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Palavras Chave Redes definida por software, virtualização de funções de rede, computação em
nuvem, redes definidas por software e virtualizadas, tolerância a falhas, redes 5G
confiáveis, redes híbridas, garantia de serviço e escalonamento automático.

Resumo As redes definidas por software e as redes virtualizadas estão a atrair uma atenção
significativa, tanto da comunidade de investigação académica como da indústria,
devido aos seus impactos construtivos previstos para o desenvolvimento de futu-
ros sistemas de telecomunicações (redes de quinta geração (5G) e mais além). Os
fornecedores de serviços de comunicações também terão de se envolver na transfor-
mação digital para se adaptarem à próxima geração de serviços de telecomunicações
com base nas novas tecnologias de software associadas às redes 5G. Recentemente,
vários estudos exploraram vários aspetos destas tecnologias, tais como as redes de-
finidas por software (SDN), virtualização de funções de rede (NFV), computação
em nuvem, e computação móvel/multi-acesso no acesso (MEC). Contudo, estão
ainda em curso importantes desenvolvimentos de normalização, tanto no que diz
respeito à arquitetura em si como ao apoio a ambientes de rede. Por conseguinte,
o desenvolvimento de aplicações de rede para redes definidas e virtualizadas por
software ainda não acelerou. O advento de tais redes apresenta novos desafios
e também abre novos caminhos para o desenvolvimento de novas estratégias, ar-
quiteturas e normas para permitir uma elevada fiabilidade, tolerância a falhas e
garantias de serviço em redes 5G e mais além. Nesta linha, esta tese explora as
tecnologias SDN, NFV e de computação em nuvem. Os objetivos são de compreen-
der melhor as redes orientadas por software e virtualizadas, abordar os desafios da
sua implementação arquitetural, explorar a tolerância a falhas e o apoio à garantia
de serviços, delinear obstáculos à implementação comercial a nível conceptual e
identificar futuras direções de investigação para o desenvolvimento de redes virtu-
alizadas e definidas por software. A este respeito, este trabalho propõe um projeto
de controlo de redes fora da banda, com recuperação automática, centralizado,
híbrido, e definido por software, para conceptualizar de forma fiável a gestão e au-
tomatização de futuras redes dinâmicas. Além disso, a tese avalia o desempenho
das tecnologias de virtualização em cenários 5G fiáveis e apresenta um mecanismo
de recuperação que pode permitir a obtenção de um tempo de paragem de serviço
quase nulo. Além disso, descreve igualmente a implementação de componentes de
qualidade de serviço e subsequentes testes de escalabilidade automática utilizando
gestão e orquestração de código aberto, para alargar ou reduzir dinamicamente
os recursos informáticos atribuídos a aplicações de rede, num ambiente de rede
definido e virtualizado por software, em tempo de execução, ou conforme neces-
sário. Globalmente, a tese centra-se em propor, avaliar, testar e validar soluções
em termos de fiabilidade, tolerância a falhas e garantias de serviço, utilizando im-
plementações baseadas em SDN, NFV e computação em nuvem para determinar
a viabilidade e fiabilidade de redes definidas e virtualizadas por software.





Keywords software-defined networking, network functions virtualization, cloud computing,
software-defined and virtualized networks, fault-tolerance, Reliable 5G networks,
Hybrid Networks, Service Assurance, and Auto-scaling.

Abstract Software-defined and virtualized networks are attracting significant attention from
both the academic research community and the industry, due to their envisaged
constructive impacts on the development of future telecommunication systems
(fifth-generation (5G) networks and beyond). Communication service providers
will also need to engage in digital transformation to adapt to the next generation
of telecommunication services based on the novel software-driven technologies as-
sociated with 5G networks. Recently, several studies have explored various aspects
of these technologies, such as software-defined networking (SDN), network function
virtualization (NFV), cloud computing, and mobile/multi-access edge computing
(MEC). However, major standardization developments, regarding both the architec-
ture itself and support for networking environments, are still ongoing. Hence, the
development of network applications for software-defined and virtualized networks
has not yet accelerated. The advent of such networks presents new challenges
and opens new paths for the development of novel strategies, architectures, and
standards to enable high reliability, fault tolerance, and service assurance in 5G
networks and beyond. Along this line, this thesis explores SDN, NFV, and cloud
computing technologies. The objectives are to better understand software-driven
and virtualized networks, address challenges in their architectural implementation,
explore fault-tolerance and service assurance support, delineate obstacles to com-
mercial deployment at a conceptual level and identify future research directions for
software-defined and virtualized network developments. In this regard, this work
proposes an out-of-band, self-healing, centralized, hybrid, software-defined, net-
working control design to reliably conceptualize the management and automation
of future dynamic networks. Furthermore, the thesis evaluates the performance of
virtualization technologies in reliable 5G scenarios and presents a recovery mech-
anism that can achieve near-zero service downtime. In addition, it describes the
implementation of service assurance components and subsequent auto-scaling test-
ing, using open-source management and orchestration, to dynamically extend or
reduce the computing resources allocated to network applications in a software-
defined and virtualized networking environment, at run time, or as required. Over-
all, the thesis focuses on proposing, evaluating, testing, and validating solutions
in terms of reliability, fault-tolerance, and service assurance using SDN, NFV, and
cloud computing-based implementations to determine the feasibility and reliability
of software-defined and virtualized networks.
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1
Introduction

Chapter Outline: This chapter provides a brief introduction to the topics, underly-
ing ideas, and motivation to pursue this work. Furthermore, it highlights the main
contributions to the body of knowledge and resulting scientific publications during the
development of this thesis. Finally, the entire document structure of this thesis is
presented in this chapter.

1.1 Introduction and Motivation

The requirements for supporting Information Communication Technologies (ICTs) have
recently evolved as never before. Due to the continuous growth of network devices, more
and more devices will be connected simultaneously to ICTs infrastructure. To accommo-
date these devices requires re-designing the network architecture to support the future
computing scenarios they enable. As a consequence, Next Generation Networks (NGNs)
research is building its foundation based on multiple evolving technologies. These
include technologies like Network Functions Virtualization (NFV) [1], Software-defined
Networking (SDN) [2], Cloud Computing [3], Internet of Things (IoT) [4], Information-
Centric Networking (ICN) [5], and the Fifth-Generation (5G) [6] of telecommunications
networks, all reputed to transform ICTs infrastructure and fulfill the future needs of
computing. It is important to note that all these technologies are directed towards
supporting the growing trend of network programmability and network softwarization
of telecommunications systems.

Architectures based on the traditional network are tightly integrated because of
the vendor’s specialized hardware and customized software’s based systems. Thus,
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proprietary-based implementations can offer limited programmability support, which
means that launching new network services for customers (i.e., service provisioning) is
not only difficult but also time-consuming and requires specialized knowledge.

Network administrators manually configure multiple network appliance interfaces,
and it varies not only across different vendors but even with the same vendor for
different products and services. The network administration process remained stable
in the last decade because to deploy a network the administrator would ultimately
resort to the traditional per box configuration through Command Line Interface (CLI).
Traditionally networks followed proprietary-based network appliance approaches (also
known as middle-boxes) [7]. Typical examples are load balancers, firewalls, Network
Address Translator (NAT), and Wide Area Network (WAN) accelerators. Changing of
proprietary-based hardware protocol and instantiating new service deployments is time-
consuming and hard because it is difficult to update a protocol running on proprietary-
based network appliances [8]. This involved specialized manual human intervention
to perform network management operations and slowed down development in network
automation [9]. Network automation is a practice in which software automatically
configure and test network devices to reduce human error, network operation cost and
save time for troubleshooting a network.

Undoubtedly, the trend of programmability is changing the traditional way of cus-
tomizing and managing the network to be more efficient with standardized Application
Programmable Interfaces (APIs). This approach can support customized scripting
through which configuration of various vendor equipment’s will become easier. This
offers a simpler environment for network administrators to automate network efficiency
with minimum human intervention. This is the practice known as network programma-
bility [10]. The near future networks will be programmable, more organized, and more
controllable [11] and NFV, SDN, and Cloud Computing technologies are considered key
enablers to support such scenarios in such future paradigms.

Recently, SDN, NFV, and Cloud Computing based technologies have evolved leading
to the rise of software-driven and virtualized networks. These software-driven and
virtualized networks are designed to benefit from self-management mechanisms that
lead towards the autonomic management of communications networks [12], [13]. Unlike
traditional networks, the software-driven architecture based on mentioned evolving
technologies allows Open source development of software that can run on generic shared
hardware [14].

SDN, NFV, and Cloud Computing technologies are complementary to each other
but are independent and can be deployed alone or together. As depicted in Fig. 1.1,
combining these technologies in a unified network architecture is desirable [15]. Moreover,
integrating these technologies adds value (flexibility and agility) to telecommunications
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systems, and it offers the freedom to Communication Service Providers (CSPs) to
create and manage network services without worrying about configuring vendor-specific
networking devices. Thus, this integration can offer enhanced privileges to CSPs to set
up network services almost effortlessly.
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Figure 1.1: Relationship: NFV, SDN, and Cloud Computing
[1]

As stated above those evolving technologies (NFV, SDN, and Cloud) based on
software-driven and virtualized networks support the trend of network programmability
and network softwarization of telecommunication systems. Next generation communi-
cation networks (network functions) are expected to be implemented on Open source
virtualized infrastructures instead of current proprietary-based implementations. This
is essential to support the 5G vision, calling for a new networking paradigm that directs
flexible, dynamically configurable network elements in order to provide on-demand
customized network services with enhanced service provisioning across the networks as
well as supporting heterogeneity and diversity. CSP networks must undergo a transition
from legacy physical components to a new virtualized infrastructure. During this
transition, a complex Hybrid networking environment (involving both legacy and virtual
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technologies) will co-exist [16]. Hybrid Networks services will be based on SDN, Cloud,
NFV, and legacy-based infrastructures. Therefore, Service Assurance would be devised
to support evolving Hybrid Networks.

The management and orchestration of Virtual Network Functions (VNFs) are
critical to Fifth-Generation (5G) and Beyond Fifth-Generation (B5G) software-driven
and virtualized networks. Considering these aspects, the European Telecommunications
Standards Institute (ETSI) proposed an Open source Management and Orchestration
(OSM-MANO) framework. This framework offers End-to-End (E2E) management
and orchestration solutions for 5G and B5G software-driven and virtualized networks.
However, it is still in its infancy and yet to be commercially deployed.

The major problem faced today in the commercial deployment of software-driven and
virtualized networks is the strict carrier-grade requirements [17]. Historically, the Public
Switched Telephone Network (PSTN) architectures built on "Five 9s" ensuring 99.999%
E2E reliability and availability. This is not only concerning meeting transmission "Five
9s" of reliability and availability but also with other requirements for Carrier-Grade
Network (CGN) such as equipment management, security, billing, product development,
and continuous operational support [18].

These evolving technologies undoubtedly offer flexibility, new network services,
dynamic control, Open source solutions compared to traditional static and proprietary-
based networks. However, the current solutions offered by these evolving technologies
are still in their infancy. These evolving technologies solution aims to ultimately offer
service reliability comparable to the "Five 9s" reliability of PSTN. However, validation
and testing to achieve Quality of Service (QoS) equivalent to PSTN is still an intense
area of investigation.

In a nutshell, on one hand, these evolving technologies based on software-driven
and virtualized networks support the trend of network programmability and network
softwarization of telecommunication systems. On the other hand, the reliability, fault-
tolerance, and Service Assurance aspects of these evolving technologies have not yet
matured and are lacking commercial deployments.

Next, the problem statement and studied research questions are presented.

1.2 Problem Statement

CSPs need a digital transformation in order to adapt properly to the next generation
of telecommunication services that are based on novel software-driven technologies
associated with 5G networks. In this research, we explored NFV and SDN technologies
with a touch of Cloud Computing for evolving software-defined and virtualized networks.
These concepts reflect different approaches: NFV provides network service or function
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abstractions, SDN provides network abstraction, while Cloud Computing provides
computing abstraction. NFV promises to bring flexibility and cost reduction, SDN
promises to bring programmable control and open interfaces, and Cloud Computing
promises to bring flexible and efficient pooling and resource sharing of computing
power. In this regard, this thesis is focused on proposing, evaluating, testing, and
validating solutions in terms of reliability covering aspects of fault-tolerance and Service
Assurance using SDN, NFV, and Cloud Computing based implementations to discover
the feasibility and reliability of software-defined and virtualized networks.

1.2.1 Research Questions

NGNs research is building its foundation in new developments based on SDN, NFV, and
Cloud Computing. Nevertheless, SDN, NFV, and Cloud Computing will themselves be
placed under new and stringent requirements. For example, one of the main requirements
for NGNs is inter-technology convergence, where network operations can impact access
technologies of different kinds. In that respect, SDN, NFV, and Cloud Computing based
implementations are overlooked, even though different architecture designs have started
to manifest by the research community. It is imperative that the network remains
effective in all conditions and scenarios, and its stability is not questionable. As such,
there is a gap between the management of virtualization resources and the overall
network communication infrastructure layer. As SDN and NFV are becoming coupled
with Cloud Computing (e.g, OpenStack) and system virtualization, the problems are
further compounded. In this line, the thesis aims to bring answers to the following
questions:

Q1. What are the challenges and architectural impairments of software-defined and
virtualized networks key enablers and key technologies namely, SDN and NFV?

Q2. How Service Assurance would be devised to support evolving 5G and B5G
Hybrid Networks, a mix of both physical and virtualized networks?

Q3. Which virtualization technologies, namely containers and unikernels, envisioning
the deployment to facilitate resilient communication networks in critical scenarios (5G
environments)?

Q4. How to implement Service Assurance components and test auto-scaling using
OSM-MANO to meet the network requirements (management and orchestration) of
5G?

1.2.2 Research Aims and Objectives

This research aims to address evolving software-defined and virtualized networks in
terms of reliability, fault-tolerance, and Service Assurance using SDN, NFV, and Cloud
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Computing based implementations. In light of this, the scientific merit of this research
is pursued by accomplishing the following objectives:

i. Propose an out-of-band, self-healing, centralized, hybrid, software-defined, net-
working control design to reliably conceptualize the management and automation of
future dynamic networks.

ii. Evaluates the performance of virtualization technologies in reliable 5G scenarios
and proposes a recovery mechanism that can achieve near-zero downtime of service.

iii. Study the feasibility of Service Assurance components of software-defined and
virtual network functions using OSM-MANO.

iv. Outline future research directions for software-defined and virtualized networks
key enablers and key technologies development, namely, SDN, and NFV, as well as
outline future research direction for SDN fault-tolerance, and Service Assurance for
software-defined and virtualized network developments.

1.2.3 Advantages and Feasibility of this Research

Software-defined and virtualized networks offer several advantages to CSPs as compared
to the existing hardware-based network functions [19]. The main advantages of transiting
to software-defined and virtualized networks are as follows:

i. Enables the efficient use of ICTs infrastructure through softwarization of network
functions. Hence, it brings more flexibility and agility and eases the management of
telecommunications systems.

ii. Offers freedom to CSPs to create, deploy and manage network services without
worrying about vendor-specific networking devices configuration, since, Virtual Network
Functions (VNFs) are hosted on Commercial-Off-The-Shelf (COTS).

iii. Provide flexibility to adapt rapidly to technological innovation and provide a
better return on investment for CSPs than the case of hardware-based appliances. As
product lifecycles are becoming shorter, this can often become critical to support new
network services.

iv. Software-defined and virtualized networks are important and useful for future
networks for two reasons: firstly, they increase reliability and resilience without de-
ploying dedicated physical architecture; secondly, they can potentially reduce Capital
Expenditure (CAPEX) and Operational Expenses (OPEX) cost [1], [20], [21], [22].

v. Inherently, software-defined and virtualized networks can provide a reduction of
inefficient energy consumption resulting in low Carbon dioxide (CO2) thus supporting a
green networking environment. Furthermore, as depicted in Fig. 1.2, this work supports
four goals of Sustainable Development out of the seventeen defined goals by a nation
united for global Sustainable Development [23].
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• Sustainable Development Goals.

• Out of the 17 Goals, this work 
support 4 Goals of Global 
Sustainable Development.

Figure 1.2: Sustainable Development Goals

1.3 Contributions, Scientific Publications, and Dissemination

This work evaluates the performance of virtualization technologies in reliable 5G
scenarios and proposes a recovery mechanism that is able to achieve near-zero downtime
of service. Following that, it proposes an out-of-band, self-healing, centralized, hybrid,
software-defined, networking control design to reliably conceptualize the management
and automation of future dynamic networks. Furthermore, to dynamically extend or
reduce computing resources allocated to network applications in a software-defined and
virtualized networking environment at run time, or when needed, it implements Service
Assurance components and tested auto-scaling using OSM-MANO.

The list of contributions in terms of scientific publications in peer-reviewed high
impact journals, international conferences, posters, public talks, and work progress
disseminated is as follows:

1.3.1 Journals

i. A. U. Rehman, R. L. Aguiar, and João Paulo Barraca, "Network Functions
Virtualization: The Long Road to Commercial Deployments", IEEE Access, vol. 7, pp.
60439-60464, 2019, DOI: 10.1109/ACCESS.2019.2915195.

ii. A. U. Rehman, R. L. Aguiar, and João Paulo Barraca, "Fault-tolerance in the
Scope of Software-defined Networking (SDN)", IEEE Access, vol. 7, pp. 124474-124490,
2019, DOI: 10.1109/ACCESS.2019.2939115.

iii. A. U. Rehman, R. L. Aguiar, João Paulo Barraca, Håkon Lønsethagen, and Min
Xie, "Service Assurance for 5G/B5G Hybrid Networks: Requirements, Key Considera-
tions, and Challenges", (submitted for publication in Elsevier Journal).
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iv. A. U. Rehman, R. L. Aguiar, and João Paulo Barraca, "Fault-tolerance in the
Scope of Cloud Computing", (submitted for publication in IEEE Journal).

1.3.2 Conferences

v. A. U. Rehman, R. L. Aguiar, and J. P. Barraca, "Testing Virtual Network Functions
Auto-Scaling using Open source Management and Orchestration", 12th conference on
telecommunications, Telecoms Conference (ConfTELE), Leiria, Portugal, pp. 1-6,
February 2021, DOI: 10.1109 ConfTELE50222.2021.9435471.

vi. J. B. Filipe, F. Meneses, A. U. Rehman, D. Corujo, and R. L. Aguiar, "A Perfor-
mance Comparison of Containers and Unikernels for Reliable 5G Environments", 15th
International Conference on the Design of Reliable Communication Networks (DRCN),
Coimbra, Portugal, pp. 99-106, March 2019, DOI: 10.1109/DRCN.2019.8713677.

vii. A. U. Rehman, R. L. Aguiar, and João Paulo Barraca, "A Proposal for Fault-
tolerant and Self-healing Hybrid SDN Control Network", Inforum2017- 9º Simpósio de
Informática, Aveiro, Portugal, pp.16-23, October 2017.

1.3.3 Conference Posters

viii. A. U. Rehman, João Barraca Filipe, R. L. Aguiar, Daniel Corujo, and João Paulo
Barraca, "Shaping Future Reliable and Critical Communications Using Virtualization
Technologies", Encontro Ciência, Lisbon, Portugal, July 2018.

ix. A. U. Rehman, R. L. Aguiar, and João Paulo Barraca, "Reliability in Software-
defined Networks", 10th Map-Tele workshop, Aveiro, Portugal, September 2017.

1.3.4 Public Talks

x. Topic: "Open source Management and Orchestration (OSM-MANO) and Service
Assurance", Venue: Telenor Research ASA, HQ, Norway Fornebu, Dec 2019.

xi. Topic: "Reliability in Software-defined Networks", Venue: Universidade de Aveiro,
Research Summit, July 2019.

xii. Topic: "Resilience in the scope of Software-defined Networks", Venue: IT -
Instituto de Telecomunicações, Aveiro, Jan 2017.

xiii. Topic: "Fault-Tolerant and Self-Healing SDN Control Network", Venue: IT -
Instituto de Telecomunicações, Aveiro, July 2017.

1.3.5 Participation in Research Projects

xiv. The SERENE Project: Proposal writing: A. U. Rehman, R. L. Aguiar, João
Paulo Barraca, Title: "SDN Architecture-based reliability issues and solutions".
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xv. The 5GO Project: Deliverable writing and contribution to project demonstrations:
João Barraca Filipe, A. U. Rehman, and Daniel Corujo, Title: "Requirements Analysis
and Mechanisms for Reliable Data Mobility in Machine-to-Machine Communications
(M2M) Environments".

xvi. The SOCA Project: Deliverable writing and contribution to project demonstra-
tions: A. U. Rehman, R. L. Aguiar, João Paulo Barraca, Title: "Integration of Cloud
Computing and Virtual Networks".

1.4 Thesis Structure and Organization

The block structure of the thesis document is depicted in Fig 1.3. The thesis is composed
of six chapters, starting with this introductory chapter which outlines the motivation
for driving this work, research aims and objectives, contribution, dissemination, and
resulting scientific publications. The remainder of the thesis is organized as follows:

Chapter 1: 
Introduction, Motivation, Contributions, and Resulting scientific publications

Chapter 2: 
Key Enablers, State-of-the-art, Taxonomy, and comparisons

Chapter 5: 
Testing: 
Implementing Service 
Assurance 
components.

Chapter 3: 
Design: A proposal for 
software-defined 
Control Network.

Chapter 4: 
Scenario: Reliable 5G 
Environment. 
Performance 
Evaluation.

Chapter 6: 
Future research directions for software-defined and virtualized networks developments  

Figure 1.3: Block Structure of Thesis Document

■ Chapter 2: Key Enablers and The State-of-the-Art.
Presents an overview of the software-defined and virtualized networks key
enablers and key technologies explored, namely NFV, and SDN throughout the
proposed work. The requirements, concepts, design goals, main architectural
impairments, and state-of-the-art research efforts are discussed in this chapter.
In order to position our work, we review fault-tolerance in the scope of SDN
and Service Assurance for Hybrid Networks.
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■ Chapter 3: SDN Control Network.
This chapter proposes out-of-band control in SDN with additional in-band
control (Hybrid SDN control network) to offer fault-tolerance support for
SDN control plane reliability. The proposed resilient design ensures reliability
between the SDN controller and underlying devices. The concept of a Hy-
brid SDN control network fulfills the fault-tolerance requirements for future
heterogeneous networks made up of OpenFlow and traditional switches.

■ Chapter 4: Reliable 5G Networks.
This chapter presents a comparison of the use of two virtualization technologies,
namely containers and unikernels, envisioning the deployment of VNFs close
to the end nodes to contribute to the facilitation of resilient communication
networks in critical scenarios (5G environments). Next, it addresses the
concern that the probability of failure increases with the hardware limitation,
imposing the development of failure detection and recovery mechanisms. In
this line, the developed failure detection and recovery mechanism able to
ensure VNF reliability by dynamically instantiating a backup VNF before
failure, and using SDN to redirect the necessary data flow is presented.

■ Chapter 5: Auto-scaling Testing.
In this chapter, we explored comprehensively NFV deployment using OSM-
MANO and OpenStack. Furthermore, we explored OSM-MANO Service
Assurance and demonstrated auto-scaling using OpenStack and OSM-MANO.
We then identified the research gaps, lessons learned for OSM-MANO Service
Assurance development.

■ Chapter 6: Future Works.
This chapter concludes by enumerating future research directions for software-
defined and virtualized network key enablers and key technologies develop-
ment, namely, SDN, and NFV. Furthermore, it also outlines future research
direction for SDN fault-tolerance, and Service Assurance for Hybrid Networks
development.
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2
Key Enablers and The State-of-the-Art

Chapter Outline: This chapter first provides a detailed background of NFV to establish
a comprehensive understanding of the subject, ranging from the basics to more advanced
topics. It also highlights NFV requirements, design considerations, developmental
architectural impairments, and barriers to commercial NFV deployments. Second, it
addresses SDN fault-tolerance and highlight SDN-specific fault-tolerance issues and
provide a comprehensive overview of the state-of-the-art SDN fault-tolerance research
efforts, and structure SDN fault-tolerance research according to three distinct SDN
planes (i.e., data, control, and application). Finally, this chapter addresses Service
Assurance requirements, design goals, and key considerations in the context of Hybrid
Networks.

