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resumo 
 

 

As diretrizes da Agenda 2030 para o Desenvolvimento Sustentável foram muito 
claras. Novas estratégias precisam de ser encontradas para garantir um futuro 
sustentável. Desta forma, os recursos marinhos surgem como matérias-primas 
naturais e renováveis para integrar uma estrutura de biorefinaria marinha e uma 
abordagem de economia circular. Através da conversão de biomassa, uma 
produção integrada de biocombustíveis e compostos de valor acrescentado 
pode ser projetada, permitindo a recuperação de vários compostos com 
impactos ambientais mínimos e um crescimento económico sustentável. 
Pigmentos são compostos naturais utilizados em aplicações de elevado padrão 
devido à sua cor e ao seu alto interesse biológico, podendo ser encontrados em 
diversos recursos marinhos. No entanto, as técnicas convencionais para 
recuperá-los requerem o uso de metodologias complexas e demoradas que 
podem levar à degradação e/ou perda de estabilidade dos compostos, alto 
consumo de energia e baixos rendimentos de extração. Solventes alternativos, 
como soluções aquosas de líquidos iónicos e surfactantes, aparecem como 
opções mais sustentáveis que podem melhorar a estabilidade térmica e química 
dos pigmentos, obter rendimentos de extração mais altos, enquanto minimizam 
os impactos ambientais do processo. Neste trabalho, foram desenvolvidos dois 
procedimentos para recuperar diferentes pigmentos utilizando solventes 
alternativos, a fim de superar as dificuldades encontradas nos métodos 
convencionais. No primeiro trabalho, uma técnica de extração em fase sólida foi 
usada para fracionar clorofilas e xantofilas. A seguir, para eluir as clorofilas da 
resina AmberLite™ HPR900 OH, as soluções aquosas de líquidos iónicos 
revelaram-se solventes eficientes para valorizar simultaneamente xantofilas e 
clorofilas, e reaproveitar a resina em vários novos ciclos de purificação. O 
segundo trabalho teve como foco a extração do pigmento bacterioruberina com 
soluções aquosas de surfactantes a partir da Haloferax mediterranei, sendo a 
classe dos não iónicos a que apresentou maiores rendimentos de extração. 
Além disso, a purificação da bacterioruberina também foi abordada através de 
uma simples precipitação induzida com etanol como anti-solvente para 
recuperar proteínas como um segundo composto de elevado valor comercial. 
Em ambos os trabalhos foram desenvolvidos com sucesso procedimentos de 
fácil implementação e ambientalmente sustentáveis recorrendo ao uso de 
solventes aquosos, sendo as condições operacionais otimizadas para reduzir os 
impactos económicos e ambientais, e permitir alcançar rendimentos mais 
elevados.  
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abstract 

 
The guidelines of The 2030 Agenda for Sustainable Development were very 
clear. New strategies need to be found to ensure a sustainable future. In this 
way, marine resources emerge as natural and renewable feedstocks to integrate 
a blue biorefinery framework and a circular economy approach. Through 
biomass conversion an integrated production of biofuels and value-added 
compounds can be designed, allowing the recovery of multiple compounds with 
lower environmental impacts and a sustainable economic growth. Pigments are 
natural compounds used in high-end applications due to their colour and high 
biological interest that can be found in several marine resources. However, the 
conventional techniques to recover them require the use of complex and time-
consuming methodologies that may lead to the degradation and/or loss of 
stability of the compounds, high energy consumption, and low yields of 
extraction. Alternative solvents such as aqueous solutions of surfactants and 
ionic liquids (ILs) appear as more sustainable options that can improve thermal 
and chemical stability of pigments, obtain higher extraction yields, while 
minimizing the environmental impacts of the process. In this work, two 
procedures were developed to recover different pigments using alternative 
solvents, to overcome the bottlenecks found in the conventional methodologies. 
In the first work, a solid-phase extraction technique was used to fragmentate 
chlorophylls from xanthophyll. Then, to elute chlorophylls from AmberLite™ 
HPR900 OH resin, aqueous solutions of ILs revealed to be efficient solvents to 
valorize simultaneously xanthophyll and chlorophylls while reusing the resin in 
several new cycles of purification. The second work focused on the extraction of 
bacterioruberin pigment from Haloferax mediterranei with aqueous solutions of 
surfactants, being the non-ionic class the one that showed higher extraction 
yields. Moreover, the purification of bacterioruberin was also addressed by 
inducing a simple precipitation with ethanol as anti-solvent to recover proteins as 
a second added-value compound. In both works easy to implement and 
environmentally friendly procedures using water-based solvents were 
successfully proposed, being the operational conditions optimized to reduce both 
economic and environmental impacts, and to reach higher yields.  
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1.1. Motivation 

Many steps are being taken now towards a greener and more sustainable economy to meet The 2030 Agenda 

for Sustainable Development adopted in 2015 by all United Nations Member States.1 The 17 Sustainable 

Development Goals (SDGs) and 169 associated targets developed based on the goals not achieved by the 

Millennium Development Goals intend to balance the three dimensions of sustainable development: economic, 

social and environmental.1,2 This plan is designed to eradicate poverty and hunger, while developing strategies 

to combat inequality and protect human rights, to achieve peace and justice, to ensure the protection of natural 

resources, to improve health and education, and to create a sustainable economic growth, having all countries 

and stakeholders the mission to join forces and help achieve this end.1,2  

The development of marine technology through a sustainable and efficient management of natural resources 

to achieve clean industries with reduced environmental impacts, while addressing waste minimization and 

recycling, combines three major pillars (SDG 9, 12 and 14) that the 2030 Agenda for Sustainability 

Development pretends to attain.3 As oceans represent more than two-thirds of the Earth’s surface,4 their 

extensive biodiversity is a source of many natural bioactive compounds with huge industrial potential.5  

For centuries, the use of ocean resources has been fundamental in societal development, mainly in the food 

sector such as the obtention of marine living resources like fish or evaporation of brine to collect salt.6 More 

recently, a set of new bio-based products have surfaced to meet the ever-growing demand for natural 

alternatives to the synthetic compounds (present in food, cosmetics and pharmaceuticals) and fossil fuel 

resources.7 Consequently, marine resources received much attention as natural, renewable and sustainable 

feedstocks with industrial potential to be a part of food, materials, chemicals, fuel, cosmetics, and medicines.8,9 

However, these resources were mostly studied for the production of biofuels, with studies showing that its 

production alone is not economically viable due to the high costs associated with the process.10 To improve the 

process economics, a cost-effective integration of technologies is needed to get maximum value from raw 

materials.11 

The biorefinery approach is designed to achieve an integrated production of biofuels and high-value co-

products through biomass conversion.12 It not only aims to maximize the economic value of raw materials 

(feedstocks) but also to avoid the production of waste streams by generating multiple products.7,13 Furthermore, 

it allows the development of an industrial production with minimum negative impacts on the environment in 

order to achieve a sustainable economic growth.14 All the products obtained from raw materials can be 

separated to be commercialized or can be the feedstock for other manufacturing operations as a way to obtain 

value-added products.15 Even so, waste and leftovers, that are generated throughout the process, can still be 

used as by-products. If it is no longer possible to integrate them as inflows to another process, they can always 

be used for energy production. This cascade approach (Figure 1.1.1A) of valuing first the high quality biomass, 

and then to utilize the low quality biomass for energetic purposes, enables not only the minimization of waste 

streams preferentially to zero, but also increases resource efficiency, being part of the circular economy 

strategy.15 In a circular economy the goal is to minimize waste and resource consumption by circulating and 

recycling the products for as long as possible using preferably renewable resources and non-toxic chemicals. 

The life cycle of the products is redesigned to maximize the use of biomass in order to save resources and 
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minimize environmental impacts.16 In this way, a circular bio-based economy could be a path forward to ensure 

a sustainable future for our planet  (Figure 1.1.1B).17 

 

 

Figure 1.1.1. Schematic representation of the bio-based value pyramid considering the cascading use of 

biomass (A) and the circular bioeconomy and its elements (B). Adapted from Stegmann et al. (2020).18 

 

Algae are well-known photosynthetic organisms that are mostly found in aquatic environments like ponds, 

lakes, wastewater, rivers, and oceans. They are responsible for the majority of the oxygen available, and 

approximately 40 % of global photosynthesis, being able to grow alone or together with other organisms under 

different conditions of light intensity, pH, salinity and temperature.8,19 The classification of algae can be 

generally divided by colour as Phaeophyta (brown algae), Chlorophyta (green algae), and Rhodophyta (red 

algae), and by size as microalgae or macroalgae (also known as seaweed). Macroalgae are multicellular 

organisms visible to the naked eye, while microalgae are monocellular organisms only identified by a 

microscope.8,19 Compared to other plants, microalgae have higher growth rates and can be cultivated using 

small amounts of water, nutrients and atmospheric CO2. Since they can grow in degraded land without 

pesticides, there is no competition for land and food crops. Besides, microalgae can significantly reduce 

greenhouse gas emissions by being able to sequester the carbon dioxide from flue gases produced by industries 

and released to the environment, and excess carbon dioxide in the atmosphere.20–22 A wide range of high-value 

compounds are produced, including lipids, carbohydrates, proteins and pigments.23 Microalgae synthesize 

different types of pigments that can belong to one of three classes: chlorophyll (green colour), carotenoid 

(yellow/orange colour) or phycobiliprotein (red/blue colour).19 Examples of their applications include use as 

vitamin precursors, additives and dyes in food, biomaterials, animal feeds, pharmaceuticals and cosmetics.20 

Carotenoids are natural pigments with vibrant colours varying from red to yellow that are easily found in 

nature, being present in several algae, bacteria, plants and fungi.24 They are terpenoid pigments sensitive to 

light, oxygen and heat, that commonly share the same C40 backbone structure of isoprene units.25 Their 

chemical structure divides them into two groups: carotenes, composed of carbonated chains, and xantophylls, 

composed of carbonated chains with at least one functional group containing oxygen (oxygenated hydrocarbon 

derivatives).24 Carotenoids are also lipophilic compounds with light-absorbing characteristics necessary for 

photosynthesis,25 with a variety of applications in medicine, as anticancer, immunomodulatory, anti-

inflammatory, antibacterial, antidiabetic and neuroprotective, in food, as colorants, supplements and 
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antioxidants,26 and in cosmetics products as protectors, tanners, creams, between others, due to their antioxidant 

and photoprotective properties.27,28 

Chlorophylls, one of the most abundant pigments in nature, are found in algae, plants, and cyanobacteria in 

different chemical structures, being the most common a chlorin ring with four nitrogen atoms surrounding a 

magnesium ion in the center.29 They are mostly lipid-soluble green pigments that play an important role in 

conversion of energy by capturing photons and transferring them to the photosynthesis reaction centers.30 Their 

antioxidant,31 antibacterial 32 and antimutagenic properties are significant for cancer prevention as anti-tumour 

agents,33 and their photophysical and photochemical properties are the key for photodynamic and photothermal 

therapy, photocatalytic diagnosis, and also photoacoustic, magnetic resonance and nuclear medical imaging.34 

Furthermore, chlorophylls as well as carotenoids are also used in cosmetics and food industries.35 

Other less explored marine resource, not present in the oceans or seawater such as haloarchaea, should also be 

considered alternative feedstocks to integrate the biorefinery framework. These extreme halophilic 

microorganisms, belonging to the Haloferacaceae and Halobacteriaceae families, phylum Euryarchaeota, 

Archaea domain, represent the major microbial population of hypersaline environments, being spread around 

the world in marshes, salt ponds or salt lakes.36 They are mainly red-coloured aerobic heterotrophs that present 

metabolic adaptations due to the limited water available and high ionic strength, characteristics of extreme 

growing conditions.37 These adaptations lead to the production of different added-value compounds with high 

(bio)technological interest to potentially be implemented on a large scale, namely enzymes, poly(3-

hydroxybutyrate), polyhydroxyalkanoate, and carotenoids.36 For the production of carotenoids, the use of 

halophyte microorganisms has two main advantages: first, they can growth under non-sterile conditions, since 

the high concentration of salt prevents contamination from other organisms; second, the accumulation of 

carotenoids can be easily increased by changing the culture medium conditions, like pH, temperature, oxygen 

concentration, light irradiance, and/or salt concentration. Several carotenoids can be found in haloarchaea 

microorganisms.36 The most abundant is bacterioruberin, however lower quantities of carotene, lycopene, 

canthaxanthin, 3-hydroxy-echinenone, lycopersene, phytoene, phytofluene, and 2-isopentenyl-3,4-

dehydrorhodopin, can also be identified.38 

Bacterioruberin and its derivatives, monoanhydrobacterioruberin, bisanhydrobacterioruberin, and 

trisanhydrobacterioruberin, are C50 carotenoids that can be found in two different geometries, as trans or cis 

isomers (5-cis-bacterioruberin, 9-cis-bacterioruberin, 13-cis-bacterioruberin, 15-cis-bacterioruberin, and 5-cis, 

9'-cis-bacterioruberin).38 Bacterioruberin structure is composed of 13 pairs of carbon-carbon conjugated double 

bonds in their primary conjugated isoprenoid chain with four hydroxyl groups in the terminal ends. This higher 

number of conjugated double bonds compared to the carotenoids with 40 carbon atoms produced by most 

photosynthetic organisms, confers C50 carotenoids higher antioxidant capacities responsible for the protection 

of cells against harmful effects of radiation and osmotic stress, demonstrating enormous potential in food and 

pharmaceutical industries.39 Other important biological functions are the improvement of cell membrane 

reinforcement and membrane fluidity due to the presence of the 4 hydroxyl groups in bacterioruberin 

structure.37 Although there are still few studies on the applications of this pigment, its potential has already 

been proven in the field of biomedicine as antimicrobial,40 as improver of sperm motility,41 and in prevention 

of skin cancer or rehabilitation of skin tissue,42 since it is able to repair human DNA strands. 
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Owing to the great potential of marine resources as natural sources of valuable bio-active compounds, efficient 

methodologies to recover them need to be developed under the guidelines of biorefinery and circular economy. 

These methodologies should follow three main steps for a sustainable development and exploitation of the 

biomass: aquaculture, harvesting, and downstream processes, as represented in Figure 1.1.2.43 

 

 

Figure 1.1.2. Schematic representation of the general steps of downstream processes.43 

 

First, the biomass is obtained by cultivation/harvesting of cells where the focus should be on developing 

optimization approaches to maximize or induce the production of primary and secondary metabolites of 

organisms. Next, as part of the downstream process, the cell disruption and extraction steps include the rupture 

of the cell wall, and consequently, the recovery and solubilization of the intracellular biomolecules of interest, 

which can be performed simultaneously. Lastly, if necessary for the final application, a purification step should 

be applied to obtain higher purities of the compounds by separating them from each other, and an isolation of 

compounds from the solvents used (polishing step) to be able to reuse/recycling them.43 

Industries are conventionally using decoction, maceration, infusion, digestion, percolation and soxhlet as 

extraction techniques involving the use of organic solvents. Besides requiring high volumes of solvent, these 

processes often face low yields of extraction, high energy consumptions and possible degradation of the 

compounds.44,45 In recent years, non-conventional techniques like enzyme assisted extraction, microwave-

assisted extraction, ultrasound-assisted extraction, supercritical fluid extraction, pressurized liquid extraction, 

and pulsed electric field assisted extraction, are being explored to efficiently extract the target compounds at 

lower costs, with higher yields and lower treatment times, and taking into consideration the sustainability of 

the procedure involved.46 However, all techniques have limitations, and thus, the selection of the appropriate 

method to use should be based on several factors: biochemical properties of the compound, choice of solvent, 

extraction yield, time of the operation, reproducibility, denaturation or degradation of the compounds, 

simplicity and cost of the process, market value of the compounds, environmental effects and suitability of the 

operation to be applied industrially.44,45 

The use of organic solvents causes problems related to workers exposure, toxicity, storage and flammability, 

which increases the urgency to find safer options.45 Thus, the introduction of green solvents as alternatives to 

the traditional organic solvents to integrate downstream processes, either in the extraction or purification steps, 

has received much attention recently. In most cases, an improvement in thermal and chemical stability of 

pigments, higher extraction yields, and a reduction in environmental impacts was seen when alternative 

solvents as ionic liquids, eutectic solvents, surfactants and edible oils were applied.47 
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Ionic liquids (ILs) are salts with low charge density and low symmetry ions, which consequently lead to low 

melting temperatures (usually below 100 °C). Their usual composition of large organic cations and organic or 

inorganic anions with a possibility of multiple ions combinations, give them a label of "designer solvents". 

Given that, by tunning their properties some adaptation can be made to meet a specific end, namely their 

hydrophobicity and solution behaviour, their thermophysical properties, and their biodegradability and 

toxicological characteristics.48 Other features of ILs usually include low to negligible vapour pressure and low 

flammability, high thermal and chemical stabilities, wide liquid temperature range, high ionic conductivity, 

and high solvation capacity for organic, inorganic and organometallic compounds.49 Due to their distinctive 

properties, their use as extraction solvents can induce the cell wall lysis (ILs with long alkyl chains), and 

enhance the selectivity of the solvent to the target compounds depending on the IL chosen. However, besides 

the ILs potential, some controversy is found regarding economic viability and sustainability. Many ILs contain 

toxic and poorly biodegradable constituents that, associated with high production costs compromises their 

industrial applicability.49 To overcome these issues three approaches should be considered. First, the use of 

aqueous solutions instead of pure ILs, in addition to reducing environmental and economic impacts, and 

decreasing the viscosity of the system, has already reported to be more efficient leading to higher extraction 

yields. Second, the choice of the solvent should not only be based on ions interactions to the compounds, but 

also in finding cheaper (Figure 1.1.3) and sustainable ILs for the same purpose. Lastly, a final step to isolate 

the compounds from the IL solution should always be considered to be able to reuse the IL in new cycles 43 or 

in functional materials to create valuable products.50 Although this step is still poorly explored, some 

alternatives have been proposed consisting of back-extractions using organic solvents, evaporation of the 

solvents or compounds (when possible), precipitation with antisolvents, and through the use of macroporous 

material or anion-exchange resins.48 

 

 

Figure 1.1.3. Schematic representation of the estimation of relative prices of ILs according to the cost of the 

raw materials used in their synthesis.48 

 

Surfactants consist of another alternative class of solvents under investigation, widely used as a part of 

industrial and domestic day life in detergents, paper, cosmetics, motor oils, pharmaceuticals, and in more high-

technology areas like electronic printing, magnetic recording, biotechnology, and microelectronics. Their 
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molecular structure generally consists of a lyophobic group with poor attraction to the solvent and a lyophilic 

group with a strong attraction to the solvent, thus being recognized by their amphipathic structure. When a 

molecule with this structure contacts with a solvent, the lyophobic group can alter the structure of the solvent, 

increasing the free energy of the system. As a result, the system tries to minimize the contact between the 

lyophobic group and the solvent. In the case of water, the lyophobic group breaks the hydrogen bonds of water 

molecules and structure them near the hydrophobic group by forming a single layer of surfactant molecules 

with their lyophobic groups oriented to the air minimizing the contact with water molecules.51 Though, at the 

critical micellar concentration (CMC), surfactants interact with the cells releasing the intracellular content,52 

while starting to form aggregates called micelles, able to solubilize more hydrophobic compounds in water.53 

These interactions can be adjusted through the choice of the solvent, between cationic (positive charge), anionic 

(negative charge), non-ionic (non-ionic charge) or zwitterionic (positive and negative charges) surfactants. 

Regardless of the clear advantages of these solvents integrating extraction procedures, similar to ILs, some 

concerns are raised regarding their biodegradability and toxicity 51 that can be overcome by following the same 

strategies mentioned for ILs.  
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1.2. Scopes and objectives  
So far, extraction, purification and polishing steps remain the major bottlenecks of downstream processes.43 

Despite the efforts of academia, some of the reported strategies to recover pigments are not economically 

viable, mostly because of the overall complexity of the process or due to low pigment recoveries, potentially 

complicating the scale-up of the process.47 

Under this context, this thesis aims to: 

i) develop efficient approaches to extract and purify different pigments using alternative solvents and 

methodologies; 

ii) assess strategies to recover the solvents for their reuse in new cycles; 

iii) envision the processes applicability in industry by proposing their final integrated design. 

In this way, this thesis intends to contribute to the development of sustainable processes to integrate the blue 

biorefinery under the guidelines of a circular economy. 

 

In short, this thesis is divided into 4 Chapters described below, plus Bibliography and Appendix. 

Chapter 1: explains the motivation of this thesis, including the concepts of marine resources, circular 

economy, biorefinery, pigments, and alternative solvents. The scopes and objectives of this work were also 

incorporated; 

Chapter 2: describes the recovery of pigments using alternative solvents through different techniques: 

Chapter 2.1: encloses the purification of pigments from the microalgae Isochrysis galbana using 

solid-phase extraction processes and aqueous solutions of ionic liquids as chlorophyll eluents, based on the 

published article “Using aqueous solutions of ionic liquids as chlorophyll eluents in solid-phase extraction 

processes”, Chemical Engineering Journal, 2022, DOI: 10.1016/j.cej.2021.131073. 

Chapter 2.2: includes the extraction and purification of bacterioruberin from Haloferax mediterranei 

ATCC 33500 using alternative solvents, based on the article “Recovery of bacterioruberin and proteins using 

aqueous solutions of surface-active compounds”, to be published soon. 

Chapter 3: defines the final remarks and future perspectives. 

Chapter 4: expresses the scientific contribution of this thesis, considering all the experience that served as the 

basis for its development. 

Bibliography: details the references used throughout the work. 

Appendix: includes the details of the experimental work done in Chapter 2.
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2.1. Using aqueous solutions of ionic liquids as chlorophyll 

eluents in solid-phase extraction processes 

This chapter is based on the published manuscript: 

Bárbara M.C. Vaz, Margarida Martins, Leonardo M. de Souza Mesquita, Márcia C. Neves, Andreia P.M. 

Fernandes, Diana C.G.A. Pinto, M. Graça P.M.S. Neves, João A.P. Coutinho, Sónia P.M. Ventura,* “Using 

aqueous solutions of ionic liquids as chlorophyll eluents in solid-phase extraction processes”, Chemical 

Engineering Journal, 2022, DOI: 10.1016/j.cej.2021.131073. 

*Contributions: Bárbara M.C. Vaz and M.M. acquired the experimental data and performed the data analysis. L.M.S.M. 

performed the response surface methodology and statistical analysis. M.C.N. supervised the continuous process in column. 

D.C.G.A.P and M.G.P.M.S.N performed the UHPLC-MS analysis. M.M. wrote the manuscript with substantial 

contributions from the remaining authors. 

 

Abstract 

There is a need for handy and fast techniques to purify biomolecules, increasing their stability and value, 

because the separation units are current bottlenecks in downstream processes. Solid-phase extraction is a 

technique that enables the purification of a compound by its adsorption from a liquid matrix. The AmberLite™ 

HPR900 OH resin allows the separation of chlorophylls from complex extracts, however the recovery of the 

chlorophylls is not easy to achieve. An innovative procedure to elute the chlorophyll from AmberLite™ 

HPR900 OH, based on the use of aqueous solutions of surface-active ionic liquids is proposed in this work. 

The operational conditions were optimized, showing that the resin can be reused for at least five cycles without 

losing its efficiency and the chemical structures of the pigments recovered were identified.  

 

Keywords: AmberLite™ HPR900 OH, solid-phase extraction, chlorophylls, carotenoids, resin reuse, 

surface-active ionic liquids, eluents. 

 

Introduction 

There is a growing demand for natural products associated with the increased awareness of human health and 

environmental concerns that may be addressed using compounds from natural sources instead of synthetic 

alternatives.54,55 The concerns about climate change and the new policies to reduce the environmental impact 

of industrial processes and products reinforce this trend,56 particularly when integrated into a smart and low-

waste chain of different products or within a circular economy approach.16,54,55,57 Thus, natural sources like 

microalgae biomass arises as a renewable and sustainable feedstock.21 Under the concept of biorefinery, where 

the goal is to obtain high-value added products, biofuels and energy from biomass, microalgae emerge as an 

important and sustainable alternative to fossil fuels.21 The main advantages associated to microalgae are related 

with their cultures in degraded land using only water and atmospheric CO2 and also with their high growth 
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rates.21 So, like macroalgae or cyanobacteria,58,59 microalgae may also be considered a source of valuable 

bioactive compounds.21 

Natural pigments are one of the most important families of compounds that can be obtained from natural 

sources. Their use can boost the visual appearance of a final product and act as health promoters due to their 

multiple biological activities, especially regarding their antioxidant and anti-inflammatory properties.21,60,61 

Two good examples are the chlorophylls and xanthophylls (oxygenated carotenoids) that are well-known 

pigments present in photosynthetic organisms such as plants, microorganisms, and algae.60 

Along with the sustainable use of natural resources, obtaining and processing them should also be a 

concern.16,57 Several works have proposed alternative approaches to extract these pigments without 

compromise their stability,62,63 and studied the economic 63 and environmental 64 viability of these processes. 

Aqueous solutions of surface-active ionic liquids (ILs) and common surfactants have been proposed as solvents 

to extract chlorophylls 63,65 and carotenoids 64,66 from various natural matrices. Surface-active ILs can be very 

efficient in extraction processes due to their ability to create small pores in the cell membrane, allowing the 

release of intracellular compounds, (cell disruption step in Figure 1.1.2) and by increasing the solubility of 

hydrophobic compounds (like chlorophylls and carotenoids) in water through the formation of micellar 

structures 63,67 which are formed above the critical micellar concentration (Extraction step in Figure 1.1.2).  

Although the extraction of these pigments is straightforward,63 since chlorophylls and carotenoids have similar 

polarities and are usually present in the same cellular sites,68 their co-extraction usually occurs at similar 

conditions. This means that an additional purification step is required to separate chlorophylls from carotenoids 

(Purification step in Figure 1.1.2). The purity level is usually defined by the extract’s final application, with 

high purity levels allowing the extract to be more stable. Additionally, the separation of chlorophylls from 

carotenoids allows a more correct quantification of these compounds by simple techniques such as UV-Vis 

spectroscopy, since carotenoids and chlorophylls present a maximum absorption at close wavelengths.69 

However, this purification step remains the bottleneck of the whole process,70 because conventional techniques 

such as chromatography processes or saponification reactions are not only energy/time consuming but also 

require specific equipment and several steps to achieve the desired result.71,72 

A simpler and reliable separation process for this purpose is the solid-phase extraction. This is based on the 

adsorption of chlorophylls on a resin due to intermolecular and interionic interactions (e.g., dipole-dipole, ion-

dipole, hydrogen bonding, ion-ion) between chlorophyll derivatives and the tetramethylammonium functional 

group of AmberLite™ HPR900 OH (previously known as Ambersep 900 OH).73–75 AmberLite™ HPR900 OH 

is a strong basic anionic resin that allows an effective and fast adsorption of chlorophyll, while the carotenoids 

remain in solution.73–75 Its efficiency was already demonstrated for various extracts from green vegetables such 

as beans, broccoli, spinach, lettuce, and peas, among others.74,75 However, no previous work has successfully 

eluted the chlorophyll from the resin, allowing the recovery of the chlorophyll as a secondary product, and 

enhancing the resin’s lifetime through more cycles of reuse (Polishing step in Figure 1.1.2).  

In this work, a simple process to separate carotenoids and chlorophylls from an extract of microalgae Isochrysis 

galbana Parke 1949 using the resin AmberLite™ HPR900 OH is proposed, with the polishing step being 

accomplished by the use of aqueous solutions of surface-active ILs, to elute chlorophylls. The reutilization of 
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the resin was also carried during five cycles in batch and in continuous regimes to show the ability of this 

approach to extend the lifetime of the resin envisioning its industrial application. 

 

Experimental section 

Biomass 

The microalga used in this work is the Isochrysis galbana Parke 1949 and it was obtained in systems of 

photobioreactors (PhytoBloom). It was purchased at Necton S.A., a company located in Olhão (Portugal). The 

batch used in this work was produced in July 2018, being freeze dried and grinded in August 2018. The biomass 

was kept in a dry and dark environment until usage. 

 

Chemicals 

Ethanol (HPLC grade, CAS 64-17-5), methanol (HPLC grade, CAS 67-56-1), and acetone (HPLC grade, CAS 

67-64-1) used on the extraction of pigments from the biomass were acquired from Fisher Scientific. 

AmberLite™ HPR900 OH (CAS 9017-79-2), a strong basic anionic resin, which is composed of approximately 

35–55 % quaternary amine styrene-divinylbenzene copolymer of the OH form and 45–65 % water,75 was 

purchased from Sigma-Aldrich. Several organic solvents were additionally used in the attempts to elute 

chlorophyll from the resin. Dichloromethane (99.9 wt% of purity, CAS 75-09-2), and toluene (99.8 wt% of 

purity, CAS 108-88-3) were purchased from Fisher Scientific. Formic acid (99 wt% of purity, CAS 64-18-6), 

acetonitrile (99.99 wt% of purity, CAS 75-05-08), and petroleum ether (PA-ACS-ISO, CAS 8032-32-4) were 

purchased from Carlos Erba, Fisher Chemical, and Panreac, respectively. The sodium hydroxide (98.0 wt% of 

purity, CAS 1310-73-2) was supplied by Fisher. The ionic liquids based on ammonium family such as 

dodecyltrimethylammonium bromide, [N1,1,1,12]Br (99 wt% of purity, CAS 1119-94-4) and 

tetradecyltrimethylammonium bromide, [N1,1,1,14]Br (98 wt% of purity, CAS 1119-97-7), were purchased from 

Alfa Aesar while the decyltrimethylammonium bromide, [N1,1,1,10]Br (99 wt% of purity, CAS 2082-84-0), was 

acquired from Tokyo Chemical Industry. The tributyltetradecylphosphonium chloride, [P4,4,4,14]Cl (95 wt% of 

purity), was supplied by Iolitec. The molecular structures of the ILs used in this work are depicted in Figure 

A.1 in Appendix A. The deuterium oxide (99.9 atom % D of purity, CAS 7789-20-0) used for NMR 

spectroscopy was purchased from Aldrich. 

 

Pigments’ extraction  

The solid-liquid extraction step was performed using a methodology adapted from Martins et al. (2021).63 Pure 

ethanol, acetone, and methanol were screened as extraction solvents. The dry biomass was homogenised with 

the solvent in a shaker IKA Trayster Digital under constant vertical rotation (80 rpm). The extraction was 

performed using 0.01 gbiomass.mLsolvent
-1, at room temperature (20–25 ᵒC), during 30 min and protected from 

light exposure.63 The samples were centrifuged in a Thermo Scientific Heraeus Megafuge 16R centrifuge at 
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4700 g, for 30 min at 4 ᵒC.63 The supernatant (initial extract) was collected and the biomass debris was 

discarded.  

 

Chlorophyll adsorption and carotenoids recovery 

The commercial resin AmberLite™ HPR900 OH was washed with distilled water following the procedure 

proposed by Larsen and Christensen (2005),75 and dried in an oven at 50 ᵒC for 15 min. The initial extract 

collected with the different solvents was further diluted in the same solvent 1:1 (v:v) to avoid the pigment 

saturation in the resin. Initially, 1 g of resin was put in contact with 10 mL of diluted extract under magnet 

stirring at room temperature (20–25 ᵒC) for 30 min.75 The chlorophyll content was mostly adsorbed by 

AmberLite™ HPR900 OH, while the carotenoid content remained in organic solution. The organic fraction 

was collected, being the carotenoid content analyzed for each initial solvent. 

 

Chlorophyll elution and resin regeneration 

Various solutions, reported in Table 2.1.1, were screened for their performance to elute chlorophylls from the 

resin, with ethanolic extracts being used in the adsorption step. Concentrations above the critical micellar 

concentration (CMC) were always used for the aqueous solutions of ILs (CMC values available at Table A.1 

in Appendix A). For each case, the same conditions of chlorophyll adsorption were applied,75 i.e. the resin was 

contacted with 10 mL of the regenerating eluent under stirring at room temperature (20–25 ᵒC) during 30 min. 

After this period, the chlorophyll content of the solution was analyzed by UV-Vis spectroscopy.63 Three 

replicates were made in order to decrease the error associated with each assay. 

 

Table 2.1.1. Screening of eluents used to recover chlorophyll. 

Type Eluents Concentration Ref. 

Alkaline Sodium hydroxide 4 % (w:v) in water 73 

Hot water Distilled water at 80 ᵒC 100 % 76 

Organic solvents 

Dichloromethane 100 % 77 

Acetonitrile 100 % 78 

Toluene 100 % 79 

Petroleum ether 100 % 80 

Mixture of 

solvents 

Formic acid, acetonitrile, and 

methanol 
0.1 % : 69.93 % : 29.97 % 81 

Aqueous 

solutions of ILs 

[N1,1,1,10]Br 250 mM in water 63,64 

[N1,1,1,12]Br 250 mM in water 63,64 

[N1,1,1,14]Br 250 mM in water 63,64 

[P4,4,4,14]Cl 250 mM in water 63,64 
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Optimization of the elution of chlorophylls from the resin 

In order to optimize the elution of the chlorophylls from the resin, a central composite rotatable design (CCRD 

– 2³ with 6 central points and axial points) was applied in a total of 20 assays. This assay was done separately 

for the two best eluents found. The results obtained were statistically analyzed with a confidence level of 95 %, 

using pure error as standard. Three independent variables were studied, namely the solid-liquid ratio, i.e. the 

ratio between the mass of resin and the volume of eluent used (SLR, gresin.mLeluent
 -1), time of contact (t, min), 

and concentration of IL (CIL, mM), being their performance analyzed in terms of the chlorophyll recovery from 

the resin (%). Regarding the SLR study, the volume of extract (in adsorption step) and the volume of eluent 

(in the elution step) were kept constant, being 5 and 15 mL, respectively. The mass of resin was variable 

according to the SLR along the 20 runs, however, constant from the start to the end of each run individually, 

i.e. the initial mass of resin used in the adsorption step was the same used in the elution step for each run. All 

the codified and real values used in the CCRD are shown in Table 2.1.2. The results were analyzed using the 

software Statistica® 12 according to the theory proposed by Dean et al. (1999) 82 and Rodrigues and Lemma 

(2014).83 After interpretation of the response surface methodology results, the optimum conditions to elute 

chlorophylls were determined, with further validation of the optimum conditions in triplicate by the means of 

relative deviation (%).  

 

Table 2.1.2. Real and coded values of the CCRD (2³). 

Coded variable level SLR (gresin.mLeluent
-1) t (min) CIL (mM) 

-1.68 0.016 11.5 48.5 

-1 0.030 19.0 130.0 

0 0.050 30.0 250.0 

+1 0.070 41.0 370.0 

+1.68 0.084 48.5 451.6 

 

Pigments’ quantification 

The UV-visible spectra of the collected samples were measured between 200 and 700 nm in a UV-Vis 

microplate reader (Synergy HT microplate reader – BioTek).63 The mass percentage of chlorophyll was 

determined according to calibration curves previously obtained at 667 nm (R2 = 0.9389 and R2 = 0.9805 for 

aqueous and ethanolic extracts, respectively) and comparing the chlorophyll mass loaded in the resin (present 

in the organic extract) and the chlorophyll mass of each fraction collected (Eq. 2.1.1). Note that, during this 

work, it was used chlorophyll recovery instead of eluted chlorophyll since the chlorophyll content was analyzed 

not only in the elution step but also in the collected fraction of carotenoids and fraction of NaOH used in the 

resin regeneration. Although Isochrysis galbana has different xanthophylls, such as diadinoxanthin,84 

diatoxanthin,85 and fucoxanthin 86,87 (being also the diadinoxanthin the biologic precursor of both diatoxanthin 

and fucoxanthin),88 in this work the total xanthophylls content was directly related to the fucoxanthin content. 
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The fucoxanthin quantification was done using a calibration curve in ethanol previously determined 

(R² = 0.998) at 450 nm, being its concentration (mgfuco.Lethanolic extract
-1) calculated afterwards. 

 

Chlorophyll recovery (%) =
Chlorophyll in the collected fraction (mg)

Chlorophyll in organic extract loaded into the resin (mg)
× 100 (2.1.1) 

 

Ultra-performance liquid chromatography coupled mass spectrometer (UHPLC-MS) analysis 

The initial extract, the recovered fraction of carotenoids after the adsorption of the chlorophyll, and the eluted 

fraction of the chlorophylls after the polishing step were analyzed by UHPLC-MS. The UHPLC-MS analysis 

was performed by Thermo Scientific Ultimate 3000RSLC (Dionex) equipped with a Dionex UltiMate 3000 

RS diode array detector and coupled to a mass spectrometer adapted from Martins et al. (2021).89 The 

separation of the compounds was carried out with a gradient elution program at a flow rate of 0.3 mL.min−1, 

at 30 °C, using a Hypersil Gold C18 column (150 × 2.1 mm; 5 μm, Thermo Fisher). The injection volume in 

the UHPLC system was 3 μL, and the mobile phase consisted of formic acid 0.1 % in water (A) and acetonitrile 

(7):methanol (3) (B), both degassed and filtered before use. The solvent gradient was 85 % of solvent B in the 

first 3.9 min, followed by the increase up to 100 % during 2.2 min, and maintaining 100 % of solvent B for 

18.9 min, returning to 85 % during 6 min, and equilibrating during 7 min. The injection volume was 2 μL. UV-

Vis spectral data were gathered in a range of 200 to 700 nm. 

 

Continuous process in column  

The continuous process was performed using a solid-phase extraction cartridge and a peristaltic pump to ensure 

a constant flow (45 μL.s-1). In this step, the best eluent and the optimized conditions in the response surface 

methodology for the batch assays, up-scaled five times, were used. The time of contact adopted in the 

continuous process was not the same in comparison to the optimum values for the batch assays due to 

experimental limitations. The solid-phase extraction cartridge was prepared by packing 5.25 g of AmberLite™ 

HPR900 OH resin (previously washed with water and dried) between two frits into a 20 mL empty 

polypropylene cartridge (Bio-rad Econo-Pac), being the resin conditioned with 25 mL of sodium hydroxide 

aqueous solution (4 % w:v) afterwards. A volume of 25 mL of the ethanolic extract was passed through the 

cartridge, and subsequently, the adsorbed chlorophyll content was eluted with 75 mL of 370 mM aqueous 

solution of the [N1,1,1,12]Br. To regenerate the OH- groups of the resin, 25 mL of an aqueous solution of sodium 

hydroxide (4 % w:v) was passed through the column.73 The chlorophyll content of each solution collected from 

the solid-phase extraction cartridge was analyzed by measuring the absorption at 667 nm and applying the 

correspondent calibration curve. 

 

Chlorophyll polishing 

The aqueous solution of IL containing eluted chlorophyll was freeze-dried to remove the water content of the 

sample. The powder obtained was dissolved in ethanol in the proportion of 10:3 (Vethanol:Vinitial aqueous solution). 
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The ethanolic solution containing the chlorophyll content and IL was homogenized and kept at -80 ᵒC, for three 

days. A viscous and colorless pellet was formed in the bottom of the flask and a green liquid in the top of the 

flask. This procedure was adapted from Mesquita et al. (2019).62 In order to quantify the content of [N1,1,1,12]Br 

in the ethanolic fraction, an 1H NMR spectroscopy was performed. The 1H NMR spectrum of pure IL and 

ethanolic fraction rich in chlorophylls was carried out using a Bruker AC 30 spectrometer (250 MHz) at room 

temperature with deuterium oxide (D2O) as solvent. 

 

Statistical Analysis  

One-way ANOVA (Analysis of variance) was performed followed by Bonferroni post-hoc test to compare the 

efficiency between batch and continuous regime along five cycles of reuse of the resin. The results were 

expressed as the means ± standard errors of the mean. