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Abstract

Despite providing interesting mode-mix ratios without elaborate test fixtures, asymmetrically 

delaminated specimens have been scarcely used for characterizing delamination resistance. 

This is mostly due to the elaborate analyses employed and the controversy about mode 

partitioning. This paper presents a beam model for asymmetrically delaminated unidirectional 

composite specimens. The physical meaning and underlying assumptions of the solutions 

obtained are clearly identified. Comparison with finite element analyses showed that the 

present beam model is accurate for a wide range of asymmetry and mode-mix ratios. Since it 

does not require complicated calculations, the beam model is well-suited for experimental 

data reduction. Furthermore, traction distributions near the crack-tip were found to differ from 

those of standard specimens, thereby increasing the interest in studying the fracture behaviour 

of asymmetrically delaminated specimens.

Keywords: Polymer matrix composites; Fracture mechanics; Delamination; Mixed-mode 

fracture; Asymmetrically delaminated specimens.

Nomenclature

a Crack length

b Specimen width

Ci,j Integration constants (i = 1, 2 and j = 0-3)

Dj Coefficients of a linear differential equation (j = 1-5)

E1 Longitudinal Young’s modulus

E3 Transverse through-thickness Young’s modulus

fs Timoshenko beam theory transverse shear factor

Fi Transverse load applied to the specimen i-th sub-laminate free-end
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G Total strain-energy release rate

G13 Transverse through-thickness shear modulus

GI Mode I strain-energy release rate

GII Mode II strain-energy release rate

h Specimen half-thickness

hi Specimen i-th sub-laminate thickness

I Specimen second moment of area

Ii Specimen i-th sub-laminate second moment of area

Kn Normal cohesive elastic stiffness

Ks Shear cohesive elastic stiffness

L Specimen span

Mi Bending moment on the specimen i-th sub-laminate

Mi Moment applied to the specimen i-th sub-laminate free-end

N Normal force on the specimen sub-laminates

Qi,j Sub-laminate properties and geometry dependent parameters (i = 1,2 and j = 0-3)

tn Normal cohesive stiffness characteristic thickness

ts Shear cohesive stiffness characteristic thickness

vi Vertical displacement of the specimen i-th sub-laminate

Vertical displacement of the specimen i-th sub-laminate free-endvi

vb,i Vertical bending displacement of the specimen i-th sub-laminate

vs,i Vertical transverse shear displacement of the specimen i-th sub-laminate

Vi Transverse shear force on the specimen i-th sub-laminate

δn Normal separation

δs Shear separation

Δ Normalized vertical displacement of the specimen free-ends

θi Cross-section rotation of the specimen i-th sub-laminate

Cross-section rotation of the specimen i-th sub-laminate free-endθi

λk Elastic traction distribution parameters (k = 1-3)

ν13 Longitudinal Poisson’s ratio

ν23 Transverse Poisson’s ratio

σc Normal traction

σk Normal traction distribution integration constants (k = 1-6)
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Σ Dimensionless normal traction

τc Shear traction

τk Shear traction distribution integration constants (k = 0-6)

τk Crack-tip shear traction terms (k = 1-3) 

τs Transverse shear stress

Τ Dimensionless shear traction

Abbreviations

ADBM Asymmetric delamination beam model

ADCB Asymmetric double cantilever beam

BT Beam theory

CBT Corrected beam theory

CFRP Carbon-fibre reinforced composites

DCB Double cantilever beam

ELS End-loaded split

ENF End-notched flexure

FEA Finite element analysis

FLDCB Force-loaded double cantilever beam

FPZ Fracture process zone

FRMM Fixed-ratio mixed-mode

GFRP Glass-fibre reinforced composites

MLDCB Moment-loaded double cantilever beam

MMB Mixed-mode bending

SLB Single-leg bending

UD Unidirectional

VCCT Virtual crack closure technique

1. Introduction

Susceptibility to delamination is a well-known weakness of high-performance laminated 

composites. As a result of extensive research on delamination resistance, several interlaminar 

fracture test methods were developed and standardized i.e. the double cantilever beam (DCB) 

for pure mode I (ISO 15024 and ASTM D5528), the end-notched flexure (ENF) for pure 

mode II (JIS K 7086 and ASTM D7905), the end-loaded split (ELS) for pure mode II (ISO 



4

15114) and the mixed-mode bending (MMB) for mixed-mode I-II (ASTM D6671). All of 

those methods involve unidirectional (UD) specimens with initial mid-plane delaminations 

and have well-established easy-to-apply data reduction schemes. The ASTM D6671 standard 

MMB specimen, in particular, is able to cover a wide range of mode-mix ratios. However, it 

does require a specific fixture whose weight needs to be taken into account, thereby posing 

difficulties to high-rate and fatigue tests. 

Asymmetrically delaminated specimens are known to provide mixed-mode I-II with 

simple test fixtures. However, defining the exact mode-mix ratio has been subject of 

considerable controversy. The so-called global mode partitioning by Williams [1], which is 

based on simple assumptions concerning specimen sub-laminate loads and curvatures, soon 

proved to be unsuited [2,3]. Several mode partitioning approaches have subsequently been 

developed e.g. [2-10]. Such approaches are designated as ‘local’, since they consider crack-tip 

features e.g. forces, moments or stress fields described by stress intensity factors. 

The unquestionable importance and challenges of mode partitioning seem to have 

relegated to a minor role the specimen load-displacement response modelling. Yet, the ability 

to model accurately the load-displacement response of standard delamination specimens has 

been the main reason behind the widespread use of beam theory (BT) based data reduction 

schemes. Furthermore, sound beam models that account for the localised flexibility effects 

near the crack-tip have been developed [11,12]. In fact, Benatti et al. [12] used the 

Timoshenko BT kinematics to derive an ‘enhanced’ beam model for asymmetric double 

cantilever beam (ADCB) specimens. After calibration of extensional and shear stiffness 

parameters, their [12] model gave quite accurate predictions for the compliance, total strain-

energy release rate G and mode-mix ratios of glass-fibre composites. However, the ADCB 

specimens analysed in [12] only provided a limited range of mode-mix ratios i.e. GII/G = 0-

32%, GII being the mode II strain-energy release rate. Dimitri et al. [13] have recently applied 

the Benatti et al. [12] formulation to asymmetrically delaminated moment-loaded double 

cantilever beam (MLDCB) specimens. However, they [13] did not compare the results with 

finite element analyses (FEA). Moreover, Dimitri et al. [13] employed a numerical solution 

procedure, while the analytical solution of the fundamental equations is a particularly 

attractive feature of the Benatti et al. [12] formulation.

