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Institute of Telecommunications
Warsaw University of Technology

Warsaw, Poland
{m.mycek,m.pioro,a.tomaszewski}@tele.pw.edu.pl

Amaro de Sousa
Instituto de Telecomunicações
DETI, Universidade de Aveiro

Aveiro, Portugal
asou@ua.pt

Abstract—In Software Defined Networks (SDNs), a number
of controllers are placed in a given data plane network. In a
standard logically centralized control plane, each controller acts
simultaneously as a primary controller for some switches and as
a backup controller for other switches, and the controller place-
ments must meet given switch-controller (SC) and controller-
controller (CC) delay bounds. Then, the SDN should be resilient
to network disruptions such as node-targeted attacks. To improve
the SDN resilience to this kind of disruptions, we assume that
some controllers are deployed only as backup controllers so that
they take over the functions of primary controllers only in case
of disruption. We propose an optimization model that solves
a relevant primary and backup controller placement problem,
where a minimum number of primary controllers minimizing the
maximum SC delay is first established, and then a joint primary
and backup controller placement maximizing the resilience of the
SDN against a list of the most dangerous node-targeted attacks
is determined. A numerical study illustrating the merits of the
proposed optimization methodology is presented.

Index Terms—Targeted node attacks, SDN controllers, net-
work resilience optimization

I. INTRODUCTION

In Software Defined Networks (SDNs), multiple controllers
are placed in a given data plane network composed of switches
and interconnecting links. When a packet of a new traffic flow
reaches a switch, it queries its primary controller (PC in short),
which then replies with the routing decision on how to forward
the new flow. So, the maximum switch-controller (SC) delay
(i.e., the delay between each switch and its PC) must be
bounded so that the switches do not wait too long for routing
decisions. In a standard logically centralized control plane [1],
all controllers have a complete view of the network state, and
the PC of each switch is the closest controller in terms of
delay. So, all controllers act simultaneously as primary for
some switches and backup controllers (BC in short) for others,
and each new routing decision taken by a controller is sent
to all other controllers so that the complete network state
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information is constantly updated. The time interval until the
complete network state view is reached is, in the worst case,
the longest delay among all pairs of controllers, and hence
the maximum controller-controller (CC) delay must also be
bounded. Finally, the controller placement must be resilient
to network disruptions, such as natural disasters [2], multiple
link failures [3] or node-targeted attacks [4]. To improve
the SDN resilience to these kinds of disruptions, in general
additional controllers are required. However, the SC and CC
delay bounds limit the potential gains that can be reached
when all controllers act as PCs.

Here we consider that some controllers are deployed only as
BCs [5]; they are not active in the normal state and they take
over the functions of PCs only in case of disruption. Since
these controllers acting solely as BCs do not participate in
the routing decisions in the normal state, they do not require
significant processing power and their placement does not
need to meet the SC and CC delay bounds. We address a
primary and backup controller placement problem in which
only the PC placement must meet given SC and CC delay
bounds. We propose an optimization model where a minimum
number of PCs minimizing the maximum SC delay is first
established, and then a joint primary and backup controller
placement maximizing the resilience of the SDN against a list
of the most dangerous node-targeted attacks is determined.

The paper is organized as follows. Section II describes the
basic concepts behind the addressed problem and how the
resilience to node-targeted attacks is measured. Sections III
and IV describe the optimization methodology and Section V
presents numerical results illustrating its merits. Finally, con-
cluding remarks are given in Section VI.

II. NETWORKS, CONTROLLER PLACEMENTS, ATTACKS,
AVAILABILITY MEASURES

The data plane network is modeled by an undirected con-
nected graph G = (V, E), with the set of (switching) nodes V
(of size V ), and the set of links E ⊆ V |2|. The controllers are
collocated with a selected subset of the nodes in V , denoted
by S (where S ⊆ V). A node with a collocated controller is
named a controller node and each node can be equipped with
at most one controller (either primary or backup).



