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A B S T R A C T   

The design of networks which are robust to multiple failures is gaining increasing attention in areas such as 
telecommunications. In this paper, we consider the problem of upgrading an existent network in order to 
enhance its robustness to events involving multiple node failures. This problem is modeled as a bi-objective 
mixed linear integer formulation considering both the minimization of the cost of the added edges and the 
maximization of the robustness of the resulting upgraded network. As the robustness metric of the network, we 
consider the value of the Critical Node Detection (CND) problem variant which provides the minimum pairwise 
connectivity between all node pairs when a set of c critical nodes are removed from the network. We present a 
general iterative framework to obtain the complete Pareto frontier that alternates between the minimum cost 
edge selection problem and the CND problem. Two different approaches based on a cover model are introduced 
for the edge selection problem. Computational results conducted on different network topologies show that the 
proposed methodology based on the cover model is effective in computing Pareto solutions for graphs with up to 
100 nodes, which includes four commonly used telecommunication networks.   

1. Introduction 

The design of networks which are robust to multiple failures is 
gaining increasing attention. In the area of telecommunications, which 
has motivated this work, multiple failures can occur due to many 
different reasons, as natural disasters (Gomes et al., 2016) or malicious 
human activities (Furdek et al., 2016), and different techniques are 
being investigated to enhance the preparedness of telecommunication 
networks for such events (Rak and Hutchison, 2020). Depending on the 
causes, multiple failures might involve only edges or nodes and edges (a 
node failure implies that its incident edges also fail). For example, in 
malicious human attacks, node shutdowns are harder to realize but they 
are the most rewarding in the attacker’s perspective as the shutdown of a 
single node also shuts down its incident edges. Here, we address the case 
of multiple node failures as they are the most harmful cases of malicious 
human attacks. 

In this work, we consider the minimum cost network upgrade 
problem with maximum robustness to multiple node failures (for short, 
robust network upgrade problem, RNUP). Given an undirected complete 
graph G = (N, En) and a subset of edges E0⊂En, representing an existent 
network topology, the RNUP aims to determine a set of additional edges 

E′ from En⧹E0, that maximizes the robustness of the upgraded graph 
GU = (N, E0 ∪ E′

) to multiple node failures while minimizing the total 
cost of the added edges. The robustness of the graph is measured by the 
lowest pairwise connectivity value (i.e., the lowest number of node pairs 
that have connectivity in the remaining graph) among all the possible 
scenarios of c removed nodes. 

Concerning the robustness value of an upgraded graph, it can be 
computed with the optimal solution of an optimization problem, 
commonly named Critical Node Detection (CND). For a given graph and 
a given number c of nodes, the most common CND variant is the opti
mization problem that consists of computing the set of c nodes, named 
critical nodes, such that their deletion maximally degrades the network 
connectivity according to a given connectivity metric. Therefore, the 
optimal value of the CND variant considering the pairwise connectivity 
minimization represents the worst degradation that the deletion of any 
set of c nodes can impose in the given graph in our RNUP. 

Note that, in some contexts, the determination of a set of critical 
nodes of a given graph is the ultimate goal of the optimization problem 
as, for example, the identification of the communities to be immunized 
in the spread of diseases (de Sousa et al., 2019). In other contexts, as the 
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one addressed in this work, the CND problem is only one part of a more 
general problem. 

The use of the CND value as a metric to evaluate the robustness of 
networks to multiple node failures has been recently used in the pre
paredness of telecommunication networks to large-scale failures, as in 
de Sousa et al. (2017) where some nodes of the network are optimally 
selected to be made robust such that they never fail and in Barbosa et al. 
(2020) where the network upgrade problem (i.e., the optimal selection 
of new edges to be added to an existent network) is addressed. In both 
cases, for a given budget (in the robust nodes and in the new edges, 
respectively), the aim is to improve as much as possible the worst 
degradation imposed by the failure of the critical nodes of the resulting 
upgraded network. By considering the budget as a constraint, these 
works address a single objective optimization problem. 

When dealing with multi-objective optimization problems, the main 
objective is to obtain optimal Pareto solutions (Caballero et al., 2002; 
Shukla and Deb, 2007). Instead of considering a given budget, the main 
goal of this work is to obtain the optimal Pareto frontier between 
minimizing the total cost of the edges added to the existent topology and 
maximizing the CND value of the upgraded topology GU. This approach 
allows to generate detailed information regarding the trade-off between 
the upgrade cost and the gains in robustness resulting from that upgrade. 

There are very few works that seek to enhance the robustness of a 
network to multiple node failures by increasing the topology connec
tivity through the addition of new links. To the best of our knowledge, in 
the context of network design, the recent paper (Hadian et al., 2021) is 
the unique to consider two objectives. One of these objectives is common 
to our work (minimizing the link insertion cost). Regarding the other 
objective, the authors aim to maximize the network technical power 
(measured in terms of total potential for sending and receiving flow on 
all nodes) which leads to a simpler bi-objective problem. Different ap
proaches are designed to find non-dominated solutions, but the purpose 
is not to obtain the complete Pareto frontier. In Natalino et al. (2019), at 
the infrastructure level of optical networks, the robustness to link cut 
attacks is enhanced by increasing the topology connectivity with sparse 
link addition. In Barbosa et al. (2018) and Barbosa et al. (2020), the 
network upgrade problem aims to identify a set of links, within a given 
link length budget, to be added to an existing topology in order to obtain 
the upgraded network that maximizes the robustness in case of a 
simultaneous failure of a set of c critical nodes. In these works, the 
problem is solved by resorting to heuristic methods: a multi-start greedy 
randomized method in Barbosa et al. (2018) and a greedy deterministic 
algorithm in Barbosa et al. (2020). To the best of our knowledge, the 
robust network upgrade problem (as presented in this work) has never 
been addressed with exact methods. 

Contrary to the RNUP, the CND problem has been extensively 
addressed in different network contexts where, depending on the 
context, different connectivity metrics have been considered, i.e., 
minimizing the pairwise connectivity, maximizing the number of con
nected components, minimizing the number of nodes of the largest 
connected component size, etc (see Lalou et al., 2018, for a recent sur
vey). Many of these variants assume a given number c of critical nodes, 
which, in our problem, represents the worst-case number of nodes that 
can simultaneously fail. Moreover, alternative formulations for the CND 
problem have been proposed with different objective functions and 
constraints as, for example, the beta-vertex disruptor (Dinh et al., 2010) 
and the component-cardinality-constrained (Lalou et al., 2016) CND 
variants. As already mentioned, we focus on the CND variant where, for 
a given number c of critical nodes, the aim is to compute a set of c nodes 
that minimizes the pairwise connectivity of the network (Arulselvan 
et al., 2009; Purevsuren and Cui, 2019; Di Summa et al., 2011; Di 
Summa et al., 2012; Ventresca, 2012; Veremyev et al., 2014), a variant 
that has been used in the vulnerability evaluation of telecommunication 
networks to multiple node failures (de Sousa and Santos, 2020; Santos 
et al., 2018). 

Recently, the CND problem itself has been modeled with multi- 

objective formulations. In Ventresca et al. (2018), the CND problem is 
formulated as a bi-objective problem: maximizing the number of con
nected components in a graph while simultaneously minimizing the 
variance of their cardinalities by removing a subset of critical nodes. Six 
known multi-objective evolutionary algorithms are tested and 
compared. In Li et al. (2019), a bi-objective variant of the CND problem 
is studied, where the two conflicting objectives are the minimization of 
the pairwise connectivity of the induced graph and the cost of removing 
the critical nodes simultaneously. Two decomposition based multi- 
objective evolutionary algorithms are modified and improved. In Far
amondi et al. (2019), a multi-objective formulation is proposed to obtain 
a Pareto frontier that considers different trade-offs between conflicting 
objectives of the attacker. Then, using the information from the Pareto 
front two indices are proposed to assess the robustness of a network and 
to identify the critical nodes. Case studies are reported using as objec
tives the minimization of the network connectivity, measured in terms of 
pairwise connectivity, and minimization of the attack total cost. The full 
defender/attacker approach, where the decision maker perspective is 
also taken into account, is left for future research. 

On one hand, contrary to our work, in Faramondi et al. (2019) and Li 
et al. (2019), the minimization of the cost is considered as one of the 
objectives but from the point of view of the attacker (i.e. the cost of 
removing the critical nodes simultaneously). On the other hand, in our 
work, the CND problem is only considered as a tool to evaluate the 
network robustness to multiple node failures. Thus, we consider a 
standard single-objective formulation to the CND problem, and the 
second objective of the proposed RNUP is related to the cost of the edges 
added to the topology to increase its robustness to multiple node 
failures. 