This paper revisits the Timoshenko beam modelling of asymmetrically delaminated 

fracture specimens, and proposes the asymmetric delamination beam model (ADBM) for UD 

composite specimens. Although the ADBM becomes identical to the model of [12] when 
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applied to the ADCB specimen in equal terms, there are differences and relevant new results 

worth remarking:

• a different path was followed to obtain general solutions for the tractions;

• an intrinsic limitation of Timoshenko beam modelling is identified;

• the physical meaning of the solution parameters is discussed, allowing considerable 

simplifications and solutions for strain-energy release rates based solely on crack-tip 

forces and moments;

• model predictions are assessed for a wide range of mode-mix ratios, which are well 

beyond the reach of the ADCB specimen analysed in [12].

In fact, the ADBM is here applied to MLDCB and force-loaded double cantilever beam 

(FLDCB) specimens (Fig. 1), both able to generate the entire range of mode-mix I-II ratios. 

Despite requiring elaborate loading fixtures, they have actually been implemented [14,15] for 

composites or adhesive joints. In the end, it is shown that the ADBM is suitable for analysing 

interlaminar fracture test results of asymmetrically delaminated UD composite specimens. 

This work did not aim at developing direct expressions for G similar to the ones currently 

available for standard specimens. Nevertheless, the ADBM equations are fully closed-form 

i.e. free from any numerical procedures. Finally, differences seen in the traction distributions 

near the crack-tip relative to standard specimens are an additional motivation for studying the 

interlaminar fracture behaviour of asymmetrically delaminated specimens. 

2. The asymmetric delamination beam model (ADBM)

2.1. Fundamental equations and assumptions

In the scope of Timoshenko BT, interlaminar fracture specimens (Fig. 1) are modelled as two 

beams bonded in the undelaminated a ≤ x ≤ L region. We start by analysing the infinitesimal 

elements of the upper (1) and lower (2) sub-laminates (Fig. 2) in that region. The cross-

sections of such elements are subjected to normal forces N, which must be symmetric in both 

sub-laminates, transverse shear forces Vi, as well as bending moments Mi. The normal σc and 

shear τc tractions act on the bonded surfaces. The present sign convention takes as positive the 

forces, moments and tractions depicted in Fig. 2. The horizontal force, vertical force and 

moment equilibrium equations are thus

(1)
𝑑𝑁
𝑑𝑥 = 𝑏𝜏𝑐

(2)
𝑑𝑉1

𝑑𝑥 = ―
𝑑𝑉2

𝑑𝑥 = ―𝑏𝜎𝑐
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(3)𝑉𝑖 =
𝑑𝑀𝑖

𝑑𝑥 +
𝑏ℎ𝑖𝜏𝑐

2

respectively, where b is the specimen width. The two latter equations can be combined into 

(4)
𝑑2𝑀1

𝑑𝑥2 = ―
𝑏ℎ1

2
𝑑𝜏𝑐

𝑑𝑥 ―𝑏𝜎𝑐, 
𝑑2𝑀2

𝑑𝑥2 = ―
𝑏ℎ2

2
𝑑𝜏𝑐

𝑑𝑥 +𝑏𝜎𝑐

which are convenient for subsequent derivations.

The bending moments are related to the curvature through the BT fundamental relation

(5)𝑀𝑖 = 𝐸1𝐼𝑖
𝑑2𝑣𝑏,𝑖

𝑑𝑥2

where E1 is the laminate longitudinal Young’s modulus, Ii = bhi
3/12 the i-th sub-laminate 

second moment of area and vb,i the vertical bending displacement.

Assuming linear elasticity, the tractions can be expressed as

(6)𝜎𝑐 = 𝐾𝑛𝛿𝑛, 𝜏𝑐 = 𝐾𝑠𝛿𝑠

where Kn and Ks are the normal and shear cohesive elastic stiffnesses, respectively, and δn and 

δs are the corresponding normal and shear separations. In the scope of beam modelling, the 

separations are set equal to the bonded surface relative displacements, and thus

(7)𝛿𝑛 = 𝑣1 ― 𝑣2

with the vertical displacements

(8)𝑣𝑖 = 𝑣𝑏,𝑖 + 𝑣𝑠,𝑖

vs,i being the transverse shear displacement.

Timoshenko BT determines transverse shear displacements through the relation

(9)
𝑑𝑣𝑠,𝑖

𝑑𝑥 = ―
𝑉𝑖

𝑓𝑠𝑏ℎ𝑖𝐺13

where G13 is the laminate longitudinal through-thickness shear modulus and fs = 5/6 is the 

transverse shear factor for rectangular cross-sections. Actually, application of Eq. (9) bears a 

simplification that has not been remarked: it was developed from energy methods for the 

parabolic transverse shear stress distribution

(10)𝜏𝑠 =
3𝑉

4𝑏ℎ[1 ― (𝑦
ℎ)2]

that exists in b-wide and 2h-thick rectangular cross-section beams [16]. In particular, Eq. (10) 

ensures that τs = 0 at the beam y = ±h surfaces, which is clearly not the case of the sub-

laminates bonded surfaces. Obviously, τs-distributions in each sub-laminate depend on both Vi 

and τc. Using the classical mechanics of materials approach [16], it can be shown that 

(11)
𝑑𝑣𝑠,𝑖

𝑑𝑥 = ―
𝑉𝑖 ―

𝑏ℎ𝑖𝜏𝑐
6 +

(𝑏ℎ𝑖𝜏𝑐)2

9𝑉𝑖

𝑓𝑠𝑏ℎ𝑖𝐺13
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However, adopting this more accurate formulation would ultimately lead to non-linear 

differential equations whose complexity compromises the practical usefulness of beam 

modelling altogether. It is worth remarking that this issue does not arise for symmetric sub-

laminates i.e. h1 = h2 = h (Fig. 1); it is easily shown that Eq. (9) is exact, although the τs-

distribution is different from Eq. (10). The errors of Eq. (9) may in turn become significant for 

h2 >> h1, especially because of the high relevance of τc in the crack-tip vicinity. Nevertheless, 

the load-displacement response of beam-like interlaminar fracture specimens is clearly 

dominated by the bending moments. Moreover, testing specimens with very high h2/h1 is not 

feasible, given the strong susceptibility to large displacements and to premature failure of the 

thinner sub-laminate. Therefore, as seen below, it is worth keeping Eq. (9).

