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Abstract

In this paper, by using Fixed point Theorem we establish the Hyers-Ulam stability
and Hyers-Ulam-Rassias stability of certain homogeneous Fredholm Integral equation
of the second kind

¢<x>=A/O (142 +1) () dt

and the non-homogeneous equation

for all z € [0,1] and 0 < A < 2.
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1 Introduction

The Ulam stability problem for various functional equation was initiated by S.M. Ulam
[31] in 1940. Then, in the next year, D.H. Hyers [16] was solved the Ulam problem for
Cauchy additive functional equation on Banach spaces. After that Aoki [3], Bourgin [0]
and Rassias [25] have generalized the Hyers result. These days the Hyers-Ulam stability
for different functional equations was proved by many mathematicians (see [4} 111 26, [5]).
A generalization Ulam problem was recently proposed by replacing functional equations
with differential equations. In 1998, Alsina et al., [I] was proved the Hyers-Ulam stability
of differential equation of first order of the form 1/(t) = y(¢). This result was generalized
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by Takahasi [30] for Banach space valued differential equation y'(t) = Ay(¢). Then several
researchers have studied the Hyers-Ulam stability of differential equations in various
directions, for example (see [7, [10} I8, 17, 19, 2] 20} 23, 22| 24], 29] 32]).

Now a days, the Hyers-Ulam stability of integral equations has been given attention.
In 2015, L. Hua et al., [I5] studied the Hyers-Ulam stability of some kinds of Fredholm
integral equations. Also, in 2015, Z. Gu and J. Huang [14] are investigated the Hyers-Ulam
stability of the Fredholm integral equation

b
o(x) = f(z) + A / K(x,5) é(s) ds

by fixed point Theorem. Recently, only few authors are investigating the Hyers-Ulam
stability of the various integral equations (see [2, 8, O] 12 [13] 27, 28]). Motivated by the
above ideas, our foremost aim is to study the Hyers-Ulam stability and Hyers-Ulam-Rassias
stability of the certain Fredholm Integral equations of second kind

1
o(x) :A/ (142 +1) 6(t) dt (1)
0
and
1
¢(x):x+)\/0(1+x+t)¢(t)dt @)

for all # € [0,1] and 0 < A < £ in the sense of Z. Gu and J. Huang [14].

2 Preliminaries

The following Theorems and Definitions are very useful to prove our main results.

Theorem 1. (Fixed Point Theorem) Let (X, p) be a complete metric space. Assume
that T : X — X is a strictly contractive operator with p(Tx,Ty) < 6 p(x,y) where
0 <6< 1. Then

1) there exists an unique fixed point x* of T';
(i) q p ;

(i) the sequence {T" x}, . converges to the fixed point z* of T'.

Theorem 2. (Holder’s Inequality) Let p > 1, % + % =1,z € LP(F) and y € L1(E).
Then xzy € L(E) and

[ lettrtor ar < ( [ o) dt)’l’ ( / \yq(t)]dt>;.

Now, we give the definition of Hyers-Ulam stability and Hyers-Ulam-Rassias stability
of the Fredholm integral equations and .

Definition 3. We say that the Fredholm integral equations has the Hyers-Ulam
stability, if there exists a real constant S which satisfies the following conditions: For every
e > 0, and for each solution ¢ : [0,1] — R satisfying the inequation

1
‘qb(x) —)\/ (142 +) 6(t)dt| < e,
0
then there is some 9 : [0,1] — R satisfying the integral equation such that
[¢(x) —(z)] < Se, Vael0,1].
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Definition 4. We say that the Fredholm integral equations has the Hyers-Ulam
stability, if there exists a real constant .S which satisfies the following conditions: For every
€ > 0, and for each solution ¢ : [0, 1] — R satisfying the inequality

1
F@ﬂ—m—AA(1+x+ﬂ¢@dt§g

then there exists a solution v : [0, 1] — R satisfies the integral equation such that

Definition 5. The Fredholm integral equations (1)) is said to have the Hyers-Ulam-Rassias
stability, if there exists a real constant S which fulfill the following: For every 6 &
C(R4,Ry), and for each solution ¢ : [0, 1] — R satisfying the inequality

1
]qb(x)—A/O (Ut + 1) (1) de| < 0(a).

then there is a solution v : [0, 1] — R satisfying the integral equation such that
¢(z) — ()] < S0(x), Vael01]

Definition 6. We say that the Fredholm integral equations (2)) has the Hyers-Ulam-Rassias
stability, if there exists a real constant S which fulfill the following properties: For every
0 € C(R4,Ry), and for each solution ¢ : [0,1] — R satisfying the inequation

1
‘qﬁ(m)—aj—)\/o (L+x+t)o(t)dt] <0(x),

then there exists some ® : [0, 1] — R satisfying the integral equation such that

¢(z) —¥(2)] < S0(x), Vael01]

3 Main Results

In this section, we are going to prove the Hyers-Ulam stability and the Hyers-Ulam-Rassias
stability of the homogeneous and non-homogeneous Fredholm integral equations of second
kind and with A < % First, we investigate the two stabilities of the homogeneous
Fredholm integral equation of second kind .