We model the RNUP as a bi-objective problem and provide a path 
formulation. Based on the proposed path formulation for the RNUP 
problem, we propose a general procedure to generate all the points 
belonging to the Pareto frontier that solves two subproblems (an edge 
selection problem and the CND problem) alternately. To enhance the 
procedure, we propose an approach that models the selection of edges as 
a set covering problem. Usually, path formulations are used to ensure 
connectivity. However, in our case, the computational results will show 
that the set covering constraints are much more effective in solving the 
edge selection problem. Two variants are proposed, one based on a row 
generation approach, where cover inequalities are added on the fly, and 
another approach where a characterization of the relevant cover in
equalities is used to select all the inequalities. 

The main computational experiments are conducted on 4 well- 
known network topologies commonly used in telecommunications 
(Orlowski et al., 2010). The results show that using the general pro
cedure can only solve very small size instances. However, using the 
enhanced procedures, all the tested instances are solved considering sets 
of c ∈ {2,3,4, 5,6} critical nodes and the complete Pareto frontier is 
obtained in instances up to c = 4 critical nodes. Additional computa
tional tests are conducted on different topologies generated using three 
well-known graph algorithms: Erdos-Renyi model (Erdös and Rényi, 
1959), Watts-Strogatz small-world model (Watts and Strogatz, 1998) 
and Barabasi-Albert scale-free model (Barabási et al., 1999). These tests 
aim at evaluating the impact of the size of the problem instances on the 
proposed solution procedures. 

1.1. Main contributions 

The original contributions of this work are summarized as follows:  

• the RNUP is introduced and modeled as a bi-objective optimization 
problem using a path formulation;  

• an upgrade algorithm is introduced to determine the complete Pareto 
frontier;  

• a cover model is developed for the edge selection subproblem;  
• two alternative algorithms based on the cover model are proposed; 
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• extensive computational results on different topologies and on 
different sizes are reported, showing the applicability of the solution 
approaches. 

1.2. Paper outline 

The paper outline is as follows. The RNUP is modeled as a bi- 
objective problem in Section 2. Then, a general approach to obtain the 
Pareto frontier is introduced in Section 3. In Section 4, we present two 
alternative approaches based on enhancements of the general algorithm. 
Computational results are reported and discussed in Section 5. In Section 
6, we present the main conclusions of the conducted work. 

2. Robust network upgrade problem 

We consider a network represented by a connected undirected graph 
Gn = (N, En) where N = {1,…, n} is the set of nodes and En = {{i, j} ∈

N × N : i < j} is the set of edges representing all possible edges. Addi
tionally, we denote by E0⊂En the subset of edges corresponding to the 
existing edges. For each candidate edge {i, j} ∈ En⧹E0, parameter lij 
represents the cost of installing an edge between the two nodes i and j in 
an upgraded solution. 

The robust network upgrade problem (RNUP) consists of installing 
new edges to increase the robustness of a given network while mini
mizing the cost with the additional installed edges. We model this 
problem as a general bi-objective optimization problem in Section 2.1 
and provide a mixed integer linear programming (MILP) path based 
formulation in Section 2.2. 

2.1. Bi-objective optimization model 

We model the RNUP as a bi-objective problem. The decisions are the 
new edges to add to the existing network (N,E0). The objectives are the 
minimization of the cost of the added edges and the maximization of a 
robustness metric of the upgraded network. 

Initially, we consider, for each candidate edge {i, j} ∈ En⧹E0, the 
binary decision variable yij that is 1 if edge {i, j} is selected, and 
0 otherwise. The proposed RNUP can be modeled as the following bi- 
objective problem: 

min L :=
∑

{i,j}∈En⧹E0

lijyij (1)  

max z := f
(
E0 ∪

{{
i, j
}
∈ En⧹E0 : yij = 1

})
(2)  

s.t. yij ∈
{

0, 1
}
,
{

i, j
}
∈ En⧹E0. (3)  

where f(E) is a robustness metric of the network GU = (N,E). The first 
objective (1) is to minimize the total cost of the new edges. 

In this work, the robustness metric is given by the objective function 
of the CND problem, that will be denoted by CND(E), i.e., f(E) =

CND(E). The CND problem identifies a set of c nodes whose removal 
from GU minimizes the pairwise connectivity on the remaining graph. 
So, the second objective (2) of the RNUP is to maximize the connectivity 
of the remaining graph assuming that the c critical nodes are removed. 

2.2. Bi-objective mixed integer linear formulation 

Next, we provide a MILP formulation for the bi-objective problem. 
Following the classical models to ensure connectivity between pair of 
nodes (see for instance Shen et al., 2012), we propose a path based 
formulation where a path links each pair of nodes that have 
connectivity. 

Consider the set K of all combinations of c nodes from N (i.e., set of 
all failure scenarios of c nodes). For each K ∈ K , the binary parameter 
αK

i is 1 if and only if node i ∈ N belongs to the node set K. For each edge 

{i, j} ∈ En, we consider two arcs (i, j) and (j, i) obtained from the two 
possible orientations of the edge. The set of all arcs will be denoted by A. 

In addition to variables yij introduced before, we consider the 
following two sets of binary decision variables. For each node pair s, t ∈
N, s < t, for each failure scenario K ∈ K and for each arc (i, j) ∈ A, 
variable xstK

ij is 1 if arc (i, j) belongs to the path between s and t in the 
failure scenario K, and 0 otherwise. Additionally, for each node pair s,
t ∈ N, s < t and for each failure scenario K ∈ K , variable uK

st is 1 if nodes 
s and t remain connected in the failure scenario K, and 0 otherwise. 

For ease of notation, we define variables yij also for the edge set E0 

which are set to 1. Then, the bi-level problem (1)–(3) can be defined by 
the following MILP formulation: 

min L :=
∑

{i,j}∈En⧹E0

lijyij (4)  

max z (5)  

s.t. z⩽
∑

s∈N

∑

t∈N,s<t
uK

st , K ∈ K , (6)  

∑

j∈N:(i,j)∈A

xstK
ij + αK

i ⩽1, s, t ∈ N, s < t, i ∈ N,K ∈ K , (7)  

∑

j∈N:(j,i)∈A

xstK
ji + αK

i ⩽1, s, t ∈ N, s < t, i ∈ N,K ∈ K , (8)  

∑

j∈N:(s,j)∈A

xstK
sj = uK

st , s, t ∈ N, s < t,K ∈ K , (9)  

∑

j∈N:(i,j)∈A

xstK
ij =

∑

j∈N:(j,i)∈A

xstK
ji , s, t ∈ N, s < t, i ∈ N⧹

{

s, t

}

,K ∈ K , (10)  

∑

j∈N:(j,t)∈A

xstK
jt = uK

st , s, t ∈ N, s < t,K ∈ K , (11)  

∑

j∈N:(j,s)∈A

xstK
js = 0, s, t ∈ N, s < t,K ∈ K , (12)  

xstK
ij ⩽y{ij}, s, t ∈ N, s < t,

(
i, j
)
∈ A,K ∈ K , (13)  

yij = 1,
{

i, j
}
∈ E0, (14)  

yij ∈
{

0, 1
}
,

{
i, j
}
∈ En⧹E0, (15)  

xstK
ij ∈

{
0, 1

}
, s, t ∈ N, s < t,

(
i, j
)
∈ A,K ∈ K , (16)  

uK
st ∈

{
0, 1

}
, s, t ∈ N, s < t,K ∈ K , (17)  

z⩾0. (18) 

Again, the objective (4) is to minimize the total cost L of the new 
edges. Then, the objective (5) is to maximize the robustness z of the 
upgraded topology. Constraints (6) guarantee that z is at most the 
pairwise connectivity of the remaining graph after each set K of critical 
nodes is removed. Thus, they ensure that variable z cannot exceed the 
robustness value of any failure scenario K ∈ K . Combined with objec
tive (5), which maximizes z, in an optimal solution, this upper bound is 
attained. 

Constraints (7)–(8) ensure that arc (i, j) does not belong to any path if 
either nodes i or j are critical in each failure scenario K ∈ K . Constraints 
(9)–(11) represent the flow conservation constraints if nodes s and t 
remain connected in the failure scenario K ∈ K . Additionally, con
straints (12) ensure that there will be no flow entering the source node s 
in the flow conservation constraints, i.e., removing the possibility of 
cycles. 
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Notation y{ij} represents decision variable yij if i < j, and variable yji 
otherwise, and then, constraints (13) guarantee that if either arc (i, j) or 
(j,i), with i < j, is used for any path in any failure scenario, then the edge 
{i, j} must exist in the upgraded topology (i.e., yij = 1). Finally, con
straints (14)–(18) are the variable domain constraints. Notice that this 
formulation assumes that edges from the original topology belong to the 
upgraded topology (i.e., yij = 1 for all {i, j} ∈ E0). 

We can observe that this formulation depends on the cardinality of 
K which increases exponentially as a function of the number of nodes if 
c is large. However, for small values of c, the size of K is small. Notice 
additionally that for each K ∈ K , the resulting formulation is compact. 