2.1 Importance of Virtualization Technologies

Virtualization is a well-known concept, as virtualization can be claimed to have started
in the 1960s when the Institute of Business Machines (IBM) introduced an Operating
System (OS) named CP-40 (the first operating system that implements complete
virtualization). The purpose of this was to implement time and memory sharing across
users and applications in mainframe computers. This Mainframe virtualization concept
laid down the foundation for virtualization that exists today [24]. Today, we define
virtualization as a technology that provides an abstract view of underlying resources
(hardware systems). This abstract view enables the creation of multiple simulated
environments running multiple OS and applications on top of (potentially) different
physical hardware systems. Virtualization can be applied in several ways to achieve
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different goals in computing, storage, and networking. For instance, the concept of
virtualization can be applied to achieve virtualization of data, desktop, server, the OS,
and network functions [25].

2.1.1 Virtualization, Network Virtualization and Network Functions
Virtualization

Network Virtualization is the process of combining software, hardware resources, and
network functionalities into a unified administrative domain known as a virtual network.
One of the first initiatives of network virtualization was the Tempest project [26], which
introduced the concept of switchlets in Asynchronous Transfer Mode (ATM). This
approach was quickly followed by a diversity of overlay projects over the internet, such as
MBone (for multicast) [27], the 6bone (test-bed for IPv6) [28], the X-Bone (automatic
virtual networking) [29] and many others carried out by several projects including
PlanetLab (geographically distributed an open platform for deploying, evaluating, and
accessing planetary-scale network services) [30], Global Environment for Networking
Innovations (GENI) [31] and Virtual Network Infrastructure (VINI) [32] (these last
examples developed for experimentation, testing and validation of new concepts at
scale). Furthermore, network virtualization plays a significant role throughout the
evolution of the programmable network.

Network virtualization provides a logical abstracted view of the physical infrastruc-
ture. These logical networks run over shared infrastructures, leading to a reduction in
CAPEX and OPEX. Overlay networks as above are one form of network virtualization.
There are many forms of overlay networks [33]. For instance, a common example is a
Virtual Private Networks (VPNs), created by the network administrator as a dedicated
network to connect multiple sites through secure tunnels over public networks. Another
examples are Virtual Local Area Networks (VLANs), acting as a private Local Area
Network (LAN). VLANs can run over the same infrastructure of the normal network
(i.e., switches and routers). VLANs can provide efficient traffic isolation for up to 4096
logical networks as specified in the Institute of Electrical and Electronics Engineer-
ing (IEEE) 802.1q VLANs tagging [34], [35]. Unfortunately, VLANs do not scale, as it
is increasingly hard to configure and manage when it comes to dividing one physical
resource into multiple isolated virtual environments. Due to this scalability issue with
VLANs [36], Virtual eXtensible Local Area Network (VXLAN) have been developed to
overcome practical network limitations of the VLANs using an overlay-based network
virtualization approach [37]. Currently, IEEE 802.1aq supports more than 16 million
possible virtual networks as compared to 4096 possible virtual networks available with
IEEE 802.1q VLANs tagging.
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The idea of an overlay network is quite old. Internet services started to run on top of
the telephone network. Hence, an overlay acts as a computing paradigm of virtualization
[38], [39]. Typically, in an Internet Service Provider (ISP) several overlay networks are
running over the same network infrastructure to offer different services (Voice Over
Internet Protocol (VoIP), video and broadband, for instance). These services can be
logically separated within the same network infrastructure. Therefore, ISPs can save
network infrastructure deployment, management, and maintenance costs by sharing
some infrastructure to support multiple services.

Network Virtualization is usually confused with NFV. For clarity, the main difference
is that Network Virtualization provides virtualized networking at layer 2 and on layer 3,
while NFV aims to provide virtualized networking at layers (4-7). This approach enables
the softwarization of protocol stacks beyond existing network virtualization solutions,
thus allowing CSPs to operate, configure and deploy fully virtualized networking
environments with flexibility and agility. NFV has been proposed to assist CSPs to
get rid of proprietary-based networking appliances. Furthermore, NFV moves the
cost of specialized hardware-based middle-boxes (Layers 4-7) network functions to
more flexible and programmable customized pre-packaged software-based VNFs. The
disruptiveness of NFV is illustrated in Fig. 2.1, which shows a comparison of traditional
hardware-based appliances approach versus the NFV approach [19].

Network Functions Virtualization 
Approach 

High volume Ethernet switches

High volume standard servers

High volume standard storage

Orchestrated,
automatic & remote install

Independent Software Vendors

Classical Network Appliance 
Approach 

• Closed, Proprietary.
• Shorter Product life-cycle.

• Open and competitive eco-system.
• Standard COTS servers.

CDN WAN 
Accelerator

Message 
Router

Session
Border 

Controller

FirewallDPI Carrier 
Grade NAT

BRAS
Provider 

Edge 
Router

SGSN/
GGSN

Radio/Fixed 
Access Nodes

Tester/
QoE

CDN: Content Delivery Network
DPI: Deep packet Inspection
SGSN/GGSN: Serving /Gateway GPRS Support Node 
BRAS: Broadband Remote Access Server

Figure 2.1: Traditional Hardware-based Network Appliances Approach Versus NFV Ap-
proach
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2.1.2 Server Virtualization and Hypervisors:From Server Proliferation to
Virtual Machine Development

In this section, we present concepts and terminologies related to virtualization tech-
nologies.

Traditionally, each application is required to run a single server and the server to run
continuously, even when the server is not used to its fullest capacity (hardware resources)
by the application. Therefore, this has led to the infrastructure problem known as server
proliferation. This problem was due to two reasons: First, the number of servers was
growing, and second, these servers were highly underutilized. Furthermore, operational
challenges such as power and cooling systems for servers, as well as operational expenses
to own or buy a place to support such infrastructure became increasingly costly. On
top of that, additional servers for backup (probably in different locations) increase even
more infrastructure costs for infrastructure owners. The development of the Virtual
Machine (VM) concept has fixed the server proliferation problem by consolidating servers
through virtualization as shown in Fig. 2.2 [40]. Due to this, it was possible to use servers
more efficiently, offering cost saving for infrastructure owners, service providers, and
businesses. In short, the VM development has fixed the server proliferation challenge.

Server 1
Single Application  

Operating system 

Server Consolidation
Multiple Applications and Operating Systems Support  

Server 2
      Single Application  

      Operating system 

Server 3
Single Application  

Operating system 

Figure 2.2: Server Consolidation

VMware defines VM as follows: “A VM is a tightly isolated software container
that runs its own OS and applications as if it were a physical computer [41].” The
three main components of a VM are: the host OS, the hypervisor or Virtual Machine
Manager (VMM), and the guest OS [42].

A host OS is directly installed on the physical hardware.
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The hypervisor is not a new concept; it was introduced in the 60s to run different
OSs on a single mainframe computer. A hypervisor is a software program that is capable
of hosting different VMs with different OSs installed and running over the same single
hardware resources. Hence, it has the flexibility to support several VMs with multiple
OS and applications running on a single hardware resource. Moreover, a hypervisor is
responsible for resource allocation to the VM as well as responsible for monitoring and
managing VMs through coordination with the underlying hardware primary OS.

Hypervisors are divided into two types: Type I and Type II, as shown in Fig. 2.3.
Type-I hypervisors, also known as bare metal or native or embedded hypervisors

(hardware-based hypervisors), do not need any host OS because the communication to
hardware resources is direct with full visibility of hardware resources [40]. Currently,
there are several Type-I hypervisors in the market, with different flavors led by different
vendors (for instance, Microsoft Hyper-V, Open source Kernel Based Virtual Machine
(KVM), Xen/Citrix Xen Server, Red Hat Enterprise Virtualization (RHEV), and
VMware vsphere/ESXI).

The type II hypervisors, also known as hosted or embedded hypervisor (software-
based hypervisor), requires a host OS because the type II hypervisors run on top of the
supported OS (an additional layer that interacts with the underlying hardware resources
in order to manage VM/Server). Currently, there are several Type-II hypervisors, such
as (Oracle virtual box, VMware Workstation, and Microsoft Virtual PC) [43].

VM1
Operating System 

Application 

Host Hardware 

VM2
Operating System 

Application 

VM3
Operating System 

Application 

Hypervisor 

Type-I Hypervisor 

VM1
Operating System 

Application 

Host Hardware 

VM2
Operating System 

Application 

VM3
Operating System 

Application 

Hypervisor 

Type-2 Hypervisor 

Operating System 

Figure 2.3: Comparison Type-I Versus Type-II Hypervisors
[44]

Type-I hypervisors are more secure than Type-II, are faster and more efficient.
Type-I hypervisors sit on hardware and communicate directly without any additional
virtualization layer. However, they are hard to set up. The Type-II hypervisors are less
secure as compared to Type-I. These types of hypervisors are slightly slower and less
efficient because an additional layer is needed to manage VM indirect communication to
hardware. However, they are easy to set up. Indeed, the different types of hypervisors
utilize different virtualization techniques and would be classified based on their virtual-
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ization techniques. Thus, Hypervisors are an integral part of any research on networks
virtualization [45]. We summarize the features of Type I and Type II hypervisors in
Table 2.1.

Table 2.1: Type I and Type II Hypervisor Comparison

Type I Hypervisor Type II Hypervisor
Directly runs on server hardware Runs on top of the supported OS
Minimizing overhead due to direct
hypervisor interaction with hard-
ware resources.

Incur overhead as hypervisor runs
on top of the supported OS.

Provide better hardware resource
utilization

Provide less hardware resource uti-
lization.

More secure due to hardware-
based hypervisor

Less secure due to a software-
based hypervisor.

Hard to Set up Easy to Set up.
Examples: vSphere, XenServer,
Hyper-V, KVM.

Examples: VMware Workstation,
VMware Player, Microsoft Virtual
PC, Oracle Virtual Box, and Free
BSD, etc.

As explained above, VMs created on the top of a hypervisor layer acts as a virtual
server running different OSs and applications. Thus, it requires an operating system to
boot up, manage the devices and applications within the virtual server environment.
This is known as a guest OS. Unlike the host OS, the guest OS does not need any
modification to run on VMs, therefore, does not have precise visibility of the underlying
hardware. However, hypervisor manages application requests from users that are
supported by the guest OS through an additional layer and map these requests to
"physical" hardware or host OS, and allocates resources, in such a way that it seems
that guest OS is directly interacting to physical hardware or host OS.

2.1.3 Containerization (Lightweight Virtualization)

The VM concept and implementations discussed earlier fixed the problem of server
proliferation. However, this method still imposes a performance and resource cost due
to the overhead associated while imitating the hardware into a virtual environment with
high-level isolation and non-shared host Kernel/OS to create a VM. To cope with this
overhead and hypervisor performance degradation, a lighter packaged/Kernel-based
virtualization with low-level isolation and shared Kernel OS can be used instead. This is
called container-based virtualization or containerization [46]. Containers are sometimes
referred to as Linux Containers (LXC) because of their origin on the Linux Kernel.
Nevertheless, not all containers are Linux-based containers. Containerization differs from
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VMs because it provides policy-based segregation of system resources usage. Containers
offer superior performance as compared to the VMs [46], [47] because hypervisors are
not being used but instead lightweight APIs within the Kernel. This bypasses the
overhead created during hyper visors interaction in VMs environments thus, offering
enhanced performance. Due to the shared Kernel, container-based virtualization is
much less secure than VM virtualization.

In addition to that, containers can also be deployed in VMs to provide multi-tenant
isolation. The concept of 5G network slicing is an example of such isolation where
multi-tenancy can be supported by slicing underlying physical infrastructure [48], [49].

2.1.4 Unikernels

"Unikernels are specialized, single-address-space machine images constructed by using
library OSs" [50], [51]. These specialized images can then be run on standard hypervisors.
The footprint of a unikernel is considerably smaller than a VM or containers, and thus
can provide better performance [52]. Unikernels are designed to be able to run a single
process. They are also not meant to be multi-user or multi-process. Thanks to this
single-minded design, a unikernel is small, lightweight, and quick [53]. Open source
work on unikernels includes projects such as ClickOS, IncludeOS, and MirageOS [54].

As discussed above, virtualization approaches (VM, container, and unikernel) are
critical when it comes to applying them to NFV. To explain this, we illustrated the
internal architectures of these virtualization technologies and their possible level of
implementation in Fig. 2.4. Also, In Table 2.2 we have provided a brief comparison of

these virtualization technologies, which can be useful to determine (from the network
designing perspective) which of the virtualization technology can be better suitable
(concerning performance and deployment cost) for different opted scenarios within
virtual networking environments [55].
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Table 2.2: Virtual Machines Versus Containers Versus Unikernels

Virtual Machines Containers Unikernels
Heavyweight Lightweight Tiny
Useful when power and
storage are not an issue

Useful when power and
storage become critical

Useful when power and
storage are in short
supply

Run its own OS Shared Kernel OS Specialized, single
addressed-space ma-
chine images using
library OS

Limited performance Superior performance Superior performance
Fully isolated and
hence more secure

Shared Kernel-based
isolation hence less se-
cure

Fully isolated and
hence more secure

Booting time in min-
utes

Booting time in mil-
liseconds

Booting time in mil-
liseconds

High overhead due to
hypervisor interaction

Low overhead due to
lightweight APIs in-
stead of using hypervi-
sor

Minimal overhead due
to specialized library
OS

Supports multiple ap-
plications at a time

Supports multiple ap-
plication at a time

Supports single appli-
cation at a time
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Figure 2.4: Virtualization Technologies Comparison
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2.2 NFV Comprehensive Overview

The collaborative work on NFV officially started in October 2012 when leading
Telecommunication Service Providers (TSPs) produced a white paper [56] jointly,
highlighting the NFV concept and its benefits, and calling for industrial research ac-
tions. Moreover, in November 2012, AT&T, British Telecom, Verizon and other leading
Telecom network operators developed an Industry Specification Group for NFV inside
European Telecommunications Standards Institute (ETSI). Since then, the ETSI NFV
Industry Specification Group (NFV-ISG) became the home of the Industry Specification
Group for NFV [57]. Further, ETSI is working and primarily has accomplished work of
"level-one" with the publication of the first five ETSI Group Specifications documents
in October 2013 [58]. The first four were focused on NFV across the industry and
the fifth was about promoting and coordinating public demonstrations, i.e., Proof of
Concept (PoC). In 2014, eleven other documents were published, and the first phase
was completed as pre-standardization work.

The first phase ("Release 1") includes an overview of infrastructure update, ar-
chitectural framework, hypervisor, and domain of network infrastructure. Further-
more, these specifications also covered aspects of NFV Management and Orchestra-
tion (NFV-MANO), security, reliability, resilience, and QoS metrics [59].

The follow-up "Release 2" was then focused on the inter-networking of equipment
and services, addressing functional blocks requirements, including ETSI NFV architec-
ture framework interfacing and reference points. The "Release 2" documentation was
completed in 2016.

The work on "Release 3" started in 2017, in parallel to the protocols and data
models; network service descriptor file structure specifications, and the implementable
protocol and data model solutions of interfaces and other artifacts. NFV "Release 3"
was focused on enriching the architectural framework in order to make NFV ready for
global deployment and operation. Some of the "Release 3" features were completed
in July 2019. Some features had been closed, and some others were carried over to
"Release 4".

The work on "Release 4" was officially launched in mid of 2019. ETSI NFV "Release
4" is underway, and all the previous evolutions show that NFV is evolving very rapidly."
Release 4" focuses on new features such as network connectivity integration, NFV-
MANO automation, and autonomous networks, NFV enhancements for 5G, Multi-
tenancy enhancements for NFV-MANO, service-based architecture for NFV-MANO,
VNF generic management functions continuous VNF integration, and Policy models.
NFV already moved from the conceptual framework to a PoC stage. The "Release 4"
documentation is expected to be completed in mid of July 2021.
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NFV provides Telecom network operators with the advantage to combine and
expand their current networks with smooth evolution. NFV-based solutions and
research activities span around two main areas: TSPs and Next-Generation Data
Center Networking (NGDCN) [60]. The scope for NFV to transform operator network
architecture includes scalability, high-performance backbone, Overlay VPN and internet
services, amongst others.

Currently, ten working groups are exploring different aspects of NFV architectural
framework. We list the details of these working groups in Table 2.3. ETSI has also formed

Table 2.3: ETSI NFV Research Areas and Working Groups

Working
Groups

Research Area

NFV-INF Deals with architecture for the virtualization In-
frastructure

NFV-MANO Deals with the management and orchestration sup-
port.

NFV-SWA Focuses on research purely on software architecture.
NFV-REL This group focuses on the aspect of reliability, avail-

ability, resilience and fault tolerance.
NFV-TST Focuses on pre-deployment testing and validation

of Open source NFV.
NFV-TSC Technical steering committee group to keep an eye

on NFV work and facilitate its acceleration.
NFV-IFA Focuses on interfaces and architectural aspects of

NFV reference framework.
NFV-NOC Focuses on network operators councils to develop

NFV solution based on their feedback.
NFV-SEC Focuses on security aspects of NFV.
NFV-EVE Focuses on evolutionary aspects and ecosystem

strategies for NFV.

a NFV-ISG PoC forum. We list in Table 2.4 selected PoC modules demonstrated by
different Telecom network operators in liaison with ETSI [61]. The open demonstration
of the PoC at ETSI is intended to show that NFV is an operable technology. The demos
listed in Table 2.4 suggest different business motivations from operators and vendors in
validating different PoCs. Most of these demonstrations used implementations based on
cloud technologies, (e.g., OpenStack). Subsequently, ETSI NFV-ISG works closely with
TSPs and equipment vendors, to specify their requirements for NFV adaptation based
on their working environment. This assessment is important to prevent interoperability
problems in NFV standardization. Therefore, in reality, NFV is progressing rapidly to
reshape the CGN services for ISPs shortly.
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Table 2.4: NFV Industry Specification Group PoC Demonstrations

Organization PoC Demos
British Telecom Virtual Broadband Remote Access Server

(BRAS)
Deutsche Telekom Virtual IP Multimedia Subsystem (IMS)
Orange Silicon Valley

Virtual Evolved Packet Core (vEPC)
Telefonica

Carrier-Grade Network Address Translator
(CGNAT) and Deep Packet Inspection (DPI)

2.2.1 Description of NFV Architecture Framework

Architectures based on the traditional network are tightly integrated because of the
vendor’s specialized hardware and customized software’s based systems. Unlike the
traditional network, the NFV-based architecture allows Open source development of
software that can run on generic shared hardware [14]. In this section, we provide a
detailed description of ETSI NFV reference architecture.
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Figure 2.5: ETSI Architecture and Reference Framework for NFV

ETSI proposed the NFV architectural framework and identified functional blocks
and the main reference points between the functional blocks as shown in Fig. 2.5
[20]. ETSI describes the NFV architectural framework at the functional level and does
not propose any specific implementation. However, NFV architectural framework is
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proposed already considering the changes that possibly occur in an operator’s network
due to the network virtualization process (transition) [20]. Due to these expected
changes that can occur in an operator’s network, ETSI also defines NFV reference
points to ensure consistent information exchange between functional blocks is guaranteed
across vendor’s implementations for functional blocks. The details of these functional
blocks are as follows.

2.2.1.1 NFVI

The Network Functions Virtualization Infrastructure (NFVI) functional block is the
combination of physical hardware (compute, storage, and network) and virtualized
resources (abstracted view of computing, storage, and network). Generally, a hypervisor
provides an abstraction to create a virtual environment over underlying infrastructure,
in which VNFs can be deployed, managed and executed [62].

NFVIs can be geographically distributed and generally, VNFs deployment location
may not be visible (i.e., it can be implemented using available physical resources across
different geographical locations).

2.2.1.2 VNFs

The VNFs functional block is composed of multiple VNF and multiple Element Man-
agement System (EMS). VNF is the virtualization of legacy (hardware-based) NFs and
EMS is responsible for the management aspects of these VNFs. A VNF can be deployed
stand-alone in a single VM, or it can be deployed across multiple VMs. However, when
VNFs are deployed collectively in a group to implement a specific network service, then
it must be processed in a certain order due to the possibility that some of the functions
have dependencies on others.

2.2.1.3 NFV-MANO

The NFV-MANO functional block is the management and orchestration framework
required for the provisioning of the VNFs. It steers the deployment and operation of
VNFs onto the NFVI [63]. Moreover, it has a database that stores information that can
help determine the life-cycle properties of services and resources and resources.

2.2.1.4 OSS/BSS

This block is also responsible for coordinating with the traditional network system such
as Operation Support System (OSS) and Business Support System (BSS) to ensure
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the NFV-MANO, NFVI and functions running on legacy equipment with pre-defined
communications interfaces.

We have noticed some recent changes that have been made to the ETSI NFV archi-
tecture and reference framework. The changes that are being made to a revised ETSI
architecture and reference framework include [64] the re-positioning of the "Service VNF
and Infrastructure Description" which was moved inside the NFV-MANO. Previously
this was outside the NFV-MANO block with reference point "se-Ma". Since "Service
VNF and Infrastructure Description" is re-positioned the "se-Ma" reference point be-
comes obsolete. Also, new interfaces were defined for the MANO, including reference
points explicitly re-positioned and renamed "Os-Ma" to "Os-Ma-Nfvo", "ve-vnfm" to
"ve-vnfm-vnf" and new additional reference point "ve-vnfm-em" as depicted in Fig. 2.5.
All these recent changes show that NFV is still undergoing major standardization
developments.

2.2.2 Realization of NFV Architectural Implementation Challenges

In this section, we discuss ETSI NFV architectural implementation challenges. Providing
a solution to these challenges can significantly improve NFV developments. The ETSI
NFV-ISG group architectural framework has to define NFV architecture building blocks
and reference points but has not yet indicated specified NFV implementation and PoCs.
We discuss the challenges of the NFV architectural framework briefly as defined by
ETSI.

2.2.2.1 NFVI: Network Function Virtualization Infrastructure

NFVI covers three-layer: Hardware resources, Hypervisor domain, and Virtualized
resources. Moreover, this block supports a virtual environment where VNFs are executed
and deployed over the underlying hardware resources. The virtualized environment is
composed of servers, virtual machines switches, and virtual switches, etc.

We consider several main challenges for the functional blocks of NFVI as follows
[65]:

• How hardware resources can be designed and utilized to translate the virtual
environment efficiently?

• How to maintain and update a software-based environment (virtualized
environment)?

• How to keep track of continuous development and integration of software that
is interacting with underlying hardware resources?

• How can NFVI maintain connectivity between locations such as data centers
and private/public or hybrid cloud environments?
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The questions as above-mentioned arise because the standard procedure and imple-
mentation of NFVI are not yet fully regularized. The NFVI functional block is critical
to NFV-based VNFs implementation such as vEPC, Content Delivery Network (vCDN),
and Virtual Customer Premises Equipment (vCPE) [66]. Therefore, establishing Key
Performance Indicators (KPIs) to ensure VNFs consistency and performance becomes
challenging.

Hypervisor and hardware resources (compute, storage and network) are going to be
provided by different vendors. Integrating and incorporating trust and security in a
multi-vendor virtual environment is also challenging.

Managing virtualized resources is critical for NFVI. NFV mostly depends on the
software, and developing a practice to maintain the continuous quality of software
in NFVI is also challenging. However, it is well-known that VNFs are independently
deployed through a cross-layer platform such as OpenStack, but additional tools for
monitoring and managing such VNFs (deployed over the COTS hardware) need to
be developed to successfully implement VNFs functionality across the network [67].
The above-mentioned challenges for ETSI NFVI blocks must be addressed before NFV
pre-deployment testing and validation phases.

2.2.2.2 VNF’s: Virtual Network Functions

The VNFs block consists of multiple VNFs and multiple EMS. Each VNF is assigned to
a specific EMS to implement services in a virtualized environment. EMS system keeps
track of associated VNFs configuration, and its monitoring while VNFs are running on
single or multiple VMs. VNFs are created uniquely and in isolated virtual environments
to meet the scalability, security and performance requirements. However, guaranteeing
these aspects is challenging [65]. Since VNFs deployment utilized NFVI, three main
challenges arise as follows: Portability, Resource allocation, and Performance.

First of all, the performance of VNFs depends on both the hardware and the software
that builds together a virtual environment, where the concept of the NFV is practically
realized [68], [69]. The VNFs must provide performance values on commodity servers
similar to NFs running on hardware equipment. VNF software must be of high quality
and must avoid performance bottlenecks, and maintain accountability at each layer of
the virtual environment. Indeed, network service functions such as firewall, Intrusion
Detection Systems (IDS), Intrusion Prevention Systems (IPS) are now virtualized to
support multi-user multi-service environments (multi-tenancy). Thus, a physical switch
can connect the service node to the network, but users are logically separated through
virtual switching inside the multi-tenant environment.