Theorem 7. Consider H a fixed real number such that H > g and \H < 1. Let
¢ : [0,1] = R a continuous function and the kernel K : [0,1] x [0,1] — R defined by
K(x,t) =1+ x+t. If ¢ is such that

1
'¢(x)—x/0 (142486t dt] <e (3)

where € > 0 then there exists a solution 1) : [0,1] — R of the Fredholm integral equation
and a real constant S such that |¢(x) — ¥ (x)| < Se for all x € [0, 1].

Proof. Firstly, we define an operator T by,

1
(To)(x) = )\/0 (1+x+1t)o(t)dt, ¢ € L*([0,1]). (4)
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We have for each x € [0, 1],

1
1 1 1 2
/(1+x+t)dt‘§H and ‘(/ /(1+x+t)2dtdx>
0 0 Jo

for any H > %
Now, we define a metric p as follows,

1
p(e1,p2) = (/0

By using the Holder’s inequality, we obtain that

/01 dx</1</1(1+x+t dt/ % (1) dt)dm
/¢2 dt// (1+ 2 4 t)? dtdr < oco.

This implies that T¢ € L?([0,1]) and T is a self-mapping of L%([0,1]). Thus, the solution
of the equation is the fixed point of T". So,
1
2 2
dx)

1
p(Tp1, Tps) = (/0
1
/<1+x+t><go1<> pa(t)) di

il )
H(// (1+z+t) dtdx) (/ l1(t) )]Zdt>1
/m >\2dt>2

ANH
= AHP(SOD SOQ)

Since AH < 1, T is a strictly contractive operator. Then by Theorem (1| the equation
has a unique solution ¢* € L?([0, 1]), where ¢* = l'i)m ¢y for
T oo

<H,

o1(0) — ool P\ 2
eil@) —ea@) |7\ o g e L2(0.1), A < 1

AH

2

/1(1+m+t)¢(t)dt
0

(T'e1)(z) — (T'p2)(x)
AH

IN

1
6 (2) =A/O (14 2+ 1) dra () dt

and ¢ € L*([0,1]) is an arbitrary function.
Let ¥ € L2([0,1]) be a solution of inequality (3] and

w(m)—x/o (142 + 1) (t) dt = h(x). (5)

Obviously, we have |h(z)| < € for all z € [0,1]. Then we can conclude that the solution
of equation

1
W(@) = h(z) +>\/0 (14 2+ 1) (1) dt
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is * € L*([0,1]), where ¢* = lim 1), for
r—00

1
() = hiz) + A /0 (L+ 2+ 1) () dt

and g € L?([0,1]) is an arbitrary function.
For ¢o(z) = vo(x) = 0, we get,

|p1(x) — Y1(x)] = [h(z)| < e,
1 1
() — o (2)] = ’h(m)Jr)\/O (1+a:+t)(1/11(t)—¢1(t))dt' §5(1+)\/0 y1+x+tydt>

1
03(z) — bs(a)]| = ]h(x) 0 [ 1k 1) altn) — dalia)

1 1
§e+eA/ |1+x+t2!(1+/\/ \1+t2+t1\dt1)dt2
0 0
1 1 1
Se(l—i—)\/ \1+x+t2!dt2+A2/ \1+x+t2!/ ]1+t2+t1!dt1dt2>
0 0 0
1
60) ~ @ = @)+ A [ (2 +0) (Gealo) = 6ea(o)) o
0
1
§6(1+/\/ 1+ 2+ t—1|dt,—1
0
1 1
+ )\2/ ’1+$+tr—1’/ 11+ t,—1 +tr_o|dt,_odt,—1 + -+
0 0
1 1 1
"'+)\r_1/ ’1+x+tr—1’/ ’1+t'r—l+t'r—2|/ |1+tr—2+tr—3‘
0 0 0
1
/ 114 t2 +t1\dt1'--dtT_gdtr_gdtr_1>
0

<e(I+AH+(AH) + ..+ (AH) ') = (11_—():\HH)> ’

as r — 00, we obtain
1

6°(2) —¥"(@)] < T €

1
Let us choose S = YA hence |¢p*(x) — ¢*(z)| < Se, and 0 < AH < 1, where S is the

Hyers-Ulam stability constant for . Hence, by the virtue of Definition |[3| the Fredholm
integral equation has the Hyers-Ulam stability. O

The following theorem shows the Hyers-Ulam-Rassias stability of the homogeneous
Fredholm integral equation of second kind .