3. Solution approach: finding the Pareto frontier 

When dealing with bi-objective problems, the most relevant infor
mation from the decision maker’s point of view is to know the Pareto 
frontier allowing to compare the cost of a network upgrade with the 
gains in the given robustness metric. The proposed algorithms are 
designed to derive all the non-dominated solution pairs (L, z) in the 
Pareto frontier, where L is the cost of the added edges and z is the 
robustness value. 

First, in Section 3.1, we present a general algorithm to obtain the 
Pareto frontier which uses two optimization problems, one for 
computing the robustness value of a topology (solving a CND problem) 
and another for selecting a set of edges for the upgraded topology, 
denoted as the Edge Selection Problem (ESP). An Integer Linear Pro
gramming (ILP) formulation for the CND problem is given in Section 3.2 
and a path formulation for the ESP is given in Section 3.3. 

3.1. A general algorithm for the RNUP 

Here, we present a general algorithm that generates a set of pairs (Ls,

zs) that includes all the Pareto optimal solutions of the RNUP. The 
iterative algorithm considers the graph G = (N, E0) and starts with the 
trivial pair (L1, z1) = (0,CND(E0)) belonging to the Pareto frontier. In 
each iteration, a new pair (Ls, zs) is obtained that strictly increases the 
value of z. The iterative step stops when the CND value of the upgraded 

topology zs is maximal, i.e., when zs =

(
n − c
2

)

. The full description of 

the algorithm is given in Algorithm1.  
Algorithm1: General upgrade algorithm 

1: Input: G = (N,E0), c ∈ {1,…, |N|}

2: s←1  
3: (Ls,zs)←(0,CND(E0))

4: while zs <

(
n − c
2

)

do  

5: s←s + 1  
6: Compute set of edges E′ ⫅En⧹E0 such that Ls←

∑
{i,j}∈E′ lij is minimized and 

CND(E0 ∪ E′

) > zs− 1  

7: zs←CND(E0 ∪ E′

)

8: end while  

This algorithm computes the CND value in Steps 3 and 7 and solves 
the ESP in Step 6. These two problems are solved using ILP formulations 
which are described in the following sections. 

3.2. Critical node detection MILP formulation 

Several MILP formulations have been proposed for the CND problem 
(see Arulselvan et al., 2009 and the more recent papers discussing for
mulations enhancements Pavlikov, 2018; Santos et al., 2018). Here, we 
consider the MILP formulation introduced in Santos et al. (2018). 

Aiming to minimize the pairwise connectivity of the graph without c 
critical nodes,consider the following two sets of decision variables: for 
each node t ∈ N, variable vt is 1 if t is a critical node, and 0 otherwise; 
and for each node pair s, t ∈ N, s < t, variable ust is 1 if nodes s and t 

remain connected (i.e., if exists a feasible path connecting end-nodes s 
and t) in graph GU = (N, E) after the removal of the critical nodes, and 
0 otherwise. Additionally, for all s, t ∈ N (with s ∕= t), the notation u{st}

represents the decision variable ust if s < t, and variable uts otherwise. 
Moreover, for each node pair s,t ∈ N,s < t, consider that the set Nst

E ⫅ 
N represents the set of adjacent nodes to s, on graph GU = (N,E), if the 
node degree of s is not higher than the node degree of t, and the set of 
adjacent nodes to t otherwise. 

Then, for a given number c ∈ {1,…, |N|} of critical nodes, a compact 
formulation for the CND problem is given by the following MILP 
formulation: 

min z :=
∑

s,t∈N,s<t
ust (19)  

s.t.
∑

t∈N
vt = c, (20)  

ust + vs + vt⩾1, s, t ∈ N, s < t, {s, t} ∈ E, (21)  

ust⩾u{sk} + u{tk} − 1 + vk, s, t ∈ N, s < t, {s, t} ∕∈ E, k ∈ Nst
E , (22)  

vt ∈ {0, 1}, t ∈ N, (23)  

ust ∈ {0, 1}, s, t ∈ N, s < t. (24) 

The objective (19) is to minimize the pairwise connectivity, i.e., the 
total number of node pairs that have connectivity in the remaining graph 
(N⧹K, EK), with EK = {{i, j} ∈ E : i, j ∕∈ K} and where K = {i ∈ N : v*

i =

1} is the set of critical nodes. Constraint (20) ensures that exactly c nodes 
of N are selected as critical nodes. 

Constraints (21) guarantee that a pair of adjacent nodes in graph 
GU = (N, E) is connected if none of the end-nodes is a critical node. 
Constraints (22) represent a generalization of constraints (21) for each 
pair of nodes s and t that are not adjacent, and guarantee that those 
nodes are connected if there is a non-critical node k ∈ Nst

E connected to 
both s and t. 

Constraints (23)-(24) are the variable domain constraints. As noted 
in Santos et al. (2018), constraints (24) can be replaced by ust⩾0, 
reducing the number of binary variables. Henceforward, the optimal 
value z* of this MILP problem will be represented by CND(E). 

3.3. A path formulation for the ESP 

Next, we consider the optimization problem defined in Step 6 of 
Algorithm1. This optimization problem seeks a set of edges with the 
minimum cost that provides a CND value greater than a given threshold 
r (where, in Step 6, r = zs− 1). 

We denote this problem by ESP(r) which can be modeled as an ILP 
path based formulation as follows: 

min
∑

{i,j}∈En⧹E0

lijyij (25)  

s.t.
∑

{s,t}∈En

uK
st⩾r + 1,K ∈ K ,

(y, x, u) satisfies(7) − (17).
(26) 

Notice that, as the CND value must be integer and it must be greater 
than the threshold r, the right-hand side of (26) is r + 1. The set of edges 
E′

= {{i, j} ∈ En⧹E0 : y*
ij = 1} is the optimal solution of ESP(r) and GU =

(N, E0 ∪ E′

) denotes the upgraded topology. 

Theorem 1. The pairs (L1, z1),…, (LS, zS) generated by Algorithm1 
include all the Pareto optimal solutions to the bi-objective optimization 
problem (1)–(3). 

Proof. Let (L, z) be a Pareto optimal solution not generated by 
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Algorithm1. 
Suppose that Ls < L < Ls+1, for some s ∈ {1,…,S}. From Step 6, Ls+1 

is the optimal value of the subproblem ESP(zs). Then, for each E⫅En, 
with E0⫅E, such that 

∑
{i,j}∈E⧹E0

lij⩽L < Ls+1, we have z⩽zs. Thus, (L, z) is 
dominated by (Ls, zs), which contradicts the assumption that (L, z) is a 
Pareto optimal solution. 

Suppose L = Ls for some s ∈ {1,…, S}. If z < zs, then (L, z) is domi
nated by (zs, Ls) which contradict the assumption that (L, z) is a Pareto 
optimal solution. Consider now the case z > zs. We may assume 
Ls+1 > L, otherwise we could iteratively replace s by s+1 until the 
desirable condition Ls+1 > L is verified. Thus, at Step 6, Ls+1 is the 
optimal value of the subproblem ESP(zs) which contradicts z⩾zs +1 and 
L < Ls+1. Hence, the unique possible case is z = zs. Then, (L, z) must 
coincide with (Ls, zs) for some s ∈ {1, …, S}, which shows that all the 
Pareto optimal solutions are generated by Algorithm1. □ 

Although all the Pareto optimal solutions are generated with Algo
rithm1, some of the solutions obtained with the algorithm may be 
dominated. Fig. 1 presents such an example where solutions (b) and (c) 
are alternative optimal solutions to ESP(2) assuming that the cost pa
rameters lij correspond to the Euclidean distance between nodes i and j. 
However, solution (b) is dominated by solution (c). Hence, if Algo
rithm1 obtains (b) before (c), a dominated solution is generated. 

The next result allows to identify all the dominated solutions 
generated by Algorithm1. 

Proposition 1. A pair (Ls, zs) generated by Algorithm1 is dominated if and 
only if zs < zs+1 and Ls = Ls+1. 

Proof. Suppose that (Ls, zs) is not a Pareto optimal solution. Since the 
robustness value is strictly increasing from each iteration to the next, the 
condition zs < zs+1 is straightforward. 

Given that Ls and Ls+1 are both the minimal objective function values 
of (25) for the thresholds zs and zs+1, respectively, we have that Ls⩽Ls+1. 
Suppose that Ls < Ls+1. Then, Ls− 1⩽Ls < Ls+1 and zs− 1 < zs < zs+1, which 
contradicts the assumption of (Ls, zs) not being a Pareto optimal solu
tion. Thus, Ls = Ls+1. 

The converse implication is straightforward by definition of a Pareto 
optimal solution. □ 

Remark 1. Although it is theoretically possible to obtain a solution 
that is not a Pareto optimal solution, in all instances where the cost lij of 
new links is related with the distance between the nodes i,j ∈ N, none of 
the tested algorithms computed such a dominated solution. This shows 
how rare those dominated solutions are in real-world topologies when 
compared to academic scenarios like the one presented in Fig. 1. 
Moreover, as checking if a solution is dominated can easily be done in 
linear time, we omit the step of verifying if a solution is dominated in all 
the algorithms presented in this paper. 