As for the shear separation, it depends on the bending cross-section rotations of each 

sub-laminate, which can be set equal to dvb,i/dx in the geometrically linear regime, and on the 

uniform cross-section displacements caused by N (Fig. 3). Adopting the δs ≥ 0, N ≥ 0 and 

dvb,i/dx ≤ 0 sign conventions and an appropriate x0 > a reference position, we have

(12)𝛿𝑠(𝑥) ― 𝛿𝑠(𝑥0) =
ℎ1

2 [𝑑𝑣𝑏,1

𝑑𝑥 |
𝑥0

―
𝑑𝑣𝑏,1

𝑑𝑥 |
𝑥] +

ℎ2

2 [𝑑𝑣𝑏,2

𝑑𝑥 |
𝑥0

―
𝑑𝑣𝑏,2

𝑑𝑥 |
𝑥] + ( 1

ℎ1
+

1
ℎ2)∫𝑥

𝑥0

𝑁
𝐸𝑏𝑑𝑥

Finally, having taken the separations from Timoshenko BT kinematics, it is essential to 

choose Kn and Ks that are able to model the localised crack-tip effects. This is done by 

expressing the cohesive elastic stiffnesses as

(13)𝐾𝑛 =
𝐸3

𝑡𝑛
,𝐾𝑠 =

𝐺13

𝑡𝑠

where E3 is the through-thickness transverse Young’s modulus, while tn and ts are 

characteristic thicknesses whose values have to be calibrated by FEA. Given the 

approximations inherent to beam modelling, one can not expect tn and ts to be independent of 

material properties and some laminate dimensions. Studies on beam modelling of mode I and 

mode II delamination in standard symmetrically delaminated specimens have indeed shown 

small sensitivity of tn and ts to materials properties and laminate total thickness [17,18]. The 

aforementioned approximate treatment of the transverse shear effect was also expected to 

make tn and ts somewhat dependent on h2/h1. However, such dependence should be mild 

enough for safeguarding the overall suitability of beam modelling. 

2.2. Solutions for the tractions

Benatti et al. [12] showed that, when applied to the ADCB specimen, the above fundamental 

beam modelling equations lead to a single 6th-order linear homogeneous differential equation 
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for σc, whose characteristic polynomial has 6 real roots. The solution for σc was therefore 

expressed as the sum of 6 exponential functions multiplied by 6 integration constants. In the 

end, the latter were determined by solving a final system of 6 linear equations [12]. 

Intermediate developments did involve more 13 integration constants, but they were shown to 

be either null or functions of the original 6 integration constants. 

In this work we pursue a different less complex route which begins by substituting τc/Ks 

for δs in Eq. (12) and performing a triple differentiation. Using Eq. (1), the term involving N is 

expressed as a function of dτc/dx, while the terms on d4vb,i/dx4 can be written as functions of 

dτc/dx and σc owing to Eqs. (4) and (5). The result of these developments is simply

(14)𝜎𝑐 = [ 𝐸1ℎ2
1ℎ2

2

6𝐾𝑠(ℎ2
2 ― ℎ2

1)]𝑑3𝜏𝑐

𝑑𝑥3 ― [ 2ℎ1ℎ2

3(ℎ2 ― ℎ1)]𝑑𝜏𝑐

𝑑𝑥

We can now substitute Eq. (14) for σc in Eqs. (4) to obtain

(15)
𝑑2𝑀𝑖

𝑑𝑥2 = 𝑄𝑖,3
𝑑3𝜏𝑐

𝑑𝑥3 + 𝑄𝑖,1
𝑑𝜏𝑐

𝑑𝑥

where

(16)𝑄1,3 = ― 𝑄2,3 = ―
𝐸1𝑏ℎ2

1ℎ2
2

6𝐾𝑠(ℎ2
2 ― ℎ2

1)

(17)𝑄1,1 =
𝑏ℎ1(3ℎ1 + ℎ2)

6(ℎ2 ― ℎ1) , 𝑄2,1 = ―
𝑏ℎ2(ℎ1 + 3ℎ2)

6(ℎ2 ― ℎ1)

Yet, σc is also given by Eq. (6), in which Eqs. (7)-(9) are to be used for expressing δn as a 

function of vb,i and vs,i. Successive differentiation leads to

(18)
1

𝐾𝑛

𝑑4𝜎𝑐

𝑑𝑥4 =
1

𝐸1(1
𝐼1

𝑑2𝑀1

𝑑𝑥2 ―
1
𝐼2

𝑑2𝑀2

𝑑𝑥2 ) +
6

5𝐺13𝑏( 1
ℎ2

𝑑4𝑀2

𝑑𝑥4 ―
1
ℎ1

𝑑4𝑀1

𝑑𝑥4 )
One can now substitute Eq. (14) for σc and Eqs. (15) for the Mi-derivatives in order to arrive at 

the 7th-order linear homogeneous differential equation

(19)
𝑑7𝜏𝑐

𝑑𝑥7 + 𝐷5
𝑑5𝜏𝑐

𝑑𝑥5 + 𝐷3
𝑑3𝜏𝑐

𝑑𝑥3 + 𝐷1
𝑑𝜏𝑐

𝑑𝑥 = 0

whose coefficients are

(20)𝐷1 = ―
12𝐾𝑛𝐾𝑠

𝐸2
1

(ℎ1 + ℎ2

ℎ1ℎ2 )4

(21)𝐷3 =
12𝐾𝑛(ℎ3

1 + ℎ3
2)

𝐸1ℎ3
1ℎ3

2
+

24𝐾𝑛𝐾𝑠

5𝐸1𝐺13 (ℎ1 + ℎ2

ℎ1ℎ2 )2

(22)𝐷5 = ―
ℎ1 + ℎ2

ℎ1ℎ2 (4𝐾𝑠

𝐸1
+

6𝐾𝑛

5𝐺13)
The solution of Eq. (19) demands finding the 7 roots of the characteristic polynomial on λ

(23)𝜆(𝜆6 + 𝐷5𝜆4 + 𝐷3𝜆2 + 𝐷1) = 0

one of which is, obviously, λ = 0. Benatti et al. [12] did not remark that the remaining 6 roots 
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are easy to compute, as the 6th-order polynomial of Eq. (23) can be converted into a 3rd-order 

polynomial on λ2. Closed-form solutions are available for the roots of 3rd-order polynomials. 

Owing to the typical laminate properties and thicknesses, Eq. (23) has 3 pairs of real ±λi roots. 

Therefore, the solution of Eq. (19) can be written as

(24)𝜏𝑐 = 𝜏0 + ∑3
𝑘 = 1[𝜏𝑘exp( ― 𝜆𝑘𝑥) + 𝜏𝑘 + 3exp(𝜆𝑘𝑥)]

where τk are integration constants. The substitution of Eq. (24) for τc in Eq. (14) yields the 

solution for σc that can be expressed as

(25)𝜎𝑐 = ∑3
𝑘 = 1[𝜎𝑘exp( ― 𝜆𝑘𝑥) + 𝜎𝑘 + 3exp(𝜆𝑘𝑥)]

with σk being integration constants that are, obviously, related to τk. The present general 

solution is thus identical to the one obtained in [12].

