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resumo 
 

 

O presente trabalho pretende explorar o estado atual das metodologias usadas 
para a estimativa da idade em contexto forense e através de marcadores 
epigenéticos, nomeadamente a metilação do DNA. A estimativa da idade é já 
um conceito conhecido e praticado nas ciências forenses, a partir de métodos 
dentários, ósseos e citológicos. A epigenética abriu novos horizontes para a 
estimativa de idade através de métodos moleculares, particularmente o estudo 
de alterações nos padrões de metilação do DNA. A metilação do DNA ocorre 
principalmente em citosinas que são seguidas de guaninas (dinucleótidos CpG) 
e que frequentemente se encontram em regiões ricas nestes dinucleótidos (ilhas 
CpG). Utilizando determinados dinucleótidos CpG como marcadores, é possível 
estimar a idade de uma pessoa através do padrão de metilação detetado. A 
principal aplicação desta metodologia é em casos onde uma amostra de um 
possível perpetuador é encontrada na cena do crime e esta amostra não tem 
correspondência em bases de dados nacionais de DNA. Nestes casos, reduzir 
os possíveis suspeitos àqueles que se inserem numa determinada faixa etária, 
em combinação com outras características externas visíveis que também podem 
ser previstas a partir da mesma amostra (ex. cor dos olhos e do cabelo), pode 
ser muito útil no decorrer de uma investigação. As metodologias para a 
estimativa da idade que têm por base padrões de metilação do DNA, apesar de 
serem uma melhoria às que já são utilizadas, tem limitações que devem ser 
abordadas antes da sua implementação como práticas forenses. Todas as 
questões éticas relativas a este tema ainda são motivo atual de discussão e a 
legislação, na maioria dos países, não existe.  
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abstract 

 
This work seeks to explore the current state-of-the-art regarding the epigenetic 
methodologies used for Forensic Age Estimations, especially DNA methylation. 
Age estimation is an already known and practiced concept in the forensic field 
through dental, skeletal, and cytological methods. Epigenetics opened new 
horizons in this field with molecular methods for the study of changes in DNA 
methylation patterns. DNA methylation occurs in cytosines that are immediately 
followed by guanines (CpG dinucleotides) and frequently are within CpG rich 
regions (CpG islands). Using a selected set of CpGs as markers, it is possible to 
estimate someone’s age through the detected methylation pattern. The major 
application of this technique is in cases where a sample from the perpetrator (or 
possible perpetrator) is found on the crime scene and this sample doesn’t have 
a match on nation DNA databases. In these cases, limiting the pool of suspects 
to a certain age group, in combination with other externally visible traits that can 
be predicted from the sample (e.g. eye and hair color), could be very useful in 
the course of an investigation. Epigenetic age estimation tools, despite being an 
improvement to the currently used age estimation methodologies, have 
limitations that should be addressed before implementing these tools in forensic 
practices. All the ethical and societal issues surrounding this theme are a current 
motive for discussion and legislation relating to the use of these tools, in most 
countries, is inexistent.    
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1. Epigenetics 
 

1.1 Introduction 

Epigenetics is the study of heritable alterations, not in the DNA sequence but in 

the regulation of gene expression. Every cell in the human body has nearly the same 

genome even though they have different structures and functions. This is possible 

due to epigenetic alterations that regulate gene expression in the different cell types 

in a way that each cell only translates the genes necessary to its function (NIH, 

2020); the multitude of these alterations is called the epigenome.  

C.H. Waddington, an embryologist, geneticist, and philosopher of science, 

introduced the notion of epigenetics in the 1940s, to describe the studies of the 

developmental processes that connect genotype with the phenotype (Waddington, 

2012). Since then, there has been a growing interest in epigenetics in many fields. 

When searching for “Epigenetics” in the database SCOPUS, from 1956 and until 

2020, there are over 76 000 results. Since the early 2000s, the number of published 

documents increased exponentially and the results are distributed by many areas, 

Figure 1: Graphical representation of the results obtained when searching “Epigenetics” in the 
SCOPUS database. This graphic represents the number of publications by year. Copyright © 
2021 Elsevier B.V. 
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predominantly in “Biochemistry, Genetics, and Molecular Biology”, and “Medicine” 

with great focus on its association with cancer. 

 

Among the results are investigation articles. review articles, and book chapters 

on the relationship of epigenetics with depression, obesity, cardiovascular 

pathologies, sporting performance, cancer, autism spectrum disorder, and many 

others. These examples are regarding humans, but many others can be found 

regarding other animals, plants, and bacteria.  

Forensic researchers also have a growing interest in epigenetics, especially in 

the study of DNA methylation patterns, that can help in a criminal investigation by 

giving clues on the appearance, age, and lifestyle of the person to whom a sample 

found on a crime scene belongs to (Sabeeha & Hasnain, 2019).  

 

1.2 Epigenetic alterations 

An epigenetic alteration is a change that occurs in the chemical structure of DNA 

without changing its sequence. These alterations are responsible for the regulation 

of gene expression, X-chromosome silencing, and imprinting of genes. Different 

types of cells and tissues require the expression of different genes, and these 

requirements are not constant throughout development. This means that epigenetic 

Figure 2: Pie chart of the results obtained when searching “Epigenetics” in the SCOPUS 
database divided by subject area. Copyright © 2021 Elsevier B.V. 
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alterations have to be highly dynamic to accommodate every cell’s request and at 

any moment. 

Here, we explore three categories of epigenetic modifications with a greater 

focus on DNA methylation due to its value in the forensic field, but also because it 

is a more widely studied modification and very present in mammals.   

 

1.2.1 Histone modifications 

The nuclear DNA in eukaryotic cells, if extended, would be a string of 

approximately 2 meters long. For this string to fit inside the nucleus of a cell, it has 

to be properly organized. Histones are proteins to which the DNA wraps around so 

that it is condensed enough to fit inside the cells. This pairing is called chromatin. 

Chromatin not only allows the packing of 2 meters of DNA in each cell but also 

regulates gene expression since this structure affects the accessibility of DNA to the 

proteins responsible for the reading and copying of the nucleotide sequence. 

Changes in this structure regulate gene expression. 

Many post-translational histone modifications are known to affect chromatin 

structure, such as acetylation, methylation, phosphorylation, ubiquitylation, and 

sumolation. These modifications may occur in the different histones that compose 

an octamer and are involved in a variety of biological functions, such as 

transcriptional activation and silencing, DNA repair, DNA replication, histone 

deposition, inactivation of the X chromosome, mitosis, spermatogenesis, etc. 

Histone modifications have been associated with cancer. For example, a 

change in the histone methylation patterns may lead to the silencing of tumor 

suppressor genes and be implicated in cancer progression (Sharma et al., 2009). 

Throughout life, in general, histone levels decrease but histone modifications 

have a more complex correlation with age. Each modification has its implication, 

e.g., in modulating the expression of key genes related to longevity (S. J. Yi & Kim, 

2020).   

 

1.2.2 Non-coding RNA 

Non-coding RNAs (hereinafter ncRNA) are RNA molecules that do not get 

translated to form a functional protein. Despite this, they play an important role in 
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many processes. They are divided into classes and include tRNAs, that recognize 

codons and recruit the amino acids to the mRNA sequence in the correct order, 

rRNAs that form the ribosomes, snRNAs involved in splicing events, snoRNAs that 

add chemical modifications to other RNA molecules, and long ncRNAs (lncRNAs) 

that play a crucial role in the regulation of gene expression, X-chromosome 

inactivation, imprinting and maintenance of nuclear architecture (Hombach & Kretz, 

2016). 

The relation of ncRNAs with aging still requires better understanding and more 

extensive studies, since most of the transcriptomic studies in the field of aging focus 

on protein-coding regions. Some age-related lncRNAs have been identified but the 

majority of these are specific to only one tissue. There are yet to be identified 

lncRNAs associated with the aging process in all or most of the tissues (Marttila et 

al., 2020).   

 

1.2.3 DNA methylation  

DNA methylation is the main epigenetic modification found in mammalian cells 

(Handy et al., 2011). It is the attachment of a methyl group at the C5 position of 

cytosines and the majority of these alterations occur within CpG dinucleotides (when 

a cytosine is followed by a guanine in the 5’→3’ direction) . This epigenetic alteration 

is crucial in the silencing of retroviral elements, regulating gene expression in the 

different types of cells and tissues, genomic imprinting, and X chromosome 

Figure 3: Methylation of cytosines. Adapted from Walsh 
& Xu, 2006 
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inactivation. The influence of DNA methylation on gene activity is related to the 

genomic region where it occurs (Moore et al., 2013). 

CpG-rich regions in the human genome, called CpG islands, are very commonly 

associated with the regulatory or promoter regions of genes. These stretches of 

DNA are GC rich which is complementary to many transcription factors binding sites. 

Due to this complementarity, when un-methylated, CpG islands within promoter 

regions stimulate the binding of the transcription factors and thus promote gene 

expression. When methylated, CpG islands associated with promotor regions stably 

repress gene expression and establish imprinting (Moore et al., 2013). 