4. Covering approach to the robust network upgrade problem 

The path formulation for the ESP(r) presented in the previous section 
has the advantage of being a compact model for each set of critical nodes 
K. Nevertheless, it includes many variables, which implies to solve large 

size models in each iteration of Algorithm1. As a consequence, the 
computational results will show (in Section 5.1) that it is only able to 
compute optimal Pareto solutions for a very limited range of instances. 
In order to use Algorithm1 to obtain Pareto frontiers for larger instances, 
a different approach must be considered to optimally solve the RNUP. 

In this section, we introduce an alternative ILP model to ESP(r). This 
model results from transforming the ESP into a set covering problem (see 
for instance Chvatal et al., 1979) and will be called henceforward the 
Cover model. As will be described next, the Cover model has the 
advantage of having a small number of variables, but it has the disad
vantage of including much more constraints (the cover inequalities). In 
order to use the Cover model efficiently, we need to address the issue of 
managing these constraints efficiently. 

Next, we first define the Cover model (Section 4.1). Then, we 
introduce the general algorithm based on the Cover model (Section 4.2). 
Finally, we present two algorithms based on two different strategies to 
generate the cover inequalities: a row generation algorithm (Section 4.3) 
and an algorithm based on the partition of the network into components 
(Section 4.4). The advantages of using this alternative model will be 
discussed later. 

4.1. Cover model for network upgrade 

In order to define the Cover model, first we must introduce some 
notation. Given a set of edges E and a set of critical nodes K⊂N, consider 
the remaining graph GE

K = (N⧹K,EK), with EK = {{i,j} ∈ E : i,j ∕∈ K}. Let 
zE

K be the robustness value of this graph, i.e., the total number of node 
pairs that have connectivity in graph GE

K. 
Moreover, consider the set of edges of an auxiliary graph (N⧹K, EK

)

where two nodes are adjacent if and only if they belong to the same 
connected component in graph GE

K, i.e., EK
=

{
{i, j} ∈ En : i, j ∈ N⧹K have connectivity in GE

K
}
. 

We are interested in those edges that link different connected com
ponents in GE

K, in order to increase the robustness of the upgraded 
network. Given the introduced notation, we now consider the set: 

γE
K :=

{
{i, j} ∈ En : i, j ∕∈ K and {i, j} ∕∈ EK

}
(27)  

which corresponds to the set of candidate edges {i, j} ∈ En such that 
nodes i and j have no connectivity in the remaining graph GE

K. 
Additionally, for a given threshold r for the robustness value, we 

define the family of sets of candidate edges Γ(r) as follows: 

Γ(r) :=
{

γE
K : E⊂En, with E0⫅E, and K ∈ K such that zE

K⩽r
}
. (28) 

The family Γ(r) considers all the topologies GE
K resulting from a 

simultaneous failure of the nodes in K, whose robustness value does not 
exceed the threshold r. Thus, in order to increase the robustness of this 
topology, at least one additional edge from each of these γE

K sets must be 
added. 

Using this observation, we define a set covering problem, denoted by 
Cover(Γ(r)), which includes one cover constraint for each set of candi

Fig. 1. Example where solution (b) is dominated by solution (c) for c = 1 critical node and with lij = 1 in both selected new edges (critical node in a red square and 
selected edge in dashed blue). 
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date edges γE
K ∈ Γ(r) such that zE

K⩽r: 

min
∑

{i,j}∈En⧹E0

lijyij (29)  

s.t.
∑

{i,j}∈γE
K

yij⩾1, γE
K ∈ Γ

⎛

⎝r

⎞

⎠, (30)  

yij ∈
{

0, 1
}
,

{
i, j
}
∈ En⧹E0. (31) 

The objective (29) is to minimize the total cost of the selected 
candidate edges to add to the current topology (N, E0). For a given 
threshold r, constraints (30) are the cover inequalities for each set of 
edges E⊂En, with E0⫅E (i.e., for each upgraded graph), and for each 
critical node set K ∈ K such that zE

K⩽r. These cover inequalities cut off 
all infeasible solutions based on the remaining edge set EK, i.e., a solu
tion with yij = 1, if (i, j) ∈ γE

K, and yij = 0 otherwise (see Proposition 2 
below). Finally, constraints (31) are the variable domain constraints. 

Proposition 2. Given E⊂En and K ∈ K , the incidence vector y of the 
remaining graph GE

K, i.e., yij = 1, for {i, j} ∈ EK and yij = 0, for 
{i, j} ∈ En⧹EK, is violated by the cover inequality (30) defined for γK

E . 

Proof. If {i,j} ∈ EK, then {i,j} ∕∈ γE
K, since EK⫅EK. Thus, yij = 0 for all {i,

j} ∈ γE
K, which implies that constraint (30) is violated by y. □ 

The next result illustrates how the Cover ILP model (29)–(31) can be 
used to optimally solve Step 6 of Algorithm1. 

Theorem 2. Let y* be the optimal solution of Cover(Γ(zs− 1)) for a 
robustness value zs− 1. Then zs > zs− 1, where zs = CND(E0 ∪ {{i, j} ∈ En⧹ 
E0 : y*

ij = 1}). 

Proof. Suppose that zs⩽zs− 1. Given K = {i ∈ N : v*
i = 1}, then as 

zs⩽zs− 1, it follows that γE0∪E′

K ∈ Γ(zs− 1), where E′

= {{i,j} ∈ En⧹E0 : y*
ij =

1}). Setting E = E0 ∪ E′ , and considering yij = 1 for {i, j} ∈ E0 and yij =

y*
ij for {i, j} ∈ En⧹E0, then by Proposition 2, the cover inequality 
∑

{i,j}∈γE
K
yij⩾1 is violated. This contradicts the assumption that y* is a 

feasible solution of Cover(Γ(zs− 1)). □ 

4.2. Cover-based upgrade algorithm 

Here, we propose Algorithm2 that uses the proposed Cover model to 
obtain the Pareto optimal solutions, i.e., in each iteration of the algo
rithm, a candidate solution (Ls, zs) is computed.  

Algorithm2: Cover-based upgrade algorithm 

1: Input: G = (N,E0), c ∈ {1,…, |N|}

2: s←1  
3: (Ls,zs)←(0,CND(E0))

4: while zs <

(
n − c
2

)

do  

5: s←s + 1  
6: y*←optimal solution to Cover(Γ(zs− 1) )

7: Ls←
∑

{i,j}∈En⧹E0
lijy*

ij  

8: zs←CND(E0 ∪ {{i, j} ∈ En⧹E0 : y*
ij = 1})

9: end while  

As input to the algorithm, we are given the network topology G = (N,

E0) to be upgraded and the number of critical nodes c ∈ {1,…, |N|}. The 
algorithm starts by solving the CND problem for the original topology 
(Line 3) and by assigning the first (trivial) Pareto solution. 

The main loop (Lines 4–9) stops when zs reaches the upper bound of 
the problem, i.e., when the CND value of the upgraded topology is 
maximal. First, we increase the current index solution s. Then, the Cover 
model is optimized for the family of cover constraints Γ(zs− 1), i.e., with 
the threshold of the previous candidate solution zs− 1. Finally, the CND of 

the upgraded topology (N, E0 ∪ E′

) is computed, where E′ is the minimal 
cost of the corresponding upgraded topology. 

Theorem 3. The pairs (L1, z1),…, (LS, zS) generated by Algorithm2 
include all the Pareto optimal solutions of the bi-objective optimization 
problem (1)–(3). 

Proof. In order to prove that Algorithm2 includes all the Pareto 
optimal solutions, using Theorem 1, it suffices to show that this algo
rithm generates the same points of Algorithm1. 

Notice that Algorithm2 is obtained by replacing Line 6 of Algo
rithm1 with Lines 6–7. In each iteration of Algorithm2, the Cover 
problem is solved allowing to obtain the minimum cost set of candidate 
edges with value Ls such that, by Theorem 2, zs = CND(E0 ∪ {{i,j} ∈ En⧹ 
E0 : y*

ij = 1}) > zs− 1. Therefore, both algorithms generate the same 
solutions. □ 

In contrast to the path formulation for the ESP, which is compact for 
a set K, the number of cover inequalities (30) increases exponentially 
with the size of the graph and leads to large size models that hardly can 
be solved to optimality even for relatively small instances. The main 
challenge is to devise approaches that use a small number of cover 
constraints to obtain the Pareto frontier. We address this challenge in 
two distinct ways: by using a row generation technique and by splitting 
the set of different topologies into equivalence classes and generate a 
cover constraint for each class. 