This virtual switching is implemented in software to mirror the functionality of the
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physical switch and requires several operations such as encapsulation, de-encapsulation,
NAT and policy that are implemented to shape traffic inside a multitenancy environment.
This consumes significant computing resources that lead to performance degradation
of the virtualized system (especially in high data rates environment). To avoid such
consumption of resources there is a need to and increase the efficiency of virtual switching
by developing high-performance virtualized systems and environments [70].

Another challenge is portability. The VNFs must be portable between servers
and across the network. The live migration of VNFs must be possible without any
performance degradation. Several cross-platforms such as OpenStack, Eucalyptus,
oVirt, OpenNebula, and Nimbula are also working towards supporting the portability
of VNFs in an NFV environment [67].

2.2.2.3 OSS/BSS: Operational and Business Support System

NFV is transforming the way the telecommunications infrastructure is deployed. There-
fore, the way service is delivered by CSPs is going to change significantly. Thus, NFV
inevitably is imposing new demands for OSS.

Traditionally, the OSS/BSS system is oriented to a reasonably static networking
environment. However, in today’s highly dynamic networking environment, the OS-
S/BSS system already needs some re-design to adapt it to the more dynamic nature
of businesses. This is now compounded by the need to provide the operational and
business support of deploying services using software-defined infrastructure [71]. CSPs
need to advance their OSS system to simplify and align with evolving software-defined
infrastructure. Moreover, to control the dynamicity of NFV, new mechanisms to keep
track of performance need an enhanced service assurance system to handle the dynamic
nature of the processes.

This service assurance system must be integrated with an OSS for two main reasons.
First, to guarantee the SLAs are met, and second, to act as a tool to identify and manage
network failures. In today’s changing networking environments, service assurance must
be adaptive in order to meet the requirements of future heterogeneous networks. At
present, there is a need to modernized OSS/BSS systems according to the NFV, and new
evolving technologies introduce to achieve enhanced automation, scalability, capacity
optimization, and service elasticity in software-defined infrastructure [72].

2.2.2.4 NFV Management and Orchestration

Resource allocation in NFV is also a problem. When talking about resource allocation
concerning the NFV architectural framework, the NFVI and NFV-MANO blocks are
mainly responsible for provisioning resource allocation for VNFs, because VNFs are
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deployed onto the NFVI and resources are allocated through orchestration. According
to [65] resource allocation in NFV is accomplished in three stages as follows:

1) VNFs Chain Composition or Service Function Chaining (SFC): SFC is the
mechanism to connect VNFs in such that they form a chain of service functions [73].
This enables flexibility for CSPs to make the best use of virtualized software to define
infrastructure [74]. Moreover, it enables the composition of a chain of VNFs dynamically.

TSPs can get the benefit from the composing dynamic chain of VNFs and develop
elastic network services according to their business needs [75]. However, the main
challenge arising while composing such a chain is how efficiently NFVI can be utilized
to concatenate VNFs and control dynamicity.

2) VNFs Forwarding Graph Embedding: VNFs Forwarding Graph Embedding in
NFV is a concept closely related to the Virtual Network Embedding (VNE) [76] and
Virtual Data Center Embedding (VDCE) as described above [77].

A chain composed of VNFs is a connection of graphs to form an E2E service. This
E2E service is known as VNFs forwarding graph embedding.

3) VNFs Scheduling: VNFs are deployed using NFVI that comprised of several
high-volume servers. VNFs scheduling is the process of embedding VNFs in such a
way to compose a chain of VNFs that minimize the total run time service execution.
VNFs scheduling is carried out carefully without performance degradation and affecting
high-volume servers in operating NFVI.

It is important to note that VNFs deployment architectures vary based on the
implementation of NFVI functional blocks. Examples include VM, container-based and
unikernels based deployments [78], [79]. A study carried out in [80] showed how NFV
deployment practices could be optimized to achieve higher performance. Moreover, it
also discusses how a carrier can fine-tune NFV deployment on standard high-volume
servers by applying embedded instrumentation techniques.

All the above stages of acquiring resource allocation in NFV require efficient algo-
rithms to determine the locations of required VNFs in high- volume servers located
in the data center. This then enables the migration of servers from one location to
another for efficient utilization of the NFVI. Further, this flexible placement of VNFs
can offer load balancing, optimization of traffic flow, recovery from failures and possible
reduction in CAPEX and OPEX [81]. Placement of VNFs is naturally challenging and
particularly the different problem of how to optimize VNFs placement arises.

In order to improve the aspects of VNFs scalability dynamically for initial VNFs
placement, three mechanisms are discussed as follows: i) horizontal scaling: Virtual-
ized resources are either added or removed, ii) vertical scaling: Virtualized resources
capacity or size is reconfigured, and iii) Migration: Virtualized resources are migrated
to appropriate location [82], [83].
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There is a need to enhance the computation efficiency of resources in NFV so that
better resource allocation can be achieved in NFV environments. The management
and orchestration challenge is a big concern for NFV success [84], [85], [86]. In an
NFV environment, new management aspects of virtual VNFs have been introduced for
creating and maintaining Lifecycle Management (LCM) of the virtualized resources for
the VNFs. This includes instantiation, scaling, updating and terminating VNFs [85].
Furthermore, function placement and dynamic resource allocation must be automated
and self-configurable in NFV. Currently, this is an area of intense investigation and
development for NFV. Several studies have been carried out for the optimization of
VNFs function placement [87], [88], [89], [90], [91]. These studies carried out multiple
approaches as the optimization problem is a Non-deterministic Polynomial Time (NP),
NP-Hard problem. Work done towards solving this NP-Hard problem followed heuristic
and meta-heuristic algorithms to minimize the complexity in solving mixed-integer
linear programming models [92], [93], [94]. To improve the computation efficiency close
to the optimal is challenging.

From the NFVI management and orchestration aspect, the Network Point of Presence
(N-PoP) (a location where network function is implemented as VNF or Physical Network
Functions (PNFs) and NFVI Point of Presence (NFVI-PoP) (N-PoP where network
function can be deployed as VNF) [95] is essential, resources such as memory and
storage are accessed from N-PoP and must be handled in NFVI-PoP. This helps to
chain VNFs with other VNFs or PNFs (physical appliances) to realize a network service
[84].

2.2.3 Impairments to Commercial NFV Deployment

This section addresses some aspects that are obstructing the swift deployment of NFV
in commercial environments.

2.2.3.1 Lack of NFV Equipment’s/Products to Meet Carrier-Grade Requirements

The major problem faced today in NFV commercial deployment is the strict carrier-
grade requirements [17]. The main reason for this for CSPs is to ensure a higher
level of trustworthiness and service protection. Moreover, this enables CSPs to meet
customer expectations for specific services and develop new business models for revenue
generation. Indeed, the CGN services are incredibly reliable, tested, and compatible.
This is not only concerning meeting “Five 9s” of reliability and availability but also
with other requirements for CGN such as equipment management, security, billing,
product development, and continuous operational support [18].
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The basic research challenge is moving to all IP-based, IT-based technology, how
can future NGNs fulfill the reliability, resilience and security requirements offered by
traditional telecommunications networks (i.e., "Five 9s" reliability)?

The OPNFV project proposed reliability design goals for NFV, as listed in Table
V. Meeting the CGN criteria of "Five 9s" reliability is essential for NFV, but it is
challenging considering a virtual environment (Software-based). NFV offers benefits
of agility and automation of network services, but CSPs have not yet assured that
NFV appliances/products are matured for CGN services. Therefore, NFV-based
products/equipment must satisfy the "Five 9s" reliability criteria for CGN. The CSPs
are concerned about it because testing and validation of NFV products/equipments is
still in its early stage.

2.2.3.2 Incomplete Standardization and Openness

There are several efforts (from academia and industry) for standardization and prominent
NFV projects initiatives efforts to develop NFV for standardization. However, despite
these efforts of academia and industry which showed continuous improvement of NFV
development over the years, the NFV standardization is still underway. Indeed, a
unified fabric for NFV and IT is not yet developed.

Although several examples of commercial NFV deployment exist, there is still a
need to extend NFV deployments specifically to implement VNFs in multi-vendor
virtual environments. The technological innovation of NFV continues to grow but
standardization is considered a key factor for rolling out NFV in a large-scale production
environment, and at the moment there is a need to standardize all aspects of NFV to
accelerate its deployment. Another barrier to NFV deployment is openness. Openness
is one of the benefits that NFV aims to offer. However, openness promoted by several
vendors or industry-specific solutions or Open source NFV projects does not necessarily
follow approaches to offer openness that attracts uniform acceptance from CSPs and
NFV promoted communities. This issue of openness has also affected the financial
picture of NFV.

2.2.3.3 Interoperability and Portability Issues

Interoperability and portability are also crucial issues holding back commercial NFV
deployment. Portability refers to the support that an NFV framework aims to provide
to move VNFs across a different server in multi-vendor, multi-service and multi-network
virtual environment [96]. Interoperability in a virtual environment refers to the software
exchange of information among different NFV vendor appliances in a multi-vendor,
multi-service, and multi-network virtual environment.
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To scale products and services software portability is essential for porting VNFs
and VMs with ease and without vendor lock-in. Also, portability enables integration
in a multi-domain networking environment. However, designing a standard interface
for portability is a challenge. Once the standard for portability is designed, a standard
unified approach for integration must be enabled to offer inter-operable orchestration in
multi-vendor and multi-domain virtual environments [97].

2.2.3.4 Limited Business Cases for Service Providers

There has been an ongoing discussion on the business end of NFV because there is a
lack of killer applications for NFV and business cases are challenging to define [98].
Moreover, most of the service providers have not yet transformed their operational
support systems to support NFV [99].

The virtualization benefits of NFV were not the only benefits that CSP’s are
interested. There are other benefits such as how NFV can optimize networks, offer
value-added service and market agility. ETSI is in a liaison relationship with Broadband
Forum (BBF) is a non-profit industry consortium dedicated to developing broadband
network specifications to explore the business end of NFV. BBF is optimistic about
NFV application for broadband users and believes that NFV can create new revenue
streams to sustain business growth in the broadband market [100].

2.2.3.5 Lack of Certified Ecosystem for NFV

There is a need to develop NFV ecosystems and offer full solutions to CSPs to adopt
NFV with confidence. However, building an ecosystem is hard. Currently, ETSI NFV
PoC testing and validation is lacking behind [61]. CSP’s need assurance from NFV
ecosystems to offer simple installation and development of customer service and also
automated network management built-in capabilities with seamless integration with
other legacy systems and multi-domain networking with Service Level Agreement (SLA)
guaranteed.

2.2.4 In Summary

NFV has attracted significant interest from academia and the telecommunications
industry as a technology that will potentially revolutionize network-based services with
low deployment costs for network operators.

Virtualization approaches are paving the way for NFV, from VMs, containers to more
advanced techniques such as unikernels. We discussed Type I and Type II hypervisors:
the selection of a correct hypervisor is essential for the efficient utilization of underlying
hardware as well as virtual environments.
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NFV standardization efforts have evolved in the last few years, but the standard-
ization is still underway. NFV applicability and PoCs are progressing and NFV is
becoming a key enabler of the 5G network slicing concept.

We discussed NFV requirements, design goals and key considerations that are
essential to accelerate the deployment of NFV. We provide a detailed comparison of
currently selected NFV projects to lead by industry and CSPs to explore the different
aspects of the ETSI NFV framework. We also discussed the NFV architectural challenges
and discussed ongoing research efforts to overcome those challenges, and identified the
impairments that cause a delay in NFV commercial deployment.

NFV offers several potential significant advantages over present solutions available
for CSPs, but at the same time, several challenges need to be overcome soon through
collaborative work on NFV to gain industry and CSPs confidence. This will play a
pivotal role in propelling NFV deployments.

The NFV-based solution aims to offer service reliability comparable to the "Five
9s" reliability of PSTN. However, validation and testing to achieve QoS equivalent to
PSTN is still an intense area of investigation.

NFV usage is overgrowing, and innovative ideas and practices are in progress
although, its deployment is still at an early stage. The most important aspect to
consider in NFV is the testing and validation of hypothetical models [101]. There are
also unexplored research areas in the NFV-based proposed solution. For instance, fault
management, interoperability, E2E reliability, security performance must be addressed
in-depth. Furthermore, network automation is essential for improving NFV resilience.

NFV is a still evolving paradigm for programmable networks [102]. Softwarization
of the telecommunications systems can provide a long-term solution to the gradual
network ossification problem faced by the existing internet and NFV is an essential
element directed towards a solution to this problem. Furthermore, in Section 6.3.1, we
concluded by enumerating future research directions for NFV development.

2.3 Fault-Tolerance in the Scope of SDN

Due to the lack of software programmability in today’s networks, it is quite challenging
to modify (program) networks. Traditionally, there was no underlying programming
abstraction provided to deal with the inherent complexity of distributed system failures.
One of the primary features that SDN provides is data and control plane separation,
laying the ground for simple network programmability. Although there is an extensive
set of SDN research, most of the research performed so far focuses on exploring SDN as
a programmatical technology, without considering fault-tolerance aspects [103], [104],
[105], [106].
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Fault-tolerance is a broad area of knowledge, and covering all aspects of fault-
tolerance concepts in a single chapter is difficult. Hence, in this section, we briefly
discuss key fault-tolerance concepts and focus more on fault-tolerance in the scope
of SDN. It is important to note that fault-tolerance and fault-management concepts
are different. On the one hand, fault-tolerance is a characteristic of a system, which
is designed in such a way that it can minimize service failures in the presence of
system components faults. On the other hand "Fault management" is a term used in
network management, describing the overall processes and infrastructure associated
with detecting, diagnosing, and fixing faults, and returning to normal operations in
telecommunication systems [107].

Generally, fault-tolerance is an essential part of the design of any communication
system/network. Computer networks are built on physical infrastructure or virtualized
versions of the physical infrastructure. These infrastructures are critical because
business applications rely on the proper operation of such infrastructures. However,
such infrastructures are prone to a wide range of challenges and attacks such as natural
disasters or Denial of Service (DoS) attacks and major issues such as faults, failures,
and errors all of which cause failure and disruption in network service. Therefore,
to overcome these network service issues, resilience procedures and fault-tolerance
mechanisms are essential to identify and heal the system/network in the presence of
such failures [108].

SDN provides network flexibility through a clear separation of control and data
planes, inherently simplifying network management [109], although SDN fault-tolerance
is still in its infancy. SDN is exposed to new sets of failures and issues at each layer of
its architecture, as discussed in Section 2.3.3. It is necessary to address these issues
and safeguard each layer of the SDN architecture to provide enhanced fault-tolerance.
We overview fault-tolerance techniques and typical phases of fault-tolerance. We then
highlight fault-tolerance issues according to the SDN’s three main layers (data, control,
and application) and classify SDN fault-tolerance research according to these three
layers.

2.3.1 Background and Related Concepts

In this section, we discuss fault-tolerance and its techniques and provide a brief overview
of fault-tolerance in traditional networks and its relationship with dependability.

2.3.1.1 Fault-Tolerance Overview

Any system is prone to some sort of threats that affect the operation of the system.
Moreover, in computer networking, both distributed and centralized network systems
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are also prone to three major issues: Failures, Errors, and Faults.
A failure happens if a system is unable to implement the specified function appropri-

ately. This means the service deviates from its specifications. An error is caused because
one or more of the sequences of system states deviate from the specified sequence, and
can cause service disruption. Faults can cause errors and lead to single or multiple
failures [110]. A fault is the hypothesized cause of an error, for instance, a software
bug, human-made error or hardware power failure [111]. Relationship between fault,
error, and failure is depicted in Fig. 2.6 [112].

Fault 
occurrence 

Activation Propagation No service 

Invalid 
state 

Violation of system 
specification

FailureErrorFault

Figure 2.6: Relationship:Fault, Error, and Failure

Fault-tolerance is the outcome of a design process of building a reliable system
from unreliable components [113]. Faults can be classified into two main categories
[114], [115]: Crash faults and Byzantine faults. Crash faults can cause system fatal
errors (for instance process and machine power-related failures), while Byzantine faults
can cause the system to deviate from normal operation [114]. Fault-tolerance systems
are equipped with several mechanisms that not only respond to these issues but also
continuously offer and maintain correct system operation. However, it is hard to design
in practice a fault-tolerance system that can guarantee flawless communication but even
in worst-case scenarios, fault-tolerance systems usually still offer graceful degradation of
services. Nevertheless, we can always design efficient mechanisms for faults and errors
that are most likely to happen and affect any system. Such approach can improve and
enhance fault-tolerance communication systems.

2.3.1.2 Fault-Tolerance Phases

The typical four main stages of a fault-tolerance are as follows [116]:
1. Error Detection: In this stage, faults are first detected and then reported to

determine the root cause of failure (observing failures).
2. Damage Confinement and Assessment: In this stage, the damaged or

corrupted state of the system is assessed to determine the extent of the damage
caused by faulty components.
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3. Error Recovery: In this stage, recovery strategies are imposed to restore the
system to a consistent and fault-free state. There are two different kinds of
recovery techniques used:

• Backward Recovery: In this technique, system states are recorded and
stored so that a corrupted state can be discarded and the system can
be restored to the previous fault free (correct) state.

• Forward Recovery: In this technique, the system is being brought to a
new correct fault-free state from the current corrupted state.

4. Fault Treatment and Service Continuation: In this stage, the location
of faults are identified first and then faults are either repaired or the system is
reconfigured to avoid faults. Service continuation is essential to ensure that the
system will perform its operation normally and without immediate manifestation
of faults.
The typical phases of implementing fault-tolerance is shown in Fig. 2.7.

  

Error Recovery

• Backward recovery
• Forward recovery

Damage 
Confinement and 

 Assessment 

Latent 
Fault

Fault-treatment and 
Service Continuation

Error
Activation

Figure 2.7: Typical Phases in Fault-tolerance

2.3.1.3 Fault-Tolerance Techniques

Several fault-tolerance techniques are being used to avoid service failure in the presence
of faults [117]. Fault-tolerance is carried out through error detection and system recovery,
or simply detection and recovery mechanisms. Error detection identifies the presence of
an error, while "recovery transforms a system state that contains one or more errors and
(possibly) faults into a state without detected errors and faults that can be activated
again " [118]. Recovery techniques can be further classified into two main categories:
i) recovery with error handling; which eliminates errors from the system state; and ii)
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recovery with fault-handling; which prevents faults from being activated again. The
choice of error detection and recovery techniques are being adopted based upon the
underlying fault assumption. In the context of SDN, these fault-tolerance techniques
must be explored in order to enhance fault-tolerance in future SDN environments.

Table 2.5: Details of Fault-tolerance Techniques

Error Detection Recovery (Error
Handling)

Recovery (Fault
Handling)

Concurrent Detection:
Occur during normal
service delivery

Rollback: Restores sys-
tem state to a saved
last good known con-
figurations before error
occurrence

Diagnosis: Identify
both error localization
and its types

Preemptive Detection:
Occur while normal de-
livery service is sus-
pended; to check la-
tent errors and dor-
mant faults

Rollforward: Initiate a
new system state with-
out detected errors

Isolation: prevent the
participation of faulty
components that can
leads to service failure

- Compensation: Re-
cover system erroneous
state by enabling error
to be masked through
redundancy

Reconfiguration: Reas-
signs tasks among non-
failed components

- - Reinitialization:
Check and update
system based on new
configurations

The taxonomy of fault-tolerance techniques can be seen in Fig. 2.8, Table 2.5 [111]
summarizes the details of such fault-tolerance techniques.
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2.3.2 Fault-Tolerance in SDN

In this section, we provide an overview of SDN architecture and discuss SDN fault-
tolerance based on the SDN architecture as divided into three main layers: data plane,
control plane, and application plane.

2.3.2.1 SDN Architecture Overview

SDN is a hot research topic, but there is increasing confusion regarding SDN concepts;
architecture, multiple SDN networking planes, and interaction between layers through
interfaces. Briefly, we discuss the SDN architecture and discuss the abstracted view
of SDN planes. The SDN architecture is shown in Fig. 2.9, which comprises several
abstraction layers (abstraction of well-defined planes), interfaces (Standardized APIs
between planes) and well-defined planes (collection of functions and resources with the
same functionality) [119].

The three distinct SDN planes are as follows:
1. Data Plane: The data plane (also known as the forwarding plane) is responsible

for handling data packets sent by the end-user through network devices that
are responsible for traffic forwarding (based on instructions received from the
control plane).
The Forwarding Information Base (FIB), also known as forwarding table and
Medium Access Control (MAC) table for routers and switches. FIB is used in
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Figure 2.9: SDN High-Level Architecture: SDN Planes and Communication Interfaces

the data plane to perform IP forwarding of unlabeled packets [120].
2. Control Plane: The control plane is responsible for deciding on how packets

must be handled and forwarded at network devices to properly cross the network.
The primary purpose of the control plane is to synchronize and update forwarding
tables, while packet handling policies reside in the forwarding plane.

3. Application Plane: The plane where applications and services that define
network behavior reside. Applications that directly (or primarily) support the
operation of the forwarding plane (such as routing processes within the control
plane) are not considered part of the application plane.

2.3.2.2 Controller

Networks in SDN are managed by an external controller to process the flow of packets.
In SDN architectures, the controller is a logically centralized entity. It is responsible
for translating the SDN applications requirement, via a Northbound API, down to the
SDN data layer. Furthermore, it is also responsible for providing SDN applications an
abstracted view of the network (including statistics and events).

The controller enables the programming of the network to be centrally managed.
Hence, the entire network and its devices can be managed efficiently regardless of the
complexity of the underlying infrastructure. Moreover, SDN offers the flexibility through
programming to separate the data and control planes with the logically centralized
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controller and by this, it is possible to modify the packet forwarding as per the network
needs [103].

It is important to understand that different multi-controller architectures can exist
with SDN. Bilal et al. [121] describe different types of SDN architecture and existing
implementations. They further classify multi-controller SDN architecture in two broad
categories (logically centralized and logically distributed architecture) and discuss in
detail with an example of implementation of such designs.

SDN controller fault-tolerance issues exist and are addressed in current research,
but are still far from providing the optimal solutions. Later in Section 2.3.4, we discuss
the SDN controller (centralized and distributed architecture) fault-tolerance research
efforts.

2.3.2.3 Southbound and Northbound APIs

All the SDN networking planes are connected through specific interfaces, that stan-
dardize and simplify intercommunication between them. Intercommunication between
SDN networking planes can be achieved in two different ways depending on the SDN
architecture design, and the location of network entities. On one hand, if they are
placed in a different location, a network protocol is used to provide communication
interaction between them. On the other hand, if the network entities reside inside
the same physical or virtual location, a communication interaction between network
entities is possible with APIs. This enables the flexibility to design and implement
intercommunication between network entities either through network protocols and/or
APIs.

The SDN architecture has two primary interfaces (which use either APIs and/or
protocols), as depicted in Fig. 2.9 [122], to enable intercommunication between two
different SDN Planes: the Southbound and Northbound. In SDN terminology they are
often referred to as Southbound APIs and Northbound APIs.

The Southbound API is a communication interface between the data and control
plane. Currently, OpenFlow is a default standard for this communication. The
OpenFlow standard has been proposed to manage the communication flow between
the controller and network entities [123]. Furthermore, in SDN, OpenFlow is not the
only available protocol for Southbound interface [124]. Other protocols and/or APIs
for Southbound interface are: Forwarding and Control Element Separation (ForCES)
[125], Network Configuration Protocol (NETCONF) [126], and Extensible Messaging
and Presence Protocol (XMPP) [127], but they are more rarely used.

The Northbound API is a communication interface between the control plane and the
application plane. Currently, there is no standardized northbound API. Because of this,
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the development of network applications for SDN has not been as swift as desirable [128].
Nevertheless, most implementations use REepresentational State Transfer (REST)-based
API because it is platform and language independent [14].

2.3.2.4 OpenFlow Fault-Tolerance Support in SDN

This section discusses OpenFlow fault-tolerance from the point of view of the requirement
for CGNs. CGNs usually provide faster recovery against service failure (i.e recover
within 50ms) [129]. If service is not able to recover within this time, then service
providers may be jeopardizing their business.

OpenFlow was developed to support communication with non-proprietary FIBs. The
OpenFlow protocol provides an abstraction of FIB through the OpenFlow group table
concept. Moreover, the OpenFlow protocol communicates with the controller, which can
trigger modifications in packets forwarding rules. This makes the FIB programmable
through OpenFlow.

