secondly, the resiliency gaps shown in the red bars (corresponding
to topology designs with 10% more total fiber length) represent, in all cases, a significant gap
reduction when compared with the blue bars. This means that for all tested instances, adding
new links to an existing topology with a fiber budget of 10% enables solutions with resiliency
to critical node failures much closer to a topology designed to maximize this resilience with
the same amount of fiber. Thirdly, the results of the green bars (corresponding to topology
designs with 20% more total fiber length) are mixed, i.e., in some cases, the additional 10%
fiber budget enables a significant gap reduction while in other cases, the reduction is negligible.

Finally, we can distinguish two cases. For a number of critical nodes c ≤ 3, the additional
fiber budget of 20% allows in all cases the resiliency gap to become small (below 10%). For
a number of critical nodes c ≥ 5 (in the Germany50 network) and c ≥ 4 (in the less resilient
PalmettoNet and MissouriNA networks), the additional fiber budget of 20% is still not enough
to make the resiliency gap small. This means that more fiber links are required in the upgrade
of existing networks to reach the best resiliency to higher number of critical nodes.

42



2.4. Computational results

Figure 2.2: Resiliency gaps of all tested networks and for all c ∈ {2, ..., 6}.

For illustrative purposes, Figure 2.3 presents the original topologies, the best upgraded
topologies with L′ = 10%L and L′ = 20%L (with the additional links highlighted in blue) and
the best topologies with the same fiber budget L obtained considering c = 4 critical nodes.
To highlight the differences, links of the best topology (and the best upgraded topologies) not
in the original topology are highlighted in blue and, in all cases, critical nodes are represented
with red squares. The analysis of these topologies show that:

Germany50: The critical node set splits the original network in three components (1, 10
and 35 nodes each) while it only isolates a pair of nodes from the others in the best topology.
Moreover, the critical node set isolates 4 nodes from the others in the 10% upgraded topology
and a pair of nodes in the 20% upgraded topology. So, an upgrade of 20% has the same
resilience to 4 critical nodes as the best topology.

PalmettoNet: The critical node set splits the original network in four components (2, 6, 13
and 20 nodes each) while it splits the best topology in only two components (8 and 33 nodes
each). Moreover, the critical node set splits the 10% upgraded topology in four components
(2, 5, 5 and 29 nodes) and the 20% upgraded topology in two components (9 and 32 nodes).
In this case, the resilience to 4 critical nodes of the 20% upgraded topology is still slightly
lower than the resilience of the best topology.

MissouriNA: The critical node set splits the original network in four components (8, 16, 17
and 19 nodes each) while it splits the best topology in only two components (9 and 51 nodes
each). Moreover, the critical node set splits the 10% upgraded topology in two components
(24 and 36 nodes) and the 20% upgraded topology in two components (10 and 50 nodes). As
in the previous case, the resilience to 4 critical nodes of the 20% upgraded topology is still
slightly lower than the resilience of the best topology.

Concerning the running time of the proposed algorithm variants, Table 2.10 presents the
average running time of the Network Upgrade Problem (Algorithm 2.10), among all five values
c = 2, ..., 6 of each problem instance. In the instance name, ‘Ger’, ‘Pal’ and ‘Mis’ refers to
the Germany50, PalmettoNet and MissouriNA networks, respectively, while the ‘10’ and ‘20’
refer to the fiber budget L′ = 10%L and 20%L, respectively. Similarly, Table 2.11 presents
the average running time of the Network Design Problem (Algorithm 2.9), among all five
values c = 2, ..., 6 of each instance. In the instance name, the ‘0’, ‘10’ and ‘20’ refer to the
fiber budget B = L+ 0%L, B = L+ 10%L and B = L+ 20%L, respectively.

The analysis of the running times of Tables 2.10 and 2.11 let us draw the following con-
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Figure 2.3: Original topologies (first column), best upgraded topologies with L′ = 10%L and
20%L (second and third columns, respectively) and the best topologies with B = L (fourth
column), considering c = 4 critical nodes (represented in red squares). Links not in the
original topologies highlighted in blue.

Table 2.10: Average running time (HH:MM:SS) of the Network Upgrade Problem.

Instance S1 S2 A1 A2 M1 M2

Ger 10 00:06:19 00:04:44 00:06:32 00:06:57 00:34:51 00:29:51
Ger 20 00:36:37 00:31:30 01:11:44 01:09:32 02:28:51 02:35:05

Pal 10 00:00:49 00:00:53 00:01:21 00:01:11 00:03:14 00:02:55
Pal 20 00:04:53 00:06:07 00:14:51 00:09:25 00:20:19 00:20:56

Mis 10 00:05:58 00:02:17 00:09:40 00:03:03 00:16:08 00:09:26
Mis 20 01:56:47 00:47:10 01:54:14 01:42:59 03:28:53 01:32:35

clusions. First, all algorithm variants have higher running times when the problems consider
higher fiber budget values. This was expected since more links are added with an higher fiber
budget and, therefore, the algorithms run a larger number of iterations.

Second, even without using the local search algorithm (Algorithm 2.5) in the Network
Design Problem, this problem has much longer running times than the Network Upgrade
Problem. The main reason is that Network Upgrade Problem starts with a fixed set of fiber
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Table 2.11: Average running time (HH:MM:SS) of the Network Design Problem.

Instance S1 S2 A1 A2 M1 M2

Ger 0 00:45:24 00:55:20 00:45:49 01:06:20 02:03:28 02:13:56
Ger 10 01:06:45 01:19:15 02:11:49 02:42:54 03:28:40 04:00:03
Ger 20 04:00:59 02:17:02 04:12:33 07:25:25 11:53:53 10:22:25

Pal 0 00:04:21 00:06:15 00:06:49 00:06:51 00:08:31 00:08:36
Pal 10 00:08:44 00:06:46 00:10:15 00:13:07 00:15:16 00:13:09
Pal 20 00:08:58 00:12:35 00:18:22 00:19:07 00:21:36 00:27:16

Mis 0 00:35:08 00:35:01 00:35:56 00:32:50 00:58:57 00:46:51
Mis 10 00:53:47 00:55:09 01:03:13 01:03:54 01:09:10 01:34:19
Mis 20 01:08:20 01:12:30 01:57:30 01:31:11 03:40:24 02:50:15

links (the links of the original topology), while the Network Design Problem has to built a
solution from scratch.

Third, note that at each iteration, Algorithm 2.2 solves a single CND model, Algorithm
2.4 considering the optimal CND solutions solves a variable number of CND models and
Algorithm 2.4 considering S CND solutions solves an even higher number of CND models
(in our case, 10 CND models, as we consider S = 10). Moreover, solving the CND models
is the most time-consuming part of all algorithms. As a consequence, the running times of
both Algorithms 2.4 are higher, on average, than the running times of Algorithm 2.2 and the
running times of Algorithm 2.4 considering S CND solutions are higher, on average, than the
running times of Algorithm 2.4 considering the optimal CND solutions. Note that the use of
f1(i, j) or f2(i, j) as the criterion to select each new link does not have a significant impact
in the obtained running times.

Another aspect of interest is the comparison of the node degree distributions between the
original topologies and the best topologies with the same total fiber length L. Figure 2.4
shows these distributions for the three network cases with the best topologies obtained for
c = 4 critical nodes (original topologies in blue and best topologies in green). For example, in
Germany50 original topology, there are 10 nodes with the minimum degree of 2 and 11 nodes
with the maximum degree of 5 while in the best topology all nodes have a degree between 3
and 4. In the other two networks, we observe from the original topology to the best topology
that the number of nodes with degree 1 and 2 decreases and the maximum network degree
also decreases from 5 to 4 in both cases. So, the conclusion is that in the best topologies,
there is a decrease in the number of nodes with the lowest and highest degrees and an increase
in the number of nodes with degrees closer to the average. This observation also stands in the
best topologies for the other values of c showing that resilient topologies tend to have more
homogeneous node degrees.

2.5 Conclusions

In this work, we have addressed the topology design of transparent optical networks
aiming to maximize their resilience to the simultaneous failure of their critical nodes. We
have proposed different algorithm variants of a deterministic method that can be used both
in the design of network topologies and in the upgrade of existing topologies. We have
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Figure 2.4: Node degree histograms of original topology (in blue) and the best topology (in
green) for c = 4.

run the proposed algorithm on three network topologies with publicly available information
comparing the resiliency gap between the existing and upgraded topologies with the best
topologies designed to maximize its resilience with the same fiber budget.

The results have shown that the resiliency gap of existing topologies is significantly large
but network upgrades with L′ = 10%L can already reduce significantly the resiliency gaps pro-
vided that such upgrades are aimed at maximizing the network resiliency to the critical node
failures. Finally, comparing the best topologies with the existing ones, the best topologies
are characterized by a decrease of the number of nodes with the lowest and highest degrees
and an increase of the number of nodes with degrees closer to the average node degree. This
clearly shows that network topologies resilient to critical node failures tend to have more
homogeneous degrees among all their nodes.
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Chapter 3

The Minimum Cost Network Upgrade Problem

with Maximum Robustness to Multiple Node

Failures

Abstract: The design of networks which are robust to multiple failures is gaining increas-
ing attention in areas such as telecommunications. In this paper, we consider the problem of
upgrading an existent network in order to enhance its robustness to events involving multiple
node failures. This problem is modeled as a bi-objective mixed linear integer formulation
considering both the minimization of the cost of the added edges and the maximization of
the robustness of the resulting upgraded network. As the robustness metric of the network,
we consider the value of the Critical Node Detection (CND) problem variant which provides
the minimum pairwise connectivity between all node pairs when a set of c critical nodes are
removed from the network. We present a general iterative framework to obtain the complete
Pareto frontier that alternates between the minimum cost edge selection problem and the
CND problem. Two different approaches based on a cover model are introduced for the edge
selection problem. Computational results conducted on different network topologies show
that the proposed methodology based on the cover model is effective in computing Pareto
solutions for graphs with up to 100 nodes, which includes four commonly used telecommuni-
cation networks.

Keywords: Robust Network Design, Critical Node Detection, Mixed Integer Linear Pro-
gramming, Pareto frontier Telecommunications

F. Barbosa, A. Agra, and A. de Sousa. The minimum cost network upgrade problem with maximum robustness
to multiple node failures. Computers & Operations Research, 136:105453, 2021.
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3.1. Introduction

3.1 Introduction

The design of networks which are robust to multiple failures is gaining increasing atten-
tion. In the area of telecommunications, which has motivated this work, multiple failures can
occur due to many different reasons, as natural disasters [GTE+16] or malicious human activ-
ities [FWG+16], and different techniques are being investigated to enhance the preparedness
of telecommunication networks for such events [RH20]. Depending on the causes, multiple
failures might involve only edges or nodes and edges (a node failure implies that its incident
edges also fail). For example, in malicious human attacks, node shutdowns are harder to
realize but they are the most rewarding in the attacker’s perspective as the shutdown of a
single node also shuts down its incident edges. Here, we address the case of multiple node
failures as they are the most harmful cases of malicious human attacks.

In this work, we consider the minimum cost network upgrade problem with maximum
robustness to multiple node failures (for short, robust network upgrade problem, RNUP).
Given an undirected complete graph G = (N,En) and a subset of edges E0 ⊂ En, representing
an existent network topology, the RNUP aims to determine a set of additional edges E′ from
En \E0, that maximizes the robustness of the upgraded graph GU = (N,E0 ∪E′) to multiple
node failures while minimizing the total cost of the added edges. The robustness of the graph
is measured by the lowest pairwise connectivity value (i.e., the lowest number of node pairs
that have connectivity in the remaining graph) among all the possible scenarios of c removed
nodes.

Concerning the robustness value of an upgraded graph, it can be computed with the opti-
mal solution of an optimization problem, commonly named Critical Node Detection (CND).
For a given graph and a given number c of nodes, the most common CND variant is the
optimization problem that consists of computing the set of c nodes, named critical nodes,
such that their deletion maximally degrades the network connectivity according to a given
connectivity metric. Therefore, the optimal value of the CND variant considering the pairwise
connectivity minimization represents the worst degradation that the deletion of any set of c
nodes can impose in the given graph in our RNUP.

Note that, in some contexts, the determination of a set of critical nodes of a given graph
is the ultimate goal of the optimization problem as, for example, the identification of the
communities to be immunized in the spread of diseases [dSPRR19]. In other contexts, as the
one addressed in this work, the CND problem is only one part of a more general problem.

The use of the CND value as a metric to evaluate the robustness of networks to multiple
node failures has been recently used in the preparedness of telecommunication networks to
large-scale failures, as in [dSMS17] where some nodes of the network are optimally selected to
be made robust such that they never fail and in [BdSA20] where the network upgrade problem
(i.e., the optimal selection of new edges to be added to an existent network) is addressed. In
both cases, for a given budget (in the robust nodes and in the new edges, respectively), the
aim is to improve as much as possible the worst degradation imposed by the failure of the
critical nodes of the resulting upgraded network. By considering the budget as a constraint,
these works address a single objective optimization problem.

When dealing with multi-objective optimization problems, the main objective is to obtain
optimal Pareto solutions [CGL+02, SD07]. Instead of considering a given budget, the main
goal of this work is to obtain the optimal Pareto frontier between minimizing the total cost
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3.1. Introduction

of the edges added to the existent topology and maximizing the CND value of the upgraded
topology GU . This approach allows to generate detailed information regarding the trade-off
between the upgrade cost and the gains in robustness resulting from that upgrade.

There are very few works that seek to enhance the robustness of a network to multiple
node failures by increasing the topology connectivity through the addition of new links. To
the best of our knowledge, in the context of network design, the recent paper [HB21] is the
unique to consider two objectives. One of these objectives is common to our work (minimizing
the link insertion cost). Regarding the other objective, the authors aim to maximize the
network technical power (measured in terms of total potential for sending and receiving
flow on all nodes) which leads to a simpler bi-objective problem. Different approaches are
designed to find non-dominated solutions, but the purpose is not to obtain the complete Pareto
frontier. In [NYWF19], at the infrastructure level of optical networks, the robustness to link
cut attacks is enhanced by increasing the topology connectivity with sparse link addition.
In [BdSA18, BdSA20], the network upgrade problem aims to identify a set of links, within a
given link length budget, to be added to an existing topology in order to obtain the upgraded
network that maximizes the robustness in case of a simultaneous failure of a set of c critical
nodes. In these works, the problem is solved by resorting to heuristic methods: a multi-start
greedy randomized method in [BdSA18] and a greedy deterministic algorithm in [BdSA20].
To the best of our knowledge, the robust network upgrade problem (as presented in this work)
has never been addressed with exact methods.

Contrary to the RNUP, the CND problem has been extensively addressed in different
network contexts where, depending on the context, different connectivity metrics have been
considered, i.e., minimizing the pairwise connectivity, maximizing the number of connected
components, minimizing the number of nodes of the largest connected component size, etc
(see [LTK18], for a recent survey). Many of these variants assume a given number c of
critical nodes, which, in our problem, represents the worst-case number of nodes that can
simultaneously fail. Moreover, alternative formulations for the CND problem have been
proposed with different objective functions and constraints as, for example, the beta-vertex
disruptor [DXT+10] and the component-cardinality-constrained [LTK16] CND variants. As
already mentioned, we focus on the CND variant where, for a given number c of critical
nodes, the aim is to compute a set of c nodes that minimizes the pairwise connectivity
of the network [ACEP09, PC19, SGL11, SGL12, VBP14, Ven12], a variant that has been
used in the vulnerability evaluation of telecommunication networks to multiple node failures
[dSS20, SdSM18].

Recently, the CND problem itself has been modeled with multi-objective formulations.
In [VHOB18], the CND problem is formulated as a bi-objective problem: maximizing the
number of connected components in a graph while simultaneously minimizing the variance of
their cardinalities by removing a subset of critical nodes. Six known multi-objective evolu-
tionary algorithms are tested and compared. In [LPXC19], a bi-objective variant of the CND
problem is studied, where the two conflicting objectives are the minimization of the pairwise
connectivity of the induced graph and the cost of removing the critical nodes simultane-
ously. Two decomposition based multi-objective evolutionary algorithms are modified and
improved. In [FOP+19], a multi-objective formulation is proposed to obtain a Pareto frontier
that considers different trade-offs between conflicting objectives of the attacker. Then, using
the information from the Pareto front two indices are proposed to assess the robustness of
a network and to identify the critical nodes. Case studies are reported using as objectives
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the minimization of the network connectivity, measured in terms of pairwise connectivity,
and minimization of the attack total cost. The full defender/attacker approach, where the
decision maker perspective is also taken into account, is left for future research.

On one hand, contrary to our work, in [FOP+19, LPXC19], the minimization of the cost
is considered as one of the objectives but from the point of view of the attacker (i.e. the cost
of removing the critical nodes simultaneously). On the other hand, in our work, the CND
problem is only considered as a tool to evaluate the network robustness to multiple node
failures. Thus, we consider a standard single-objective formulation to the CND problem, and
the second objective of the proposed RNUP is related to the cost of the edges added to the
topology to increase its robustness to multiple node failures.

We model the RNUP as a bi-objective problem and provide a path formulation. Based
on the proposed path formulation for the RNUP problem, we propose a general procedure
to generate all the points belonging to the Pareto frontier that solves two subproblems (an
edge selection problem and the CND problem) alternately. To enhance the procedure, we
propose an approach that models the selection of edges as a set covering problem. Usually,
path formulations are used to ensure connectivity. However, in our case, the computational
results will show that the set covering constraints are much more effective in solving the edge
selection problem. Two variants are proposed, one based on a row generation approach, where
cover inequalities are added on the fly, and another approach where a characterization of the
relevant cover inequalities is used to select all the inequalities.

The main computational experiments are conducted on 4 well-known network topologies
commonly used in telecommunications [OWPT10]. The results show that using the general
procedure can only solve very small size instances. However, using the enhanced procedures,
all the tested instances are solved considering sets of c ∈ {2, 3, 4, 5, 6} critical nodes and
the complete Pareto frontier is obtained in instances up to c = 4 critical nodes. Additional
computational tests are conducted on different topologies generated using three well-known
graph algorithms: Erdos-Renyi model [ER59], Watts-Strogatz small-world model [WS98] and
Barabasi-Albert scale-free model [BA99]. These tests aim at evaluating the impact of the size
of the problem instances on the proposed solution procedures.

The original contributions of this work are summarized as follows:

� the RNUP is introduced and modeled as a bi-objective optimization problem using a
path formulation;

� an upgrade algorithm is introduced to determine the complete Pareto frontier;

� a cover model is developed for the edge selection subproblem;

� two alternative algorithms based on the cover model are proposed;

� extensive computational results on different topologies and on different sizes are re-
ported, showing the applicability of the solution approaches.

The paper outline is as follows. The RNUP is modeled as a bi-objective problem in Sec-
tion 3.2. Then, a general approach to obtain the Pareto frontier is introduced in Section 3.3.
In Section 3.4, we present two alternative approaches based on enhancements of the general
algorithm. Computational results are reported and discussed in Section 3.5. In Section 3.6,
we present the main conclusions of the conducted work.
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3.2. Robust network upgrade problem

3.2 Robust network upgrade problem

We consider a network represented by a connected undirected graph Gn = (N,En) where
N = {1, ..., n} is the set of nodes and En = {{i, j} ∈ N×N : i < j} is the set of edges
representing all possible edges. Additionally, we denote by E0 ⊂ En the subset of edges
corresponding to the existing edges. For each candidate edge {i, j} ∈ En \ E0, parameter
lij represents the cost of installing an edge between the two nodes i and j in an upgraded
solution.

The robust network upgrade problem (RNUP) consists of installing new edges to increase
the robustness of a given network while minimizing the cost with the additional installed edges.
We model this problem as a general bi-objective optimization problem in Section 3.2.1 and
provide a mixed integer linear programming (MILP) path based formulation in Section 3.2.2.

3.2.1 Bi-objective optimization model

We model the RNUP as a bi-objective problem. The decisions are the new edges to add
to the existing network (N,E0). The objectives are the minimization of the cost of the added
edges and the maximization of a robustness metric of the upgraded network.

Initially, we consider, for each candidate edge {i, j} ∈ En\E0, the binary decision variable
yij that is 1 if edge {i, j} is selected, and 0 otherwise. The proposed RNUP can be modeled
as the following bi-objective problem:

min L :=
∑

{i,j}∈En\E0

lijyij (3.1)

max z := f(E0 ∪ {{i, j} ∈ En\E0 : yij = 1}) (3.2)

s.t. yij ∈ {0, 1}, {i, j} ∈ En\E0. (3.3)

where f(E) is a robustness metric of the network GU = (N,E). The first objective (3.1) is
to minimize the total cost of the new edges.

In this work, the robustness metric is given by the objective function of the CND problem,
that will be denoted by CND(E), i.e., f(E) = CND(E). The CND problem identifies a set
of c nodes whose removal from GU minimizes the pairwise connectivity on the remaining
graph. So, the second objective (3.2) of the RNUP is to maximize the connectivity of the
remaining graph assuming that the c critical nodes are removed.

3.2.2 Bi-objective mixed integer linear formulation

Next, we provide a MILP formulation for the bi-objective problem. Following the classical
models to ensure connectivity between pair of nodes (see for instance [SSG12]), we propose a
path based formulation where a path links each pair of nodes that have connectivity.

Consider the set K of all combinations of c nodes from N (i.e., set of all failure scenarios
of c nodes). For each K ∈ K, the binary parameter αKi is 1 if and only if node i ∈ N belongs
to the node set K. For each edge {i, j} ∈ En, we consider two arcs (i, j) and (j, i) obtained
from the two possible orientations of the edge. The set of all arcs will be denoted by A.
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In addition to variables yij introduced before, we consider the following two sets of binary
decision variables. For each node pair s, t ∈ N, s < t, for each failure scenario K ∈ K and for
each arc (i, j) ∈ A, variable xstKij is 1 if arc (i, j) belongs to the path between s and t in the
failure scenario K, and 0 otherwise. Additionally, for each node pair s, t ∈ N, s < t and for
each failure scenario K ∈ K, variable uKst is 1 if nodes s and t remain connected in the failure
scenario K, and 0 otherwise.

For ease of notation, we define variables yij also for the edge set E0 which are set to 1.
Then, the bi-level problem (3.1)–(3.3) can be defined by the following MILP formulation:

min L :=
∑

{i,j}∈En\E0

lijyij (3.4)

max z (3.5)

s.t. z ≤
∑
s∈N

∑
t∈N,s<t

uKst , K ∈ K, (3.6)

∑
j∈N :(i,j)∈A

xstKij + αKi ≤ 1, s, t ∈ N, s < t, i ∈ N, K ∈ K, (3.7)

∑
j∈N :(j,i)∈A

xstKji + αKi ≤ 1, s, t ∈ N, s < t, i ∈ N, K ∈ K, (3.8)

∑
j∈N :(s,j)∈A

xstKsj = uKst , s, t ∈ N, s < t, K ∈ K, (3.9)

∑
j∈N :(i,j)∈A

xstKij =
∑

j∈N :(j,i)∈A

xstKji , s, t ∈ N, s < t, i ∈ N\{s, t}, K ∈ K, (3.10)

∑
j∈N :(j,t)∈A

xstKjt = uKst , s, t ∈ N, s < t, K ∈ K, (3.11)

∑
j∈N :(j,s)∈A

xstKjs = 0, s, t ∈ N, s < t, K ∈ K, (3.12)

xstKij ≤ y{ij}, s, t ∈ N, s < t, (i, j) ∈ A, K ∈ K, (3.13)

yij = 1, {i, j} ∈ E0, (3.14)

yij ∈ {0, 1}, {i, j} ∈ En\E0, (3.15)

xstKij ∈ {0, 1}, s, t ∈ N, s < t, (i, j) ∈ A, K ∈ K, (3.16)

uKst ∈ {0, 1}, s, t ∈ N, s < t, K ∈ K, (3.17)

z ≥ 0. (3.18)

Again, the objective (3.4) is to minimize the total cost L of the new edges. Then, the
objective (3.5) is to maximize the robustness z of the upgraded topology. Constraints (3.6)
guarantee that z is at most the pairwise connectivity of the remaining graph after each set K
of critical nodes is removed. Thus, they ensure that variable z cannot exceed the robustness
value of any failure scenario K ∈ K. Combined with objective (3.5), which maximizes z, in
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an optimal solution, this upper bound is attained.

Constraints (3.7)–(3.8) ensure that arc (i, j) does not belong to any path if either nodes
i or j are critical in each failure scenario K ∈ K. Constraints (3.9)–(3.11) represent the flow
conservation constraints if nodes s and t remain connected in the failure scenario K ∈ K.
Additionally, constraints (3.12) ensure that there will be no flow entering the source node s
in the flow conservation constraints, i.e., removing the possibility of cycles.

Notation y{ij} represents decision variable yij if i < j, and variable yji otherwise, and
then, constraints (3.13) guarantee that if either arc (i, j) or (j, i), with i < j, is used for
any path in any failure scenario, then the edge {i, j} must exist in the upgraded topology
(i.e., yij = 1). Finally, constraints (3.14)–(3.18) are the variable domain constraints. Notice
that this formulation assumes that edges from the original topology belong to the upgraded
topology (i.e., yij = 1 for all {i, j} ∈ E0).

We can observe that this formulation depends on the cardinality of K which increases
exponentially as a function of the number of nodes if c is large. However, for small values of
c, the size of K is small. Notice additionally that for each K ∈ K, the resulting formulation
is compact.

3.3 Solution approach: finding the Pareto frontier

When dealing with bi-objective problems, the most relevant information from the decision
maker’s point of view is to know the Pareto frontier allowing to compare the cost of a network
upgrade with the gains in the given robustness metric. The proposed algorithms are designed
to derive all the non-dominated solution pairs (L, z) in the Pareto frontier, where L is the
cost of the added edges and z is the robustness value.

First, in Section 3.3.1, we present a general algorithm to obtain the Pareto frontier which
uses two optimization problems, one for computing the robustness value of a topology (solving
a CND problem) and another for selecting a set of edges for the upgraded topology, denoted
as the Edge Selection Problem (ESP). An Integer Linear Programming (ILP) formulation for
the CND problem is given in Section 3.3.2 and a path formulation for the ESP is given in
Section 3.3.3.

3.3.1 A general algorithm for the RNUP

Here, we present a general algorithm that generates a set of pairs (Ls, zs) that includes
all the Pareto optimal solutions of the RNUP. The iterative algorithm considers the graph
G = (N,E0) and starts with the trivial pair (L1, z1) = (0,CND(E0)) belonging to the Pareto
frontier. In each iteration, a new pair (Ls, zs) is obtained that strictly increases the value of
z. The iterative step stops when the CND value of the upgraded topology (zs) is maximal,
i.e., when zs =

(
n−c

2

)
. The full description of the algorithm is given in Algorithm 3.1.

This algorithm computes the CND value in Steps 3 and 7 and solves the ESP in Step 6.
These two problems are solved using ILP formulations which are described in the following
sections.
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Algorithm 3.1 General upgrade algorithm

1: Input: G = (N,E0), c ∈ {1, . . . , |N |}
2: s← 1
3: (Ls, zs)← (0,CND(E0))
4: while zs <

(
n−c

2

)
do

5: s← s+ 1
6: Compute set of edges E′ ⊆ En\E0 such that Ls ←

∑
{i,j}∈E′ lij is minimized and

CND(E0 ∪ E′) > zs−1

7: zs ← CND(E0 ∪ E′)
8: end while

3.3.2 Critical node detection MILP formulation

Several MILP formulations have been proposed for the CND problem (see [ACEP09] and
the more recent papers discussing formulations enhancements [Pav18, SdSM18]). Here, we
consider the MILP formulation introduced in [SdSM18].

Aiming to minimize the pairwise connectivity of the graph without c critical nodes, con-
sider the following two sets of decision variables: for each node t ∈ N , variable vt is 1 if t is
a critical node, and 0 otherwise; and for each node pair s, t ∈ N, s < t, variable ust is 1 if
nodes s and t remain connected (i.e., if exists a feasible path connecting end-nodes s and t)
in graph GU = (N,E) after the removal of the critical nodes, and 0 otherwise. Additionally,
for all s, t ∈ N (with s 6= t), the notation u{st} represents the decision variable ust if s < t,
and variable uts otherwise.

Moreover, for each node pair s, t ∈ N, s < t, consider that the set N st
E ⊆ N represents the

set of adjacent nodes to s, on graph GU = (N,E), if the node degree of s is not higher than
the node degree of t, and the set of adjacent nodes to t otherwise.

Then, for a given number c ∈ {1, . . . , |N |} of critical nodes, a compact formulation for the
CND problem is given by the following MILP formulation:

min z :=
∑

s,t∈N,s<t
ust (3.19)

s.t.
∑
t∈N

vt = c, (3.20)

ust + vs + vt ≥ 1, s, t ∈ N, s < t, {s, t} ∈ E, (3.21)

ust ≥ u{sk} + u{tk} − 1 + vk, s, t ∈ N, s < t, {s, t} 6∈ E, k ∈ N st
E , (3.22)

vt ∈ {0, 1}, t ∈ N, (3.23)

ust ∈ {0, 1}, s, t ∈ N, s < t. (3.24)

The objective (3.19) is to minimize the pairwise connectivity, i.e., the total number of
node pairs that have connectivity in the remaining graph (N\K,EK), with EK = {{i, j} ∈
E : i, j /∈ K} and where K = {i ∈ N : v∗i = 1} is the set of critical nodes. Constraint (3.20)
ensures that exactly c nodes of N are selected as critical nodes.

Constraints (3.21) guarantee that a pair of adjacent nodes in graph GU = (N,E) is con-
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3.3. Solution approach: finding the Pareto frontier

nected if none of the end-nodes is a critical node. Constraints (3.22) represent a generalization
of constraints (3.21) for each pair of nodes s and t that are not adjacent, and guarantee that
those nodes are connected if there is a non-critical node k ∈ N st

E connected to both s and t.

Constraints (3.23)-(3.24) are the variable domain constraints. As noted in [SdSM18],
constraints (3.24) can be replaced by ust ≥ 0, reducing the number of binary variables.
Henceforward, the optimal value z∗ of this MILP problem will be represented by CND(E).

3.3.3 A path formulation for the ESP

Next, we consider the optimization problem defined in Step 6 of Algorithm 3.1. This
optimization problem seeks a set of edges with the minimum cost that provides a CND value
greater than a given threshold r (where, in Step 6, r = zs−1).

We denote this problem by ESP(r) which can be modeled as an ILP path based formu-
lation as follows:

min
∑

{i,j}∈En\E0

lijyij (3.25)

s.t.
∑

{s,t}∈En

uKst ≥ r + 1, K ∈ K, (3.26)

(y, x, u) satisfies (3.7)–(3.17).

Notice that, as the CND value must be integer and it must be greater than the threshold
r, the right-hand side of (3.26) is r + 1. The set of edges E′ = {{i, j} ∈ En\E0 : y∗ij = 1} is

the optimal solution of ESP(r) and GU = (N,E0 ∪ E′) denotes the upgraded topology.

Theorem 3.3.1. The pairs (L1, z1), . . . , (LS , zS) generated by Algorithm 3.1 include all the
Pareto optimal solutions to the bi-objective optimization problem (3.1)–(3.3).

Proof. Let (L, z) be a Pareto optimal solution not generated by Algorithm 3.1.

Suppose that Ls < L < Ls+1, for some s ∈ {1, . . . , S}. From Step 6, Ls+1 is the opti-
mal value of the subproblem ESP(zs). Then, for each E ⊆ En, with E0 ⊆ E, such that∑
{i,j}∈E\E0

lij ≤ L < Ls+1, we have z ≤ zs. Thus, (L, z) is dominated by (Ls, zs), which
contradicts the assumption that (L, z) is a Pareto optimal solution.

Suppose L = Ls for some s ∈ {1, . . . , S}. If z < zs, then (L, z) is dominated by (zs, Ls)
which contradict the assumption that (L, z) is a Pareto optimal solution. Consider now the
case z > zs. We may assume Ls+1 > L, otherwise we could iteratively replace s by s+ 1 until
the desirable condition Ls+1 > L is verified. Thus, at Step 6, Ls+1 is the optimal value of the
subproblem ESP(zs) which contradicts z ≥ zs + 1 and L < Ls+1. Hence, the unique possible
case is z = zs. Then, (L, z) must coincide with (Ls, zs) for some s ∈ {1, . . . , S}, which shows
that all the Pareto optimal solutions are generated by Algorithm 3.1.

Although all the Pareto optimal solutions are generated with Algorithm 3.1, some of the
solutions obtained with the algorithm may be dominated. Figure 3.1 presents such an example
where solutions (b) and (c) are alternative optimal solutions to ESP(2) assuming that the
cost parameters lij correspond to the Euclidean distance between nodes i and j. However,
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solution (b) is dominated by solution (c). Hence, if Algorithm 3.1 obtains (b) before (c), a
dominated solution is generated.

(a) (L1, z1) = (0, 2) (b) (L2, z2) = (1, 3) (c) (L3, z3) = (1, 6)

Figure 3.1: Example where solution (b) is dominated by solution (c) for c = 1 critical node
and with lij = 1 in both selected new edges (critical node in a red square and selected edge
in dashed blue).

The next result allows to identify all the dominated solutions generated by Algorithm 3.1.

Proposition 3.3.2. A pair (Ls, zs) generated by Algorithm 3.1 is dominated if and only if
zs < zs+1 and Ls = Ls+1.

Proof. Suppose that (Ls, zs) is not a Pareto optimal solution. Since the robustness value is
strictly increasing from each iteration to the next, the condition zs < zs+1 is straightforward.

Given that Ls and Ls+1 are both the minimal objective function values of (3.25) for the
thresholds zs and zs+1, respectively, we have that Ls ≤ Ls+1. Suppose that Ls < Ls+1. Then,
Ls−1 ≤ Ls < Ls+1 and zs−1 < zs < zs+1, which contradicts the assumption of (Ls, zs) not
being a Pareto optimal solution. Thus, Ls = Ls+1.

The converse implication is straightforward by definition of a Pareto optimal solution.

Remark 3.3.3. Although it is theoretically possible to obtain a solution that is not a Pareto
optimal solution, in all instances where the cost lij of new links is related with the distance
between the nodes i, j ∈ N , none of the tested algorithms computed such a dominated
solution. This shows how rare those dominated solutions are in real-world topologies when
compared to academic scenarios like the one presented in Figure 3.1. Moreover, as checking
if a solution is dominated can easily be done in linear time, we omit the step of verifying if a
solution is dominated in all the algorithms presented in this paper.

3.4 Covering approach to the network upgrade problem

The path formulation for the ESP(r) presented in the previous section has the advantage
of being a compact model for each set of critical nodes K. Nevertheless, it includes many
variables, which implies to solve large size models in each iteration of Algorithm 3.1. As
a consequence, the computational results will show (in Section 3.5.1) that it is only able
to compute optimal Pareto solutions for a very limited range of instances. In order to use
Algorithm 3.1 to obtain Pareto frontiers for larger instances, a different approach must be
considered to optimally solve the RNUP.
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In this section, we introduce an alternative ILP model to ESP(r). This model results
from transforming the ESP into a set covering problem (see for instance [Chv79]) and will
be called henceforward the Cover model. As will be described next, the Cover model has the
advantage of having a small number of variables, but it has the disadvantage of including
much more constraints (the cover inequalities). In order to use the Cover model efficiently,
we need to address the issue of managing these constraints efficiently.

Next, we first define the Cover model (Section 3.4.1). Then, we introduce the general
algorithm based on the Cover model (Section 3.4.2). Finally, we present two algorithms based
on two different strategies to generate the cover inequalities: a row generation algorithm
(Section 3.4.3) and an algorithm based on the partition of the network into components
(Section 3.4.4). The advantages of using this alternative model will be discussed later.

3.4.1 Cover model for network upgrade

In order to define the Cover model, first we must introduce some notation. Given a set of
edges E and a set of critical nodes K ⊂ N , consider the remaining graph GEK = (N\K,EK),
with EK = {{i, j} ∈ E : i, j /∈ K}. Let zEK be the robustness value of this graph, i.e., the
total number of node pairs that have connectivity in graph GEK .

Moreover, consider the set of edges of an auxiliary graph (N\K,EK) where two nodes
are adjacent if and only if they belong to the same connected component in graph GEK , i.e.,

E
K

= {{i, j} ∈ En : i, j ∈ N\K have connectivity in GEK}.
We are interested in those edges that link different connected components in GEK , in order

to increase the robustness of the upgraded network. Given the introduced notation, we now
consider the set:

γEK := {{i, j} ∈ En : i, j /∈ K and {i, j} /∈ EK} (3.27)

which corresponds to the set of candidate edges {i, j} ∈ En such that nodes i and j have no
connectivity in the remaining graph GEK .

Additionally, for a given threshold r for the robustness value, we define the family of sets
of candidate edges Γ(r) as follows:

Γ(r) := {γEK : E ⊂ En, with E0 ⊆ E, and K ∈ K such that zEK ≤ r}. (3.28)

The family Γ(r) considers all the topologies GEK resulting from a simultaneous failure of
the nodes in K, whose robustness value does not exceed the threshold r. Thus, in order to
increase the robustness of this topology, at least one additional edge from each of these γEK
sets must be added.

Using this observation, we define a set covering problem, denoted by Cover(Γ(r)), which
includes one cover constraint for each set of candidate edges γEK ∈ Γ(r) such that zEK ≤ r:

min
∑

{i,j}∈En\E0

lijyij (3.29)

s.t.
∑

{i,j}∈γEK

yij ≥ 1, γEK ∈ Γ(r), (3.30)

yij ∈ {0, 1}, {i, j} ∈ En\E0. (3.31)
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3.4. Covering approach to the network upgrade problem

The objective (3.29) is to minimize the total cost of the selected candidate edges to add
to the current topology (N,E0). For a given threshold r, constraints (3.30) are the cover
inequalities for each set of edges E ⊂ En, with E0 ⊆ E (i.e., for each upgraded graph), and
for each critical node set K ∈ K such that zEK ≤ r. These cover inequalities cut off all infeasible
solutions based on the remaining edge set EK , i.e., a solution with yij = 1, if (i, j) ∈ γEK , and
yij = 0 otherwise (see Proposition 3.4.1 below). Finally, constraints (3.31) are the variable
domain constraints.

Proposition 3.4.1. Given E ⊂ En and K ∈ K, the incidence vector y of the remaining
graph GEK , i.e., yij = 1, for {i, j} ∈ EK and yij = 0, for {i, j} ∈ En \EK , is violated by the

cover inequality (3.30) defined for γKE .

Proof. If {i, j} ∈ EK , then {i, j} /∈ γEK , since EK ⊆ E
K

. Thus, yij = 0 for all {i, j} ∈ γEK ,
which implies that constraint (3.30) is violated by y.

The next result illustrates how the Cover ILP model (3.29)–(3.31) can be used to optimally
solve Step 6 of Algorithm 3.1.

Theorem 3.4.2. Let y∗ be the optimal solution of Cover(Γ(zs−1)) for a robustness value
zs−1. Then zs > zs−1, where zs = CND(E0 ∪ {{i, j} ∈ En\E0 : y∗ij = 1}).

Proof. Suppose that zs ≤ zs−1. Given K = {i ∈ N : v∗i = 1}, then as zs ≤ zs−1, it follows

that γE0∪E′

K ∈ Γ(zs−1), where E′ = {{i, j} ∈ En\E0 : y∗ij = 1}). Setting E = E0 ∪ E′, and
considering yij = 1 for {i, j} ∈ E0 and yij = y∗ij for {i, j} ∈ En\E0, then by Proposition 3.4.1,
the cover inequality

∑
{i,j}∈γEK

yij ≥ 1 is violated. This contradicts the assumption that y∗ is

a feasible solution of Cover(Γ(zs−1)).