4.3. Row generation approach 

Here, we propose a row generation algorithm, where the family of 
inequalities (30) is initially ignored. In each iteration, the relaxed model 
is solved and an upgraded solution with edge set E is obtained. For a 
given threshold r, if zE

K⩽r for some K ∈ K , then a new cut for the edge set 
γE

K is added. This procedure is described in Algorithm3.  
Algorithm3: Row generation 

1: Input: G = (N,E0), c ∈ {1,…, |N|}

2: s←1  
3: (Ls,zs)←(0,CND(E0))

4: v*←optimal solution to CND(E0)

5: Γ←{γE0
K }, where K = {i ∈ N : v*

i = 1}

6: while zs <

(
n − c
2

)

do  

7: s←s + 1  
8: repeat 
9: y*←optimal solution to Cover(Γ)
10: Ls←

∑
{i,j}∈En ⧹E0

lijy*
ij  

11: E′ ←{{i, j} ∈ En⧹E0 : y*
ij = 1}

12: z*←CND(E0 ∪ E′

)

13: v*←optimal solution to CND(E0 ∪ E’)

14: Γ←Γ ∪ {γE0∪E′

K }, where K = {i ∈ N : v*
i = 1}

15: until z* > zs− 1  

16: (Ls, zs)←(L*, z*)

7: end while  

Similarly to Algorithm2, the input is the original network topology 
G = (N, E0) and the number of critical nodes c. The algorithm starts by 
solving the CND problem for this topology and by assigning the initial 
Pareto optimal solution (Lines 3–4). Additionally, the family Γ of edge 
sets corresponding to the active cover constraints (30) is initialized (Line 
5) with the set of candidate edges γE0

K , where K is the set of critical nodes 
of the input graph. 

The main loop (Lines 6–17) ensures that the algorithm stops when zs 
reaches the upper bound. In each loop iteration, a new candidate solu
tion (Ls, zs) is generated. 

The row generation phase is considered in the loop defined by Lines 
8–15. The Cover model is optimized for the family of cover constraints Γ 
(Lines 9–10) and the CND of the current upgraded topology (N, E0 ∪ E′

)

F. Barbosa et al.                                                                                                                                                                                                                                 



Computers and Operations Research 136 (2021) 105453

7

is computed (Lines 12–13). Then, based on the optimal solutions of these 

two optimization problems, the cover cut set γE0∪E′

K is added to family Γ 
(Line 14). This process is repeated until the robustness value z* of 
upgraded topology is higher than the robustness value of the previous 
solution zs− 1. When this happens, the next candidate solution (Ls, zs) is 
assigned to the current solution (Line 16). 

4.4. Cover inequalities from partitions of the set of nodes 

Given a set of critical nodes K ∈ K , the family of edge sets forms an 
equivalence class where two sets EK

1 , E
K
2 ⊂En belong to the same class if 

and only if EK
1 = EK

2 , i.e., graphs GK
E1

= (N⧹K, EK
1 ) and GK

E2
= (N⧹K, EK

2 )

have the same connected components. Each set EK is represented by the 
set EK. Fig. 2 illustrates this concept. 

Hence, if EK
1 , E

K
2 belong to the same class, i.e., EK

1 = EK
2 , then γE1

K =

γE2
K . Consequently, the cover inequality (30) is the same for all the to

pologies belonging to the same class and, in particular, for the topology 
where each component forms a clique. Thus, the inequality (30) can 
alternatively be defined from the node set partition corresponding to the 
topology. 

Therefore, in order to compute the family of cover inequalities (30) 
for a given threshold r (and for each set of critical nodes K ∈ K ), we 
need to consider all the partitions of the node set N⧹K that take into 
account the existing edge set E0 and whose robustness value is not higher 
than the threshold r. The next Example 1 illustrates how the robustness 
value of each partition is calculated. 

Notice that, in general, the robustness value of any topology (and, by 

consequence, any components partition) has the format z =
∑m

i=1

(
ni
2

)

with 
∑m

i=1ni = n − c, where m represents the number of components in 
the remaining graph and each ni represent the number of nodes of 
component i, with i ∈ {1,…,m}. This is a particular property of the CND 
variant used in this work which considers the minimization of the 
pairwise connectivity. 

Example 1. Given a node set K ∈ K , suppose that the remaining graph 
GK

E0 
has three connected components, i.e., N⧹K = C1 ∪ C2 ∪ C3, with C1,

C2,C3⊂N such that C1 ∩ C2 = C1 ∩ C3 = C2 ∩ C3 = ∅. Additionally, 
ni = |Ci|, for each i ∈ {1,2,3}. Thus, n1 + n2 + n3 = n − c. The robust
ness values for the partitions with three and two components are given 
as follows:  

• z
(
C1, C2, C3

)
=

(
n1
2

)

+

(
n2
2

)

+

(
n3
2

)

= zE0
K , corresponding to 

partition {C1},{C2},{C3};  

• z
(
C1 ∪ C2, C3

)
=

(
n1 + n2
2

)

+

(
n3
2

)

, corresponding to partition 

{C1 ∪ C2},{C3};  

• z
(
C1 ∪ C3, C2

)
=

(
n1 + n3
2

)

+

(
n2
2

)

, corresponding to partition 

{C1 ∪ C3},{C2};  

• z
(
C1, C2 ∪ C3

)
=

(
n1
2

)

+

(
n2 + n3
2

)

, corresponding to partition 

{C1},{C2 ∪ C3}. 

Let P K
E0 

represent the set of all partitions of N⧹K such that two nodes 
connected by an edge in E0 must belong to the same set. Associated to 
each partition p ∈ P K

E0
, we consider γp as the set of edges connecting 

pairs of nodes belonging to different sets in p and zp its corresponding 
robustness value. The algorithm based on the set of components parti
tions is described in Algorithm4.  

Algorithm4: Components separation 

1: Input: G = (N, E0) and c ∈ {1,…, |N|}

2: K 0←
{

K ∈ K : zK
E0

<

(
n − c
2

)}

3: s←1  
4: (Ls,zs)←(0,min{zK

E0
: K ∈ K 0})

5: while zs <

(
n − c
2

)

do  

6: s←s + 1  

7: Γ←
{

γp : p ∈ P K
E0

and K ∈ K 0 such that zp⩽zs− 1

}

8: Ls←Cover(Γ)
9: y*←optimal solution to Cover(Γ)
10: zs←CND(E0 ∪ {{i, j} ∈ En⧹E0 : y*

ij = 1})
11: end while  

Algorithm4 is an extension of Algorithm2 where the family of sets of 
edges Γ used to define the cover inequalities is computed in Line 7. In 
order to obtain this family Γ, initially, we need to compute every critical 
node set K ∈ K such that the remaining graph GK

E0 
has multiple com

ponents (Line 2). Then, for each set K ∈ K 0, the corresponding set of 
partitions P K

E0 
is defined. The family Γ is computed by including each 

partition p such that its robustness value zp is not higher than the current 
threshold zs− 1 (Line 7). 

Fig. 2. All the edge sets of the remaining graphs represented in the figure belong to the same class. This class is represented by the set of edges from the graph 
represented in (a). 
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5. Computational results 

All the computational tests reported in this section were obtained 
using the optimization software Gurobi Optimizer version 9.0.0, with 
programming language Julia version 1.4.1, running on a PC with an Intel 
Core i7-8700, 3.2 GHz and 16 GB RAM. 

The main computational results are based on four telecommunica
tion network topologies shown in Fig. 3: Janos-US, Cost266, Germany50 
and Coronet. The information of their nodes (and their geographical 

locations) and edges is publicly available information (Orlowski et al., 
2010). 

In practice, the cost of a new edge between two given nodes in a 
telecommunication network requires the determination of the 
geographical route where the new edge is installed and this information 
is not available. However, there is a strong correlation between the 
distance between two network nodes and the cost of installing a new link 
connecting them and, thus, we assume that the cost lij of installing an 
edge between the two nodes i and j is given by the length (in kilometers) 
of the shortest path over the surface of a sphere representing Earth. 
Table 1 gives, for each network, the following topology characteristics: 
number of nodes |N| and edges |E0| in the existing topologies, average 
node degree δ, total edge length of the original topology L0 =

∑
(i,j)∈E0

lij, 

in kilometers, and average edge length l. In addition, column ‘|En⧹E0|’ 
represents the total number of candidate edges, i.e., the total number of 
binary variables yij in the proposed optimization models. 

The remaining of this section is organized as follows. First, we report 
the results of the tests conducted with Algorithm1 using formulation 

Fig. 3. Network topologies.  

Table 1 
Topology characteristics of each network.  