Theorem 8. Consider H a fixed real number such that H > % and \H < 1. Let
¢ : 10,1] — R a continuous function and the kernel K : [0,1] x [0,1] — R defined by
K(z,t) =1+ x +t such that

1 1
/|1+x+t!9(t)dt§0(m)/ 1+ +tldt,
0 0
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for all x € [0,1], where € C(Ry,Ry). If ¢ is such that

1
‘gb(az)—)\/o (14241 6(t) dt| < 0(x), (6)

then there exists a solution ¢ : [0, 1] — R of the Fredholm integral equation and a real
constant S such that |¢(x) — ¢ (z)| < SO(z) for all z € [0,1].

Proof. By a similar procedure to the previous we define a strictly contractive operator
T as in since A\H < 1. By we have |h(z)| < 0(x) for all z € [0,1]. As in the
previous proof, for ¢o(x) = ¥o(x) = 0, we get,

|p1(x) — Y1 ()] = |h(x)| < O(x

1
s () ’h 1t o ) —gbl(t))dt’ < 0(x) (1+)\/0 I +x+t|dt>
|p3() ’h 1 +x + t2)(ha(t2) — ¢a(ta))dts

1 1
S@(m)—i—H(w))\/ 14+ <1+/\/ \1+t2+t1|dt1> dts
0 0

1 1 1
< 0(x) <1+)\/ y1+x+t2\dt2+A2/ ]1+x+t2\/ \1+t2+t1|dt1dt2)
0 0 0

1
60 () — ¥, ()| = ]h<x> ax [t @) - ) dt\
1
< 0(z) <1+)\/ 1142z +t,—q|dt,—1
0
1 1
+)\2/ \1+x+tr_1|/ |1+ t,_1 +tro|dt,_odt, 1 +---
0 0
1 1 1
+x*1/ \1—|—a:+tr_1|/ |1+t7«_1+t7«_2]/ L trs+ tg] -
0 0 0
1
/ |1—i—tg+t1|dt1-~~dtr_3dtr_2dtr_1>
0
1 — (AH)"

as r — 00, we obtain
1

* _ * <
6(2) = 4" ()] £ 7 0(a)
1
for all x € [0,1]. Let us choose S = T3 hence [¢*(z) — ¢¥*(x)| < SO(z ), and
0 < AH < 1. Hence, by the virtue of Definition |5 I the Fredholm integral equation (1) has
the Hyers-Ulam-Rassias stability. O

Now, we are going to establish the Hyers-Ulam stability of the non-homogeneous
Fredholm integral equation of second kind .
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Theorem 9. Consider H a fixed real number such that H > % and A\H < 1. Let
¢ : 10,1 = R a continuous function and the kernel K : [0,1] x [0,1] — R defined by
K(xz,t) =1+ x+t. If ¢ is such that

1
‘Qﬁ(x)—x—)\/o (14241 6(t)dt| <e, (1)

where € > 0 then there exists a solution 1 : [0,1] — R of the non-homogeneous Fredholm
integral equation (2|) and a real constant S such that |¢(z) — ¢ (x)| < Se for all x € [0,1].

Proof. Let us define an operator T' as
1
T9)@) =a+A [(L+o+0) oft) dt, o < L2(0.1). (8)
0

We have T¢ € L2([0,1]) and T a self-mapping of L?([0,1]). The solution of the equation
is the fixed point of the strictly contractive operator 1" since A\H < 1. By Theorem
the equation has a unique solution ¢* € L2([0,1]), where ¢* = lim ¢, for
=00
1
br(@) = 3+ )\/ (142 41) ¢ () dt
0

and ¢ € L%([0,1]) is an arbitrary function.
Let ¢ € L?([0,1]) be a solution of inequality and

1
() —x—/\/o (1+ 2+ 1) () dt = h(z).