3.4.2 Cover-based upgrade algorithm

Here, we propose Algorithm 3.2 that uses the proposed Cover model to obtain the Pareto
optimal solutions, i.e., in each iteration of the algorithm, a candidate solution (Ls, zs) is
computed.

Algorithm 3.2 Cover-based upgrade algorithm

1: Input: G = (N,E0), c ∈ {1, . . . , |N |}
2: s← 1
3: (Ls, zs)← (0,CND(E0))
4: while zs <

(
n−c

2

)
do

5: s← s+ 1
6: y∗ ← optimal solution to Cover(Γ(zs−1))
7: Ls ←

∑
{i,j}∈En\E0

lijy
∗
ij

8: zs ← CND(E0 ∪ {{i, j} ∈ En\E0 : y∗ij = 1})
9: end while

As input to the algorithm, we are given the network topology G = (N,E0) to be upgraded
and the number of critical nodes c ∈ {1, . . . , |N |}. The algorithm starts by solving the CND
problem for the original topology (Line 3) and by assigning the first (trivial) Pareto solution.

60



3.4. Covering approach to the network upgrade problem

The main loop (Lines 4-9) stops when zs reaches the upper bound of the problem, i.e.,
when the CND value of the upgraded topology is maximal. First, we increase the current
index solution s. Then, the Cover model is optimized for the family of cover constraints
Γ(zs−1), i.e., with the threshold of the previous candidate solution zs−1. Finally, the CND
of the upgraded topology (N,E0 ∪ E′) is computed, where E′ is the minimal cost of the
corresponding upgraded topology.

Theorem 3.4.3. The pairs (L1, z1), ..., (LS , zS) generated by Algorithm 3.2 include all the
Pareto optimal solutions of the bi-objective optimization problem (3.1)–(3.3).

Proof. In order to prove that Algorithm 3.2 includes all the Pareto optimal solutions, using
Theorem 3.3.1, it suffices to show that this algorithm generates the same points of Algo-
rithm 3.1. Notice that Algorithm 3.2 is obtained by replacing Line 6 of Algorithm 3.1 with
Lines 6-7. In each iteration of Algorithm 3.2, the Cover problem is solved allowing to ob-
tain the minimum cost set of candidate edges with value Ls such that, by Theorem 3.4.2,
zs = CND(E0 ∪ {{i, j} ∈ En\E0 : y∗ij = 1}) > zs−1. Therefore, both algorithms generate the
same solutions.

In contrast to the path formulation for the ESP, which is compact for a set K, the number
of cover inequalities (3.30) increases exponentially with the size of the graph and leads to
large size models that hardly can be solved to optimality even for relatively small instances.
The main challenge is to devise approaches that use a small number of cover constraints to
obtain the Pareto frontier. We address this challenge in two distinct ways: by using a row
generation technique and by splitting the set of different topologies into equivalence classes
and generate a cover constraint for each class.

3.4.3 Row generation approach

Here, we propose a row generation algorithm, where the family of inequalities (3.30) is
initially ignored. In each iteration, the relaxed model is solved and an upgraded solution with
edge set E is obtained. For a given threshold r, if zEK ≤ r for some K ∈ K, then a new cut
for the edge set γEK is added. This procedure is described in Algorithm 3.3.

Similarly to Algorithm 3.2, the input is the original network topology G = (N,E0) and
the number of critical nodes c. The algorithm starts by solving the CND problem for this
topology and by assigning the initial Pareto optimal solution (Lines 3-4). Additionally, the
family Γ of edge sets corresponding to the active cover constraints (3.30) is initialized (Line 5)
with the set of candidate edges γE0

K , where K is the set of critical nodes of the input graph.

The main loop (Lines 6-17) ensures that the algorithm stops when zs reaches the upper
bound. In each loop iteration, a new candidate solution (Ls, zs) is generated.

The row generation phase is considered in the loop defined by Lines 8-15. The Cover model
is optimized for the family of cover constraints Γ (Lines 9-10) and the CND of the current
upgraded topology (N,E0 ∪ E′) is computed (Lines 12-13). Then, based on the optimal

solutions of these two optimization problems, the cover cut set γE0∪E′

K is added to family Γ
(Line 14). This process is repeated until the robustness value z∗ of upgraded topology is
higher than the robustness value of the previous solution zs−1. When this happens, the next
candidate solution (Ls, zs) is assigned to the current solution (Line 16).
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Algorithm 3.3 Row generation

1: Input: G = (N,E0), c ∈ {1, . . . , |N |}
2: s← 1
3: (Ls, zs)← (0,CND(E0))
4: v∗ ← optimal solution to CND(E0)
5: Γ← {γE0

K }, where K = {i ∈ N : v∗i = 1}
6: while zs <

(
n−c

2

)
do

7: s← s+ 1
8: repeat
9: y∗ ← optimal solution to Cover(Γ)

10: Ls ←
∑
{i,j}∈En\E0

lijy
∗
ij

11: E′ ← {{i, j} ∈ En\E0 : y∗ij = 1}
12: z∗ ← CND(E0 ∪ E′)
13: v∗ ← optimal solution to CND(E0 ∪ E′)
14: Γ← Γ ∪ {γE0∪E′

K }, where K = {i ∈ N : v∗i = 1}
15: until z∗ > zs−1

16: (Ls, zs)← (L∗, z∗)
17: end while

3.4.4 Cover inequalities from partitions of the set of nodes

Given a set of critical nodes K ∈ K, the family of edge sets forms an equivalence class

where two sets EK1 , E
K
2 ⊂ En belong to the same class if and only if E

K
1 = E

K
2 , i.e., graphs

GKE1
= (N\K,EK1 ) and GKE2

= (N\K,EK2 ) have the same connected components. Each set

EK is represented by the set E
K

. Figure 3.2 illustrates this concept.

Figure 3.2: All the edge sets of the remaining graphs represented in the figure belong to the
same class. This class is represented by the set of edges from the graph represented in (a).

Hence, if EK1 , E
K
2 belong to the same class, i.e., E

K
1 = E

K
2 , then γE1

K = γE2
K . Consequently,

the cover inequality (3.30) is the same for all the topologies belonging to the same class and,
in particular, for the topology where each component forms a clique. Thus, the inequality
(3.30) can alternatively be defined from the node set partition corresponding to the topology.
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Therefore, in order to compute the family of cover inequalities (3.30) for a given threshold
r (and for each set of critical nodes K ∈ K), we need to consider all the partitions of the node
set N \K that take into account the existing edge set E0 and whose robustness value is not
higher than the threshold r. The next Example 1 illustrates how the robustness value of each
partition is calculated.

Notice that, in general, the robustness value of any topology (and, by consequence, any
components partition) has the format z =

∑m
i=1

(
ni
2

)
with

∑m
i=1 ni = n − c, where m repre-

sents the number of components in the remaining graph and each ni represent the number of
nodes of component i, with i ∈ {1, ...,m}. This is a particular property of the CND variant
used in this work which considers the minimization of the pairwise connectivity.

Example 1: Given a node set K ∈ K, suppose that the remaining graph GKE0
has three

connected components, i.e., N\K = C1 ∪ C2 ∪ C3, with C1, C2, C3 ⊂ N such that C1 ∩ C2 =
C1∩C3 = C2∩C3 = ∅. Additionally, ni = |Ci|, for each i ∈ {1, 2, 3}. Thus, n1+n2+n3 = n−c.
The robustness values for the partitions with three and two components are given as follows:

� z(C1, C2, C3) =
(
n1

2

)
+
(
n2

2

)
+
(
n3

2

)
= zE0

K , corresponding to partition {C1}, {C2}, {C3};

� z(C1 ∪ C2, C3) =
(
n1+n2

2

)
+
(
n3

2

)
, corresponding to partition {C1 ∪ C2}, {C3};

� z(C1 ∪ C3, C2) =
(
n1+n3

2

)
+
(
n2

2

)
, corresponding to partition {C1 ∪ C3}, {C2};

� z(C1, C2 ∪ C3) =
(
n1

2

)
+
(
n2+n3

2

)
, corresponding to partition {C1}, {C2 ∪ C3}.

Let PKE0
represent the set of all partitions of N \K such that two nodes connected by an

edge in E0 must belong to the same set. Associated to each partition p ∈ PKE0
, we consider

γp as the set of edges connecting pairs of nodes belonging to different sets in p and zp its
corresponding robustness value. The algorithm based on the set of components partitions is
described in Algorithm 3.4.

Algorithm 3.4 Components separation

1: Input: G = (N,E0) and c ∈ {1, . . . , |N |}
2: K0 ← {K ∈ K : zKE0

<
(
n−c

2

)
}

3: s← 1
4: (Ls, zs)← (0,min{zKE0

: K ∈ K0})
5: while zs <

(
n−c

2

)
do

6: s← s+ 1
7: Γ← {γp : p ∈ PKE0

and K ∈ K0 such that zp ≤ zs−1}
8: Ls ← Cover(Γ)
9: y∗ ← optimal solution to Cover(Γ)

10: zs ← CND(E0 ∪ {{i, j} ∈ En\E0 : y∗ij = 1})
11: end while

Algorithm 3.4 is an extension of Algorithm 3.2 where the family of sets of edges Γ used
to define the cover inequalities is computed in Line 7. In order to obtain this family Γ,
initially, we need to compute every critical node set K ∈ K such that the remaining graph
GKE0

has multiple components (Line 2). Then, for each set K ∈ K0, the corresponding set of
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partitions PKE0
is defined. The family Γ is computed by including each partition p such that

its robustness value zp is not higher than the current threshold zs−1 (Line 7).

3.5 Computational results

All the computational tests reported in this section were obtained using the optimization
software Gurobi Optimizer version 9.0.0, with programming language Julia version 1.4.1,
running on a PC with an Intel Core i7-8700, 3.2 GHz and 16 GB RAM.

The main computational results are based on four telecommunication network topologies
shown in Figure 3.3: Janos-US, Cost266, Germany50 and Coronet. The information of their
nodes (and their geographical locations) and edges is publicly available information [OWPT10,
Sim14].

Figure 3.3: Network topologies.

In practice, the cost of a new edge between two given nodes in a telecommunication
network requires the determination of the geographical route where the new edge is installed
and this information is not available. However, there is a strong correlation between the
distance between two network nodes and the cost of installing a new link connecting them
and, thus, we assume that the cost lij of installing an edge between the two nodes i and
j is given by the length (in kilometers) of the shortest path over the surface of a sphere
representing Earth. Table 3.1 gives, for each network, the following topology characteristics:
number of nodes |N | and edges |E0| in the existing topologies, average node degree δ̄, total
edge length of the original topology L0 =

∑
(i,j)∈E0

lij , in kilometers, and average edge length

l̄. In addition, column ’|En\E0|’ represents the total number of candidate edges, i.e., the total
number of binary variables yij in the proposed optimization models.

The remaining of this section is organized as follows. First, we report the results of the
tests conducted with Algorithm 3.1 using formulation ESP(.) (Section 3.5.1) and show that
only the smallest instance is solved with a runtime limit of 2 hours. Second, we compare the
two algorithms based on the Cover model and provide numerical results based on the four
network topologies previously presented (Section 3.5.2). Then, we provide some additional
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Table 3.1: Topology characteristics of each network.

Network |N | |E0| δ̄ L0 l̄ |En\E0|
Janos-US 26 42 3.23 25224 600.6 283

Cost266 37 57 3.08 24970 438.1 609

Germany50 50 88 3.52 8859 100.7 1137

Coronet 75 99 2.64 32642 329.7 3729

insights on the Pareto frontier and on the performance of the two algorithms (Section 3.5.3).
Finally, we test the proposed methodology on other well-known topologies in order to assess
the scalability of both algorithms on larger graphs (Section 3.5.4), and analyze the effect of
increasing the number of edges of the input topology (Section 3.5.5).

3.5.1 Testing Algorithm 3.1 using the path formulation ESP(.)

Table 3.2 presents the results for the Janos-US topology, with c = 2 critical nodes, obtained
with Algorithm 3.1 where the selection of the edges is made by solving model ESP(.), as
described in Section 3.3. This instance is the easiest one among all the instances reported in
this paper.

Table 3.2: Results of Algorithm 3.1 using the ESP(.) model, considering Janos-US with c = 2.

L z |K| Rows (pre) Rows (pos) Total Runtime

0 181 0 - - 0:00:01
1475 196 1 236968 172262 0:00:27
2357 213 3 710820 517198 0:02:36
2470 232 4 947746 688377 0:05:56
3940 253 8 1895450 1376043 0:26:18
4257 276 13 3080080 2235219 0:59:04

Columns ’L’ and ’z’ represent the respective values of all the Pareto optimal solutions for
this instance. Column ’|K|’ denotes the number of critical node sets that need to be considered
to obtain each Pareto optimal solution (L, z). Notice that there is no need to define constraints
for scenario failures K ∈ K whose robustness value in the original graph zE0

K is higher than
the current threshold since these constraints are guaranteed by the original topology itself.
Columns ’Rows (pre)’ and ’Rows (pos)’ represent the total number of constraints in the path
formulation ESP(.), before and after the preprocessing phase performed by the solver with
the default options, respectively. Finally, column ’Total Runtime’ gives the accumulated
computational time (in the format H:MM:SS).

These results show that the ESP(.) models solved in each iteration have a large number
of active constraints. Consequently, Algorithm 3.1 took about 1 hour to compute the Pareto
frontier of this instance while the best proposed algorithm solves this instance in a second
(results reported next). Moreover, this was the unique instance solved to optimality using
the path formulation ESP(.) with the runtime limit of two hours. Henceforward, we will not
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report additional results using this model.

3.5.2 Row generation algorithm vs components separation algorithm

In order to compare the performance of Algorithm 3.3 (row generation algorithm) with Al-
gorithm 3.4 (components separation algorithm), Table 3.3 presents detailed results of running
both algorithms considering the Germany50 topology with c = 4 critical nodes.

Table 3.3: Comparison between algorithms, considering Germany50 topology with c = 4
critical nodes.

Algorithm 3.3 Algorithm 3.4

L z no. ILPs Rows Runtime no. ILPs Rows Runtime

0 640 - - 0:00:01 - - 0:00:05
54 650 1 1 0:00:01 1 1 0:00:01
125 675 2 3 0:00:02 1 4 0:00:01
219 702 9 12 0:00:08 1 44 0:00:02
244 731 3 15 0:00:03 1 93 0:00:02
288 762 3 18 0:00:03 1 106 0:00:02
407 795 3 21 0:00:05 1 117 0:00:03
545 830 15 36 0:00:31 1 169 0:00:03
673 864 5 41 0:00:16 1 204 0:00:04
723 867 4 45 0:00:11 1 227 0:00:04
900 904 14 59 0:00:47 1 305 0:00:06
941 906 5 64 0:00:23 1 393 0:00:07
1294 946 38 102 0:02:36 1 714 0:00:08
1442 947 23 125 0:02:07 1 910 0:00:11
2104 990 93 218 0:14:16 1 3641 0:00:43
4781 1035 500 718 1:53:01 1 15155 0:02:09

Once again, columns ’L’ and ’z’ represent the respective values of all Pareto optimal
solutions for this instance. For each algorithm, column ’no. ILPs’ represents the number of
times that the Cover model was optimized to obtain each Pareto optimal solution, column
’Rows’ gives the total number of cover constraints added to the ILP model and column
’Runtime’ gives the computational time (in the format H:MM:SS) to obtain the solution of
each iteration.

In this instance, both algorithms obtain the complete Pareto frontier. Algorithm 3.4 is
much faster than Algorithm 3.3 in computing the complete Pareto frontier, despite the total
number of cover inequalities generated by Algorithm 3.4 being much higher than the number
generated by Algorithm 3.3. This is justified by the fact that Algorithm 3.4 needs to optimize
only one ILP problem per each Pareto optimal solution.

Notice also that, in general, Algorithm 3.4 takes a higher running time to compute the
first Pareto optimal solution. This is due to the fact that every node set K ∈ K needs to be
processed at the initialization step (Line 2 of Algorithm 3.4), in order to compute the family
of critical node sets K0 that divide the original topology in multiple connected components.
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Next, we show the results of testing both algorithms on the four topologies and considering
a number of critical nodes c ∈ {2, 3, 4, 5, 6}. Moreover, a runtime limit is imposed, forcing the
algorithm to stop whenever an iteration takes more than 2 hours to compute the next Pareto
optimal solution.

Tables 3.4 and 3.5 present the total number of Pareto optimal solutions obtained and the
total computational time (in the format H:MM:SS) used to get those solutions using Algo-
rithms 3.3 and 3.4, respectively. The instances for which each algorithm was able to compute
the complete Pareto frontier are represented in bold. Moreover, whenever the algorithm was
able to compute only a partial Pareto frontier, the real total computational time is the one
reported in these tables plus 2 hours.

Table 3.4: Number of Pareto optimal solutions obtained and the total runtime used to get
those solutions using Algorithm 3.3 (row generation).

Network c 2 3 4 5 6

Janos-US
Pareto points 6 10 20 17 19

Runtime 0:00:02 0:01:27 0:59:04 1:30:09 2:00:59

Cost266
Pareto points 5 12 16 25 26

Runtime 0:00:07 0:02:57 0:19:05 3:58:25 3:57:26

Germany50
Pareto points 3 7 16 17 16

Runtime 0:00:20 0:07:53 2:14:31 2:58:22 1:20:57

Coronet
Pareto points 6 12 32 27 41

Runtime 0:06:04 1:32:37 1:00:47 4:39:11 2:28:08

Table 3.5: Number of Pareto optimal solutions obtained and the total runtime used to get
those solutions using Algorithm 3.4 (components separation).

Network c 2 3 4 5 6

Janos-US
Pareto points 6 10 24 25 26

Runtime 0:00:01 0:00:03 0:02:40 4:22:50 1:52:21

Cost266
Pareto points 5 12 20 30 27

Runtime 0:00:02 0:00:12 0:08:06 1:21:00 3:25:36

Germany50
Pareto points 3 7 16 21 19

Runtime 0:00:05 0:00:48 0:03:50 0:37:28 2:34:58

Coronet
Pareto points 6 13 38 26 0

Runtime 0:00:38 0:08:48 0:57:38 3:22:32 -

These results show that, in general, Algorithm 3.4 is again much more time-efficient than
Algorithm 3.3 when it is possible to compute the complete Pareto frontier within reasonable
runtime. Additionally, there are three instances (Janos-US with c = 4, Cost266 with c = 4
and Coronet with c = 3) in which only Algorithm 3.4 was able to compute all Pareto optimal
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solutions.

Furthermore, when only a partial Pareto frontier was obtained, Algorithm 3.4 was able
to obtain considerable more optimal solutions than Algorithm 3.3. There are two exceptions,
i.e., two instances out of the 20 instances (4 topologies × 5 values of c) where Algorithm 3.3
performed better: Coronet topology for c ∈ {5, 6}. In these cases:

� for c = 5 critical nodes, Algorithm 3.4 exceeds the RAM limit when computing the 27th

Pareto optimal solution;

� for c = 6 critical nodes, it is not possible to compute set K0 (Line 2 of Algorithm 3.4),
i.e., processing the robustness value of each set of c nodes K ∈ K is not doable within
the imposed runtime of two hours.

These two instances give us an indication of the scalability limit of Algorithm 3.4 (com-
ponents separation). Conversely, as Algorithm 3.3 (row generation) does not require any
prepossessing to obtain the initial Pareto optimal solutions, this algorithm is able to obtain
a partial Pareto frontier in a wider range of input topologies.

3.5.3 Insights on the computational results

Next, we provide additional insights on the Pareto frontier of these instances.

First, recall that the robustness value of a solution is the number of node pairs that can
still communicate if the critical nodes of the topology are deleted. Although this number can
theoretically be any value between 0 and

(
n−c

2

)
, where n is the total number of nodes and c is

the number of critical nodes, only a subset of these values can represent the robustness value
of a Pareto optimal solution.

To illustrate this fact, Figure 3.4 presents a graphical representation of all Pareto-optimal
topologies for Germany50 considering c = 3 critical nodes. The robustness value zs of each
topology is given by:

(a) z1 =
(

37
2

)
+
(

10
2

)
= 666 + 45 = 711, that corresponds to two connected components with

37 and 10 nodes, respectively;

(b) z2 =
(

43
2

)
+
(

4
2

)
= 903 + 6 = 909, that corresponds to two connected components with

43 and 4 nodes, respectively;

(c) z3 =
(

44
2

)
+
(

3
2

)
= 946 + 3 = 949, that corresponds to two connected components with

44 and 3 nodes, respectively;

(d) z4 =
(

45
2

)
+
(

1
2

)
+
(

1
2

)
= 990 + 0 + 0 = 990, that corresponds to a connected component

with 45 nodes and two isolated nodes;

(e) z5 =
(

45
2

)
+
(

2
2

)
= 990 + 1 = 991, that corresponds to two connected components with

45 and 2 nodes, respectively;

(f) z6 =
(

46
2

)
+
(

1
2

)
= 1035 + 0 = 1035, that corresponds to a connected component with 46

nodes and an isolated node;
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(a) (L1, z1) = (0, 711) (b) (L2, z2) = (94, 909) (c) (L3, z3) = (173, 949) (d) (L4, z4) = (409, 990)

(e) (L5, z5) = (432, 991) (f) (L6, z6) = (884, 1035) (g) (L7, z7) = (2482, 1081)

Figure 3.4: Graphical illustration of the Pareto frontier for Germany50 topology and consid-
ering c = 3 critical nodes (optimal edges in blue and critical nodes in red squares).

(g) z7 =
(
n−c

2

)
=
(

47
2

)
= 1081, that corresponds to the upper bound scenario where the

upgraded topology is fully robust to any failure of 3 nodes.

In general, for a topology with |N | = 50 nodes and considering c = 3 critical nodes, it
is impossible to obtain an upgraded topology with a robustness value z ≥ 946 that does not
belong to the set {946, 947, 949, 990, 991, 1035, 1081} since these values represent all possible
alternatives of separating a maximum of 3 nodes from the main component.

Next, in Figure 3.5, we represent all Pareto optimal values obtained (using Algorithm 3.3
or Algorithm 3.4, depending on which one obtained a higher number of Pareto points) with
a set of scatter plots, one for each tested topology, with the robustness value (objective
function value of the CND problem) as function of the edge upgrade cost percentage, i.e.,
L
L0
× 100 (%). This represents the percentage of additional edge length added to the original

topology (N,E0).

As expected, from these scatter plots we can observe that there is no cross-over between
Pareto frontiers for different numbers of critical nodes c, i.e., for similar upgrade percentages,
the robustness value decreases with the increase of the number of critical nodes.

For c ∈ {2, 3, 4} (with the exception of Coronet with c = 4 instance), the complete
Pareto frontier of each instance is obtained. We observe that, in general, the last points
represent a much higher edge length increase with a smaller robustness value increase than
the previous points. This shows that, in general, we need smaller upgrade costs to reach
higher robustness gains in the first Pareto optimal solutions and, when reaching the last
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Figure 3.5: Scatter plots of all obtained Pareto optimal solution values.

Pareto optimal solutions, we need higher additional cost to reach full (or near full) robust
solutions.

For c ∈ {5, 6}, these plots show how incomplete partial Pareto frontiers obtained are. For
topologies representing real-world optical networks, the proposed algorithms do not obtain
the complete Pareto frontier for more than c = 4 critical nodes. In practice, though, a partial
Pareto frontier may be enough as, in general, upgrading a topology to have a high robustness
value for large values of c implies incurring in huge costs.

Finally, across all tested instances, these Pareto frontiers show that it is within the initial
20% of edge upgrade cost that occurs the highest improvement in the robustness value of
each topology. To further analyze this observation, Figure 3.6 represents each Pareto frontier
obtained, in a stair plot format, up to 20% edge upgrade and considering the robustness value
as a percentage of the upper bound

(
n−c

2

)
.

In these plots, we observe that the highest percentage increase in the robustness value of
the topology (N,E0) for a failure of c ∈ {4, 5, 6} critical nodes occurs within the initial 20% of
edge upgrade. Moreover, across the majority of tested instances, we observe that the initial
5% of edge upgrade provides the highest percentage of the robustness value to critical node
failures for c ∈ {2, 3}.
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Figure 3.6: Stair plots of the Pareto frontiers obtained.

There exists a clear exception to this trend, which is Janos-US topology with c = 2 critical
nodes (instance presented in Table 3.2). In order to understand this case, Figure 3.7 presents a
graphical representation of all topologies, each one corresponding to a Pareto optimal solution.
Analyzing these solutions, in order to upgrade the original topology (a) to one with higher
robustness for c = 2 node failures, the upgraded topologies require the addition of at least
one long edge across the network (compared with the average edge length of the original
topology). This explains why this topology has different upgrade trends when compared to
the other three topologies.

3.5.4 Testing other topologies and larger sizes

In this section, we present the results of testing the proposed algorithms on different
topologies and, in order to assess the scalability of the methods, on larger graph sizes. We
generated a set of 9 distinct topologies based on three well-known graph generation algo-
rithms: Erdos-Renyi model [ER59] (Figure 3.8), Watts-Strogatz small-world model [WS98]
(Figure 3.9) and Barabasi-Albert scale-free model [BA99] (Figure 3.10). In the process of gen-
erating these topologies, whenever a topology is not connected, it is discarded and a different
topology is generated. This ensures that only connected topologies are considered.
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(a) (L1, z1) = (0, 181) (b) (L2, z2) = (1475, 196)

(c) (L3, z3) = (2357, 213) (d) (L4, z4) = (2470, 232)

(e) (L5, z5) = (3940, 253) (f) (L6, z6) = (4257, 276)

Figure 3.7: Graphical representation of the Pareto frontier solutions for Janos-US topology
and considering c = 2 critical nodes (optimal edges in blue and critical nodes in red squares).

(a) |N | = 80, |E| = 157 (b) |N | = 100, |E| = 200 (c) |N | = 120, |E| = 259

Figure 3.8: Erdos-Renyi randomly generated topologies with |N | ∈ {80, 100, 120}, considering
a probability of selection of each edge of p = 0.04.

In order to test Algorithms 3.3 and 3.4 with these graphs, we considered a number of
critical nodes c ∈ {2, 3, 4, 5}. Moreover, the previous runtime limit was again considered (the
algorithm stops whenever an iteration reaches a 2 hours runtime to compute the next Pareto
solution). Finally, we set unitary costs of installing new edges, i.e., lij = 1 for each (i, j) ∈ En,
which means that the objective function (3.1) corresponds to minimizing the total number of
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(a) |N | = 80, |E| = 160 (b) |N | = 100, |E| = 200 (c) |N | = 120, |E| = 240

Figure 3.9: Watts-Strogatz randomly generated topologies with |N | ∈ {80, 100, 120}, consid-
ering a total number of edges |E| = 2|N | and a rewiring probability of β = 0.2.

(a) |N | = 80, |E| = 79 (b) |N | = 100, |E| = 99 (c) |N | = 120, |E| = 119

Figure 3.10: Barabasi-Albert randomly generated topologies with 80, 100 and 120 nodes,
respectively.

additional edges.

Tables 3.6 and 3.7 present the results summary (similar to Tables 3.4 and 3.5) of the
Erdos-Renyi topologies using Algorithms 3.3 and 3.4, respectively. For these instances, the
complete Pareto frontier was obtained only when c = 2 critical nodes were considered (using
Algorithm 3.4). Moreover, we observe that the number of Pareto optimal solutions obtained
decreases with the increase of the number of nodes |N |. This fact gives us an indication that
the partial Pareto frontier obtained tends to be more incomplete with the increase of the
number of nodes of the input topology.

Next, Tables 3.8 and 3.9 present the results summary of the Watts-Strogatz small-world
topologies using Algorithms 3.3 and 3.4, respectively. The computational results obtained
with the Watts-Strogatz topologies are similar to the Erdos-Renyi topologies previously pre-
sented, with the main difference that Algorithm 3.4 is able to compute complete Pareto
frontiers for c = 3 critical nodes with |N | ≤ 100.

Regarding both algorithms, for the largest topologies (i.e., when |N | = 120), the results
show that: on one hand, Algorithm 3.3 is barely able to compute any Pareto optimal solutions
(besides the trivial one); on the other hand, Algorithm 3.4 is only able to compute solutions
for c ∈ {2, 3} (due to the 2 hours runtime limit constraint imposed to the preprocessing
procedure of this algorithm). Therefore, although both algorithms have pros and cons when
applied to topologies with |N | ≤ 100, for larger topologies, the proposed methodology is not
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Table 3.6: Erdos-Renyi results summary, i.e., number of Pareto optimal solutions obtained
and the total runtime used to get those solutions using Algorithm 3.3 (row generation).

|N | c 2 3 4 5

80
No. Pareto points 5 7 7 5

Runtime 1:17:51 2:17:58 2:56:10 4:45:46

100
No. Pareto points 4 5 4 3

Runtime 0:09:49 1:03:29 2:38:42 4:56:10

120
No. Pareto points 3 2 1 3

Runtime 1:18:10 0:41:31 0:16:41 3:00:39

Table 3.7: Erdos-Renyi results summary, i.e., number of Pareto optimal solutions obtained and
the total runtime used to get those solutions using Algorithm 3.4 (components separation).

|N | c 2 3 4 5

80
No. Pareto points 5 7 9 0

Runtime 0:01:13 0:03:20 0:18:35 -

100
No. Pareto points 5 7 7 0

Runtime 0:07:19 0:24:56 0:44:20 -

120
No. Pareto points 4 5 0 0

Runtime 0:21:26 0:26:33 - -

Table 3.8: Watts-Strogatz results summary, i.e., number of Pareto optimal solutions obtained
and the total runtime used to get those solutions using Algorithm 3.3 (row generation).

|N | c 2 3 4 5

80
No. Pareto points 2 2 5 3

Runtime 0:01:27 0:10:22 0:59:09 0:28:01

100
No. Pareto points 2 3 4 4

Runtime 0:18:02 1:27:28 2:58:45 2:55:03

120
No. Pareto points 2 2 2 1

Runtime 0:45:46 1:55:36 0:54:06 0:54:33

effective to compute the Pareto frontier.

Finally, Table 3.10 presents the results obtained using Algorithm 3.3 to the three topolo-
gies randomly generated using the Barabasi-Albert scale-free model. These results are quite
straightforward. In all instances, Algorithm 3.3 is only able to compute two Pareto optimal
solutions: the trivial solution (i.e. L1 = 0) and the optimal Pareto pair that corresponds to
adding only one new edge (i.e. L2 = 1). This algorithm cannot compute the Pareto optimal
solution with two (or more) additional edges within the runtime limit for any of the topologies
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Table 3.9: Watts-Strogatz results summary, i.e., number of Pareto optimal solutions obtained
and the total runtime used to get those solutions using Algorithm 3.4 (components separa-
tion).

|N | c 2 3 4 5

80
No. Pareto points 2 3 7 0

Runtime 0:00:50 0:16:56 2:25:38 -

100
No. Pareto points 2 4 7 0

Runtime 0:04:36 1:47:55 3:38:19 -

120
No. Pareto points 2 2 0 0

Runtime 0:19:43 0:40:28 - -

generated with the Barabasi-Albert model.

Table 3.10: Barabasi-Albert results summary, i.e., number of Pareto optimal solutions ob-
tained and the total runtime used to get those solutions using Algorithm 3.3 (row generation).

|N | c 2 3 4 5

80
No. Pareto points 2 2 2 2

Runtime 0:04:26 0:04:17 0:15:12 0:21:50

100
No. Pareto points 2 2 2 2

Runtime 0:08:25 0:42:38 0:40:23 1:37:39

120
No. Pareto points 2 2 2 2

Runtime 0:12:45 1:36:02 3:55:45 5:18:05

Moreover, we do not present the computational results using Algorithm 3.4 because this
algorithm is not able to compute any Pareto optimal solution for these topologies (besides the
trivial one). To understand the reason for this fact, consider the simplest instance (i.e., c = 2
critical nodes and the Barabasi-Albert topology with |N | = 80 nodes). When removing the
critical nodes from this topology, it results in a remaining graph with 25 distinct components.
Given that this algorithm is based on computing the partition set of all possible critical node
sets, for this specific CND solution only, the Bell number of 25 is, approximately, 4.6× 1018

(represents the cardinality of the partition set). Since Algorithm 3.4 requires to process all
components partitions, this is unworkable due to both time and memory constraints.

3.5.5 Testing the effect of increasing the number of edges

Here, for a fixed number of nodes, we present the results of testing Algorithm 3.4 (com-
ponents separation), which from the previous results is the best procedure, on graphs with
different number of edges. To perform these tests, we considered the Erdos-Renyi model with
|N | = 50 nodes and with a probability of selection of each edge of p that ranges from 0.05 to
0.11. Moreover, we have considered a fixed seed to this generation of topologies, in order to
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make each newly generated topology an upgrade of the previous one, i.e., if an edge is in the
graph generated with a given p, then it is also in all the graphs generated with higher values
for p. We tested different seeds until one of them ensured that the topology generated with
p = 0.05 was connected (and by consequence, all topologies with p > 0.05).

In Table 3.11, we present the results obtained with Algorithm 3.4 (components separation)
for each topology for c ∈ {2, 3, 4} critical nodes considering, once again, unitary costs and the
2 hour stopping criteria. In the first two lines of this table, we present each tested probability
p and the number of edges |E| of the corresponding topology. In addition to the number
of Pareto optimal solutions obtained, and the total runtime required to obtain all solutions
found, we present the robustness value (in percentage to the upper bound) of each initial
topology z1 and the robustness value of the last Pareto optimal point computed zlast. Notice
that connectivity robustness of 100% means that Algorithm 3.4 was able to compute the
complete Pareto frontier of that instance.

Table 3.11: Results summary of increasing the number of edges using the Erdos-Renyi gen-
eration model (with probability p ∈ {0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11}) and Algorithm 3.4
(components separation).

c
p 0.05 0.06 0.07 0.08 0.09 0.10 0.11

|E| 65 74 90 103 113 124 141

2

No. Pareto sol. 8 6 5 3 3 2 2

Runtime 0:00:12 0:00:09 0:00:08 0:00:06 0:00:05 0:00:04 0:00:03

z1 (%) 80.2 87.8 87.8 91.8 91.8 95.8 95.8

zlast (%) 100 100 100 100 100 100 100

3

No. Pareto sol. 9 7 6 5 5 3 2

Runtime 0:57:25 0:00:25 0:00:31 0:00:31 0:00:25 0:00:19 0:00:12

z1 (%) 59.3 68.4 79.7 87.5 87.5 91.6 95.7

zlast (%) 87.8 91.7 95.7 100 100 100 100

4

No. Pareto sol. 6 8 8 6 5 4 3

Runtime 2:02:24 2:01:26 0:04:41 0:00:54 0:00:30 0:00:22 0:01:46

z1 (%) 48.0 62.8 75.5 83.3 87.2 87.2 91.4

zlast (%) 73.0 87.3 91.5 95.7 95.7 95.7 100

Contrary to the effect of increasing the number of nodes, by increasing the number of
edges of the input topology, the algorithm performs better. This can be easily explained by
the following two related facts. By increasing the number of edges |E|, there is a tendency to
increase the robustness value of the input topology z1, and to decrease the total number of
different combinations of c critical nodes that split the network into disjoint components. This
causes a reduction in the number of Pareto optimal solutions, and therefore, the proposed
approaches require fewer iterations to obtain the Pareto frontier.
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3.6 Conclusions

In this work, we have addressed the robust network upgrade problem (RNUP) that aims
to identify a set of new edges to add to the original topology in order to increase its robustness
to simultaneous node failures. This problem is formulated as a bi-objective MILP problem
with two distinct objectives: minimizing the total cost of the new edges, and maximizing
the robustness of the resulting upgraded topology. As robustness metric, we have considered
the objective function value of the CND problem which measures the pairwise connectivity
between nodes when a set of c critical nodes are removed from the graph.

A general algorithm was presented to obtain the Pareto frontier where the robustness value
is obtained by solving an ILP problem and the selection of the new edges is obtained solving a
path formulation adapted from the bi-objective MILP problem. Since using this approach can
only solve the smallest instances, we also presented an alternative formulation by modeling
the selection of edges as a set covering problem. As the number of cover inequalities increases
exponentially with the size of the instance, we proposed two algorithms to select the cover
inequalities. One is a row generation algorithm that iteratively selects cover inequalities,
and the other is a components separation algorithm that selects simultaneously all the cover
inequalities that force the connection of different components in order to obtain a desire
robustness value.

The computational tests have shown that the components separation algorithm is much
more time-efficient than the row generation algorithm when it is possible to compute the
complete Pareto frontier within a reasonable running time. In the telecommunication topolo-
gies, it was possible to obtain the complete Pareto frontier for all four tested topologies with
c ∈ {2, 3} critical nodes and for the Janos-US, Cost266 and Germany50 topologies with c = 4
critical nodes. Nevertheless, the components separation algorithm has scalability issues when
considering a higher number of critical nodes. In contrast, the row generation algorithm is
able to obtain a partial Pareto frontier for a wider range of instances. For example, it was
able to compute 41 Pareto optimal solutions considering the Coronet topology with c = 6
critical nodes.

Finally, although both algorithms have advantages and disadvantages, when considering
input topologies with larger sizes (more than 100 nodes), both algorithms present scalability
issues. In this work, we have addressed the RNUP with exact procedures. For larger graphs,
heuristic approaches have to be considered, aiming to obtain an approximation of the Pareto
frontier.
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Chapter 4

Provision of Maximum Connectivity Resiliency

with Minimum Cost to Telecommunication

Networks through Third-Party Networks

Abstract: In telecommunication networks, full connectivity resilience to multiple link fail-
ures is too costly as it requires a network topology with too many redundant links. Alterna-
tively, the connectivity resilience of a telecommunications network can be improved resorting
to available third-party networks for temporary additional connectivity until the failing links
are restored. In this approach, some nodes of the network must be selected in advance to act
as gateway nodes to the third-party networks when a multiple link failure event occurs. For a
given network topology and a cost associated to each node to turn it into a gateway node, the
aim is to select the gateway nodes providing maximum connectivity resilience at minimum
cost. So, the Gateway Node Selection is defined as a bi-objective optimization problem such
that its Pareto-optimal solutions represent different trade-offs between cost and connectivity
resilience improvement. In this work, the connectivity resilience is modeled by the Critical
Link Detection optimization problem. An exact optimization algorithm is proposed, based
on a row generation algorithm and on set cover cuts. The computational results demonstrate
the effectiveness of the proposed algorithm on four well-known telecommunication network
topologies.

Keywords: Connectivity Resilience, Critical Link Detection, Gateway Node Selection, Bi-
objective optimization, Pareto frontier, Telecommunication networks

F. Barbosa, A. de Sousa, and A. Agra. Provision of Maximum Connectivity Resiliency with Minimum Cost to
Telecommunication Networks through Third-Party Networks. Submitted to: Networks, 2021.
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4.1. Introduction

4.1 Introduction

In the context of telecommunications networks, the resilience to failures is defined as the
capacity of the network to maintain as much as possible its services in a failure scenario. In
terms of connectivity, current telecommunication networks are fully resilient to single link
failures. However, large-scale failures are becoming a serious concern to operators due to
different reasons, as natural disasters [GTE+16] or malicious human activities [FWG+16].
In the latter case, evidence is growing that such activities are associated with social, po-
litical, economic and cultural conflicts [GSM+11]. Nowadays, telecommunication networks
resort to optical infrastructures which are unprotected against several physical-layer attacks
[SKFZW16]. Particularly, link cuts are a straightforward attack method on the network
physical-layer that can severely disrupt the supported services.

The impact of multiple link failures in telecommunication networks has been considered in
different contexts in the literature. In [RSM03, ZZM06], the capacity of different protection
schemes in providing resilience to multiple random link failures is accessed in the context
of optical networks based on wavelength division multiplexing. More recently, the backup
network design against multiple random link failures has been addressed in [HHSO20, JLM15]
where some capacity on the different network links is reserved to act as a backup capacity to
be used only in case of multiple link failures.

In [JH13, YW11], multiple link failures are modeled as shared risk link groups (i.e., groups
of links with high probability of simultaneous failure). The typical example is when multiple
links share a single duct and, thus, the unattended cut of the duct makes all links to be simul-
taneously cut. In [GTE+16, NGGGS18, TRVG17], simultaneous link failures are modeled in
the context of natural disasters. In those works, there exists correlation between the failing
links. Concerning uncorrelated failures, protecting telecommunication networks against dual
link failures has been addressed in several works [BLL+12, GSB16, LT11, RC08]. Further-
more, malicious human activities scenarios, where more than two simultaneous uncorrelated
failures can easily occur in a telecommunication network, has only been considered in very
few works [DXT+12, NdSWF18, YHG+17].

In the perspective of the telecommunication network operator, achieving full connectivity
resilience against multiple link failures is, in practice, impossible since it requires too many
physical links, which would be too expensive to install and operate. Alternatively, aiming
to improve the connectivity resilience against such failures, operators resort to solutions that
search for a trade-off between cost and resilience gains. The common emergency packet
transport network proposed in [XYS+17] for disaster recovery is one of such examples. In
that proposal, a third-party entity builds an emergency network with the surviving resources
of multiple network operators (affected by a regional disaster) that can be jointly used by
them. The emergency network is built in several steps to avoid confidential information
leakage between telecommunication network operators.

In [BdSA20], the network upgrade problem is addressed, and it aims to identify a set
of new links (within a given budget) to add to the network topology aiming to maximize
its network resilience against multiple node failures (measured resorting to a Critical Node
Detection problem). Here, instead of improving the network resilience to multiple failures
with new physical links, we follow the proposal of [dS20] which resorts to a third-party entity
that provides temporary virtual links (when a multiple failure occurs).
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The approach is as follows. Consider a telecommunication operator of a network deployed
on a geographical region where other networks (of other operators) coexist. In a multiple
link failure scenario, in order to obtain temporary connectivity between some network nodes
(while the failing links are not reestablished), the operator resorts to those third-party net-
works available in that region. With this approach, some nodes of one network must be
selected to act as gateway nodes to third-party networks. The business relation between
network operators can be one-way (the third-party operator charges the temporary connec-
tivity provided when needed) or two-way (each operator provides the temporary connectivity
when needed by the other), which could eliminate the service costs charged between operators
depending on their Service Level Agreement (SLA).

Consider a given positive integer l representing the number of simultaneous link failures
for which the network operator aims to improve the resilience of its network. Consider also
a connectivity weight assigned to each pair of network nodes representing the importance of
the connectivity between the node pair (such weights can be defined by the traffic demand
between the nodes, the number of interconnected users, etc). The connectivity resilience
of the network is assumed to be the minimum total weight of the node pairs that can still
communicate after any set of l simultaneous link failures. The connectivity resilience value is
obtained by solving the Critical Link Detection (CLD) optimization problem, whose optimal
solution identifies a set of l critical links [dSS20].

For a given network topology, the Gateway Node Selection (GNS) is a bi-objective opti-
mization problem that aims to compute different optimal trade-off solutions between the total
cost of the selected gateway nodes to a third-party network and the connectivity resilience
gains provides by those gateway nodes. In the GNS problem, instead of assigning costs to
the candidate links as in [BdSA20], the costs are assigned to the network nodes that can
act as gateway nodes to the third-party network. In order to compute all Pareto-optimal
solutions of the GNS problem, an exact optimization algorithm is proposed, based on a row
generation algorithm and on set cover cuts. Dealing with bi-objective optimization problems
and developing algorithms to identify the Pareto-optimal solutions has been investigated also
in other telecommunication network contexts, as in [BBH+17, LGZ+15]. In order to evaluate
the proposed algorithm, we present computational results demonstrating its effectiveness on
four well-known telecommunication network topologies.

Finally, the edge-connectivity augmentation problem [ET76, Nag04], a widely known prob-
lem in graph theory, is related to the one that we are addressing in this work. Its objective
is to obtain the minimum number of new edges to be added to a given graph so that the
edge-connectivity (i.e., the minimum number of edges whose removal disconnects the graph)
of the augmented graph increases to a given target value. Note that, although adding a
single edge (in the edge-augmentation connectivity problem) is equivalent to selecting its 2
end-nodes as gateway nodes (in the GNS problem), this is not true when multiple edges are
added (for example, adding two edges is different from selecting their end-nodes as gateway
nodes since in the latter case, there is full connectivity between all 4 nodes in the third-party
network, and not just between 2 pairs of nodes). On the other hand, regarding its com-
plexity, the edge-connectivity augmentation problem has been solved with polynomial-time
algorithms [BK00, WN87], while the GNS problem is NP-hard (this can be easily proved since
the CLD subproblem itself is NP-complete [SNXT13]).

The original contributions of this paper can be summarized as follows:
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� the Gateway Node Selection (GNS) problem is proposed and modeled as a bi-objective
optimization;

� a general GNS algorithm is introduced aiming to obtain the complete Pareto frontier;

� the Critical Link Detection (CLD) optimization problem, used in this work as a sub-
problem of the main bi-objective GNS problem, is adapted to a scenario where a subset
of nodes are selected as gateway nodes;

� a set cover model is developed to optimally solve the subproblem of selecting a set of
gateway nodes with a given connectivity resilience threshold;

� a row generation algorithm, based on a lower dimensional set cover model, is proposed
to compute all Pareto-optimal solutions;

� the proposed methodology is extended to the case that multiple third-party networks
are available to the telecommunications operator;

� extensive computational results on 4 different telecommunications topologies are re-
ported, considering different parameters and both single third-party and multiple third-
parties cases, showing the applicability of the proposed algorithms.

The paper is organized as follows. In Section 4.2, we describe the GNS problem as a
bi-objective optimization problem, presenting a general algorithm framework to compute its
Pareto frontier. The same section also describes how the connectivity resilience of a given
network topology is evaluated (resorting to the CLD optimization problem, with a given set of
gateway nodes to a third-party network), and presents a set cover model to obtain the minimal
cost gateway node set for a given connectivity resilience threshold. Then, in Section 4.3,
we propose an efficient exact optimization algorithm for the GNS problem, based on a row
generation algorithm that resorts to a lower dimensional set cover model. Section 4.4 describes
how the previous algorithm is extended for the case when multiple third-party networks are
available. The computational results are presented and discussed in Section 4.5 highlighting
the importance to the network operator of the trade-off solutions provided by the algorithm.
Finally, Section 4.6 summarizes the main conclusions of the work.

4.2 Gateway node selection problem

Consider the network defined by an undirected graph G = (N,E), where N = {1, ..., n}
and E ⊆ {{i, j} : i, j ∈ N, i < j} represent the sets of nodes and links, respectively. Moreover,
consider N1 ⊆ N as the subset of all possible nodes that can act as gateway nodes to the
third-party network and let ci > 0, for each i ∈ N1, represent the cost of turning node i into
a gateway node.

The Gateway Node Selection (GNS) problem aims to compute the minimum cost set of
gateway nodes to the third-party network with maximum connectivity resilience. To better
understand the GNS problem, consider the example illustrated in Figure 4.1.

Figure 4.1(a) represents a given telecommunication network with a third-party network
available whose connectivity weights are unitary for all node pairs. Moreover, consider that
the 5 nodes in black can be used as gateway nodes to this third-party network. Without
resorting to the additional connectivity provided by the third-party network, the l = 3 critical
links (highlighted in dashed red in Figure 4.1(a)) split the network into one component of 4
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(a) Candidate gateway nodes highlighted. (b) Configuration with 2 gateway nodes.

(c) Configuration with 3 gateway nodes.

Figure 4.1: Illustration of a third-party network, with provision of temporary virtual links
between the gateway nodes for the simultaneous failure of 3 links (highlighted in dashed red).

nodes and another of 8 nodes (with a total pairwise connectivity of 34).

In Figure 4.1(b), two gateway nodes are selected so that if the previous critical links
fail, the two network components can be connected through the third-party network. In this
solution, the resulting set of critical links, highlighted in dashed red in Figure 4.1(b), can
only split the network into two components of 2 and 10 nodes, respectively (with a total
connectivity of 46). Finally, in Figure 4.1(c), three gateway nodes are selected and, in this
solution, the resulting set of critical links can only isolate one node from all other nodes (with
a total connectivity of 55).

As illustrated in the example, we obtain different trade-offs between the cost of selecting
gateway nodes and the connectivity resiliency gains provided by that selection showing that
minimizing cost and maximizing connectivity resiliency are conflicting objectives. To address
this problem, we first model the GNS problem as a bi-objective optimization problem and
then, we present a general algorithm framework to compute the complete Pareto frontier to
the GNS problem.

4.2.1 Bi-objective optimization model

Initially, consider that, for each node i ∈ N1, the binary decision variable xi is 1 if node
i is selected as a gateway node, and 0 otherwise. The GNS problem can be modeled as the
following bi-objective optimization problem:

min B :=
∑
i∈N1

cixi (4.1)

max z := CLD({i ∈ N1 : xi = 1}) (4.2)

s.t. xi ∈ {0, 1}, i ∈ N1. (4.3)
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There are two objectives: objective function (4.1) is the minimization of the total cost B
of the selected set of gateway nodes and objective function (4.2) is the maximization of the
connectivity resilience to up to l simultaneous link failures z, as provided by CLD problem,
with the selected set of gateway nodes M = {i ∈ N1 : xi = 1}, i.e., notation CLD(M)
represents the connectivity resilience value of considering M as the selected set of gateway
nodes.

In this bi-objective optimization problem, a given solution with a cost B and a connectivity
resilience z is a Pareto-optimal solution if it is better than any other solution in at least
one of its values (i.e., either lower on its cost B or higher on its connectivity resilience
z). So, computing the Pareto frontier to the GNS problem provides multiple solutions with
different trade-offs between the two objective functions and the decision-maker can correctly
identify the connectivity resilience improvement obtained by each possible investment (i.e.,
each different cost value of all Pareto-optimal solutions).

4.2.2 A general GNS algorithm

Here, we propose an algorithm framework to compute the complete Pareto frontier of the
GNS bi-objective optimization problem (4.1)–(4.3).

Algorithm 4.1 is a general algorithm (that will be further detailed in Section 4.3 in the
form of a row generation algorithm) to compute all Pareto-optimal solutions. Parameter
s indicates the index of each Pareto candidate solution, i.e., s ∈ {1, 2, 3, ...}. A candidate
solution s is defined by its set of gateway nodes Ms ⊆ N1 and the associated pair of solution
values (Bs, zs).

Algorithm 4.1 General algorithm for GNS

1: s← 1
2: (Bs, zs)←

(
0,CLD(∅)

)
3: while zs < CLD(N1) do
4: s← s+ 1
5: Compute gateway node set Ms ⊆ N1 such that

∑
i∈Ms

ci is minimized and CLD(Ms) >
zs−1

6: (Bs, zs)←
(∑

i∈Ms
ci, CLD(Ms)

)
7: end while

The algorithm starts (lines 1–2) by computing the first Pareto-optimal solution s = 1
which is the solution without gateway nodes whose values are (0,CLD(∅)).

Then, in each iteration of the while loop (lines 3–7), a new pair (Bs, zs) is obtained that
strictly increases the resilience value (line 5), i.e., zs > zs−1. The while loop ends when the
upper bound of the CLD problem is reached, i.e., when the resilience value zs of the current
solution s has the same resilience value as selecting all nodes of set N1 as gateway nodes,
which is the optimal value CLD(N1).

Remark 4.2.1. At the end of Algorithm 4.1, the obtained solutions s ∈ {1, 2, 3, ...} include
all Pareto-optimal solutions. However, some of these solutions might be non Pareto-optimal:
although the resilience value strictly increases from one solution to the next one in the while
cycle (line 5), it is possible that the 2 solutions have the same cost value, i.e., Bs = Bs−1 for
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some index s. When this happens, the solution with index s−1 is not Pareto-optimal and is
excluded from the Pareto frontier.

In line 5 of Algorithm 4.1, a minimal cost set of gateway nodes Ms must be computed
such that its resilience value CLD(Ms) is strictly higher than the previous value zs−1. In
the next subsections, we first present a compact model to evaluate the connectivity resilience,
and then we propose a set cover model to optimally select each set Ms.

4.2.3 Connectivity resilience evaluation

Given a subset of network nodes selected as gateway nodes, in this subsection, we discuss
how to evaluate the connectivity resilience to multiple link failures.

Let wij > 0 be the connectivity weight of node pair i, j ∈ N, i < j, which represents the
importance to the network operator of the connectivity between nodes i and j. Moreover,
consider a given positive integer l representing the number of simultaneous link failures for
which the network operator aims to improve the resilience of its network.

The network connectivity resilience for l simultaneous link failures is defined as the min-
imum total weight of all node pairs that can communicate whatever set of l links fails. The
connectivity resilience is given by the optimal solution of the Critical Link Detection (CLD)
optimization problem.

Additionally, consider that this network has a set of gateway nodes M ⊆ N connected to a
third-party network. Let GM represent the augmented graph obtained by adding to graph G
one extra link per pair of gateway nodes, i.e., GM = (N,EM ), where EM = E∪{{i, j} : i, j ∈
M, i < j}. Additionally, we assume that these extra links never fail (since they represent the
virtual links provided by the third-party operator).

Finally, consider the following two sets of decision variables: for each link {i, j} ∈ E,
variable vij is 1 if {i, j} is selected as a critical link, and 0 otherwise; and, for each node pair
i, j ∈ N, i < j, variable uij is 1 if nodes i and j can communicate (i.e., if exists a path between
nodes i and j on the augmented graph GM without the critical links), and 0 otherwise.

Therefore, the CLD problem is defined by the following mixed integer linear programming
(MILP) model:

min z :=
∑

i,j∈N,i<j
wijuij (4.4)

s.t.
∑
{i,j}∈E

vij ≤ l, (4.5)

uij + vij ≥ 1, {i, j} ∈ EM , (4.6)

uij ≥ u{ik} + u{jk} − 1, i, j ∈ N, i < j, k ∈ NM
ij , (4.7)

vij = 0, i, j ∈M, i < j, (4.8)

vij ∈ {0, 1}, {i, j} ∈ E, (4.9)

uij ≥ 0, i, j ∈ N, i < j. (4.10)

The objective function (4.4) is the minimization of the connectivity resilience of the so-
lution defined as the total weight of the node pairs that can communicate in the surviving
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network. Note that, if the connectivity weights are set as unitary, the connectivity resilience
z measures the minimum number of node pairs that can still communicate in any failure of
at most l links.

Constraint (4.5) guarantees that the number of critical links is not higher than l. Con-
straints (4.6) ensure that the end-nodes of a link (either from the network itself or a virtual
link provided by the third-party network) {i, j} ∈ EM can communicate if the link is not
critical (i.e., if vij = 0).

Constraints (4.7) guarantee that each pair of nodes i, j ∈ N , with i < j, can communicate
if there is a third node k such that k can communicate with both i and j. In these inequalities,
the notation u{st} represents variable ust if s < t, or variable uts otherwise. To obtain the
minimum number of such constraints, it is enough to consider k as the neighbor nodes of
either i or j. Thus, set NM

ij represents the set of neighbor nodes of node i, if node i has a

lower degree than node j on the augmented graph GM , or node j otherwise. If nodes i and
j are neighbors (i.e., if {i, j} ∈ EM ), they are excluded from NM

ij .

In constraints (4.8), we set all temporary virtual links {i, j}, with i, j ∈M, i < j, to non-
critical links (because these links are provided by the available third-party network). Finally,
constraints (4.9)–(4.10) are the variable domain constraints. Notice that variables uij are set
to real non-negative values since they assume binary values in any optimal solution.

The connectivity resilience of the network, with the given set of gateway nodes M , is the
optimal solution value z of the CLD model (4.4)–(4.10). Notation CLD(M) represents the
optimal value of this MILP model. Finally, note that CLD(∅) represents the connectivity
resilience of the network without gateway nodes to a third-party network.

4.2.4 Set cover model

Here, we propose an ILP model, based on set cover constraints, to optimally select the
set of gateway nodes Ms such that CLD(Ms) > zs−1 (line 5 of Algorithm 4.1).

First, consider that, for a given set of gateway nodes M ⊆ N1, the set of critical links
E′ is provided by the optimal solution of CLD(M). Then, let C1, ..., Cm ⊂ N represent the
disjoint connected components of the augmented graph GM without the set of critical links
E′. We denote by γ(M) the set of these components, i.e., γ(M) = {C1, ..., Cm}. Additionally,
we denote by EM the set of node pairs of N1 that belong to different components of γ(M).

Then, for a given connectivity resilience threshold zs−1, we define:

Γ(zs−1) := {M ⊆ N1 : CLD(M) ≤ zs−1} (4.11)

i.e., Γ(zs−1) represents all the GNS solutions whose connectivity resilience value is not higher
than the threshold.

In order to compute a minimal cost set of gateway nodes Ms such that its resilience value
CLD(Ms) is strictly higher than zs−1, we introduce the following ILP model:
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min
∑
i∈N1

cixi (4.12)

s.t.
∑

{i,j}∈EM

yij ≥ 1, M ∈ Γ(zs−1), (4.13)

yij ≤ xi, {i, j} ∈ EM , M ∈ Γ(zs−1), (4.14)

yij ≤ xj , {i, j} ∈ EM , M ∈ Γ(zs−1), (4.15)

xi + xj ≤ 1 + yij , {i, j} ∈ EM , M ∈ Γ(zs−1), (4.16)

xi ∈ {0, 1}, i ∈ N1, (4.17)

yij ∈ {0, 1}, {i, j} ∈ EM . (4.18)

where xi is a binary variable indicating whether node i ∈ N1 is selected or not and variables
yij indicate whether a link between i and j is established or not.

The objective function (4.12) is the minimization of the total cost of the selected gateway
nodes. For each set of gateway nodes M ∈ Γ(zs−1), constraints (4.13) impose at least an
additional link between a pair of gateway nodes linking two components in the corresponding
augmented graph GM (without the set of critical links E′). Constraints (4.14)–(4.15) ensure
that if a link between two gateway nodes is established, then the two gateway nodes are
selected.

Constraints (4.16) ensure that if two gateway nodes are selected a link between them
must be considered. These inequalities are necessary to model correctly the solutions but are
always satisfied by any optimal solution of the model obtained by discarding these constraints.
Thus, henceforward, constraints (4.16) will not be considered as part of this model.

Finally, constraints (4.17)–(4.18) represent the variable domain constraints.

Remark 4.2.2. Since by definition of gateway nodes, all nodes of M are connected to each
other in the augmented graph GM , and since it is assumed that those links never fail, all nodes
of a set of gateway nodes M belong to the same connected component of the augmented graph
GM without the optimal set of critical links.

Remark 4.2.3. For simplicity, we considered that CLD(M) has a single optimal solution.
In the case that this optimization problem has alternative optimal solutions, γ(M) represents
the union of all sets of components (associated to each alternative solution) and, similarly,
EM represents the union of all sets of node pairs of N1 that belong to different components
for each optimal set of critical links E′ (associated to each alternative solution).

Although this set cover model optimally solves the GNS problem, on our preliminary
computational results, model (4.12)–(4.18) prove to be inefficient to compute the complete
Pareto frontier (even when an approach such as row generation is considered). Thus, in the
next section of this paper, we deduce a lower dimensional set cover model that proved to be
considerably better than the previous one.
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4.3 Solution approach to the GNS problem

In this section, we proposed an efficient row generation algorithm, based on an alternative
set cover model, in order to solve the GNS problem previously proposed. First, a lower
dimensional set cover model is deduced resorting to the Fourier-Motzkin elimination [Sch98],
and then, we propose a row generation algorithm to compute its Pareto frontier (i.e., its
complete set of Pareto-optimal solutions).

4.3.1 A lower dimensional set cover model

Here, our goal is to derive an alternative cover model using only variables xi (i.e., elim-
inating all variables yij). For a given set of gateway nodes M ∈ Γ(zs−1), suppose that we
intend to eliminate variable yst associated to {s, t} ∈ EM . By rewriting the corresponding
inequalities (4.13)–(4.15), we obtain:

1 −
∑

{i,j}∈EM\{s,t}

yij ≤ yst ≤ min{xs, xt} (4.19)

Variables yst can be eliminated, using the Fourier-Motzkin elimination, by combining this
lower bound of yst with both upper bounds. The following two inequalities are obtained:

xs +
∑

{i,j}∈EM\{s,t}

yij ≥ 1 and xt +
∑

{i,j}∈EM\{s,t}

yij ≥ 1 (4.20)

These two inequalities can be rewritten in a more compact way as follows:

astxs + (1− ast)xt +
∑

{i,j}∈EM\{s,t}

yij ≥ 1, with ast ∈ {0, 1}, (4.21)

When ast = 1, we obtain the inequality with variable xs, and when ast = 0, we obtain
the inequality with variable xt. Repeating the elimination process for a subset of variables yij
with {i, j} ∈ F, where F ⊆ EM , we obtain∑
{i,j}∈F

(
aijxi + (1− aij)xj

)
+

∑
{i,j}∈EM\F

yij ≥ 1, aij ∈ {0, 1} for all {i, j} ∈ F. (4.22)

Additionally, these inequalities must be iteratively combined with yij ≤ xi and yij ≤ xj for
all {i, j} ∈ F.

The next theorem presents the cover ILP model obtain by using this Fourier-Motzkin
elimination procedure for all variables yij , i.e., for all {i, j} ∈ EM .

Theorem 4.3.1. Projecting out variables yij we obtain the model:

min
∑
i∈N1

cixi (4.23)

s.t.
∑

{i,j}∈EM

(
aijxi + (1− aij)xj

)
≥ 1, aij ∈ {0, 1} for all {i, j}∈EM , M ∈Γ(zs−1), (4.24)

xi ∈ {0, 1}, i ∈ N1. (4.25)
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Proof. Using the Fourier-Motzkin elimination to project out variables yij , inequalities (4.24)
result directly from inequalities (4.13)–(4.15). Inequalities (4.14)–(4.15) imply xi ≤ 1, which
are dominated by the domain inequalities (4.17), and therefore, omitted.

For each set of gateway nodes M ∈ Γ(zs−1), we obtain a model with 2|EM | constraints
(4.24). Each one of these constraints can be rewritten as follows:∑

i∈N1

kixi ≥ 1, where ki =
∑

j∈N1:{i,j}∈EM

aij +
∑

j∈N1:{j,i}∈EM

(1− aji) for each i ∈ N1. (4.26)

Notice that, with these parameters, we deduce that, for each i ∈ N1, ki ∈ {0, . . . , δi}, and
that

∑
i∈N1

ki = |EM |, where δi is the degree of node i in graph (N1, EM ).

Let σ(ki) = 1, if ki ≥ 1, and σ(ki) = 0 otherwise. Considering the domain constraints
(4.25), a (feasible) solution satisfies (4.26) if and only if it satisfies∑

i∈N1

σ(ki)xi ≥ 1, where ki =
∑

j∈N1:{i,j}∈EM

aij +
∑

j∈N1:{j,i}∈EM

(1− aji) for each i ∈ N1. (4.27)

As
∑

i∈N1
kixi ≥

∑
i∈N1

σ(ki)xi ≥ 1, inequalities (4.26) are dominated by (4.27). There-
fore, a tighter model is obtained using the cover-type inequalities (4.27) instead of inequalities
(4.26).

A deeper look into the cover-type inequalities shows that some of these inequalities are
redundant and can be eliminated. Observe that, for instance, if R1 ⊂ R2 ⊆ N1 inequality∑

i∈R1
xi ≥ 1 implies inequality

∑
i∈R2

xi ≥ 1, and therefore the latter inequality can be
eliminated as it is dominated.

To find the non-dominated inequalities, let N1 be partitioned as {S1, . . . , Sm}, where St
is the set of nodes in N1 belonging to component Ct (i.e., St = N1 ∩ Ct). Then, we have the
following lemma:

Lemma 4.3.2. If σ(ki) = 0 for some i ∈ St, then σ(kj) = 1 for all j ∈ N1 \ St.

Proof. If σ(ki) = 0 then ki = 0. Thus, aij = 0 for all j ∈ N1 : {i, j} ∈ EM and aji = 1 for
all j ∈ N1 : {j, i} ∈ EM (node j is selected to the cover inequality in both cases). As node i
is in component Ct, it must be connected with all nodes in N1 outside C1, which means that
kj ≥ 1 for all j ∈ N1 \ St.

Lemma 4.3.2 shows that only coefficients in one component can be null. Now, we can
observe that constraints (4.27) with σ(ki) = 0 for all i ∈ Ct do exist, since the constraint
(4.27) exists with ki = 0 for all i ∈ St. Hence, the set of non-dominated constraints is given
by: ∑

i∈N1\C

xi ≥ 1, C ∈ γ(M), M ∈ Γ(zs−1). (4.28)
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For completeness, we present the resulting covering model, represented as Cover(zs−1),
which includes only the non-dominated constraints:

min
∑
i∈N1

cixi (4.29)

s.t.
∑

i∈N1\C

xi ≥ 1, C ∈ γ(M), M ∈ Γ(zs−1), (4.30)

xi ∈ {0, 1}, i ∈ N1. (4.31)

The objective function (4.29) is the minimization of the total cost of the selected gateway
nodes. Constraints (4.30) represent a set of cover cuts for each set of gateway nodes M ⊆ N1

with connectivity resilience not higher than the threshold zs−1, i.e., each M ∈ Γ(zs−1). More-
over, each set of cover cuts include one constraint for each component in the corresponding
augmented graph GM without their set of critical links, i.e., each C ∈ γ(M). Finally, each
constraint (4.30) guarantees that, for each disjoint connected component C ∈ γ(M), a gate-
way node i belonging to N1 is selected in the complement node set N1\C. This is a necessary
and sufficient condition to guarantee that the resilience value of the solution is strictly higher
than zs−1. Finally, constraints (4.31) are the variable domain constraints.

The following example gives a better understanding on how model (4.29)–(4.31) can be
deduced from (4.12)–(4.18).

Example 4.3.3. Consider a graph G = (N,E) and a set of candidate gateway nodes
N1 = {1, 2, 3, 4, 5} ⊆ N . Given a set of gateway nodes M , suppose that C1, C2 and C3

represent all disjoint connected components of the graph GM without its optimal critical
links. Additionally, suppose that these components are such that {1, 2} ⊂ C1, {3, 4} ⊂ C2

and {5} ⊂ C3. Then, the set of node pairs of N1 that belong to different components is
defined by EM = {{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {4, 5}}.

Figure 4.2: Illustration of the components separation of graph GM without its optimal critical
links (left), and representation of graph (N1, EM ) (right).
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First, model (4.12)–(4.18) is given by:

min c1x1 + c2x2 + c3x3 + c4x4 + c5x5

s.t. y13 + y14 + y15 + y23 + y24 + y25 + y34 + y35 ≥ 1,

y13 ≤ x1, y14 ≤ x1, y15 ≤ x1, y23 ≤ x2, y24 ≤ x2, y25 ≤ x2, y35 ≤ x3, y45 ≤ x4,

y13 ≤ x3, y14 ≤ x4, y15 ≤ x5, y23 ≤ x3, y34 ≤ x4, y25 ≤ x5, y35 ≤ x5, y45 ≤ x5,

x1, x2, x3, x4, x5 ∈ {0, 1},
y13, y14, y15, y23, y24, y25, y35, y45 ∈ {0, 1}.

In order to remove variable y13, by rearranging the inequalities that involve this variable,
we obtain:

1− (y14 + y15 + y23 + y24 + y25 + y34 + y35) ≤ y13 ≤ min{x1, x3}

Using the Fourier-Motzkin elimination to eliminate variable y13 from the model, we have:

min c1x1 + c2x2 + c3x3 + c4x4 + c5x5

s.t. x1 + y14 + y15 + y23 + y24 + y25 + y34 + y35 ≥ 1,

x3 + y14 + y15 + y23 + y24 + y25 + y34 + y35 ≥ 1,

y14 ≤ x1, y15 ≤ x1, y23 ≤ x2, y24 ≤ x2, y25 ≤ x2, y35 ≤ x3, y45 ≤ x4,

y14 ≤ x4, y15 ≤ x5, y23 ≤ x3, y34 ≤ x4, y25 ≤ x5, y35 ≤ x5, y45 ≤ x5,

x1, x2, x3, x4, x5 ∈ {0, 1},
y14, y15, y23, y24, y25, y35, y45 ∈ {0, 1}.

Similarly, by eliminating variable y14 from the model, we obtain:

min c1x1 + c2x2 + c3x3 + c4x4 + c5x5

s.t. 2x1 + y15 + y23 + y24 + y25 + y34 + y35 ≥ 1,

x1 + x4 + y15 + y23 + y24 + y25 + y34 + y35 ≥ 1,

x1 + x3 + y15 + y23 + y24 + y25 + y34 + y35 ≥ 1,

x3 + x4 + y15 + y23 + y24 + y25 + y34 + y35 ≥ 1,

y15 ≤ x1, y23 ≤ x2, y24 ≤ x2, y25 ≤ x2, y35 ≤ x3, y45 ≤ x4,

y15 ≤ x5, y23 ≤ x3, y34 ≤ x4, y25 ≤ x5, y35 ≤ x5, y45 ≤ x5,

x1, x2, x3, x4, x5 ∈ {0, 1},
y15, y23, y24, y25, y35, y45 ∈ {0, 1}.

Projecting out all variables yij using the Fourier-Motzkin elimination, we obtain the fol-
lowing cover model, where all inequalities are written with the proposed compact notation.

min c1x1 + c2x2 + c3x3 + c4x4 + c5x5

s.t. a13x1 + (1− a13)x3 + a14x1 + (1− a14)x4 + a15x1 + (1− a15)x5 + a23x2

+ (1− a23)x3 + a24x2 + (1− a24)x4 + a25x2 + (1− a25)x5 + a35x3 + (1− a35)

+ x5 + a45x4 + (1− a45)x5 ≥ 1

for all a13, a14, a15, a23, a24, a25, a35, a45 ∈ {0, 1},
x1, x2, x3, x4, x5 ∈ {0, 1}.
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By rearranging the set of constraints and using the σ function previously defined on the
coefficients of each xi, we obtain the following set cover model with constraints (4.27):

min c1x1 + c2x2 + c3x3 + c4x4 + c5x5

s.t. σ(a13 + a14 + a15)x1 + σ(a23 + a24 + a25)x2

+ σ((1− a13) + (1− a23) + a34)x3 + σ((1− a14) + (1− a24) + a45)x4

+ σ((1− a15) + (1− a25) + (1− a35) + (1− a45))x5 ≥ 1

for all a13, a14, a15, a23, a24, a25, a35, a45 ∈ {0, 1},
x1, x2, x3, x4, x5 ∈ {0, 1}.

The coefficients ki, defined in (4.26), of each node i ∈ N1 are given by: k1 = a13+a14+a15,
k2 = a23 + a24 + a25, k3 = (1 − a13) + (1 − a23) + a34, k4 = (1 − a14) + (1 − a24) + a45, and
k5 = (1−a15)+(1−a25)+(1−a35)+(1−a45). Notice that there exists a subset of constraints
(4.27) such that ki ≥ 1 (i.e., σ(ki) = 1) for all i ∈ N1. Each one of these, when simplified
with the σ function, is simply the inequality x1 + x2 + x3 + x4 + x5 ≥ 1.

All the remaining constraint are such that exists (at least one) i ∈ N1 such that ki = 0
(i.e. σ(i) = 0). For example, if k1 = 0, then a13 = a14 = a15 = 0, which means that σ(k3) =
σ(k4) = σ(k5) = 1. We obtain the set of constraints σ(a23 + a24 + a25)x2 + x3 + x4 + x5 ≥ 1,
for all a23, a24, a25 ∈ {0, 1}. Using this process for each i ∈ N1, we obtain the following model:

min c1x1 + c2x2 + c3x3 + c4x4 + c5x5

s.t. x1 + x2 + x3 + x4 + x5 ≥ 1,

σ(a23 + a24 + a25)x2 + x3 + x4 + x5 ≥ 1, ∀a23, a24, a25 ∈ {0, 1},
σ(a13 + a14 + a15)x1 + x3 + x4 + x5 ≥ 1, ∀a13, a14, a15 ∈ {0, 1},
x1 + x2 + σ((1− a14) + (1− a24) + a45)x4 + x5 ≥ 1, ∀a14, a24, a45 ∈ {0, 1},
x1 + x2 + σ((1− a13) + (1− a23) + a35)x3 + x5 ≥ 1, ∀a13, a23, a35 ∈ {0, 1},
x1 + x2 + x3 + x4 ≥ 1,

x1, x2, x3, x4, x5 ∈ {0, 1}.

In some inequalities of this model, some coefficients σ() can still be either 0 or 1 according
to the values of parameters aij . However, the constraints with all of these coefficients at 0
are the non-dominated ones, and therefore, we can set all of these coefficients to 0. Finally,
by eliminating all redundant inequalities, we obtain the set cover model (4.29)–(4.31):

min c1x1 + c2x2 + c3x3 + c4x4 + c5x5

s.t. x3 + x4 + x5 ≥ 1,

x1 + x2 + x5 ≥ 1,

x1 + x2 + x3 + x4 ≥ 1,

x1, x2, x3, x4, x5 ∈ {0, 1},

where each inequality corresponds to the cover constraint associated to N1\C1 = {3, 4, 5},
N1\C2 = {1, 2, 5} and N1\C3 = {1, 2, 3, 4}, respectively.

Remark 4.3.4. Note that the proposed set cover model (4.29)–(4.31) can become unfeasible.
That condition is reached when a constraint (4.30) is added for a component C ∈ γ(M) and a
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set of gateway nodes M ∈ Γ(r) such that N1\C = ∅, i.e., a constraint in the form
∑

i∈∅ xi ≥ 1
which turns the problem unfeasible. This condition is reached when all possible gateway
nodes N1 belong to the same component C, i.e., N1 ⊆ C.

Furthermore, when this condition is reached for a given threshold resilience zs, it means
that the connectivity resilience value zs is the highest possible connectivity resilience that can
be obtained with the set of possible gateway nodes N1. Therefore, this condition defines the
stopping criteria of the proposed algorithm, i.e., when zs = CLD(N1), the algorithm reaches
the last Pareto-optimal solution.

4.3.2 Row generation algorithm

The main challenge of solving Cover(zs−1) is that the total number of constraints (4.30)
increases exponentially with the increase of the connectivity resilience threshold zs−1.

Here, we use a row generation technique to solve the GNS problem where constraints (4.30)
are initially ignored and, then, they are iteratively added to the set cover model. Algorithm 4.2
describes the proposed approach where, when compared with Algorithm 4.1, two initial steps
are added (lines 3–4) and the general step in Algorithm 4.1 (line 5) is replaced by a repeat
until loop (lines 7–11) and a final step (line 12) in Algorithm 4.2.

Algorithm 4.2 Row generation based algorithm for GNS

1: s← 1
2: (Bs, zs)←

(
0,CLD(∅)

)
3: Initialize Cover() with objective (4.29) and domain constraints (4.31)
4: M ← ∅
5: while zs < CLD(N1) do
6: s← s+ 1
7: repeat
8: Add constraints (4.30) to Cover() for each C ∈ γ(M)
9: x∗ ← optimal solution of Cover()

10: M ← {i ∈ N1 : x∗i = 1}
11: until CLD(M) > zs−1

12: Ms ←M
13: (Bs, zs)←

(∑
i∈Ms

ci, CLD(Ms)
)

14: end while

Again, Algorithm 4.2 starts (lines 1–2) by computing the first Pareto-optimal solution
s = 1 which is the solution without gateway nodes. Then, the Cover() model is initialized
(line 3) only with the objective function (4.29) and the variable domain constraints (4.31)
and the initial set of selected gateway nodes M is initialized empty (line 4).

In each iteration of the main while loop (lines 5–14), a new candidate solution s is ob-
tained with solution values (Bs, zs) such that zs > zs−1. In the inner repeat until cycle, the
constraints (4.30) corresponding to the previous gateway node set M are first added in line
8 to the Cover() model. Then, Cover() is solved to compute its optimal solution (line 9)
defining the new set of gateway nodes M (line 10). Finally, if its resilience value, given by
CLD(M), is not strictly higher than zs−1, the repeat until cycle is repeated. Otherwise,
set M becomes the candidate solution s (line 12), with the solution values (Bs, zs) (line 13).
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Note that the repeat until cycle (lines 7–11) is the row generation algorithm that solves the
Cover(zs−1) presented in the previous subsection.

4.4 GNS problem with multiple third-party networks

In this section, we explain how to generalize the solution approach presented in the pre-
vious sections to the case where multiple third-party networks are available to provide addi-
tional connectivity. Figure 4.3 presents an illustration of this problem with two third-party
networks.

(a) Candidate gateway nodes highlighted. (b) Configuration with 2 gateway nodes.

(c) Configuration with 4 gateway nodes.

Figure 4.3: Illustration of two distinct third-party networks, with provision of temporary
virtual links between the gateway nodes for the simultaneous failure of l = 3 links (highlighted
in dashed red).

Consider the example in Figure 4.3(a) of a given network with two available third-party
networks whose connectivity weights are unitary for all node pairs. This representation also
indicates (in black) the nodes that can be used as gateway nodes to each third-party network
(in general, a node can be a gateway node to more than one third-party networks). Without
resorting to any third-party network, the l = 3 critical links (highlighted in dashed red) split
the network into one components of 4 nodes and another of 8 nodes (with a total connectivity
of 34).

In Figure 4.3(b), two gateway nodes are used to third-party Network 1 so that if the
previous critical links fail, the two network components can be connected through Network
1. In such solution, the resulting set of critical links can only split the network into two
components of 3 and 9 nodes, respectively (with a total connectivity of 39).
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Finally, in Figure 4.3(c), two additional gateway nodes are used to third-party Network
2 so that if the previous critical links fail, the two network components can be connected
through Network 2. In such solution, the resulting set of critical links can only isolate one
node from all other nodes (with a total connectivity of 55). Associating a cost value for
each possible gateway node, we obtain in this way two different solutions, with two different
trade-offs between the solution cost and the connectivity resilience increase.

In order to solve this extended GNS problem, consider that |T | different third-party net-
works are available to the telecommunication operator. Consider Nθ ⊆ N as the subset of
all nodes that can act as gateway nodes to the third-party network θ ∈ T . Let cθi > 0, with
i ∈ Nθ, represent the cost of turning node i into a gateway node to the third-party network
θ ∈ T (we consider that the same node can be configured to become a gateway node to more
than one third-party networks).

A GNS solution to this problem is represented by a family of sets M = {M1, ...,M|T |},
where Mθ ⊆ Nθ is the set of selected gateway nodes for third-party network θ ∈ T . Aiming to
extend to multiple third-party networks the row generation algorithm previously proposed for
a single third-party network, first, we must redefine the CLD problem for a family of gateway
node sets M.

4.4.1 Connectivity resilience evaluation

Considering the GNS solutionM = {M1, ...,M|T |}, let GM now represent the augmented
graph obtained by adding to graph G, for each set of gateway nodes M ∈M, one extra link
per pair of gateway nodes, i.e., GM = (N,EM), where EM = E ∪

⋃
M∈M{{i, j} : i, j ∈

M, i < j}.
Thus, the CLD problem can be redefined as the following MILP model:

min z :=
∑

i,j∈N,i<j
wijuij (4.32)

s.t.
∑
{i,j}∈E

vij ≤ l, (4.33)

uij + vij ≥ 1, {i, j} ∈ EM, (4.34)

uij ≥ u{ik} + u{jk} − 1, i, j ∈ N, i < j, k ∈ NMij , (4.35)

vij = 0, i, j ∈M, i < j, M ∈M, (4.36)

vij ∈ {0, 1}, {i, j} ∈ E, (4.37)

uij ≥ 0, i, j ∈ N, i < j. (4.38)

This extended MILP model to the CND problem is identical to MILP model (4.4)–(4.10),
with the main difference that constraints are now defined over the augmented GM (that
considered the GNS solution with multiple third-parties).

In constraints (4.35), set NMij now represents the set of neighbor nodes of node i, if node i

has lower degree than node j on the augmented graph GM, or node j otherwise. Furthermore,
in constraints (4.36), for each set of gateway nodes selected M ∈ M (to each distinct third-
party network), we set all temporary virtual links {i, j}, with i, j ∈ M, i < j, to non-critical
links.
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The connectivity resilience of a network with a family of gateway node sets M is the
optimal solution of the CLD model (4.32)–(4.38), and the optimal value of this model will
be referred henceforward as CLD(M). Finally, notice that if |T | = 1 (i.e. case with a single
third-party network), both MILP models (4.4)–(4.10) and (4.32)–(4.38) are exactly the same,
and therefore, there is no need to distinguish the notation used to represent the connectivity
resilience.

4.4.2 Row generation algorithm

Given a family of gateway node sets M, consider that, in the augmented graph GM

without the set of critical links given by the optimal solution of CLD(M), the set of nodes
N is split into m disjoint connected components C1, ..., Cm. Again, denote by γ(M) the set
of these components, i.e., γ(M) = {C1, ..., Cm}.

First, for each third-party network θ ∈ T , consider that the binary decision variable xθi is
1 if i ∈ Nθ is selected as a gateway node for the third-party network θ, and 0 otherwise.

Algorithm 4.3 generalizes the previous row generation algorithm (i.e. Algorithm 4.2) to
solve the GNS problem with multiple third-party networks. The initial set cover model is
defined (line 3) as:

min
∑
θ∈T

∑
i∈Nθ

cθix
θ
i (4.39)

s.t. xθi ∈ {0, 1}, i ∈ Nθ, θ ∈ T. (4.40)

Additionally, on each iteration ε ∈ {1, 2, 3, ...} of the row generation algorithm (lines 8–16),
the following set of |T | binary variables (one for each third-party network) is introduced:

yθε =

{
1, if third-party network θ is selected in iteration ε;

0, otherwise.

For a given family of gateway node setsM, the following constraints represent the gener-
alization of constraints (4.30) to multiple third-party networks:∑

i∈Nθ\C

xθi ≥ yθε , θ ∈ T, C ∈ γ(M), (4.41)

∑
θ∈T

yθε ≥ 1, (4.42)

yθε ∈ {0, 1}, θ ∈ T. (4.43)

Constraints (4.41) represent the set cover constraints (4.30) when the third-party network
θ ∈ T is selected to cover the GNS solution in iteration ε (i.e., if yθε = 1). Constraints (4.42)
guarantee that at least one third-party network is selected to cover that iteration. Finally,
constraints (4.43) are the variable domain constraints of the new variables yθε , for each θ ∈ T .
These constraints are added iteratively by Algorithm 4.3 (lines 10–12).
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4.5. Computational Results

Algorithm 4.3 Row generation based algorithm for GNS with multiple third-party networks

1: s← 1
2: (Bs, zs)←

(
0,CLD(∅)

)
3: Initialize Cover() ILP with objective (4.39) and domain constraints (4.40)
4: M← ∅
5: ε← 0
6: while zs < CLD({N1, ..., N|T |}) do
7: s← s+ 1
8: repeat
9: ε← ε+ 1

10: Add variables yθε ∈ {0, 1} to Cover() for each θ ∈ T
11: Add constraints (4.41) to Cover() for each C ∈ γ(M)
12: Add constraint (4.42) to Cover()
13: x∗ ← optimal solution of Cover()
14: Mθ ← {i ∈ Nθ : (xθi )

∗ = 1} for each θ ∈ T
15: M← {M1, ...,M|T |}
16: until CLD(M) > zs−1

17: Ms ←M
18: (Bs, zs)←

(∑
θ∈T

∑
i∈Mθ

cθi , CLD(M)
)

19: end while

4.5 Computational Results

All computational results reported in this section were obtained using the optimization
software Gurobi Optimizer version 9.0.2, with programming language Julia version 1.4.1,
running on a PC with an Intel Core i7-8700, 3.2 GHz and 16 GB RAM. The computational
results are based on 4 network topologies with publicly available information (Cost266, Janos-
US and Germany50 in [OWPT10], Coronet in [Sim14]) and shown in Figure 4.4. Table 4.1
presents the number of nodes |N |, number of edges |E| and the average node degree δ̄ of each
topology. In addition, the total number of node pairs of each network is shown in column
’No. node pairs’ (which is the maximum connectivity resilience value when considering unitary
connectivity weights).

Table 4.1: Topology characteristics of each network.

Network |N | |E| δ̄ No. node pairs

Janos-US 26 42 3.23 325

Cost266 37 57 3.08 666

Germany50 50 88 3.52 1225

Coronet 75 99 2.64 2775

After running several preliminary computational tests over different node cost values ci,
we have concluded that the computational complexity of the problem with unitary costs
and non-unitary costs is quite similar. Moreover, by considering unitary costs, the objective
function (4.29) value represents the selected number of gateway nodes, which allows an easier
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Figure 4.4: Network topologies.

interpretation of the results. Therefore, we will consider ci = 1 for all i ∈ N henceforward.

In the remaining of this section, we first present and discuss the numerical results of
Algorithm 4.2 considering two cases: unitary connectivity weights (Section 4.5.1) and different
connectivity weights (Section 4.5.2). Then, Section 4.5.3 provides additional insights on the
Pareto frontiers of both cases. Finally, Section 4.5.4 presents and discusses the numerical
results of Algorithm 4.3 for multiple third-party networks.

4.5.1 Single third-party network: unitary connectivity weights

Table 4.2 presents the results for the particular case of Germany50 topology and l =
6 critical links, obtained with Algorithm 4.2. These results consider the most challenging
scenario in terms of optimization, which is to consider N1 = N (i.e., all network nodes can
be selected as gateway nodes).

Columns ’B’ and ’z’ present the 2 objective values of each obtained candidate solution,
with Pareto-optimal solutions highlighted in bold. Column ’z (%)’ presents the connectivity
resilience as a percentage of its maximum value

(
N
2

)
= 1225. For each obtained candidate

solution, column ’No. Iterations’ presents the number of row generation iterations (repeat
until loop in lines 7–11 of Algorithm 4.2), column ’No. Cuts’ presents the number of cover
constraints (4.30) added in such iterations and column ’Time (sec)’ presents the running time
of the method (in seconds). The last row presents the total values (with the total runtime in
the format HH:MM:SS).

The most significant conclusion is that Algorithm 4.2 was able to compute the complete
Pareto frontier, in a total of 13 Pareto-optimal solutions, in 6 minutes and 26 seconds. The
results of this case illustrate many trends that are common to the majority of the tested
instances.

First, Algorithm 4.2 has computed 18 candidate solutions, from which a significant per-
centage (5 in total) are not Pareto-optimal solutions. Moreover, the majority of these solutions
are within the initial computed candidates. This is because the number of cover constraints
(4.30) is low at the beginning, which results in many alternative optimal solutions to the set
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Table 4.2: Germany50 results with l = 6 critical links.

B z z (%) No. Iterations No. Cuts Runtime (sec)

0 681 55,6 - - 0,2
2 825 67,3 1 2 0,7
2 856 69,9 4 8 2,9
4 889 72,6 5 10 3,1
4 914 74,6 2 4 3,1
4 924 75,4 5 11 4,7
4 961 78,4 5 10 5,1
5 994 81,1 3 6 5,6
6 1000 81,6 16 37 12,8
7 1037 84,7 24 51 30,5
8 1041 85,0 5 12 9,5
11 1081 88,2 35 87 47,3
12 1082 88,3 5 17 9,8
12 1084 88,5 33 96 43,4
16 1128 92,1 67 185 57,9
25 1129 92,2 173 522 104,3
28 1176 96,0 45 117 26,1
50 1225 100,0 81 184 19,2

509 1359 6 min 26 sec

cover problem.

Second, because all nodes can be selected as gateway nodes, the connectivity resilience
maximum value is always reached in the last Pareto-optimal solution, i.e.,

(
50
2

)
= 1225. Note

that, since Germany50 topology has a maximum node degree of 5, with 6 critical links, the
maximal resilience value is only obtained when all nodes are selected as gateway nodes.

Third, although the total number of cover constraints (4.30) keeps increasing from one
computed candidate solution to the next one, by analyzing the runtime column combined
with the number of iteration of each computed solution, we conclude that the maximum
complexity of the proposed algorithm is when the set cover optimal solution selects about
N/2 gateway nodes (in this case, 25 gateway nodes).

Figure 4.5 presents the first 6 Pareto-optimal solutions of Table 4.2. Two interesting
observations from Figure 4.5 are that the gateway nodes in these Pareto-optimal solutions
are mainly in the network periphery and, from one solution to the next one, the optimal
gateway nodes can completely change as it happens in some cases.

To compute the full set of computational results, we have considered l ∈ {2, 3, 4, 5, 6, 7}
critical links for all 4 network topologies. Note that all topologies are 2-connected (i.e., there
are at least 2 node disjoint paths between every pair of nodes) and, therefore, the case of
l = 1 critical link is not considered (no single link failure degrades the connectivity resilience
of the network). We have considered again the most challenging case, which is to consider
N1 = N (all nodes can be selected as gateway nodes). The solutions obtained for these
problem instances define the best possible Pareto frontier, i.e., all optimal pairs of solution
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(a) (B1, z1) = (0, 681) (b) (B3, z3) = (2, 856) (c) (B7, z7) = (4, 961)

(d) (B8, z8) = (5, 994) (e) (B9, z9) = (6, 1000) (f) (B10, z10) = (7, 1037)

Figure 4.5: Illustration of the first 6 Pareto-optimal solutions, for Germany50 with unitary
weights and l = 6 critical links (gateway nodes highlighted in blue squares and critical links
in dashed red).

values (B, z) considering N1 = N cannot be worst than considering other cases of possible
gateway nodes, even when multiple third-party networks are available. Furthermore, since we
consider unitary gateway costs, each obtained Pareto-optimal pair of values (B, z) represents
the minimum number of gateway nodes B required to reach the connectivity resilience z.

Table 4.3 presents the most relevant data of the full set of results obtained with Algo-
rithm 4.2. For each network topology and each value of l, row ’No. Candidate solutions’
presents the number of pairs (B, z), row ’No. Pareto-optimal solutions’ presents the number
of Pareto-optimal solutions, row ’No Iterations’ presents the total number of row generation
iterations and row ’No. Cover Cuts (4.30)’ presents the total number of cover cuts added to
reach the complete Pareto frontier. Finally, ’Runtime (HH:MM:SS)’ is the total computa-
tional time of Algorithm 4.2 for each case.

These results show that Algorithm 4.2 was able to compute the complete Pareto frontier for
all cases. For each network topology, the increase in the number l of critical links also increases
the problem complexity (due to the increase of the number of candidate and Pareto-optimal
solutions and the number of iterations and added cover cuts), which makes the running times
to become larger (in fact, we observe an exponential increase of the running times with respect
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Table 4.3: Computational results summary (unitary case).

Network l 2 3 4 5 6 7

Janos-US

No. Candidate sol. 3 6 10 15 24 25

No. Pareto-optimal sol. 3 4 6 9 11 15

No. Iterations 5 25 54 140 391 774

No. Cover Cuts (4.30) 10 50 109 327 1029 2146

Runtime (HH:MM:SS) 00:00:01 00:00:02 00:00:04 00:00:09 00:00:24 00:00:54

Cost266

No. Candidate sol. 3 6 11 17 25 27

No. Pareto-optimal sol. 3 5 9 11 14 16

No. Iterations 10 47 94 239 773 1803

No. Cover Cuts (4.30) 20 94 207 584 2162 5322

Runtime (HH:MM:SS) 00:00:03 00:00:11 00:00:21 00:00:50 00:02:03 00:04:36

Germany50

No. Candidate sol. 3 4 8 11 18 26

No. Pareto-optimal sol. 3 4 7 10 13 17

No. Iterations 11 36 71 209 509 1282

No. Cover Cuts (4.30) 22 72 161 519 1359 3672

Runtime (HH:MM:SS) 00:00:19 00:00:47 00:01:32 00:03:38 00:06:26 00:11:55

Coronet

No. Candidate sol. 6 11 19 27 46 70

No. Pareto-optimal sol. 5 8 15 20 28 33

No. Iterations 64 160 957 2820 14179 32901

No. Cover Cuts (4.30) 128 327 2597 7968 46833 111173

Runtime (HH:MM:SS) 00:01:53 00:04:10 00:22:24 00:54:42 06:59:44 43:40:43

to the value of l). Anyway, for the 3 smallest topologies, the total running times were always
short, with the harder cases in the order of a few minutes, indicating that larger values of l
can also be solved.

For the Coronet topology, the running times become very large with the two most chal-
lenging cases (l = 6 and 7) in the order of hours, indicating that for topologies of equivalent
dimension, l = 7 critical links is very close to the scalability limit of Algorithm 4.2 in comput-
ing the complete Pareto frontier. Note, though, that computing the complete Pareto frontier
is hardly useful in practice. When the operator has a budget, it is only interested in com-
puting the Pareto frontier up to its budget. In this case, Algorithm 4.2 can stop in the first
candidate solution whose cost B is above the budget, which reduces significantly the total
running time of the algorithm.

4.5.2 Single third-party network: different connectivity weights

In this section, the aim is to test Algorithm 4.2 when the connectivity weights wij are
not unitary. Since each network topology is defined over a given geographical region (either a
country or a continent), we have used the population size of each node closest city to derive
realistic weight values.

First, we have estimated the city population pi associated to each node i ∈ N (using
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4.5. Computational Results

WolframAlpha). Then, given pmed as the median value of {pi : i ∈ N}, we have assigned
a weight value for each node i ∈ N given by wi = dpi/pmede. The aim is that half of the
nodes have unitary weights (associated to the smallest city population nodes) and the other
half have integer node weights proportional to the city population (these weight values are
illustrated in Figure 4.6). Finally, the connectivity weight of each node pair i, j ∈ N, i < j
is given by wij = wi × wj (i.e., the connectivity importance is higher between nodes serving
larger populations).

Figure 4.6: Network topologies with node weights (area of each node proportional to its
weight value).

To compute the full set of computational results with these weights, we have again con-
sidered l ∈ {2, 3, 4, 5, 6, 7} critical links for all 4 network topologies. Table 4.4 presents the
most relevant data of the results obtained with Algorithm 4.2.

Like before, these results show that Algorithm 4.2 was able to compute the complete
Pareto frontier for all cases and the total running times became much shorter. For example,
in the worst case of Coronet topology with l = 7 critical links, the runtime was reduced from
more than 43 hours in the unitary weight case to less than 14 hours in this case.

Comparing the results of the two cases (unitary and weighted) for each individual instance,
the number of candidate and Pareto-optimal solutions is higher. Nevertheless, the number
of iterations and added cover cuts is almost the same, which means that the row generation
technique requires similar running times. The reason why the running times are shorter is
that the critical link detection problem, i.e., the CLD model, is solved in much shorter times
with different connectivity weights when compared with unitary weights.

4.5.3 Pareto frontiers of single third-party network scenarios

Figures 4.7, 4.8, 4.9 and 4.10 present the pairs of solution values (B, z) of all Pareto-
optimal solutions obtained in both unitary and weighted scenarios for the 4 topologies. Each
Pareto frontier is presented with the pairs of solution values (B, z) highlighted differently for
each value l and showing the connectivity resilience as its percentage relative to the maximum
resilience value (recall that B represents the number of selected gateway nodes).
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Table 4.4: Computational results summary (weighted case).

Network l 2 3 4 5 6 7

Janos-US

No. Candidate sol. 4 11 16 22 30 32

No. Pareto-optimal sol. 3 7 10 13 17 19

No. Iterations 6 24 55 112 232 477

No. Cover Cuts (4.30) 12 48 115 257 596 1332

Runtime (HH:MM:SS) 00:00:02 00:00:04 00:00:05 00:00:09 00:00:15 00:00:23

Cost266

No. Candidate sol. 4 8 16 24 33 46

No. Pareto-optimal sol. 4 7 11 16 19 23

No. Iterations 10 47 94 239 956 1935

No. Cover Cuts (4.30) 20 94 211 597 2708 5834

Runtime (HH:MM:SS) 00:00:05 00:00:12 00:00:24 00:00:46 00:01:49 00:03:44

Germany50

No. Candidate sol. 4 9 16 24 33 49

No. Pareto-optimal sol. 4 7 12 17 23 29

No. Iterations 11 37 77 254 668 1451

No. Cover Cuts (4.30) 22 75 171 651 1898 4461

Runtime (HH:MM:SS) 00:00:23 00:01:11 00:01:13 00:02:00 00:03:55 00:06:45

Coronet

No. Candidate sol. 9 23 37 64 80 105

No. Pareto-optimal sol. 8 15 24 32 39 47

No. Iterations 62 159 998 2739 11130 25787

No. Cover Cuts (4.30) 124 327 2741 7825 37695 91101

Runtime (HH:MM:SS) 00:02:04 00:03:50 00:15:52 00:38:39 03:27:44 13:54:54
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Figure 4.7: Scatter plots of the Pareto frontiers obtained for Janos-US topology (unitary case
left and weighted case right).

In all cases, we can observe that the highest resilience gains are obtained with the lowest
cost values (i.e, the first Pareto-optimal solutions). This is an important observation to
network operators since it indicates that with the smaller investment costs, they can obtain
the highest connectivity resilience gains. Then, the resilience gains become smaller until the
maximum possible resilience value is obtained.
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Figure 4.8: Scatter plots of the Pareto frontiers obtained for Cost266 topology (unitary case
left and weighted case right).
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Figure 4.9: Scatter plots of the Pareto frontiers obtained for Germany50 topology (unitary
case left and weighted case right).
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Figure 4.10: Scatter plots of the Pareto frontiers obtained for Coronet topology (unitary case
left and weighted case right).
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As already observed before, full connectivity resilience can always be obtained when all
network nodes can be selected as gateway nodes (i.e., N1 = N). In all topologies, full connec-
tivity resilience requires all nodes to be gateway nodes for l ≥ 5 critical links. Nevertheless,
for smaller values of l, full connectivity resilience is many times obtained with less number of
gateway nodes. For example, for l = 2 in Janos-US topology, the full connectivity resilience
of 100% is obtained with 5 gateway nodes (Figure 4.7) in both unitary and weighted scenarios
(the gateway nodes are the 5 nodes with node degree 2 of this topology, see Figure 4.6).

Comparing the Pareto frontiers between the two scenarios (unitary and weighted) for each
network topology and each value l, the most significant difference is that, in the weighted
scenarios, there are more Pareto-optimal solutions providing to the network operator more
trade-offs between cost and connectivity resilience. Consider the example of l = 3 in Janos-US
topology (Figure 4.7). For the unitary scenario, there are 4 Pareto-optimal solutions with
B = 0, 2, 3 and 16 gateway nodes, while in the weighted scenario, there are 7 Pareto-optimal
solutions with B = 0, 2, 3, 4, 6, 10 and 16 gateway nodes (in both cases, 16 gateway nodes
provide full connectivity resilience). So, in the weighted scenario, the solutions with B = 4, 6
and 10 gateway nodes represent trade-off alternatives between cost and connectivity resilience
that do not exist in the unitary scenario.

4.5.4 Multiple third-party networks

To generate these computational results, we have considered the largest Coronet topology.
Since both Coronet and Janos-US networks are defined over the USA, we have selected Janos-
US as one of the third-party networks and the common nodes to both networks (nodes in the
same location) were considered as the set of possible gateway nodes of Coronet to Janus-US.
Then, we have considered 2 artificial regional third-party networks, one covering the East
coast region (named East network) and the other covering the West coast region (named
West network). Figure 4.11 shows the Coronet nodes that can be selected as gateway nodes
to each of the 3 third-party networks.

Figure 4.11: Possible Coronet gateway nodes to each third-party network (highlighted with
squares to ’Janos-US’, in green to ’East’ and in blue to ’West’).

To compute the full set of computational results, we have considered unitary connectivity
weights and l ∈ {2, 3, 4, 5, 6, 7}. Moreover, we have considered 3 cases:
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1. ’Janos-US only’: a single available third-party network provided by ’Janos-US’ (this
is not a multiple third-party network scenario but its results are used for comparison
reasons);

2. ’Regional only’: two available third-party networks provided by East and West networks;

3. ’Janos-US + Regional’: three available third-party networks provided by all 3 networks.

Table 4.5 presents the most relevant data of the results obtained with Algorithm 4.3 for
the 3 third-party network cases. These results show that Algorithm 4.3 was able to compute
the complete Pareto frontier for all cases. Moreover, the total running times are shorter than
the ones of the previous subsections for Coronet, showing that these cases are easier to be
solved. The main reason for this fact is that in the previous cases we have considered all
network nodes as possible gateway nodes (the most challenging case in terms of optimization)
while in these cases, the set of possible gateway nodes is only a percentage of the total node
set.

In general, the Pareto frontiers of these 3 cases contain less number of Pareto-optimal
solutions than the Pareto frontier of Coronet network considering all nodes as possible gateway
nodes (shown in Section 4.5.2). In particular, the ’Regional only’ case has a very small number
of Pareto-optimal solutions. The reason for this is that the set of l = 4 critical links of Coronet
(highlighted in dashed red in Figure 4.12) splits the network in a way that neither the East
nor the West network can provide additional connectivity between the two split parts. So,
for l ≥ 4, the regional networks alone are not very helpful.

Figure 4.12: Coronet third-party networks study-case, with l = 4 critical links in dashed red.

Figure 4.13 presents, for each l ∈ {2, 3, 4, 5, 6, 7}, the Pareto frontiers for all cases based
on the Coronet network topology: the 3 third-party cases of this subsection and the case
considering all nodes as possible gateway nodes of Section 4.5.2. Recall that the latter case
provides the best possible Pareto frontier and, so, we use it to analyze how close the Pareto-
optimal solutions provided by the multiple third-party networks are from the best possible
solutions.

The comparison of the Pareto frontiers of the ’Janos-US only’ (blue line) and the ’Regional
only’ (green line) cases shows that: for l = 2, the regional networks are slightly better; for
l = 3, the 2 cases are similar; and for l ≥ 4, the Janos-US allows significant resilience
improvements, while, for the reasons already explained, the regional networks are almost
useless.
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Table 4.5: Computational results summary (3 third-party networks cases).

Instance l 2 3 4 5 6 7

Janos-US only

No. Candidate solutions 2 4 8 11 18 28

No. Pareto-optimal sol. 2 3 4 7 8 12

No. Iterations 2 6 10 37 82 231

Runtime (HH:MM:SS) 00:00:08 00:00:33 00:00:36 00:01:48 00:02:06 00:05:50

Regional only

No. Candidate solutions 4 5 1 2 5 4

No. Pareto-optimal sol. 3 3 1 2 3 3

No. Iterations 7 10 0 1 7 9

Runtime (HH:MM:SS) 00:00:29 00:01:16 00:00:01 00:00:06 00:00:16 00:00:09

Janos-US + Regional

No. Candidate solutions 4 8 12 18 36 53

No. Pareto-optimal sol. 3 5 8 13 19 21

No. Iterations 10 45 92 362 1042 3022

Runtime (HH:MM:SS) 00:00:42 00:03:50 00:08:57 00:23:23 01:10:56 07:58:53

On the other hand, when we consider the ’Janos-US + Regional’ case, we obtain connec-
tivity resilience improvements considerably higher than the ones of the ’Janos-US only’ case.
This means that, although the regional networks alone do not allow significant connectivity
resilience, when they are available together with the Janos-US network (which covers a wider
geographical range), they become effective in allowing higher connectivity resilience values.

Finally, when comparing the Pareto frontier of the ’Janos-US + Regional’ case (red line)
with the best Pareto frontier (black line), we observe in Figure 4.13 that the two sets of
Pareto-optimal solutions are very close for a significant range of the lowest cost values (which
are the solutions providing the highest connectivity resilience gains). So, at least for the case
of Coronet topology, the 3 considered third-party networks can altogether provide trade-off
solutions (between cost and connectivity resilience) close to the Pareto-optimal solutions.

4.6 Conclusions

In this work, we have proposed an algorithm able to provide different GNS solutions which
are different trade-offs between the total cost of the gateway nodes to third-party networks
and the connectivity resilience increase provided by the selected gateway nodes.

The computational results have shown that the algorithm was able to compute all Pareto-
optimal solutions of the underlying bi-objective optimization problem for four well-known
network topologies, the largest one with 75 nodes and 99 links, and considering up to l = 7
simultaneous link failures.

One important observation from the different obtained Pareto-optimal solutions is that
the highest resilience gains are obtained with the lowest cost values in the first Pareto-optimal
solutions, which clearly indicates that the smaller investment costs allow to obtain the highest
connectivity resilience gains.

Finally, the Pareto-optimal solutions computed when multiple third-party networks are
available showed that, for the lowest cost values (which are the solutions providing the high-
est connectivity resilience gains), having multiple third-party networks, even if they cannot
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(c) l = 4:
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(d) l = 5:
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(e) l = 6:
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(f) l = 7:
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Figure 4.13: Stair plots of the Pareto frontiers on the Coronet network topology.

cover all network nodes, can allow trade-off solutions which are close to the optimal trade-off
solutions when all network nodes can be selected as gateway nodes for a single third-party
network.
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Chapter 5

RMSA Algorithms Resilient to Multiple Node

Failures in Dynamic Elastic Optical Networks

Abstract: In Elastic Optical Networks (EONs), the way different service demands are sup-
ported in the network is ruled by the Routing, Modulation and Spectrum Assignment (RMSA)
algorithm, which decides how the spectrum resources of the optical network are assigned to
each service demand. In a dynamic EON, demand requests arrive randomly one at a time
and the accepted demands last in the network for a random time duration. So, one important
goal of the RMSA algorithm is the efficient use of the spectrum resources to maximize the
acceptance probability of future demand requests. On the other hand, multiple failure events
are becoming a concern to network operators as such events are becoming more frequent
in time. In this work, we consider the case of multiple node failure events caused by mali-
cious attacks against network nodes. In order to obtain RMSA algorithms resilient to such
events, a path disaster availability metric was recently proposed which takes into account
the probability of each path not being disrupted by an attack. This metric was proposed
in the offline variant of the RMSA problem where all demands are assumed to be known at
the beginning. Here, we exploit the use of the path disaster availability metric in the RMSA
of dynamic EONs. In particular, we propose RMSA algorithms combining the path disaster
availability metric with spectrum usage metrics in a dynamic way based on the network load
level. The aim is that the efficient use of the resources is relaxed for improved resilience to
multiple node failures when the EON is lightly load, while it becomes the most important
goal when the EON becomes heavily loaded. We present simulation results considering a mix
of unicast and anycast services in 3 well-known topologies. The results show that the RMSA
algorithms combining the path disaster availability metric with spectrum usage metrics are
the best trade-off between spectrum usage efficiency and resilience to multiple node failures.

Keywords: Elastic Optical Networks, RMSA, Multiple Node Failures, Disaster Resilience,
Simulation

F. Barbosa, A. de Sousa, A. Agra, K. Walkowiak, and R. Goścień. RMSA algorithms resilient to multiple node
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5.1. Introduction

5.1 Introduction

The support of different service demands in Elastic Optical Networks (EONs) is ruled by
the Routing, Modulation and Spectrum Assignment (RMSA) algorithm, which decides how
the network resources are assigned to each service demand. In a dynamic EON, demand
requests arrive randomly one at a time and the accepted demands last in the network for a
random time duration.

One of the main goals of the RMSA algorithm is to use the resources in an efficient way, i.e.,
by keeping the spectrum resources usage low so that future demands can be accommodated
with higher probability [AR17, CTV11, KW11, TR17, WK13]. However, other goals are
also important due to the continuous advances of EONs in terms of node architectures and
transceiver characteristics (bit-rate and transmission reach). This is particularly important
in the RMSA offline problem where all demands to be supported by the EON are estimated
at the beginning and the RMSA efficient use of the network resource also considers other
goals as the minimization of transceiver costs or of the network power consumption [CSO15,
GWK15, PAK+12].

On the other hand, large-scale failure events are becoming a concern to network operators
as such event are becoming more frequent in time [RH20]. Large-scale failure events can have
different causes, as natural disasters [GTE+16] or human malicious activities [FWG+16],
which might involve a significant number of simultaneous failures. Network resilience to
failure events is, broadly speaking, the ability of the network to keep supporting the service
demands after a failure event and many works have addressed this problem for single link
(or single node) failures considering protection mechanisms to guarantee that all demands
can be maintained after the failure event [CZJZ15, GK19, WNG17]. However, the guarantee
that all demands are maintained in a large-scale failure event involving multiple failures is
infeasible in practice as the required network resources become too costly. In this case, the
aim becomes to improve the network preparedness to large-scale failure events as much as
possible by maximizing the amount of demand that can still be maintained in face of such
events.

In this work, we consider the case of multiple node failure events caused by human mali-
cious attacks against network nodes. In terrorist attacks, although node shutdowns are harder
to realize than link cuts, they are the most rewarding in the attackers’ perspective since the
shutdown of a node also shuts down all its fiber links. So, we deal with multiple node failures
as they are the most harmful case. The topology design of optical networks resilient to mul-
tiple node failures was addressed in [BdSA18, BdSA20]. In those works, though, the RMSA
is not considered and the resilience of the network topology is evaluated by the impact of
the simultaneous failure of its critical nodes, i.e., the nodes with the highest impact on the
connectivity of the network.

Meanwhile, a family of RMSA algorithms resilient to multiple node failures caused by
attacks against multiple nodes has been recently proposed for EONs in [BdSA+19] assuming
that the attacker “discovers” with some probability a set of nodes to be attacked. The
proposed algorithms use a metric, named path disaster availability, in the RMSA decision
which takes into account the probability that each path is not disrupted by the attack. While
the work in [BdSA+19] considers the offline version of the RMSA problem (i.e., all service
demands are assumed to be known at the beginning), we exploit in this work the use of the
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5.2. Modeling node attacks and path disaster availability

path disaster availability metric in the RMSA of dynamic EONs. In particular, we propose
RMSA algorithms combining the path disaster availability metric with spectrum usage metrics
in a dynamic way based on the network load level. The aim is that the efficient use of the
resources is relaxed for improved resilience to multiple node failures when the EON is lightly
loaded, while it becomes the most important goal when the EON is heavily loaded.

To evaluate the proposed RMSA algorithms, we have developed an event-driven simulator
(in this type of simulation, only the time instants at which the state of the system changes
need to be simulated, i.e., the system is modeled as a series of time instants when a state-
change occurs, called events [Rob04]). The simulator is used to estimate the spectrum usage
efficiency of each RMSA algorithm (assessed by the bit-rate amount of all requests that are
blocked due to insufficient free spectrum resources) and the network resilience to multiple
node failures. In the latter case, the resiliency is evaluated by 2 parameters: the average non-
disrupted demand (the bit-rate percentage that is not disrupted after a failure, averaged over
all failures) and the average surviving demand (the bit-rate percentage that is supported after
a failure, averaged over all failures). Both resiliency parameters are important in practice.
On one hand, higher average surviving demand values are important for non-critical services
as they are less penalized by short-term disruptions. On the other hand, higher average non-
disrupted demand values are important for critical services (which require high availability)
and for minimizing the number of disrupted lightpaths requiring reconfiguration.

We present a set of computational results considering a mix of unicast and anycast services
in 3 well-known topologies. All algorithms are evaluated through simulation considering a
restoration mechanism where, upon a multiple node failure event, the non-affected lightpaths
remain unchanged and the demands of the affected lightpaths are reassigned as much as pos-
sible with new lightpaths in the spectrum resources of the surviving network. The results
show that the RMSA algorithms combining the path disaster availability metric with spec-
trum usage metrics are the best trade-off between spectrum usage efficiency and resilience to
multiple node failures.

The paper is organized as follows. Section 5.2 describes how the malicious node attacks
are modeled and how the path disaster availability metric is computed based on the attack
model. Section 5.3 describes the RMSA algorithms in the regular state and in the failure state.
Section 5.4 describes the simulation procedure used to assess the different RMSA algorithms.
The computational results are presented and discussed in Section 5.5. Finally, Section 5.6
draws the main conclusions of the work.

5.2 Modeling node attacks and path disaster availability

In this work, a malicious attack against multiple nodes corresponds to the case when a
malicious organization discovers some nodes that it is able to attack. By shutting down these
nodes, the organization aims to disrupt as much as possible the services supported by the
network.

In general, different levels of public information exist related to the location of each
network node. For example, the location of Data Centers is usually publicly known and
most likely a network node is nearby, which results in a higher probability of such nodes
being discovered by malicious organizations. Moreover, the set of nodes discovered by a
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malicious organization depends on its resources (human cells and geographical base locations)
and operational capabilities. However, different malicious organizations might exist, each one
with its own resources and capabilities. So, from the perspective of the network operator,
since it does not know which organization is planning an attack on its network (or how
nodes are discovered by the organization), any set of uncorrelated nodes can be attacked. In
modeling terms, it is similar to multiple unintended failures with the difference that single
failures are much more likely than multiple failures in unintended failure events, while the
failure of multiple nodes is more likely in malicious attacks.

Following these assumptions, we describe in separate subsections, first, how a malicious
node attack is modeled and, then, how the path disaster availability metric is computed for
each routing path based on the attack model. In both subsections, we consider an EON
topology defined by a graph G = (N,E), with a set of n = |N | nodes and a set of |E|
undirected links.

5.2.1 Modeling a malicious node attack

We consider the following malicious node attack model. An attacker discovers with a
given probability a set of nodes that can be attacked (almost) simultaneously. Each node
i ∈ N has an associated positive weight wi proportional to the probability of the node being
discovered by the attacker and, as discussed before, there is no correlation between discovered
nodes. The number s of discovered nodes is between a minimum number sm below which its
destructive impact in the network is considered not worthy by the attacker and a maximum
number sM above which the probability of such number of nodes being attacked is negligible.
Moreover, we assume that the effort required to attack s nodes is proportional to the number
of nodes and, therefore, the probability Ps of s nodes being attacked, with sm ≤ s ≤ sM , is
inversely proportional to the number of attacked nodes, i.e.:

Ps =
1
s∑sM

t=sm
1
t

, s = sm, ..., sM (5.1)

5.2.2 Computing the path disaster availability

Consider a given path p on graph G = (N,E) defined by its set of nodes i ∈ p (including
source and destination nodes). The path disaster availability ap of path p is the probability
that p is available (i.e., not disrupted) after an attack. Due to the assumption of no correlation
between attacked nodes, the path disaster availability ap is given by:

ap =
∏
i∈p

(1− πi) (5.2)

where πi is the probability of node i ∈ N to be attacked when an attack is realized. Then, πi
is given by:

πi =

sM∑
s=sm

πsi × Ps (5.3)

where πsi is the probability of node i being attacked on an attack to s nodes and Ps, previously
defined in (5.1), is the probability of an attack to s nodes. Finally, probability πsi is computed
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by the sum of the probabilities of all sequences without repetitions of s nodes out of n (= |N |)
nodes that include node i in one of its positions, given by:

πsi =
wi
WN

+
∑

j∈N\{i}

wj
WN

× wi
WN\{j}

+
∑

j∈N\{i}

wj
WN

( ∑
k∈N\{i,j}

wk
WN\{j}

× wi
WN\{j,k}

)
+ ...

(5.4)

where WM denotes the sum of the node weights of a set M ⊆ N , i.e., WM =
∑

i∈M wi. The
first term wi

WN
in (5.4) is the probability of all sequences such that i is the first node of the

sequence. The second term
∑

j∈N\{i}
wj
WN
× wi
WN\{j}

is the probability of all sequences such that

i is the second node of the sequence, i.e., all sequences composed by a node j ∈ N\{i} in the
first position and node i in the second position. The third term is the generalization of the
previous term for the sequences such that i is the third node of the sequence.

The probability πsi defined in (5.4) has s terms and can be computed recursively as follows.
For a given set of nodes N and associated weights w = {wi, i ∈ N}, a given number of attacked
nodes s and a given node i, the probability πsi is computed as:

πsi = prob(N,w, i, 0, s) (5.5)

where prob() is the recursive function defined in Algorithm 5.1. The input parameters of
Algorithm 5.1 are a set of nodes M which were still not selected (in the first call in (5.5),
this parameter is the complete node set N), the set w of node weights, the node i whose
probability we want to compute, the number z of already selected nodes (in the first call in
(5.5), this parameter is z = 0) and the number of attacked nodes s.

Algorithm 5.1 Recursive function to compute πsi

1: function π = prob(M,w, i, z, s)
2: z ← z + 1
3: WM ←

∑
j∈M wj

4: π ← wi
WM

5: if z < s then
6: for all j ∈M\{i} do
7: π ← π +

wj
WM
× prob(M\{j}, w, i, z, s)

8: end for
9: end if

10: return π

For illustration purposes, consider the example of graph G = (N,E) presented in Fig-
ure 5.1, with n = 12 nodes and |E| = 18 edges and assume that the nodes highlighted in gray
are 10 times more probable of being discovered than the other nodes. Therefore, wi = 10 for
nodes i ∈ {2, 5, 11} and wi = 1 for all other nodes. Note that the probabilities πsi given by
(5.4) are equal for nodes with equal weight values wi. In this example, since there are only two
different weight values, all probabilities of nodes i ∈ {2, 5, 11} are equal and all probabilities
of the other nodes are also equal. Table 5.1 presents the probability values of this example
computed by Algorithm 5.1 for a number of attacked nodes s from 2 up to 6. As expected,
these results show that the more the attacked nodes s are, the higher the probabilities πsi of

119



5.2. Modeling node attacks and path disaster availability

Table 5.1: Probability value πsi of each node i ∈ N for each s in the example.

s 2 3 4 5 6

πsi (wi = 10) 0.494 0.700 0.845 0.929 0.971

πsi (wi = 1) 0.058 0.100 0.163 0.246 0.343

all nodes become. Moreover, for all values of s, the nodes i with the highest weight value
wi = 10 have always a higher probability of being attacked than the other nodes.

Figure 5.1: Polska network topology [OWPT10].

Then, for a given range [sm, sM ] in the number of attacked nodes, the probability πi of
each node i to be attacked when an attack is realized is given by (5.3). Table 5.2 presents the
probability values πi of all nodes (third and fourth columns) for different [sm, sM ] ranges (first
and second columns) assuming a constant minimum number of attacked nodes sm = 2 an
an increasing maximum number of attacked nodes sM = 3, 4, 5 and 6. Again, an increasing
average number of attacked nodes increases the probability values πi of all nodes and the
probability values of the nodes with the highest weight value are always higher than the
probability values of the nodes with the lowest weight values.