In SDN networks, operations rely on the proper functioning of the controller. The
control plane in SDN manages the control logic of switches. The control logic is
critical in SDN-based networks. This problem is minimized in the latest version of the
OpenFlow protocol by a master-slave configuration at the control layer, to increase
resiliency. However, we argue that a tight synchronization must be required between
a master and slave configuration to maintain an identical state of this configuration
or the same copy of the master controller and this causes extra overhead in networks
and sophisticated network management demands. It is quite challenging, to reach
the recovery time equivalent to the standards set by the CGNs, therefore, in order
to enhance OpenFlow fault-tolerance support, mechanisms that not only maintain
controller persistent state but also provide efficient recovery in case of controller fail-over
must be developed. Another research challenge is the optimization of recovery time as
per the carrier-grade requirement as well as scalability. Indeed, CGNs are a network of
networks and scalability is a critical aspect. This excludes any solution not scalable, as
such a solution is not of interest for such carriers.

2.3.2.5 SDN Data Plane Fault-Tolerance Support

SDN data plane fault-tolerance is related to the issues already present in traditional
architectures (e.g. multiprotocol label switching technology). Due to the static nature
of traditional networks, these approaches can achieve good performance upon link and
node failures. However, failure detection and recovery approaches in dynamic networks
such as SDN must be re-designed to adapt to the dynamics of the rapidly changing
networks. Traditionally, reactive and proactive approaches were used to provide Fault-
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tolerance [130]. In the reactive approach, an alternative path is calculated after the
fault becomes active. In proactive techniques, the resources and backup paths are
pre-programmed before the occurrence of a fault (when a fault is dormant). If the fault
becomes active, the pre-programmed logic starts to defend immediately and recover
the system from faults. In this section, we address such failure detection and recovery
approaches.

2.3.2.6 Failure Detection Approaches

The high availability of the data plane plays an important role to maintain the required
communication from source to destination. To achieve high resiliency in the data plane,
two steps are required: first, design and analyze the topology in the presence of known
and unknown failures; and second, to design an alternative path according to the type of
failures that occur in the network. In CGNs, two well-known mechanisms exist to detect
failures in the data plane, namely Loss of Signal (LOS) and Bidirectional Forwarding
Detection (BFD) [131]. LOS detect failures in a specific port of the forwarding device,
while BFD can detect path failure between any two forwarding devices. Both methods
provide failure detection at an accelerated rate, independent of the media type and
routing protocols (such as Open Shortest Path First (OSPF) and Enhanced Interior
Gateway Routing Protocol (EIGRP) ).

2.3.2.7 Failure Recovery Approaches

In CGNs the recovery mechanism must guarantee the recovery process within 50 ms [132].
For this purpose, restoration and protection are widely used to recover from network
service failures — methods based on reactive and proactive approaches. Protection is
classified as a reactive technology while restoration is classified as pro-active technology.
In restoration, an alternative path is only established after the occurrence of failure
and resources are not reserved before the occurrence of the failure, and the paths
are pre-assigned or allocated dynamically. However, in the case of protection, the
alternative paths are already reserved and assigned before the occurrence of a failure.
This needed no added processing (signaling) to recover from failure. In restoration,
additional signaling is needed to recover from failure; in large networks, this is not often
possible within the set requirement of CGNs, and thus it is not scalable. However, in
protection, as a matter of fact, the additional signaling is not required, and recovery
process is fast when compared to restoration, with the recovery process possible within
50 ms and suitable for CGNs.
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2.3.2.8 SDN Control Plane Fault-Tolerance Support

Control plane resilience is a requirement for proper operation in networks: the controller
is vital, which means that the controller must be able to process all required traffic
commands in all situations. There are several approaches to enhance SDN control plane
fault-tolerance. The first approach is to replicate a controller on a different control
network. In the case of failure, the replicated controller takes over and manages traffic.
In another approach, the controller must be embedded with mechanisms (build-in
module) to self-heal from targeted attacks such as DoS, flooding and fake traffic routing
and other network-related targeted attacks. However, the control plane time to recover
from such attacks is critical, and ideally, recovery mechanisms must be developed to
mitigate failures within the set network requirements. In addition to these, the recovery
process must be efficient and must be able to self-heal during a failure event with
minimum overhead. In-band and out-of-band signaling solutions have been adopted
to offer SDN control plane reliability [133]. In practice, most SDN deployments use
out-of-band control, where control packets are managed by a dedicated management
network [134].

2.3.2.9 SDN Application Plane Fault-Tolerance Support

On an SDN network, the Application plane is the layer that has applications and
services that make requests for network functions provided by the control plane and
the data plane. On traditional networks, security, management, and monitoring devices
or applications reside in this layer.

The application layer allows business applications to modify and influence the
way the network behaves in order to provide services to customers. This requires
the definition of an API, to allow third-party developers to build and sell network
applications to the network operator. The development of such an API has not yet been
properly addressed by the Open Network Foundation (ONF) but is required in order to
guarantee interoperability between a business application and network controllers from
different suppliers.

Existing SDN programming languages offer several features such as flow installation,
policy definition, programming paradigm and abstraction for developing and enabling
network and application fault-tolerance in SDN [135], [136], [137], [138].

2.3.3 SDN Architecture Fault-Tolerance Issues

In this section, first, we highlighted SDN fault-tolerance issues and then provide state-
of-the-art research efforts focusing on such fault-tolerance issues in SDN. Furthermore,
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we structure them based on the three main layers of SDN architecture. These are later
summarized in Table 2.6, Table 2.7, and Table 2.8.

2.3.3.1 Data Plane Issues

There are two main data plane layer issues namely: network failure detection and
recovery. These issues arise either due to link or node failure. As discussed, in
traditional networks, to detect network failure, a particular protocol, such as LOS and
BFD, is used [139]. Also, to recover from network failure, restoration and protection
approaches are widely used. However, resolving these issues in the SDN environment
is challenging due to the centralized nature of the controller. For instance, in the
SDN-based environment, the controller can take a longer time to detect and recover
from link or node failure due to the rapidly changing abstracted view of the network
(dynamic topology). Therefore, there is a need to develop mechanisms for SDN that
can provide faster recovery [139].

2.3.3.2 Control Plane Issues

There are multiple SDN control plane issues. The four main issues that are critical to
SDN control plane fault-tolerance can be classified as:

1. Controller Channel Reliability: In SDN controllers, communications with
underlying devices are critical. Therefore, their availability is a must condition
to protect the proper operations of a network. The controller channel must be
fault-tolerant (reliable) in case of failure due to loss of switches connection, or
error due to the communications protocols between the controller and underlying
devices. These issues can disrupt the network and lead to several failures in the
SDN network. In order to cope with these issues, controller redundancy [140],
[141] and path backup are considered essential.

2. Controller Placement and Assignment: Controller placement (how to
choose the location of controllers) and assignment ( how to assign the controllers
to the switches) are two significant issues [142], generally known as the controller
placement problem [143].
The controller’s assignment issue (balance of controllers) in SDN is important,
not only from the point of view of fault-tolerant controller design but also from
the point of view of network optimization. Improper controller assignment can
lead to two main problems: i) under-provisioning: When a small number of
controllers are placed to handle more traffic than its capacity of processing. In
this case, the controller is overloaded and possibly increases downtime and affects
network performance, and ii) Over-provisioning: When more than the required
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controllers are placed to handle a comparably low traffic environment. In this
case, costly controllers are underutilized.
To deal with the controller placement issue, one of the strategies is to develop
algorithms that can provide optimal controller placement in dynamic SDN-based
networks, which is also challenging in itself [144].

3. Inter-controller Consistency: In order to avoid a single point of failure in
SDN networks, multi-controllers architecture approaches are pursued, either in
physically centralized and logically distributed, or fully distributed fashion with
the coordination of different SDN controllers [145]. It is important to note that
these practices increase resiliency, but there is a strict requirement for controllers
consistency [146]. The level of consistency depends on stateful or stateless backup
settings. The controller must maintain a persistence state to guarantee controller
consistency.

4. Multi-Controller Architecture Fail-over: In SDN, multi-controller archi-
tectures can follow the flat/horizontal or hierarchical/vertical designs. On the
one hand, in a flat architecture, the control plane has just one layer, and each
controller has the same responsibilities [121]. The advantage of such architecture
design is that it provides more resilience against failure, but the task of managing
controllers is difficult. On the other hand, in a hierarchical architecture, the
control plane has multiple layers, and each controller has different responsibilities
(due to multiple level partitioning). The advantage of such design is that it
provides a more straightforward way to manage controllers. Both of these multi-
controller architecture approaches can be used to improve switch to controller
latency or vice versa. In both designs, it is important to consider that controllers
must respond to any fail-over [147] request efficiently and without affecting the
performance.

2.3.3.3 Application Plane Issues

SDN enables programmability to control network devices more efficiently but this is
highly dependent on the quality of software development. In order to develop reliable
SDN applications, debugging (the process followed to fix bugs) and testing (verification)
tools can not only advance software quality but also help in fixing software bugs as
service evolves (continuous development process) [148]. To ensure the quality of software
network troubleshooting, debugging and testing are considered essential [136].

Network visualization, network provisioning, and application monitoring can be
conceptualized as an SDN application layer. For this reason, fault-tolerance of both
network and applications can be supported at the application plane. Moreover, in order
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to develop fault-tolerant network applications, all the phases from application design
to final application deployments must undergo proper testing. Currently, there are
certain languages proposed [135] that enable the construction of fault-tolerant programs
to write SDN-based fault-tolerant systems. Since fault-tolerance of both network and
applications can be supported at the application plane, the two main SDN application
layer issues are as follows:

1. Software Testing: The network behavior in a SDN-based network is controlled
by a set of software programs. For proper network troubleshooting support, the
SDN applications must be resilient [149]. Resilient design help to identify the
root cause of the bug and the administrator can then track and isolate faults so
that the system can be restored to the correct operating state.

2. Policies Configuration: In SDN, network management becomes more depen-
dent on software development due to programmability. There is a risk that
policies across the network can be violated due to untested errors (bugs) in the
application, which can be propagated to affect SDN controllers, protocols and
routing policies and eventually can lead to network service failure. Therefore,
constant application monitoring is essential to avoid any violation of network
policies [150].

2.3.4 SDN Fault-Tolerance Research Efforts

SDN offers greater flexibility and network automation when compared with traditional
distributed systems, at the risk of the controller being a single point of failure.

Most of the research carried out has been focused on exploring these technologies
rather than evaluating the associated reliability aspects. In recent years, a shift is being
made towards the evaluation of SDN fault-tolerance. We reviewed the research studies
carried out that address SDN data, control, and application planes fault-tolerance.
The details are summarized in Table 2.6, Table 2.7, and Table 2.8. Furthermore,
classification of SDN state-of-the-art research efforts according to SDN planes and
controller architecture is depicted in Fig. 2.10.
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Figure 2.10: SDN state-of-the-art Research Efforts: Simplified Taxonomy

2.3.4.1 Data and Control Planes

In this section, we discuss main research efforts that have addressed data and control
plane fault-tolerance in the context of SDN.

Current fault-tolerance techniques are not yet proven to meet carrier-grade fault-
tolerance requirement (50 ms recovery time) [129]. A research study carried out by
Sharma et al. [132] provided experimental evidence that protection provides faster
recovery as compared to restoration and is thus more suitable to guarantee resilience in
large scalable networks [151], [152].

Adrichem et al. [139] argued that time was a critical metric in the recovery process
during network failures. It is still difficult to develop mechanisms that guarantee efficient
recovery. In their research study, they demonstrated that current failure recovery
approaches (restoration and protection) suffered from long delays. They introduced a
failover scheme based on a per-link BFD approach and showed that implementation
reduced recovery time. They performed experiments to evaluate different network
topologies and showed that recovery time was consistent irrespective of network size.

Mohan et al. [153] carried out a research study to provide fault-tolerance in the
specific case of Ternary Content Addressable Memory (TCAM) limited SDN. They
argue that proactive fault-tolerance policies provide faster failure recovery based on
restoring the re-routing paths. This requires large forwarding rules to be installed on
the TCAM, but TCAM has limited memory. Based on these challenges, they have
developed an optimized programming formulation that determines the set of backup
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Table 2.6: Selected Works on SDN Data and Control Plane Fault-tolerance Efforts

Fault-Tolerance Ef-
forts by

SDN
Plane(s)

Main Purpose

Sharma et al. [129] Data plane

Check device port failures and con-
sistently monitors failure detection
between two forwarding links to sup-
port standardized failure detection
methods such as BFD and LOS.

Adrichem et al. [139] Data plane
Improve the speed of failure detection
in Open vSwitch based implementa-
tion.

Sharma et al. [151],
Sharma et al. [152]

Control
plane

Meet failure recovery requirements
for CGNs.

Mohan et al. [153] Control
plane

Improve TCAM and bandwidth effi-
ciency for single link failure in SDN
system by reducing number of flow
rules.

Li et al. [154] Control
plane

Compute different backup according
to source and destination pairs.

Kuźniar et al. [155] Control
plane

Recover system failures in OpenFlow
based controller implementations.

Kim et al. [156] Control
plane

Develop a fault-tolerant system, able
to recover from multiple link failures
in the data plane.

Schiff et al. [157] Control
plane

Presented a model to design self-
stabilizing distributed SDN control
planes.

Chen et al. [158] Data and
Control
plane

Enable faster recovery with low mem-
ory using VLAN tagging concept.

Jain et al. [159] Data and
Control
plane

Evaluate outage and failure in a pri-
vate SDN WAN.

paths to protect a flow and minimize the number of forwarding rules for the backup
paths to be installed in the switch TCAM. This means that fewer rules would be required
for backup paths. They proposed two algorithms, Backward Local Rerouting (BLR)
and Forward Local Rerouting (FLR) [153], to improve TCAM and bandwidth usage
efficiency for single link failure in SDN system.

Li et al. [154] carried research studies to enhance failure recovery in SDN with
customized control. They have developed a Declarative Failure Recovery System (DFRS)
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based on three algorithms: backup path construction, add and subtract. The Backup
paths construction algorithm creates safe backup paths based on the recovery demands.
Further, it adds and subtracts the outcome of algorithms to find a minimum number of
the paths to be allocated to guarantee network services during failure with minimum
memory overhead [154]. Three different topologies were evaluated to test the effectiveness
and scalability of DFRS. They achieved similar performance to the traditional failure
protection algorithm, but with 5% less or 5% of backup rules. In the event of failure,
many switches are allocated hundreds of forwarding rules for backup; this burdens the
switch, affects the performance and delays failure recovery. The authors argue that the
DFRS system only allocates dozens of forwarding rules to switches, as compared to the
usual hundreds of forwarding rules. Thus, this leads to effective memory utilization
and improved stability.

Kuźniar et al. [155] proposed Automatic Failure Recovery (AFRO) for SDN, an
automated runtime system that recovers system failure in OpenFlow system. They
argue that they extend the basic functionality of the controller program with additional
controller agnostic modules that provide efficient recovery.

Kim et al. [156] proposed CORONET (the SDN fault-tolerant system), and they
argue that their proposed system provides recovery against multipath failure in a data
plane. However, since the initial published work in 2012, no significant contribution was
made, although many evolutions were represented on SDN architectures and protocols.

Schiff et al. [157] presented a model to design self-stabilizing distributed control
planes for SDN and argue that their proposed technique provides a mechanism to deal
with key challenges of a distributed system, such as bootstrapping and in-band control.
Further, they implemented a plug and play SDN distributed control plane to support
automatic topology discovery and management in dynamic networks. However, it is
important to note that the self-stabilizing distributed plane is still at a very early stage,
and a lot more effort is needed to step forward to a proof of concept stage. The authors
also claim that a feasibility study is needed to further validate their proposed model
of the self-stabilizing SDN control plane. Formal proofs are required for this plug and
play distributed model to be shown effective in meeting fault-tolerance requirements
for SDN and future networks.

Chen et al. [158] proposed a method of protection-based recovery in SDN using
VLAN tags. They argue that their proposed method provides faster recovery with
low memory usage and without the participation of the controller to switch to backup
paths. In their system, protection takes 20 ms while recovery on average takes 50 ms
to restore from failures. Similarly, Thorat et. al. [160] proposed a proactive policy to
achieve fast failure recovery using VLAN tags and claims that 99 % reduction in flow
storage is achieved as well as fast failure recovery as set in CGNs.

46



Jain et al. [159] carried out a study to address network outages and failures. They
evaluated three years of production experience with B4, their own SDN enabled WAN)
that connects Google’s data center. They implemented fault-tolerance policies such
as customized forwarding and dynamic relocation of bandwidth and alternative link
recovery using OpenFlow. Generally, control plane protection is achieved through
resource replication and replicas were placed on different physical servers. They have
analyzed in their study that SDN enabled WAN served more traffic than public WAN
and offered cost-effective bandwidth and nearly 100 % link utilization, enabling high
availability of resources. However, they admit that bottlenecks in the bridging protocol
from the control plane to the data plane exist and need to be optimized to improve
performance further. Improving this will offer superior fault-tolerance in future SDN
based networks.

2.3.4.2 Controller Architecture

In this section, we discuss key research efforts that have addressed controller architecture
fault-tolerance in the context of SDN.

Katta et al. [161] studied the fault-tolerance of the controller under crash failures.
They argued that to offer a logically centralized controller, it is necessary to maintain
a consistent controller state and ensure switch states consistently during controller
failure. Therefore, they have proposed Ravana, an SDN based fault-tolerant protocol
that provides an abstraction of the logically centralized controller. Ravana handles the
entire event processing cycle and ensures total event ordering across the entire system.
This enables Ravana to correctly handle switch states and replicas without the need
of restoring to rollbacks. Moreover, it mitigates control messages during controller
failures this helps in extending the control channel interface. Ravana provides a reliable
distributed control for SDN. However, it does not provide support for richer fault models
such as Byzantine failures, and it is limited to multithreaded control applications, and
the scalability is also one of the tests that are not evaluated in Ravana protocol.

Botelho et al. [162], [163] carried out research studies and implemented a prototype
that integrates a Floodlight-based distributed controller architecture to BFT-SMaRT
(Byzantine Fault-tolerant (BFT) and State Machine Replication (SMR)), a replicated
state machine library . This enables the consistency between an SDN-controller and their
redundant backups stored in a shared database. In their work, three SDN applications
(learning switch, load balancer, and device manager), with slight modifications, were
tested to analyze the workloads these applications were generating and measure the
performance. The result of their study shows that the data store is capable of handling
large workloads, but to maintain a strong consistency of data there was an increase in
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latency and this impacted performance. Thus, the solution seems not to be scalable,
they argue that an acceptable level of fault-tolerance was easy to achieve. Moreover,
the authors also proposed a practical fault-tolerant SDN controller design for small and
medium networks. A shared database is replicated that save all network state. This
database is created using a replicated state machine, and in their previous research
studies, they argue that the database meets the performance requirements for small
and medium networks. They incorporate a cache in the controller that avoids failure
smoothly without any additional coordination service.

Table 2.7: Selected Works on SDN Controller Fault-tolerance Efforts

Fault-Tolerance Efforts
by

Controller
Architec-
ture

Main Purpose

Katta et al. [161] Centralized Develop reliable distributed
Control plane for SDN con-
troller.

Botelho et al. [162],[163] Centralized Develop fault-tolerant con-
troller for small and medium
size networks.

Fonseca et al. [164] Centralized Enable Control plane resilience
and scalability.

Aly et al. [165] Centralized Petri-net based mathematical
framework to enhance SDN
fault-tolerance.

Tootoonchian et al. [166] Distributed Enable Control plane resilience
and scalability.

Gonzalez et al. [167] Distributed Evaluate trade-off between con-
sistency and performance in a
fault-tolerant SDN platform.

ElDefrawy and Kaczmarek
[168]

Distributed Develop SDN controller that
can tolerates Byzantine faults.

A master and slave controller configuration is implemented by Fonseca et al. [164]
in which the solution to offer control plan resilience is provided by integrating a
Control Plan Recovery (CPR) module into a standard OpenFlow controller build upon
NOX OpenFlow controller. CPR is a two-phase process, consisting of replication
and recovery, and offers resilience against several types of failure in an SDN enabled
centrally controlled networks. Similarly, the research studies carried out by Tootonchain
et al. [166] introduce HyperFlow to provide control plane resilience. HyperFlow is
a distributed event-based control plane, which is physically distributed but logically
centralized. This enables scalability, as well as ensures the benefits of centralized
network control. They argue that HyperFlow [169] offers a scalable solution for control
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plane resilience in SDN enabled networks.
Aly et al. [165] used SDN-centralized architecture in which a master controller

is connected to a set of slave-controllers. Based on this setup, they proposed a new
Petri-net based mathematical framework for SDN fault-tolerance and named the model
FTPNSDN. They claim that, in order to avoid service disruption, Petri-net capability
functions were used to identify the next backup controller in the event of controller failure.
They also showed that the transition time needed to take over another controller was
reduced by 10%. They evaluated the performance of their proposed model, comparing
it with the HyperFlow reference model, and claim that they were able to reduce the
12% packet delay.

Clearly, a single controller point of failure limits scalability and we argue that the
several recent research studies carried out do not yet provide a mechanism to achieve
high-level performance or fault-tolerance at scale in SDN-based networks.

To deal with the challenge of SDN-controller consistency and performance, Gonzalez
et al. [167] proposed a method to improve consistency and performance by using
some of the approaches from the recent study carried out by Katta et al [161]. They
design a mechanism to provide better consistency and performance in master-slave SDN
configuration. They consider the performance metric for the SDN controller based on
controller latency and throughput. Their proposed solution provides consistency and
performance close to the offered by a single SDN controller. However, they emphasize
that a very reliable communication channel is a must between the master controller
and the data store.

ElDefrawy and Kaczmarek [168] proposed a fault-tolerance SDN controller design
that tolerates Byzantine faults. However, their controller design has not yet achieved
high-level performance for large-scale deployments. Further, they argued that their
controller design is feasible for constructing resilient networks. In this research study,
they have designed and prototyped a Byzantine-fault-tolerant distributed SDN controller
to tolerate malicious faults both in control and in data plane as described in Kreutz et
al. [104]. Further, they integrated the two existing SDN byzantine vulnerable controller
with the BFT-SMaRt, a tool for creating byzantine fault-tolerant system [170].

2.3.4.3 Application Plane

In this section, we discuss key research efforts that have addressed application plane
fault-tolerance in the context of SDN.

SDN offers the flexibility of network programmability but this raises issues of
software-based troubleshooting and debugging which need to be addressed, as discussed.

Heller et al. [171] proposed a structured troubleshooting approach by exploiting
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Table 2.8: Selected Works on SDN Application Plane Fault-tolerance Efforts

Fault-Tolerance Efforts
by

SDN
Plane(s)

Main Purpose

Heller et al. [171] Application
plane

Develop a tool to identify bugs
based on the root cause of actual
bugs.

Scott et al. [172] Application
plane

Develop troubleshooting system
and framework for SDN.

Canini et. al. [173] Application
plane

Develop a testing tool for Open-
Flow based SDN to detects any
violation of network correctness
policies.

Reitblatt et al. [174] Application
plane

Develop high level language to
write fault-tolerant programs to
implement network policies.

Chandrasekaran and Ben-
son[175], Chandrasekaranet
et al. [176]

Application
plane

Make SDN controller and network
resilient to SDN application fail-
ures.

the SDN layered architecture. They aim to develop a tool that would identify bugs by
systematically tracking the root cause of detected failures. This would save time in
diagnosing and enable the network administrator to directly fix the problems. However,
they have not proposed any system or framework. In a similar way, Scott et al. [172] also
studied SDN troubleshooting and proposed the SDN Troubleshooting System (STS).
This system aims to optimize the debugging time by filtering events not correlated to
the source of failure. They have demonstrated the feasibility of their proposed system
and have tested five SDN control Open source platforms: ONOS (Java) [177], POX
(Python) [178], NOX (C++) [179], Pyretic (Python) [180], and Floodlight (Java) [181].
They were able to identify seven new bugs in real-time, and debugged them using their
proposed STS system, and showed that STS enhances the time-consuming process for
debugging in SDN. Likewise, Canini et al. [173] built NICE, a troubleshooting tool for
SDN. The state-space of the entire SDN system is explored through model checking.
This approach provides a systematic way to test unmodified controller programs . This
tool automates the testing of OpenFlow application based on model checking and
concocts execution efficiently.

Reitblatt et al. [174] proposed FatTire, a high-level declarative language for writing
fault-tolerant network programs in SDN. This high-level language aims to provide policy-
based network management where SDN programmers can construct specific policies
(for instance, data security and customized forwarding). Earlier work of Lui et al.
[182] emphasizes that connectivity must be realized as a data plane service. This work
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fits together with FatTire for implementing policy abstractions. Similarly, a study by
Suchara et al. [183] based on integrating fault-tolerance and traffic engineering possibly
be used with FatTire. Likewise, the Flow-based Management Language (FML) [184]
specify policies using a declarative language to enforce policies within the enterprise.
For instance, Access Control Lists (ACLs), VLANs and policy-based routing. This
differs from FatTire as it does not provide a fault-tolerance policy. Similarly, Kazemian
et al. [150] introduce NetPlumber, a real-time tool for policy checking based on Header
Space Analysis (HSA). The authors argue that they have applied this tool to Google’s
SDN and Stanford backbone and analyzed that 50-500 µs on average were required for
a rule update against a single policy.