TABLE I
SUMMARY OF GENERAL NOTATION

V set of nodes (V := |V|)
E set of links (E := |E|)
S set of nodes with controllers
A set (family) of attacks
V(a) set of nodes affected by attack a ∈ A (V (a) := |V(a)|)
C(a) set (family) of components c resulting from attack a ∈ A
V(c) set of nodes of component c (V (c) := |V(c)|)

Y (a, c) binary indicator equal to 1 iff V(c) ∩ S 6= ∅ (c ∈ C(a))
f(c) metric of component c
M(a) network availability measure defined for attack a
M(A) network availability measure defined for family of attacks A
X |2| set of all 2-element subsets of a given set X
|X | number of elements in set X

In this paper, we consider a set A of node-targeted attacks
aiming to shutdown a number of nodes. Each attack a ∈ A is
identified with the set of nodes V(a) ⊆ V , of size V (a). When
attack a is conducted, all nodes v in V(a) are deleted from the
network together with their sets of incident links (if a deleted
node v is a controller node, the collocated controller is also
deleted). So, the surviving network graph, denoted by G(a) =
(W(a), E(a)), is the maximal subgraph of G induced by the
set of surviving nodes V ′(a) := V \ V(a), and hence E(a) :=
E ∩W(a)|2|. After attack a the set of surviving controllers is
equal to S(a) := S ∩ V ′(a).

Note that as a consequence of attack a, the surviving graph
G(a) is in general split into a set C(a) of (disjoint) connected
components. Such a component c is identified with the set of
its nodes V(c) (of size V (c)). The resilience impact of each
attack a ∈ A is expressed by the network availability measure
M(a) (referred to as NA measure or simply NAM):

M(a) :=
∑

c∈C(a) f(c)Y (a, c). (1)

In this definition, Y (a, c) is a binary indicator equal to 1 when
a given component c ∈ C(a) contains a controller node (i.e.,
when V(c) ∩S 6= ∅), and to 0 otherwise (in the former case,
the component is named a surviving component). The quantity
f(c), in turn, is a component metric defined for the component
(in fact, for the subsets of V) assuming that an higher value of
M(a) represents a lower (negative) impact of attack a. Here,
we consider two particular metrics f(c), both depending only
on the size V (c) of the component c:

f(c) := V (c) f(c) :=
(
V (c)
2

)
. (2)

Using the left (linear) metric, the quantityM(a) measures the
overall number of nodes in the surviving components, while
using the right (quadratic) metric,M(a) measures the overall
number of node-pairs in the surviving components.

Finally, for a given set of attacks A, we define two NA
measures, namely the average NAM and the worst-case NAM:

M(A) :=
∑

a∈A w(a)M(a) M(A) := mina∈AM(a). (3)

In the left measure, w(a), a ∈ A, are given attack weights
representing, for example, a given probability distribution
characterizing the relative frequency of the considered attacks.

TABLE II
NOTATION USED IN OPTIMIZATION FORMULATIONS

P ′, P ′′ minimum and maximum number of PCs
D(1), D(2) upper bounds on the SC and CC delay
d(v, w) length (delay) of shortest paths between nodes v and w
W(v) set of nodes w with d(v, w) ≤ D(1)

U set of node pairs {v, w} with d(v, w)>D(2) (U⊆V|2|)
d variable expressing the upper bound on the SC delays
yv binary variable equal to 1 iff node v contains a PC
zvw binary variable equal to 1 iff the controller serving switch

v is placed at node w
S(a, c) binary coefficient equal to 1 iff component c ∈ A

contains a PC
P set of generated PC placements

Y (v, p) binary coefficient equal to 1 iff node v belongs to
placement p ∈ P

up binary variable equal to 1 iff placement p ∈ P is selected
P,B number of PCs and BCs, respectively
xv binary variable equal to 1 iff node v contains a BC
Yv binary variable equal to 1 if node v contains a controller

(primary or backup)
sac binary variable equal to 1 iff component c ∈ C(a)

contains a controller (primary or backup)
Z variable expressing the value of objective function

B, R sets of binary and real numbers

III. PRIMARY CONTROLLER PLACEMENT

This section presents two IP (integer programming)
formulations that optimize placements of PCs taking into
account SC and CC delays and the number of the installed
controllers, i.e., solve the PC placement problem (PCPP).
The notation used throughout this section (and beyond) is
summarized in Table II.