Now consider in the example of Figure 5.1 the end-nodes s = 6 and t = 12 and the following
two candidate paths: p1 = {6−11−7−12} (highlighted in red) and p2 = {6−1−3−10−8−12}
(highlighted in blue). The path disaster availability of these two candidate paths is given
by (5.2), whose values are presented in Table 5.2 (fifth and sixth columns) for the different
considered [sm, sM ] ranges. For any of the considered ranges, although path p1 is shorter
(in number of links), its probability of not being affected by an attack (i.e., its path disaster
availability) is lower than the probability of p2 not being affected by an attack. This is because
p1 includes one of the nodes (node 11) with higher probability of being discovered while p2

does not include any of such nodes.

Note that the values of πsi computed with Algorithm 5.1 and πi computed with (5.3)
only depend on the EON topology and on the parameters defining the malicious node attack
model. So, they are computed once (in advance) and, then, the path disaster availability ap
of each candidate path p considered by the RMSA algorithms is efficiently computed with
(5.2).
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5.3. RMSA algorithms

Table 5.2: Probability value πi of each node i ∈ N and path disaster availability of p1 and p2

for different [sm, sM ] ranges.

sm sM πi (wi = 10) πi (wi = 1) ap1 ap2

2 3 0.577 0.074 0.336 0.628

2 4 0.638 0.095 0.268 0.550

2 5 0.684 0.118 0.217 0.469

2 6 0.717 0.144 0.178 0.393

5.3 RMSA algorithms

In a dynamic EON, demand requests arrive one at a time in the regular state. When a new
request arrives, there is a set of lightpaths already established in the network (occupying some
spectrum on the different fiber links) and the RMSA algorithm decision is either to assign a
lightpath to the incoming request or to block it if there are not enough spectrum resources in
the network. On the other hand, in a failure state (caused by an attack to multiple nodes), we
consider a restoration mechanism where the non-affected lightpaths remain unchanged and the
RMSA algorithm has to assign as much as possible new lightpaths to the affected demands
in the available resources of the surviving network (i.e., the network without the attacked
nodes). Next, we address the regular state and the failure state in separate subsections.

5.3.1 RMSA algorithm in the regular state

Recall that we consider an EON topology defined by a graph G = (N,E), with a set
of n = |N | nodes and a set of |E| undirected links. Consider also F = {1, 2, ..., |F |} as the
ordered set of Frequency Slots (FSs) available on each fiber link to be assigned to lightpaths.
In the regular state, a set of lightpaths is already established and there is a request d for a
new demand to be accepted.

The type of request d can be either unicast or anycast. An unicast request d is charac-
terized by a pair of end-nodes (sd, td) and its required bit-rate bd. In anycast requests, the
network supports a set R of services and each anycast service r ∈ R is provided by a set of
Data Centers (DCs) located in nodes Cr ⊆ N . Then, an anycast request d is characterized
by a source node sd, an anycast service rd ∈ R and a required bit-rate bd (the anycast request
d can be satisfied by any of the DCs in Crd).

Consider Pd as the set of candidate paths that can be selected for request d. If d is of
unicast type, Pd is a set of different routing paths between sd and td. If d is of anycast
type, Pd is a set of different routing paths between sd and one of the nodes in Crd . When
the incoming request d is accepted, the RMSA decision is the specification of a lightpath
to support d, which is defined by a routing path p selected from Pd, a modulation format
(MF) for electrical-optical-electrical conversion on the end-nodes of the lightpath and a set
of contiguous FSs occupied by the lightpath in all fiber links of the selected routing path p.

In all RMSA algorithms, a set of parameters is associated to each candidate path p ∈ Pd
and the path of the lightpath is selected as the candidate path with the best parameter
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values. One of the associated parameters is ap indicating the path disaster availability of each
candidate path p ∈ Pd as already defined in (5.2) of section 5.2.2.

Note that each MF has an associated transmission reach, which specifies an optical length
threshold above which the lightpath does not work. So, another parameter associated to
each candidate path p ∈ Pd is np indicating the number of FSs of the most efficient MF (the
one requiring less FSs able to support the bit-rate bd of request d) whose transmission reach
is not lower than the optical length of p. We consider the optical length of each candidate
path p ∈ Pd as the sum of its link lengths plus a given length value ∆ per intermediate node
(modeling the optical degradation suffered by a lightpath while traversing an intermediate
optical switch).

Finally, based on the required number of FSs, given by the value of parameter np, and on
the free FSs in all the links of each candidate path p ∈ Pd at the time instant of request d,
another associated parameter is fp indicating the highest FS index of the lowest set of np free
contiguous FSs available in path p (this parameter is only considered in the candidate paths
p ∈ Pd with enough available resources, i.e., with at least one set of np free contiguous FSs).

First, we describe three basic RMSA algorithms where the first two (FF and LFS) are
well-known algorithms and the third one aims to obtain the best resilience to multiple node
failures.

First-Fit (FF): Request d is routed in the first path p ∈ Pd with enough available resources
and assigned with the lowest set of np free contiguous FSs (in this algorithm, Pd is ordered
from the shortest to the longest optical length).

Lowest Frequency Slot (LFS): Among the paths p ∈ Pd with enough available resources,
request d is routed in the path p with lowest fp and assigned with the set of np free contiguous
FSs whose highest FS index is fp. If multiple paths have the same value of fp, the path among
them with the shortest optical length is selected.

Path Disaster Availability (PDA): Among the paths p ∈ Pd with enough available re-
sources, request d is routed in the path p with the highest path disaster availability ap and
assigned with the lowest set of np free contiguous FSs. If multiple paths have the same value
of ap, one of them is selected with the LFS rule.

In [BdSA+19], one of the main findings (in the offline variant of the RMSA problem) is
that LFS is the best RMSA in terms of spectrum usage efficiency (as it keeps a larger portion
of the highest spectrum completely free) and PDA is the best RMSA in terms of resilience
to multiple node failures (as it avoids the selection of paths involving the nodes with higher
probability of being attacked).

In general, the best trade-off between spectrum usage efficiency and resilience to multiple
node failures depends on the load level of the network: (i) when the EON is lightly loaded,
there are plenty of free resources and the spectrum usage efficiency can be relaxed to reach a
better resilience to multiple node failures; (ii) when the EON is heavily loaded, the spectrum
must be used in the most efficient way to maximize the acceptance probability of future
demand requests.

In order to reach the best trade-off between these two aims in a dynamic EON (where,
typically, the network oscillates over time between different load levels), we also propose
RMSA algorithms combining the path disaster availability metric with two spectrum usage
metrics in three different possible options. In all three options, we compute an additional
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parameter mp for each path p ∈ Pd with enough available resources and the aim is to select
the path p with the highest value of mp.

The way parameter mp is computed in each option is as follows. In the first option,
parameter mp is given by:

mp =
(

1− H

|F |

)
ap +

H

|F |

(
1− fp
|F |

)
(5.6)

where H is the current highest FS occupied in at least one fiber link (which is used as a
measure of the current network load). In this option, we combine the maximization of the
path disaster availability ap with the minimization of the spectrum usage metric given by fp.

Note that a higher value of
(

1− fp
|F |

)
represents a lower value of fp as desired by maximizing

the combined parameter mp. Moreover, both ap and
(

1− fp
|F |

)
terms are normalized as both

values are between 0 and 1. So, when H is lower, the path disaster availability ap has a
higher weight in the determination of mp, while when H is higher, the FS index fp has a
higher weight in the determination of mp. In the second option, parameter mp is given by:

mp =
(

1− H

|F |

)
ap +

H

|F |
1

logβ(αp)
(5.7)

where αp is total number of FSs occupied by the lightpath to support request d in candidate
path p (i.e., αp is given by np multiplied by the number of fiber links of path p). In this second
option, the spectrum usage metric αp aims to give preference to paths using less spectrum
resources so that more resources remain free for future requests. Again, a higher value of

1

logβ(αp)
represents a lower value of αp as desired by maximizing the combined parameter

mp. In order to normalize the term
1

logβ(αp)
between 0 and 1, we consider β as the minimum

number of FSs that can be required by any lightpath in any candidate path. Finally, in the
third option, parameter mp is given by:

mp =
(

1− H

|F |

)
ap +

H

|F |

(
1

2

(
1− fp
|F |

)
+

1

2

1

logβ(αp)

)
(5.8)

where the two previous spectrum usage metrics (the minimization of the highest FS index
fd used in (5.6) and minimization of the total number of required FSs αp used in (5.7)) are
combined with equal weight in the second term of (5.8). The resulting combined RMSA
algorithms are as follows.

Mixed RMSA: Among the paths p ∈ Pd with enough available resources, request d is routed
in the path p with the highest mp and assigned with the lowest set of np free contiguous FSs.
If multiple paths have the same value of mp, the path among them with the shortest optical
length is selected. Depending on the option to compute the values mp, we obtain three
different variants – Variant 1, 2 and 3 – of the Mixed RMSA, using eqs. (5.6), (5.7) and
(5.8), respectively.

Assuming that the set of candidate paths is computed in advance for all possible demand
requests (which is possible as the network topology does not change over time in the regular
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state), all algorithms require in the worst case the computation of the different parameters
for all candidate paths and the processing of each parameter is linear with the number of
nodes included in each candidate path (which is at most n). So, the complexity of all RMSA
algorithms is O(n× |Pd|). Note that the FF algorithm has lower complexity when compared
with all other algorithms as it needs to run up to the first candidate path that can be used
to assign the lightpath while all the others require the computation of all candidate paths.

5.3.2 RMSA algorithm in a failure state

In a failure state caused by an attack to multiple nodes, the non-affected lightpaths remain
unchanged and the RMSA algorithm tries to assign as much as possible new lightpaths to the
affected demands in the available resources of the surviving EON, i.e., the network without
the attacked nodes.

In this case, the resilience to node failures is not a priority and the RMSA must have
the lowest possible complexity as it has to assign lightpaths not for a single request but for
all affected demands. So, we consider the FF algorithm adapted to the failure cases. The
complete algorithm has 3 phases.

First phase: the algorithm computes the FSs occupied by the non-affected lightpaths and
runs a k-shortest paths algorithm for each affected demand to compute its set of candidate
paths in the surviving network.

Second phase: the set of affected demands d with a non-empty set of candidate paths (i.e.,
the ones such that the k-shortest path has returned at least one candidate path) is ordered
following the next three hierarchical orders (from the most important to the least important):

1. decreasing order of its bit-rate bd;
2. decreasing order of the number of links of the shortest optical length path;
3. decreasing order of the optical length of the shortest optical length path.

Third phase: starting with the FSs occupied by the non-affected lightpaths (computed in
Phase 1), the algorithm tries to assign iteratively a lightpath to each demand by the order
computed in Phase 2 and using the FF algorithm; at each iteration, when a new lightpath is
assigned to a demand, the set of occupied FSs is updated before the next iteration.

The hierarchical order used in the second phase was shown in our preliminary tests to
provide the best performance in terms of total surviving demand. Note that, in a failure
state, it is no longer possible to compute in advance the set of candidate paths as the set of
failing nodes cannot be predicted. The complexity of the algorithm is mainly imposed by the
first phase where a k-shortest paths algorithm must be run between many node pairs and
its complexity is O(kn(|E| + n log(n))) for each pair of nodes [BELR07] when using Yen’s
algorithm [Yen71].

5.4 Simulation description

An event-driven simulator was developed to evaluate the spectrum usage efficiency and the
resilience to multiple node failures of the different RMSA algorithms in dynamic EONs. The
spectrum usage efficiency is assessed by the bit-rate amount of all requests that are blocked in
the regular state due to insufficient free spectrum resources. The resilience to multiple node

124



5.4. Simulation description

failures is evaluated by the average non-disrupted demand (the average bit-rate percentage
that is not disrupted after a multiple node failure) and the average surviving demand (the
average bit-rate percentage that is supported after a multiple node failure) among all failure
events of each simulation.

A simulation is composed by two modules, one simulating the regular state and another
simulating the failures states, which are described separately in the next subsections.

5.4.1 Simulation of the regular state

In the regular state, events are associated with time instants when the EON has either to
assign a lightpath to a new request or to tear down a previously assigned lightpath. In each
simulation, λ is the arriving request rate (per time unit) at the end of the simulation and the
lightpath duration is exponentially distributed with an average duration of one time unit.

Each simulation runs a total number of events given by E and the arriving request rate is
e

E
×λ, where e = 1, 2, ..., E is the current event number. In this way, a single run simulates all

network load values from a very lightly loaded network (at the beginning of the simulation)
up to a heavily loaded network (at the end of the simulation). Parameter λ is tuned for each
network case so that the blocking probability at the end of the simulation is around 10% for
the worst RMSA algorithm.

Each unicast request d has its end-nodes (sd, td) randomly generated with a uniform
distribution among all node pairs and its bit-rate bd (in Gbps) randomly generated with a
uniform distribution in the set {50, 100, 150, 200} resulting in an average bit-rate request of 125
Gbps. On the other hand, each anycast request d has its source node sd randomly generated
with a uniform distribution among all nodes, its anycast service rd randomly generated with
a uniform distribution among all anycast services and its bit-rate bd (in Gbps) randomly
generated with a uniform distribution in the set {50×ω : ω ∈ N, ω ≤ 20} = {50, 100, ..., 1000}
resulting in an average bit-rate request of 525 Gbps.

At each request event, first the request type is randomly selected between unicast with
probability puni or anycast (with probability 1 − puni). Then, the request of each type is
randomly generated as described before. In all simulations, we have considered that the total
generated bit-rate is equally split between unicast and anycast services. Since the average
bit-rate request is 125 Gbps for unicast and 525 Gbps for anycast, puni was set to:

puni =
525

125 + 525
=

21

26
.

In the simulations reported in the computational results, we have set E = 105 events.
Moreover, for a fair evaluation between the different RMSA algorithms, we have randomly
generated all parameters associated with request events once for each network, and used the
same values when simulating the different RMSA algorithms for the same network.

5.4.2 Simulation of the failure states

When the regular state reaches the event numbers in set Ef , the failure state simulation
module is launched and, when this module ends, the regular state simulation continues from
the state it was before. The simulation of a failure state has the following 3 steps:

125



5.5. Computational results

1. generate a random multiple node failure event;
2. run the RMSA algorithm (as described in section 5.3.2) taking into account the regular

state at the moment of the failure event and the set of failure nodes;
3. compute the resulting total non-disrupted bit-rate and surviving bit-rate of the current

failure event.

The random generation of a multiple node failure event in step 1 follows the attack model
described in section 5.2.1. First, the number of attacked nodes s is randomly generated
between sm and sM with the probabilities given by (5.1). Then, a set of s nodes is ran-
domly selected (without replacement) with a probability of each node i ∈ N being selected
proportional to its weight wi.

At the end of the regular state simulation, the average non-disrupted demand and the
average surviving demand performance parameters are computed based on the values obtained
on all failure events run in the set Ef of event numbers.

In the simulations reported in the computational results, we have considered set Ef com-
posed by the event numbers multiple of 100 in the range 103 < e ≤ E(= 105), which gives a
total of 990 multiple node failure events per simulation. The aim was to select the set Ef uni-
formly from a minimum number (below which the network load is very low) until E so that the
resilience performance parameters are assessed over the whole range of network loads. Again,
for a fair evaluation between the different RMSA algorithms, we have randomly generated
all multiple node failure events once for each network and used the same node failures when
simulating the different RMSA algorithms for the same network.

5.5 Computational results

The computational results presented in this section are based on 3 network topologies
with public available information [OWPT10] and shown in Figure 5.2: Germany50, Cost266
and Janos-US. Table 5.3 presents their topology characteristics in terms of number of nodes
n and fiber links |E|, average node degree δ̄, average link length l̄ (in Km) and diameter D,
i.e., the highest optical length (in Km) among all shortest paths adding ∆ per intermediate
node (the length ∆ modeling the degradation suffered by a lightpath on each intermediate
node was set to 60 km).

Table 5.3: Topology characteristics of each network.

Network n = |N | |E| δ̄ l̄ (km) D (km) |C|
Germany50 50 88 3.52 100.7 1417 11

Cost266 37 57 3.08 438.1 4574 9

Janos-US 26 42 3.23 600.6 5094 7

In each network, we have considered a set of five anycast services (|R| = 5) and each
service r ∈ R is run on five randomly selected DC nodes. We restricted the possible DC
locations of each anycast service to set C ⊂ N (highlighted in large circles in Figure 5.2)
which was selected among the nodes with largest node degree (the number of such nodes is
also provided in the last column of Table 5.3). Then, the DC node locations (set Cr) providing
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each anycast service r ∈ R were randomly selected with a uniform distribution among the
nodes in C.

Figure 5.2: Network topologies.

In the regular state, the set of candidate paths associated to each incoming unicast request
d was computed with a k-shortest paths algorithm (considering k = 30) and the same set
was used for all RMSA algorithms. In anycast requests, we have considered the union of the
sets of the k = 30 shortest paths from the source node sd to each DC node of its anycast
service rd, and then excluded from the union set the paths that have intermediate DC nodes
of the same service. In each failure state, we have considered up to k = 5 shortest paths as
the candidate paths in the surviving topology. Notice that, in both states, if the number of
feasible paths is lower than k, we consider all possible paths as the set of candidate paths.

We have considered a capacity of |F | = 320 FSs on all fiber links of the network, which
corresponds to a spectral grid of granularity 12.5 GHz. We have assumed 4 available MFs
whose transmission reach and bit-rate capacity are presented in Table 5.4 (transceiver model
based on [RBMT17] and transmission reaches based on [KRS+16]).

The number np of FSs required by each candidate path p ∈ Pd for a request d requiring
a bit-rate bd is computed based on the distance-adaptive transmission (DAT) rule as follows.
We first select the highest bit-rate MF whose transmission reach is not lower than the optical
length of p (the assumptions are that transceivers support polarization division multiplexing,
operate at a fixed baud rate of 28 Gbaud, and transmit/receive on an optical channel occu-
pying 37.5 GHz). If the bit-rate bd of request d is not higher than the selected MF bit-rate,
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Table 5.4: Transmission reach and bit-rate capacity of each MF.

Modulation Format (MF) BPSK QPSK 8-QAM 16-QAM

Transmission reach (km) 6300 3500 1200 600

Bit-rate capacity (Gbps) 50 100 150 200

one single transceiver is required. Otherwise, multiple optical channels (each one used by
one transceiver with the previous selected MF) are grouped in a single spectral super-channel
(SCh). We assume that lightpaths require a 12.5 GHz guard-band and, so, the required num-
ber of contiguous FSs is nd = 3t + 1, where t denotes the minimum number of transceivers
with a total bit-rate not lower than bd. Consequently, we set β = 4 in expressions (5.7) and
(5.8) of the Mixed RMSA algorithm as nd = 3t+ 1 has a minimum of 4 when t = 1.

As explained in Section 5.4.1, parameter λ was tuned for each network case so that
the blocking probability at the end of the simulation is around 10% for the worst RMSA
algorithm. After preliminary tests with each topology, we have considered λ = 1200 for
Germany50, λ = 550 for Cost266 and λ = 500 for Janos-US.

Concerning the multiple node attacks, we have considered that the number of attacked
nodes s is between sm = 2 and sM = 6 (we have excluded s = 1 since typical topologies are
already resilient to single node failures). Moreover, the node weights (defining the probability
of each node being discovered by the attacker) were assumed to be wi = 10 for the DC nodes
(set C) and wi = 1 for all other nodes (set N\C).

Concerning the obtained simulation results, Table 5.5 presents for each network the total
rejected bit-rate obtained by each RMSA algorithm, i.e., the sum of the bit-rate values of all
requests that were blocked in the regular state (the best values are highlighted in bold for
each network). In this table (and in the following ones), Mv1, Mv2 and Mv3 refers to the
Mixed RMSA Variants 1, 2 and 3, respectively, as described in section 5.3.1.

Table 5.5: Total rejected bit-rate (in Gbps) results

Network FF LFS PDA Mv1 Mv2 Mv3

Germany50 46800 2600 49150 3650 35100 1700

Cost266 43900 19350 36500 18700 33950 14350

Janos-US 35250 19900 42600 18700 33500 12400

The results in Table 5.5 clearly show that the Mixed RMSA Variant 3 algorithm is the
best alternative in terms of spectrum usage efficiency. Note that it is even better than the
LFS algorithm which does not use the path disaster availability metric and selects the path
only based on assigning the FSs on the lowest possible spectrum. Recall that the Mixed
RMSA Variant 3 algorithm combines with equal weights two spectrum usage metrics (the
minimization of the highest assigned FS and minimization of the total number of assigned
FSs). Moreover, the rejected bit-rates happen when the network is heavily loaded. In these
cases, the weight of the spectrum usage metrics becomes close to 1 (and the weight of the path
disaster availability metric becomes close to 0) in the Mixed RMSA algorithms. So, the results
in Table 5.5 show that the combination of the two spectrum usage metrics with equal weights
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(of the Mixed RMSA Variant 3 algorithm) uses more efficiently the spectrum resources than
considering only the minimization of the highest assigned FS (of the LFS algorithm).

On the other hand, both FF (which uses the basic first-fit approach) and PDA algorithms
(which use the path disaster availability metric as the first criterion) are the ones that, overall,
are the least efficient in terms of spectrum usage. Finally, the other RMSA algorithms present
intermediate results.

Concerning the resilience to multiple node failures, Table 5.6 presents for each network
the average non-disrupted demand, in percentage, obtained by each RMSA algorithm, i.e.,
the average bit-rate percentage that is not disrupted after a multiple node failure (again, best
values highlighted in bold). As expected, the PDA algorithm is the best RMSA algorithm
since, by using the path disaster availability metric, minimizes the probability of the selected
routing paths to be affected by the multiple node failures. On the other hand, the FF and
LFS algorithms are worst, on average, than the PDA algorithm.

Table 5.6: Average non-disrupted demand (%) results

Network FF LFS PDA Mv1 Mv2 Mv3

Germany50 67.61 64.96 70.98 67.88 69.24 68.86

Cost266 58.71 57.17 62.10 59.85 60.76 60.46

Janos-US 53.86 50.97 55.03 53.01 54.81 53.88

Concerning the Mixed RMSA algorithms (which combine the path disaster availability
metric with spectrum usage metrics), they do not seem to be as good as the PDA algorithm.
Nevertheless, these values represent percentages over the total bit-rate accepted in the network
at the time instant of each failure event. Recall from the previous Table 5.5 that the Mixed
RMSA Variant 3 has a much smaller total rejected demand. So, for this RMSA algorithm,
the percentage values in Table 5.6 represent absolute non-disrupted demands which are closer
to the ones of the best PDA algorithm.

Finally, Table 5.7 presents for each network the average surviving demand, in percentage,
obtained by each RMSA algorithm, i.e., the average bit-rate percentage that is supported
after a multiple node failure (again, best values highlighted in bold). In this case, the Mixed
RMSA Variant 3 is the best, on average, although for each network the results are very close
between the different RMSA algorithms. This is due to the fact that in a multiple node
failure, many of the affected lightpaths have end-nodes which become disconnected in the
surviving network. Like in the previous table, the values of Table 5.7 represent percentages
over the total bit-rate accepted in the network at the time instant of each multiple node
failure. So, since the Mixed RMSA Variant 3 has a much smaller total rejected demand (seen
in Table 5.5), we reach the conclusion that the Mixed RMSA Variant 3 is the best algorithm
concerning the average surviving demand parameter.

In overall, the best algorithm among all tested ones is the Mixed RMSA Variant 3 as it is
the most efficient in terms of spectrum usage (reaching the lowest level of rejected bit-rate)
and, concerning the resiliency to multiple node failures, it is the most efficient in terms of
average surviving demand and almost as efficient as the PDA algorithm in terms of average
non-disrupted demand.

Note that, upon a multiple node failure event, there are demands that cannot survive
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Table 5.7: Average surviving demand (%) results

Network FF LFS PDA Mv1 Mv2 Mv3

Germany50 89.46 89.70 89.31 89.70 89.48 89.74

Cost266 83.56 83.58 83.40 83.58 83.57 83.59

Janos-US 75.17 75.12 74.82 75.14 75.04 75.15

in the surviving network whatever RMSA is adopted. The obvious ones are the demands
such that at least one of their end-nodes has failed. Moreover, if the multiple node failure
event splits the network in different components: (i) unicast demands cannot survive if their
end-nodes are in different components and (ii) anycast demands cannot survive if their source
nodes are in a network component without any of the DC nodes of their anycast service.

In the results of both Tables 5.6 and 5.7, the performance values obtained by all RMSA al-
gorithms are always better for Germany50, intermediate for Cost266 and worst for Janos-US.
In order to better understand these results, we have also analyzed the type of surviving net-
works that were imposed by all failure events on each network. In graph theory, a disconnected
network is a graph that does not contain a path for at least one of its node pairs. Moreover,
a 1-connected network is a graph such that the minimum number of elements (nodes and
edges) whose removal makes the network disconnected is 1. Finally, a 2-connected network
is a graph such that the minimum number of elements whose removal makes the network
disconnected is 2. Table 5.8 presents, for each network, the relative frequency (in percentage)
of each type of surviving network among all 990 simulated failure events.

Table 5.8: Relative frequency (in %) of each type of surviving network.

Network Disconnected 1-connected 2-connected

Germany50 4.24 60.51 35.25

Cost266 17.07 72.12 10.81

Janos-US 40.61 55.15 4.24

Note that a 2-connected surviving network is more likely to have enough resources to as-
sign lightpaths to the affected demands than a 1-connected surviving network. In Table 5.8,
although most of the surviving networks are 1-connected for all networks, the network with the
best resilience to multiple node failures (i.e., Germany50) is the one with the lower percent-
age of disconnected surviving networks and the highest percentage of 2-connected surviving
networks. On the other hand, the network with the worst resilience to multiple node failures
(i.e., Janus-US) is the one with the highest percentage of disconnected surviving networks
and the lowest percentage of 2-connected surviving networks.

Next, we present different visualizations of the conducted simulations to further analyze
the reasons for the best performance of the Mixed RMSA Variant 3 algorithm. The different
simulations are visualized comparing this algorithm with the LFS (whose decision aims only
the best spectrum usage efficiency) and with the PDA (whose decision aims primarily the
best resiliency to multiple node failures).

Using the highest allocated FS (parameter H in section 5.3.1) as a measure of the network
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load, Figure 5.3 visualizes the evolution of the highest allocated FS as a function of the event
number for the three RMSA algorithms on each of the three networks (in each plot, the
plotted value on each event number is the average value of H in the last 1000 events).

Figure 5.3 shows that, for all networks, the spectrum usage is the lowest in most of the
events with LFS reaching the highest load values only at the events very close to the end
of the simulation. On the other hand, the spectrum usage is the highest in all events with
PDA reaching the highest load values much sooner than LFS (the reason why the PDA
algorithm has a poor performance in terms of total rejected bit-rate). Finally, the Mixed
RMSA Variant 3 algorithm is similar to PDA at the lower network load values (when there
are plenty of free resources and the spectrum usage efficiency can be relaxed to reach a better
multiple node failure resiliency) and gets slightly lower (i.e., better), on average, than LFS as
the network load becomes very high (when the free spectrum resources become very scarce
and the spectrum resources must be efficiently used).

As already discussed, there are affected demands that cannot survive whatever RMSA
is adopted. In the simulations, we have also computed the total bit-rate that can survive
in terms of connectivity on each failure event. Next figures visualize the evolution of the
non-disrupted demand (Figure 5.4) and the surviving demand (Figure 5.5) as a function of
the consecutive failure events for the three RMSA algorithms on each of the three networks.
Both non-disrupted and surviving demands are computed as the ratio (in percentage) between
their absolute bit-rate values and the total bit-rate that can survive at each failure event (in
each plot, the plotted value on each failure event is the average value over the last 100 failure
events).

As expected, the visualizations in Figure 5.4 show that PDA is always the best and LFS
is always the worst algorithm concerning the non-disrupted demand. Moreover, the Mixed
RMSA Variant 3 algorithm is as good as the best in the initial failure events (as it gives
a higher weight to the path disaster availability metric when the network load is low) and
becomes worse than the best PDA algorithm but still always better than the LFS algorithm
(as it keeps using the path disaster availability metric on its decision although with a lower
weight).

Regarding the surviving demand, the visualizations in Figure 5.5 show that all RMSA
algorithms are able to maintain 100% of all survivable bit-rate for the lower values of network
load. This is not surprising as there is plenty of the resources in the surviving network in these
cases and this is the reason why the average surviving demand results shown in Table 5.6 are
so close between the different RMSA algorithms. Then, when failure events happen in higher
network load values, only part of the survivable bit-rate can survive and the Mixed RMSA
Variant 3 becomes consistently better than the two other algorithms.

Concerning simulation running times, Table 5.9 presents the total running time of each
simulation, including the regular state and all failure states. Recall that we have considered
the same number of events (both in terms of request and failure events) for all simulations of
all networks. However, the runtime values in Table 5.9 increase with the size of the network.
The reason for this increase is a combination of two factors. One in that bigger networks
accommodate more lightpaths and so, in multiple node failure events, the RMSA algorithm
has to deal with more affected demands, on average. The other is that the k-shortest paths
algorithm which is run in every RMSA decision takes longer runtime in bigger networks.
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Figure 5.3: Evolution of the highest allocated FS as a function of the event number in the
regular state (|F | is the number of FSs on each fiber link).
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Figure 5.4: Evolution of the non-disrupted demand, in percentage, as a function of the con-
secutive failure events.
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Figure 5.5: Evolution of the surviving demand, in percentage, as a function of the consecutive
failure events.
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5.6. Conclusions

Table 5.9: Total running time (in the format H:MM:SS) of each simulation.

Network FF LFS PDA Mv1 Mv2 Mv3

Germany50 1:00:33 1:08:51 0:52:10 1:04:27 0:59:11 1:04:44

Cost266 0:20:11 0:22:57 0:18:52 0:22:04 0:20:23 0:21:43

Janos-US 0:06:17 0:08:10 0:06:56 0:07:57 0:07:06 0:07:47

Moreover, there are some visible differences between the runtime values of the different
RMSA algorithms for the same network. The reason for these differences is again a combi-
nation of two factors. One is the complexity of each RMSA decision: FF is clearly the less
complex algorithm while the Mixed RMSA variants are the more complex ones. The second
is the performance of each algorithm in terms of non-disrupted demand: the most efficient
algorithms minimize the number of disrupted lightpaths and the required RMSA decision in
the failure state becomes quicker as it involves a smaller number of affected demands.

As a final note, recall that the node weights defining the probability of each node being
discovered by the attacker were assumed to be wi = 10 for the DC nodes and wi = 1 for
all other nodes. Some additional simulation tests were conducted (not reported here) with
different weight sets. The conclusions between the different proposed RMSA algorithms are
similar to the ones reported here as long as the ratio between the highest weight and the
lowest weight is significant. When this ratio is small, the probability of each node being
attacked (when an attack is realized) becomes similar among all nodes and the path disaster
availability of candidate paths becomes inversely proportional to the number of links of the
path. In this case, the maximization of the path disaster availability tends to select the same
paths as the minimization of the number of assigned FSs in all links of the path (the second
considered spectrum usage metric used in the Mixed RMSA Variant 3) as the number of links
of the path becomes the main optimization factor of both metrics. Again the Mixed RMSA
Variant 3 is the best overall algorithm but the difference between its performance and the
performance of the other RMSA algorithms becomes smaller than the ones reported here. In
particular, the FF algorithm becomes better as it selects the first path with enough available
spectrum resources considering the paths ordered from the shortest to the longest optical
length and there is a strong positive correlation between the optical length of a path and its
number of links.

5.6 Conclusions

In EONs, the RMSA algorithm rules the way the optical spectrum of the EON is assigned
to each service demand with the primary goal of using the spectrum resources in an efficient
way. Then, other goals can also be addressed as long as the spectrum usage efficiency is not
jeopardized. One such goal is the resilience of the EON to large-scale failures and one source
of such failures is malicious human activities. In terrorist attacks, although node shutdowns
are harder to realize than link cuts, they are the most rewarding in the attackers’ perspective
since the shutdown of one node also shuts down all its fiber links.

In a previous work, a path disaster availability metric was proposed for the RMSA decision
which takes into account the probability of each path not being disrupted by a multiple node
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failure. Here, we have proposed a set of RMSA algorithms that make use of the path disaster
availability metric for dynamic EONs where requests arrive randomly one at a time and the
accepted ones last in the network for a random time duration.

To evaluate the proposed RMSA algorithms, we have developed an event-driven simulator
able to assess the spectrum usage efficiency of the different RMSA algorithms and also their
resilience to multiple node failures assessed by 2 parameters: the average non-disrupted de-
mand and the average surviving demand. All algorithms were evaluated through simulation
considering a mix of unicast and anycast services in 3 well-known topologies and, in the fail-
ure cases, a restoration mechanism where the non-affected lightpaths remain unchanged and
the demands of the affected lightpaths are reassigned as much as possible in the spectrum
resources of the surviving network.

In the simulations, we have compared two commonly used RMSA algorithms (FF and
LFS) with different proposed RMSA algorithms using the path disaster availability metric: the
PDA algorithm and the 3 variants of the Mixed RMSA algorithm. PDA uses the path disaster
availability metric as its primary criterion. The 3 variants of the Mixed RMSA combine in
three different ways the path disaster availability metric with 2 spectrum usage metrics: the
lowest assigned frequency slot and the number of assigned frequency slots. Moreover, the
combination takes into consideration the current load of the EON so that the resilience to
multiple node failures has a higher weight in the RMSA decision when the EON is lightly
loaded while the spectrum usage metrics have a higher weight in the RMSA decision when
the EON is heavily loaded.

The simulation results have shown that the RMSA algorithm that combines the path
disaster availability with the two spectrum usage metrics (named Mixed RMSA Variant 3
algorithm) is the best trade-off between the spectrum usage efficiency and the resilience of
the EON to multiple node failures: this algorithm is the most efficient in terms of spectrum
usage (reaching the lowest level of rejected bit-rate) and, concerning the resiliency to multiple
node failures, it is the most efficient in terms of average surviving demand and almost as
efficient as the PDA algorithm in terms of average non-disrupted demand.
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Appendix A: Critical Node Detection with

Connectivity based on Bounded Path Lengths

Abstract: For a given graph representing a transparent optical network, a given weight as-
sociated to each node pair and a given positive integer c, the Critical Node Detection problem
variant addressed here is the determination of the set of c nodes that, if removed from the
graph, minimizes the total weight of the node pairs that remain connected. In the context of
transparent optical networks, a node pair is considered connected only if the surviving net-
work provides it with a shortest path not higher than a given positive value T representing
the optical transparent reach of the network. Moreover, the length of a path depends both on
the length of its links and on its number of intermediate nodes. A path-based Integer Linear
Programming model is presented together with a row generation approach to solve it. We
present computational results for a real-world network topology with 50 nodes and 88 links
and for c = 2 up to 6. The optimal results are compared with node centrality based heuristics
showing that such approaches provide solutions which are far from optimal.

Keywords: Critical node detection, Transparent optical networks, Path model, Decompo-
sition approach
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A.1. Introduction

A.1 Introduction

For a given network, Critical Node Detection (CND) problems aim to optimally remove a
subset of nodes (the critical nodes) in order to optimize or restrict a given network degradation
metric. The problem can be defined either by upper-bounding the number of critical nodes
and maximizing the degradation metric, or by lower-bounding the degradation metric and
minimizing the number of critical nodes.

One most used network degradation metric is the pairwise connectivity defined as the num-
ber of node pairs that remain connected when the critical node set is removed, as in [ACEP09].
This work considers a given number c and define CND as the identification of c critical nodes
minimizing the pairwise connectivity showing that the problem is NP-hard. It proposes a
compact Integer Linear Programming (ILP) model which is not able to solve realistic sized
instances, and a multi-start local search heuristic as an alternative for large problem instances.
The work in [VBP14] addresses two CND variants. The first variant is the same as defined
in [ACEP09]. In the second variant, for a given integer L, the aim is to identify a minimum
set of critical nodes, so that the largest connected component in the remaining graph contains
no more than L nodes. For both variants, the authors propose alternative more compact ILP
models, together with reformulations and valid inequalities. In [SGL12], an ILP model with
a non-polynomial number of constraints is proposed to the minimum pairwise connectivity
CND version and a branch-and-cut method is described exploiting the fact that the linear
relaxation of the model can be solved in polynomial time. In [SdSM18], a weighted version
of the pairwise connectivity is used as the network degradation metric, i.e., a weight is asso-
ciated to each node pair and the aim is to minimize the total weight of the connected node
pairs. This work proposes ILP models which are more efficiently solved by standard solvers
than the ones proposed in [ACEP09, VBP14] and presents computational results showing
that realistic sized networks up to 75 nodes and 99 edges can be solved within seconds.

In [VPP15], the CND problem is dealt with considering a distance-based connectivity
metric, i.e., to take into consideration not only the node pairs that become disconnected
but also the shortest path distance penalties between node pairs that remain connected.
For a given graph with associated node costs and a given cost budget, this work considers
the identification of a set of nodes within the budget whose removal maximally degrades the
connectivity metric. It proposes a general ILP model that can be adapted to different distance-
based metrics by proper parameter definition. In [DXT+12], the critical elements can be
either nodes or links. In this work, the aim is to identify a minimum cardinality critical set of
elements, referred to as a β−disruptor, whose removal results in a given pairwise connectivity
target (0 ≤ β < 1 denotes the connectivity fraction target). More recently, [DT15] assumes a
budget constraint considering associated link and node costs, and extends the previous work
in [DXT+12] to the case where the β−disruptor can be a mix of links and nodes. In both
works, approximation methods are proposed to solve the different problem variants.

CND problems have been considered in different contexts (social networks, power grids,
military networks, biology, and so on). Recently, CND problems are gaining special attention
in the vulnerability evaluation of telecommunication networks to large-scale disasters. Disas-
ter based failures can seriously disrupt any telecommunication network due to either natural,
technological or malicious human causes [RHC+16] and a key component when dealing with
these issues is the vulnerability evaluation of current networks against such failures [GTE+16].
In the particular case of malicious human attacks, node shutdowns, although harder to re-
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alize, are the most rewarding in the attackers perspective. The solutions provided by CND
for a given number c are a worst-case scenario for simultaneous failures of up to c nodes and,
when comparing different network topologies, the higher the CND value is, the more robust
the network becomes to such failures.

In here, we study the CND problem in the context of transparent optical networks. In such
networks, data is converted at the source into light, routed to the destination through an all-
optical path, named lightpath, and converted back to electronic domain at the destination. To
work properly, the routing path from source to destination of a ligthpath must be bounded
by a transparent reach value which is imposed by the optical degradation suffered by the
lightpath both on fibre links and on intermediate optical nodes. The optical degradation
suffered by a lightpath while traversing an intermediate node is usually modelled by a given
fibre length value δ, i.e. by considering it equivalent to the degradation incurred due to the
transmission over a given fibre of length δ.

If some network nodes are considered critical due to some reason, then, the optical network
design must take into consideration this fact. An example is [BdSA18] where the network
design approach proposed in [AdSD16] is adapted to the design of a transparent optical
network minimizing the impact of the simultaneous failure of a given set of critical nodes. In
that work, the critical node set is given while here the aim is to determine the set of critical
nodes of a given transparent optical network.