It can be shown that this formulation reduces to the beam models of [18,19] for mode I 

and mode II fracture of symmetrically delaminated specimens i.e. h1 = h2 = h (Fig. 1). This 

case involves decoupled 3rd-order and 4th-order linear differential equations for τc and σc, 

respectively, whose solutions are

(26)𝜏𝑐 = 𝜏0 + 𝜏2exp( ― 𝜆2𝑥) + 𝜏5exp(𝜆2𝑥)

(27)𝜎𝑐 = 𝜎1exp( ― 𝜆1𝑥) + 𝜎3exp( ― 𝜆3𝑥) + 𝜎4exp(𝜆1𝑥) + 𝜎6exp(𝜆3𝑥)

Though used subsequently for traction distributions comparison purposes, the symmetrically 

delaminated case is not developed here.

2.3. Physical interpretation and scope of the solutions

Before proceeding to the main model results, it is important to analyse the physical meaning 

of the above solutions by taking the MLDCB and FLDCB specimens as basis for discussion. 

In general mixed-mode I-II cases, both σc and τc attain peak values at the x = a crack-tip 

position (Fig. 1). It should be noted that beam modelling suppresses the crack-tip singularity. 

As we move away from the crack-tip within the undelaminated region, σc and τc gradually 

decrease. If the x = L built-in cross-section (Fig. 1) is sufficiently distant from the crack-tip, σc 

and τc should become consistent with the whole laminate beam response i.e. σc = 0 and τc must 

be equal to τs(y = h2 − h) (Fig. 1) given by Eq. (10). Finally, as we get near the x = L built-in 

cross-section, σc and τc undergo further changes. Therefore, near the x = a crack-tip position 

the terms of Eqs. (24) and (25) on exp(−λkx) play a major role, while those on exp(λkx) are 

negligible. The latter terms in turn become relevant near the x = L built-in cross-section. 

However, modelling the built-in effects can already be done with simpler beam models for 
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symmetric sub-laminates e.g. adapting to the MLDCB and FLDCB specimens the models 

developed in [18,19]. 

Where the mode I component is concerned, the typical properties and thicknesses of UD 

composite specimens lead to λ1 and λ3 (see Eq. (27)) values that cause a very steep σc-decrease 

from the crack-tip peak value [18,20]. Therefore, any σc-surge can only occur in a very small 

region near the built-in end and have a negligible effect on the overall specimen response.

Regarding the mode II component, it is well-known that the τc-decrease from the crack-

tip peak value to τs predicted by Eq. (10) takes place along a much longer distance than in 

mode I loadings [17,19,20]. This gives rise to the long fracture process zones (FPZ) typical of 

mode II delamination. As we approach the x = L cross-section (Fig. 1), τc = τs given by Eq. 

(10) must gradually decline to τc = 0 for an ideal built-in end. Actually, a similar τc-

distribution exists in the a ≤ x ≤ L region of the ENF specimen, for which x = L is the half-

span where the load acts. In fact, there is a shear force reversal at the load-point position 

which makes τc(L) ≈ 0 [19]. The effect of this τc-decrease, which is associated with the term 

on exp(λ2x) of Eq. (26), proved to be relevant only when the FPZ gets close to the ENF 

specimen load-point [19]. This situation should be avoided in actual delamination resistance 

tests, as it leads to artificially high perceived toughness values [19].

Therefore, it is reasonable to considered here:

• only cases in which the crack-tip is sufficiently distant from the built-in end of 

MLDCB and FLDCB specimens (Fig. 1);

• that the built-in end local perturbations of the traction distributions do not affect 

significantly the specimen load-displacement response and strain-energy release rate 

evaluation.

This framework greatly simplifies the analysis by allowing the solutions for the tractions to be 

expressed as

(28)𝜏𝑐 ≈ 𝜏0 + ∑3
𝑘 = 1𝜏𝑘exp( ― 𝜆𝑘𝑥)

(29)𝜎𝑐 ≈ ∑3
𝑘 = 1𝜎𝑘exp( ― 𝜆𝑘𝑥)

where, from Eq. (14),

(30)𝜎𝑘 = [ 2ℎ1ℎ2𝜆𝑘

3(ℎ2 ― ℎ1) ―
𝐸1ℎ2

1ℎ2
2𝜆3

𝑘

6𝐾𝑠(ℎ2
2 ― ℎ2

1)]𝜏𝑘

It should be noted that a similar discarding of exponential terms was done by Qiao and Wang 

[11], whose solutions Benatti et al. [12] criticized for being merely approximate. However, as 

discussed above and confirmed by the results presented below, neglecting those terms is 
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adequate for composite interlaminar fracture specimens. 

Finally, it is worth remarking that the next developments assume:

• load combinations which do not promote contact between the delaminated surfaces;

• ideal built-in ends, which, obviously, cannot be attained. 

In practice, a portion of the specimen is clamped, as in the ELS specimen. Application of BT 

based data reduction schemes only requires considering an increased ‘corrected’ span 

determined experimentally [21].

2.4. Strain-energy release rate components

At this stage, one may substitute Eq. (28) for τc in Eqs. (15) and perform a double integration 

that yields

(31)𝑀𝑖 = ― ∑3
𝑘 = 1𝜏𝑘exp( ― 𝜆𝑘𝑥)(𝜆𝑘𝑄𝑖,3 +

𝑄𝑖,1

𝜆𝑘 ) + (𝑄𝑖,1𝜏0 + 𝐶𝑖,3)𝑥 + 𝐶𝑖,2

introducing the Ci,3 and Ci,2 integration constants. Eq. (28) should also be substituted for τc in 

Eq. (1), whose integration provides the normal force

(32)
𝑁
𝑏 = 𝜏0(𝑥 ― 𝑎) ― ∑3

𝑘 = 1𝜏𝑘[exp( ― 𝜆𝑘𝑥) ― exp( ― 𝜆𝑘𝑎)
𝜆𝑘 ]

after imposing that N(a) = 0. It is now necessary to use the equations that result from a first 

and a second differentiation of Eq. (12). By noting that d2vb,i/dx2 are given by Eqs. (5) after 

substituting Eq. (31) for Mi, we get

(33)𝐶1,3 = ―
𝑏𝜏0ℎ1(ℎ1 + ℎ2)2

6ℎ2(ℎ2 ― ℎ1) , 𝐶2,3 =
𝑏𝜏0ℎ2(ℎ1 + ℎ2)2

6ℎ1(ℎ2 ― ℎ1)