Network |N| |E0| δ  L0  l  |En⧹E0|

Janos-US 26 42 3.23 25224 600.6 283 
Cost266 37 57 3.08 24970 438.1 609 

Germany50 50 88 3.52 8859 100.7 1137 
Coronet 75 99 2.64 32642 329.7 3729  
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ESP(.) (Section 5.1) and show that only the smallest instance is solved 
with a runtime limit of 2 h. Second, we compare the two algorithms 
based on the Cover model and provide numerical results based on the 
four network topologies previously presented (Section 5.2). Then, we 
provide some additional insights on the Pareto frontier and on the 
performance of the two algorithms (Section 5.3). Finally, we test the 
proposed methodology on other well-known topologies in order to 
assess the scalability of both algorithms on larger graphs (Section 5.4), 
and analyze the effect of increasing the number of edges of the input 
topology (Section 5.5). 

5.1. Testing Algorithm1 using the path formulation ESP(.)

Table 2 presents the results for the Janos-US topology, with c = 2 
critical nodes, obtained with Algorithm1 where the selection of the 
edges is made by solving model ESP(.), as described in Section 3. This 
instance is the easiest one among all the instances reported in this paper. 

Columns ‘L’ and ‘z’ represent the respective values of all the Pareto 
optimal solutions for this instance. Column ‘|K |’ denotes the number of 
critical node sets that need to be considered to obtain each Pareto 
optimal solution (L,z). Notice that there is no need to define constraints 
for scenario failures K ∈ K whose robustness value in the original graph 
zE0

K is higher than the current threshold since these constraints are 
guaranteed by the original topology itself. Columns ‘Rows (pre)’ and 
‘Rows (pos)’ represent the total number of constraints in the path 
formulation ESP(.), before and after the preprocessing phase performed 
by the solver with the default options, respectively. Finally, column 
‘Total Runtime’ gives the accumulated computational time (in the 
format H:MM:SS). 

These results show that the ESP(.) models solved in each iteration 
have a large number of active constraints. Consequently, Algorithm1 
took about 1 h to compute the Pareto frontier of this instance while the 
best proposed algorithm solves this instance in a second (results re
ported next). Moreover, this was the unique instance solved to 

optimality using the path formulation ESP(.) with the runtime limit of 
two hours. Henceforward, we will not report additional results using this 
model. 

5.2. Row generation algorithm vs components separation algorithm 

In order to compare the performance of Algorithm3 (row generation 
algorithm) with Algorithm4 (components separation algorithm), 
Table 3 presents detailed results of running both algorithms considering 
the Germany50 topology with c = 4 critical nodes. 

Once again, columns ‘L’ and ‘z’ represent the respective values of all 
Pareto optimal solutions for this instance. For each algorithm, column 
‘No. ILPs’ represents the number of times that the Cover model was 
optimized to obtain each Pareto optimal solution, column ‘Rows’ gives 
the total number of cover constraints added to the ILP model and column 
‘Runtime’ gives the computational time (in the format H:MM:SS) to 
obtain the solution of each iteration. 

In this instance, both algorithms obtain the complete Pareto frontier. 
Algorithm4 is much faster than Algorithm3 in computing the complete 
Pareto frontier, despite the total number of cover inequalities generated 
by Algorithm4 be much higher than the number generated by Algo
rithm3. This is justified by the fact that Algorithm4 needs to optimize 
only one ILP problem per each Pareto optimal solution. 

Notice also that, in general, Algorithm4 takes a higher running time 
to compute the first Pareto optimal solution. This is due to the fact that 
every node set K ∈ K needs to be processed at the initialization step 
(Line 2 of Algorithm4), in order to compute the family of critical node 
sets K 0 that divide the original topology in multiple connected 
components. 

Next, we show the results of testing both algorithms on the four to
pologies and considering a number of critical nodes c ∈ {2, 3, 4, 5, 6}. 
Moreover, a runtime limit is imposed, forcing the algorithm to stop 
whenever an iteration takes more than 2 h to compute the next Pareto 

Table 2 
Results of Algorithm1 using the ESP(.) model, considering Janos-US with c = 2.  

L  z  |K | Rows (pre) Rows (pos) Total Runtime 

0 181 0 – – 0:00:01 
1475 196 1 236968 172262 0:00:27 
2357 213 3 710820 517198 0:02:36 
2470 232 4 947746 688377 0:05:56 
3940 253 8 1895450 1376043 0:26:18 
4257 276 13 3080080 2235219 0:59:04  

Table 3 
Comparison between algorithms, considering Germany50 topology with c = 4 
critical nodes.    

Algorithm3 Algorithm4 

L  z  No. ILPs Rows Runtime No. ILPs Rows Runtime 

0 640 – – 0:00:01 – – 0:00:05 
54 650 1 1 0:00:01 1 1 0:00:01 
125 675 2 3 0:00:02 1 4 0:00:01 
219 702 9 12 0:00:08 1 44 0:00:02 
244 731 3 15 0:00:03 1 93 0:00:02 
288 762 3 18 0:00:03 1 106 0:00:02 
407 795 3 21 0:00:05 1 117 0:00:03 
545 830 15 36 0:00:31 1 169 0:00:03 
673 864 5 41 0:00:16 1 204 0:00:04 
723 867 4 45 0:00:11 1 227 0:00:04 
900 904 14 59 0:00:47 1 305 0:00:06 
941 906 5 64 0:00:23 1 393 0:00:07 
1294 946 38 102 0:02:36 1 714 0:00:08 
1442 947 23 125 0:02:07 1 910 0:00:11 
2104 990 93 218 0:14:16 1 3641 0:00:43 
4781 1035 500 718 1:53:01 1 15155 0:02:09  

Table 4 
Number of Pareto optimal solutions obtained and the total runtime used to get 
those solutions using Algorithm3 (row generation).  

Network c  2  3  4  5  6  

Janos-US Pareto 
points 

6 10 20 17 19 

Runtime 0:00:02 0:01:27 0:59:04 1:30:09 2:00:59 
Cost266 Pareto 

points 
5 12 16 25 26 

Runtime 0:00:07 0:02:57 0:19:05 3:58:25 3:57:26 
Germany50 Pareto 

points 
3 7 16 17 16 

Runtime 0:00:20 0:07:53 2:14:31 2:58:22 1:20:57 
Coronet Pareto 

points 
6 12 32 27 41 

Runtime 0:06:04 1:32:37 1:00:47 4:39:11 2:28:08  

Table 5 
Number of Pareto optimal solutions obtained and the total runtime used to get 
those solutions using Algorithm4 (components separation).  

Network c  2  3  4  5  6  

Janos-US Pareto 
points 

6 10 24 25 26 

Runtime 0:00:01 0:00:03 0:02:40 4:22:50 1:52:21 
Cost266 Pareto 

points 
5 12 20 30 27 

Runtime 0:00:02 0:00:12 0:08:06 1:21:00 3:25:36 
Germany50 Pareto 

points 
3 7 16 21 19 

Runtime 0:00:05 0:00:48 0:03:50 0:37:28 2:34:58 
Coronet Pareto 

points 
6 13 38 26 0 

Runtime 0:00:38 0:08:48 0:57:38 3:22:32 -  
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optimal solution. 
Tables 4 and 5 present the total number of Pareto optimal solutions 

obtained and the total computational time (in the format H:MM:SS) used 
to get those solutions using Algorithms 3 and 4, respectively. The in
stances for which each algorithm was able to compute the complete 
Pareto frontier are represented in bold. Moreover, whenever the algo
rithm was able to compute only a partial Pareto frontier, the real total 
computational time is the one reported in these tables plus 2 h. 

These results show that, in general, Algorithm4 is again much more 
time-efficient than Algorithm3 when it is possible to compute the 
complete Pareto frontier within reasonable runtime. Additionally, there 
are three instances (Janos-US with c = 4, Cost266 with c = 4 and 
Coronet with c = 3) in which only Algorithm4 was able to compute all 
Pareto optimal solutions. 

Furthermore, when only a partial Pareto frontier was obtained, Al
gorithm4 was able to obtain considerable more optimal solutions than 
Algorithm3. There are two exceptions, i.e., two instances out of the 20 
instances (4 topologies × 5 values of c) where Algorithm3 performed 
better: Coronet topology for c ∈ {5,6}. In these cases:  

• for c = 5 critical nodes, Algorithm4 exceeds the RAM limit when 
computing the 27th Pareto optimal solution;  

• for c = 6 critical nodes, it is not possible to compute set K 0 (Line 2 of 
Algorithm4), i.e., processing the robustness value of each set of c 
nodes K ∈ K is not doable within the imposed runtime of two hours. 

These two instances give us an indication of the scalability limit of 
Algorithm4 (components separation). Conversely, as Algorithm3 (row 
generation) does not require any prepossessing to obtain the initial 
Pareto optimal solutions, this algorithm is able to obtain a partial Pareto 
frontier in a wider range of input topologies. 

5.3. Insights on the computational results 

Next, we provide additional insights on the Pareto frontier of these 
instances. 

First, recall that the robustness value of a solution is the number of 
node pairs that can still communicate if the critical nodes of the topology 
are deleted. Although this number can theoretically be any value be

tween 0 and 
(

n − c
2

)

, where n is the total number of nodes and c is the 

number of critical nodes, only a subset of these values can represent the 
robustness value of a Pareto optimal solution. 