The CND variant addressed here considers, as in [SdSM18], a given weight associated to
each node pair and a given positive integer c defining the number of critical nodes. Never-
theless, differently from all previous works, in this problem variant, a node pair is considered
connected only if the surviving network provides it with a shortest path not higher than a
given positive value T representing the transparent reach of the optical network. Moreover,
the length of a path depends both on the length of its links and on its number of intermediate
nodes. To describe the problem in a compact way, we would need an arc-based ILP model
which requires for each pair of nodes many additional arc variables and flow conservation
constraints to define the associated path. Instead, we define the problem with a path-based
formulation, as in [SGL12], and we propose an exact algorithm based on row generation to
solve it. Finally, as in other works for other CND problem variants ([DT15, DXT+12, VBP14])
, we compare the optimal solutions of the exact method with node centrality based heuristics
showing that such approaches provide solutions which are far from optimal.

The paper is organized as follows. Section A.2 describes the path-based ILP model defining
the CND problem in the context of transparent optical networks. Section A.3 describes the
row generation based approach used to solve the problem. Section A.4 describes the node
centrality based heuristics used in the computational results. The computational results are
presented and discussed in Section A.5. Finally, Section A.6 presents the main conclusions of
the work.

A.2 Path-based ILP model

Consider a transparent optical network represented by a graph G = (N,E) where N =
{1, ..., n} is the set of network nodes and E ⊆ {(i, j) ∈ N×N : i < j} is the set of fibre links.
For each link (i, j) ∈ E, parameter lij represents its length. For each pair of nodes (i, j),
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with i ∈ N, j ∈ N, i < j, parameter wij represents the connectivity weight of the node pair.
The transparent reach of the network is denoted by parameter T > 0 and the fibre length
equivalent to the degradation suffered by a lightpath while traversing an intermediate node
is denoted by parameter δ > 0. We assume that lij ≤ T for all fibre links; otherwise, such
link is worthless and can be removed.

The set of all paths in G between i ∈ N and j ∈ N, i < j, with length not greater than
T, is denote by Pij . This set is defined only for non adjacent nodes, i.e., for (i, j) /∈ E.
For each path p ∈ Pij the following binary parameters are defined: parameter βpk indicates
whether node k (which can be an end node) is in path p or not, and parameter αpkt indicates
whether link (k, t), k < t is in path p or not. So, Pij is composed by all paths p such that
n−1∑
k=1

n∑
t=k+1

αpktlkt + δ
( n∑
k=1

βpk − 2
)
≤ T . Although δ can be incorporated in the link length and,

therefore, the use of parameters βpk could be omitted, we opted to include them in order to
ease the reading.

Parameter c ∈ N represents the number of critical nodes. For each node i ∈ N , we
consider a binary variable vi indicating whether i is a critical node or not. For each node pair
(i, j), with i, j ∈ N : i < j, the binary variable uij is 1 if nodes i and j are connected through
a path satisfying the transparent reach T, and 0 otherwise.

A path formulation for the CND problem is given by the following ILP model.

min z :=
n−1∑
i=1

n∑
j=i+1

wij uij (A.1)

s.t.
n∑
i=1

vi ≤ c (A.2)

uij + vi + vj ≥ 1, (i, j) ∈ E, (A.3)

uij +
n∑
k=1

βpkvk ≥ 1, (i, j) /∈ E, p ∈ Pij , (A.4)

vi ∈ {0, 1}, i ∈ N, (A.5)

uij ∈ {0, 1
}
, i, j ∈ N : i < j. (A.6)

The objective (A.1) is to minimize the total weighted connectivity in the surviving graph,
i.e. the sum of the weights of the node pairs that remain connected after the critical nodes
are removed. Constraint (A.2) ensures that at most c nodes are selected as critical nodes
(in any optimal solution, c nodes are selected). Constraints (A.3) guarantee that a pair of
adjacent nodes is connected if none of the two nodes is a critical node. Constraints (A.4) are
the generalization of constraints (A.3) for the node pairs that are not adjacent in G: the node
pair (i, j), with i < j, is connected if there is a path p ∈ Pij such that none of its nodes is a
critical node. Finally, constraints (A.5)-(A.6) are the variable domain constraints.

Notice that constraints (A.6) can be replaced by uij ≥ 0. Since variables vi are binary,
constrains (A.3)–(A.4) impose uij ≥ 1 if (i, j) is a connected node pair, and will be redundant
in presence of constraints uij ≥ 0, otherwise. As the objective function is a minimization
function, then uij = 1 if (i, j) is a connected pair and uij = 0 otherwise. The resulting mixed
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integer linear problem (MILP) will be considered henceforward.

A.3 A row generation approach

The path formulation presented in the previous section includes the family of constraints
(A.4) whose number increases exponentially with the input data. The exact number of con-
straints depends on the graph topology, the length of the links and on the parameters T
and δ. However, the MILP can become too large for relative small size instances. Here we
propose an exact algorithm, based on row generation, where inequalities (A.4) are initially
ignored and the relaxed MILP problem is solved. Then, the separation problem associated
with inequalities (A.4) is solved. If a violated inequality is found, it is added to the model
and the MILP is solved again. The process is repeated until no violated inequality is found.
The exact algorithm is described in Algorithm A.1.

The separation problem associated with constraints (A.4) is solved in the following way.
First, we compute the subgraph that results from G when the critical nodes and the corre-
sponding incident edges are removed and we add δ to the length of all non-removed edges.
Then, we determine the shortest paths between all pairs of nodes in this subgraph with the
new lengths. Finally, each shortest path whose length is not higher than T + δ is used to
generate a new inequality (A.4) that is added to the model (by adding δ to each edge length
and since, for each path, the number of intermediate nodes is equal to the number of edges
minus one, the shortest path value with the new lengths is equal to the length value with the
original lengths plus δ).

Algorithm A.1 Exact algorithm for the CND problem.

1: Solve MILP model without constraints (A.4) and let (u∗, v∗) be the optimal solution
2: repeat
3: Set NCuts ← 0 and C ← {i ∈ N : v∗i = 1}
4: Update the subgraph graph GC = (N \ C,EC) where EC = {(i, j) ∈ E : i, j /∈ C}
5: for all node pair (i, j) /∈ EC with i < j do
6: Run Dijkstra algorithm (adding δ to the length of each edge) to find the shortest

path pij∈Pij and its length dij
7: if dij ≤ T + δ and u∗ij +

∑n
k=1 β

pij
k v∗k = 0 then

8: Add constraint (A.4) corresponding to path pij
9: NCuts ← NCuts +1

10: end if
11: end for
12: if NCuts > 0 then
13: Solve MILP model with the added constraints. Update (u∗, v∗)
14: end if
15: until Ncuts = 0
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A.4 Node centrality based heuristics

Heuristic methods based on node centrality measures are commonly used in the literature
to quickly compute sets of critical nodes. Algorithm A.2 presents a general heuristic frame-
work for using these measures. In each iteration a node is selected according to the chosen
node centrality measure (step 3) and removed from the graph (step 4). The heuristic finishes
when c nodes are selected.

Algorithm A.2 Iterative heuristic approach based on node centrality .

1: Set C ← ∅ and G′ ← (N,E)
2: for all k = 1 to c do
3: Using the selected node centrality measure, select the central node i of graph G′

4: Remove from graph G′ node i and all edges incident to node i
5: Set C ← C ∪ {i}
6: end for

We consider three node centrality measures to select the central nodes in graph G′:

� Node degree centrality. The selected node is the one with highest degree in graph G′.

� Node closeness centrality. The closeness of node i is defined as the sum of the inverse
of the distances between i and each of the remaining nodes: c(i) =

∑
j∈N\{i}

1
dij(G′) ,

where dij(G
′) is the shortest path length between nodes i and j in G′. The node with

highest closeness is selected.

� Node betweenness centrality. For graph G′, the betweenness of node i is the number
of shortest paths between all nodes in G′, with length not greater than T , that include
node i as an intermediate node. The node with highest betweenness is selected.

Again, the shortest path lengths computed for the Closeness and Betweenness centralities
consider the length δ associated to each intermediate node and are computed in the same
way as described in the previous section for the separation problem.

A.5 Computational results

Here we report the computational experiments carried out to test the proposed exact
solution approach for the CND problem and to compare it with the centrality based heuristics.
Additionally, some insight on the solutions for the CND problem is given.

All computations were performed using the optimization software Gurobi Optimizer ver-
sion 7.5.1, with programming language Julia version 0.6.0, running on a PC with a Intel Core
i5, 1.7 GHz (up to 2.4 GHz) and 6 GB RAM.

The test instances are based on the Germany50 network topology, a telecommunication
backbone network with 50 nodes and 88 edges [OWPT10]. The transparent reach depends
on the Optical Transport Units installed. Current values go up to 2500 km. Hence, for
the transparent reach parameter T we consider values in {1417, 1500, 1600, 1800, 2000, 2500},
where value 1417 is the maximum length among the shortest paths between all node pairs of

144



A.5. Computational results

Germany50 (a smaller value does not allow the network to be optically transparent between
all node pairs). In all cases, we have considered δ = 60 km.

Table A.1 presents the results obtained for c ∈ {2, 3, 4, 5, 6} and considering the scenario
where each pair of nodes has an unitary connectivity weight i.e. wij = 1 for all i, j ∈ N with
i < j. In addition to the number of critical nodes c and the transparent reach T given in the
first two columns, column UB provides the trivial upper bound when all pairs of remaining
nodes are connected (i.e., the critical nodes do not turn the surviving network into more than

one component), which is given by (n−c)×(n−c−1)
2 . The next three columns show the objective

function value (in this case of unitary weights it coincides with the total number of connected
node pairs after the removal of the critical nodes) of the feasible solution obtained with the
heuristic based on the corresponding centrality measure. Hence, a feasible solution with value
equal to UB means that all the remaining nodes are connected after the critical nodes have
been removed. The last four columns are obtained with the exact approach. Column CND
gives the optimal value, column Iterations gives the number of times the relaxed MILP was
solved running Algorithm A.1, column Time gives the total elapsed running time in seconds,
and column Cuts gives the total number of constraints (A.4) added to the model in order to
reach the optimal solution.

Although the node centrality measures are commonly used in the literature to quickly
compute critical node sets, it is possible to conclude from the results that these sets are not
minimizing the global connectivity of the graph. Nevertheless, the total running time of all
heuristics based on the node centrality take less than half a second (not presented in the
table), while the exact approach, in some cases, take almost one minute.

Figure A.1 presents a graphical scaled representation of the network and the optimal
critical node sets for each c ∈ {2, 3, 4, 5, 6}. Figure A.2 gives a similar representation of the
critical node sets selected using the node centrality based heuristics for c = 6. These figures
illustrate the reason behind the difference between the CND objective values and the number
of connected node pairs obtained using node centrality based methods. On one hand, if
the critical node set is optimally selected (i.e minimizing the global connectivity), the graph
resulting from the removal of the critical nodes is disconnected into several components.
On the other hand, node centrality based methods do not aim to disconnect the graph but
only to select the most influential nodes (using node centrality criteria), which results is less
disconnected graphs. When the resulting graph is not disconnected, the total number of
connected node pairs increases for larger transparent reach values up to a point such that its
value becomes equal to the upper bound.

Regarding the impact of the transparent reach value T in the results, Table A.1 shows
that this parameter has little impact on the CND optimal value for this network. This can be
explained by observing that when the critical nodes are removed from graph G, the resulting
graph becomes disconnected and each resulting component fully satisfies connectivity for any
T ≥ 1417 km. However, this behaviour is not observed when node centrality based methods
are used. In several instances the total number of connected node pairs increases for larger
transparent reach values T to a point that the upper bound of the problem is reached. In this
case, the graph resulting from the removal of the selected critical nodes is totally connected,
as can be seen in Figure A.2 for the Degree and Closeness cases.

In order to test the effect of having different connectivity weights between different pairs
of nodes, next we consider the case where the nodes corresponding to the five largest German
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Figure A.1: Germany50 on top left, and the network resulting from the removal of the optimal
critical node set for each size c ∈ {2, 3, 4, 5, 6} (for any T ≥ 1500).

Figure A.2: The network resulting from the removal of node sets computed using centrality
methods: Degree, Closeness and Betweenness, respectively (for c = 6).
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Table A.1: Computational results for unitary weights.

c T (km) UB Degree Closeness Between. CND Iterations Time (s) Cuts

2

1417

1128

1126 1127 1126 1026 17 36 3645
1500 1128 1128 1128 1036 18 46 3689
1600 1128 1128 1128 1036 18 49 3756
1800 1128 1128 1128 1036 18 57 3816
2000 1128 1128 1128 1036 18 54 3826
2500 1128 1128 1128 1036 18 54 3826

3

1417

1081

1076 1076 1060 711 5 3 2557
1500 1081 1081 1071 711 5 3 2603
1600 1081 1081 1081 711 5 3 2593
1800 1081 1081 1081 711 5 3 2620
2000 1081 1081 1081 711 5 3 2620
2500 1081 1081 1081 711 5 3 2620

4

1417

1035

1025 880 834 640 11 20 2892
1500 1032 907 869 640 11 25 2969
1600 1034 929 908 640 10 19 3031
1800 1035 976 950 640 10 21 3157
2000 1035 1010 989 640 10 22 3273
2500 1035 1035 1035 640 10 22 3359

5

1417

990

980 809 682 496 7 9 3092
1500 987 836 711 496 7 10 3196
1600 989 867 743 496 7 11 3296
1800 990 924 804 496 7 12 3429
2000 990 959 862 496 7 14 3518
2500 990 990 990 496 7 14 3600

6

1417

946

933 653 486 415 12 36 3319
1500 940 678 487 415 12 38 3407
1600 944 708 487 415 12 37 3492
1800 946 766 487 415 12 35 3574
2000 946 825 487 415 12 37 3607
2500 946 946 487 415 12 36 3615

cities (in terms of population) have higher impact than all other 45 nodes. First, we assign a
node weight of 4 to the nodes corresponding to the five larger cities and a node weight of 1
to all other nodes. Then, the connectivity weight wij between node i and node j is given by
the multiplication of the weights of the two nodes.

In Table A.2, we present the results obtained with the exact approach for the CND
problem with the weights computed as explained above. For these weight values an upper
bound (column UB) is obtained when the critical nodes are c nodes that do not correspond
to the largest cities and the resulting subgraph is fully connected. In these cases, the upper
bound is given by the number of node pairs with two largest cities multiplied by 42 plus the
number of node pairs with one largest city multiplied by 4 plus the number of node pairs with
no largest cities multiplied by 1, i.e. UB := 42× 5×4

2 + 4× 5× (45− c) + (45−c)×(45−c−1)
2 . The

remaining columns have the same meaning as the corresponding ones in Table A.1. The last
two columns were added to compare these cases against the unitary weights cases. Column
Con. Pairs gives the total number of connected node pairs after the removal of the critical
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Table A.2: Computational results for different weights.

c T (km) UB CND Iterations Time (s) Cuts Con. Pairs Prev. CND

2

1417

1923

1577 15 24 2755 1127 1026
1500 1577 14 21 2798 1127 1036
1600 1578 14 23 2830 1128 1036
1800 1578 14 23 2862 1128 1036
2000 1578 14 23 2868 1128 1036
2500 1578 14 22 2868 1128 1036

3

1417

1861

1224 6 6 2647 711 711
1500 1224 6 6 2672 711 711
1600 1224 6 6 2688 711 711
1800 1224 6 6 2698 711 711
2000 1224 6 6 2702 711 711
2500 1224 6 6 2702 711 711

4

1417

1800

1044 8 11 3291 675 640
1500 1044 8 12 3368 675 640
1600 1044 8 12 3432 675 640
1800 1044 8 12 3511 675 640
2000 1044 8 12 3525 675 640
2500 1044 8 12 3526 675 640

5

1417

1740

850 12 35 3902 526 496
1500 850 11 31 4052 526 496
1600 850 11 29 4184 526 496
1800 850 11 32 4374 526 496
2000 850 11 32 4507 526 496
2500 850 11 33 4697 526 496

6

1417

1681

653 10 26 3823 446 415
1500 653 10 27 3981 446 415
1600 653 10 29 4125 446 415
1800 653 10 29 4179 446 415
2000 653 10 30 4278 446 415
2500 653 10 31 4377 446 415

nodes of these cases. Column Prev. CND gives the (previous) CND optimal value for the
unitary weights cases.

Concerning the performance of the exact algorithm proposed in Section A.3, by comparing
the number of iterations, running time and number of added cuts between Table A.1 and
Table A.2, one can observe that the results are nearly identically. That means the weights
do not have a great impact on the performance of CND method presented in Algorithm A.1.
Concerning the number of connected node pairs of the CND solutions, as expected, the
number of connected node pairs considering different weights is higher than in the previous
cases. This is because now the optimal set of critical nodes is a mixture between selecting
nodes representing the largest cities and nodes that disconnect more the network.

Table A.3, presents the ratio between the optimal values and the corresponding theoretical
upper bounds. These results show that the more realistic scenario with different weights show
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Figure A.3: Germany50 with the five main cities highlighted on top left, and the network
obtained with the removal of the optimal node set for c ∈ {2, 3, 4, 5, 6} (T ≥ 1600).

that the network under consideration is less resilient to multiple node failures than the simplest
scenario of considering equal importance to all node pairs. Moreover, as expected for both
cases, the percentage of non-critical node pairs that remain connected decreases for larger
values of critical nodes c.

Table A.3: Ratio (%) between CND optimal value and the upper bound (T ≥ 1600).

c 2 3 4 5 6

Unitary 91.8 65.8 61.8 50.1 43.9

Weighted 82.1 65.8 58.0 48.9 38.9

Figure A.3 depicts the network where the five nodes corresponding to the largest cities
are highlighted in blue, and the optimal critical node sets obtained for the weighted values
and for the different values of c.

Comparing Figure A.3 with Figure A.1, one can observe that, with exception of c = 3, the
optimal critical node set changes when different weights are considered. For example, with just
two critical nodes, instead of disconnecting the graph (as in Figure A.1), the optimal solution
is obtained by selecting two nodes corresponding to largest cities. In the last scenario with
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6 critical nodes, the set of critical nodes changes considerably from the unitary weights to
the different weights case. With unitary weights, the CND solution splits the network into
three components each one with a large number of nodes. With different weights, the optimal
solution is also obtained by splitting the graph into three components but the components
are not balanced in terms of number of nodes (there is one component with only two nodes).
Instead, one node corresponding to a largest city is selected as a critical node and the other
four nodes representing largest cities are split among the 3 components.

A.6 Conclusions

In this work, we have addressed the Critical Node Detection (CND) problem in the context
of a real transparent optical backbone network, a problem which is gaining a special interest
in the vulnerability evaluation of networks. A path-based ILP model was proposed. Although
path-based ILP formulations are not as efficient as the compact models for the traditional
CND problem, such compact formulations do not allow to include directly the connectivity
constraints based on bounded path lengths, as imposed by transparent optical networks.
Based on the path formulation, an exact approach, based on row generation, was described
allowing to compute the optimal set of critical nodes for the Germany50 network topology.
The computational results also showed that the heuristics derived from the commonly used
node centrality measures to quickly identify critical nodes, are not able, in general, to identify
the optimal critical node set. Moreover, the results have shown that the tested backbone
network has not a topology resilient to multiple node failures. In fact, with a simultaneous
failure of only 10% of the network nodes (c = 5), it is possible to reduce the global connectivity
of the network in about 50%. On top of that, the computational results show that in the
more realistic scenario where node pairs have different weights, the simultaneous failure of
the critical nodes is able to reduce the network connectivity even more than in the unitary
weights case.

For a given network topology, the CND solution provides a worst-case measure of the
network vulnerability to multiple node failures. As future research, we aim to develop efficient
methods, both deterministic and stochastic, to upgrade the current network topology aiming
to improve its CND value turning it more robust to multiple node failures.
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Appendix B: Topology Design of Transparent

Optical Networks Resilient to Multiple Node

Failures

Abstract: Consider the resilience of a network defined by the average 2-terminal reliability
(A2TR) against a set of critical node failures. Consider an existing transparent optical net-
work with a total fibre length L. The first goal of this paper is to assess the resiliency gap
between the existing topology and a new network topology designed to maximize its resilience
with the same fibre budget L. The resiliency gap gives us a measure of how good the resilience
of existing network topologies are. Consider now that an existing network is upgraded with
new links aiming to maximize its resiliency improvement with a fibre budget L′. The second
goal of this paper is to assess how much the resiliency gap can be reduced between a good
upgraded solution and a network topology designed to maximize its resiliency with the same
fibre budget L+L′. The gap reduction gives us a measure of how close to the best resilience
the upgraded solutions can get for different values of L′. To reach these goals, we first describe
how the Critical Node Detection problem is defined and solved in the context of transparent
optical networks. Then, we propose a multi-start greedy randomized method to generate net-
work topologies, with a given fibre length budget, that are resilient to critical node failures.
This method is also adapted to the upgrade of an existing network topology. At the end,
we run the proposed methods on network topologies with public available information. The
computational results show that the resiliency gap of existing topologies is significantly large
but network upgrades with L′ = 10%L can significantly reduce the resiliency gaps provided
that such upgrades are aimed at maximizing the network resilience to multiple node failures.

Keywords: Transparent Optical Networks; Critical Node Detection; Resilient Network De-
sign; Disasters

F. Barbosa, A. de Sousa, and A. Agra. Topology design of transparent optical networks resilient to multiple
node failures. In 10th International Workshop on Resilient Networks Design and Modeling (RNDM), pages
1–8, 2018.
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B.1. Introduction

B.1 Introduction

Large-scale failures can seriously disrupt any telecommunications network due to either
natural, technological or malicious human activities [RHC+16] (two surveys conducted within
COST Action RECODIS are [GTE+16] on strategies to protect networks against large-scale
natural disasters and [FWG+16] on security challenges in communication networks). So, an
emerging research topic is the design of telecommunication networks enhancing their resilience
to large-scale failures. To reach this goal, we must first adopt a proper resiliency evaluation
metric and, then, we must investigate proper network design methods aiming to maximize
the network resiliency metric to large-scale failures.

This work addresses the design of resilient network topologies in the context of transparent
optical networks. Note that, in general, multiple failures might involve only links or nodes
and links (a node failure implies that its links also fail). For example, in malicious human
attacks, node shutdowns are harder to realize but are the most rewarding in the attackers
perspective (the shutdown of a single node is also able to shut down multiple links). Node
failures are more harmful to the resilience of networks and, so, we address the topology design
of transparent optical networks which must be resilient to multiple node failures.

For a given topology, if some nodes are considered critical due to some reason, the network
design should take this into consideration, as in [BdSA18] where the approach proposed in
[AdSD16] is adapted to the design of a transparent optical network minimizing the failure
impact of a given set of critical nodes. Here, we consider the resiliency metric defined by
the average 2-terminal reliability (A2TR) and, for a given network topology, we evaluate this
metric against a set of critical node failures. A2TR is defined as the number of node pairs
that remain connected if all critical nodes fail and the set of critical nodes is the optimal
solution of a Critical Node Detection (CND) optimization problem.

CND problems have been considered in different contexts and are gaining special at-
tention in the vulnerability evaluation of telecommunication networks to large-scale failures
[GTE+16]. In [ACEP09], CND is defined as the detection of a given number c of critical
nodes aiming to minimize the number of connected node pairs. More recently, this and other
variants of CND have also been addressed [SdSM18, SGL12, VBP14, VPP15] but none of
these works addresses the CND problem in the context of transparent optical networks.

In these networks, data is converted into light in the source node and transmitted through
an all optical path, named lightpath, towards the destination node. Due to many optical
degradation factors, like attenuation, dispersion, crosstalk and other non-linear factors, there
is a maximum length, named transparent reach, for each lightpath to work properly. Moreover,
the length of a path depends both on the length of its links and on its number of hops. The
optical degradation suffered by a lightpath while traversing an intermediate node is usually
modelled by a given fibre length value d, i.e., by considering it equivalent to the degradation
incurred due to the transmission over a given fibre of length d. So, when accounting the A2TR
metric, the CND problem has to consider that two nodes are connected only if the surviving
network provides it with a shortest path within the transparent reach. Here, a proper Integer
Linear Programming (ILP) description of this CND problem variant is provided together with
a row generation approach to compute its optimal solution.

Other metrics have been used to evaluate the vulnerability of networks in other con-
texts [RCM17] or assuming multiple failures with geographical correlation between failing
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elements [NZCM11]. There are also works on improving the preparedness of networks to
multiple failures, some by changing the network topology [BGLR05, NYWF17, ZL12], while
others by proposing strategies to recover from failures [DTM14, STD15]. None of these works,
though, uses the optimal solution of CND to assess the vulnerability of networks. On the
other hand, in [dSMS17], CND is used but resiliency improvement is exploited by optimal
robust node selection on a given topology. The advantage of using CND is that it provides a
worst case resiliency analysis, i.e., in any failure involving the same number of failing nodes,
the resulting A2TR is never worse than the value provided by the solution of CND.

Here, we propose a multi-start greedy randomized method to generate network topologies,
with a given fibre length budget, that are resilient to critical node failures. The method is
also adapted to the upgrade of an existing topology. For an existing network with a total fibre
length L, the first aim is to assess the resiliency gap between the existing topology and a new
network topology designed to maximize its resilience with the same fibre budget L. If the
existing network is to be upgraded with new links within a fibre budget L′, the second aim is
to assess how much the resiliency gap can be reduced between a good upgraded topology and
a network topology designed to maximize its resiliency with the same fibre budget L+ L′.

The paper is organized as follows. Section B.2 describes a path-based Mixed ILP (MILP)
model defining the CND problem, a row generation approach used to solve it and centrality
based heuristics combined with a local search method to approximate it. Section B.3 proposes
the multi-start greedy randomized method to generate network topologies resilient to critical
node failures. The computational results are presented and discussed in Section B.4. Finally,
Section B.5 presents the main conclusions of this work.

B.2 Critical node detection problem

Consider a transparent optical network represented by an undirected graph G = (N,E)
where N = {1, ..., n} is the set of nodes and E ⊆ {(i, j) ∈ N×N : i < j} is the set of fibre
links. For each link (i, j) ∈ E, parameter lij represents its length.

The transparent reach of the network is denoted by parameter T > 0 and the fibre length
equivalent to the degradation suffered by a lightpath while traversing an intermediate node
is denoted by parameter d > 0. We assume that lij ≤ T for all (i, j) ∈ E; otherwise, such
link is worthless and can be removed from G.

The set of all paths in G between i ∈ N and j ∈ N (with i < j and (i, j) /∈ E) with
length not greater than T is denoted by Pij . Each path p ∈ Pij is defined by the binary
parameters βpk , indicating whether node k (which can be an end node) is in p or not, and αpkt
indicating whether link (k, t), k < t is in p or not. So, Pij is composed by all paths p such

that

n−1∑
k=1

n∑
t=k+1

αpktlkt + d
( n∑
k=1

βpk − 2
)
≤ T .

B.2.1 Path-based MILP model

For each node i ∈ N , we consider a binary variable vi indicating whether i is a critical
node or not. For each node pair (i, j), with i, j ∈ N : i < j, the binary variable uij is 1 if nodes
i and j are connected through a path satisfying the transparent reach T, and 0 otherwise.
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Then, for a given number c ∈ N of critical nodes, a path formulation for the CND problem
is given by the following ILP model.

min z :=

n−1∑
i=1

n∑
j=i+1

uij (B.1)

s.t.
n∑
i=1

vi ≤ c, (B.2)

uij + vi + vj ≥ 1, (i, j) ∈ E, (B.3)

uij +

n∑
k=1

βpkvk ≥ 1, (i, j) /∈ E, p ∈ Pij , (B.4)

vi ∈ {0, 1}, i ∈ N, (B.5)

uij ∈ {0, 1
}
, i, j ∈ N : i < j. (B.6)

The objective (B.1) is to minimize z defined as the total number of connected node pairs in
the surviving graph (i.e. the graph given by removing all critical nodes from G). Constraint
(B.2) ensures that at most c nodes are selected as critical nodes (in any optimal solution, c
nodes are selected). Constraints (B.3) guarantee that a pair of adjacent nodes is connected if
none of the two nodes is a critical node. Constraints (B.4) are the generalization of constraints
(B.3) for the node pairs that are not adjacent in G: node pair (i, j) is connected if there is
one path p ∈ Pij such that none of its nodes is a critical node. Constraints (B.5)-(B.6) are
the variable domain constraints.

Note that, since variables vi are binary, constrains (B.3)–(B.4) impose uij ≥ 1 when
nodes i and j are connected, which then, due to the objective function, forces uij = 1.
Therefore, constraints (B.6) can be replaced by uij ≥ 0. The resulting Mixed Integer Linear
Programming (MILP) model will be considered henceforward.

B.2.2 Row generation approach

The exact number of constraints (B.4) of the MILP model depends on the graph topology,
the link lengths and the values of T and d. However, the model becomes too large for relative
small sized instances. Here, we propose a row generation approach to solve it. The exact
algorithm is described in Algorithm B.1.

Initially, inequalities (B.4) are ignored and the relaxed MILP problem is solved. Then, the
separation problem associated with inequalities (B.4) is solved, all violated inequalities are
added to the model and the MILP is solved again. The process is repeated until no violated
inequality is found.

The separation problem associated with constraints (B.4) is solved in the following way.
We determine a subgraph GC removing from G the critical nodes and the corresponding
incident edges (GC = (N \ C,EC)) and adding d to the length of each edge in EC . Note
that the number of intermediate nodes of a path is equal to the number of edges minus one.
As a consequence, the shortest path value in GC is equal to the path length plus d. So, we
determine the shortest path in GC between all pairs of nodes i and j in N \ C, such that
(i, j) /∈ EC , using Dijkstra algorithm, and each shortest path whose length is not higher than
T + d is used to generate a new inequality (B.4) that is added to the model.
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Algorithm B.1 Exact algorithm for the CND problem

1: Solve the MILP model without constraints (B.4); let (u∗, v∗) be the optimal solution
2: repeat
3: Set NCuts ← 0 and C ← {i ∈ N : v∗i = 1}
4: Compute subgraph GC = (N \ C,EC) where EC = {(i, j) ∈ E : i, j /∈ C}
5: for all node pair (i, j) /∈ EC with i < j do
6: Run Dijkstra algorithm (adding d to the length of each edge) to find the shortest

path pij∈Pij and its length dij
7: if dij ≤ T + d and u∗ij +

∑n
k=1 β

pij
k v∗k = 0 then

8: Add constraint (B.4) corresponding to path pij
9: NCuts ← NCuts +1

10: end if
11: end for
12: if NCuts > 0 then
13: Solve MILP model with the added constraints. Update (u∗, v∗)
14: end if
15: until Ncuts = 0

B.2.3 Centrality based heuristics

Heuristic methods based on centrality measures can be used to compute critical node sets
because they run very quickly although not providing optimal solutions.

Algorithm B.2 presents a general heuristic framework for using these measures: in each
iteration of the For cycle, a node is selected according to the centrality measure chosen (steps
3 and 4) and removed from the graph (step 5). These heuristics will be used later on in the
network design task as a means to shorten the evaluation runtime of solutions. Preliminary
tests have shown that these heuristics are worthwhile with the following centrality measures:

� Degree centrality. The central node in step 3 is the node with highest degree in the
current graph G′.

� Betweenness centrality. In the current graph G′, the betweenness of node i is the number
of shortest paths (adding d for each intermediate node) between all nodes with length
not greater than T that include node i as an intermediate node. The central node in
step 3 is the node with highest betweenness.

Algorithm B.2 Iterative heuristic based on a centrality measure

1: Set C ← ∅ and G′ ← (N,E)
2: for all k = 1 to c do
3: Select the central node i ∈ N of graph G′

4: Set C ← C ∪ {i}
5: Remove from G′ node i and all its incident edges
6: end for
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B.2.4 Local search approach

Note that, for a given set of nodes C ⊂ N with |C| = c, we can compute in polynomial
time its CND value z by determining the total number of shortest paths with length not higher
than T between all node pairs in the surviving graph (i.e., the graph that results from G by
removing the set of nodes C and corresponding incident edges). So, in order to potentially
improve the solutions obtained with the previous heuristics, we also consider a node based
local search method (described in Algorithm B.3) that evaluates each swap of a critical node
by a non-critical neighbour node in G.

Algorithm B.3 Local Search Method

1: Given a critical node set C ⊂ N with |C| = c and its CND value z
2: repeat
3: for all i∈C, j∈N\C :

(
min(i, j),max(i, j)

)
∈ E do

4: Cji ← (C\{i}) ∪ {j} and compute its CND value zji
5: end for
6: if min{zji } < z then

7: Update z ← min{zji }, and C ← Cji accordantly
8: end if
9: until z is not updated

B.3 Network design problem

In this section, we propose a multi-start greedy randomized algorithm to generate network
topologies, with a fibre length budget given by B, that are resilient to critical node failures. In
the proposed algorithm, the evaluation of each network topology uses the methods described
in the previous section.

In general, a greedy randomized algorithm builds a network topology by starting with a
graph with an empty set of fibre links G = (N, ∅) and randomly selecting one link at a time
until no new link can be added within the given budget B.

A key issue of this approach is how to define the probability P
(
(i, j)

)
of each new link (i, j),

with i < j, being selected so that the method can efficiently find good network topologies.
After testing multiple strategies, the best results were obtained by guaranteeing that at least
one end node of each new link is one of the lowest degree nodes of the current partial topology
and by giving an higher probability to shorter links.

After fine-tuning, the best algorithm was obtained considering the probabilities as follows.
First, consider that at each step the set of already selected links is E, δi is the degree of node
i in G = (N,E) and the remaining budget is BR = B −

∑
(i,j)∈E lij . Then, for all node pairs

(i, j) /∈ E such that lij ≤ BR and at least one of the nodes (i or j) has the lowest degree in
G = (N,E) (i.e., min{δi, δj} = min{δk : k ∈ N}), the probability is:

P
(
(i, j)

)
=

1

(|δi − δj |+ 1) lij
2 (B.7)

while for all other node pairs (i, j), P
(
(i, j)

)
= 0.
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Nevertheless, starting from an empty set of fibre links still did not allow to reach an
efficient algorithm. Instead, we have investigated different criteria to adopt an initial non-
empty set E0 of fibre links. The most efficient algorithm was obtained by using the Relative
Neighbourhood Graph (RNG) [Tou80] as E0 which is defined as follows: nodes i, j ∈ N are
connected by a link if and only if there is no other node k ∈ N\{i, j} such that lik ≤ lij and
ljk ≤ lij . Our preliminary tests have shown that this graph provides a good initial balance
between connectivity and amount of used fibre.

The resulting algorithm is described in Algorithm B.4. Note that this algorithm can be
easily adapted to the upgrade of an existing network topology by setting E0 in step 1 with
the link set of the existing topology instead of using the RNG.

Algorithm B.4 Greedy Randomized Generation

1: Compute initial graph G = (N,E0)
2: Set BR ← B −

∑
(i,j)∈E lij

3: repeat
4: Select a new link (i, j) with probabilities given by (B.7)
5: E ← E ∪ {(i, j)}
6: BR ← BR − lij
7: until P

(
(i, j)

)
= 0, for all i, j ∈ N : i < j

Multiple runs of Algorithm B.4 generate different topologies. So, in a multi-start greedy
randomized algorithm, we run multiple times Algorithm B.4, evaluate the CND value z of
each generated topology and store the topology with the highest z among all. The resulting
algorithm is presented in Algorithm B.5 with a stopping criteria given by maximum runtime.

Depending on the purpose of the algorithm, the initial topology Ḡ = (N, Ē) is set dif-
ferently in step 1. When the algorithm is used to upgrade an existing topology, the initial
topology is set to Ḡ = (N, ∅) with its CND value z̄ = 0. When the algorithm is used to
generate a topology better than a given one defined by a graph G and with a CND value z,
then, Ḡ is set to G and its CND value z̄ is set to z.

Recall that in the design of transparent optical networks, a topology is only valid if
it is optically transparent, i.e., if the shortest path (adding d for each intermediate node)
between each node pair is not higher than T for all node pairs. So, each topology generated
in step 3 is first validated in step 4 and discarded before evaluation if it is not optically
transparent. Moreover, when the initial topology Ḡ is 2-connected, we also require the solution
of the algorithm to be 2-connected and discard the topologies accordingly. In the context of
transparent optical networks, a topology is 2-connected if it is optically transparent for every
removal of a single node.

In steps 5-19, each valid topology is evaluated saving as best topology the solution with
the highest CND value z̄. Note that the most time consuming part of Algorithm B.5 is the
evaluation. The rationale of this algorithm is to use the heuristics described in the previous
section to evaluate each generated topology and discard it whenever its objective value is lower
than the current best solution z̄. As a consequence, the exact method to detect the critical
nodes only runs if none of the heuristics discard the topology under evaluation. Moreover,
they are run from the fastest (Degree centrality), in terms of runtime, to the most time
consuming (Exact CND method).
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Algorithm B.5 Multi-Start Greedy Randomized Algorithm

1: Initialize Ḡ = (N, Ē) and its CND value z̄
2: repeat
3: Generate a new graph G = (N,E) using Algorithm B.4.
4: if G is a valid topology then
5: Run Algorithm B.2, using Degree centrality
6: Compute CND value zDeg from that node set
7: if zDeg ≥ z̄ then
8: Run Algorithm B.2, using Betweenness centrality
9: Compute CND value zBet from that node set

10: if zBet ≥ z̄ then
11: Run Algorithm B.3, using node set corresponding to min{zDeg, zBet}, and com-

pute zLS
12: if zLS ≥ z̄ then
13: Run Algorithm B.1, obtaining zMILP
14: if zMILP ≥ z̄ then
15: Ḡ← G and z̄ ← zMILP
16: end if
17: end if
18: end if
19: end if
20: end if
21: until maximum runtime reached

B.4 Computational results

All computational results were obtained using the optimization software Gurobi Optimizer
version 7.5.1, with programming language Julia version 0.6.0, running on a PC with an Intel
Core i7, 2.3 GHz and 6 GB RAM. Following [RKD+13], we have assumed a transparent reach
T = 2000 km corresponding to the use of OTU-4 lightpaths with a demand capacity of 100
Gbps. Moreover, we have considered d = 60 km.

The network topologies selected in our computational experiments are all optically trans-
parent for T = 2000 km and are: Germany50 [OWPT10], PalmettoNet [KNF+11] and Mis-
souri Network Alliance (MissouriNA) [KNF+11]. Table B.1 presents their topology charac-
teristics in terms of number of nodes |N | and fibre links |E|, total number of node pairs,
minimum (δmin), average (δ̄) and maximum (δmax) node degree and an indication (in column
’2-C’) if the topology is (or is not) 2-connected.

Table B.1: Topology characteristics of each network.

Network |N | |E| Pairs δmin δ̄ δmax 2-C

Germany50 50 88 1225 2 3.52 5 Yes

PalmettoNet 45 64 990 1 2.84 5 No

MissouriNA 64 80 2016 1 2.50 5 No
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In all cases, the geographical location of nodes is publicly available but the geographical
routes of fibre links is not known. So, we have considered that each link follows the shortest
path over the surface of a sphere representing Earth. Table B.2 presents the resulting length
characteristics in terms of minimum (lmin), average (l̄), maximum (lmax) and total (L) link
length, and diameter, i.e., the highest length among the shortest paths (adding d for each
intermediate node) of all node pairs (all topologies are optically transparent for T = 2000 km
since all diameter values are below 2000).

Table B.2: Length characteristics (in km) of each network.