(34)𝐶1,2 =
𝑏ℎ2

1

6ℎ2(∑3
𝑘 = 1[𝜏𝑘exp( ― 𝜆𝑘𝑎)

𝜆𝑘 ] ― 𝜏0𝑎), 𝐶2,2 =
𝑏ℎ2

2

6ℎ1(∑3
𝑘 = 1[𝜏𝑘exp( ― 𝜆𝑘𝑎)

𝜆𝑘 ] ― 𝜏0𝑎)
It is also useful to substitute Eq. (28) for τc and Eq. (31) for Mi in Eqs. (3) in order to obtain

(35)𝑉𝑖 = ∑3
𝑘 = 1𝜏𝑘exp( ― 𝜆𝑘𝑥)(𝜆2

𝑘𝑄𝑖,3 + 𝑄𝑖,1 +
𝑏ℎ𝑖

2 ) + (𝑄𝑖,1 +
𝑏ℎ𝑖

2 )𝜏0 + 𝐶𝑖,3

Finally, τk (k = 0-3) can be determined from the sub-laminate crack-tip section transverse 

shear forces and bending moments. The latter can be written generally for both the MLDCB 

and FLDCB specimens (Fig. 1) as

(36)𝑉𝑖(𝑎) = 𝐹𝑖, 𝑀𝑖(𝑎) = 𝑀𝑖 + 𝐹𝑖𝑎

Actually, it is convenient to impose first

(37)𝑉1(𝑎) + 𝑉2(𝑎) = 𝐹1 + 𝐹2

as this leads directly to

(38)𝜏0 =
6ℎ1ℎ2(𝐹1 + 𝐹2)

𝑏(ℎ1 + ℎ2)3
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which does coincide with the transverse shear stress τs(y = h2 − h) (Fig. 1) predicted by Eq. 

(10). Therefore, as discussed in Section 2.3, as we move away from the crack-tip within the 

specimen undelaminated region, the terms on exp(−λkx) of Eq. (28) become negligible and τc 

≈ τ0 is consistent with the whole laminate beam response. The remaining integration constants 

can be obtained from the system formed by the following 3 linear equations:

(39)∑3
𝑘 = 1𝜏𝑘[2(ℎ1 + ℎ2)

3 ― 𝜆2
𝑘

𝐸1ℎ1ℎ2

6𝐾𝑠 ] =
ℎ2

2𝐹1 + ℎ2
1𝐹2

𝑏ℎ1ℎ2
―

2(ℎ1 + ℎ2)
3 𝜏0

(40)∑3
𝑘 = 1𝜏𝑘[ 𝜆𝑘𝐸1ℎ2

1ℎ2
2

6𝐾𝑠(ℎ1 + ℎ2) +
(ℎ1 + ℎ2)2

6𝜆𝑘 ] =
ℎ2𝑀1(𝑎) + ℎ1𝑀2(𝑎)

𝑏

(41)∑3
𝑘 = 1𝜏𝑘

𝜆𝑘𝐸1ℎ1ℎ2

6𝐾𝑠
=

ℎ2
2𝑀1(𝑎) + ℎ2

1𝑀2(𝑎)
𝑏ℎ1ℎ2

written in terms of the crack-tip shear traction terms

(42)𝜏𝑘 = 𝜏𝑘exp( ― 𝜆𝑘𝑎)

Finally, one can compute successively σk (k = 1-3), τc(a) and σc(a) from Eqs. (28)-(30), 

and, because of Eqs. (6),

(43)𝐺I =
𝜎2

𝑐(𝑎)
2𝐾𝑛

, 𝐺II =
𝜏2

𝑐(𝑎)
2𝐾𝑠

Therefore, the physical interpretation and scope of the solutions obtained do support the 

‘local’ mode partitioning approaches based on crack-tip forces and moments that have 

received so much attention in the literature (see Section 1).

2.5. Moment-rotation and load-displacement responses

The moment-rotation and load-displacement responses are a basic result of MLDCB and 

FLDCB tests. In the geometrically linear regime adopted, the beam cross-section rotations in 

each specimen sub-laminate are θi ≈ dvb,i/dx. The successive integration of Eqs. (5) after 

substituting Eqs. (31) for Mi yields

(44)𝐸1𝐼𝑖𝜃𝑖 = ∑3
𝑘 = 1𝜏𝑘exp( ― 𝜆𝑘𝑥)(𝑄𝑖,3 +

𝑄𝑖,1

𝜆2
𝑘

) + (𝑄𝑖,1𝜏0 + 𝐶𝑖,3)𝑥2

2 + 𝐶𝑖,2𝑥 + 𝐶𝑖,1

(45)𝐸1𝐼𝑖𝑣𝑏,𝑖 = ― ∑3
𝑘 = 1𝜏𝑘exp( ― 𝜆𝑘𝑥)(𝑄𝑖,3

𝜆𝑘
+

𝑄𝑖,1

𝜆3
𝑘

) + (𝑄𝑖,1𝜏0 + 𝐶𝑖,3)𝑥3

6 + 𝐶𝑖,2
𝑥2

2 + 𝐶𝑖,1𝑥 + 𝐶𝑖,0

The new Ci,1 and Ci,0 integration constants are easily determined from the θi(L) = 0 and vb,i(L) 

= 0 boundary conditions (Fig. 1), especially because the terms on τkexp(−λkL) are negligible. 

As for the transverse shear contribution, one must substitute Eqs. (35) for Vi in Eqs. (9), 

integrate and impose that vs,i(L) = 0 to obtain

(46)
5𝐺13𝑏ℎ𝑖

6 𝑣𝑠,𝑖 = ∑3
𝑘 = 1𝜏𝑘exp( ― 𝜆𝑘𝑥)(2𝜆2

𝑘𝑄𝑖,3 + 2𝑄𝑖,1 + 𝑏ℎ𝑖

2𝜆𝑘 ) + [(𝑄𝑖,1 +
𝑏ℎ𝑖

2 )𝜏0 + 𝐶𝑖,3](𝐿 ― 𝑥)
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Evidently, it is necessary to add the response of the sub-laminates 0 ≤ x ≤ a region (Fig. 

1), which is straightforward in the scope of Timoshenko BT. For the MLDCB specimen (Fig. 

1), one is interested in the  response, whereMi - θi

(47)𝜃𝑖 = 𝜃𝑖(0) = 𝜃𝑖(𝑎) ―
𝑀𝑖𝑎
𝐸1𝐼𝑖

and thus from Eqs. (42) and (44) and the specimen boundary conditions,

(48)𝐸1𝐼𝑖𝜃𝑖 = ∑3
𝑘 = 1𝜏𝑘(𝑄𝑖,3 +

𝑄𝑖,1

𝜆2
𝑘

) + (𝑄𝑖,1𝜏0 + 𝐶𝑖,3)𝑎2 ― 𝐿2

2 + 𝐶𝑖,2(𝑎 ― 𝐿) ― 𝑀𝑖𝑎

In turn, for the FLDCB specimen the response of interest is the  one, whereFi - vi

(49)𝑣𝑖 = 𝑣𝑖(0) = 𝑣𝑖(𝑎) ― 𝜃𝑖(𝑎)𝑎 +
𝐹𝑖𝑎3

3𝐸1𝐼𝑖
+

6𝐹𝑖𝑎
5𝐺13𝑏ℎ𝑖

and vi(a) and θi(a) can be obtained from Eqs. (42), (44)-(46). This leads to

(50)
𝑣𝑖 = ∑3

𝑘 = 1𝜏𝑘[ ― (𝑄𝑖,3 +
𝑄𝑖,1

𝜆2
𝑘

)1 + 𝜆𝑘𝑎
𝐸1𝐼𝑖𝜆𝑘

+
3(2𝜆2

𝑘𝑄𝑖,3 + 2𝑄𝑖,1 + 𝑏ℎ𝑖)
5𝐺13𝑏ℎ𝑖𝜆𝑘 ] +

3𝜏0(𝐿 ― 𝑎)
5𝐺13

+ (𝑄𝑖,1𝜏0 + 𝐶𝑖,3)[𝐿3 ― 𝑎3

𝐸1𝐼𝑖
+

6(𝐿 ― 𝑎)
5𝐺13𝑏ℎ𝑖 ] +

3𝐶𝑖,2(𝐿2 ― 𝑎2) + 2𝐹𝑖𝑎3

6𝐸1𝐼𝑖
+

6𝐹𝑖𝑎
5𝐺13𝑏ℎ𝑖

3. Results and discussion

3.1. Cohesive stiffness characteristic thickness values

The two sets of material properties here employed are meant to represent the most recent 

generation of UD high-strength carbon fibre reinforced composites (CFRP) and the traditional 

glass-fibre reinforced composites (GFRP). For the former case, the properties used were E1 = 

180 GPa, E3 = 10 GPa, G13 = 5.5 GPa, longitudinal Poisson’s ratio ν13 = 0.3 and transverse 

Poisson’s ratio ν23 = 0.42. As for the GFRP, E1 = 40 GPa, E3 = 10 GPa, G13 = 3.5 GPa, ν13 = 

0.3 and ν23 = 0.45 were assumed. The specimen dimensions were (Fig. 1) 2h = 6 mm, L = 120 

mm and a = 50 mm. Such dimensions can be compared to the ISO 15114 recommendations 

for the ELS specimen, which has a similar built-in end: 2h = 3 mm for CFRP, 2h = 5 mm for 

GFRP, both with 60% fibre volume content, L = 100 mm and a > 50 mm. Therefore, the 

present specimens have higher h/a, and thus an enhanced transverse shear contribution. This 

is especially the case of CFRP specimens, whose higher E1/G13 makes them far more sensitive 

to transverse shear. The importance of adopting such geometries derives from the ADBM 

limitations in dealing with transverse shear seen above. The transverse shear effect in the 

present CFRP specimens is also significantly higher in the undelaminated region, due to the 

larger h/(L−a). Furthermore, the transverse shear effect is even higher in the thicker sub-

laminate of asymmetrically delaminated specimens. 

Results are here presented for h2/h1 = 1.5, 3 and 5 under several M2/M1 and F2/F1 ratios 
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(Fig. 1) providing a wide range of GII/G ratios. As the h2/h1 > 1 configuration was adopted, 

the loadings imposed always involved clockwise M1 and upward F1 (Fig. 1), here taken as 

positive. In turn, especially for mode I dominated cases, anti-clockwise M2 and downward F2 

loadings were applied, here taken as negative. The ADBM predictions were compared to FEA 

conducted with the Abaqus® code. The numerical models were constructed with two-

dimensional 8-node solid quadratic reduced integration elements. Plane stress and material 

transverse isotropy were assumed. The loadings imposed were small enough to avoid large 

displacements. GI and GII were computed by the virtual crack closure technique (VCCT). 

As discussed in Section 2.1, the first issue to be addressed concerned the Kn and Ks 

cohesive elastic stiffnesses Eq. (13). The optimal values of tn and ts were determined for each 

set of material properties and h2/h1 ratio by minimizing the {[GI(ADBM)−GI(FEA)]2 + 

[GII(ADBM)−GII(FEA)]2} residual calculated for the FLDCB specimen. As expected from 

previous studies [17,18], tn and ts were not significantly affected by the highly different 

material properties here considered (Fig. 4), manifested in the wide gap of E3/E1 and G13/E1. 

Although tn became more sensitive to material properties for higher h2/h1, the overall 

variability of tn and ts is clearly mild, thereby confirming the interest in beam modelling.

3.2. Strain-energy release rate and mode-mix

The tn and ts values determined above enabled the ADBM predictions for the mode-mix (Figs. 

5-7) and G (Figs. 8-10) to be in excellent agreement with FEA results. All results of Figs. 8-

10 were normalized by the BT prediction [1]

(51)𝐺 =
1

2𝑏𝐸1{𝑀2
1(𝑎)
𝐼1

+
𝑀2

2(𝑎)
𝐼2

―
[𝑀1(𝑎) + 𝑀2(𝑎)]2

𝐼 }
where I is the specimen second moment of area. It must be mentioned that no results are 

plotted for the MLDCB specimen, for which Mi(a) = Mi, because, as expected, both ADBM 

and FEA gave results identical to Eq. (51). Actually, Figs. 5-10 confirm that GI and GII in 

beam-like specimens are clearly dominated by crack-tip bending moments. The minor role of 

transverse shear is certainly a key factor for the good results of beam modelling, given the 

approximate way transverse shear is dealt with (see Section 2.1). In fact, the maximum error 

attained in G for the higher h2/h1 = 5 (Fig. 10) was only 0.6 %. Evidently, the normalized G > 

1 seen in Figs. 8-10 result from the crack-tip section rotations and displacements which are 

responsible for the well-known crack length corrections in corrected beam theory (CBT). As 

in standard symmetrically delaminated specimens [17-20], such corrections are larger for: the 

mode I component, hence the higher normalized G for the F2/F1 < 0 cases (Figs. 8-10); the 
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more anisotropic CFRP specimens, which have notably lower E3/E1 and G13/E1.

