SUPPORTING INFORMATION

The Cation Effect on the Solubility of Glycylglycine and N-Acetylglycine in Aqueous Solution: Experimental and Molecular Dynamic Studies

Germán Pérez-Sánchez¹, Yoselyn S. Santos², Olga Ferreira^{2,3}, João A. P. Coutinho¹, José R. B. Gomes¹, Simão P. Pinho^{2,3}

¹CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

²Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

³Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

Figure S1. Chemical species distribution as a function of pH of N-acetyl glycine (A) and diglycine (B). Calculations performed using the Software Chemicalize, ChemAxon Ltd, 1998-2019 (<u>https://chemicalize.com/</u>).

Figure S2. Relative solubility of diglycine in aqueous solutions of NaCl: this work (\circ), Breil at al.[1] (+).

Figure S3. Radial distribution functions of the cations (left) and the chloride anion (right) of the NaCl, KCl, NH₄Cl, CaCl₂ and MgCl₂ salts around the alpha carbons of diglycine.

Figure S4. Local mole fractions of the cations (left) and the chloride anion (right) of the NaCl, KCl, NH₄Cl, CaCl₂ and MgCl₂ salts around selected groups of diglycine. The local mole fractions were calculated as in ref. [2].

Figure S5. Spatial distribution functions (SDFs) of the cations and the chloride anion of the a) CaCl₂, b) KCl, c) MgCl₂, d) NaCl and e) NH₄Cl salts around selected groups of diglycine. Color code for spheres: white, H; cyan, C; blue, N; and red, O. Color code for isosurfaces: orange, Cl⁻; black, Ca²⁺; red, K⁺; green, Mg²⁺; brown, Na⁺; and cyan, NH₄⁺. Isodensity values are 5 particles/nm³ for both the anion and the cations. The SDFs were obtained with the TRAVIS code.[3]

Figure S6. Radial distribution functions of the cations (left) and the chloride anion (right) of the NaCl, KCl, NH₄Cl, CaCl₂ and MgCl₂ salts around selected groups of glycine.

Figure S7. Radial distribution functions of the cations (left) and the chloride anion (right) of the NaCl, KCl, NH₄Cl, CaCl₂ and MgCl₂ salts around the terminal and the alpha carbons of N-acetylglycine.

Figure S8. Spatial distribution functions of the cations and the chloride anion of the a) CaCl₂, b) KCl, c) MgCl₂, d) NaCl and e) NH₄Cl salts around selected groups of N-acetylglycine. Color code for spheres: white, H; cyan, C; blue, N; and red, O. Color code for isosurfaces: orange, Cl⁻; black, Ca²⁺; red, K⁺; green, Mg²⁺; brown, Na⁺; and cyan, NH₄⁺. Isodensity values for the isosurfaces are 5 particles/nm³ for both the cations and the chloride anion. The SDFs were obtained with the TRAVIS code.[3]

Figure S9. Radial distribution functions of the cations (left) and the chloride anion (right) of the NaCl, KCl, NH₄Cl, CaCl₂ and MgCl₂ salts around selected groups of deprotonated and neutral forms of N-acetylglycine (50-50% mixture).

References:

- [1] M.P. Breil, J.M. Mollerup, E.S.J. Rudolph, M. Ottens, L.A.M. Van Der Wielen, Fluid Phase Equilib. 215 (2004) 221–225.
- [2] N. Elpidoforou, I. Skarmoutsos, E. Kainourgiakis, V. Raptis, J. Samios, J. Mol. Liq. 226 (2017) 16–27.
- [3] M. Brehm, B. Kirchner, J. Chem. Inf. Model. 51 (2011) 2007–2023.