DNA methylation at CpG dinucleotides silences gene expression by 

suppressing transcription through several mechanisms. One mechanism is the 

direct blockage of DNA recognition and binding of transcription factors due to the 

methyl group attached to the CpG dinucleotide.  Another mechanism includes the 

preferential bind of other factors to the methyl group, therefore, blocking the access 

for transcription factors (Handy et al., 2011).  

DNA methylation also occurs outside promotor regions. Tissue-specific 

methylation is more common and conserved in intragenic regions than in promoter 

regions. This suggests that methylation at intragenic regions may have a greater 

functional role in regulating tissue-specific transcription initiation than methylation at 

promoter regions. It has been shown that greater gene body methylation is 

correlated with higher gene expression (Maunakea et al., 2010). This seems to be 

true except for slowly dividing and nondividing cells such as brain cells (Moore et 

al., 2013).  

On the frontal cortex of the mouse, methylation outside CpGs was negatively 

correlated to gene activity (Xie et al., 2012). DNA methylation of the first intron also 

showed a clear inverse relation to gene expression and this relation is conserved 

across vertebrates, genome-wide and tissue-independently (Anastasiadi et al., 

2018).  

DNA methyltransferases (DNAMTs) are the family of enzymes that catalyze 

DNA methylation during embryogenesis and development and its maintenance in 

daughter cells after replication (Handy et al., 2011). The pattern of DNA methylation 
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changes during development in a predictable manner and is different in the various 

tissues due to this family of enzymes (Walsh & Xu, 2006).  

Many studies have focused on the relationship between DNA methylation and 

biological aging due to its value in health assessment, disease prevention, and 

forensic analysis (Hannum et al., 2013).  

 

1.3 Epigenetics and the process of aging  

The epigenome, in contrast to the genome, is highly dynamic and is constantly 

adapting to internal, external and stochastic factors. Throughout development and 

aging, changes in the epigenome accumulate and can therefore be correlated with 

age (Heyn et al., 2012). Some studies have focused on finding patterns amongst 

epigenetic modifications that can be associated with age.   

The accumulation of epigenetic modifications can be observed when comparing 

the epigenome of younger versus older persons, with the latter showing less 

epigenetic similarities (Fraga et al., 2005; Hannum et al., 2013). Heyn and his 

colleagues compared the methylomes of T helper cells of the extreme points of 

human life: newborns and nonagenarians/centenarians. Their study corroborates 

the previous statement, with newborns having more homogenous methylation 

patterns amongst them, and also revealed a reduction of methylated CpGs in the 

older subjects (Heyn et al., 2012).  

Monozygotic twins are great subjects to the study of epigenetic modifications 

since they have practically identical genomes but exhibit different phenotypes which 

can be explained by epigenetics. When comparing pairs of monozygotic twins, the 

youngest pairs are epigenetically more identical than the oldest who show clear 

distinctions. Also, the pairs who spend less time together and/or have a more 

different natural health/medical history show the greatest epigenetic differences, 

underlying the significant role of environmental factors in the translation of a 

genotype to a phenotype  (Fraga et al., 2005). However, it should be pointed that, 

despite being more identical than older pairs of twins, young and healthy 

monozygotic twins still have different epigenomes (Planterose Jiménez et al., 2021). 

Many aspects are associated with epigenetic changes, such as smoking, 

exposure to toxins, eating habits, and physical activity, and these alterations may or 
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not be reversible. For example, smoking affects DNA methylation patterns in a time 

and dose-dependent manner and can be reversed after quitting. It takes 15-19 years 

of low dose smoking for individuals to display a methylation pattern associated with 

smoking and less than a year after quitting for this pattern to change to a non-smoker 

pattern. Regarding heavy-dose smokers, it takes 5-9 years to display a smoker 

methylation pattern, and less than 2 years after quitting to return to a non-smoker 

pattern (McCartney et al., 2018). Zong and colleagues (Zong et al., 2019) recently 

reviewed a series of articles on this topic and outlined the reversible DNA 

methylation pattern of smokers after quitting for most differentially methylated CpGs 

and also the irreversible damage of smoking for some genes.   

The amount of evidence that correlates age and epigenetic changes is 

astonishing (e.g. B. C. Christensen et al., 2009; Rakyan et al., 2010) and brought 

great advances in many fields. For example, in the medical field for the study of the 

impact of diseases in the aging process (Horvath et al., 2014, 2015, 2016). In the 

forensic context, this correlation is particularly important since it allows for age 

predictions and will be further explored in the following chapters.  

 

2. Age estimation 
 

2.1 Introduction 

Age can be measured in two different ways: chronological and biological age. 

Chronological age, by definition, is the amount of time that has elapsed since birth 

and is the measure of time commonly used. For biological age, there isn’t exactly a 

definition, but the notion that individuals age differently is well known. Biological age 

tries to explain this notion. It measures the complex biological process of aging that 

is unique to every person and in a subjective manner (Jackson et al., 2003). In the 

forensic context, accurately predicting chronological age is preferred over biological 

age, since what is being searched is a donor external trait. In other contexts, for 

example, for medical purposes, biological age is preferred since it can give 

information on the patients’ disease risk and mortality (Field et al., 2018), or for the 

evaluation of the impact of clinical trials on mortality rates (Horvath et al., 2018). 
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Predicting someone’s age from a biological sample can be of great use, both 

for living persons and human remains, or even for cultured tissues.  

Age estimation tools may be used for human identification from remains, aiding 

in building a biological profile to compare with missing persons (Cunha et al., 2009; 

Parson, 2018). When an individual lacks valid identification documents, these tools 

can be used to help in attributing a sentence, since the law is applicable according 

to age. This is particularly important in migration cases since minors have better 

care, an increased chance of being granted asylum, and can be accompanied by 

family members which may lead young adults to pose as minors to benefit from 

these conditions (Abbott, 2018; Parson, 2018).  

If the perpetrator is a minor, he or she may not fully understand the 

consequences of their actions and must be judged accordingly. Age estimation tools 

may help in attributing imputability or imputableness to an individual. Determining 

someone’s age may also be useful to assure that an individual is not trying to pose 

as older to benefit from a pension.  

Age estimation can also be required by a court in cases of adoption when a 

minor’s age is not ascertained (Cunha et al., 2009), for eligibility and group 

assignment in sports competitions (Shi et al., 2018) and cases of child labor or 

minor’s sexual exploitation (Balla et al., 2019) 

Age estimation tools can also aid in research studies, e.g., for studying anti-

aging properties of compounds on cultured cells, reducing the need to perform such 

studies on humans (Horvath et al., 2018). 

Another great use of age estimation tools is in cases where the Short Tandem 

Repeat (STR) profile of a sample found on a crime scene doesn’t match the profiles 

of the suspects or other profiles found in DNA databases; this means that there are 

no leads on whom the perpetrator is and estimating his or her age reduces the pool 

of possible suspects to a certain age group which is very useful in the course the 

investigation (Cunha et al., 2009; Parson, 2018). 

Several methods for age estimations of living persons have been approved, 

such as the Study Group on Forensic Age Diagnostics’ method that consists of a 

physical exam and X-ray examination of the left hand, dentition, and clavicle 

(Schmeling et al., 2008). For juvenile age estimation, limitations to these methods 
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have been found due to some differences in skeletal growth patterns (Zhang et al., 

2009) and wisdom tooth mineralization in children belonging to different ethnical 

groups (Olze et al., 2007).  

For age estimation in human remains, various dental and skeletal methods have 

been proposed. Skeletal age estimation relies on the morphological quantification 

made by the anthropologist which introduces error and the results are often a wide 

age interval that is accurate but lacks precision. For example, in a murder 

investigation, after several methods were applied, the estimated age of the victim 

was reported to be between 23 to 35 years of age and it was later found that the 

individual was 26 years old (A. M. Christensen et al., 2014). Bone development is 

susceptible to physical loading, nutrition, and health status and is variable from 

individual to individual. For living individuals or intact bodies, the skeletal 

assessment is accomplished using radiography which may present a different 

appearance when compared to the actual bone examination (A. M. Christensen et 

al., 2014).   

Dental methods for age estimation require the initial placement of the individual 

into one of two categories. The juvenile category includes all stages from embryonic 

development until adolescence and the adult category includes every stage after 

adolescence. Attributing a category may not be easy, particularly when the 

individual is a young adult.  The sex and ancestry of the individual (A. M. Christensen 

et al., 2014; Olze et al., 2007) are factors that influence age estimation and are often 

unknown which may pose limitations to the dental methods.   

Histological age estimating methods have also been proposed, with utility 

especially in fragmented human bones from remains, however, the majority of 

histological methods rely on determining the osteon population density (OPD). 