A. Primary controller placement for min-max SC delay

We first consider the problem of finding a PC placement
that minimizes the maximum SC delay while keeping the
CC delay below the assumed upper bound D(2). For that we
introduce the following integer programming (IP) formulation.

PCPP/SC:

min d (4a)
P ′ ≤

∑
v∈V yv ≤ P ′′ (4b)

yv + yw ≤ 1, {v, w} ∈ U (4c)∑
w∈W(v) zvw = 1, v ∈ V (4d)

zvw ≤ yw, v ∈ V, w ∈ W(v) \ {v} (4e)
zvv = yv, v ∈ V (4f)
d ≥

∑
w∈V d(v, w)zvw, v ∈ V. (4g)

yv ∈ B, v ∈ V; zvw ∈ B, v ∈ V, w ∈ W(v); d ∈ R. (4h)

Above, binary variables yv determine the PC locations, i.e.,
yv = 1 iff a PC is placed at node v. Thus, constraint (4b)
assures that the number of located controllers is between the
assumed values P ′ and P ′′. Then, constraint (4c) (where U
is the set of all node-pairs whose distance, measured as the
delay, exceeds the upper bound D(2)) enforces compliance
with the CC delay requirements. The next group of constraints
determine, using binary variables zvw, the assignment of



nodes to controllers. Assuming that zvw = 1 iff node v is
assigned to the controller at node w, constraint (4d) assures
that every node is assigned to exactly one controller from the
setW(v) (i.e., the set of nodes for which the delay from node
v is not greater than the upper bound D(1)), while constraint
(4e) implies that if zvw = 1 then node w must contain a
controller. Constraint (4f), in turn, makes sure that the nodes
equipped with controllers are assigned to themselves. Finally,
constraint (4g) assures that the value of variable d is greater
than or equal to the SC delay of each node. As this variable
is minimized by objective (4a), its final value will minimize
the maximum SC delay over the network nodes. �

Below, the sets W(v) defined for D(1) = d∗, where d∗ is
the optimal value of d resulting from solving problem (4), are
denoted by W∗(v), v ∈ V .

B. Minimizing the number of primary controllers

After finding the min-max SC-delay d∗ by means of
formulation (4) and defining the sets W∗(v), v ∈ V, we
can now find the minimum number of PCs that assures the
min-max SC delay D(1) = d∗ and the assumed CC delay
D(2). The appropriate IP formulation is as follows.

PCPP/NP:

min
∑

v∈V yv (5a)∑
v∈V yv ≥ P ′ (5b)

yv + yw ≤ 1, {v, w} ∈ U (5c)∑
w∈W∗(v) yw ≥ 1, v ∈ V. (5d)

yv ∈ B, v ∈ V. (5e)

Above, only constraint (5d) needs explanation: it simply
forces that, for each v ∈ V , at least one node in W∗(v)
contains a controller. Note that v ∈ W∗(v), v ∈ V . �

Below, the resulting minimal value (5a) is denoted by P ∗.

IV. JOINT OPTIMIZATION OF PRIMARY AND BACKUP
CONTROLLER PLACEMENT

In this section we describe a two-phase approach to joint
optimization of primary and backup controller placement
aiming at maximizing network resilience to attacks from a
given list. In the first phase we prepare a list of feasible
PC placements and then, in the second phase, we select
a placement from this list and find a corresponding BC
placement that together maximize the resilience in question.

A. Phase 1: preparing lists of primary controller placements

Having found the min-max SC delay d∗ (primary criterion,
(4)) and the minimum number P ∗ of PCs that assure this
min-max SC delay (secondary criterion, (5)), we are in a
position to prepare a list of PC placements feasible with
respect to these criteria (and the original CC delay bound).
This is done by means of the following IP formulation.