Network lmin l̄ lmax L Diameter

Germany50 26 100.7 252 8859 1417

PalmettoNet 19 67.0 177 4286 1298

MissouriNA 7 50.0 307 4001 1301

In the computational experiments, we have considered c ∈ {2, 3, 4, 5, 6} as the number of
critical nodes used to compute the resiliency metric z of each topology. For each network
and each c, we started by computing (with Algorithm B.5) a topology with a fibre budget B
equal to the total fibre length L of the original topology. Then, we computed an upgraded
topology for each original topology assuming a fibre budget L′ = p × L with p = 10% and
20%. Finally, we computed a topology with a fibre budget B = L + p × L also for p = 10%
and 20%. In each case, we gave a runtime limit of 5 hours to Algorithm B.5.

Table B.3 presents the resiliency value z of the best topologies obtained by the multi-start
greedy randomized algorithm. Rows ’Original’ refer to the original topologies (in column
’0%’) and upgraded topologies (in columns ’10%’ and ’20%’) while rows ’Generated’ refer to
the best topology solutions with a fibre budget B = L + p × L with p = 0%, 10% and 20%.
For each case, columns ’UB’ presents the trivial upper bound of z given by the number of
pairs of |N | − c surviving nodes.

Table B.3: Resiliency value z of all cases obtained by the multi-start greedy randomized
algorithm.

c
Network Germany50 PalmettoNet MissouriNA

Instance 0% 10% 20% UB 0% 10% 20% UB 0% 10% 20% UB

2
Original 1036 1081 1128

1128
513 821 861

903
946 1555 1659

1891Generated 1128 1128 1128 861 861 861 1714 1714 1771

3
Original 711 991 1035

1081
346 616 709

861
602 1362 1446

1830Generated 991 991 1035 676 709 744 1495 1500 1550

4
Original 640 830 906

1035
284 427 510

820
455 762 1039

1770Generated 867 906 906 510 582 582 1126 1194 1311

5
Original 496 640 756

990
176 325 380

780
338 618 758

1711Generated 666 756 790 379 409 480 841 917 1081

6
Original 415 498 606

946
123 235 286

741
253 457 550

1653Generated 543 606 658 266 322 358 694 717 784

The first observation of these results is that the resiliency values are lower for higher num-
ber of critical nodes c, which is without surprise since more node failures disrupt an higher
percentage of the network. Moreover, the resilience of the upgraded topologies is always signif-
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icantly better for higher budget value L′. Finally, the best topologies are always significantly
better than the original/upgraded ones for PalmettoNet and MissouriNA. Nevertheless, this
is not the case for Germany50 where the difference between the two types of solutions is
already small for higher values of c and even null for many cases of the lower values of c.
So, one major conclusion is that Germany50 is significantly more resilient to critical node
failures than PalmettoNet and MissouriNA. To understand this fact, recall from the topology
characteristics of the different networks (Table B.1) that Germany50 is the topology with the
highest average node degree and the only one which is 2-connected. These two characteristics
make this network more resilient than the two other networks.

More important then analysing the absolute resiliency values z, we need to analyse the
resiliency gap between the original/upgraded topologies and the best topologies computed
with the same fibre budget values. Figure B.1 plots in a bar chart these gaps, for all networks

and all values of c, computed as
zB−zO/U

zB
where zB is the resiliency value of the best topology

and zO/U is the resiliency value of the original/upgraded topology. Blue bars present the
resiliency gap between the best topology and the original topology. The resiliency gaps
between the best topologies and the upgraded topologies are presented in the purple and
green bars for p = 10% and 20%, respectively.

Figure B.1: Resiliency gaps
zB−zO/U

zB
(%) of all cases.

The blue bars of Figure B.1 show that the resiliency gaps are lower for Germany50 (but
still significant for a number of critical nodes c ≥ 3) and very large for PalmettoNet and
MissouriNA. These results reinforce the previous conclusion that Germany50 is more resilient
than the others but also show that, in all cases, existing network topologies are not resilient
to critical node failures. On the other hand, the resiliency gaps shown in the purple bars
(corresponding to topology designs with 10% more total fibre length) represent, in all cases, a
significant gap reduction when compared with the blue bars. This means that in all topologies
and for all considered number of critical nodes, adding new links to an existing topology with
a fibre budget of 10% enables solutions whose resiliency to critical node failures becomes
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closer to a topology designed to maximize this resilience. Interestingly, the results of the
green bars (corresponding to topology designs with 20% more total fibre length) are mixed,
i.e., in some cases, the additional 10% fibre budget enables a significant gap reduction while
in other cases, the reduction is negligible.

Finally, we can distinguish two groups of results. For a number of critical nodes c ≤ 3, the
additional fibre budget of 20% makes in all networks the resiliency gap to become very small.
For a number of critical nodes c ≥ 4, and in the less resilient PalmettoNet and MissouriNA
networks, the additional fibre budget of 20% is still not enough to make the resiliency gap
small. This means that more fibre links are required in the upgrade of existing networks to
reach the best resiliency to higher number of critical nodes.

Table B.4 presents, for each tested instance, the percentage of the total fibre length L
of the original topology that is common to the best topology computed with the same fibre
budget L. These results show that these percentage values are around 50%, with some small
differences, for all topologies and all values of c, showing that the best topologies, in terms of
resiliency to multiple node failures, are significantly different from the existing ones.

Table B.4: Percentage of the total fibre length of the original topology common to the best
topology.

c Germany50 PalmettoNet MissouriNA

2 43.6% 52.6% 47.1%
3 49.1% 52.1% 50.2%
4 45.8% 52.7% 49.5%
5 43.5% 51.1% 47.1%
6 46.3% 51.3% 48.0%

Average 45.7% 52.0% 48.4%

For illustrative purposes, Figure B.2 presents the original topologies and the best topolo-
gies with the same fibre budget L obtained for c = 3 critical nodes. To understand the
differences, links of the best topology not in the original topology are highlighted in dashed
blue and, in both cases, critical nodes are represented with red squares. Also, Figure B.3
presents the best upgraded solutions with L′ = 10%L and 20%L obtained also for c = 3 with
the additional links highlighted in dashed blue (again, critical nodes represented with red
squares). The analysis of these topologies show that:

Germany50: The critical node set splits the original network in two components (10 and 37
nodes each) while it only isolates two nodes from the others in the best topology. Moreover,
the critical node set isolates 2 nodes from the others in the 10% upgraded topology and a
single node in the 20% upgraded topology.

PalmettoNet: The critical node set splits the original network in three components (6, 13
and 23 nodes each) while it splits the best topology in only two components (5 and 37 nodes
each). Moreover, the critical node set splits the 10% upgraded topology in two components
(7 and 35 nodes) and the 20% upgraded topology in two components (4 and 38 nodes). In
this case, both the best topology and the two upgraded topologies are 2-connected.

MissouriNA: The critical node set splits the original network in three components (17, 20

163



B.4. Computational results

Figure B.2: Original topologies (top) and best topologies (bottom) for c = 3. Links not in
the original topology highlighted in dashed blue in the best topology (critical nodes in red
squares).

and 24 nodes each) while it splits the best topology in three components (1, 5 and 55 nodes
each). Moreover, the critical node set splits the 10% upgraded topology in two components
(9 and 52 nodes) and the 20% upgraded topology in two components (6 and 55 nodes). In
this case, the 20% upgraded topology is 2-connected but neither the best topology nor the
10% upgraded topology are, showing that the original MissouriNA is much less connected
and, therefore, requires more fibre length upgrades to become 2-connected.

This analysis clearly highlights that the best topologies with the same total fibre of existing
ones are much more resilient to critical node failures and the resiliency of existing topologies
can be improved with the addition of new links.

Another aspect of interest is the comparison of the node degree distributions between the
original topologies and the best topologies with the same total fibre. Figure B.4 shows these
distributions for the three network cases with the best topologies obtained for c = 3 critical
nodes (original topologies in black and best topologies in blue). Interestingly, in the best
topologies, there is a decrease of the number of nodes with the lowest and highest degrees
and an increase of the number of nodes with degrees closer to the average. This observation
also stands in the best topologies for the other values of c showing that resilient topologies
tend to have more homogeneous node degrees.
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Figure B.3: Best upgraded topologies with L′ = 10%L (top) and 20%L (bottom) for c =
3. Links added to the original topologies highlighted in dashed blue (critical nodes in red
squares).

Figure B.4: Node degree histograms of original topology (in black) and the best topology (in
blue) for c = 3.

Finally, recall that Algorithm B.5 (see Section B.3) uses heuristics in the evaluation of the
CND value z of each valid topology as a means to minimize the number of times the exact
method is used. In order to evaluate the efficiency of this strategy, Table B.5 presents the
average percentage of valid solutions that were discarded by the heuristics, row ’Success (%)’,
and the average runtime percentage the algorithm has spent while running the heuristics,
row ’Success (%)’, among all cases of each network topology and also among all cases of all
topologies (column ’Average’).

The results of Table B.5 show that both percentage values vary significantly between the
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Table B.5: Average percentage of discarded solutions and average runtime percentage of the
heuristics running Algorithm B.5.

Germany50 PalmettoNet MissouriNA Average

Success (%) 36.8 71.8 65.0 57.9

Time (%) 19.2 57.7 51.0 42.6

different network topologies. Nevertheless, in all cases, the percentage of discarded solutions
is always higher than the percentage of runtime spent by the heuristics. In the overall, almost
60% of the solutions were discarded at the cost of 42,6% of computational effort, showing that
indeed the use of heuristics has improved the overall computational efficiency of the proposed
multi-start greedy randomized algorithm.

B.5 Conclusions

In this work, we have addressed the topology design of transparent optical networks aiming
to maximize their resilience against critical node failures. We have proposed a multi-start
greedy randomized algorithm resorting to a MILP based method, using row generation, to
compute the critical nodes of each topology. The algorithm can be used both in the design
of network topologies and in the upgrade of existing topologies.

We have run the proposed algorithm on three network topologies with publicly available
information comparing the resiliency gap between the existing/upgraded topologies with the
best topologies designed to maximize its resilience with the same fibre budget.

The results have shown that the resiliency gap of existing topologies is significantly large
but network upgrades with L′ = 10%L can already reduce significantly the resiliency gaps
provided that such upgrades are aimed at maximizing the network resiliency to multiple node
failures.

Finally, comparing the best topologies with the existing ones, the best topologies are
characterised by a decrease of the number of nodes with the lowest and highest degrees and
an increase of the number of nodes with degrees closer to the average node degree. This
clearly shows that network topologies resilient to critical node failures tend to have more
homogeneous degrees among all their nodes.
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Appendix C: Evaluation and Design of Elastic

Optical Networks Resilient to Multiple Node

Failures

Abstract: Consider an existing Elastic Optical Network (EON) with a given topology com-
posed by nodes and connecting fibers, each fiber with a given spectrum capacity. Consider an
estimated set of demands to be supported and a routing, modulation and spectrum assign-
ment (RMSA) policy adopted by the operator both for the regular state and for the failure
states. First, we address the resilience evaluation of the EON to multiple node failures. We
adopt a worst-case approach by identifying the nodes (named critical nodes) whose simulta-
neous failure maximally reduce the demand percentage that is supported by the network and
we use this percentage as the resilience metric. Then, for the same estimated demands, the
same RMSA policy and a fiber budget equal to the total fiber length of the existing network,
we address the design problem aiming to determine a new EON maximizing the resilience
metric imposed by its critical nodes. We use a multi-start greedy randomized method that
generates multiple EONs and returns the best one, i.e., the EON with the highest resilience
metric. We run the evaluation and design methods on known network topologies. The com-
putational results let us (i) analyze the efficiency of the methods and (ii) assess how far the
resilience of existing networks are from the best ones.

Keywords: Elastic Optical Networks; Transparent Optical Networks; Critical Node Detec-
tion; Resilient Network Design; Disasters
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C.1. Introduction

C.1 Introduction

Large-scale failures are becoming more frequent in time and wider in scope severely dis-
rupting telecommunication networks and services [RHC+16]. So, both the impact evaluation
of large-scale failures on existing networks and the design of networks more resilient to large-
scale failures are becoming key issues (two surveys addressing these issues are [GTE+16] on
strategies to protect networks against large-scale natural disasters and [FWG+16] on security
challenges in communication networks).

Large-scale failures might involve only network links or network nodes and links (a node
failure implies that its links fail). For example, in malicious human attacks, node shutdowns
are harder to realize than link cuts but are the most rewarding in the attacker’s perspective
(a node shutdown also shuts down multiple links). Moreover, power outages shut down nodes
since fiber links do not require power supply. Here, we consider as large-scale failures the case
of multiple node failures as they are the most harmful.

In EONs, the optical spectrum of each fiber link is organized in frequency slots (FSs).
Each demand between a pair of nodes is routed over an end-to-end lightpath (we assume
a transparent optical network). On each direction of a lightpath, data is converted in the
source from electrical to optical domain using a modulation format (MF) emitting on a set of
contiguous FSs, transmitted through a routing path over the optical network and converted
back to electrical domain in the target node. At the network level, multiple lightpaths can
be set up if their FSs do not overlap on any fiber link.

Due to many factors, there is a maximum length, named transparent reach, for the routing
path of a lightpath. Also, the MF of a lightpath impacts both its transparent reach and its
number of FSs. For example, in a single carrier lightpath, a 16-QAM MF carries twice the
number of bits/symbol of the QPSK MF but imposes a shorter transparent reach. So, in
a shorter routing path, the same line rate (in bits/second) can be transmitted by 16-QAM
instead of QPSK with a half symbol rate which occupies less FSs [JKT+10]. Moreover,
OFDM enables each lightpath to be composed by a bunch of sub-carriers, which can be
partially overlapping in the spectrum domain reaching spectrum gains [CSO15, WCP11]. In
this case, multiple sub-carriers with uniform symbol rate and bits/symbol can be selected for
a required line rate so that the transparent reach of the lightpath is enough to the length of
its routing path [JKT+10].

So, for a required demand line rate, a more spectrum efficient MF configuration is one that
requires a smaller number of FSs but imposes a shorter transparent reach (the main principle
behind the distance-adaptive spectrum allocation strategies [JKT+10, TR17]). When the MF
of each required lightpath is fixed, the decision on the routing path and FSs of each lightpath
is known as the routing and spectrum assignment (RSA) problem. When multiple MFs are
available, the assignment problem includes the selection of the MF configuration to each
lightpath, which is known as the routing, modulation and spectrum assignment (RMSA)
problem and has been addressed in many works and different contexts [AFM+18, AR17,
CSO15, CTV11, GWK15, GZLZ12, JKT+10, KW11, TR17, WCP11, YZZY13, ZWA15].

The failure of multiple nodes on an EON has three different impact factors. First, all
demands with one end node which is a failure node are lost. Second, if the failure nodes
disconnect the network into different components, all demands with end nodes in different
components are also lost. Third, a demand whose routing path of its lightpath contains at
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least one failure node, if the demand is in the same network component, it might be reassigned
with a different lightpath. Then, its reassignment might require a different MF in a longer
routing path which, in turn, might require more FSs in more links. So, the network might
not have enough spectrum resources to reassign lightpaths to all such demands.

Consider an existing EON with a given topology composed by nodes and connecting fibers,
each fiber with a given capacity in number of FSs. Consider an estimated demand set and a
RMSA policy adopted by the operator both for the regular and for the failure states. First,
we address the resilience evaluation of the EON to multiple node failures. If the critical nodes
are given, the RMSA can maximize the total demand still supported when all critical nodes
fail, as in [BdSA18a] where the approach in [AdSD16] is adapted to such case. Here, the
critical nodes are not given. Instead, our resilience evaluation adopts a worst-case approach
by identifying the critical nodes as the set of nodes whose simultaneous failure maximally
reduce the demand percentage that is still supported. So, the critical nodes are the result
of an optimization problem and the obtained demand percentage is used as the resilience
metric. Then, for the same set of estimated demands, the same RMSA policy and a fiber
budget equal to the total fiber length of an existing EON, we address the design problem
aiming to determine a new EON maximizing the resilience metric imposed by its critical
nodes.

Critical Node Detection (in short, CND) problems have been considered in different con-
texts [ACEP09, SdSM18, SGL12, VBP14] and are gaining special attention in the vulner-
ability evaluation of telecommunication networks to large-scale failures [GTE+16]. Other
metrics have been used to evaluate the network vulnerability in other contexts [RCM17] or
assuming multiple geographical correlated failures [NZCM11]. There are also works on im-
proving the preparedness of networks to multiple failures, some by changing the network
topology [BGLR05, NYWF17, ZL12], while others by proposing strategies to recover from
failures [DTM14, STD15]. CND is used in [dSMS17] as a resilience metric in the optimal
robust node selection problem. Both the evaluation and network design of optical networks
resilient to multiple node failures were addressed in [BdSA18b]. In that work, though, the
RMSA is not considered as spectrum capacity of links is assumed to be infinite, i.e., the third
impact factor is ignored in the resilience evaluation.

The paper is organized as follows. Section C.2 describes the RMSA policy considered
both for the regular and for the failure states. Section C.3 presents the resilience evaluation
method while Section C.4 presents the EON design method. The computational results are
discussed in Section C.5. Finally, Section C.6 draws the main conclusions of the work.

C.2 Routing, modulation and spectrum assignment

For a given EON and a given set of demands, the RMSA policy rules the way lightpaths
are assigned both in the regular state and in any failure state. Here, we adapt the proposal
in [KW11] to both cases. Consider the EON topology represented by an undirected graph
G = (N,E) with a set of nodes N = {1, ..., |N |} and a set of links E ⊆ {(i, j) ∈ N×N : i < j}
whose lengths are represented as lij . Set F = {1, 2, ..., |F |} is the ordered set of FSs available
on each fiber link.

Set D is the estimated set of demands. Each d ∈ D is defined by its source node sd
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and target node td, sd < td (multiple demands between the same end nodes can exist and
we let their supporting lightpaths to have different routing paths). Here, we assume a single
line rate optical network (i.e., all demands require the same line rate in bits/second) but its
generalization to multiple line rates is straightforward.

To model the RMSA solution, we need two additional sets. Set M is the set of MF
configurations for the considered line rate. Each m ∈M is defined by its number of contiguous
FSs nm (this value includes the required guard band between lightpaths) and its transparent
reach Tm. Set Pd is the set of lightpath candidate paths to demand d ∈ D. The optical length
of path p ∈ Pd is the sum of its link lengths plus a length value ∆ per intermediate node
(which models the optical degradation suffered by a lightpath while traversing an intermediate
optical switch). Each path p ∈ Pd is defined by:

� the binary parameters βpk which are equal to 1 if node k (which can be an end node) is
in p or equal to 0 otherwise;

� the binary parameters αpij which are equal to 1 if link (i, j), i < j is in p or equal to 0
otherwise;

� the integer parameter np indicating the number of FSs of the most efficient MF config-
uration whose transparent reach is not smaller than the optical length of p.

In [KW11], each demand has a fixed required number of FSs. In our case, the required
number of FSs is np which depends on the candidate path p ∈ Pd. We associate to each d ∈ D
the parameter nd which gives the minimum number of FSs required by any of its candidate
paths p ∈ Pd, i.e., nd = minp∈Pd np. Consider set Pe as the set of all candidate paths of all
demands that include link e ∈ E. Similar to [KW11], a collision metric ce is computed for
each link e ∈ E given by ce =

∑
d∈D

∑
p∈(Pd∩Pe) np. Then, each candidate path p ∈ ∪d∈DPd

has an associated path length lp =
∑

e∈P ce used to break ties when selecting candidate paths.
All lp values are precomputed and used as parameters in the RMSA.

The RMSA policy for the regular state is given by Algorithm C.1, a greedy algorithm
that starts with an empty network (i.e., all FSs are free in all links) and assigns iteratively
to a demand d ∈ D, a lightpath p ∈ Pd and a set of np contiguous FSs. Each assignment is
the one that packs as much as possible the lightpaths in the lowest spectrum. Algorithm C.1
starts by computing the maximum value n among the nd values of all demands (Step 1) and
initializes set D̄ with all demands such that nd = n (Step 3). Then, for each candidate path
p of each demand in D̄ (Step 6), the algorithm computes the lowest set of np contiguous FSs
that can be assigned without overlap with previous assignments. The algorithm selects the
candidate path whose highest selected FS index is the lowest among all and, as a tiebreaker,
the one with the shorter path length lp (Steps 8 and 9). The selected path and associated set
of FSs is used to assign the lightpath to the corresponding demand (Step 12) and the demand
is removed from set D̄ (Step 13). When D̄ becomes empty, n is decreased and the algorithm
continues until n reaches 0.

A key issue in the RMSA is the set of candidate paths Pd to consider for each demand
d ∈ D. In [KW11], a k-shortest path algorithm is used with k = 3. Our tests have shown
that a value of k = 7 is required but not necessarily to all demands. The best strategy is to
consider for each demand d a number of candidate paths equal to the minimum between 7
and the number of nodes in the shortest path from sd to td plus one.
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Algorithm C.1 RMSA

1: Initialize n← maxd∈D nd
2: while n ≥ 1 do
3: D̄ ← {d ∈ D : nd = n}
4: while D̄ 6= ∅ do
5: f̄ ←∞, l̄←∞, d̄← {} and p̄← {}
6: for all p ∈ Pd, d ∈ D̄ do
7: f ← highest FS index of the lowest set of np contiguous FSs that can be assigned

on p to d without overlap with previous assignments
8: if f < f̄ or (f = f̄ and lp < l̄) then
9: f̄ ← f , l̄← lp, p̄← p and d̄← d

10: end if
11: end for
12: Assign to demand d̄ a lightpath on the candidate path p̄ and on the FSs from f̄−np̄+1

to f̄
13: D̄ ← D̄\d̄
14: end while
15: n← n− 1
16: end while

While the RMSA policy in the regular state is defined by Algorithm C.1, in a failure
state a slightly different variant is used. Lightpaths not disrupted by any failure node are
not changed. So, the algorithm considers the surviving network (i.e., without the failure
nodes and incident links) with the FSs occupied by the non disrupted lightpaths. For the
disrupted demands whose end nodes are in the same component, a new set of candidate paths
and associated path lengths is computed. Then, the RMSA is similar to Algorithm C.1 but
considers the demands d in increasing order of their nd values (as opposed to the decreasing
order of Algorithm C.1). Since the aim is to reassign as much as possible the disrupted
lightpaths, our tests have shown that the increasing order is better, on average, since the
lightpaths requiring less number of FSs can better fit in the initial fragmented spectrum.

C.3 Resilience evaluation problem

The EON resilience to multiple node failures measures their impact in the network capacity
to support the estimated demands. For a given number c ∈ N of failure nodes, we adopt
a worst-case approach by identifying a set of c critical nodes whose simultaneous failure
maximally reduce the demand percentage that is supported.

For a given EON and a given set of lightpaths (assigned by the RMSA policy to a given
set of demands), the determination of the critical nodes is a min-max bi-level optimization
problem: at the bottom level, the RMSA policy aims to maximize the demand percentage
that is supported by a given set of node failures; at the top level, the set of node failures aims
to minimize the demand percentage that the RMSA policy is able to support. We solve the
problem heuristically by computing 2 sets of failure nodes, running the RMSA policy for each
set and selecting the most damaging set as the critical node set.
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The first set of failure nodes is computed by solving the weighted version of the Critical
Node Detection (CND) problem shown to be efficiently solved by mixed integer linear pro-
gramming [SdSM18]. To compute the second set of failure nodes, we propose a Node Demand
Centrality (NDC) metric and use it in a greedy approach to iteratively select the failure nodes.
Next, we describe separately each of the two methods.

CND based method. For each node i ∈ N , consider a binary variable vi indicating
whether i is a critical node or not. For each node pair (i, j), with i < j, consider: (i) a weight
wij given by the sum of all demands d ∈ D whose end nodes are i and j, (ii) a set Nij which
is the set of adjacent nodes to i (on graph G) if the degree of node i is not higher than the
degree of node j, or the set of adjacent nodes to j otherwise, and (iii) a binary variable uij
which is 1 if nodes i and j are connected or 0 otherwise. For a given number c of critical
nodes, the CND problem is defined as:

min
∑

i,j∈N :i<j

wijuij (C.1)

s.t.

n∑
i=1

vi ≤ c , (C.2)

uij + vi + vj ≥ 1 , (i, j) ∈ E, (C.3)

uij ≥ uik + ujk −1 + vk, (i, j) /∈ E, k ∈ Nij , (C.4)

vi ∈ {0, 1} , i ∈ N, (C.5)

uij ∈ {0, 1} , i, j ∈ N : i < j. (C.6)

The objective (C.1) is to minimize the total weighted connectivity, i.e., the sum of the
weights of the node pairs that remain connected when the critical nodes are removed. Con-
straint (C.2) ensures that at most c nodes are selected as critical nodes (in optimal solutions,
c nodes are selected). Constraints (C.3) guarantee that a pair of adjacent nodes is connected
if none of the two nodes is a critical node. Constraints (C.4) are an efficient generalization of
constraints (C.3) for the node pairs that are not adjacent in G: node pair (i, j) is connected
if there is a non-critical node k ∈ Nij such that k is connected to both i and j. Constraints
(C.5-C.6) are the variable domain constraints. As noted in [SdSM18], constraints (C.6) can
be replaced by uij ≥ 0, reducing the number of binary variables.

The set of failure nodes is computed by determining an optimal solution of this model
using an available ILP solver. Note that such solution is an heuristic solution for our problem
since it does not take into account neither the transparent reach of lightpaths nor the spectrum
capacity of fiber links.

NDC (Node Demand Centrality) based method. The proposed demand centrality
of each node k ∈ N aims to measure the impact of the node failure on the demands between
all other node pairs. Let us denote as pd the lightpath p ∈ Pd assigned to a demand d ∈ D.
The resources used by each lightpath pd, denoted as Sd, are given by its number of FSs times
the number of hops of its routing path, i.e., Sd = nd ×

∑
(i,j)∈E α

p
ij . Then, the node failure

impact is measured as a combination of two quantities: (i) Q1 with the total demand that can
no longer be supported and (ii) Q2 with the minimum resources increase required to reassign
new lightpaths to demands that can be connected.
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So, for each node k ∈ N and for each lightpath assigned to a demand d between a pair
of other nodes whose routing path includes k, we compute the candidate path p′d ∈ Pd that
does not include k and requires the least amount of resources S′d. If such candidate path does

not exist, demand d is added to Q1. If it exists and S′d > Sd, the value
S′
d−Sd
Sd

is added to
Q2, or otherwise the demand is ignored. At the end, the demand centrality rk of node k is
rk = (Z × Q1) + Q2. The factor Z defines the relative weight between the two quantities.
Based on preliminary tests, the best results are obtained when Z is either the highest value

of
S′
d−Sd
Sd

, if any of such values was added to Q2, or is 1 otherwise.

The set of failure nodes C is determined with a greedy algorithm, presented in Algo-
rithm C.2, which uses the demand centrality value of each node to select the failure nodes.
The algorithm starts with graph G (representing the EON network) and set D (of all demands
with lightpaths assigned by the RMSA policy) in Line 1. On each cycle, the algorithm (i)
computes the demand centrality rk of each node k (Lines 4–23), (ii) computes the node k̄
with the highest demand centrality (Line 24), (iii) selects node k̄ as a failure node (Line 25),
(iv) the demands routed through node k̄ are removed from D (Line 26) and (v) node k̄ and its
incident links are removed from G (Line 27). The algorithm ends when the desired number
c of nodes has been determined (Line 28).

C.4 Network design problem

For the same set of demands, the same RMSA policy and a fiber budget B equal to the
total fiber length of an existing EON, the design problem determines a new EON maximizing
the resilience metric imposed by its critical nodes.

We have seen in the previous section that the evaluation (i.e., the determination of the
resilience metric imposed by the EON critical nodes) is a min-max bi-level optimization
problem. In the network design case, since we aim to compute an EON maximizing its
evaluation value, this problem is a max-min-max tri-level optimization problem. To solve
this problem, we use a multi-start greedy randomized heuristic similar to the one proposed
in [BdSA18b] that generates multiple EONs and returns the one whose resilience metric is
the highest.

First, the greedy randomized algorithm (Algorithm C.3) is used to compute each new
EON. Algorithm C.3 starts with an initial graph G = (N,E0) composed by the set of nodes
N of the original EON and by the set of links E0 given by the Relative Neighbourhood Graph
(RNG) [Tou80]. RNG is defined as follows: nodes i, j ∈ N are connected by a link if and
only if there is no other node k ∈ N\{i, j} such that lik ≤ lij and ljk ≤ lij . Then, the
algorithm randomly selects one link (is, js) at a time until no new link can be added within
the remaining budget BR. The probability of each link being selected at each iteration is as
follows. Assume Es is the set of already selected links, δi is the degree of node i in G = (N,Es)
and the remaining budget is BR = B −

∑
(i,j)∈Es lij . For all node pairs (i, j) /∈ Es such that

lij ≤ BR and at least one of the nodes has the lowest degree in G, the probability of selecting
link (i, j) is:

P
(
(i, j)

)
=

1

(|δi − δj |+ 1) lij
2 (C.7)
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Algorithm C.2 NDC based method

1: Given G = (N,E) and demand set D.
2: C ← ∅
3: repeat
4: Z ← 0, rk ← 0 and ck ← 0, for all k ∈ N\C
5: for all k ∈ N do
6: for all d ∈ D : sd 6= k and td 6= k do
7: if k ∈ pd then
8: Compute p′d ∈ Pd that does not include k and requires the least amount of

resources S′d
9: if p′d does not exist then

10: ck ← ck + 1
11: else
12: if S′d > Sd then

13: rk ← rk +
S′
d−Sd
Sd

14: Z ← max (Z,
S′
d−Sd
Sd

)
15: end if
16: end if
17: end if
18: end for
19: if Z = 0 then
20: Z = 1
21: end if
22: rk ← Z × rk + ck
23: end for
24: k̄ ← index k such that rk is maximal
25: C ← C ∪ {k̄}
26: D ← D\{d ∈ D : k̄ ∈ pd}
27: N ← N\{k̄}, E ← E\{(i, j) ∈ E : i = k̄ or j = k̄}
28: until |C| = c

while for all other node pairs (i, j), P
(
(i, j)

)
= 0.

Multiple runs of Algorithm C.3 generate different EONs. So, in a multi-start greedy
randomized algorithm, we run multiple times Algorithm C.3, evaluate the resilience metric of
each EON and return the best generated one. The multi-start greedy randomized algorithm
is presented in Algorithm C.4 with a stopping criteria given by a pre-defined number of
iterations. The best EON is defined as Ḡ with a resilience metric z̄. Algorithm C.4 starts by
initializing Ḡ = (N, ∅) and z̄ = 0. At each iteration, Algorithm C.4 (i) generates a new EON
G′ (Line 3), (ii) checks if G′ is valid (Line 4), (iii) computes its resilience value z1 by the CND
based method, (iv) if z1 is better than z̄, computes its resilience value z2 by the NDC based
method (Algorithm C.2) and the resilience value z of G′ (Lines 6–8) and (v) if z is better
than the resilience value z̄ of the current best EON, Ḡ and z̄ are updated accordingly (Lines
9–10).

Two issues require further explanation. First, a randomly generated EON G′ is valid (Line
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Algorithm C.3 Greedy Randomized Algorithm

1: Compute initial graph G = (N,E0)
2: Set BR ← B −

∑
(i,j)∈E0

lij
3: repeat
4: Select a link (is, js) with link probabilities given by (C.7)
5: E ← E ∪ {(is, js)}
6: BR ← BR − lisjs
7: until P

(
(i, j)

)
= 0, for all i, j ∈ N : i < j

Algorithm C.4 Multi-Start Greedy Randomized Algorithm

1: Ḡ← (N, ∅), z̄ ← 0
2: repeat
3: Generate a new graph G′ = (N,E′) using Algorithm C.3.
4: if G′ is a valid EON then
5: Compute z1 using the CND based method
6: if z1 > z̄ then
7: Compute z2 using Algorithm C.2
8: z ← min{z1, z2}
9: if z > z̄ then

10: Ḡ← G′, z̄ ← z
11: end if
12: end if
13: end if
14: until Pre-defined number of iterations reached

4) if it can support all demands with the RMSA policy. To validate G′, we run Algorithm C.1
and check if the highest FS index is within the total number of FSs available on each fiber
link. Moreover, when the topology of the original EON is 2-connected, we also require G′

to be 2-connected (i.e, any single node failure still allows the establishment of a lightpath
between any pair of nodes within the transparent reach T = maxm∈M Tm).

Second, for each valid EON, Algorithm C.4 computes first its resilience value z1 by the
CND based method (Line 5). If z1 ≤ z̄, the EON cannot be better than the best one found
so far and, so, the EON can be discarded without running Algorithm C.2. The results show
that z1 is computed much faster than z2 and, so, Algorithm C.4 is more time efficient in this
way.

C.5 Computational results

The computational results are based on 3 network topologies with public available in-
formation: Germany50 [OWPT10], PalmettoNet [KNF+11] and Missouri Network Alliance
(MissouriNA) [KNF+11]. Table C.1 presents their topology characteristics in terms of num-
ber of nodes |N | and fiber links |E|, minimum (δmin), average (δ̄) and maximum (δmax)
node degree and an indication (in column ’2-C’) if the topology is 2-connected. Although
the geographical location of nodes is known, the geographical routes of fiber links is not.
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So, to compute link lengths, we have assumed that links follow the shortest path over the
Earth surface. Table C.2 presents the resulting length characteristics in terms of minimum
(lmin), average (l̄), maximum (lmax) and total (L) link length, and diameter, i.e., the highest
length among all shortest paths adding ∆ per intermediate node (the length ∆ modeling the
degradation suffered by a lightpath on each intermediate node was 60 Km).

Table C.1: Topology characteristics of each network.

Network |N | |E| δmin δ̄ δmax 2-C

Germany50 50 88 2 3.52 5 Yes

PalmettoNet 45 64 1 2.84 5 No

MissouriNA 64 80 1 2.50 5 No

Table C.2: Length characteristics (in km) of each network.

Network lmin l̄ lmax L Diameter

Germany50 26 100.7 252 8859 1417

PalmettoNet 19 67.0 177 4286 1298

MissouriNA 7 50.0 307 4001 1301

Concerning fiber capacity, we consider each fiber with a capacity of |F | = 320 FSs which
corresponds to a spectral grid of granularity 12.5 GHz. Concerning MF configurations (recall
discussion on the Introduction), realistic transparent reach values are hard to get not only
because new researches are periodically reporting reach gains (new MFs, more efficient signal
processing, etc) but also because equipment vendors do not announce them in their next
generation products due to market competition. So, we have considered |M | = 4 available
MF configurations with number of FSs nm and transparent reach Tm shown in Table C.3
which allow us to analyze the efficiency of the proposed methods. Concerning the resilience
evaluation, we consider c ∈ {2, 3, 4, 5, 6} as the number of critical nodes. Concerning the de-
mand set D, we consider 4 sets with increasing number of demands for Germany50 (instances
named ’Ger a’, ’Ger b’, ’Ger c’ and ’Ger d’), 2 sets for PalmettoNet (instances named ’Pal a’
and ’Pal b’) and 2 sets for MissouriNA (instances named ’Mis a’ and ’Mis b’).

Table C.3: Modulation format configurations.

m nm (no. of FSs) Tm (km)

1 1 500

2 2 1250

3 3 2000

4 4 2500

All results were obtained using the optimization software Gurobi Optimizer version 8.0.0,
with programming language MatLab version 9.4.0.813654 (R2018a), running on a PC with
an Intel Core i7-8700, 3.2 GHz and 16 GB RAM.
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Table C.4: Resilience evaluation of existing networks.

Instance
RMSA

c
CND method NDC method

Time (s) Value Time (s) Value Time (s)

Ger a 23

2 0.8433 2 0.8283 12
3 0.5750 1 0.5750 4
4 0.5200 2 0.5200 4
5 0.4050 3 0.4983 5
6 0.3350 3 0.4683 9

Ger b 50

2 0.8457 4 0.7380 22
3 0.5804 2 0.5804 5
4 0.5224 3 0.5224 6
5 0.4049 5 0.5004 7
6 0.3388 6 0.4727 13

Ger c 51

2 0.8257 3 0.7236 23
3 0.5878 2 0.5878 5
4 0.5345 3 0.5345 6
5 0.4128 4 0.5088 12
6 0.3453 5 0.4149 8

Ger d 52

2 0.8128 3 0.7119 23
3 0.5930 2 0.5930 5
4 0.5252 7 0.5426 6
5 0.4186 5 0.5084 12
6 0.3357 4 0.4284 9

Pal a 19

2 0.5165 1 0.5496 2
3 0.3430 1 0.4587 3
4 0.2769 1 0.2851 3
5 0.1653 1 0.2190 3
6 0.1116 1 0.1632 4

Pal b 24

2 0.5161 1 0.5528 2
3 0.3492 1 0.4594 3
4 0.2833 1 0.2925 3
5 0.1730 1 0.2266 4
6 0.1194 1 0.1715 4

Mis a 51

2 0.4657 2 0.8770 8
3 0.2964 2 0.6694 17
4 0.2218 2 0.3327 11
5 0.1593 2 0.2581 12
6 0.1169 2 0.1734 12

Mis b 69

2 0.4598 3 0.8720 9
3 0.3140 3 0.6592 18
4 0.2366 3 0.4271 12
5 0.1652 3 0.2470 11
6 0.1265 3 0.1786 12
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Table C.4 presents the resilience evaluation results. Column ’RMSA’ presents the runtime
(in seconds) of Algorithm C.1 showing that the RMSA policy for the regular state takes a
considerably large amount of the total runtime. The resilience evaluation (value and runtime)
of the CND and the NDC based methods are presented separately (the best resilience values
highlighted in bold). These results show that the CND based method (i.e., computing the
critical nodes based on the impact of node failures on the connectivity between the other
nodes) is the best heuristic for larger values of c while the NDC based method (i.e., com-
puting the critical nodes based on the impact of the node failures on the supported demand
between the other nodes) is the best heuristic for the smallest values of c and only in the Ger-
many50 instances. Concerning runtimes, as observed in Section C.4, the CND based method
is computed quicker than the NDC based method.

Tables C.5 and C.6 present the network design results (running Algorithm C.4 with 1000
iterations). Table C.5 shows the performance of the generation and validation part of the
multi-start greedy randomized algorithm showing the number of valid EONs (out of the 1000),
and the runtime spent in the generation, topology validation and RMSA validation. Once
again, the RMSA is the part by far most time consuming. Moreover, the more supported
demands, the less number of generated EONs are valid (behavior easily observed in the
Germany50 instances). Table C.6 presents the results of the evaluation of the valid EONs
(resilience values of the original cases repeated in column ’Original’ for comparison reasons).
The most important conclusion is that the resilience value of the best EONs is always much
higher than the original EONs. A second conclusion is that the resilience evaluation also
takes a significant amount of runtime. Note that the total runtime of the network design task
is given by the sum of the 3 time values of Table C.5 and the time value of Table C.6. So, in
overall, the method takes several hours to run, which is still reasonable for a network design
task.

Table C.5: Network design - generation and validation.

Instance
Valid Time (hh:mm:ss)

EONs Generation Topology Val. RMSA Val.

Ger a 929 00:00:01 00:00:48 06:52:47

Ger b 676 00:00:01 00:00:47 14:02:58

Ger c 260 00:00:01 00:00:46 14:09:54

Ger d 23 00:00:01 00:00:46 14:20:49

Pal a 1000 00:00:01 00:00:01 04:52:14

Pal b 999 00:00:01 00:00:01 07:10:13

Mis a 1000 00:00:01 00:00:01 12:16:21

Mis b 1000 00:00:01 00:00:01 18:41:03

Figure C.1 presents the original topologies and the best topologies obtained for c = 3
critical nodes and for the instances with more demands of each network. To understand the
differences, links of the best topology not in the original topology are highlighted in dashed
blue and the critical nodes of each case are represented with red squares. The number of
links highlighted in blue clearly shows that the resilience improvement of the network design

180



C.5. Computational results

Table C.6: Network design - evaluation.