There is a maximum value that can be reached using this technique and after the 

maximum is reached, it is only possible to assert that the individual is older than a 

certain age. Also, the maximum ODP happens at different times in different bones 

and is affected by age, sex, ancestry, physical activity, nutrition, and health. Finally, 

histological methods are destructive and should only be considered after less 

destructive methods (A. M. Christensen et al., 2014). 
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All these methods have their limitations, lack standardization and consensus 

concerning which method should be used (Cunha et al., 2009), present ambiguous 

results (Parson, 2018), perform better when certain aspects of the individual are 

known (such as gender, ethnicity or pathological conditions), and require a body or 

fragments of a body. Some methods can only indicate if the individual was young or 

old (A. M. Christensen et al., 2014) 

The use of molecular genetic methods for age estimation brings the advantage 

that they can be applied to any tissue containing DNA and can be used for living 

persons and human remains (Parson, 2018).  

Molecular methods for age prediction include leukocyte telomere length, 

analysis of age-dependent deletions of mitochondrial DNA, T-Cells DNA 

rearrangements, and protein alterations, but all these biomarkers have low precision 

and practical limitations. 

Telomeres are repetitive sequences found at the end of chromosomes that 

shorten with each DNA replication event. Age is correlated to the relative size of 

telomers and is proposed as an age estimation tool (Márquez-Ruiz et al., 2018).  

The methods based on telomere shortening estimate biological age with an error 

between estimated and actual age of 7 to 22 years. A recent study used quantitative 

polymerase chain reaction (qPCR) for determining telomere length estimated age 

with an error of 13,8 years (Márquez-Ruiz et al., 2018).   This method requires small 

amounts of DNA, is not very time-consuming, and has high throughput, simplicity, 

robustness, and reproducibility. Despite these advantages, methods based on 

telomere shortening are influenced by the environmental factors to which the sample 

has been exposed and the cause of death, making this technique unsuitable in the 

forensic field (Zapico et al., 2019).  

During the process of aging, mitochondrial DNA accumulates mutations and this 

damage can be measured to estimate age. With the use of qPCR, mtDNA damage 

methods for age estimation quantify the damage (mutations) in mtDNA and correlate 

it with age. (Zapico & Ubelaker, 2016). Mitochondrial DNA methods showed a good 

correlation with age, can be applied to multiple tissues, and require low amounts of 

tissue. In comparison to other anthropological approaches for age estimation, it is 

more accurate, simple, and affordable (Zapico & Ubelaker, 2016). Despite being 
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one of the first molecular markers studied for age estimation purposes, there is still 

a shortage of studies that strengthens the correlation between mtDNA damage and 

age (Parson, 2018). This method also presents populational differences in the 

amount of damage found in mtDNA (Zapico & Ubelaker, 2016).  

Another method currently being studied for age estimation relates the decline of 

signal joint T-cell receptor rearrangement excision circles (sjTRECs) to increasing 

age. This method uses qPCR and can be applied to blood (Ou et al., 2011) and 

bloodstains (Ou et al., 2012), which are very common types of samples found in the 

forensic field. This method predicts age with an error between actual and predicted 

age of approximately 10 years and is not influenced by sex. Although blood is a very 

common forensic sample, other types of samples are found in this field and only 

blood can be used to predict age using this method (Ou et al., 2012; Ou et al., 2011).  

Covering all available methods for age estimation and their specifications is not 

the main goal of this work. All the methods here mentioned are just a few examples 

and can be consulted in a simplified table format in the Supplementary Material.  

Epigenetics opened new horizons to age predictions using molecular methods. 

When comparing the various types of biomarkers used for age predictions (mRNA, 

DNA methylation, sjTREC, mtDNA, and telomere length), DNA methylation showed 

the highest correlation to age (Weidner et al., 2014; Zubakov et al., 2016). This 

technique showed to be an improvement in terms of accuracy to the previously 

mentioned age estimation methods, with a Mean Absolute Error (MAE) of only 3,4 

years between estimated and chronological age (Woźniak et al., 2021).  

Despite being advantageous, DNA methylation methods for age predictions 

have their limitations. The VISible Attributes through GEnomics (VISAGE) 

Consortium aims to overcome these limitations and the overall limitations of the use 

of Forensic DNA Phenotyping (FDP) in providing information on the appearance, 

age, and ancestry of a person in the forensic field. Among other objectives, the 

VISAGE Consortium groups and validates data and prototype tools on the DNA 

predictors of Externally Visible Characteristics (EVCs) and identifies and analyses 

the associated legal, ethical, and social aspects of these tools. Of interest to this 

work, the VISAGE Consortium published scientific works on age estimation tools 

using DNA methylation markers. 
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2.2 DNA methylation and age estimation 

Epigenetics brought a promising tool for age prediction with DNA methylation 

markers. There is cumulative evidence that the DNA methylation levels are 

associated with age since it undergoes dynamic alterations during the lifetime 

(Parson, 2018; Weidner & Wagner, 2014; S. H. Yi et al., 2014). 

Many studies have focused on finding age-related CpGs that can be used for 

age estimations through their methylation patterns. In 2014, Weidner and 

colleagues (Weidner et al., 2014) proposed an age estimation model using only 3 

CpGs and pyrosequencing technology. This method used blood samples, but it was 

also demonstrated on other tissues with similar results.  

A great advantage of age estimation tools based on methylation profiles 

compared to other molecular methods is that it has been shown that the methylation 

profiles are not significantly altered by different storage conditions (Li et al., 2018; 

Zbieć-Piekarska, Spólnicka, Kupiec, Makowska, et al., 2015) and in a post-mortem 

interval of under 24 hours (Sukawutthiya et al., 2021), the latter being of critical 

importance in the forensic field. Another study has also suggested that the 

methylation status of samples collected from human remains within 10 days of the 

time of death has no statistical difference from samples collected on living persons 

(Hamano et al., 2016).  

Age estimations may also play a role in complementing the prediction of other 

EVCs, such as hair color, skin pigmentation, or baldness pattern in males since 

these characteristics are influenced by age. Complementing age with other EVC 

predictions can aid in building a sketch of the sample’s donor (Zbieć-Piekarska, 

Spólnicka, Kupiec, Parys-Proszek, et al., 2015) .  

 

2.3 Challenges in building an age predicting model 

The first challenge in building an age predicting model is “where?”. DNA is filled 

with information and researchers from many fields work in translating that 

information into something useful. To build an age-predicting model, researchers 

first search the DNA to find the markers that can provide information about a 
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person’s age. A genome-wide study performed on pairs of monozygotic twins, with 

ages between 21 and 55 years, quantified the methylation status of 27 578 CpGs in 

saliva samples and found a strong correlation between the methylation status of 88 

CpGs and age (Bocklandt et al., 2011). It is important to note that these CpGs lay 

near genes involved in cardiovascular, neurological, and genetic diseases. It makes 

sense that CpGs that can be used for age estimation lay near or within genes 

involved in aging-related conditions and several models use CpGs following this 

logic. For example, Hannum and colleagues proposed an age predicting model with 

several markers involved in Alzheimer’s disease, obesity, and metabolism (Hannum 

et al., 2013). 

In 2012, the ELOVL2 gene was proposed as an epigenetic marker of age 

(Garagnani et al., 2012). This study reported that CpG islands of the ELOVL2 gene 

range from being almost entirely unmethylated in the early stages of life, to being 

almost completely methylated in the latter stages. To express this in numbers, the 

study had subjects with ages comprised between 9 and 99 years, and the 

percentage of methylation ranged from 7 to 91% in a linear age-related manner 

(Garagnani et al., 2012). A single CpG site within this gene explains 83% of age 

variance (Zbieć-Piekarska, Spólnicka, Kupiec, Parys-Proszek, et al., 2015).  

Apart from the ELOVL2 gene, various other genes have CpGs that are highly 

correlated with age and by combining them, very accurate models can be achieved. 

For example, a model proposed by Zbieć-Piekarska and her colleagues includes 

CpGs within the genes ELOVL2, MIR29B2C (previously denominated C1orf132), 

TRIM59, KLF14 e FHL2 and explains 95.3% of age variance with an MAE of 4 years 

(Zbieć-Piekarska, Spólnicka, Kupiec, Parys-Proszek, et al., 2015).  

The VISAGE Consortium evaluated a basic prototype tool for age estimation 

that targets 32 CpG sites located at five genes, ELOVL2, MIR29B2C, FHL2, 

TRIM59, and KLF14 (Heidegger et al., 2020) based on other studies that found 

these markers to be strong age predictors. Later, they developed an enhanced tool 

for age prediction that uses bisulfite multiplex PCR and Massively Parallel 

Sequencing. They also proposed three new statistical models to predict age in 

blood, buccal cells, and bones. This tool targets 44 CpGs from 8 DNA methylation 

markers and by using different combinations of these markers in the appropriate 
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statistical model it is possible to predict age with MAE of 3,2 years for blood, 3,7 for 

buccal cells, and 3,4 for bone (Woźniak et al., 2021). 

A wide variety of CpGs have been related to age and have been used in age 

predicting models. Using all available markers may seem attractive, but there are 

some factors to be considered.  

A good question to answer about the candidate markers is: are they good 

predictors in the different tissues and cell types? Most age predicting models are 

built based on blood samples, but a forensically relevant sample can be of any type 

of human biological material. Cell or tissue-type methylation specificity has been 

shown for some CpGs and it is of great relevance in the context of forensic practice 

to find CpGs that can be good predictors of age across different tissues.  