PCPP/LPCP:

min 1
V

∑
v∈V

∑
w∈W∗(v) d(v, w)zvw (6a)

∑
v∈V yv = P ∗ (6b)

constraints (4c)-(4f)∑
v∈S(p) yv ≤ P ∗ − 1, p ∈ P, (6c)

yv ∈ B, v ∈ V; zvw ∈ B, v ∈ V, w ∈ W∗(v) (6d)

where P denotes the current list of PC placements, and S(p)
denotes the set of nodes equipped with PCs in placement p ∈
P . Hence, constraint (6c) forces the generated placement to
differ from the placements on list P by at least one node. The
rest of the constraints, together with objective (6a), assure that
the constructed solution is feasible (with respect to d∗, P ∗ and
D(2)) and minimizes the average SC delay. �

Formulation PCPP/LPCP is used iteratively, starting with
an empty placement list P . After each iteration, a newly
found placement is added to the list and the formulation
is resolved. The iterations are stopped when an assumed
number of placements is generated or the formulation becomes
infeasible. Note that the parameters d∗ and P ∗ assumed in
the above formulation could be slightly increased if doing so
will result in a noticeable reduction in the average SC delay
minimized by (6a).

B. Phase 2: primary/backup controller placement problem

In the second phase of the considered procedure we solve
the joint primary and BC placement problem by means of one
of the following IP formulations (which are extensions of the
formulation presented in [5], [6]).

The first formulation maximizes the worst-case NA
measure (3) for the assumed list of attacks A.

PBCPP/WCNA:

max Z (7a)∑
p∈P up = 1 (7b)∑
v∈V xv = B (7c)

Yv = xv +
∑

p∈P Y (v, p)up, v ∈ V (7d)

sac ≤
∑

v∈V(c) Yv, a ∈ A, c ∈ C(a) (7e)

Z ≤
∑

c∈C(a) f(V (c))sac, a ∈ A (7f)

up ∈ B, p ∈ P; xv, Yv ∈ B, v ∈ V (7g)
sac ∈ B, a ∈ A, c ∈ C(a); Z ∈ R. (7h)

In the formulation, binary variable up is equal to 1 iff
placement p ∈ P is selected, and constraint (7b) assures that
exactly one placement is actually selected. Constraint (7c), in
turn, assures that exactly B BCs are deployed. Next, constraint
(7d), where each Y (v, p) is a binary coefficient equal to 1 iff
placement p contains node v (i.e., iff v ∈ S(p)), sets the value
of binary variable Yv to 1 iff node v contains a BC or a PC
from the selected placement p with up = 1 (and assures that at
most one controller is placed in v). Constraint (7e) forces the
value of binary variable sac to 0 when component c ∈ C(a)
does not contain any controller, and constraint (7f) assures
that the value of variable Z is greater than or equal to value
of the NA measure for each attack a. Finally, the optimization
goal is achieved because Z is maximized by objective (7a).
�



Note that when the list P contains just one element, then
PBCPP/NA reduces to finding a BC placement maximally
enhancing a given placement of PCs. In this case the binary
variables up can be skipped.

The second formulation, a modification of PBCPP/WCNA,
maximizes the average NA measure (3).

PBCPP/ANA:

max
∑

a∈A w(a)
∑

c∈C(a) f(V (c))sac (8a)

constraints (7b)-(7e), (7g)
sac ∈ B, a ∈ A, c ∈ C(a). (8b)

V. NUMERICAL STUDY

Below we discuss numerical results obtained for the net-
work cost266 described in SNDlib [7] consisting of V = 37
nodes and E = 57 links, and depicted in Figure 1. In the
following, the delay between a pair of nodes is assumed to
be proportional to the length (in km) of their shortest path.
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Fig. 1. An example network topology.