3.3. Moment-rotation and load-displacement responses

The ADBM predicts the MLDCB specimen end-rotations  and FLDCB specimen vertical θi

end-displacements  that would be measured in actual experiments. The results presented vi

below are restricted to the latter, as the ADBM errors were higher. This is easily understood 

considering BT predictions for the absolute values of  and , which are, respectively,θi vi

(52)|𝜃𝑖|𝐵𝑇 = |(𝑀1 + 𝑀2)(𝑎 ― 𝐿)
𝐸1𝐼 ―

𝑀𝑖𝑎
𝐸1𝐼𝑖|

(53)|𝑣𝑖|𝐵𝑇 = |(𝐹1 + 𝐹2)(𝐿3 ― 𝑎3)
3𝐸1𝐼 +

𝐹𝑖𝑎3

3𝐸1𝐼𝑖|
As in CBT of symmetrically delaminated specimens, the effects of crack-tip rotation and 

deflection give rise to an augmented crack length to which  is much more sensitive than , vi θi

given the cubic power of a. The results plotted in Fig. 11-13 for the normalized vertical end-

displacements

(54)𝛥 =
|𝑣1| + |𝑣2|

|𝑣1|𝐵𝑇 + |𝑣2|𝐵𝑇

show the ADBM very good accuracy, even though tn and ts were optimized for fitting the 

strain-energy release rates. In fact, the largest differences between the ADBM and FEA seen 

in the narrow scale of Fig. 13 are under 1.5%. 

3.4. Notes on further assessment

The ADBM was also evaluated for MLDCB and FLDCB specimens with larger a = 80 mm 

crack length. The other specimen dimensions, material properties, cohesive stiffness 

characteristic thicknesses (tn and ts) and load ratios applied were identical to those adopted in 

the previous sections. The results obtained were very similar to the ones presented above, and 

thus are here omitted. As expected, the larger crack length increased the dominance of crack-

tip bending moments, which made the mode-mix ratios of FLDCB and MLDCB specimens 

get even closer. Furthermore, the reduced (L − a) crack-tip distance to the built-in end (Fig. 1) 

did not affect the ADBM accuracy, thereby showing that discarding the terms on exp(λkx) of 

the general solutions for τc (Eq. 24) and σc (Eq. 25) is an adequate approximation. 

Asymmetrically delaminated UD composite specimens have been scarcely used for 

characterising delamination resistance [22,23]. The experimental study by Ducept et al. [22] is 

of particular interest here, because its results were analysed in [12], thus allowing the 
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comparison between the ADBM and the ‘enhanced’ BT. The UD E-glass/epoxy ADCB 

specimen dimensions (Fig. 14) were 2h = 5 mm, a = 35 mm, L = 150 mm, b = 20 mm and had 

h1/h2 = 1, 0.778, 0.6, 0.455, 0.333 and 0.231. The elastic moduli used in [12] were E1 = 25.7 

GPa, E3 = 6.5 GPa and G13 = 2.5 GPa. It is worth noting the low E1 because the specimens 

were manufactured by hand lay-up [22]. For an accurate comparison with the formulation of 

[12], the cohesive stiffness characteristic thicknesses were set equal to those there adopted i.e. 

tn = 2h/6.9 and ts = 2h/16.2. In these circumstances, the ADBM results were identical to those 

of the ‘enhanced’ BT [12], except for the h1/h2 = 0.231 specimen, which gives rise to complex 

roots for the base differential Eq. (19) solution. This case was not considered here, because it 

is not representative of typical material properties and specimen geometries of high 

performance CFRP or GFRP. 

4. On the interest in testing asymmetrically delaminated specimens

The above results show that the ADBM provides a suitable framework for analysing the 

interlaminar fracture test results of asymmetrically delaminated UD composite specimens. 

Besides the demonstrated accuracy, the ADBM only involves closed-form solutions i.e. no 

numerical iterative calculation procedures are needed. Therefore, it can be easily implemented 

in standard spreadsheets. Moreover, cohesive stiffness characteristic thickness values can be 

provided for the typical range of material properties and sub-laminate thickness ratios. One 

can even envisage the future development of:

• closed-form solutions similar to CBT for simple specimens such as the ADCB;

• effective crack based data analysis methods [21] that are able to deal with the large 

FPZ associated to the mode II component.

However, the practical usefulness of testing asymmetrically delaminated specimens can be 

questioned, especially because the standard MMB specimen covers a wide range of mixed-

mode I-II combinations. Moreover, the MMB test fixture is not excessively complicated, 

although it does have some relevant drawbacks: the weight of fixture needs to be taken into 

account in toughness measurements [24] and poses difficulties for fatigue and high-rate 

testing. The MLDCB and FLDCB are even more versatile, allowing pure mode I and mode II 

tests, but they do require more complex loading systems. 

A possible advantage of asymmetrically delaminated specimens could be to achieve a 

considerable range of mixed-mode I-II combinations with simple test fixtures, The ADBM 

shows that GII/G is barely above 30% for ADCB specimens (Fig. 14) with h2/h1 = 5, which is 
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a degree of asymmetry already susceptible to large displacements and premature failure of the 

thinner sub-laminate. Nonetheless, the ADCB specimen (Fig. 14) with h2/h1 = 3 provides the 

interesting GII/G ≈ 23% ratio, for which the MMB test setup requires longer lever arms [24]. 

The fixed-ratio mixed mode (FRMM) [25] (Fig. 15) and the single-leg bending (SLB) 

[26] (Fig. 16) can also be applied to asymmetrically delaminated specimens. Besides 

promoting higher GII/G, the position of the thicker sub-laminate depicted in Figs. 15 and 16 is 

able to avoid premature bending failure of the thinner sub-laminate and large displacement. 

The GII/G ≈ 53% for h1/h2 = 5 is, again, an interesting mode-mix ratio for characterizing the 

mixed-mode I-II fracture envelope, representing a non-negligible increase from the GII/G ≈ 

40% of symmetrically delaminated specimens. However, unless new simple tests are 

developed, it appears that asymmetric delaminations alone are unable to achieve mode II 

dominated configurations e.g. GII/G ≈ 75%.

Finally, one can profit from the absence of singularity in beam models to probe into the 

traction distributions in the crack-tip vicinity. In particular, it is interesting to compare the 

traction distributions of asymmetrically and standard symmetrically delaminated specimens. 

The level of tractions relative to G can be assessed through the dimensionless tractions Σ = 

bσc/G and Τ = bτc/G. This exercise is done here for CFRP specimens with the same properties 

and dimensions considered in the previous sections and h2/h1 = 3. The first case analysed is 

the ADCB specimen (Fig. 14), for which the ADBM predicts GII/G = 22.5%. Fig. 17 

compares the traction levels with those of a symmetrically delaminated FLDCB specimen 

(Fig. 1) under the F2/F1 = −5.03 load ratio that leads to same GII/G ratio. It can be seen that 

traction levels in the crack-tip vicinity are much higher in the symmetrically delaminated 

specimen.