Among others, a relevant sample in the forensic context could be of unknown 

or mixed origin, which means that a model based and validated for a single tissue 

cannot be properly introduced in the routine of a forensic lab. Some studies have 

addressed this problem, focussing their attention on building models with markers 

that can be used to predict age in a variety of tissues and cell types (Horvath, 2013; 

Koch & Wagner, 2011; Woźniak et al., 2021). Particularly, the VISAGE Consortium’s 

enhanced tool for age estimation predicted age in blood, buccal cells, and bone with 

great accuracy (MAE of 3,2 – 3,7 years). However, it has been previously shown 

that models that accurately predict age in various tissues don’t have a predictive 

value in semen (H. Y. Lee et al., 2015), which is a relevant type of forensic sample. 

Some markers used in the VISAGE enhanced tool for age predictions (Woźniak 

et al., 2021) were found to have altered DNA methylation patterns that could 

influence age prediction in alcohol abusers (Piniewska-Róg et al., 2021). When 

analyzing a forensic sample of unknown origin, it is important to make sure that the 

results can’t be affected by factors unknown to the investigation (such as alcohol 

consumption of the sample donor). 

Another problem is imposed now. Is the model technically feasible in the 

forensic context?  

As mentioned before, using all available markers could seem to lead to a more 

accurate model. However, the more CpGs a model uses, the greater the amount of 

biological material required as input. There are some characteristics of forensic 
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samples (see section 2.4) that need to be considered, namely the amount of sample 

that is found on the crime scene and degradation of the sample.  

 

2.4 What influences age estimations? 

The complexity of the genetics of age 

Aging is a complex multifactorial process that varies among individuals and 

even among the different body tissues. Genetic and epigenetic factors are involved 

in the aging process and are influenced by genes, environmental and stochastic 

factors. The contribution of each factor and the combination of factors is still to be 

determined (Rodríguez-Rodero et al., 2011). Epigenetic markers are being used for 

age estimations and the identification and validation of the markers that better 

correlate with age is an ongoing process.   

 

Sex 

There isn’t a consensus on the influence of sex on epigenetic age predictions. 

Some studies demonstrated that sex contributes to the aging rate, with men’s 

methylome aging faster than woman’s and leading to men having a higher predicted 

age (Hannum et al., 2013; Simpkin et al., 2016; Weidner et al., 2014). This trend 

strengthens over the life course but the difference was found even in 7 years-old 

children (Simpkin et al., 2016). In many studies, however, sex did not significantly 

influence age prediction (Bekaert et al., 2015; Correia Dias et al., 2020; Freire-

aradas et al., 2016; Koch & Wagner, 2011; Zbieć-Piekarska, Spólnicka, Kupiec, 

Parys-Proszek, et al., 2015). This discrepancy may be related to the method and 

markers used; when using a broader approach such as methylome studies, sex 

does appear to affect age prediction, but when using a smaller set of markers, such 

as a group of age-informative CpGs, the results of age estimations don’t seem to 

vary significantly between sexes.   

 

Lifestyle choices 

The methylome is dynamic and changes over time in response to the 

surrounding environment. Everybody makes different choices and is exposed to 
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different environments throughout life, and all these factors will influence the 

methylome thus affecting age estimations.   

Epigenetic age in children is influenced by the mother’s lifestyle before and 

during pregnancy. Maternal alcohol consumption (Simpkin et al., 2016) and smoking 

(Richmond et al., 2015) during pregnancy and the mother’s weight (obesity and 

underweight) (Sharp et al., 2015) were found to influence the epigenome of the 

offspring during development.  

Alcohol abuse alters DNA methylation patterns at some markers used for age 

prediction  (Piniewska-Róg et al., 2021; Weidner & Wagner, 2014). This means that 

alcohol consumption may interfere with age estimations and exacerbates the impact 

that environmental factors can have on specific markers (Piniewska-Róg et al., 

2021).   

 

Diseases  

Some diseases have been shown to significantly impact age estimations, 

particularly diseases that have been associated with accelerated aging or reduced 

lifespan. These diseases include obesity (Horvath et al., 2014), osteoarthritis (Vidal 

et al., 2016), Huntington’s disease (Horvath et al., 2016), Down Syndrome (Horvath 

et al., 2015). 

 

Forensic samples 

Forensic samples are unique. They can be found on any type of substrate and 

belong to any type of biological material, are exposed to different environmental 

conditions, and may come in very little quantities. Also, they are mixed with PCR 

inhibitors, prone to degradation, and can be found within a few hours, days, or years 

from the moment it was left on the crime scene (S. B. Lee & Shewale, 2017). 

To test the forensic utility of samples obtained from bloodstains and kept at room 

conditions for 5, 10, and 15 years old, Zbieć-Piekarska and her colleagues (Zbieć-

Piekarska, Spólnicka, Kupiec, Makowska, et al., 2015) proceeded to estimate the 

age of the individuals to whom those samples belong and whose actual age was 

known. Not all 10- and 15- years old samples could be amplified by PCR due to 

DNA degradation. Despite this, the samples with positive PCR amplification had a 
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percentage of correct predictions similar to those collected and processed 

immediately.  

DNA methylation patterns are different between tissues, so when a forensic 

sample is in hands, finding the tissue of origin may be crucial to the age estimation 

and other tests. A recent study performed on blood, buccal cells, and bone used a 

smaller set of CpGs that are informative across different tissues. This seems to be 

the solution for applying DNA methylation age estimation tools in routine forensic 

practice (Woźniak et al., 2021).   

Most studies published so far in the forensic field focused on somatic cells, 

mainly blood, but other types of cells and tissues are found in crime scenes or other 

forensic contexts. Semen samples are frequently used in forensic practices, 

particularly in sexual assault cases. The VISAGE Consortium recently published a 

study on the prediction of age in semen samples and found this to be a more 

complex method compared to age prediction in other tissues (Pisarek et al., 2021). 

Differentially methylated sites in semen don’t have a powerful individual predictive 

power. The markers used for age prediction in blood can explain between 95,2% to 

98,2% of the variation in age (Woźniak et al., 2021) whilst the markers used for 

semen only explain 35% to 60% (Pisarek et al., 2021). Since individually each 

marker used for age prediction in semen is only moderately correlated with age, 

using more markers it is possible to build an accurate model. Jenkins et al. (Jenkins 

et al., 2018) built a model that uses 51 CpGs and predicts age with MAE of only 2 

years whilst the VISAGE model for age prediction in semen only uses 6 CpGs and 

predicts age with MAE of 5 years (Pisarek et al., 2021). However, using more CpGs 

in a model requires higher DNA quantity and quality which, in the forensic field, is 

difficult to control.  

A major problem found in the forensic field is the quantity of sample available. 

Relevant samples are frequently a drop of blood or a few hair strands where the 

amount of DNA that can be extracted is very limited. Bisulfite conversion is a 

standard tool for methylation analyses, but it leads to inferior results when the DNA 

input is smaller due to DNA loss during this process. This means that erroneous 

methylation quantification, and therefore, less accurate age prediction may be a 

result of the low number of DNA molecules used for this purpose (Heidegger et al., 
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2020; Vidaki & Kayser, 2018). In conclusion, samples usually found in the forensic 

context may not have the necessary quantity and quality to perform the methods 

used for age estimation. 

 

Funding limitations 

The study of the genetics of diseases uses the same technologies and statistical 

methods as the study of Externally Visible Characteristics (EVC), including age 

estimations, but is far more advanced. This is in part due to research funding that 

is, typically, more focused on disease-related genetic variations. To find the markers 

that correlate with age (and other ECVs) it is required to study a large number of 

individuals and the genomic tools to carry this mission, such as SNPs microarrays 

or Genome-Wide Association Studies are still very expensive (Kayser, 2015).   

 

Biogeographic ancestry 

It has been suggested that the methylation status of some markers may be 

population-specific. In a recent study, Dias and her colleagues replicated a study 

performed on individuals from a Korean population (Jung et al., 2018) in samples 

from Portuguese people. By applying the Korean model on Portuguese individuals, 

differences in specific markers between the two populations were found, e.g., the 

CpG in the gene ELOVL2 showed the strongest correlation in Portuguese 

individuals, but for the Koreans, the strongest correlation was found on the CpG at 

the FHL2 gene. The CpG with the lowest correlation was found at the KLF14 gene 

for the Portuguese and at the C1orf132 gene for the Koreans. The statistical model 

used for age prediction of the Portuguese individuals suffered some alterations from 

the original model which allowed for an accurate age prediction (MAD=4.25) but, 

when the methylation data from the Portuguese individuals was applied to the 

Korean algorithm, the results were strongly less accurate (MAD=15.26) (Dias, 

Cordeiro, et al., 2020).  

Not many age estimation studies have focused on the population differences in 

methylation patterns since most only use a sample set from one populational group. 

As seen in the previously mentioned study (Dias, Cordeiro, et al., 2020), these 

differences may influence the accuracy of the predicted age.  
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Finally, most studies on age estimations up to now have been performed on 

European and West Eurasian populations (Parson, 2018) and since different 

populations experience different environmental conditions, health care, and 

lifestyles, future studies should include populations from different geographic 

backgrounds. 