Table III characterizes PC placements for two CC delay
bounds from column 1. Column 2 shows the min-max SC
delay d∗ optimized via PCPP/SC (formulation (4) with P ′=2,
P ′′ = 8), achieved for the number of controllers P and the
average SC delay, given in columns 3 and 4, respectively.
Columns 5-6 show the results of PCPP/NP (formulation (5)):
the minimum number of PCs P ∗ needed to meet the SC delay
bound d∗ (column 5), and the resulting average SC delay
(column 6). As expected, PCPP/NP decreases the number of
controllers (from P = 8 to P ∗ = 3 for CC delay 1500, and
from P = 8 to P ∗ = 5 for CC delay 2000). The last two
columns show the results from PCPP/LPCP (formulation (6))
for fixed d∗ and P ∗. The generated lists consist of 5 and 8
placements (column 7), and contain all feasible solutions of
PCPP/LPCP. The minimized average SC delays of the first
(the best in this aspect) and of the last (the worst) placement
in each list are shown in column 8. Even in the worst cases the
average SC delays are substantially smaller than those shown
in column 6.

Note also that the admissible CC delay equal to 2000 allows
the PCs to be further apart in the network as compared to
CC delay 1500. Hence, as seen in Table III, the larger CC
delay bound reduces the maximum (column 2) and the average
(column 8) SC delays, but at the expense of requiring more
PCs (column 5).

In all variants of controller placements considered below
we used a list of |A| = 12 worst-case node attacks, each
targeting a set of V (a) = 6 nodes. To compute the first
(most-dangerous) attack a = 1, we solve the critical node
detection (CND) problem that finds a set of A nodes (in our
case A = 6) whose removal minimizes the number of node
pairs that can communicate in the surviving network (we used
one of the CND IP formulations described in [8]). Then, the
IP formulation is extended by a constraint that eliminates the
current list of the sets of critical nodes from the feasible
solution set of the problem (this constraint is analogous to
(6c)) and solved to compute the nodes of the next attack. This
process is repeated iteratively until 12 attacks are generated.
Table IV presents the sets of nodes targeted by the attacks
together with the number

∑
c∈C(a)

(
V (c)
2

)
of node pairs that

are able to communicate after each attack a = 1, 2, . . . , 12.
Tables V and VI show the results of joint controller

placement optimization for the above described attack list
A. All four cases of network availability measures (NAMs)
implied by definitions (1)-(3) are considered (see column 2
in Tables V-VI). These are: the average (“avg”) or the worst-
case (“w-c”) NAM with either linear (“L”) or quadratic (“Q”)
metric. (The weights w(a) used in the average NAM were
uniformly set to 1.)

We solved PBCPP for two settings indicated in column 1
of Tables V-VI: “S” (single) where the list S contains only
one element (i.e., the placement with the minimum average
SC delay obtained in the first iteration of PCPP/LPCP), and
“F” (full) with all feasible placements. In both tables, the
columns, starting with the third, show the optimized values
of NA measures for the increasing number B of the deployed
BCs.

Before analyzing the results, let us note that 31 is the upper
bound on the optimal values of both linear NAMs (avg/L and
w-c/L) since 31 is the number nodes remaining after removing
the 6 attacked nodes. For the worst case quadratic NAM (w-
c/Q) the upper bound is 124 since, as seen in Table IV, as a
result of the most dangerous attack (a = 1) there are in total
124 node pairs in the surviving components. Finally, for the
average quadratic NAM (avg/Q), its upper bound is 134.92 –
the average of the 12 values in the second column of Table IV.
Accordingly, Tables V-VI present the results up to the values
of B for which these upper bounds are reached.

Looking at the third column (“B = 0”) and the four
rows marked with “S” in Table V, we notice that the levels
of protection against the considered attacks provided by the
optimal PC placement without BCs are substantially lower
than the upper bounds (31,31,134.92, and 124, respectively).
Yet, as shown in the remaining columns, adding BCs gradually
improves these levels to finally reach the upper bounds in



TABLE III
RESULTS FOR THE PRIMARY CONTROLLER PLACEMENTS

1 2 3 4 5 6 7 8
CC delay bound min-max SC delay (d∗) P (4) avg. SC delay (4) P ∗ avg. SC delay (5) list size (|P|) avg. SC delay (6)

1500 1529 8 788.0 3 810.8 5 656.3 – 727.5
2000 1168 8 446.7 5 708.5 8 517.9 – 559.9

TABLE IV
THE 12 WORST-CASE NODE-TARGETED ATTACKS WITH |V(a)| = 6

a
∑

c

(V (c)
2

)
V(a)