To illustrate this fact, Fig. 4 presents a graphical representation of all 
Pareto-optimal topologies for Germany50 considering c = 3 critical 
nodes. The robustness value zs of each topology is given by: 

(a) z1 =

(
37
2

)

+

(
10
2

)

= 666 + 45 = 711, that corresponds to 

two connected components with 37 and 10 nodes, respectively; 

(b) z2 =

(
43
2

)

+

(
4
2

)

= 903 + 6 = 909, that corresponds to two 

connected components with 43 and 4 nodes, respectively; 

(c) z3 =

(
44
2

)

+

(
3
2

)

= 946 + 3 = 949, that corresponds to two 

connected components with 44 and 3 nodes, respectively; 

(d) z4 =

(
45
2

)

+

(
1
2

)

+

(
1
2

)

= 990 + 0 + 0 = 990, that cor

responds to a connected component with 45 nodes and two isolated 
nodes; 

(e) z5 =

(
45
2

)

+

(
2
2

)

= 990 + 1 = 991, that corresponds to two 

connected components with 45 and 2 nodes, respectively; 

Fig. 4. Graphical illustration of the Pareto frontier for Germany50 topology and considering c = 3 critical nodes (optimal edges in blue and critical nodes in 
red squares). 
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(f) z6 =

(
46
2

)

+

(
1
2

)

= 1035 + 0 = 1035, that corresponds to a 

connected component with 46 nodes and an isolated node; 

(g) z7 =

(
n − c
2

)

=

(
47
2

)

= 1081, that corresponds to the upper 

bound scenario where the upgraded topology is fully robust to any 
failure of 3 nodes. 

In general, for a topology with |N| = 50 nodes and considering c = 3 
critical nodes, it is impossible to obtain an upgraded topology with a 
robustness value z⩾946 that does not belong to the set {946,947,949,
990,991,1035,1081} since these values represent all possible alterna
tives of separating a maximum of 3 nodes from the main component. 

Next, in Fig. 5, we represent all Pareto optimal values obtained 
(using Algorithm3 or Algorithm4, depending on which one obtained a 
higher number of Pareto points) with a set of scatter plots, one for each 
tested topology, with the robustness value (objective function value of 
the CND problem) as function of the edge upgrade cost percentage, i.e., 
L
L0
× 100

(
%
)
. This represents the percentage of additional edge length 

added to the original topology (N,E0). 
As expected, from these scatter plots we can observe that there is no 

cross-over between Pareto frontiers for different numbers of critical 
nodes c, i.e., for similar upgrade percentages, the robustness value de
creases with the increase of the number of critical nodes. 

For c ∈ {2,3,4} (with the exception of Coronet with c = 4 instance), 
the complete Pareto frontier of each instance is obtained. We observe 
that, in general, the last points represent a much higher edge length 
increase with a smaller robustness value increase than the previous 

points. This shows that, in general, we need smaller upgrade costs to 
reach higher robustness gains in the first Pareto optimal solutions and, 
when reaching the last Pareto optimal solutions, we need higher addi
tional cost to reach full (or near full) robust solutions. 

For c ∈ {5, 6}, these plots show how incomplete partial Pareto 
frontiers obtained are. For topologies representing real-world optical 
networks, the proposed algorithms do not obtain the complete Pareto 
frontier for more than c = 4 critical nodes. In practice, though, a partial 
Pareto frontier may be enough as, in general, upgrading a topology to 
have a high robustness value for large values of c implies incurring in 
huge costs. 

Finally, across all tested instances, these Pareto frontiers show that it 
is within the initial 20% of edge upgrade cost that occurs the highest 
improvement in the robustness value of each topology. To further 
analyze this observation, Fig. 6 represents each Pareto frontier obtained, 
in a stair plot format, up to 20% edge upgrade and considering the 

robustness value as a percentage of the upper bound 
(

n − c
2

)

. 

In these plots, we observe that the highest percentage increase in the 
robustness value of the topology (N, E0) for a failure of c ∈ {4,5,6}
critical nodes occurs within the initial 20% of edge upgrade. Moreover, 
across the majority of tested instances, we observe that the initial 5% of 
edge upgrade provides the highest percentage of the robustness value to 
critical node failures for c ∈ {2,3}. 

There exists a clear exception to this trend, which is Janos-US to
pology with c = 2 critical nodes (instance presented in Table 2). In order 
to understand this case, Fig. 7 presents a graphical representation of all 
topologies, each one corresponding to a Pareto optimal solution. 
Analyzing these solutions, in order to upgrade the original topology (a) 

Fig. 5. Scatter plots of all obtained Pareto optimal solution values.  
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to one with higher robustness for c = 2 node failures, the upgraded to
pologies require the addition of at least one long edge across the network 
(compared with the average edge length of the original topology). This 
explains why this topology has different upgrade trends when compared 
to the other three topologies. 

5.4. Testing other topologies and larger sizes 

In this section, we present the results of testing the proposed algo
rithms on different topologies and, in order to assess the scalability of 
the methods, on larger graph sizes. We generated a set of 9 distinct to
pologies based on three well-known graph generation algorithms: Erdos- 
Renyi model (Erdös and Rényi, 1959) (Fig. 8), Watts-Strogatz small- 
world model (Watts and Strogatz, 1998) (Fig. 9) and Barabasi-Albert 
scale-free model (Barabási et al., 1999) (Fig. 10). In the process of 
generating these topologies, whenever a topology is not connected, it is 
discarded and a different topology is generated. This ensures that only 
connected topologies are considered. 

In order to test Algorithms 3 and 4 with these graphs, we considered 
a number of critical nodes c ∈ {2,3,4, 5}. Moreover, the previous run
time limit was again considered (the algorithm stops whenever an 
iteration reaches a 2 h runtime to compute the next Pareto solution). 
Finally, we set unitary costs of installing new edges, i.e., lij = 1 for each 
(i, j) ∈ En, which means that the objective function (1) corresponds to 
minimizing the total number of additional edges. 

Tables 6 and 7 present the results summary (similar to Tables 4 and 
5) of the Erdos-Renyi topologies using Algorithms 3 and 4, respectively. 
For these instances, the complete Pareto frontier was obtained only 
when c = 2 critical nodes were considered (using Algorithm4). 

Moreover, we observe that the number of Pareto optimal solutions ob
tained decreases with the increase of the number of nodes |N|. This fact 
gives us an indication that the partial Pareto frontier obtained tends to 
be more incomplete with the increase of the number of nodes of the 
input topology. 

Next, Tables 8 and 9 present the results summary of the Watts- 
Strogatz small-world topologies using Algorithms 3 and 4, respec
tively. The computational results obtained with the Watts-Strogatz to
pologies are similar to the Erdos-Renyi topologies previously presented, 
with the main difference that Algorithm4 is able to compute complete 
Pareto frontiers for c = 3 critical nodes with |N|⩽100. 

Regarding both algorithms, for the largest topologies (i.e., when 
|N| = 120), the results show that: on one hand, Algorithm3 is barely 
able to compute any Pareto optimal solutions (besides the trivial one); 
on the other hand, Algorithm4 is only able to compute solutions for c ∈

{2,3} (due to the 2 h runtime limit constraint imposed to the pre
processing procedure of this algorithm). Therefore, although both al
gorithms have pros and cons when applied to topologies with |N|⩽100, 
for larger topologies, the proposed methodology is not effective to 
compute the Pareto frontier. 

Finally, Table 10 presents the results obtained using Algorithm3 to 
the three topologies randomly generated using the Barabasi-Albert 
scale-free model. These results are quite straightforward. In all in
stances, Algorithm3 is only able to compute two Pareto optimal solu
tions: the trivial solution (i.e. L1 = 0) and the optimal Pareto pair that 
corresponds to adding only one new edge (i.e. L2 = 1). This algorithm 
cannot compute the Pareto optimal solution with two (or more) addi
tional edges within the runtime limit for any of the topologies generated 
with the Barabasi-Albert model. 

Fig. 6. Stair plots of the Pareto frontiers obtained.  

F. Barbosa et al.                                                                                                                                                                                                                                 



Computers and Operations Research 136 (2021) 105453

13

Moreover, we do not present the computational results using Algo
rithm4 because this algorithm is not able to compute any Pareto optimal 
solution for these topologies (besides the trivial one). To understand the 
reason for this fact, consider the simplest instance (i.e., c = 2 critical 
nodes and the Barabasi-Albert topology with |N| = 80 nodes). When 
removing the critical nodes from this topology, it results in a remaining 
graph with 25 distinct components. Given that this algorithm is based on 
computing the partition set of all possible critical node sets, for this 
specific CND solution only, the Bell number of 25 is, approximately, 

4.6 × 1018 (represents the cardinality of the partition set). Since Algo
rithm4 requires to process all components partitions, this is unworkable 
due to both time and memory constraints. 