 

Chronological age 

As mentioned before, the methylome, as opposed to the genome, is not static 

and accumulates changes with time. This means that older individuals tend to have 

a greater discrepancy in their methylomes compared to younger individuals, and 

this is reflected in age-estimation studies.  

It is often found that older individuals (over 40 years of age) have a higher Mean 

Average Error and percentage of incorrect age predictions (Dias, Cordeiro, et al., 

2020; Dias, Cunha, et al., 2020; Hamano et al., 2016; Zbieć-Piekarska, Spólnicka, 

Kupiec, Parys-Proszek, et al., 2015). Overwhelming evidence of this can be found 

in studies involving monozygotic twins, where younger pairs of twins appear to be 

epigenetically more similar than older pairs of twins, who show more significant 

differences in methylation and acetylation patterns (Fraga et al., 2005).   

 

Epigenetic drift 

Epigenetic drift is a result of errors in the maintenance of the epigenome and is 

considered a hallmark of aging. These errors can result in changes in gene 

expression and lead to age-related phenotypes (Mendelsohn & Larrick, 2017). 

Using the example of monozygotic twins, who share the same genome and, in early 

ages, the same epigenome, epigenetic drift can explain the different phenotypes 

presented throughout life. In the early stages of life, if a pair of MZ twins share the 

same genotype, epigenotype and grow up exposed to the same external factors, 

what explains different disease outcomes and other age-related phenotypes of 

these twins? As errors in maintenance of the epigenome are random and 

accumulate with time, the epigenomes of MZ twin pairs start to depart from each 

other (Fraga et al., 2005). Considering this, it is safe to assume that epigenetic drift 
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may influence the estimation of age through DNA methylation since random errors 

on the used markers may occur. 

 

3. Methods used for Age Estimations through 
Methylation Analysis 

 

3.1 DNA purification 

There are two types of forensic biological evidence: single-source samples and 

evidence samples. The first refers to samples collected from a single known donor, 

for example, for paternity testing, DNA database generation, reference samples in 

casework, and relationship testing. They contain an abundant quantity of biological 

material, are collected and stored in relatively controlled environments, are less 

likely to be degraded, and contain minimal inhibitors of PCR. Evidence samples are 

collected at the crime scene and can be any type of biological material. They can 

be deposited on various types of substrates, are often mixed with PCR inhibitors, 

exposed to variable environmental conditions, and in limited quantities (S. B. Lee & 

Shewale, 2017).  

DNA purification is the method by which the cells in a sample are lysate so the 

DNA and other nucleic acids can be isolated from contaminants.   

Purifying DNA from forensic samples is challenged by the characteristics of the 

sample mentioned above. Therefore, finding the most suitable method that will lead 

to a maximum amount of purified DNA extracted from the sample is a step with great 

impact in many downstream analyses such as STR profiling and FDP. Some 

commercial kits were validated for a variety of tissues and body fluids, such as the 

QIAamp DNA Blood Maxi Kit (QIAGEN) used in the VISAGE’s age estimation tools 

(Heidegger et al., 2020; Woźniak et al., 2021). The VISAGE model developed for 

age estimation in semen uses the Sherlock AX Kits (A&A Biotechnology) for DNA 

purification (Pisarek et al., 2021), and this kit can also be used for blood and saliva 

stains, hair, preserved and fresh tissues, and frozen and fresh blood. 
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3.2 Bisulfite Conversion (BC) 

Methylation of cytosine occurs at the 5’ position of the pyrimidine ring. This is a 

very common post-replicative modification of DNA, mostly found in CpG 

dinucleotides, and is involved in the regulation of gene expression (Walsh & Xu, 

2006). 

Bisulfite conversion is a method used to distinguish cytosines from methylated 

cytosines, which is needed in methylation studies. The bisulfite deaminates the 

cytosines causing its chemical conversion to uracil, leaving the methylated cytosines 

intact. The deamination of the methylated cytosines is much slower and, in the 

duration of this treatment, doesn’t occur. After the treatment, the converted DNA 

can be used in other molecular biology techniques, such as PCR and sequencing, 

and the methylated cytosines will be detected since the unmethylated ones were 

converted to uracil.  

A major advantage of this technique is that it provides information on the 

methylation status of every cytosine examined. Compared to other conversion 

methods, bisulfite conversion is less time-consuming and reduces the possibility of 

contamination and human error because it has fewer tube changing steps 

(Hernández et al., 2013).  

Some obstacles with this technique have also been identified; the deamination 

of methylated cytosines may occur and results in the conversion of the cytosine into 

thymine, which cannot be distinguished from an unmethylated cytosine that has 

been converted to uracil (adenine will bind to both). Low deamination efficiency of 

the unmethylated cytosines may be caused by the oxidation of the bisulfite, 

incomplete strand separation, protein residues after DNA extraction, or the use of 

too much DNA in BC (may lead to re-annealing of complementary sequences) 

(Darst et al., 2010). DNA loss and degradation may be a result of DNA fragmentation 

during the bisulfite treatment (Hernández et al., 2013). 

It is important to use controls for the process of bisulfite conversion to validate 

the use of the converted DNA in other downstream analyses. These controls are 

used to evaluate the quality of the converted DNA, the efficiency of conversion, and 

the quantity of DNA remaining (Hernández et al., 2013).   
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Several commercially available kits were tested for the basic prototype tool 

developed by Heidegger et al. (Heidegger et al., 2020). The EZ DNA Methylation-

Direct™ Kit (Zymo Research) and the Premium Bisulfite kit (Diagenode) were the 

kits that yielded better concentrations of DNA even for low DNA input (500 pg) and 

had great conversion efficacy (Heidegger et al., 2020). In the VISAGE enhanced 

tool for age estimation (Woźniak et al., 2021), bisulfite conversion is performed using 

the Premium Bisulfite kit, and in the model developed for age estimation in semen 

(Pisarek et al., 2021), bisulfite conversion is performed using the EZ DNA 

Methylation Direct™ Kit. 

 

3.3  Multiplex PCR 

Multiplex PCR is a widely used molecular biology technique that allows for the 

amplification of several targets in a single PCR reaction. Developing a multiplex 

technique capable of analyzing a large set of markers from low quality and quantity 

of DNA input is a goal for the progress of forensic genetics and epigenetics.  

The use of multiplex PCR for bisulfite-converted samples is limited by the quality 

and quantity of DNA obtained after the treatment. Since DNA fragmentation and 

lower complexity sequences are common results of the conversion, non-specific 

primer binding and formation of dimers occur during the multiplex PCR. At the 

moment, DNA input of 20 ng for BC samples is the lowest quantity that allows a 

robust quantification of DNA methylation of the sample (Heidegger et al., 2020).  

The Multiplex PCR Kit (QIAGEN) is used in the VISAGE basic tool (Heidegger 

et al., 2020) and enhanced tool (Woźniak et al., 2021) in combination with primers 

designed in other studies for age estimations (Weidner et al., 2014; Zbieć-

Piekarska, Spólnicka, Kupiec, Makowska, et al., 2015). 

 

3.4 Pyrosequencing 

Pyrosequencing is a sequencing-by-synthesis method that consists of the 

release of a Pyrophosphate (PPi) molecule whenever a nucleotide is incorporated 

by a DNA polymerase in the template DNA strand. Nucleotides are released in the 
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reaction one at a time, so that, if the nucleotide is incorporated, the PPi molecule is 

released and quantitatively converted into a bioluminometric signal. 

Shortly, pyrosequencing can be divided into 7 steps: 1) assay design, a crucial 

step for a successful and accurate quantitative analysis, and includes the design of 

PCR and pyrosequencing primers; 2) template preparation, consisting of DNA 

extraction, determination of DNA concentration and the bisulfite conversion; 3) PCR 

amplification of the target region; 4) pyrosequencing template preparation, 

where PCR products undergo streptavidin-coated sepharose beads and alkali 

treatment to obtain single-strand DNA molecules. This step also removes salts that 

may influence subsequent enzymatic reactions; 5) annealing of the 

pyrosequencing primer several bases upstream of the site of interest; 6) 

pyrosequencing and finally 7) data analyses.  

This technique uses PCR products amplified from bisulfite-treated DNA and 

combines the ability of direct quantitative sequencing, reproducibility, speed, and 

ease-of-use. It can analyze the DNA methylation in CpG rich and poor regions and 

is a reference method used for the validation of newly developed methods in this 

field. Several epigenetic age estimation clocks use pyrosequencing (Bekaert et al., 

2015; Cho et al., 2017; Weidner & Wagner, 2014; Zbieć-Piekarska, Spólnicka, 

Kupiec, Makowska, et al., 2015; Zbieć-Piekarska, Spólnicka, Kupiec, Parys-

Proszek, et al., 2015). 

 

3.5 Single-base extension reaction 

Traditional methylation quantification methods involve cloning and sequencing 

of a high number of sequences per individual after bisulfite conversion and PCR. 