1 124 Berl Paris Buda Marseil Frankf London
2 127 Berl Paris Buda Lisbon Marseil Frankf
3 130 Berl Paris Buda Marseil Frankf Amst
4 132 Berl Paris Milan Buda Marseil Frankf
5 132 Berl Crac Paris Marseil Frankf London
6 135 Berl Crac Paris Lisbon Marseil Frankf
7 136 Berl Crac Paris Milan Marseil Frankf
8 138 Berl Crac Paris Marseil Frankf Amst
9 138 Berl Paris Buda Zurich Marseil Frankf
10 142 Berl Paris Wars Milan Marseil Frankf
11 142 Berl Paris Wars Marseil Frankf London
12 143 Berl Crac Paris Zurich Marseil Frankf

TABLE V
OPTIMAL PLACEMENTS (CC DELAY BOUND D(2) = 1500, MAX SC
DELAY D(1) = 1529, NUMBER OF PRIMARY CONTROLLERS P = 3)

NAM B=0 B=1 B=2 B=3 B=4 B=5
S avg/L 20.92 26.17 29.58 30.50 30.83 31.00
S w-c/L 14.00 22.00 28.00 29.00 30.00 31.00
S avg/Q 113.08 124.50 134.00 134.75 134.92
S w-c/Q 78.00 109.00 124.00
F avg/L 24.33 29.58 30.50 30.83 31.00
F w-c/L 22.00 28.00 29.00 30.00 31.00
F avg/Q 122.58 134.00 134.75 134.92
F w-c/Q 109.00 124.00

question (the consecutive bounds are reached when 5, 5, 4 and
2, respectively, controllers are added). When the full list of 5
PC placements is considered (the four rows marked with “F”),
the optimized combination of primary and backup controllers
improves the protection levels for all values of B, and the
upper bounds are reached using a smaller number of BCs as
compared to the single PC placement case “S”.

TABLE VI
OPTIMAL PLACEMENTS (CC DELAY BOUND D(2) = 2000, MAX SC
DELAY D(1) = 1168, NUMBER OF PRIMARY CONTROLLERS P = 5)

NAM B=0 B=1 B=2 B=3 B=4
S avg/L 29.42 30.33 30.67 30.83 31.00
S w-c/L 28.00 28.00 30.00 30.00 31.00
S avg/Q 134.00 134.75 134.92
S w-c/Q 124.00
F avg/L 29.75 30.67 30.83 31.00
F w-c/L 28.00 30.00 30.00 31.00
F avg/Q 134.17 134.92
F w-c/Q 124.00

Analogous observations are valid for the second CC delay
case illustrated in Table VI. In this case, however, the number
of BCs needed to reach the upper bounds of different NAMs
is smaller than for the case considered in Table V. This is
because now the number of PCs (equal to 5) is greater than

before (equal to 3).
All the considered optimization problems solve very

quickly. Using AMPL/CPLEX 20.1 and a Hewlett-Packard
HP DL380 G9 server (Xeon 10C processors) with access to 6
logical processors and 64 GB RAM, all the problem instances
reported in Tables V-VI were solved to optimality in less than
several tens of milliseconds. (For the cases with |V(a)| > 6
the running times never exceeded 1 second.) As far the size
of the problem is concerned, for the instances examined in
the upper part of Table V there are 138 variables and 103
constraints. Finally, we note that for a network with 75 nodes
and 99 links that we also examined, analogous values were
210 and 150 while the running times never exceed 5 seconds.

VI. CONCLUDING REMARKS

In this paper, we proposed a set of optimization models to
solve the primary and backup controller placement problem
where some controllers are only deployed as BCs. For a
given CC delay bound, we first find a PC placement that
minimizes the maximum SC delay and find the minimum
number of PCs needed to reach that min-max SC delay.
Next, we generate a list of feasible PC placements and find
the particular placement that, together with a given number
of BCs, maximizes resilience (evaluated for four different
variants of network availability measures) of the SDN against
a given list of node-targeted attacks. Finally, we presented
a numerical study illustrating the merits of the proposed
methodology for a well-known network topology.
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