The second case analysed is the FRMM specimen (Fig. 15), for which the ADBM 

predicts GII/G = 48.5%. Fig. 18 compares the traction levels to those of a symmetrically 

delaminated FLDCB specimen (Fig. 1) under the F1/F2 = 10.8 that promotes an identical 

GII/G ratio. In contrast with the previous case, the traction levels in the crack-tip 

neighbourhood are now much higher for the asymmetrically delaminated specimen. 

It is worth noting that, in spite of the different traction levels, the σc/τc traction ratios are 

quite similar for both types of specimens (Fig. 19). Furthermore, crack propagation is well-

known to involve a previous FPZ build-up stage which implies traction redistributions. In the 

end, asymmetrically and symmetrically delaminated specimens should have identical fracture 

toughness values. This was confirmed by Ducept et al. [22], but, as seen above, the ADCB 
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specimens used provided a narrow range of mode-mix ratios. Yet, the results of Figs. 17 and 

18 suggest that asymmetrically and symmetrically delaminated specimens may have different 

FPZ build-up stages. This issue is particularly relevant in toughened material systems e.g. 

[27], which develop quite large FPZ. Moreover, asymmetrically delaminated specimens could 

show a higher sensitivity to FPZ formation. This feature is very favourable for evaluating 

traction-separation laws using recently proposed methods [19,28]. Therefore, the interlaminar 

fracture behaviour of asymmetrically delaminated specimens is clearly worth investigating.

5. Conclusions

The present work revisited the Timoshenko beam modelling of asymmetrically delaminated 

unidirectional composite specimens following a different route to obtain general solutions for 

the traction distributions. The development of the fundamental equations and the physical 

interpretation of the solutions provided a first set of conclusions:

• The usual treatment of transverse shear is inconsistent with the tractions near the 

crack-tip. However, accounting accurately for the transverse shear effect would lead 

to non-linear differential equations.

• Nevertheless, the traction distributions do tend to the Timoshenko beam theory 

predictions in regions sufficiently distant from the crack-tip and load or support 

points.

• The typical elastic properties and geometries of interlaminar fracture specimens 

allow discarding three terms of the general solutions for the traction distributions. 

This greatly simplifies data analysis and enables mode partitioning approaches based 

on crack-tip forces and moments.

The above conclusions found support in the results herein obtained for unidirectional 

composite moment-loaded and force-loaded double cantilever beam specimens under a wide 

range of mode-mix I-II ratios. Moreover, the results showed that:

• The errors brought about by the aforementioned deficiency in transverse shear 

modelling are quite small, given the clearly dominant role of bending moments.

• The cohesive elastic stiffnesses were not too sensitive to the sub-laminate thickness 

ratio and material properties.

• Owing to the accuracy and simplicity, the present beam model provides an adequate 

framework for data analysis of interlaminar fracture tests on asymmetrically 

delaminated specimens;
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• Traction distributions in the crack-tip vicinity of asymmetrically delaminated 

specimens can differ significantly from those of standard symmetrically delaminated 

ones under the same mode-mix ratio.

Therefore, the interlaminar fracture behaviour of asymmetrically delaminated 

specimens is clearly worth investigating.

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as 

the data also forms part of an ongoing study.
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Figures

Fig. 1. The MLDCB and FLDCB specimens.

Fig. 2. Forces, moments and tractions acting on infinitesimal elements of the upper (1) and 

lower (2) sub-laminates in the specimen a ≤ x ≤ L region (Fig. 1). 
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Fig.3. Deformations of sub-laminates infinitesimal elements in the specimen a ≤ x ≤ L region 

(Fig. 1). 

Fig.4. Effect of the sub-laminate thickness ratio (Fig. 1) on the cohesive stiffness 

characteristic thickness values of the CFRP and GFRP specimens analysed. 
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Fig. 5. Mode-mix ratio versus load ratio applied to MLDCB or FLDCB specimens (Fig. 1) 

with sub-laminate thickness ratio h2/h1 = 1.5. For clarity, the results were offset horizontally 

around the −1.5 to 1.5 scale load ratios.

Fig. 6. Mode-mix ratio versus load ratio applied to MLDCB or FLDCB specimens (Fig. 1) 

with sub-laminate thickness ratio h2/h1 = 3. For clarity, the results were offset horizontally 

around the −4.5 to 6 scale load ratios. 
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Fig. 7. Mode-mix ratio versus load ratio applied to MLDCB or FLDCB specimens (Fig. 1) 

with sub-laminate thickness ratio h2/h1 = 5. For clarity, the results were offset horizontally 

around the −10.5 to 14 scale load ratios. 

Fig. 8. Normalized strain-energy release rate versus force ratio applied to FLDCB specimens 

(Fig. 1) with sub-laminate thickness ratio h2/h1 = 1.5. 
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Fig. 9. Normalized strain-energy release rate versus force ratio applied to FLDCB specimens 

(Fig. 1) with sub-laminate thickness ratio h2/h1 = 3.

Fig.10. Normalized strain-energy release rate versus force ratio applied to FLDCB specimens 

(Fig. 1) with sub-laminate thickness ratio h2/h1 = 5.
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Fig. 11. Normalized vertical end-displacements Eq. (54) versus force ratio applied to FLDCB 

specimens (Fig. 1) with sub-laminate thickness ratio h2/h1 = 1.5.

Fig. 12. Normalized vertical end-displacements Eq. (54) versus force ratio applied to FLDCB 

specimens (Fig. 1) with sub-laminate thickness ratio h2/h1 = 3.
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Fig. 13. Normalized vertical end-displacements Eq. (54) versus force ratio applied to FLDCB 

specimens (Fig. 1) with sub-laminate thickness ratio h2/h1 = 5.

Fig. 14. The ADCB specimen.

Fig. 15. The FRMM specimen.
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Fig. 16. The SLB specimen.

Fig. 17. Dimensionless tractions Σ = bσc/G and Τ = bτc/G in asymmetrically (AD) and 

symmetrically delaminated (SD) specimens with GII/G = 22.5%.
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Fig. 18. Dimensionless tractions Σ = bσc/G and Τ = bτc/G in asymmetrically (AD) and 

symmetrically delaminated (SD) specimens with GII/G = 48.5%.

Fig. 19. Ratio of the tractions near the crack-tip for the asymmetrically (AD) and 

symmetrically delaminated (SD) specimens with GII/G = 22.5% (a) and 48.5% (b).
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