We have |h(x)] < e for all z € [0,1]. Then we can conclude that the solution of
equation

1
1/1(x)=h(:1:)+x+)\/0 (I4+x+1t)y(t)dt

is * € L*([0,1]), where ¢* = lim 1), for
r—00

1
Ur(z) = h(z) + 2+ )\/0 (I+z+1t)r_1(t)dt

and g € L?([0,1]) is an arbitrary function.
For ¢o(z) = ¢o(z) = 0, we get,

1
|¢r () = thr ()| = [h(2) + A /0 (I+z+1t) (Yra(z) = dra(z)) dt‘

1
§6<1+)\/ 1+ 2+t |dt,—y
0
1 1
+)\2/ ]1+x+tr_1]/ 11+ tp—1 + tro|dt,_odt,_q +---
0 0
1 1 1

"“l‘)\rl/ ’1+$+t7_1’/ ’1+t7»_1+t7»_2|/ |1+tr_2+tr_3‘~-

0 0 0

1
/ 114t +t1\dt1-~-dtr_3dt,,_2dtr_1>
0

<e(L+AH+AH)2 + ..+ (AH) ) = <1—(AH)> |

1—)M\H
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as r — 00, we obtain
1

“NH €

|¢7(2) =¥ (@)] < 7

Let us choose S = Y , hence |¢*(z) — Y*(x)] < Se, and 0 < AH < 1, where S

is the Hyers-Ulam stability constant for (2). Hence, by the virtue of Definition {4 I the
non-homogeneous Fredholm integral equation has the Hyers-Ulam stability. O

Finally, the following corollary proves the Hyers-Ulam-Rassias stability of the non-homogeneous
Fredholm integral equation of second kind .

Corollary 10. Consider H a fixed real number such that H >
¢ : [0,1] — R a continuous function and the kernel K : [0,1] x [0,
K(z,t) =1+ z +t such that

and A\H < 1. Let
| = R defined by

— Nt

1 1
/\1—|—a:+t|9(t)dt§9(a:)/ 1+ + f]dt,
0 0

for all x € [0,1], where 8 € C(R4,R,). If ¢ is such that

‘¢(x)—x—A/Ol(HxH)qb(t)dt‘ < 0(x), ()

then there exists a solution v : [0,1] — R of the non-homogeneous Fredholm integral
equation (2) and a real constant S such that |¢(x) — ¢ (z)| < S0(x) for all x € [0,1].

4 Examples

In order to illustrate our results we will present some examples.
Let us consider the non-homogeneous Fredholm integral equation of second kind
defined by

1
gb(x):x—i—)\/o (1+a+1)6(t) dt

for all :17 e [0,1] and A = . Let H = 12 and the perturbation of the solution p(z) =

587 x4+ >
500% 100

We realize that all conditions of Theorem |§| are satisfied. In fact \H = g < 1land ¢
is a continuous function such that

1
3 1 7
—z-X[ (1 t) o(t) dt| = < = e
"b(‘r) v /O( T+t olt) ‘ ’5000x+3000‘—7500 ‘
By the exact solution 1(z) = 210z 4+ 23 we realize that

73 3 ' 1 7 (10)

_ - < = .
[p(z) — ¥ ()| ‘89500x+ 4475 = 1 AH ©~ 3600

To illustrate the inequality , we have the Figure
Let us consider the same non-homogeneous Fredholm integral equation of second kind

(@) but now with A = i5. Let H = 3 and the perturbation of the solution ¢(z) =

18000 + 108050100 We have \H = % < 1 and ¢ a continuous function such that

5334 34l | 221
60000000" " 60000000 | ~ 2400000

’¢(rc)—:v—A/Ol(1+x+t)¢(t)dt‘ :’
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0.0030

0.0025 |

0.0020 | © 3600

0.0015 |

0.0010 | ] 7x 3

[ el y= +
f—" : 89500 4475
0.0005 |

|
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1:

By the exact solution ¢(z) = 1152007 + 20~ we realize that

26287 n 76749 < 1 227
x €= .
293997500 11759900000 | — 1 — AH 2328000

6(x) — (e)] = \ (1)

If we consider H = 30, we get a worse result but still acceptable. We get,

26287 + 76749 < 1 227
203997500" ' 11759900000| = 1 — NH © 1680000

(12)

60 - v(o)| = |

So we have that the non-homogeneous Fredholm integral equation of second kind
has the Hyers-Ulam stability.
To illustrate the inequalities and , we have the Figure

0.00014
227

y=
1680000

0.00010 ¢
227

Y=
. 2328000

0.00008

0.00006

0.00004 26287 76749
Y= X+
0.00002 T 293997500 11759900000

0.2 0.4 0.6 0.8 1.0

Figure 2:
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