Chandrasekaran et al. [175], [176] claim that they have developed a fault-tolerant
SDN controller framework called LegoSDN. The authors aim to achieve recovery of SDN
application against both deterministic and non-deterministic service failures. Extending
this work further, the authors develop a prototype that isolates SDN applications from
one and another, as well as from the controller, by running each application securely in
a sandbox. Thus, all failures are restricted to their virtual isolated space.

2.3.5 In Summary

We provided a simple background on fault-tolerance and related concepts to develop
a complete understanding of the topic. Our goal was to identify SDN fault-tolerance
requirements specific to the SDN architecture and discuss approaches that can be used
to improve fault-tolerance in SDN.

Current SDN research efforts were structured according to the three main layers of
SDN architecture and categorized according to data, control, and application planes.

While exploring the topic of fault-tolerance in SDN, we have identified that each
layer has its faults and fault-tolerance issues. This means that in order to achieve fault-
tolerance different aspects and features are needed to be targeted, and no single-focused
technology will be able to provide the reliability expected in commercial networks.

Recent research studies show that SDN can play a pivotal role in shaping and
managing future dynamic networking environments, such as cloud-native networks, 5G
mobile networks [185], wireless networks [186] and optical networks [187]. However,
SDN fault-tolerance is still in its infancy, and there is a broad spectrum of opportunities
for the research community to develop new fault-tolerance mechanisms, standards,
monitoring, debugging and testing tools to enforce fault-tolerance in such dynamic
networking environments, able to ensure carrier-grade reliability. Furthermore, in
Section 6.3.2, we concluded by enumerating future research directions for SDN fault-
tolerance development.
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2.4 Service Assurance for Hybrid networks

The Service Assurance problem addresses the policies that CSPs impose to guarantee the
contractual QoS to the end-users while ensuring optimal use of resources [188]. Hence,
Service Assurance can be defined as the techniques required to maintain the service
(services offered require compliance with a pre-defined service quality level) and solve
customer and/or network triggered problems that can lead to service degrading (for
instance, failing processes and policies set by the CSP). Better Service Assurance designs
reduce service downtime. Here, network management, automation, and orchestration
play an important role in ensuring that service providers design Service Assurance models
able to meet business needs [189]. However, when considering the usual requirements
set for future networks (5G and beyond) [190], several aspects of automating network
management and Service Assurance for Hybrid Networks are often overlooked.

Societies, industries, and businesses are highly dependent on reliable network con-
nections, provided by CSPs, to support all their information exchange [191]. Due to this
societal impact, one of the service provider’s top priorities is to offer adequate Service
Assurances. This is quite more challenging in software-driven virtualized networks
than in traditional static networks due to the rapidly changing dynamic nature of such
software networks, including the relocation of the point of provision of some or all
service components.

A typical Hybrid Networking scenario is depicted in Fig. 2.11. Hybrid Networks are
combinations of two technologies PNFs and VNFs) to provide communication services
to multiple locations, and their end-users, under a single seamless network infrastructure
[192]. In other words, the network where services could be dynamically created on
top of legacy physical devices or relying on recent software-based technologies such as
SDN, NFV, and Multi-access Edge Computing (MEC). This type of implementation
can offer flexibility and ease of service provisioning. However, there is a need to design
and develop Service Assurance processes that can guarantee simultaneous integrated
provisioning for these virtual and physical networks.
Software-driven technologies provide a centralized management model to control devices
even in multi-vendor networking environments. New SLA requirements will need to be
decided/applied in real-time to support mission-critical communications (ultra-reliable
and low-latency applications [193] ) to deal with the dynamics of network services in
5G and beyond networks [194]. Network management, automation, and orchestration
are key concepts for any Service Assurance solution.

5G networks are based on the concept of service-oriented architectures [195], [196]
that is capable of supporting multiple services that could have specific performance
requirements. For instance, the three main use cases of 5G are Enhanced Mobile Broad-
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band (eMBB), Massive Machine-type Communication (mMTC), and Ultra-reliable and
Low-latency Communication (URLLC) [197], [198] have different performance require-
ments in terms of metrics as scalability, throughput, and latency. Supporting multiple
services with distinct performance objectives under a single monolithic architecture
would be costly. 5G network addresses this problem with the E2E slicing concept [199]
to ensure that each network slice can not only support the contracted (subscription and
service level agreements) network services as well as it meets the specific performance
objectives by dynamically allocating shared infrastructure resources.

In 5G, network slicing is considered one of the key enablers to support multiple ver-
ticals [200], [201] simultaneously, by delivering dedicated and isolated slice services over
a shared information communication technology infrastructure. These verticals have ex-
plicit SLA requirements that must be guaranteed by mechanisms like Service Assurance
[202]. Furthermore, Service Assurance must take into account inter-dependence across
various business relationships. The impact of this on Service Assurance is discussed
in Section 2.4.1. Next, we discuss Hybrid Network applicability scenarios. Hybrid
Networks challenges and opportunities are then discussed and conclusions are drawn in
the final section.
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2.4.1 Applicability

5G is the critical next-generation networks technology, supports a multitude of vertical
stockholders. Network slicing [49], [203] is being considered to support these new markets
and business models. In 5G networks [204], [48], a network slice is an independently
managed and isolated environment of network functions and infrastructure resources.
5G network slicing has been introduced to support multi-tenancy, multi-vendor, and
multi-domain Hybrid Networks. As shown in Fig. 2.12, network services can then
be sliced and deployed within the same underlying infrastructure [49], [48]. Note
that proper performance metrics for assuring network services are critical; different
performance metrics need to be defined to support specific scenarios.
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Figure 2.12: Multi-tenancy, Multi-vendor and Multi-domain Networking Scenarios (Network
Slicing) [48]

This concept of slicing in 5G brings different KPIs requirements per slice, depending
on the services to be supported. Service Assurance must be designed to manage these
different KPIs on each supported service. In multi-domain virtualized networking
environments, new services and products, with their associated SLAs, will evolve
substantially. The challenges are increasing many-fold, with diverse end-user service
metrics needing to be considered simultaneously.

All tasks inside operators must support integration within the OSS stack, and
the same applies for all layers of Hybrid Networks, in order to enable policy-based
management that defines SLAs [205]. This can enable smooth and rapid network
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provisioning and Service Assurance across multi-domain networks.
Besides slicing, with 5G, the Telecom business environment is expected to grow in overall
complexity. Platform ecosystems will emerge, both in specific verticals [206] or based
on more general ecosystem platforms, as depicted in Fig. 2.13. Fig. 2.13 illustrates the
network/service provider’s roles with enabled access to Value-added Connectivity (VAC)
across typical actors to offer network services in a multi-domain environment. There

Figure 2.13: Service Assurance Needed in Multi-actor Environment

will be an increased focus on Business to Business (B2B) service offerings requiring
automation and standardization of common capabilities and APIs within and across
verticals. Service Assurance will evolve to consider many kinds of (interdependent)
business relationships. The CSP role of today (Business to Consumer (B2C) focused)
typically addresses the market of fixed / mobile broadband and the Telco Voice and
Short Message Service (SMS) services for the consumer market. 5G on the other
hand, enables specialized services ranging from mission-critical to consumer critical
services, will expand. The Network Service Provider (NSP) role (B2B focused) will
become more distinct and VAC between any two end-points will need frequently to be
delivered on-demand across multiple domains. NSPs will need to open up to all actors
in a transparent way to allow access to end-to-end VAC across vertical domains. The
Service Assurance analysis and solution proposals must address this complex multi-actor
environment with interdependent business relationships, requiring a completely different
set of trust considerations.

Until recently, Service Assurance has been supported mostly by reactive processes.
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However, data-driven operations powered by artificial intelligence and automation,
enable now a shift from reactive to proactive processes [9].

Reactive processes are triggered by an event due to data abnormalities and then a
pre-defined procedure is activated to resolve the issue, for instance, rerouting of the
network service due to QoS violations. In Proactive processes data abnormalities are
controlled without a triggering event, for instance, pre-empt issues to prevent predicted
SLA violations.

It is important to note that, in order to support Service Assurance of Hybrid Net-
works, CSPs must strategically transform their Service Assurance processing primarily
to Proactive monitoring models. Proactive monitoring models enable "zero-touch"
automation where no human intervention is required. Furthermore, on the identification
of any network related fault/service abnormality, the Proactive process automatically
instantiates to resolve the service-related network issues. However, it is quite challenging
for CSPs to model Service Assurance for Hybrid Networks [207], [208] because it requires
widespread advancement in automation tools, protocols, and standard data models,
across different technical areas [9].

Software-based hybrid systems inherently represent a key value for the delivery of
better Service Assurance systems, providing more flexibility through increased degree
of freedom. For instance, virtualization can enable live migration of service components
to deal with potential SLAs violations, while slicing can provide configurable services
for specific tenants and better fulfillment of elasticity policies that can help to cope
with unexpected load peaks more easily. In this regard, it is important to identify any
SLAs breached or risk of such breaches, so that they can be reported quickly to the
(usually pro-active) fault-management system [209].

Recent 5G Public Private Partnership Projects (5G-PPP) [210], [211] considered the
Service Assurance problem and provided dynamic monitoring solutions and control loops
that are triggered based on the services’ SLAs and propagate events to orchestration
systems, with minimum delay, even in a multi-domain scenario. These recent projects
have touched on Service Assurance aspects. However, existing solutions to address these
Service Assurance problems are still in their infancy and there is a need to develop a
unified Service Assurance model within the scope of Hybrid Networks.

2.4.2 Service Assurance for Hybrid Networks: Requirements and Key
Consideration

In this section, we discuss requirements, and key considerations for Service Assurance
for Hybrid Networks by considering and discussing key enablers and key technologies
that can potentially roll out Service Assurance for Hybrid Networks.
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2.4.2.1 Key Enablers and Key Technologies

Here, we consider and discuss three main phases of rolling out Service Assurance
and developing future proof Service Assurance for Hybrid Networks are as follows: 1)
Virtualization Readiness, 2) Service Automation, and 3) Development and Operation
(DevOps) (a set of practices that combines software development (Dev) and IT operations
(Ops)) integration. The details of these phases are as follows:

1. Virtualization Readiness
The first step is virtualization; in this phase, the main focus is to build a
virtual infrastructure (utilizing modern virtualization approaches) that can
provide services and assure performance equivalent to the performance achieved
with hardware-based infrastructure, without compromising the customer QoS
expectations.

2. Service Automation
In the second phase, the main focus is on service provisioning (product lifecycle,
operations, and service management) processes without human intervention and
without risking reliability.

3. DevOps Integration
In the last phase, these automated solutions must be coupled with DevOps
practices, in order to support a higher level of debugging and software testing to
enable deploying new services and products.

As shown in Fig. 2.14, the Phases 1, 2, and 3 (the key enablers) have multiple
stages and development lifecycles. We discuss briefly these details in this Section 2.4.2.1
(Phase:1-3); we then identify and discuss topics in Section 2.4.2.2 (designated as key
technologies). The identified key enablers, as well as the key technologies, are mandatory
prerequisites to the roll-out of Service Assurance for Hybrid Networks, considering the
trend towards network slicing and softwarization [203] of telecommunication systems.

Phase-1: We identify the virtualization readiness first and foremost as the phase
necessary for creating a Hybrid Networking environment to support federated hardware
infrastructures including storage, server, and networking [212]. Furthermore, as shown
in Fig. 2.14, deployment, and migration policies for VMs, orchestration, operations,
and servicing networks are components of this phase that have their own peculiarities.
As such, all these aspects require detailed knowledge and attention before implementing
a Hybrid Network. Virtualization readiness aims to maximize data-center operations
and it is mandatory because it provides an abstracted view of (some) hardware to
create flexible and dynamic environments without worrying about vendor-specific pieces
of equipment. Generally, the virtualization environment is deployed (hopefully) over
COTS equipment. Besides this, virtualization should be planned properly for the
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long-term, keeping business objectives, solutions, and customer service expectations in
mind. Furthermore, it should also consider the agility to deploy new on-demand services
on the fly with the right skills, management tools, and trusted standard interfaces
across the network.

Phase-2: We consider the service automation phase in Hybrid Networking after
virtualization readiness. Identified key enablers (phase: 1-3) rely on underlying tech-
nologies required to seamlessly integrate the physical and virtual networks as shown in
Fig. 2.14. These key enablers will bring a new set of challenges to the six technologies
discussed in Section 2.4.2.2, that will be important for Hybrid Networks Service As-
surance. CSPs identified the processes that required manual intervention are limiting
them to achieve a higher level of orchestration, Service Assurance, and automation. To
overcome these limitations, CSPs offer of new services, and increase CSP profitability,
service automation is essential for E2E service over Hybrid Networks. Machine learning
and artificial intelligence approaches are considered vital to simplify and improve service
automation.

Currently, due to the high Total Cost of Ownership (TCO) [213] and long times
needed for testing and deploying a service, operators are interested to migrate from
PNFs to VNFs. However, this new environment brings new challenges. For instance,
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Hybrid Network brings new complexity of managing physical and virtual infrastructure
simultaneously and dealing with an increase in operational cost. To handle simplified
operations, unified orchestrators and container-based applications are important to
manage this delicate complexity. Automation can simplify operation and overcome this
delicate complexity as well as brings agility, faster innovation needed to capitalize on
new services. Furthermore, it promises to reduce the time to market for new products
and services.

Phase-3: We recognize the need for the DevOps Integration phase in Hybrid
Networking to provide system integration support to deliver, evolve, and improve,
applications at a faster pace. DevOps [214], [215] is a culture for promoting the soft-
warization of the telecommunication system. The traditional siloed, waterfall-based
Service Assurance model is not suitable to support a Hybrid Networking environment
encompassing NFV [216], SDN [217], MEC technologies [218]. DevOps models are no
longer traditionally siloed and quite often are tightly integrated into the application
development lifecycle. Integrating DevOps methodologies are essential to test and vali-
date E2E services in PNFs and VNFs based deployments. DevOps oriented automation
enables faster innovation to the software development and infrastructure management
processes. The best DevOps practices include continuous integration, continuous deliv-
ery, microservices, infrastructure as code, monitoring and logging, communication, and
collaboration.

DevOps would be used for Service Assurance (design, automation, lifecycle manage-
ment, and business integration) by automating manual tasks and maintaining repeatable
processes with better transparency while maintaining stability and integrity, in order
for operators to offer zero-touch Service Assurance (ensure uninterrupted business
continuity and provide significant reduction of unplanned downtime and associated
cost).

DevOps based Service Assurance is a promising technology towards rolling out
Service Assurance and developing future proof Service Assurance for Hybrid Networking
along with the discussed three key enablers and six technologies as depicted in Fig.
2.14.

2.4.2.2 Key Technologies

1. Network Automation
Network automation is vital because it reduces TCO, and further reduces the
cost for Information technology staff as the network expands [219]. It supports
the processing of standard workflows based on automated tasks, such as interface
shutdown, virtual machine failure, and others. There are protocols (such as
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NETCONF, RESTCONF) and data formats and models (such as Yet Another
Next Generation Language (YANG), Yet Another Markup Language (YAML),
JavaScript Object Notation (JSON), and Extensible Markup Language (XML))
that are being used to process such standard workflows [9]. These protocols
are used to simplify network management and provide automation through
programmability (configuring network devices directly through custom scripting
using programming languages). There are several IT configuration management
tools and automation platforms (such as Puppet, Chef, Ansible, and Salt are
used to deploy, configure, manage, and automate servers [220] ). Currently, these
protocols, configuration management tools, automation platforms, data models,
and formats are evolving (still going through standardization acceptance, testing
and development phases) and potentially can be applied in software-driven
networks to offer more powerful network automation features. Furthermore,
network automation using machine learning and artificial intelligence can make
closed-loop automation possible with Hybrid Networks. A more detailed analysis
of Network automation using machine learning and artificial intelligence is
described in [221].
Considering the need for network automation to support Service Assurance
systems for future networks, two important concepts exist: automatic and
autonomic [222]. An automatic system relies on the execution of a certain
rule, previously configured, and does not require human intervention in known
scenarios. This type of system is robust and efficient to automate, but such a
system is not capable to optimize system performance in non-familiar situations.
As a result, an automatic system requires configuration changes when the network
environment (topology) changes. Thus, they are not truly fully automated Service
Assurance systems. Autonomic systems, on the other hand, offer efficient self-
management using advanced data analysis technologies, such as machine learning
and artificial intelligence, to drive cognitive and behavior-centric approaches
[223]. Based on this data analysis, an autonomic decision is invoked to enable self-
healing in order to restore optimized network services to their best operational
condition. Thus, autonomic systems offer full automation and enhanced Service
Assurance, and are thus a requirement for Hybrid Networks [224].

2. Network Management and Orchestration
Network management is challenging [225], as traditional management follows a
per box approach to configure network devices, with significant human interven-
tion involved. Other challenges that make network management difficult[226]
are: coupled data and control planes, closed propriety interfaces, and vendor-
specific devices. Systems and processes must be standardized to support network
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management for Hybrid Networks. Therefore, network management must be
addressed holistically.
To address the management and orchestration aspects for emerging software-
driven networks, two major frameworks, Open source Management and Orches-
tration (OSM-MANO) and Open Network Automation Platform (ONAP), have
recently attracted significant attention from both academia and industry [227].
OSM-MANO is an ETSI initiative for the development of management and or-
chestration Open source software for software-driven networks, and is associated
with the development of 5G management and orchestration. ONAP is a project
initiated by the Linux Foundation to provide cloud providers and developers a
platform to enable real-time automation and orchestration of both PNFs and
VNFs, from instantiating new services to supporting life-cycle management of
products. OSM-MANO has been adopted by major European network operators
while ONAP has more support in North America and Asia. However, Service
Assurance aspects in both frameworks are not yet mature and keep on evolving.
Automation is one of the features provided by a network orchestrator; it is
essential that the merits of both technologies get integrated to achieve enhanced
Service Assurance support. For instance, it is important to develop a comprehen-
sive platform capable of providing orchestration, management, and automation
of network and edge computing services for network operators, cloud providers,
and enterprises. Real-time, orchestration and automation of physical and virtual
network functions can enable rapid automation of new services and their life-cycle
management that are considered critical for 5G and B5G networks.

3. Advanced Analytics
The traditional existing Service Assurance methods are defined to deal with
static networks and cannot deal with the dynamicity that virtualization brings
forward. In order to operate in a dynamic control environment, it is necessary
to have the data required to process a decision in order to assure the health
of the network continuously. This requires advanced data analysis tools [228]
that can perform data optimization automatically in order to enhance Service
Assurance, an essential requirement for autonomic systems. Two major aspects
are as follows:

• Determining Root Cause Analysis: To be able to automatically detect root
causes of failure, artificial intelligence, and machine learning techniques
and algorithms [229] are used to gather data to be able to localize faults,
instantiate self-healing processes and improve data quality while making
decisions to offer network automation. Furthermore, combining network
operation and management aspects into one unified framework with the
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use of data analytics can provide better data correlation and identification
of root causes in the network. This helps reduce operating costs as well as
network downtime.

• Monitoring: To operate in a dynamic control environment continuously and
monitor the health of the network, it is necessary to have the data needed
to process a decision. This requires advanced data analysis tools that
can collect automatically the data, analyze it, and recommend actions to
orchestration systems. It is essential to continuously monitor data exchange
through a closed-loop feedback system (collecting and analyzing the data
for network optimization and implement changes through automation) to
improve service reliability and resilience [210]. This enables operators to
create and maintain a self-healing network in real-time thus advancing
the automation of network management (automatic versus autonomic
systems) and offering high-class service delivery/experience to end-users
and enhances business services (end-user Quality of Experience (QoE)
impacts assessment [230] ).

4. Performance Management
In multi-domain, multi-technology and multi-vendor scenarios, performance
remains an issue. Performance management functions must detect abnormal be-
havior reactively or proactively, based on collecting and analyzing QoS metrics to
ensure that network performance in multi-domain networks is not compromised.
In order to enhance performance capabilities in traditional networks, metrics
such as packet loss, latency, link utilization, Mean Opinion Score (MOS) [231],
and QoE analytics are statistically analyzed in order to evaluate the strategy and
design better service experience for customers. However, in Hybrid Networks,
these metrics must be analyzed using integrated data analytics tools controlled by
advanced machine learning and artificial intelligence techniques, able to consider
physical aspects at the same level than virtualization constraints, at the logical
and infrastructure levels. These advanced data analytics enable E2E view across
networks, and thus can significantly improve the performance of the system.

5. System Integration and Support
Recently, two distinct methods of developing software systems, Micro-services
and DevOps [232], attracted significant attention from enterprises. Both aim
to offer greater agility and operational efficiency. Both methods were not just
limited to transforming monolithic applications into decomposed services (Micro-
services), but rather they are meant to support a culture of agile development
with virtualized instantiations. Furthermore, Micro-services and DevOps prac-
tices are better when deployed together because Micro-services bring additional
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productivity to DevOps (enable enterprises to employ common tools for both
software development (Dev) and IT operations (Ops) ).
However, DevOps practices bring several new challenges that need to be addressed
before its widespread deployment [233]. For instance, moving from monolithic to
Micro-services approaches can be risky without enhanced automation (handling
appropriately the granularity that Micro-services bring forward), and resilient
designs.
The culture of agile development can be critical for Service Assurance design. A
new Service Assurance design for Hybrid Networks must be realized considering
DevOps and Micro-services approaches. This includes network service as well as
Service Assurance testing and validation.

6. Debugging and Testing
Software-driven networks explore programmability to control network devices

more efficiently. However, this highly depends on the quality of software de-
velopment, debugging, and testing tools that support software quality and fix
software bugs.
For CSPs, any product developed must be ideally designed to offer error-free
service. To ensure the quality of software both testing and debugging are essential
for software-defined network functions [136]. Testing is used to find different
defects in codes such as errors, bugs through manual and automated processes.
Debugging is a multi-step process to identify the problem and remove it (from
software or system). Some basic strategies that could be used to achieve efficient
testing and debugging in Hybrid Networks are as follows:

• White-Box: In white-box/clear box testing, all the internal implemented
structures are known to the tester. The tester can determine appropriate
outputs through testing all inputs.

• Black-Box: In black-box testing, the internal implemented structures are
not known to the tester. The tester can test a few possible numbers of
inputs to determine the appropriate output.

• Gray-Box: In grey-box testing, a combined approach based on black and
white box principles is applied. In the gray-box, the internal structure of
the component is partially known but not for all the components.

Considering Hybrid Networks Service Assurance, the preferred approach would
be white-box testing because if we know the internal structures of the network
components, it becomes easier to analyze network behavior, even if networks are
changing rapidly. This would provide enhanced trust on automation; flexibility to
manage, troubleshoot and configure rapidly changing dynamic networks; and limit
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the failures to a minimum. Unfortunately, realistically both multi-domain and
legacy networks with closed interfaces restrict the CSP to offer limited network
management and automation, and will impose black or grey-box approaches. A
more detailed comparative analysis of debugging support is described in [104].

2.4.3 Discussion

5G is considered technology to revolutionize network services with innovation. This
requires CSPs to improve their infrastructure level capabilities to support 5G innovation
by reimagining the OSS/BSS system that includes embracing automation and artificial
intelligence in Service Assurance [234]. The maturing of the Service Assurance for
Hybrid Networks (as identified and discussed key enablers and key technologies (Section
2.4.2) means that appropriate tools are positioned to achieve strategic goals for assuring
machine learning-based QoS assurance for 5G networks [235]. However, developing
novel strategies, architectures, and standards to support QoS assurance for 5G networks
is still in its infancy.

One of the key aspects of a new kind of Service Assurance system is service or-
chestration. Service orchestration relies upon an assurance solution that can generate
high-quality data to enable the provision of network services in a multi-vendor environ-
ment across the networks. CSPs need to implement a new platform parallel to their
existing siloed platform to support the new kind of assurance that relies on data ana-
lytics and aggregation from multiple sources in multi-domain networking environments.
However, there is a long road ahead to replace the traditional networks with highly
virtualized hybrid networks based on 5G [234].