These approaches can be very arduous and time-consuming. Methylation-sensitive 

single nucleotide primer extension is a more efficient method developed to quickly 

and accurately quantify DNA methylation levels of bisulfite-treated samples.  

This method is based on the repeated annealing of primers exactly one base-

pair upstream of the target CpGs and the extension of the primer consists of the 

incorporation of a single fluorescent dideoxynucleotide. The proportion of 

fluorescent cytosines and thymines incorporated, representing methylated and non-

methylated CpGs respectively can then be quantified. Different platforms use 
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different methods for the quantification of methylated cytosines, e.g., capillary 

electrophoresis, radioactively labeled dNTPs, or mass spectrometry (Kaminsky & 

Petronis, 2009).  

This technology is used in a model for age estimation in blood, saliva, and buccal 

swabs (Jung et al., 2018) that was later replicated on a different population (Dias, 

Cordeiro, et al., 2020). 

 

3.6  Massively Parallel Sequencing (MPS) 

After the introduction of Sanger sequencing (Sanger et al., 1977), improvements 

to this method have led to increased accuracy and efficiency in more recent 

sequencing methods. Massively parallel sequencing allows for the analysis of all 

types of nucleic acids sequences, and the distinction between methylated and 

unmethylated cytosines after BC conversion.  MPS is a Next-Generation 

Sequencing method used worldwide and in a wide variety of research areas. It uses 

reversible terminator chemistry and fluorescently labeled modified dNTPs in 

reaction with the sequence of interest (Bentley et al., 2008).  

This technology is composed of 4 steps (Illumina Inc., 2017): 1) sample 

preparation, where the DNA from the sample is randomly fragmentized and bonded 

to adaptor molecules; 2) cluster generation, which starts with loading the library 

prepared on the first step into a flow cell with surface-bound oligos. These oligos 

are complementary to the adapter molecules bonded to the DNA in the first step 

and capture the DNA fragments. The DNA fragments are amplified and finally ready 

for 3) sequencing; this step begins with the extension of the primer. dNTPs are 

added to the reaction and bind to the template DNA in a stepwise manner, first for 

all forward strands and latter for all reverse strands; 4) data analysis consist of the 

clustering of the millions of reads obtained in the previous steps, both in the reverse 

and forward sense. Then, the obtained sequences are aligned to the reference 

genome to find variants.   

MPS has brought great advances to sequencing, with high throughput and 

accurate results at lower costs than previous methods. Some advantages of MPS 

are the ability to combine age estimation with other markers used in the forensic 

context (Vidaki et al., 2017) and the universality of this platform, which can also be 
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used for SNP variation analysis and STR profiling (Gross et al., 2021; Woźniak et 

al., 2021).  

A recent study performed by the VISAGE Consortium (Gross et al., 2021) 

surveyed European laboratories that work with criminal cases, regarding the use of 

MPS. They concluded that over 70% of the inquired labs already owned an MPS 

platform, or will own one within the next 2 years. However, owning an MPS platform 

is not the only requirement to implementing MPS for the prediction of age and other 

externally visible characteristics. These technologies require specialized personnel 

and bioinformatics software for the interpretation of millions of reads obtained from 

each sample. This study demonstrated that European laboratories are on a good 

path to implementing MPS platforms for FDP and that there is a high interest in 

implementing these technologies (Gross et al., 2021). 

 

4. Ethical issues and current legal landscape 
 

The history of DNA in forensic science has a few landmarks, starting with 

Professor Sir Alec Jeffreys’ discovery of DNA fingerprinting in 1984. In 1985, the 

first immigration, paternity, and identification of identical twins cases were solved 

using DNA fingerprinting.  

Shortly after, DNA fingerprinting started being used in criminal investigations. 

For example, in 1986 when trying to solve the rape and murder of two girls. In this 

case, a suspect had confessed to committing one of the murders, however, DNA 

evidence collected from both crimes revealed that both murders had been 

committed by the same person and this person was not the confessing suspect. 

In the years that followed, the value of DNA evidence to solve crimes started to 

be recognized but also raised questions in some courts of law on whether or not to 

admit evidence and convict a suspect based on DNA evidence. 

Fast-forwarding to the present, DNA evidence can be used, not only to confirm 

if a sample found on a crime scene belongs or not to a known suspect but to infer 

on personal traits of the person who left the sample in the crime scene when there 

are no suspects.   
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The VISAGE Consortium describes Forensic DNA Phenotyping (FDP) as “a 

tool which seeks to probabilistically infer the age, appearance and biogeographical 

ancestry (BGA) (…) of an individual from their anonymous DNA sample”. Being a 

probabilistic tool, age estimation and other FDP tools infer a phenotype to a certain 

degree of probability (Samuel & Prainsack, 2018).  

Epigenetic Age Estimation is included in FDP tools, and with the advance of 

these techniques, concerns on ethical and legal aspects around it have risen.   

Here, we analyze the use of Forensic DNA Phenotyping in unknown donor 

samples found on crime victims or at the crime scene in terms of ethical and societal 

issues and current legislation.  

 

4.1 Ethical and societal issues 

Discrimination 

Discrimination is one of the major problems of FDP since these technologies 

can more easily discriminate against minorities. However, this is more applicable to 

BGA than age predictions and therefore, won’t be further discussed here.  

 

The “CSI effect” 

Another problem is the “CSI effect” which arose with the growing popularity of 

television shows about forensic investigations (Chin & Workewych, 2016). These 

fictional programs create a perception of DNA technologies as infallible. This leads 

to over-interpretation of the findings obtained by FDP, which are always probabilistic 

and shouldn’t be considered absolute truths. Despite the probability of the suspect 

having a determinate phenotype, other phenotypes shouldn’t be ruled out. Police 

officers aren’t typically instructed on the scientific and probabilistic nature of FDP 

findings which can lead to over-interpretation of FDP findings (Samuel & Prainsack, 

2019). 

 

The “Right not to know” 

When the trait being tested is an EVC, including eye and hair color or age, it is 

mainly considered that FDP doesn’t violate privacy rights since these pieces of 

information are known by the person, everybody who has ever seen the person, and 
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the police through personal identification documents (Kayser, 2015; Samuel & 

Prainsack, 2019). The same doesn’t apply to other traits that may be unknown to 

the sample donor, such as information on health conditions. Putting in perspective, 

when a violent crime is being investigated, how deep should the investigation go to 

solve it? Some diseases already have a cure or have a low impact on the person. 

In these cases, solving the crime may outweigh the “right not to know” (de Cerqueira 

et al., 2016).  Since age is a trait known to the person, at least approximately, 

investigating this trait shouldn’t be considered as a violation of the “Right not to 

know”.  

 

 

Suspect populations 

Reports of FDP findings introduce to the investigation the probability of the 

potential suspect displaying certain characteristics. This creates a suspect 

population, a group of all the persons who resemble the suspect, and introduces 

people to the investigation that would otherwise not be involved. When someone is 

involved in a criminal investigation, both their privacy, family, and professional lives 

are negatively impacted (Samuel & Prainsack, 2019).  

The concept of suspect populations didn’t emerge with FDP but, if the number 

of innocent people involved in criminal investigations was to be inflated by these 

technologies, not only would it affect more lives, but could even be negative to the 

investigation.  

  

Communication and interpretation of FDP results 

Another great issue being addressed is the communication of FDP results to the 

general public. Opinions are divided on this subject, with some defending that there 

shouldn’t be a public communication of FDP results. First, it may lead to 

discrimination of people whose phenotype is similar to the described phenotype. 

Second, results may indicate a different phenotype from that of the perpetrator, 

either due to false results or because the sample may belong to an innocent person 

who passed by the crime scene. Erroneous results may in term lead the public to 
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diminish their trust in these tools or in the police that has spent time following a false 

lead. 

Police and law enforcement agents should be taught to understand the basis 

and limitations of FDP to properly use the results given by these tools. Some police 

officers refuse to use these results since they don’t understand them or just don’t 

believe in them. Educating these agents on FDP would also improve the 

interpretation of the results and minimize the CSI effect. 

 

Artificially altered appearance 

Most EVCs can be artificially altered. Eye color can be hidden by contact lenses, 

hair color can be altered by hair dye, and can be straightened or curled by esthetic 

produce and techniques. Baldness patterns may be changed by hair 

transplantations and plastic surgeries may remove freckles or influence apparent 

age.  

All these alterations can lead investigators in the opposite direction of the 

perpetrator and, in these cases, FDP can be disadvantageous. However, ID Cards, 

driver's licenses, and passports usually have portrait images and descriptions of the 

individual regarding their height, eye color, and age (Kayser, 2015). The perpetrator 

could successfully hide from the investigators at plain sight, but would probably be 

traced through their documentation, especially through age, which is present in 

every personal ID document.  

 

Eyewitness 

Many analogies can be drawn between eyewitnesses and FDP or “biological 

witnesses”. When someone witnesses a crime and reports what they saw to the 

police, the information will most likely be the sex, approximate height, and age, hair 

color, structure, and race of the perpetrator. These include some of the EVCs 

currently determined by FDP.  