Instance c Original Best Time (hh:mm:ss)

Ger a

2 0.8283 0.9200 00:51:53
3 0.5750 0.8067 00:51:07
4 0.5200 0.6517 00:51:14
5 0.4050 0.5150 00:48:57
6 0.3350 0.4217 00:45:04

Ger b

2 0.7380 0.8824 01:17:15
3 0.5804 0.7624 01:17:22
4 0.5224 0.6490 01:14:25
5 0.4049 0.5224 01:11:58
6 0.3388 0.4171 01:01:32

Ger c

2 0.7236 0.8588 00:27:55
3 0.5878 0.7500 00:31:41
4 0.5345 0.6466 00:32:11
5 0.4128 0.5162 00:30:02
6 0.3453 0.4135 00:25:48

Ger d

2 0.7119 0.8191 00:04:18
3 0.5930 0.7246 00:03:47
4 0.5252 0.6214 00:05:32
5 0.4186 0.5142 00:04:04
6 0.3357 0.3878 00:03:23

Pal a

2 0.5165 0.8306 00:30:37
3 0.3430 0.6488 00:28:59
4 0.2769 0.4855 00:27:55
5 0.1653 0.3533 00:22:56
6 0.1116 0.2438 00:19:50

Pal b

2 0.5161 0.8300 00:37:15
3 0.3492 0.6493 00:33:26
4 0.2833 0.4855 00:32:44
5 0.1730 0.3553 00:26:36
6 0.1194 0.2466 00:22:32

Mis a

2 0.4657 0.8226 01:10:41
3 0.2964 0.6935 01:40:11
4 0.2218 0.5242 01:06:44
5 0.1593 0.3992 01:05:17
6 0.1169 0.3105 01:00:55

Mis b

2 0.4598 0.8229 01:29:37
3 0.3140 0.6979 02:03:13
4 0.2366 0.5298 01:17:20
5 0.1652 0.4033 01:17:49
6 0.1265 0.3170 01:13:04
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C.6. Conclusions

Figure C.1: Original topologies (top) and best topologies (bottom) for c = 3 critical nodes
(in red). Links not in the original topology highlighted in dashed blue in the best topology.

solutions is obtained with topologies which are very different from the original ones.

Another interesting aspect is the comparison of the node degree distributions between
the original topologies and the topologies of the best network design solutions. Figure C.2
shows these distributions for the 8 instances with the best EONs obtained for c = 3 critical
nodes (original topologies in blue and best topologies in green). In the best solutions, there
is a decrease of the number of nodes with the lowest and highest degrees and an increase of
the number of nodes with degrees closer to the average. This observation also stands for the
other values of c showing that EONs resilient to multiple node failures tend to have more
homogeneous node degrees.

C.6 Conclusions

In this work, we have considered the evaluation and network design of EONs resilient
to multiple node failures. First, we have addressed the resilience of EONs to multiple node
failures by identifying the critical nodes whose simultaneous failure maximally reduce the
demand percentage that is supported by the network. Then, for the same estimated demands,
the same RMSA policy and a fiber budget equal to the total fiber length of an existing EON,
we have addressed the design of a new EON maximizing the resilience metric imposed by its
critical nodes. For both tasks, we have proposed heuristic methods that were evaluated on
known network topologies.
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Figure C.2: Node degree histograms of original topologies (in blue) and best generated topolo-
gies (in green).

The results showed that the network design solutions are much more resilient to multiple
node failures. The improvements are obtained with topologies with more homogeneous node
degrees which are very different from the original ones. In computing terms, a key aspect is
the RMSA which was the most computational demanding part of the proposed methods.

Note that the adopted RMSA policy assumes a restoration mechanism where disrupted
demands are reassigned as much as possible with new lightpaths supporting the same line rate.
A topic that deserves further study is to consider bandwidth squeezed protection/restoration
mechanisms (exploiting the advanced flexibility provided by sliceable bandwidth-variable
transponders) [CSO15] where the line rate supported by lightpaths is dynamically reduced so
that more lightpaths can be accommodated in the case of large-scale failures.
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Appendix D: A RMSA Algorithm Resilient to

Multiple Node Failures on Elastic Optical Networks

Abstract: An Elastic Optical Network (EON) provides a lot of flexibility on the way an
optical network supports the demands of multiple services. This flexibility is given by the
Routing, Modulation and Spectrum Assignment (RMSA) algorithm whose primary goal is to
use the spectrum resources of the network in an efficient way. Recently, large-scale failures are
becoming a concern and one source of such failures is malicious human activities. In terrorist
attacks, although node shutdowns are harder to realize than link cuts, they are the most
rewarding in the attackers’ perspective since the shutdown of one node also shuts down all its
connected links. In order to obtain a RMSA algorithm resilient to multiple node failures, we
propose the use of a path disaster availability metric which measures the probability of each
path not being affected by a multiple node failure. We present computational results consider-
ing a mix of unicast and anycast services in 3 well-known topologies. We assess the trade-off
between spectrum usage efficiency and resilience to multiple node failures of our proposal
against other previous known algorithms. The results show that the RMSA decision is always
better when the disaster path availability metric is used. Moreover, the best way to use the
path disaster availability metric in the RMSA decision depends on the traffic load of the EON.

Keywords: Elastic Optical Networks, RMSA, Multiple Node Failures, Disaster Resilience

F. Barbosa, A. de Sousa, A. Agra, K. Walkowiak, and R. Goścień. A RMSA algorithm resilient to multiple
node failures on elastic optical networks. In 11th International Workshop on Resilient Networks Design and
Modeling (RNDM), pages 1–8, 2019.
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D.1. Introduction

D.1 Introduction

An Elastic Optical Network (EON) provides a lot of flexibility on the way an optical
network can support the demands of multiple services. This flexibility is given by the Routing,
Modulation and Spectrum Assignment (RMSA) of each demand and is used, in practice, to
make the most out of the available spectrum resources of the optical network.

The primary goal of the RMSA is to use the resources in an efficient way, i.e., by keeping
the spectrum resources usage low so that future demands can be accommodated as much as
possible [AR17, CTV11, KW11, TR17, WK13]. Then, other goals can also be considered as
transceiver costs or power consumption [CSO15, GWK15, PAK+12].

One of the most relevant goals is the network resilience to failures. Network resilience is,
broadly speaking, the ability of the network to keep supporting the service demands in case
of network failures. Many works address this problem considering protection mechanisms to
guarantee that all demands can be maintained after any single link or node failure [CZJZ15,
GK19, WNG17].

Recently, large-scale failures are becoming a concern to network operators due to different
causes, as natural disasters [GTE+16] or human malicious activities [FWG+16], which might
involve a significant number of simultaneous failures. The guarantee that all demands are
maintained in a large-scale failure is infeasible in practice as the required resources become
too costly. In this case, the aim is to improve the network preparedness to large-scale failures
by maximizing the amount of demand that can still be maintained in face of such failures. In
terrorist attacks, although node shutdowns are harder to realize than link cuts, they are the
most rewarding in the attackers’ perspective since the shutdown of one node also shuts down
all its connected links. So, in this work, we deal with the multiple node failures as they are
the most harmful case.

The topology design of optical networks resilient to multiple node failures was recently
addressed in [BdSA18]. In that work, the resilience is evaluated by the impact of the simulta-
neous failure of the critical nodes, i.e., the nodes with the highest impact on the connectivity
of the network. Here, we propose a family of RMSA algorithms resilient to multiple node
failures assuming that an attacker “discovers” with some probability a set of nodes to be
attacked. The algorithms use a path metric, which we name path disaster availability, in the
RMSA decision of each demand. This metric measures the probability of the path not being
affected by the attacked nodes. Although the concept of path availability is commonly used
to characterize the availability of networking services to unintended failures, as far as we are
aware, it has never been exploited in the context of multiple node failures.

We present a set of computational results considering a mix of unicast and anycast ser-
vices in 3 well-known topologies and compare the proposed RMSA algorithms with the first-fit
algorithm, used in many works due to its simplicity, and with a RMSA algorithm recently
used in [BdSA19] and adapted from [KW11]. All algorithms are evaluated through simula-
tion considering a restoration mechanism where, when a multiple node failure happens, the
non-affected lightpaths remain unchanged and the demands of the affected lightpaths are
reassigned as much as possible in the surviving network resources.

The different RMSA algorithms are compared in terms of spectrum usage efficiency and
resiliency to multiple node failures. In the latter case, the resiliency is evaluated by 2 pa-
rameters: the average non-disrupted demand (the average demand percentage that is not
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disrupted after a failure) and the average surviving demand (the average demand percentage
that is supported after a failure). Both parameters are important in practice. Higher surviv-
ing demands are important for non-critical services as they are less penalized by short-term
disruptions. Higher non-disrupted demands are important for critical services (requiring high
availability) and because a lower number of lightpaths required to be reassigned minimizes
the instability impact of the simultaneous reconfiguration of many lightpaths.

The paper is organized as follows. In Section D.2, the path disaster availability metric is
presented, together with its determination method. Section D.3 describes the RMSA methods
considered in this work. The computational results are presented and discussed in Section
D.4. Finally, Section D.5 draws the main conclusions of the work.

D.2 Modeling path disaster availability for node attacks

Consider an EON topology defined by a graph G = (N,E), with a set of |N | nodes and
a set of |E| undirected links. Consider the following attack model: an attacker “discovers”
with some probability a set of nodes and plans to attack them (almost) simultaneously.

Since public information might exist related to the location of each node (for example, the
location of Data Centers is usually publicly known and most likely a network node is nearby),
we assume that each node i ∈ N is associated with a positive weight wi proportional to the
probability of the node being discovered by an attacker. We assume that there is no corre-
lation between discovered nodes as, if exists, it is related to attacker’s organizational issues
which require insight information usually not available to the network operator. Moreover,
we assume that the number of attacked nodes s is between a minimum number sm and a max-
imum number sM . Finally, we assume that the effort to attack s nodes is proportional to the
number of nodes and, therefore, the probability of s nodes being attacked, with sm ≤ s ≤ sM ,
is inversely proportional to the number of attacked nodes 1/s.

First, the path disaster availability ap of a given path p defined by its set of nodes i ∈ p
(including the source and destination nodes) is:

ap =
∏
i∈p

(1− pi) (D.1)

i.e., the probability that path p is available in the surviving network. In expression (D.1), pi
is the probability of node i ∈ N to be attacked when a multiple node attack is realized and,
by the adopted attack model, it is independent of the other attacked nodes.

Then, the probability pi of node i ∈ N being attacked is:

pi =
1

σ

sM∑
s=sm

psi ×
1

s
(D.2)

where σ =
∑sM

s=sm
1
s and psi is the probability of node i being attacked on an attack to s

nodes.

Finally, the probability psi of node i being attacked on an attack to s nodes is the sum of
the probabilities of all sequences (without repetitions) of s out of n nodes that include node
i, given by:
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psi =
wi
WN

+
∑

j∈N\{i}

wj
WN
× wi
WN\{j}

+
∑

j∈N\{i}

wj
WN

( ∑
k∈N\{i,j}

wk
WN\{j}

× wi
WN\{j,k}

)
+ ...

(D.3)

where WR denotes the sum of the weights of the nodes in set R, with R ⊂ N , i.e., WR =∑
i∈R wi.

The first term wi
WN

in expression (D.3) is the probability of all sequences such that node i

is the first node of the sequence. The second term
∑

j∈N\{i}
wj
WN
× wi
WN\{j}

is the probability of

all sequences such that node i is the second node of the sequence, i.e., all sequences composed
by a node j ∈ N\{i} in the first position and node i in the second position. The third term is
the generalization of the previous term for the sequences such that node i is the third node
of the sequence.

The probability psi given by expression (D.3) has s terms and can be computed recursively
as follows. For a given set N of nodes and associated weights w = {wi, i ∈ N}, a given number
of attacked nodes s and a given node i, the probability psi is computed as:

psi = prob(N,w, i, 0, s) (D.4)

where prob() is a recursive function defined in Algorithm D.1. The input parameters (Line 1)
are a set of nodes R which were still not selected (in the first call in (D.4), this parameter is
the complete node set N), the set w of node weights, the node i whose probability we want
to compute, the number z of already selected nodes (in the first call in (D.4), this parameter
is z = 0) and the number s of nodes to be selected.

Algorithm D.1 Recursive function to compute psi

1: function p = prob(R,w, i, z, s)
2: z ← z + 1
3: WR ←

∑
j∈R wj

4: p← wi
WR

5: if z < s then
6: for all j ∈ R\{i} do
7: p← p+

wj
WR
× prob(R\{j}, w, i, z, s)

8: end for
9: end if

10: return p

D.3 RMSA algorithms

Consider a given EON topology defined by graph G = (N,E) and a given set D of
estimated traffic demands. Each demand d ∈ D can be of either unicast or anycast service
type. In unicast services, each demand is characterized by a pair of end-nodes (sd, td) and
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its required bit-rate bd. In anycast services, a set S of services is provided by a set C ⊂ N
of existing Data Centers (DCs) and each anycast service r ∈ S is provided by a DC subset
Cr ⊆ C. Then, each anycast demand is characterized by a source node sd, an anycast service
rd ∈ S and a bit-rate bd. In this case, the anycast demand can be satisfied by any of the DCs
in Crd .

The RMSA algorithm determines the way lightpaths are assigned both in the regular state
and in any failure state. To model the RMSA, we need additional sets and parameters. Set
F = {1, 2, ..., |F |} is the ordered set of Frequency Slots (FSs) available on each fiber link to
be assigned to lightpaths. Set Pd is the set of candidate paths associated with demand d ∈ D,
ordered from the shortest to the longest optical length.

The optical length of a path is the sum of its link lengths plus a given length value ∆
per intermediate node (which models the optical degradation suffered by a lightpath while
traversing an intermediate optical switch). Each p ∈ Pd is defined by:

� the binary parameters αpe which are equal to 1 if link e ∈ E is in p, or equal to 0
otherwise;

� the integer parameter np indicating the number of FSs of the most efficient modulation
format whose transmission range is not lower than the optical length of p.

D.3.1 First-fit RMSA algorithm

In the First-Fit (FF) RMSA algorithm, each demand d is routed in the first candidate
path with available resources. Starting from an empty network, this task is conducted for
each demand by some order. Many works assume the order of the demands given by the
input data file. However, the best results are obtained if we consider first the demands that
require more network resources. For fairness reasons when comparing the different RMSA
algorithms, in this work, we consider this “more sophisticated” FF approach.

Initially, the set of demands d ∈ D is ordered based on the properties of the shortest
path of its set of candidate paths, i.e., the first path in Pd. This order follows the next 3
hierarchical orders (from the most important to the least important):

1. decreasing order of the number of hops of the optical shortest path between the source
sd and either the destination td (for unicast demands) or the closest DC (for anycast
demands);

2. decreasing order of the demand bit-rate bd;

3. decreasing order of the optical shortest path length between the source sd and either
the destination td (for unicast demands) or the closest DC (for anycast demands).

This ordering strategy was adopted after some preliminary computational tests. Then,
for each d ∈ D (and by this order), we compute the highest FS f of the lowest set of
np contiguous FSs that can be assigned on the shortest path p ∈ Pd without overlap with
previous assignments. If f ∈ F , a lightpath is assigned to demand d on path p and on FSs
from f − np + 1 to f . Otherwise, the process is repeated for the next shortest path p ∈ Pd
until a lightpath can be assigned to demand d or all paths in Pd have been computed (in the
latter case, the demand is not assigned).
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D.3.2 Resilient RMSA algorithms

Recall that the required number of FSs np depends on the candidate path p ∈ Pd. First,
consider for each demand d the parameter nd with the minimum number of FSs required
by any of its candidate paths p ∈ Pd, i.e., nd = minp∈Pd np. Consider also Pe as the set of
candidate paths of all demands that include link e ∈ E.

A RMSA algorithm for the regular state of the network is defined in Algorithm D.2,
following the general approach proposed in [KW11]. In a nutshell, Algorithm D.2 is a greedy
algorithm that starts with an empty network (i.e., all FSs are free in all links) and, iteratively,
assigns to a demand d ∈ D, a lightpath p ∈ Pd and a set of np contiguous FSs.

Algorithm D.2 starts by computing the maximum value n among the nd values of all
demands (Line 1) and initializes set D̄ with all demands such that nd = n (Line 3). Then,
for all candidate paths of all demands in D̄ (Line 6), the algorithm computes the lowest set
of np contiguous FSs that can be assigned without overlapping with previous assignments
(Lines 7–11) and, among all, it selects the one according to a given best assignment condition
(Lines 8–10), explained later. The selected path and associated set of FSs are used to assign
the lightpath to the corresponding demand (Line 12) and the demand is removed from set D̄
(Line 13). When D̄ becomes empty, n is decremented (Line 15) and the algorithm continues
until n reaches 0.

Algorithm D.2 Robust RMSA

1: Initialize n← maxd∈D nd
2: while n ≥ 1 do
3: D̄ ← {d ∈ D : nd = n}
4: while D̄ 6= ∅ do
5: f̄ ←∞, l̄←∞, d̄← {}, p̄← {} and ā← 0
6: for all p ∈ Pd, d ∈ D̄ do
7: f ← highest FS index of the lowest set of np contiguous FSs that can be assigned

on p to d without overlap with previous assignments
8: if [best assignment condition] then
9: f̄ ← f , p̄← p, d̄← d, l̄← lp and ā← ap

10: end if
11: end for
12: Assign to demand d̄ a lightpath on the candidate path p̄ and on the FSs from f̄−np̄+1

to f̄
13: D̄ ← D̄\d̄
14: end while
15: n← n− 1
16: end while

The best assignment condition (Line 8) is the step where the RMSA can be tuned according
to different lightpath assignment criteria. In [KW11], a collision metric ce is proposed for each
link e ∈ E given by ce =

∑
d∈D

∑
p∈(Pd∩Pe) np. Then, each candidate path p ∈ ∪d∈DPd has

an associated path collision length metric lp =
∑

e∈E α
p
ece which is used in the RMSA when

selecting candidate paths.

Here, we investigate how both metrics (the path collision length and the path disaster
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availability, as defined in (D.1)) can be combined to reach a RMSA algorithm which is more
resilient to multiple node failures.

Note that in Lines 5–11 of Algorithm D.2, the selected path p̄ is initialized empty (Line
5) and is updated (Line 9) when a new best candidate path p is found (Line 8). So, the
best assignment condition in Line 8 is a comparison between the best path already found p̄
(associated with demand d̄ with the highest FS f̄ , collision length l̄ and disaster availability ā)
and the current candidate path p (associated with demand d with the highest FS f , collision
length lp and disaster availability ap).

To define different best assignment conditions, we consider 3 measures: the best FS (“S”),
the best path disaster availability (“P”) and the best path collision length (“C”). Then, the
following 4 different best assignment conditions were investigated:

SC: p is better than p̄ if its highest FS is better (f < f̄), or if f = f̄ and its collision length is
better (lp < l̄). This condition represents the strategy proposed in [KW11] where it is shown
to be more efficient than other RSMA algorithms in terms of spectrum usage efficiency.

SPC: p is better than p̄ if its highest FS is better (f < f̄), or if f = f̄ and its disaster
availability is better (ap > ā), or if f = f̄ and ap = ā and its collision length is better
(lp < l̄). The first preference is still to assign the lowest spectrum but, as a tie-breaker, the
path disaster availability is used aiming to improve the resilience to multiple node attacks
(the collision length is only used as a tie-breaker of the path disaster availability).

PSC: p is better than p̄ if its disaster availability is better (ap > ā), or ap = ā and its highest
FS is better (f < f̄), or if ap = ā and f = f̄ and its collision length is better (lp < l̄). Now,
the first preference is the path disaster availability even if p requires higher spectrum than p̄
(i.e., the aim is to improve the resilience to multiple node attacks at the possible cost of a
lower spectrum usage efficiency).

Mix: it is defined as PSC if f ≤ H, or as SPC if f > H, where H is the highest FS
already assigned to all previous lightpaths. It is a combination of the two previous cases: if
the highest FS f of path p does not increase H, the first preference is to improve the disaster
resilience; otherwise, the first preference is to assign the lowest spectrum.

Algorithm D.2 with the SC best assignment condition was recently used in [BdSA19] in
the design of EONs resilient to multiple node failures. Like in here, a restoration mechanism
is considered in [BdSA19] where, when a multiple node failure happens, the non-affected
lightpaths remain unchanged and the affected demands are reassigned as much as possible
in the surviving network. Following [BdSA19], we consider for the failure state (i.e., when
multiple nodes fail), a RMSA algorithm slightly different than the RMSA algorithm used
in the regular state (as presented in Algorithm D.2). The algorithm starts with the FSs
occupied by the non-affected lightpaths (i.e., with a fragmented spectrum occupation). Then,
the RMSA considers the demands in increasing order of their nd values (as opposed to the
decreasing order used in Algorithm D.2) as the increasing order performs better, on average
(lightpaths requiring less number of FSs can better fit in the initial fragmented spectrum).
Finally, the SC best assignment condition is used as in a failure state the aim is to reassign
as much as possible the affected demands (spectrum usage efficiency is the most important
aim).
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D.4 Computational results

The computational results presented in this section are based on 3 network topologies
with public available information [OWPT10]: Germany50, Cost266 and Janos-US. Table D.1
presents their topology characteristics in terms of number of nodes |N | and fiber links |E|,
average node degree δ̄, average link length l̄ and diameter, i.e., the highest length among
all shortest paths adding ∆ per intermediate node (the length ∆ modeling the degradation
suffered by a lightpath on each intermediate node was set to 60 km). The last column presents
the number of DC nodes considered on each topology. The network topologies are shown in
Fig. D.1 with DC node locations (highlighted in large circles) selected among the nodes with
largest node degree.

Table D.1: Topology characteristics of each network.

Network |N | |E| δ̄ l̄ Diameter |C|
Germany50 50 88 3.52 100.7 1417 11

Cost266 37 57 3.08 438.1 4574 9

Janos-US 26 42 3.23 600.6 5094 7

The candidate paths associated to each demand were computed with a k-shortest path
algorithm considering k = 5 in all cases. For anycast demands, we have considered 5 shortest
paths between the source node and each DC node of its anycast service, and then excluded
the paths that have DC nodes of the same service as intermediate nodes.

For each fiber, we have considered a capacity of |F | = 320 FSs which corresponds to a
spectral grid of granularity 12.5 GHz. The number of FSs np required by each candidate path
p ∈ Pd of each demand d was computed as follows. Based on the distance-adaptive trans-
mission (DAT) rule, we first select the highest bit-rate MF whose transmission reach is not
lower than the optical length of p (the assumptions are that transceivers support polarization
division multiplexing, operate at a fixed baud rate of 28 Gbaud, and transmit/receive on an
optical channel occupying 37.5 GHz). If the bit-rate bd of demand d is not higher than the
selected MF bit-rate, one single transceiver is required. Otherwise, multiple optical channels
(each one used by one transceiver with the previous selected MF) are grouped in a single spec-
tral super-channel (SCh). We assume that lightpaths require a 12.5 GHz guard-band. So,
the required number of contiguous FSs is nd = 3t+ 1, where t denotes the minimum number
of transceivers with a total bit-rate not lower than bd. The transmission reach and bit-rate
of all considered MFs are presented in Table D.2 (transceiver model based on [KRS+16] and
transmission reaches based on [RBMT17]).

Table D.2: Transmission reach and bit-rate of each MF.

Modulation Format (MF) BPSK QPSK 8-QAM 16-QAM

Transmission reach (km) 6300 3500 1200 600

Bit-rate (Gbps) 50 100 150 200

Concerning the estimated demand set D, we have considered 5 sets for each topology
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Figure D.1: Network topologies.

with an increasing amount of traffic where each set considers the traffic equally divided into
unicast and anycast traffic.

Regarding the unicast traffic, each unicast demand d ∈ D has its end-nodes (sd, td)
randomly generated without replacement (with a uniform distribution among all nodes)
and its bit-rate bd (in Gbps) randomly generated with a uniform distribution in the set
{50, 100, 150, 200}.

Regarding the anycast traffic, a set of five anycast services (|S| = 5) is considered in all
cases and each service r ∈ S is served by five randomly selected DCs from C (i.e., the DC
subset Cr of anycast service r ∈ S is randomly selected with a uniform distribution from
the set of all DC nodes C). Then, each anycast demand d ∈ D has its source node sd
randomly generated with a uniform distribution among all nodes, its anycast service rd ∈ S
randomly generated with a uniform distribution between all services and its bit-rate bd (in
Gbps) randomly generated with a uniform distribution in the set {50k : k ∈ N, 1 ≤ k ≤ 20} =
{50, 100, ..., 1000}. The sd and rd values are generated without repetition (i.e., we guarantee
at most one demand from each source node sd to each anycast service r ∈ S).

Concerning the multiple node attacks, we have considered that the number of attacked
nodes s is between sm = 2 and sM = 6 (we have excluded s = 1 since typical topologies are
already resilient to single node failures). Moreover, the node weights (defining the probability

195



D.4. Computational results

of the nodes being discovered by the attacker), were assumed to be wi = 5 for the DC nodes
(set C) and wi = 1 for all other nodes (set N\C).

Recall that the aim is to determine the trade-off between spectrum usage efficiency and
resiliency to multiple node failures among the different RMSA algorithms. Note that all
RMSA algorithms described in section III assign lightpaths in the lowest possible spectrum
available in the routing path selected to each demand. So, the spectrum usage efficiency can
be evaluated by the highest FS allocated at the end of the algorithm and a better algorithm
is one whose highest allocated FS is lower.

Table D.3 presents the highest allocated FS obtained by each RMSA algorithm on each
problem instance in the regular state (T is the total bit-rate, in Tbps, of the instance, i.e.,
T =

∑
d∈D bd). The lowest value among all algorithms is highlighted in bold for each problem

instance and the absence of a value means that the RMSA algorithm was not able to assign
lightpaths to all demands.

Table D.3: Highest FS allocated by each RMSA method.

Network T (Tbps) FF SC SPC PSC Mix

Germany50

20 90 62 65 108 72
45 177 119 113 199 146
70 282 172 179 318 235
95 320 227 221 – 304
135 – 320 319 – –

Cost266

15 122 65 64 91 83
30 218 138 133 199 171
45 275 181 185 258 238
60 320 250 251 – 292
80 – 300 310 – –

Janos-US

15 113 73 76 89 80
30 226 155 156 191 175
45 317 211 214 276 258
55 – 254 248 – 299
65 – 294 288 – –

Table D.3 results show that, concerning spectrum usage efficiency, both SC and SPC
based RMSA algorithms present very similar results and are much more efficient than the
others. This is a direct consequence of both using the highest FS as the first measure in
the best assignment condition. The PSC based RMSA strongly penalizes the spectrum usage
efficiency (even worst than FF in the Germany50) while the Mix (being a combination of the
SPC and PSC) presents intermediate penalty results.

In order to assess the resilience of each RMSA algorithm to multiple node attacks, we have
generated 500 random attacks for each problem instance (after some preliminary testing, this
value was shown to be good enough as larger values do not significantly change the average
results).

Each attack was implemented as follows. First, the number of attacked nodes s is randomly
generated in {sm, ..., sM} with probabilities proportional to 1/s. Then, s network nodes are
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randomly sampled without repetition with probabilities proportional to the weights wi. For
each attack, we run the RMSA algorithm variant for the failure state and we compute the
total non-disrupted demand (the sum of the demands whose lightpaths were not disrupted)
and the total surviving demand (the sum of the demands whose lightpaths were not disrupted
plus the sum of the demands that were assigned with new lightpaths). Finally, the resiliency
of each RSMA algorithm is evaluated by 2 parameters: the Average Non-Disrupted Demand
(the average bit-rate percentage that is not disrupted among all 500 attacks) and the Average
Surviving Demand (the average bit-rate percentage that is supported after the attack among
all 500 attacks).

Table D.4 presents the average results of the resilience evaluation of each RSMA algorithm
on each problem instance (once again, best values among all RMSA algorithms highlighted
in bold for each problem instance).

First, note that when multiple nodes are shut down, there are some demands that cannot
survive whatever RMSA is adopted. The obvious ones are the demands such that at least
one of its end-nodes is a shutdown node. Then, in multiple node shutdowns that separate the
network in different components: (i) unicast demands with end-nodes in different components
cannot survive and (ii) anycast demands whose source node is in a network component without
any of the DC nodes of its anycast service also cannot survive. So, on each random attack,
the total demand that can survive is also computed and both evaluation parameters are
determined as percentages of this total survivable demand. The last column “Surv. D.” of
Table D.4 presents the average total bit-rate that can survive among all 500 random attacks.

Table D.4: Resilience evaluation results.

N. T
Average Non-Disrupted Demand (%) Average Surviving Demand (%)

Surv. D.
FF SC SPC PSC Mix FF SC SPC PSC Mix

G
er

m
an

y
50

20 75.444 74.503 75.884 77.491 76.827 100.00 100.00 100.00 100.00 100.00 18.2
45 76.520 75.149 75.867 78.230 77.320 99.694 99.790 99.794 99.751 99.780 40.7
70 76.193 73.953 75.134 78.014 77.324 97.776 98.626 98.608 97.696 98.374 63.4
95 75.360 74.217 75.273 – 76.895 93.972 95.614 95.807 – 94.344 85.9
135 – 73.847 74.689 – – – 87.118 87.205 – – 121.9

C
os

t2
6
6

15 71.751 72.998 73.309 73.829 74.032 100.00 100.00 100.00 100.00 100.00 12.6
30 71.135 71.335 71.361 73.494 73.180 97.657 97.778 97.758 97.568 97.690 25.3
45 71.780 72.359 71.229 73.801 73.690 94.264 95.035 94.958 94.447 94.530 38.1
60 71.193 71.520 71.695 – 72.984 89.430 89.684 90.161 – 89.279 50.9
80 – 71.696 71.903 – – – 84.925 85.063 – – 67.8

J
an

os
-U

S

15 72.650 72.034 72.862 73.945 73.452 100.00 100.00 100.00 100.00 100.00 11.6
30 70.973 69.104 69.611 71.929 71.187 98.538 98.650 98.516 98.346 98.496 23.3
45 70.517 68.928 68.797 71.562 71.106 91.457 91.488 91.726 91.318 91.125 35.1
55 – 68.988 69.376 – 71.183 – 88.086 88.668 – 88.011 43.0
65 – 68.444 69.458 – – – 84.613 85.306 – – 50.5

Regarding the Average Non-Disrupted Demand, the best results are provided, on average,
by the PSC based RMSA (i.e., using the path disaster availability metric as the first measure
in the best assignment condition). However, due to its low spectrum usage efficiency (already
seen in the results of Table D.3), it can be used in practice only for light to medium loaded
EONs. The Mix based RMSA is, on average, the second best algorithm and, as it can
accommodate more total traffic demand, it becomes the best algorithm for the demand sets
D that cannot be accommodated by the previous PSC based RMSA. Finally, for the demand
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sets D with the highest traffic, the SPC based RMSA provides the best results although
closely followed by the SC based RMSA. Note that there is no case where either the FF or
the SC based RMSA algorithms are better than all RMSA algorithms using the path disaster
availability metric.

Regarding the Average Surviving Demand, all RSMA algorithms present similar results
for the demand sets D of lower traffic (in fact, for the smallest traffic values considered in
each topology, all RMSA algorithms were able to maintain 100% of all survivable demand).
When the total demand becomes higher, then the SPC based RMSA becomes the best, on
average, although closely followed by the SC based RMSA. Again, there is no case where the
FF RMSA is better than all other algorithms.

Finally, it should be pointed out that, for a given problem instance, the percentage differ-
ence across all RMSA algorithms is never higher than 3% in Table D.4. The next tables show
the resilient evaluation of the different RMSA algorithms in a different way by presenting the
number (in percentage) of the 500 random attacks such that each RMSA algorithm (excluding
the FF based RMSA) has provided the best resiliency value. Table D.5 presents the results
for the Average Non-Disrupted Demand while Table D.6 presents the results for the Average
Surviving Demand. In both cases, when a best value is given by multiple algorithms, it is
accounted in the percentage of all of them (once again, best values highlighted in bold).

Table D.5: Percentage number of attacks such that each RMSA provides the best Average
Non-Disrupted Demand value.

Network T SC SPC PSC Mix

Germany50

20 22.8 13.0 56.6 17.0
45 11.0 10.6 54.4 27.4
70 10.4 2.8 57.2 31.6
95 13.8 6.0 – 81.0
135 27.4 73.4 – –

Cost266

15 17.8 23.8 43.6 32.8
30 26.4 9.2 49.2 22.8
45 28.2 7.6 43.0 23.8
60 25.6 11.0 – 65.4
80 48.2 52.8 – –

Janos-US

15 27.0 9.6 54.0 24.8
30 7.6 20.0 53.8 26.6
45 11.0 5.2 58.6 34.8
55 18.4 13.0 – 72.8
65 30.0 72.2 – –

Regarding the Average Non-Disrupted Demand, the results in Table D.5 highlight the
conclusions taken from Table D.4. For the three lowest traffic instances of all topologies,
the PSC based RMSA is the best algorithm on 52.3% of the attacks (among 4 algorithms);
then, for the fourth traffic instance of all topologies, the Mix based RMSA becomes the best
algorithm on 73.1% of the attacks (among 3 algorithms); finally, for the highest traffic instance
of all topologies, the SPC based RMSA is the best algorithm on 66.1% of the attacks (among

198



D.4. Computational results

Table D.6: Percentage number of attacks such that each RMSA provides the best Average
Surviving Demand value.

Network T SC SPC PSC Mix

Germany50

20 100.0 100.0 100.0 100.0
45 98.2 98.0 96.2 97.0
70 89.8 87.2 58.6 75.8
95 64.0 74.8 – 21.4
135 27.4 73.4 – –

Cost266

15 100.0 100.0 100.0 100.0
30 89.0 89.0 82.6 86.2
45 78.4 73.2 58.2 59.4
60 46.4 58.2 – 27.4
80 52.0 54.0 – –

Janos-US

15 100.0 100.0 100.0 100.0
30 93.4 90.4 83.6 86.2
45 51.0 61.0 45.6 37.4
55 40.6 65.4 – 33.4
65 40.4 73.2 – –

2 algorithms).

Regarding the Average Surviving Demand, again the results in Table D.6 confirm the
conclusions taken from Table D.4. For the lowest traffic instance of each topology, all RSMA
algorithms were able to maintain 100% of all demand that can survive. For the problem
instances with growing traffic demand, the SPC based RMSA becomes the best, on average,
and the SC based RMSA becomes the second best algorithm.

In the overall, the trade-off analysis between spectrum usage efficiency (Table D.3) and
resiliency to multiple node failures (Tables D.4, D.5 and D.6) among the different RMSA
algorithms is as follows. First, the FF RMSA is worst than all other algorithms, on average,
as it is one of the algorithms with the lowest spectrum usage efficiency and, for all cases,
it never provides the best resilience to multiple node failures. This comes without surprise,
although we have adopted a “more sophisticated” variant, as described in Section III.

Then, comparing the RMSA algorithms using the disaster path availability metric (SPC,
PSC and Mix) with the previously known SC based RMSA, we can conclude that the 3
alternatives provide 3 different trade-offs. The PSC alternative provides significant better
resiliency at the cost of a significantly lower spectrum usage efficiency. The SPC alternative
provides slightly better resiliency with the same spectrum usage efficiency. Finally, the Mix
alternative is a trade-off between the two previous ones providing an intermediate level of
resiliency gain at the cost of an intermediate penalty of spectrum usage efficiency.

As a consequence, the best RMSA algorithm depends on the traffic load of the EON.
For lightly loaded networks, since spectrum resources are abundant, the PSC based RMSA is
the best alternative as an higher percentage of non-disrupted demand can be provided. For
medium loaded networks, the Mix based RMSA is the best alternative for the cases such that
the previous algorithm cannot accommodate all the traffic. For heavily loaded networks, the
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SPC based RMSA is still better than the previous known SC based RMSA as it has the same
spectrum usage efficiency and it is better (at least slightly) in both the non-disrupted demand
percentage and surviving demand percentage.

Table D.7 presents the total running time, in seconds, of the k-shortest paths algorithm
(column “k-SP”), which is common to all algorithms, and of each RSMA algorithm on the
highest demand problem instance of each network such that the algorithm has accommodated
all the traffic (i.e, the RMSA algorithm was able to assign lightpaths to all demands). For
each algorithm, the total running time is the sum of its runtime with the k-shortest paths
algorithm runtime.

Table D.7: Running time (in seconds) of each RMSA algorithm in the regular state.

Network T k-SP FF SC SPC PSC Mix

Germany50 70 14.7 1.2 0.8 0.9 0.9 0.9

Cost266 45 4.9 0.5 0.2 0.2 0.3 0.3

Janos-US 45 1.7 0.5 0.2 0.2 0.2 0.2

Table D.7 shows that the pre-computation of the set of candidate paths for all demands is
much more time-consuming than the RMSA itself. Moreover, because the FF strategy requires
ordering the set of demands, it presents a higher runtime than all other RMSA algorithms.
Finally, and more importantly, the disaster path availability metric does not impose any
runtime penalty in the RMSA decision, when compared with the previously known SC based
RMSA algorithm.

Finally, Table D.8 presents the average running time per attack (among all 500 attacks),
in seconds, of each RSMA algorithm on the same problem instances used in the previous
table. In this case, the values include the computation of the k-shortest paths for all demands
with disrupted lightpaths as these demand sets vary between the different cases.

Table D.8: Average running time (in seconds) of each RMSA algorithm per attack.

Network T FF SC SPC PSC Mix

Germany50 70 4.237 4.644 4.361 3.958 3.991

Cost266 45 1.598 1.624 1.645 1.527 1.538

Janos-US 45 0.548 0.568 0.572 0.531 0.537

Table D.8 shows that the running times are very similar among all algorithms but the
RMSA algorithms that prioritize the path disaster availability metric (PSC and Mix) are
slightly faster, on average, than the others. Since these algorithms provide better average
non-disrupted demand, the total number of demands whose lightpaths are disrupted is lower,
on average, and so these RMSA algorithms have a lower number of demands for lightpath
reassignment.
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D.5 Conclusions

In this work, we have proposed a family of RMSA algorithms resilient to multiple node
failures due to malicious human activities. First, we have assumed that an attacker “discovers”
with some estimated probabilities a set of nodes to be attacked and we have proposed a path
disaster availability metric that measures the probability of each path not being affected by
the attacked nodes. Then, the path disaster availability metric was included in the RMSA
decision in three different alternative ways (SPC, PSC and Mix).

The resulting algorithms were compared with the simplest first-fit algorithm and with
a previously known RMSA algorithm in terms of spectrum usage efficiency, average non-
disrupted demand and the average surviving demand.

The results have shown that the RMSA decision is always better when the disaster path
availability metric is included but the best algorithm depends on the traffic load of the EON.
For lightly loaded networks, the PSC based RMSA is the best alternative as an higher per-
centage of non-disrupted demand can be provided. For medium loaded networks, the Mix
based RMSA is the best alternative for the cases such that the previous algorithm cannot
accommodate all the traffic. For heavily loaded networks, the SPC based RMSA is still bet-
ter than the previous known algorithm as it has the same spectrum usage efficiency and it is
better (at least slightly) in both the non-disrupted demand percentage and surviving demand
percentage.

Finally, the computational results have also shown that the use of the disaster path avail-
ability metric in the RMSA decision does not impose any runtime penalty in any of the 3
proposed alternatives.
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