5G standalone deployments are operationally complex as the core is based on a cloud-
native architecture. It is important to note that cloud-native communications networks
are more complex than traditional physical, and current virtualized networks. From the
perspective of cloud-native that relies on a multi-vendor ecosystem, it is important that
interoperability and data sharing must be optimal and standardized among multi-vendor
systems. The TM Forum highlighted that their open digital architecture and Open
APIs (enable plug-and-play interoperability of components within the IT systems) can
assist CSPs to manage E2E service assurance [236].

As we discuss in Section 2.4.2.2 the concept of the autonomic system (a decision is
invoked to enable self-healing in order to restore optimized network services to their best
operational condition with fully automated mode). Similarly, TM Forum autonomous
network Group identifies six levels of advancements as shown in Fig. 2.15 in order to
move toward zero-touch operations and management [236]. Furthermore, they argue
that most of the CSPs Service Assurance systems are operating at Level-2 and therefore,
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Fully Autonomous Network:
• The system processes closed-loop automation capabilities across multiple 

services, multi-domain and the entire lifecycle.
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Conditional Autonomous Network:
• The system senses real-time environmental changes and in a certain 
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Conditional Autonomous Network:
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environment in order to enable intent-based, closed-loop management.
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Partial Autonomous Network:
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Partial Autonomous Network:
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Assisted Operation and Maintenance:
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Manual Operation and Maintenance:
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must be executed manually.
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decision-making based on predictive analytics or active closed-loop 
management of service-driven and customer experience-driven networks.
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Highly Autonomous Network:
• In a more complicated, cross-domain environment, the system enables 

decision-making based on predictive analytics or active closed-loop 
management of service-driven and customer experience-driven networks.

LEVEL 4 

Figure 2.15: Automation: Six stages of advancement [234]

this the significant area for CSPs to develop, transform and modernize it in order
to accelerate the deployment of fully automated E2E orchestration of 5G and B5G
services.

2.4.4 In Summary

Effective Service Assurance practice enables CSPs to identify and resolve various issues
and faults, and thus prevents customers from service quality degradation and offers
CSPs a high return on investment. This is achieved by higher utilization of resources and
increased utility for the customers by offering predictable QoE. Due to the advent of new
technologies such as SDN, NFV, MEC, and the concept of network slicing in 5G, CSPs
are interested to invest in new Service Assurance models for Hybrid Networks in order
to reduce cost, support new services and enhance the customer experience. Networks are
evolving, and in the near future, there will be many networks with multiple needs and
more demanding applications and different Service Assurance requirements. Therefore,
there is also the need to re-think and consider developing Service Assurance systems to
fulfill the real-time needs of Hybrid Networks. However, CSPs are reluctant to upgrade
all their infrastructure to new Service Assurance models oriented to Hybrid Networks,
because they have to invest a huge amount of money for networking infrastructure, and
would remain worried for return on investments. Therefore, it is critical for CSPs to
tackle Service Assurance challenges and topics addressed above in order to accelerate
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the Service Assurance development for Hybrid Networks.
In order to automate future networks without human intervention (transforming

fully automated networks), both in real-time and in predictive networking environments,
next-generation Service Assurance must be equipped with proactive monitoring and
advanced technologies such as machine learning, advanced analytics, and artificial
intelligence with well-accepted trusted standard interfaces across different business
partners.

Effective Service Assurance systems must be based on a unifying model and in-
tegrated with the OSS to track performance, for the purpose of meeting the SLA
requirements and to identify and manage network failures.

It is now time for service providers to address the challenges of Service Assurance and
transform their Service Assurance model to meet the requirements of Hybrid Networks.
Otherwise, the promised benefits of virtualization will lag and service providers may
not be able to enhance their services most appropriately. Furthermore, in Section 6.3.3,
we concluded by enumerating the future research directions of the Service Assurance
development for Hybrid Networks.
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SDN Control Network

Chapter Outline: This chapter focuses on the management and automation concepts of
future reliable and dynamic networks. A few research studies have been carried out that
highlighted SDN reliability (fault-tolerance) aspects. Considering fault-tolerance aspects,
we explore new SDN resilience and reliability mechanisms and proposed out-of-band,
Self-Healing, and centralized hybrid SDN control network design. In addition to that,
there is an added in-band control mechanism to support resilience in SDN to guarantee
higher reliability.

3.1 Background

In SDN data and control planes are connected through a Controller. This controller is
called the "brain of SDN", while the switches and network devices are regarded as the
"hands of SDN". Furthermore, the network controller is often referred to as a network
operating system comprised of a control plane and has a centralized view of the network.
Therefore, controller availability and liveness are always essential to enforce reliable
communications. In communication networks, control plane resilience is an essential
requirement for ensuring the proper operation of the network functions. In SDN the
controller handles packet flows and routes network traffic. Hence, the controller must
be always operating.

In-band and out-of-band signaling solutions have been adopted to offer SDN control
plane reliability [237]. In practice, most SDN deployments use out-of-band control,
where control packets are managed by a dedicated management network [134]. In a
study carried out by [238], the authors have presented a model for the design of an
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in-band distributed control plane to build an adaptive SDN control network. Due to
the split architecture of SDN, apart from the data plane failure, the controller must also
be resilient against failures of control messages against targeted network attacks. There
are some approaches highlighted that offer resiliency for SDN controllers. The first
approach is to replicate a controller on a separate control network. In the case of failure,
the other controller takes over and manages traffic unless prone to further failure. In
another approach, the controller must be embedded with mechanisms (Build-in Module)
to Self-Heal from targeted attacks such as DoS, flooding, fake traffic routing, and other
network-related targeted attacks [239].

We argue that the control plane recovery time to recover from such attacks is critical
and ideally recovery mechanisms must be developed to mitigate failures within the
set requirements of network performance. For instance, in the case of CGNs, recovery
time must not exceed 50 ms, while in other cases may vary depending on the reliability
requirements. Besides these, the recovery process must be efficient and must be able to
Self-Heal during an event of a failure with minimum overheads. We argue that covering
these aspects enforces the SDN control plane to implement a flexible and reliable
communication process. Thus, we believe that this guarantees network management
and automation for SDN and future networks.

3.2 Proposed Methodology

In this section, we considered data and control plan resiliency to offer reliability in SDN.
One of the important aspects that SDN must offer is scalability. Therefore, we explore
SDN control network suitability to meet the reliability and resiliency requirement for
CGNs. In CGN the recovery mechanism must ensure the recovery process within 50
ms [240]. For this purpose, Restoration and Protection are widely used to recover
from system failures. In Restoration, an alternative path is only established after the
occurrence of failure, and network resources are not reserved before the event of a failure
but recovery paths may be pre-assigned or allocated dynamically. Also, additional
signaling is required to recover from failure. Therefore, this solution is not scalable
because of not meeting the requirements of CGNs [241], [242].

However, in the case of Protection, alternative paths are already reserved and
assigned before the occurrence of a failure. Moreover, in protection, no additional
signaling is required. Thus, the recovery process is fast as compared to the restoration
method. Due to no additional signaling requirement, the recovery process in the
protection method is possible within 50 ms. Thus, it is a scalable and more appropriate
solution for CGNs. In this study, we aim to apply restoration and protection techniques
to our proposed hybrid control plane (handling both legacy and SDN switches). This
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enables us to build a flexible design that guarantees reliability and resiliency of data
and control plane in SDN and future networks.

3.3 Theoretical and Practical Implications

Due to the associated risks with SDN described in [239], existing research studies do
not guarantee optimal reliability. The out-of-band control has a cost constraint while
in-band control adds complexity and challenges to design and bootstrap. Moreover,
restoration is not scalable while protection is. Eventually, these solutions add complexity
to the design of SDN-based reliable and resilient systems. Due to these intricate balances,
the current solutions offered are either costly or complex. Our proposed hybrid SDN
control plane, therefore, provides a direction towards designing resilient and reliable
SDN control networks.

Furthermore, the multi-tenancy nature of future network environments adds a
fundamental problem to the issue of network dynamics, namely that of the varying
veracity of information. This variation (of accuracy) can stem from a variety of
reasons, such as lack of proper information visibility. For instance, due to infrequent
intervals for retrieving the exact values to keep the signaling overhead lower. This
veracity of information forces any control framework to deal with uncertainty. Thus,
risk management becomes a key instrument to address this change. We also aim
to extend our proposed approach further to address network dynamics through risk
management. This means that network dynamics can be better dealt with by defining
a risk assessment matrix indicating the severity of each risk and a possible reliable
approach for Self-Healing in real-time SDN environments.

3.4 Fault Detection and Mitigation

The Restoration and Protection techniques have been proposed to recover from network
service failure for both in-band and out-of-band control. The study carried out by [237]
discussed the challenges of fast in-band OpenFlow-based network recovery. Moreover, in
the normal operation of in-band control in the presence of a dormant fault, the switch
flood control traffic out of port to all nodes by default. However, a problem arises when
the fault becomes active: in this case, the neighboring switch forwards packets where
another switch may drop because of intermediate switch disconnection.

Due to the fact that in in-band control the data and control traffic is sent over
the same link, the procedure is not simple as compared to out-of-band control. In
out-of-band control, control messages are sent over a separate network. This results in
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simplified switch implementation. Since switches cannot interfere with control messages,
this increases reliability.

3.5 Fault-Tolerance and Self-Healing

We believe a network system is referred to be fault-tolerance if it can Self-Heal in the
presence of Failures, Errors, and Faults. A failure happens if a system is unable to
implement the system function and a service deviates from the correct service. One
of the examples of service failure is that a system is not capable of restoring from one
state to another state. The cause of error refers to when the sequence of one or more
external system state deviates from the real service. A hypothesized cause of the error
refers to a fault. For instance, a software bug, Human-made error, or hardware power
failure. In fault-tolerance, the error detection and system recovery strategies are used
to avoid failures [243]. In "Telecommunication" Self-Healing refers to re-routing Traffic
due to a fiber cut e.g. Synchronous Optical Networks (SONET) and Synchronous
Digital Hierarchy (SDH). However, in SDN, adapting to real-time demands and network
dynamics. Self-Healing minimizes human intervention due to advanced monitoring
based on the constant intake of live data from the network environments. Moreover, in
the case of abnormal data behavior, the system automatically invokes the Self-Healing
process for recovery.

3.6 Proposed Resilient Design to Offer Reliability in SDN Networks

Figure 3.1: Resilient Design through Hybrid Control Plane with Reliability

As depicted in Fig. 3.1, we propose out-of-band control in SDN with additional
in-band control to offer fault-tolerance. This resilient design ensures reliability between
the controller and underlying devices. For ensuring additional reliability a backup
controller takes over in the case of any network failure. To guarantee proper operation of
the Controller-to-Controller communication we propose to monitor this communication
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through Fault injection mechanisms which ensure guaranteed reliable communication
with improved performance. We argue that the Fault injection is important to evaluate
the dependable communication [244]. This involves the study of fault, error, and
failures. Moreover, removing these errors or minimizing them is a basic requirement
that must be fulfilled to develop highly reliable fault-tolerant SDN networks. Therefore,
we included Fault injection in our proposed design to monitor Controller-to-Controller
communications.

3.7 In Summary

In this chapter, we highlighted SDN reliability concerns and proposed a resilient
design to offer future proof reliable communication in a software-defined network-based
environment. In our proposed design we have considered the possibility of legacy as
well as the standalone deployment of SDN with redirection of traffic flow in the event
of failure of the primary SDN controller.

In the next chapter, we set up a scenario-based experiment in which a critical
and reliable communications environment is implemented using a software-defined
network-based environment. In this line, using SDN to redirect the necessary data
flows in the event of a failure. To achieve zero downtime between failures, an SDN
Recovery Mechanism was implemented and evaluated. However, we have not evaluated
SDN controller channel reliability itself, as it requires implementing Fault injection
approaches in order to ensure the reliability of the SDN controller channel (Controller-to-
Controller communications). Furthermore, in Section 6.2.1, we discussed and outlined
the directions for future research concerning the proposed resilient design that could
offer reliability in SDN control networks.
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Reliable 5G Networks

Chapter Outline: This chapter addresses the role and impact of 5G key enablers tech-
nologies in reliable communications. In this regard, first, it compares the use of two
virtualization technologies, namely containers and unikernels, for VNF instantiation
in computational limited resources, envisioning the deployment of VNFs close to the
end-nodes contributing to facilitate resilient communication networks in critical sce-
narios. Second, it addresses the concern that the probability of failure increases with
the hardware limitation, imposing the development of failure detection and recovery
mechanisms. In this line, we developed a failure detection and recovery mechanism able
to ensure VNF reliability by dynamically instantiating a backup VNF before failure and
using SDN to redirect the necessary data flows. Finally, the results showed that our
mechanism was able to ensure near-zero downtime, showcasing the feasibility of the
solution.

4.1 5G Critical and Reliable Communications Overview

The 5G telecommunications network aims to enable a fully connected society and
empower socio-economic transformations in several ways that are unimagined today. To
achieve such an all-connected society, the density/volume of traffic as well connectivity
are expected to grow tremendously [245]. This prediction of traffic increase occurs
because 5G not only will better support human-centric applications (e.g., virtual/aug-
mented reality and ultra-high-definition video) but will also support the demands of
machine-to-human and Machine-to-Machine Communications (M2M). With this large
range of possible applications, 5G networks need to support a broad number of KPIs
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requirements [246].
To better achieve this variety of services and applications, new technologies are being

introduced into edge and core networks, namely SDN and NFV. With an architecture
that makes use of these two technologies, 5G will not only provide better performance
for the end-user but will also provide a more flexible and dynamic provision of commu-
nications for different scenarios [247]. Another two promising enabling technologies are
Fog and Edge computing. They are highly virtualized platforms that provide compute,
storage, and networking services between end devices and traditional Cloud Computing
data-enters [248]. Nevertheless, while Edge computing pushes the provided capabilities
directly into devices like Programmable Automation Controllers (PACs), Fog computing
pushes the capabilities to a device near to the end-user.

Fog/Edge computing integrated with SDN and NFV can significantly reduce the
latency in network processing and provide fast instantiation and reliable connectivity to
the end user [249] Critical and Reliable communications were and still are a major con-
cern to mobile operators, since they are crucial for the secure operation of Machine-type
communications, such as monitoring and control systems, vehicle-to-vehicle coordination,
and cloud-based systems [250].

In this line, SDN and NFV play a major role in Critical and Reliable scenarios,
offering the ability to instantiate the necessary optimal network behavior at the right
time and place.

4.2 Problem Identification

SDN decouples the control plane from the data plane. With the decoupling of these two
planes, the behavior of the network can be controlled by a logically centralized controller
that has a full view of the network, providing a high level of programmability and
allowing for dynamic network (re)configuration [119] NFV enables the virtualization of
network functions, which can be implemented on VM or other virtualization platforms,
on COTS servers [251].

Being reliability one of the major concerns when designing network architectures,
making use of SDN, NFV, and fog computing, new types of services that have strict
resilience and reliability KPIs can be developed or improved. For example, in [252] it is
advocated that SDN can significantly improve data-plane reliability when incorporated
in Long-term Evolution (LTE) / Evolved Packet Core (EPC) networks. SDN can also be
a viable solution for providing redundant communications in Smart Grids environments
as proposed in [253]. In [254], a new architecture of wireless SDNs is introduced which
provides reliable connectivity and services to IoT applications. SDN can also be used
for self-healing based frameworks for 5G networks, as proposed in [255] and can also
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be implemented as a link failure recovery mechanism [256], [257] proposed a method
that uses active probing to detect and manage failures in an OpenFlow-based data
center network exploiting load balancing among equal cost multiple paths. In [258], an
algorithm that can minimize the physical resources consumption while guaranteeing
the required high reliability with a polynomial-time complexity was proposed.

However, none of these studies combined SDN with virtualized network function
deployment in constrained resources for reliability-demanding critical scenarios.

4.3 Architecture Overview: Description and Deployment

This section presents the motivational scenario, followed by the framework architecture
overview and its building blocks description and deployment.

4.3.1 Scenario-based Experiment

Our scenario considers a critical and reliable communications environment where an
ISP and/or Cloud Computing Service Provider (CCSP) hosts the NFs on behalf of an
industrial corporation. The ISP/CCSP needs to ensure not only the placement of the
NF (or VNF) near to the end-users but also reliable communications with a near-zero
downtime between version updates and/or failures for those NFs. Due to the critical
nature of these VNFs, they are managed as black boxes in order to prevent tampering,
which means that the CCSP cannot modify in any way the operation of the VNFs. In
this line, for our proof-of-concept framework, a Virtual Firewall (vFW) will be used as
an example of VNF. The use-case scenario is depicted in Fig. 4.1

Figure 4.1: Use case scenario.

As stated, to cope with the reliability and latency requirements imposed by the
industrial corporation, the CCSP needs to instantiate the VNFs close to the corporation.
For this, the CCSP may explore fog computing, however, due to hardware resource
limitations the probability of failure increases [259]. To overcome such failure events, the
CCSP requires enhanced failure detection and recovery mechanisms to obtain near-zero
downtime of VNFs failure and/or updates.
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4.3.2 Building block and deployment

The fog node architecture is depicted in Fig. 4.2. Next, the building blocks of the
framework architecture are presented, while describing their deployment.

Figure 4.2: Fog node deployment for proof-of-concept evaluation.

4.3.2.1 Fog node

The fog node is a computing system that plays the part of a mini-cloud, located at
the edge of the network. It was deployed in an APU2C41, a single-board computer
developed by PC Engines capable of providing storage, compute, and networking
services. This device has an AMD GX-412TC System-on-a-Chip (SOC), Central
Processing Unit (CPU) with 4 cores, 4GB DDR3-1333, Dynamic Random Access
Memory (DRAM), and a 16 GB Solid State Device (SSD) for storage. The OS installed
was Ubuntu 17.10 with the 4.13.0-21-generic kernel. After the OS installation, the
system was turned into a type-1 hypervisor with KVM2.

4.3.2.2 Source node

The source node simulates industrial critical communication. For proof-of-concept
purposes, it was deployed in a Docker container, however, our framework is independent
of the source node implementation. In this line, in a commercial situation, the source
node can be a REST service but its implementation is not in the scope of this work.
The container uses the ubuntu nettools image created by Robertxie3.

1https://pcengines.ch/apu2c4.htm
2https://www.linux-kvm.org/
3https://hub.docker.com/r/robertxie/ubuntu-nettools/
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4.3.2.3 Database

The database stores different versions of the VNF. When a VNF update is available, the
database is updated with the new version. It runs as a Docker container, with an image
similar to the one used by the source node, which runs a simple python Hypertext
Transfer Protocol (HTTP) server4.

4.3.2.4 Sink node

The sink node is a Docker container instantiated with the same image as the source
node. This container does not fit any purpose other than receiving packets to test the
VNF.

4.3.2.5 VNF

The VNF represents the service request by the corporation and is hosted by the
ISPand/or CCSP. For proof-of-concept purposes, a vFW will be used and evaluated
over different virtualization techniques. In this line, the vFW will be instantiated as
a Docker container and as an IncludeOS unikernel. Regarding to the Docker vFW,
it is an Alpine Docker container5 with the iptables package6. The vFW filters the
packets according to the iptables rules specified in a bash file. When the Docker
vFW is instantiated, it downloads the current-state file from the database, launching
the container with the last updated version. The CCSP provides secure 3rd party
interfaces to the corporation, allowing the latter to provide new versions of its VNFs,
without the former tampering with them. However, such interfaces are out-of-scope
from this work. Concerning to the IncludeOS vFW, it is a single-tasking OS [260],
compiled into a binary file via a C++ code where the firewall rules are programmed.
The hypervisor, before launching the unikernel VM with QEMU (a generic and Open
source machine emulator and virtualizer)7, downloads the latest updated binary to
the database container, ensuring that the unikernel is running with the latest policies
applied.

4.3.2.6 Open vSwitch bridges

In our proposal, the network bridges ensure communication between services, while
seamlessly redirecting the traffic to the required VNF. In order to enable the on-the-fly

4https://docs.python.org/3/library/http.server.html
5https://hub.docker.com/_ /alpine/
6https://pkgs.alpinelinux.org/package/edge/main/x86/iptables
7https://www.qemu.org/

77



data-path updates, we used the Open vSwitch (OvS) 8 (version 2.10.90), allowing
flow-based rules to be applied to the bridges flow tables via the OpenFlow protocol.

4.3.2.7 SDN controller

The SDN controller manages and controls OvS bridges using the OpenFlow, by imple-
menting therein flow-based rules. This allows the controller to dynamically redirect the
network traffic from one VNF to another in a failure or update event. Finally, Ryu9

was used as the SDN controller, and an SDN application was developed to run along
Ryu to allow the traffic redirection upon network triggers (explained in next section).

4.4 Design and Development: Recovery Mechanisms

Our framework is supported by a recovery mechanism in order to achieve a near-zero
downtime. In this line, our recovery mechanism can be divided into 3 steps: 1) failure
detection; 2) VNF re-instantiation; and 3) data-path update. While Fig. 4.3a depicts
the failure detection and re-instantiation mechanisms, Fig 4.3b shows the sequence
messages of the data-path update.

4.4.1 Failure detection and VNF re-instantiation

As the ISP and/or CCSP need to cope with the possibility of software failures, a failure
detection mechanism was developed for verifying the status of operation of the NF, in
this case, the firewall. This mechanism is based on the heartbeat software developed by
the Linux-HA (High-Availability Linux)10.

Fig. 4.3a illustrates the failure detection procedure, which is described as follows.
The failure mechanism periodically sends Internet Control Message Protocol (ICMP)
requests (1) (every 100ms), and if the VNF responds by sending an ICMP reply (2),
the failure mechanism does nothing and proceeds to keep sending ICMP requests (3).
When the VNF fails to respond within a 50ms time-frame, a trigger is sent to the
host (4). Note that both the ICMP request periodicity and the time-frame for response
were chosen for proof-of-concept evaluations and different values can be used in order
to optimize the mechanism. After receiving the trigger, the host kills the processes of
the VNF to enforce the re-instantiation procedure. The virtualization technology (i.e.,
unikernel or container) in which the VNF (i.e, vFW) is going to be re-instantiated is
sent in the trigger message. This failure mechanism is an illustrative approach with the
sole purpose of triggering dynamic re-adjustments of the system. Other more refined

8OvS: https://www.openvswitch.org/
9Ryu: https://osrg.github.io/ryu/

10http://www.linux-ha.org/
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(a) Fail detection and re-instantiation sequence messages.

(b) Data-path update via SDN interfaces.

Figure 4.3: Failure detection and recovery mechanism.
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solutions can be used, including monitoring and operation assessment mechanisms more
tailored towards commercial environments.

4.4.2 Data-path update

To minimize and achieve a near-zero downtime of the service, SDN was used for
data-path updates on the fly. As such, our failure detection mechanism informs the
SDN controller of failure and requests a flow redirection to the new VNF. To prevent
disconnection between the source and sink nodes during a VNF fail detection event, one
of two cases is required: case a) a backup VNF for resilience is already running from the
beginning, or case b) a new VNF is dynamically and pre-emptively instantiated upon
the trigger of a monitoring mechanism. For this last case, the monitor mechanism can
explore KPIs, such as memory usage, which when reaches the memory limit increases the
probability of failure. Fig. 4.3b depicts the high-level sequence message for a data-path
update upon failure detection.

Case a) VNF already instantiated as backup:
1. The failure detection mechanism sends ICMP requests to the firewall;
2. The VNF replies to those requests;
3. Another ICMP request is sent;
4. Since the firewall does not respond to the ICMP request, meaning that an error

occurred, a REST message is sent to the SDN controller;
5. After receiving the trigger message, the controller updates the flow tables of

both OvS bridges, offloading the traffic to the backup VNF.
Case b) VNF dynamically instantiated:
1. The host reads the Random Access Memory (RAM) consumption of the main

VNF; When the RAM consumption reaches critical values (80% of total RAM
allocated to the VNF, although other values can be configured), the instantiation
procedure of the backup VNF begins;

2. When the backup VNF is fully operational, a REST message is sent to the SDN
controller;

3. After receiving the trigger message, the controller updates the flow tables of
both OvS bridges, offloading the traffic to the backup VNF.

Finally, note that once the OvS bridges update their flow tables, the packets that
were previously being sent to the main VNF, are now forwarded to the backup VNF,
ensuring the reliability of the service.
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4.5 Evaluation and Discussion

In this section, the proposed framework is evaluated in terms of throughput and
delay. First, both virtualization technologies (i.e., Docker containers and IncludeOS
unikernels) are compared in terms of image size, instantiation delay, traffic latency,
and both Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
throughput. Finally, the performance of the recovery mechanism was also evaluated in
terms of throughput impact and delay. The experiments were run 10 times, with the
average results being presented with a confidence interval of 95%.