One advantage of an eyewitness over a biological witness is that the description 

given is the description of the perpetrator and a DNA sample used for FDP may 

belong to someone who just passed through the crime scene and isn’t related to the 
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crime. Even if the DNA belongs to the perpetrator, the results of FDP are 

probabilistic and may not correctly describe the perpetrator.  

However, eyewitnesses of a crime are usually surprised by the event and many 

variables could affect their ability to correctly identify the culprit. Some of the main 

variables include viewing conditions (e.g. lightning), distracting stimuli (e.g. 

weapons), and the internal state of the witness during the crime (e.g. surprised) 

(Albright, 2017).  

The main point in this analogy is not to argue in favor of biological witnesses 

over eyewitnesses. It is instead to compare both in terms of ethic and societal 

issues. If eyewitnesses can describe the external traits of a perpetrator without 

violating any rights, then the same can be extrapolated to FDP findings.   

 

Misuse of FDP technologies 

As with any technology, FDP doesn’t come without the risk of misuse. For 

example, an insurance company has been licensed to use epigenetic age predicting 

tools, the same used for criminal investigations, to differentially attribute life 

insurance according to the epigenetically determined age (Dupras et al., 2018). 

Even within the context of criminal justice, the debate on this topic is either it is 

acceptable that this technology can be used in any case or not. We can divide the 

opinions into 3 categories: FDP should be used independently of the severity of the 

crime; FDP should not be used at all or FDP should be used with limitation to the 

severity of the crime.  

 The main opinion is that FDP should only be used for serious crimes, such 

as murders and rapes, and only when no other leads are available (Samuel & 

Prainsack, 2019). 

 

Data protection issues 

Genetic material collected from biological samples contains personal 

information of the person to whom it belongs. As so, it is important to treat this 

information concerning the ethical values of collecting, processing, and/or storing 

personal data.  
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As stated in the General Data Protection Regulation (GDPR), personal data: 

should be processed “lawfully, fairly and transparently”; should strictly be collected 

with a specified, explicit and legitimate purpose and the information obtained should 

be limited to this purpose; should always be updated and, if not, must be erased or 

rectified; should only be kept for as long as necessary and, if stored longer than this 

period, can only be accessed if a new purpose is stated; finally, should be ensured 

to be protected against unauthorized processing and its loss, destruction or 

damage. 

 

4.2 Legal aspects 

The legality of DNA phenotyping varies between countries or even between 

states of the same country. As reported by the VISAGE Consortium (Samuel & 

Prainsack, 2018), at the time, FDP was practiced in Belgium, the Czech Republic, 

Hungary, Italy, Slovakia, France, Poland, Spain, Sweden, The Netherlands, and 

United Kingdom and in some states of the United States. Other countries, despite 

not practicing FDP, have used these technologies in sporadic cases (e.g. Australia).  

Some countries have laws implicitly forbidding FDP (e.g. Austria, Germany), 

others have laws to explicitly regulate the use of FDP, such as The Netherlands 

where inferring biogeographical ancestry, hair, and eye color is permitted, and 

Slovakia, where the law allows for the use of FDP on samples related to severe 

crimes and for the identification of a corpse or body parts. This law also states that 

FDP should only be used when DNA profiles can’t provide the person’s identification 

(Samuel & Prainsack, 2018). In the U.S. state of Texas, FDP can be used as long 

as it is for investigating an offense or suspect or for the prosecution of a case 

(Kayser, 2015).  

In France, the current legislation prohibits FDP since it only permits DNA 

phenotyping with the person’s consent. However, the Cour de Cassation, which has 

jurisdiction over civil and criminal matters, allows the examination of morphological 

characteristics by FDP. In conclusion, the French laws forbid FDP unless it is 

requested by a court order. 
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The legislation and regulation of FDP in the European Union (EU) falls within 3 

documents: The Charter of Fundamental Rights of the European Union (CRF), the 

GDPR, and the Police Directive (Directive 2016/680). 

The Police Directive is of special relevance to this topic since its basis is the 

protection of people in what regards their personal data processing by law 

enforcement authorities. Here, “genetic data” is defined as all data resulting from 

the analysis of a biological sample and that relates to inherited or acquired genetic 

characteristics. 

Some countries have laws that restrict the use of DNA for forensic purposes to 

non-coding regions of the DNA (Kayser, 2015). This doesn’t exclude FDP as long 

as the markers used are in non-coding regions. However, it seems that these laws 

refer to non-coding as a synonym to non-informative (Samuel & Prainsack, 2018). 

This is an outdated view since it is now well-established that the non-coding part of 

DNA  contains coding information (Samuel & Prainsack, 2019).  

In some countries, laws only state that genetic data should only be stored from 

non-coding regions of the DNA (e.g. Poland). This means that, in these countries, 

FDP can be practiced as long as the data obtained from coding regions aren’t 

stored.  

Most countries covered by Samuel and Prainsack’s report (Samuel & Prainsack, 

2018) don’t have laws dedicated to FDP, or the use of DNA in forensics. Since no 

laws are saying otherwise, FDP is practiced in some of these countries.  

There is a need to regulate the use of FDP in all its aspects, especially in those 

countries practicing these technologies. By practicing FDP without proper 

legislation, misuse is a strong possibility. Some examples of misuse are in cases 

when other possibilities for the subject’s identification are still available or in minor 

offenses. The use of FDP to identify diseases or disease risks should also be 

legislated considering the “Right not to know”, the privacy rights, and the impact that 

this discovery might have on the person.  Finally, legislation relating to laboratories 

that can practice such techniques should be taken into account.  
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5. Discussion 
 

Our genome is constant and contains all the information that makes us who we 

are. However, we are not constant, quite the opposite, we are constantly changing. 

This is possible due to Epigenetics. Epigenetics is responsible for the regulation of 

gene expression through mechanisms that make genes accessible or not to 

transcription. 

A very important type of epigenetic alteration is DNA methylation, which consists 

of the addition of a methyl group to a cytosine. This cytosine is usually paired with 

guanine, composing a CpG site and CpG sites are often in clusters (CpG islands). 

The influence of DNA methylation on gene expression is related to the genomic 

region that is methylated. CpG islands are very common within promotor regions 

and, if methylated, gene expression is repressed (Moore et al., 2013). Differentiated 

cells have unique patterns of methylation that are dynamic during development and 

in adaptation to internal, external, and stochastic factors. These factors can be 

diseases, exposure to toxins, lifestyle, eating habits, among others. Over time, the 

changes in epigenome accumulate and can be correlated with age (Heyn et al., 

2012). This correlation brought great advances, particularly in the forensic field for 

age predictions. 

One of the main applications of age estimation tools is when a sample found on 

a crime scene doesn’t have a match in national DNA databases. In these cases, the 

sample’s DNA can be used to provide leads on whom the sample belongs to through 

the prediction of traits such as eye and hair color, biogeographic ancestry, and age 

(Cunha et al., 2009; Parson, 2018). The VISAGE Consortium aims to overcome the 

limitations associated with epigenetic age estimation tools and the overall limitations 

of the use of Forensic DNA Phenotyping (FDP), from a technical, ethical and legal 

point of view.  

Age estimation studies try to find CpGs that can be related to age due to their 

methylation patterns (Bocklandt et al., 2011; Hannum et al., 2013; Zbieć-Piekarska, 

Spólnicka, Kupiec, Makowska, et al., 2015). To build an age-predicting model, 

several age-related CpGs are combined, but like in any good recipe, this 

combination has to be perfectly calibrated. One of the challenges in building a model 

is: how CpGs can be useful for the model. Typically, the greater the amount of CpGs 
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used, the more accurate the model is, but also requires more sample (Pisarek et al., 

2021). Forensic samples are usually found in rough conditions and small amounts. 

To build a forensically useful age estimation model the amount of CpGs used should 

be balanced with the characteristics of forensic samples. Another challenge is to 

build an age prediction model that can be used in a variety of tissues (Horvath, 2013; 

Koch & Wagner, 2011). Forensic samples can be of any tissue or cell type or even 

a mixture of biological materials. CpGs can have different predictive power in 

different biological materials whereby a model that uses CpGs with strong predictive 

power in the wider possible variety of tissues and cell types is of great use in the 

forensic context. Semen seems to be a more complex type of biological material 

(Pisarek et al., 2021) and, even with advances both in knowledge and in the 

technologies surrounding age estimations, a separate model or a model with with a 

larger number of CpGs for this type of sample will possibly be maintained in the 

future.  

Several factors seem to influence age estimations. On top of these factors is the 

intrinsic complexity of the aging process (Rodríguez-Rodero et al., 2011) which is 

still a matter of study. Whether or not sex influences age estimation doesn’t gather 

consensus. One characteristic of the epigenome is that it changes due to lifestyle 

choices (Simpkin et al., 2016; Weidner & Wagner, 2014) and diseases (Horvath et 

al., 2014, 2015, 2016; Vidal et al., 2016) and these can have an impact on age 

estimation. Another factor that strongly affects age estimation is the group of 

characteristics of forensic samples, such as the presence of PCR inhibitors, 

degradation, and time it may take to find a sample (S. B. Lee & Shewale, 2017). 

There is a shortage of studies that apply age estimation tools across different 

populations but it has been shown that a model built based on a specific population 

isn’t equally accurate on other populations (Dias, Cordeiro, et al., 2020). In most 

age estimation models, the actual chronological age affects the prediction in older 

subjects, typically over 40 years of age (Dias, Cordeiro, et al., 2020; Dias, Cunha, 

et al., 2020; Hamano et al., 2016; Zbieć-Piekarska, Spólnicka, Kupiec, Makowska, 

et al., 2015). Finally, epigenetic drift, which is a result of random errors in the 

maintenance of the epigenome and can explain the gradually larger discrepancy in 
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monozygotic twins over time, can have an impact on age estimations (Mendelsohn 

& Larrick, 2017). 

Epigenetic age estimation models use different technologies but usually start by 

extracting DNA from the sample and bisulfite-convert the DNA. Extracting DNA from 

a forensic sample is very challenging hence the importance of choosing the right 

method to do so (S. B. Lee & Shewale, 2017). The goal is to extract as much purified 

DNA as possible so that all downstream analyses can be performed. Bisulfite 

conversion is a crucial step in age estimation models. It is this technique that allows 

for the distinction between methylated and unmethylated cytosines. Despite being 

fundamental, bisulfite conversion has its disadvantages: the deamination of 

methylated cytosines, DNA loss, and DNA degradation. The use of controls in the 

bisulfite conversion process validates the converted DNA to be used in the next 

steps of the age estimation model. Multiplex PCR is also a crucial step in most 

molecular biology assays since it allows for the amplification of multiple DNA targets 

in a single PCR reaction. This is not straightforward in the cases of forensic samples 

that have been bisulfite-converted due to the usual low quantities of DNA extracted 

from this type of sample and further degradation caused by the bisulfite conversion. 

Currently, it is possible to perform a multiplex PCR from as little as 20 ng of bisulfite-

converted DNA. After these three steps, different models use different techniques 

for the analysis of the DNA methylation patterns. One possibility is pyrosequencing 

(Sukawutthiya et al., 2021; Tost & Gut, 2007), a sequencing-by-synthesis method. 

Another possibility is the Methylation SNaPshot (Dias, Cordeiro, et al., 2020), which 

quantifies DNA methylation levels of bisulfite-converted samples at target CpGs. 

Finally, a very promising method is Massively Parallel Sequencing (Gross et al., 

2021; Naue et al., 2017; Pisarek et al., 2021) since it not only allows for the 

sequencing of age-related markers but also other methylation markers used in FDP.  

Since the discovery of DNA profiles, the use of DNA in forensic cases has had 

major advances. FDP tools have been studied that could aid in criminal 

investigations. One of these tools is age estimation through DNA methylation 

profiles. To implement FDP tools in routine forensic practices it is necessary to first 

discuss the ethical, societal, and legal issues around it (Samuel & Prainsack, 2019). 

Some of these issues aren’t particularly connected to age estimations, such as 
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discrimination and the “Right not to know” which are more related to FDP of 

biogeographical ancestry or genetic diseases. Other issues, however, can arise 

from age estimations such as the “CSI effect”, the creation of suspect populations, 

the communication and interpretation of FDP results to law enforcement agents, the 

possibility to artificially modify the appearance, and the misuse of the technology. 

Many analogies are drawn between eyewitnesses and FDP results since both can 

report the same EVC. Since eyewitnesses can describe externally visible 

characteristics of a perpetrator without violating any rights, then the same can be 

extrapolated to FDP tools. Recently, data protection issues have been heavily 

debated and regulated and, to implement FDP tools, there is an urgent need to 

make sure that data protection isn’t being violated (Samuel & Prainsack, 2019). 

Legally, FDP is not on solid grounds (Samuel & Prainsack, 2018). In many 

countries, the laws regarding the use of DNA in forensic practices were made for 

STR profiling and can’t be applied to FDP. This means that, even though no laws 

are forbidding FDP in these countries, there are also no laws regulating its use. 

Other countries have ambiguous laws, e.g. France, where FDP is both permitted 

and illegal. The Netherlands is a good example for the implementation of FDP since, 

not only is it practiced for some traits, but it is properly regulated.  

 

6. Conclusions and future perspectives 
 

Forensic DNA Phenotyping could be a great introduction to the field, in particular 

for age estimations. However, its limitations must be thoroughly addressed. 

Previous age estimation methods such as skeletal, dental, and histological 

methods, lack standardization, present ambiguous results, require a body or 

fragments of the body and are tissue-specific. More recent age estimation tools use 

DNA methylation markers for the prediction of a person’s chronological age from 

small samples and in a variety of tissues. DNA methylation is an epigenetic 

alteration that can be affected by a variety of factors (e.g. cigarette smoking) in a 

reversible or irreversible manner. Biological age reflects the impact that these 

factors had in the aging process and differs from chronological age, which is the 

amount of time passed since birth. Both measures of age are relevant in different 
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contexts but for forensic purposes, chronological age is of greater use than 

biological age. Age estimation models used for these purposes should favor DNA 

methylation markers that better explain chronological as opposed to biological age.  

Many aspects may influence age estimation, such as gender, lifestyle choices, 

diseases, biogeographic ancestry, and epigenetic drift. It is impossible to build an 

age estimation model without limitations, but it is necessary to study the 

interference of several factors on the models. Most models are calibrated using 

samples from one population and should be practiced on samples from subjects of 

different biogeographic ancestry. Once this and other interference factors are 

properly applied to a model, then it can be validated as a universal tool. Several 

molecular biology methods can be used for age estimation and most models start 

by DNA extraction from the sample, bisulfite-conversion, and amplification of the 

DNA. After these steps, DNA methylation analysis varies between models. In the 

future, a standardized model should be built to apply this technology in all forensic 

laboratories, and this model should include all steps from DNA extraction to DNA 

methylation analysis. The probability that, in the future, only one age estimation 

model will be used is very small. Not all tissues and cell types have the same age-

related markers and even though the same model can be applied to several types 

of biological material, it will hardly be possible to build a model that can be applied 

to all tissues and cell types.  

Finally, ethical, societal, and legal aspects surrounding FDP are being 

discussed and should continue to be discussed in the future to properly regulate 

the use of age estimations in forensic practices, without violating any human rights, 

data protection issues, or laws.   

In conclusion, developing and validating FDP tools, especially age estimation, 

could have a great positive impact on solving cases that couldn’t be solved 

otherwise, but should be properly regulated to prevent misuse. 
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Supplementary Material 
 

Table 1- Overview of methods used for age estimations 

Method Overview Advantages Disadvantages References 

Physical and X-Ray 
Exams 

Age estimation in living persons. 
Consists of a physical exam, an X-ray of 
the left hand, dentition, and clavicle. 

• Approved for age estimation 
in living persons 

• Not accurate for juvenile age 
estimations 

• Ethnical differences 

(Schmeling et al., 2008; Zhang et 
al., 2009; Olze et al., 2007) 

Skeletal examination Age estimation for human remains; 
Morphological quantification 
performed by an anthropologist. 

• Accuracy • Human error 

• Lacks precision 

(Christensen et al., 2014) 

Dental examination Age is estimated according to the 
developmental stage of all available 
teeth 

• Very useful for juveniles 

• Very accurate 

• Requires prior classification of the 
individual as juvenile or adult 

• Influenced by sex and ancestry 

(A. M. Christensen et al., 2014; 
Olze et al., 2007) 

Bone histological 
analysis 

Consist on the determination of 
osteon population density (OPD) from 
fragments of bones. 

• Useful from fragmented 
bones; 

 

• Can only accurately estimate age 
until a certain age 

• Doesn’t perform equally for every 
bone 

• Affected by sex, ancestry, physical 
activity, nutrition, and health 

• Destructive and invasive method 

• Require specific equipment and 
training. 

(A. M. Christensen et al., 2014) 

Telomere shortening Determination of telomere length • Estimates age with an error 
between 7 to 9 years 

• Requires small amounts of 
DNA 

• High throughput, simplicity, 
robustness, and 
reproducibility. 

• Susceptible to environmental 
factors to which the sample is 
exposed 

• Influenced by cause of death 

(Márquez-Ruiz et al., 2018; 
Zapico et al., 2019) 

Mitochondrial DNA 
damage 

Using qPCR, the amount of damage 
accumulated in mtDNA during aging 
can be measured 

• Apparent good correlation 
with age 

• Requires small amounts of 
sample 

• Simple and affordable 

• Shortage of studies to validate this 
method 

• Populational differences 

(Parson, 2018; Zapico & 
Ubelaker, 2016) 

Quantification of 
sjTREC decline 

Through the quantification of sjTRECs 
by qPCR, age can be related to its 
decline 

• Can be used in blood and 
bloodstains 

• Can be used in aged samples 

• Can only be used for blood 
samples 

• May be affected by genetic and 
environmental factors 

• Requires further studies 

(Ou et al., 2012; Ou et al., 2011) 