5.5. Testing the effect of increasing the number of edges 

Here, for a fixed number of nodes, we present the results of testing 
Algorithm4 (components separation), which from the previous results is 
the best procedure, on graphs with different number of edges. To 

Fig. 7. Graphical representation of the Pareto frontier solutions for Janos-US topology and considering c = 2 critical nodes (optimal edges in blue and critical nodes 
in red squares). 

Fig. 8. Erdos-Renyi randomly generated topologies with |N| ∈ {80,100,120}, considering a probability of selection of each edge of p = 0.04.  
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perform these tests, we considered the Erdos-Renyi model with |N| = 50 
nodes and with a probability of selection of each edge of p that ranges 
from 0.05 to 0.11. Moreover, we have considered a fixed seed to this 
generation of topologies, in order to make each newly generated to
pology an upgrade of the previous one, i.e., if an edge is in the graph 
generated with a given p, then it is also in all the graphs generated with 
higher values for p. We tested different seeds until one of them ensured 
that the topology generated with p = 0.05 was connected (and by 
consequence, all topologies with p > 0.05). 

In Table 11, we present the results obtained with Algorithm4 
(components separation) for each topology for c ∈ {2,3,4} critical 
nodes considering, once again, unitary costs and the 2 h stopping 
criteria. In the first two lines of this table, we present each tested 
probability p and the number of edges |E| of the corresponding topology. 
In addition to the number of Pareto optimal solutions obtained, and the 
total runtime required to obtain all solutions found, we present the 
robustness value (in percentage to the upper bound) of each initial to
pology z1 and the robustness value of the last Pareto optimal point 
computed zlast. Notice that connectivity robustness of 100% means that 

Algorithm4 was able to compute the complete Pareto frontier of that 
instance. 

Contrary to the effect of increasing the number of nodes, by 
increasing the number of edges of the input topology, the algorithm 
performs better. This can be easily explained by the following two 
related facts. By increasing the number of edges |E|, there is a tendency 
to increase the robustness value of the input topology z1, and to decrease 
the total number of different combinations of c critical nodes that split 
the network into disjoint components. This causes a reduction in the 
number of Pareto optimal solutions, and therefore, the proposed ap
proaches require fewer iterations to obtain the Pareto frontier. 

6. Conclusions 

In this work, we have addressed the robust network upgrade problem 
(RNUP) that aims to identify a set of new edges to add to the original 
topology in order to increase its robustness to simultaneous node fail
ures. This problem is formulated as a bi-objective MILP problem with 
two distinct objectives: minimizing the total cost of the new edges, and 

Fig. 9. Watts-Strogatz randomly generated topologies with |N| ∈ {80,100,120}, considering a total number of edges |E| = 2|N| and a rewiring probability of β = 0.2.  

Fig. 10. Barabasi-Albert randomly generated topologies with 80, 100 and 120 nodes, respectively.  

Table 6 
Erdos-Renyi results summary, i.e., number of Pareto optimal solutions obtained 
and the total runtime used to get those solutions using Algorithm3 (row 
generation).  

|N| c  2  3  4  5  

80 No. Pareto points 5 7 7 5 
Runtime 1:17:51 2:17:58 2:56:10 4:45:46 

100 No. Pareto points 4 5 4 3 
Runtime 0:09:49 1:03:29 2:38:42 4:56:10 

120 No. Pareto points 3 2 1 3 
Runtime 1:18:10 0:41:31 0:16:41 3:00:39  

Table 7 
Erdos-Renyi results summary, i.e., number of Pareto optimal solutions obtained 
and the total runtime used to get those solutions using Algorithm4 (components 
separation).  

|N| c  2  3  4  5  

80 No. Pareto points 5 7 9 0 
Runtime 0:01:13 0:03:20 0:18:35 – 

100 No. Pareto points 5 7 7 0 
Runtime 0:07:19 0:24:56 0:44:20 – 

120 No. Pareto points 4 5 0 0 
Runtime 0:21:26 0:26:33 – –  
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maximizing the robustness of the resulting upgraded topology. As 
robustness metric, we have considered the objective function value of 
the CND problem which measures the pairwise connectivity between 
nodes when a set of c critical nodes are removed from the graph. 

A general algorithm was presented to obtain the Pareto frontier 
where the robustness value is obtained by solving an ILP problem and 
the selection of the new edges is obtained solving a path formulation 
adapted from the bi-objective MILP problem. Since using this approach 
can only solve the smallest instances, we also presented an alternative 

formulation by modeling the selection of edges as a set covering prob
lem. As the number of cover inequalities increases exponentially with 
the size of the instance, we proposed two algorithms to select the cover 
inequalities. One is a row generation algorithm that iteratively selects 
cover inequalities, and the other is a components separation algorithm 
that selects simultaneously all the cover inequalities that force the 
connection of different components in order to obtain a desire robust
ness value. 

The computational tests have shown that the components separation 
algorithm is much more time-efficient than the row generation algo
rithm when it is possible to compute the complete Pareto frontier within 
a reasonable running time. In the telecommunication topologies, it was 
possible to obtain the complete Pareto frontier for all four tested to
pologies with c ∈ {2,3} critical nodes and for the Janos-US, Cost266 and 
Germany50 topologies with c = 4 critical nodes. Nevertheless, the 
components separation algorithm has scalability issues when consid
ering a higher number of critical nodes. In contrast, the row generation 
algorithm is able to obtain a partial Pareto frontier for a wider range of 
instances. For example, it was able to compute 41 Pareto optimal solu
tions considering the Coronet topology with c = 6 critical nodes. 

Finally, although both algorithms have advantages and disadvan
tages, when considering input topologies with larger sizes (more than 
100 nodes), both algorithms present scalability issues. In this work, we 
have addressed the RNUP with exact procedures. For larger graphs, 
heuristic approaches have to be considered, aiming to obtain an 
approximation of the Pareto frontier. 
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Table 8 
Watts-Strogatz results summary, i.e., number of Pareto optimal solutions ob
tained and the total runtime used to get those solutions using Algorithm3 (row 
generation).  

|N| c  2  3  4  5  

80 No. Pareto points 2 2 5 3 
Runtime 0:01:27 0:10:22 0:59:09 0:28:01 

100 No. Pareto points 2 3 4 4 
Runtime 0:18:02 1:27:28 2:58:45 2:55:03 

120 No. Pareto points 2 2 2 1 
Runtime 0:45:46 1:55:36 0:54:06 0:54:33  

Table 9 
Watts-Strogatz results summary, i.e., number of Pareto optimal solutions ob
tained and the total runtime used to get those solutions using Algorithm4 
(components separation).  

|N| c  2  3  4  5  

80 No. Pareto points 2 3 7 0 
Runtime 0:00:50 0:16:56 2:25:38 – 

100 No. Pareto points 2 4 7 0 
Runtime 0:04:36 1:47:55 3:38:19 – 

120 No. Pareto points 2 2 0 0 
Runtime 0:19:43 0:40:28 – –  

Table 10 
Barabasi-Albert results summary, i.e., number of Pareto optimal solutions obtained and the total runtime used to get those solutions using Algorithm3 (row 
generation).  

|N| c  2  3  4  5  

80 No. Pareto points 2 2 2 2 
Runtime 0:04:26 0:04:17 0:15:12 0:21:50 

100 No. Pareto points 2 2 2 2 
Runtime 0:08:25 0:42:38 0:40:23 1:37:39 

120 No. Pareto points 2 2 2 2 
Runtime 0:12:45 1:36:02 3:55:45 5:18:05  

Table 11 
Results summary of increasing the number of edges using the Erdos-Renyi generation model (with probability p ∈ {0.05,0.06,0.07,0.08,0.09,0.1,0.11}) and Algo
rithm4 (components separation).  

c  p  0.05 0.06 0.07 0.08 0.09 0.10 0.11  
|E| 65 74 90 103 113 124 141 

2 No. Pareto sol. 8 6 5 3 3 2 2 
Runtime 0:00:12 0:00:09 0:00:08 0:00:06 0:00:05 0:00:04 0:00:03 
z1 (%)  80.2 87.8 87.8 91.8 91.8 95.8 95.8 
zlast (%)  100 100 100 100 100 100 100  

3 No. Pareto sol. 9 7 6 5 5 3 2 
Runtime 0:57:25 0:00:25 0:00:31 0:00:31 0:00:25 0:00:19 0:00:12 
z1 (%)  59.3 68.4 79.7 87.5 87.5 91.6 95.7 
zlast (%)  87.8 91.7 95.7 100 100 100 100  

4 No. Pareto sol. 6 8 8 6 5 4 3 
Runtime 2:02:24 2:01:26 0:04:41 0:00:54 0:00:30 0:00:22 0:01:46 
z1 (%)  48.0 62.8 75.5 83.3 87.2 87.2 91.4 
zlast (%)  73.0 87.3 91.5 95.7 95.7 95.7 100  
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