4.5.1 VNF image size

Table 4.1 compares the image size of the two VNFs. It can be seen that the Docker FW
is approximately 5 times larger than the IncludeOS FW. The reason for this difference
has to do with the versatility of the VNF. The Docker FW runs as a tinyOS11 while the
unikernel has limited capabilities, having the sole purpose of running the C++ code
compiled into the image. It should be noted that the actual size of the firewall program
is also different for both implementations. While the Docker VNF uses the iptables
package (1.54MBytes), the IncludeOS FW uses 0.5Mbytes, since the unikernel needs a
minimum of 2.7MBytes to be able to run. As for memory, both implementations have
256 MB of RAM allocated.

4.5.2 Instantiation delay

For measuring the instantiation of both VNFs, it was considered the time it took from
the launch command until the firewall was ready with all policies implemented. The
time was measured immediately before the instantiation command and immediately
after the last rule was applied, measured in milliseconds (ms) using the Unix epoch
time12. Table 4.1 shows the instantiation time for both Docker FW and IncludeOS FW.
Here, Docker was 44% faster than IncludeOS, mainly because containers do not contain
a guest OS, decreasing the boot-time and creation delay.

4.5.3 Latency

For this evaluation, the latency refers to the Round Trip Time (RTT) of a packet. This
test intends to evaluate how the VNF affects the latency in an end-to-end connection and
was measured using the ping tool from the Network Tools Package13. The experiment

11TinyOS: http://www.tinyos.net
12Unix epoch time: https://www.epochconverter.com/
13https://network-tools.com/
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was run 10 times from both the source node and from the sink node, with results being
presented in Table 4.1.

From Table 4.1, the latency of the end-to-end connection when the firewall was
instantiated in an unikernel was approximately 0.79ms, as for the Docker instance, the
end-to-end latency was 0.27ms, almost 3 times less than unikernel. It can be deducted
that this latency difference happens due to the time packets were being processed by
the firewall since the ICMP packets travel the same path in both implementations.

Table 4.1: VNFs metrics for both virtualization technologies.

VNF Size (MBytes) Instantiation delay(s) Traffic latency (ms)
Docker Firewall 16.4 3.02 ± 0.05 0.27 ± 0.02
IncludeOS Firewall 3.2 4.44 ± 0.10 0.79 ± 0.03

4.5.4 Traffic Traversing VNF

Three different types of traffic were evaluated for each VNF. The first was TCP traffic
and the other two were UDP traffic - 100Mbps target bandwidth and 1Gbps target
bandwidth. These tests were performed for 10 seconds using the iPerf3 tool14. The
iPerf server was started on port 80 of the sink container and the client initiated the
connection from the source node container with a buffer length of 1400Bytes.

4.5.4.1 TCP Traffic

Fig. 4.4 shows the results after executing the iPerf 20 times for each virtualization
technology using TCP packets. The Docker FW obtained better performance in
both metrics, with an average throughput of 120Mbps compared to 100Mbp from the
IncludeOS. The container VNF did not register TCP segments retransmissions, opposed
to the unikernel where an average of 1.10 TCP segments was retransmitted, which
translates into 0.013% of the total TCP packets sent. Notwithstanding, the small
percentage of retransmitted packets, this difference can be justified by the latency delay
introduced by the IncludeOS FW.

14iPerf3: https://iperf.fr/
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Figure 4.4: TCP Performance

4.5.4.2 UDP Traffic

Fig. 4.5 shows the results after performing the iPerf 20 times for each virtualization
technology using UDP packets with both target bandwidths - 100Mbps and 1Gbps.
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Figure 4.5: UDP Performance: a) IncludeOS FW; b) Docker FW

Contrary to the TCP performance, the IncludeOS FW had approximately the same
performance as the Docker FW with 100Mbps target bandwidth, and it only stayed
behind in the datagram loss since the container did not lose any datagrams.

When the target bandwidth was set to 1Gbps on the iPerf client, the performance of
the unikernel improved in comparison to the container, achieving 160Mbps of throughput,
which is 20Mbps better than the container.
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In both technologies, the target bandwidth of 1Gbps was not reached due to the
size of the UDP packets (1400Bytes). In contrast, the average Jitter in the Docker
FW stayed constant and in the unikernel case, it doubled (0.06ms). The datagram loss
stayed equal from the previous setup - 1% for IncludeOS and zero losses for Docker.
These losses in the unikernel occurred for the same reason as the TCP retransmissions,
namely the delay introduced by the IncludeOS FW.

Finally, for both virtualization technologies, the fact that both the host and sink
node were instantiated in the same system board could impact the observed throughputs,
limiting the maximum throughput by edging the computational power of the system
board used as a fog node.

4.5.5 Traffic Traversing with VNF Failure

To evaluate the reliability mechanism proposed in Section 4.4, the same iPerf (a tool for
network performance measurement and tuning) was used. For the following experiments,
a failure was induced at Time = 3s of the experiment running time. The results with
TCP traffic are presented in Fig. 4.6.

2 4 6 8 10

Time (s)

0

20

40

60

80

100

120

140

M
b

it
s

/s

Throughput

2 4 6 8 10

Time (s)

0

20

40

60

80

100

N
o

. 
P

a
c

k
e

ts

TCP Segments Retransmitted

IncludeOS w/ SDN Docker w/ SDN

IncludeOS w/o SDN Docker w/o SDN

Figure 4.6: TCP performance with SDN recovery mechanism.

It is noted that the SDN recovery mechanism significantly improved the service as
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there was only a slight decrease in throughput when the flows were updated in the OvS
bridges (this is evident at Time = 4s). When the same test was performed without the
SDN recovery mechanism, the throughput dropped to zero when the failure was induced
and only returned to baseline values when the re-instantiation occurred (Time = 7s for
Docker FW and Time = 10s for IncludeOS FW).

Similarly to the previous test, when the iPerf was performed with UDP packets,
throughput dropped to zero when the SDN recovery mechanism was not active and it
was only restored at Time = 7s for the Docker FW and at Time = 10s for the IncludeOS
FW. This occurred in both target bandwidths (100Mbps and 1Gbps).
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Figure 4.7: UDP Performance with SDN recovery mechanism for 100Mbps.

When the SDN recovery mechanism was active, for 100Mbps target bandwidth -
Fig. 4.7 - the redirection of traffic to the backup VNF was almost unnoticed, with only
a slight increase in datagram loss seen at Time = 4s. As for UDP traffic with 1Gbps

target bandwidth - Fig. 4.8 - the redirection of traffic to the backup FW is clear at
Time = 4s, where a slight decrease of throughput was noticeable as well as roughly
25% of UDP datagrams were lost. Note that the above experiments were performed
with two VNFs running in parallel. To evaluate the difference of performance when the
backup VNF is dynamically instantiated, an iPerf configured with UDP packets with
1Gbps target bandwidth was performed during 25 seconds.
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Figure 4.8: UDP performance with SDN recovery mechanism for 1Gbps.

The primary VNF was instantiated as an IncludeOS unikernel and the backup
VNF instantiated as a Docker container since previous experiments showed that it
instantiates roughly 2 seconds faster than the unikernel (Table 4.1). Fig. 4.9 presents
such results.

At Time = 10s the primary VNF reached a critical point where 80% of the allocated
memory was being used, which triggered the instantiation of the backup VNF. The
primary VNF crashed at Time = 15s and the OvS flow tables were updated at that
time. Even though that there was a slight decrease in throughput in comparison to
when two instances were running in parallel, there is not a shattering difference for
these proof of concept architecture. As for datagram losses, both implementations lost
roughly the same amount of datagrams. As depicted in Fig. 4.7 , Fig. 4.8, and Fig. 4.9,
jitter had large variations due to changes in routes and congestion.

Due to the nature of the data-center environment, where in this case resources
are restricted, one could argue that the difference in throughput is acceptable, as the
backup VNF is only instantiated when it is strictly necessary.
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Figure 4.9: SDN recovery mechanism with dynamic instantiation

4.6 In Summary

This work presented a comparison of performance between two distinct types of vir-
tualization platforms - unikernels and containers - when instantiated as a VNF with
intelligent recovery strategies. Failure detection and a recovery mechanism were devel-
oped, with SDN being used to update the data path to mitigate the downtime of the
VNF in a failure event, and consequently improving the reliability of services instan-
tiated as VNFs. In this line, the proposed mechanism was able to achieve near-zero
downtime for the evaluated service.

Results showcased that VNFs instantiated as Docker containers, have better per-
formance (by lowering end-to-end latencies and instantiation time) when compared
to VNFs instantiated as IncludeOS unikernels. In terms of throughput impact, con-
tainers perform slightly better than the unikernel for TCP traffic. Concerning UDP
traffic up to 100Mbps of bandwidth, both virtualization techniques presented the same
throughput. Notwithstanding, when stressing the VNF with 1Gbps of UDP traffic band-
width, the IncludeOS unikernel presented an increase of 11% over Docker containers.
Finally, regarding TCP retransmissions and UDP datagram losses, Docker containers
performed better than IncludeOS unikernels. Furthermore, in Section 6.2.2, we briefly
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discussed and outlined the directions for future research regarding critical and reliable
communications in software-defined and virtualized networks.
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5
Auto-scaling Testing

Chapter Outline: Recently, the OSM-MANO platform has attracted significant interest
from academia and industry, potentially providing NFV management and orchestration
solutions for ETSI compliant NFV implementations. OSM-MANO has a built-in
Monitoring Module (MON), a Policy-management Module (POL), and a Prometheus
time-series database for metrics collection, which are the main components of ensuring
Service Assurance in OSM-MANO. In this work, auto-scaling testing is performed with
OSM-MANO after instantiating network service using the OSM-MANO community-
developed VNFs and the Grafana tool for data visualization. The Prometheus database
collects the metrics from the MON exporter, and scaling actions are defined in POL.
Finally, we performed auto-scaling testing and demonstrated the results using the Grafana
dashboard. The results showed that the auto-scaling policy was automated successfully
after the Virtual Infrastructure Manager (VIM) and VNF metrics triggered threshold
violation alarms (already defined) and scaling actions were performed successfully as
defined in POL.

5.1 NFV, OpenStack, and OSM-MANO Overview

NFV is considered a promising technology to decouple network functions from the
underlying infrastructure, allowing for software-based deployment of network functions
directly onto commodity hardware. In the NFV approach, scaling is the ability to
extend or reduce the allocation of resources to VNFs. Scaling-in is performed to release
unused resources, while scaling-out is performed to handle added loads. In this regard,
auto-scaling refers to the automatic scaling of VNFs to enhance resource utilization and
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reduce operating costs [261].
The auto-scaling concept originated in Cloud Computing. Scaling is a key function

of VNFs lifecycle management and auto-scaling enables the communications providers to
automatically resize network services that are composed of network functions according
to the network conditions (traffic load) [262]. Auto-scaling can accommodate more
requests as compared to the legacy monolithic deployments that do not support auto-
scaling features [263].

ETSI proposed an architecture for NFV that has three main parts [216]: NFVI,
VNFs, and NFV-MANO as shown in Fig. 5.1. The OSM-MANO focuses on the NFV-
MANO stack, as depicted in Fig. 5.1. The NFV orchestrator, VNF manager, and VIM
are part of the NFV-MANO stack. VIM provides lifecycle management of virtualized
resources, the VNF manager provides lifecycle management of VNFs directly or through
their own EMS, and the NFV orchestrator provides general resource orchestration
and an end-to-end service lifecycle, including multiple VNFs, while also supporting
the interaction with both generic and vendor-specific VNF managers. The details of
ETSI-NFV functional blocks are provided in Chapter 2.

OSS/BSS

 

 

VNFs 

EMS1

VNF1

EMS1

VNF1VNF1

   

Main Reference 

Vn-Nf

Execution Reference Other NFV Reference   

  Hardware Resources 

Virtualization Layer  

Virtualized  Resources 

 VI-Ha

 

MANO

 

 Os-Ma-Nfvo

NFV Orchestrator (NFVO)  

N
FVI 

Instance

NFVI 
Catalog

NS 
Catalog

     

Or-Vnfm

VNF 
Manager

VNFM

  

EMS1  
  
   Ve-Vnfm-em

 

   Ve-Vnfm-vnf
 

Virtual 
Infrastructure  

Manager
VIM

 

Vi-Vnfm

Or-Vi

Service, VNF 
and 

Infrastructur
e Description

 

           Nf-Vi

N
FVI 

Resource

New/Updated Reference 

                                                                                                             

          VIM
            Officially part of MANO, 
but usually bundled with NFVI 

(Focus on VM lifecycle)

NFV Infrastructure (NFVI)

                                                                                                             
Virtual Network Functions(VNFs)

                                                                                                             

NFV Management and 
Orchestration(MANO)

(Focus on VNFs and NS lifecycle)

NFVI 

Figure 5.1: ETSI NFV Architecture and OSM-MANO Placement

OpenStack is a cloud platform offering abstracted network, storage, and computing
services. The OSM-MANO OpenStack platform is used as a VIM. Other Cloud
Computing platforms, such as Amazon Web Services (AWS) or VMware Cloud, are also
supported by OSM-MANO. For VNFs to interact across different platforms, they must
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be defined in a standardized and simple way. OSM-MANO provides the possibility to
define VNFs in a unified catalog through descriptor files, ensuring the interoperability
of the VNFs across different networks. As mentioned earlier, VIM is already covered by
OpenStack distribution, and, in practice, the NFV-MANO part focuses on the VNF
manager and orchestrator.

5.2 ETSI Compliant NFV Management and Orchestration Frameworks

In this section, we provide a brief overview and comparisons of the state-of-the-art
platforms offering management and orchestration solutions for 5G and beyond networks
[264], [265]. Popular platforms that provide NFV-MANO ETSI compliant implementa-
tion are as follows:

5.2.1 OSM-MANO

OSM-MANO is a collaborative Open source project hosted by ETSI to develop NFV
management and the orchestration software stack aligned with ETSI NFV information
models to meet the commercial deployment of NFV networks [227]. Apart from providing
the management and orchestration (MANO) component to the NFV, OSM-MANO can
be used to facilitate the management, design, and development of VNFs and network
services. The OSM-MANO solution is quite closely associated with 5G, and OSM-MANO
can accelerate with the implementation of 5G. The OSM-MANO service orchestrator
provides VNFs and network service lifecycle management as well as supporting YANG
data modeling language. However, it can support a single administrative domain.
Currently, the ETSI NFV-MANO community is releasing OSM-MANO eleven version
(the most recent version verify to date) [266].

5.2.2 ONAP

The ONAP is led by the Linux Foundation [267]. ONAP is a result of merging two Open
source management and orchestration projects (OPEN-O [268] and OpenCOMP [269]
). The ONAP platform implements a unified architecture for creating, orchestrating,
monitoring, and managing physical and virtual network functions. ONAP is supported
by the largest network operator and cloud technology providers. ONAP supports
Topology and Orchestration Specification for Cloud Applications (TOSCA) and YANG
data modeling languages and can be integrated into VIM, the Virtual Network Function
Manager (VNFM), and the SDN controllers as well as other legacy devices, which
leads to cost savings. ONAP supports multiple administrative domains. Currently,
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the ONAP community is releasing Honolulu (8.0), the eighth release of the Linux
Foundation ONAP project (the most recent version to date).

5.2.3 OPEN-BATON

Open-Baton project is led by Fraunhofer Fokus Institute and the Technical University
of Berlin. The Open-Baton is an Open source implementation of NFV Orchestra-
tor (NFVO)compliant with ETSI NFV-MANO and TOSCA model specifications [270].
It is a vendor-independent platform designed to provide extensible and customized
network services across different vendor-specific networks (enable interoperability be-
tween different vendor-specific solutions). Open-Baton can orchestrate across multiple
administrative domains and supports different cloud infrastructure implementation
(e.g. OpenStack, Docker containers, and Linux containers). However, the Open-Baton
community is quite small which limits the maintainability of the project.

5.2.4 OPENSTACK TACKER

Tacker is an Open source project initiated by the OpenStack community to enable NFV
orchestration for the OpenStack platform based on ETSI NFV-MANO architectural
framework [271]. In Tacker generic VNFM and NFVO can be built to deploy and
manage VNFs and network services using cloud infrastructure. Tacker supports auto-
scaling and TOSCA NFV profile Using a heat translator and allows mapping of SFC.
Tacker provides limited interoperability with other VIMs because tacker components
are directly integrated to support OpenStack. Tacker supports VNFs operation and
deployment only with a single administrative domain.

5.2.5 X-MANO

The X-MANO project [272] is initiated to deal with the challenges of cross-domain NFV
orchestration includes confidentiality, multi-domain lifecycle management, and consistent
information exchange between standard interfaces. X-MANO supports VNFs end-to-
end network service delivery across multiple administrative and technological domains
without exposing details of third-party implementations. X-MANO introduces the
concept of programmable network service to address multi-domain lifecycle management
requirements and supports domain-specific scripting language to allow developers to a
flexible multi-domain network service descriptor to build and deploy customized network
services across multiple domains.

In Table 5.1, we have provided a brief comparison of the selected projects focusing
on NFV-MANO stack compliance with the ETSI NFV reference framework. Most of the
NFV management and orchestration solutions offered have followed ETSI NFV-MANO
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Table 5.1: Selected Projects Focusing on NFV-MANO Stack Compliance with the ETSI
NFV Reference Framework.

  
NFV-MANO 
PLATFORM 
 

 NFV-MANO 
FRAMEWORKS 

    

  Multi-domain     VNFM VIM   NFVO     OSS/BSS 

ONAP  Yes      Yes Yes   Yes     Yes 

OSM-MANO  No      Yes Yes   Yes     No 

OPEN BATON  No      Yes Yes   Yes     No 

TACKER  No      Yes No   Yes     No 

X-MANO  Yes      No No   No     No 

 

specification which means that the ETSI NFV-MANO reference framework is generally
preferred. OSM-MANO and ONAP have attracted significant interest from industry and
academia. On one hand, ONAP is progressed and ready for deployment in production
environments [265] supported by a larger group of global service providers but one of the
disadvantages of ONAP is deployment complexity. On the other hand, OSM-MANO is
progressing fast and increasing support from global service providers and deployment is
easy as compared to ONAP. ONAP and OSM-MANO orchestrator’s performance could
determine their adaptation in near future production environments.

5.3 Configuring to Develop with OSM-MANO

In OSM-MANO there are more than ten modules run in separate docker containers
except for the juju (an Open source charmed Operator framework) controller which uses
LXC. Filip et al.[273] studied and evaluated the performance comparison of containers
and unikernel (lightweight virtualizations technologies). The details of the OSM-MANO
modules are as follows [266]:

• kafka: Kafka bus is used for OSM-MANO communications and this module relies
on the zookeeper module.

• zookeeper: This module is used by Kafka to manage clusters.
• nbi: The northbound interface of OSM-MANO. It relies on the mongo database,

Kafka bus, and optionally uses the keystone for authentication.
• keystone: This module stores the users, projects, role permissions and it relies

on the mysql module.
• lcm: This module provides LCM. For resource orchestration, it uses ro module

and juju for configuration and relies on the mongo module.
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• ro: This module provides resource orchestration, or VIM deployment, and relies
on the mysql module.

• light-ui: This module provides a web user interface and communicates with nbi.
• mon: This module performs OSM-MANO monitoring and relies on mongo and

mysql modules.
• mongo: This module provides a common non-relational database for OSM-

MANO.
• mysql: This module provides a relational database server that is used for modules

such as ro, keystone, mon, and pol.
• pol: Policy manager for OSM-MANO.
• prometheus: This module is used for monitoring.
• grafana: This module is used for data visualization.

Figure 5.2: Running OSM-MANO Modules

In order to successfully configure OSM-MANO, it is important to visualize that all
OSM-MANO modules are up and running (by using the watch docker service command)
as shown in Fig. 5.2.

5.3.1 OSM-MANO Fault-Management: Service Assurance Components

There are three main modules of OSM-MANO Service Assurance and, multiple optional
tools for monitoring and data visualization as shown in Fig. 5.3. The details are as
follows.

• MON: MON module is responsible for collecting Virtual Deployment Unit (VDU),
VNF metrics, and infrastructure metrics of external components including VIMs,
WAN Infrastructure Managers (WIMs), and SDN controllers. It stores metrics
in the Prometheus Time Series Data Base (TSDB). Furthermore, it manages
and evaluates alarms define in VNF/VDU descriptor. MON sends notifications
through Kafka bus when alarms are triggered.
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Figure 5.3: OSM-MANO Service Assurance Components

• POL: POL module is responsible for configuring alarms and auto-scaling groups
for VNFs. Furthermore, it listens to MON for corresponding VNF alarms and
scaling policies defined in VNF Descriptor (VNFD). When a network service
is created it check the corresponding VNF descriptors to evaluate policies and
execute the corresponding decision.

• Prometheus: Prometheus is OSM-MANO, TSDB, collected metrics are stored
in Prometheus. It can be easily integrated with data visualization tools to
show interactive graphs for any metric. However, at present it doesn’t support
multitenancy; other projects need to be explored.
Besides these main modules, OSM-MANO provides support for Grafana and ELK
(ELK is the acronym for three Open source projects: Elasticsearch, Logstash,
and Kibana) as auxiliary Open source tools to visualize data with charts and
graphs. These tools allow end-users to create complex dashboards and easily
show interactive graphs for any metric.

5.3.2 Creating Basic Virtual Network Function and Network Service
Descriptors

VDU
• Name:Asad_basic_vnfd
• Image: ubuntu16.04
• Flavor: 
1 CPU, 1GB RAM, and 10 GB disk     

 

         VNF name:Asad_basic_vnfd

Vnf-cp0

eth0

(a) Basic VNF Descriptor (VNFD)

VDU
-Name:
-Resources: 1 CPU, 1GB RAM, and 10 GB 
disk.
-Image: ubuntu16.04     

 Asad_basic_nsd

eth0

mgmtnet

 

Asad_basic_vnfd

Vnf-cp0

(b) Basic Network Service Descriptor (NSD)

Figure 5.4: OSM-MANO: Network Service Creation

This section provides an overview of creating basic VNFD and NS Descriptor (NSD)
descriptors in OSM-MANO.
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In order to deploy the network service using the CLI in OSM-MANO, network
functions are defined with the required specifications in the VNF descriptor compatible
with OSM-MANO. After creating and validating a package for each descriptor the
network service is instantiated. Descriptors are defined in Yet Another Markup Language
(YAML) programming language, information model tree representation for VNFD is
also provided by the OSM-MANO community [274]. Code 5.1 and 5.2 depict the
programing structure to create basic VNF and NS descriptors in OSM-MANO. The
graphical representation of VNF and NS descriptors is illustrated in Fig. 5.4. However,
it is possible to create customized VNF and NS descriptors. Furthermore, Multi VDU
in VNF can be defined in a single VNF.

Code 5.1: Creating Basic VNF Descriptor (VNFD)

\\ Program name : VNFD. yaml
/∗ Creat ing ba s i c VNFD/
vnfd :
− id : Asad_basic_vnfd

name : Asad_basic_vnfd
. . .
mgmt−i n t e r f a c e :
cp : vnf−cp0
vdu :
− id : Asad_basic_vnfd−VM
name : Asad_basic_vnfd−VM
vm−f l a v o r :
vcpu−count : 1
memory−mb: 1024
storage −gb : 10
image : ubuntu16 .04
i n t e r f a c e :
− name : eth0
v i r t ua l −i n t e r f a c e :
type : VIRTIO
. . .
exte rna l −connect ion−point−r e f : vnf−cp0
connect ion−point :
− name : vnf−cp0
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Code 5.2: Creating Basic NS Descriptor (NSD)

\\ Program name : VNFD. yaml
/∗ Creat ing ba s i c NS d e s c r i p t o r /

nsd :
− id : Asad_basic_nsd

name : Asad_basic_nsd
. . .
cons t i tuent −vnfd :
− member−vnf−index : 1
vnfd−id−r e f : Asad_basic_vnfd
vld :
− id : mgmtnet
name : mgmtnet
type : ELAN
mgmt−network : t rue
vnfd−connect ion−point−r e f :
− member−vnf−index−r e f : 1
vnfd−connect ion−point−r e f : vnf−cp0
vnfd−id−r e f : Asad_basic_vnfd

5.4 Testing Environment Set-Up and Results

We tested auto-scaling in OSM-MANO with two VMs installed on a single laptop [275].
Detail specifications are as follows: System details 8 CPU’s, 16 GB RAM, Processor:
Intel(R) Core (TM) i7-8550U CPU @ 1.80GHz (8 CPUs) TOSHIBA, TECRA A50-E,
VM1: DevStack, and VM2: OSM-MANO Version 6. The OSM-MANO interaction with
VIM and VNFs connectivity is illustrated in Fig. 5.5. To quickly bring up a complete
OpenStack environment in a single machine DevStack VIM is configured to test VNFs
auto-scaling using OSM-MANO.

When VNFD and NSD packages are created, it is possible to import them using OSM-
MANO Graphical User Interface (GUI) and deploy network service using OSM-MANO
GUI. Fig. 5.6 shows the created network service VNFD and NSD through user-friendly
GUI. OSM-MANO allows the flexibility to create VNFD and NSD descriptors through
both GUI and CLI.

Generally, scaling is initiated to increase the capacity of the VNFs in advance based
on demand forecasting or in order to meet the SLAs requirements for an end-to-end
service level management system [276]. Scale-out/in (horizontal scaling) is the ability
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Figure 5.5: OSM-MANO Interaction With VIM

(a) Graphical Virtual Network Function Descriptor (b) Graphical Network Service Descriptor

Figure 5.6: OSM-MANO: VNFD and NSD GUI Composer

to scale by adding and removing instances in a virtualized network comprised of VNFs.
A typical example of scale-out/in policy is depicted in Fig. 5.7.

CPU Auto-Scaling Policy:

Under increased group size, add new alarm.
De-select send a notification to:
Whenever: Average of CPU utilization 
is:>=80%
For at least: 1 Consecutive period of 5 Minutes 
Name of the Alarm: Leave default
Create Alarm 
Back under increased Group Size:
Take the action: Add 1 instance.  

(a) Scale-out

CPU Auto-Scaling Policy:

Under decreased group size, add new alarm.
De-select send a notification to:
Whenever: Average of CPU utilization
 is:>=20%
For at least: 1 Consecutive period of 5 Minutes 
Name of the Alarm: Leave default
Create Alarm 
Back under decreased Group Size:
Take the action: Remove 1 instance.  

(b) Scale-in

Figure 5.7: Defining Auto-Scaling Policy

Our proposed auto-scaling flow in OSM-MANO works as follows: First of all,
threshold and scaling actions are defined at the VNF descriptor. POL creates alarms
through MON. MON configures the alarms locally and starts its evaluation by default
every 30 seconds. When a defined metric threshold is crossed, MON puts a notification
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in the bus. Scaling actions are triggered based on the received notification. Lifecycle
Management (LCM) module receives scaling requests and proceeds with instantiation.

Using the auto-scaling feature, service instances are automatically added or removed
based on the defined policy of scale-out/in, thus new VNFs are instantiated on the fly,
this provides the ease of creating and delivering new network services effectively.

Each NFV instance consists of only one VDU and has a Cirros operating system
(as a test image ). Each VDU is composed of 1 CPU, 1 hard disk of 10 GB, and 2048
MB of RAM Memory. As already defined in our scaling policy when CPU or RAM
usage reaches 80% of the total availability from the VM (after performing the stress
tests) triggering alarm triggers for the OSM-MANO MON framework, which, in turn,
initiated the instantiation of a new VNF. After the instantiation of the new VNF, the
load can be distributed which will cause a decrease in CPU usage. As shown in Fig.
5.8, we performed auto-scaling testing and demonstrated the results using the Grafana
dashboard. The results showed that the auto-scaling policy was automated successfully
after the VIM and VNF metrics triggered threshold violation alarms (already defined)
and scaling actions were performed successfully as defined in POL.

Auto-scaling can increase the number of VNFs during peak load and decrease
capacity during idle time thus auto-scaling features can enhance performance as well as
reduce network operating costs.

              NS metrics-VNF1-VDU metrics-VM-1  

              NS metrics-VNF1-VDU metrics-VM-2                                   

                    max 99.62%,   Avg 99.62, current 99.62   

                    max 0.1%,   Avg 0.1%, current 0.1%                                          

              NS metrics-VNF1-VDU metrics-VM-1  

              NS metrics-VNF1-VDU metrics-VM-2                                   

                    max 191.00 MB,   Avg 191.00MB, current 191.00 MB   

                    max 184.00 MB,   Avg 184.00 MB, current 184.00 MB                                         

              NS metrics-VNF1-VDU metrics-VM-1  

              NS metrics-VNF1-VDU metrics-VM-2                                   

                    max 99.62%,   Avg 99.62, current 99.62   

                    max 0.1%,   Avg 0.1%, current 0.1%                                          

              NS metrics-VNF1-VDU metrics-VM-1  

              NS metrics-VNF1-VDU metrics-VM-2                                   

                    max 191.00 MB,   Avg 191.00MB, current 191.00 MB   

                    max 184.00 MB,   Avg 184.00 MB, current 184.00 MB                                         

Figure 5.8: Auto-Scaling using OSM-MANO
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5.5 Experimental Lesson Learned and Research Gaps

We can summarize the main conclusions of our experimental work as follows:
• The initial installation and deployment of the DevStack (OpenStack) and OSM-

MANO based setup in a single machine was challenging.
• Data-driven templates YAML for creating VNFD and NSD should be carefully

configured (follow indentation rules) in order to run VNFD and NSD instances
appropriately.

• VNFs in OSM-MANO should be developed using OSM-MANO standard proce-
dure with a proper indication of interfaces and connection points.

• Currently auto-scaling in OSM-MANO cannot be initiated dynamically.
• New proposal for VNF indicators is underway now with using Simple Network

Management Protocol (SNMP).
• Prometheus does not support multi-tenancy; other projects need to be explored.

Furthermore, in Section 6.2.3, we briefly discussed and outlined the future research
directions for auto-scaling testing using OSM-MANO.

100



C
h

a
p

t
e

r

6
Conclusions and Future Directions

Chapter Outline: This chapter concludes by highlighting future research directions in
terms of reliability covering aspects of fault-tolerance and Service Assurance using SDN,
NFV, and Cloud Computing based implementations.

6.1 Review of Achievements

This thesis explored NFV and SDN technologies with a touch of Cloud Computing
for evolving software-defined and virtualized networks. The requirements, concepts,
design goals, main architectural impairments, and state-of-the-art research efforts are
discussed. Furthermore, we review fault-tolerance in the scope of SDN and envisage
Service Assurance for 5G and B5G Hybrid Networks.

In a nutshell, this work explored and validated solutions in terms of reliability,
fault-tolerance, and service assurance using SDN, NFV, and Cloud Computing based
implementations to discover the feasibility and reliability of software-defined and virtu-
alized networks. Furthermore, OSM-MANO mechanisms were integrated envisioning
standardized management and orchestration of network resources and services. As
presented in Chapter 1, this study contributes to national and intentional projects, as
well to the research community through publications, scientific journals, public talks,
and international conference proceedings.

As result, the thesis answers initial self-imposed questions as follows.
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6.1.0.1 Fulfillment of Research Questions

Q1.What are the implementation challenges and architectural impairments of
software-defined and virtualized networks key enablers and key technologies namely,
SDN and NFV?

In this thesis, Chapter 2, first provides a detailed background of NFV, SDN,
and Service Assurance for evolving 5G and B5G Hybrid Networks to establish a
comprehensive understanding of the subject, ranging from the basics to more advanced
topics. In addition to that, Chapter 2, addresses comprehensively the implementation
challenges and architectural impairments of software-defined and virtualized networks
key enablers and key technologies namely, SDN and NFV. Furthermore, Chapter 2,
highlights the state-of-the-art research efforts, work in progress associated with evolving
software-defined and virtualized networks key enablers and key technologies.

Q2. How Service Assurance would be devised to support evolving 5G and B5G
Hybrid Networks, a mix of both physical and virtualized networks?

Next-generation communication networks (network functions) are expected to be
implemented on Open source virtualized infrastructures instead of current proprietary-
based implementations to support the 5G vision. Realizing this phenomenon a complex
Hybrid networking environment (involving both legacy and virtual technologies) will
co-exist. Hybrid Network Services will be based on SDN, Cloud, NFV, and legacy-based
infrastructures. Therefore, Chapter 2 also identifies and envisages the Hybrid Networks
environment and discusses the implementation of Service Assurance for 5G and Beyond
5G (B5G) Hybrid Networks their requirements, design goals, key considerations, and
challenges (details are provided in Chapter 2 and Chapter 6).

Q3. Which virtualization technologies, namely containers and unikernels, envisioning
the deployment to facilitate resilient communication networks in critical scenarios (5G
environments)?

For reliable communications, Chapter 3, and Chapter 4 presents an overview of
the design for the critical and reliable use case scenario with containers and unikernel
VNFs based on virtualization technologies. Results are presented and evaluated using
containers and unikernel virtualization technologies (VNFs performance for metrics such
as instantiation times, latency, throughput, and others). Finally, the results showed
that our developed failure detection mechanism and recovery mechanism achieve higher
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reliability and were able to ensure near-zero downtime when a failure occurs, showcasing
the feasibility of the solution.

Q4. How to implement Service Assurance components and test auto-scaling using
OSM-MANO to meet the network requirements (management and orchestration) of
5G?

In Chapter 5, Service Assurance components and auto-scaling were implemented
and tested using OSM-MANO. VNFs were managed by NFV-MANO, allowing VNFs
to be instantiated, managed, scaled in or out, and terminated when no longer required.
Mechanisms were integrated envisioning standardized management and orchestration of
network resources to deployment and maintain NFV services across the network. Finally,
we performed auto-scaling testing and demonstrated the results using the Grafana
dashboard. The results showed that the auto-scaling policy was automated successfully
after the VIM and VNF metrics triggered threshold violation alarms (already defined)
and scaling actions were performed successfully.

6.2 Discussion

In this section, we briefly discuss and outline the future research direction for Chapter 3:
SDN Control Network, Chapter 4: Reliable 5G Networks, and Chapter 5: Auto-scaling
Testing.

6.2.1 SDN Control Network

Some of the Fault-tolerant techniques adapted from the traditional networks are being
applied to SDN but we believe that there is a need to develop new reliability and
resiliency mechanisms for SDN. In SDN the control plane is programmable and this
enables efficient network monitoring. Thus, this ensures the greater flexibility to develop
a more efficient Fault-tolerant mechanism to mitigate network faults.

It is hoped that the concept of proposed hybrid SDN control network should fulfill
the fault-tolerant requirements for future heterogeneous networks made up of OpenFlow
and traditional switches as well as provide support to the important concept of network
slicing in 5G and beyond 5G networks. Due to the policy-based network management
in SDN, these evolving challenges potentially will be resolved through SDN in the
near future. Moreover, to design and develop new fault-tolerant policies for SDN,
different network management protocols used to monitor connectivity such as Loss of
Signal (LOS), Bidirectional Forwarding Detection (BFD), and Link Layer Discovery
Protocol (LLDP) must be explored, modified, and optimized to adapt the dynamics of
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the SDN and future network more efficiently. Moreover, software debugging may fit
well together to enforce the correctness of flow rules.

We also believe that hybrid mode is a more appropriate solution to offer more
efficient fault-tolerance in SDN control networks. One of the possible implementations
is that all network devices are connected to the controller directly with a separate
network and in the case of a broken communication link the self-activation of in-band
control takes over to ensure proper operation of the network. However, the cost to
maintain such a separate network is an issue but hybrid control offers a more resilient
design that guarantees improved reliability in future SDN-based networks.

6.2.2 Reliable 5G Networks

As future work, more refined solutions including monitoring and operation assessment
mechanisms tailored towards commercial environments can be implemented to further
improve this type of service. Also, other types of VNFs, such as Domain Name
Systems (DNSs), Content Delivery Networks (CDNs), and IDS can be compared
between these two different virtualization technologies. Not only other VNFs can be
tested, but different containers and unikernels can also be evaluated.

Another compliment to the proposed architecture is taking into account the scala-
bility of the VNFs running in the data center. Since applications and services can have
fluctuating resource requirements, depending on external factors such as time of day,
load demand, and network conditions, it is crucial to prepare these critical and reliable
VNFs with dynamic scalability features according to performance requirements.

6.2.3 Auto-scaling Testing

This work presented a comparison of the state-of-the-art ETSI compliant NFV manage-
ment and orchestration frameworks that can provide management and orchestration
solutions for the 5G and B5G Networks.

Results showcased that the auto-scaling policy was automated successfully after
the VIM and VNF metrics triggered threshold violation alarms already set and scaling
actions were performed successfully as defined in POL.

At present auto-scaling in OSM-MANO is initiated statically. For future work,
auto-scaling in OSM-MANO must be initiated dynamically, and more refined solutions
including monitoring tailored towards supporting NFV commercial environments can
be implemented to further improve this type of service.

We aim to develop mechanisms to collect different VNFs metrics using OSM-MANO
MON architecture as well as assess the reliability of VNFs according to the performance
requirements for critical communication scenarios.
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6.3 Future Research Directions

Finally, in this section, we overall conclude enumerating future directions for NFV,
SDN fault-tolerance, and Hybrid Networks Service Assurance development.

6.3.1 NFV: Future Research Directions

Indeed, NFV has the potential to grow significantly and eventually transform traditional
proprietary-based network appliances to non-proprietary and open-standard-based net-
work and service deployments. This is going to shift the trend towards the softwarization
of telecommunications systems [277]. The purpose is to move network management
functionalities closer to the software development; this brings three main advantages
1) Eases the network management for administrators. 2) Enables administrators to
run automatic automation in the fail-over scenario. 3) Facilitates service providers
to add new services on the fly without worrying about hardware compatibility issues.
However, to obtain these benefits, NFV must support intelligence and programmability,
and network automation.

In this section, we outline the future directions for NFV development from the
perspective of NFV role in intelligent programmable networks, including network
programmability and automation, the softwarization of telecommunications systems,
and finally integration of NFV with other technologies.

6.3.1.1 Network Softwarization

Network Softwarization (NetSoft) is a paradigm to enhanced network programmability
which leads to enhanced automation. The term NetSoft refers to the networking industry
transformation for designing, deploying, implementing, and maintaining network devices/
network elements through software programming. This enables flexibility to re-design
network services to optimize cost and enable self-management capabilities to manage
network infrastructure. Furthermore, the term "NetSoft" was first introduced at the
academic conference Network softwarization in 2015, to include broader interests
regarding NFV, SDN, network virtualization, MEC formerly known as Mobile Edge
Computing, Cloud Computing, and IoT technologies [278].

To sum up, NFV architecture must be designed to support the softwarization of
telecommunications systems, and we believe that this is an important area for future
NFV-related research.
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6.3.1.2 Integration of NFV with other Technologies

Another important research direction for NFV is the integration of NFV with other
technologies. Over the past years, the integration of NFV with other technologies, such
as SDN, Cloud Computing, and 5G has attracted significant attention from both the
academic research community and industry. These technologies have been proposed to
fulfill different demands of future networks. Similarly, some of the studies also identified
IoT, ICN [1], [8], MEC [218], [279], [280] fog computing [279], [281] and Cloud Radio
Access Network (C-RAN) [282], [283] as a use case for NFV and discussed it in the
perspective of future NFV research direction.

However, several challenges arise when integrating these technologies with NFV.
Firstly, the standardization of these emerging technologies is underway, and therefore, at
this stage, a time-resilient integration is quite challenging. Secondly, NFV commercial
deployment is still at its early stages (as identified and discussed in Section 2.2.3),
hence integrating NFV with other new technologies is naturally difficult. Finally, the
dynamic and multi-domain nature of future networks imposes new security risks and
threats. Addressing the security aspect while integrating NFV with other technologies
is very challenging, specifically to ensure data privacy and trustworthiness between
different network domains. In order to get the full benefit of NFV, the main integration
challenges must be addressed appropriately before deployment.

NFV integration with SDN and Cloud Computing is reasonably accepted due to
the complementary features and distinctive approaches followed by each technology
toward providing solutions to today’s and future networks [284], [285]. For instance,
NFV provides functions/service abstractions (i.e., virtualization of network functions)
supported by ETSI [64], SDN provides network abstractions supported by ONF [286]
and Cloud Computing provides computing abstraction (i.e., a shared pool of configurable
storage resources) supported by the Distributed Management Task Force (DMTF) [287].

These technologies have distinct features and when combined can provide a techno-
logical platform that integrates and combine technological concepts to fulfill the needs
of new business verticals (as handled in 5G networks). These three main technologies
provide a complete abstraction solution for networking (network, computing, and stor-
age). Therefore, the industry is looking forward to this integration and believes that
the integration of these technologies will result in the creation of fully programmable
networks [8].

SDN, NFV, and Cloud Computing technologies are complementary to each other but
are independent and can be deployed alone or together. A combination of these tech-
nologies together in a network architecture is more desirable [15]. Moreover, integrating
NFV with these technologies adds value (flexibility and agility) to telecommunications
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systems. Furthermore, it will offer freedom to CSPs to create and manage network
services without worrying about vendor-specific networking device configurations. Thus,
this integration of NFV with other technologies offers enhanced privileges to CSPs to
set up network services almost effortlessly.

6.3.2 SDN Fault-tolerance: Future Research Directions

In this section, we outline future directions for SDN fault-tolerance development from
the perspective of its role in future intelligent programmable networks. The term pro-
grammability refers to control the set of actions, rules, or enforcing a policy by software
intelligently. The programmability empowers to utilize multi-vendor hardware/de-
vices with enhanced flexibility. Moreover, it enables customized scripting through
programming languages to facilitate network administrators to enforce policy-based
configuration on network devices/functions through APIs. Therefore, programmabil-
ity is a pre-requisite for enabling network automation (a practice in which software
automatically configure and test network devices) in a communications network[9].

A programmable network is flexible and re-configurable because most of the protocol
stacks are implemented in software. Therefore, network upgrades to replace or configure
the network protocols are possible without the interruption of the network operations
[288], [289].

The term Network softwarization refers to the "networking industry transforma-
tion for designing, deploying, implementing and maintaining network devices/network
elements through software programming" [216].

6.3.2.1 Data Plane Programmability for Network Softwarization

A few research studies included in Table 2.6 [290] focused on SDN data plane fault-
tolerance using traditional failure detection approaches (i.e., BFD and LOS) and
recovery approaches (i.e., restoration and protection), that were able to ensure carrier-
grade reliability. However, due to the emergence of new data plane specifications
such as Programming Protocol-independent Packet Processors (P4) [291], and Protocol-
Oblivious Forwarding (POF) [292] new paths toward the development of novel strategies
and standards to support fault-tolerance opened up. Data plane programmability in
SDN is the next step towards supporting a fast-growing trend of network programma-
bility [10] and network softwarization (softwarization of future networks and services)
[293]. Traditionally, the network data plane was designed to be configurable but with
fixed forwarding logic (packet processing with pre-defined logic). However, the SDN
programmable data plane should provide the flexibility to modify forwarding logic
(customized packet processing). Concerning the SDN data plane, there are still error
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detection and recovery issues, which require careful consideration. For instance, the
current probe-based testing solution takes a long time to generate probe packets [294],
[295], making consistency between control plane policies and data plane forwarding
behaviors difficult. Furthermore, additional new pipelines are required in the switch
data path for collecting traffic statistics [296]; this process itself can cause errors.

Due to these challenges, the idea of data plane programmability has attracted
significant interest from both academia and industry [297]. Recent research studies
addressed SDN data plane programmability. New data plane specification (eg., P4 and
POF) has been evolved which extend the feature of SDN beyond OpenFlow specifications
[298]. These new data plane specifications can optimize fault-management in SDN,
thus improving SDN architecture fault-tolerance and reliability aspects. we believe that
data plane programmability is an important area for future SDN development.

6.3.2.2 Controller Architecture for Mission Critical Communications

SDN Controller fault-tolerance research studies included in Table 2.7 were focused
on designing fault-tolerant SDN controller in scenarios where parameters such as
throughput, packet loss, latency, jitter, and redundancy are more flexible than mission-
critical communications (industrial networks and intelligent systems) [299], [300], where
these parameters have more stringent demands. Mission-critical applications are common
in different sectors including military, hospital, automotive safety, and air-traffic control
systems [301]. Unfortunately, the research and development of fault-tolerant SDN
controller for mission-critical applications have been overlooked. Not even the SDN
fault-tolerant controller research efforts (other than mission-critical communication)
are still not yet fully developed. Scalability, performance, and data consistency in
SDN multi-controller architectures is still an area of intense investigation [302], [303].
There is a need to develop fault-tolerant SDN control networks for mission-critical
applications, where designing SDN controller for mission-critical applications is of
significant importance and quite challenging hence, we believe that this topic should be
addressed comprehensively in future research.

6.3.2.3 Software Tools for SDN Applications Development

SDN fault-tolerance research studies included in Table 2.8 were focused on developing
software tools for troubleshooting, writing fault-tolerant programs, and detecting any
network policy violations in the application plane. However, the developed fault-
tolerant software tools are still having many shortcomings, for instance, incomplete
repair mechanisms and high overhead for recovery [304]. Due to the diversity of
network protocols for SDN Southbound and Northbound APIs, and the underway
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standardization of these diverse protocols, the new SDN applications development has
not been accelerated. Hence, the developed software tools have not been comprehensively
tested and developed to support the diversity of network protocols used in SDN networks.
There is a need to develop improved software tools in order to enable application plane
fault-tolerance in future SDN deployments.

6.3.3 Service Assurance for Hybrid Networks: Future Research Directions

Guaranteeing assurances in virtual services is more difficult than in a legacy network,
which is static and usually well defined. It is now the correct time to develop a
new Service Assurance model (considering the dynamic nature of the new end-to-end
services) to replace existing strategies in legacy networks (mostly static end-to-end
services). We need new Service Assurance systems to adapt to network dynamics
and manage the veracity (trustworthiness) of information in real-time environments
to reflect and update the current network state well within effective response times in
Hybrid Networks. Operators need to design, rethink, and re-shape Service Assurance
processes according to the new Service Assurance requirement for Hybrid Networks.
This brings new challenges as well as research and development opportunities.

6.3.3.1 Standardized Automation

There is a large uncertainty among CSPs about how to transform their infrastructure to
support new Service Assurance models coping with software-driven networks. CSPs are
hesitant to migrate to Proactive processes because it requires major changes in CSP’s
infrastructure and extensive trusted coordination across the communication Ecosystem.
While taking this into consideration, we believe that is it a matter of operators to
unify together to design and standardize new Service Assurance models for future
networks. If CSPs have to wait for years to advance their OSS to properly support
Hybrid Networks, then this implies that we cannot benefit from virtualization [305].
Indeed, this is something CSPs are concerned, because new services keep evolving, and
more and more network devices are connecting to the Internet. This situation can cause
performance bottlenecks and service degradation in the evolved Hybrid Networks if
Service Assurance models are not upgraded [306]. At present, Service Assurance still
requires significant human intervention. It seems clear that future Service Assurance
needs to evolve and rely on virtualization, dynamic control, big data collection, and data
analytics engines using advanced machine learning and artificial intelligence techniques
to automate self-healing processes with high accuracy[307], [308].
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6.3.3.2 Improved Monitoring

Another important aspect is how the monitoring system keeps track of performance in a
dynamic environment with rapidly changing network demands and services, while also
guaranteeing data consistency as services change. It is quite challenging to design a
unified model that can integrate multiple networks and assure services with standardized
service element interfaces. There is a need to develop agile software platforms and
intelligent interfacing with data engines and other resources. Operators also need to
consider defining service elements such as physical, logical, virtual, and communication
reference interfaces to establish their relationship to different technical networking
domains to ensure optimal performance in dynamic networks.

CSPs have the opportunity to design a new Service Assurance model for Hybrid
Networks considering Cloud Computing existing service models such as Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Application as a Service (AaaS)
(these services are deployed as public, private and hybrid clouds) in order to generate
new revenue streams. But all these aspects need to be seamlessly included in the
monitoring processes.

6.3.3.3 Standardized Software Development

Harmonization of the communications between DevOps teams is another key challenge,
which includes defining the business processes and determining the correct tools required
to meet the processes. Insufficient communication between DevOps teams can become
extremely problematic and transiting to DevOps can be risky for enterprises if not
handled appropriately.

Another difficulty is that there is no well-established telecom standardization of
DevOps practices. DevOps practices are still in their infancy, and new DevOps tools
keep evolving. At present, due to these reasons, commercial transiting in Telecoms
into DevOps is complex. Furthermore, structuring DevOps practices to high-reliability
systems (networks) is still an area of intense investigation [309].

CSPs have the opportunity, as well as the challenge to develop a unified technology
platform that can integrate third-party network application functions/virtual network
functions/ application functions and combine software-driven technologies such as SDN,
NFV, and MEC in order to fulfill the needs of new business verticals (as handled in
5G networks). The ETSI defined OSM-MANO architecture, an orchestration system
that is being developed over the last years to create a unified technology platform for
third-party network application functions but still has a very basic Service Assurance,
and these efforts should be pursued.
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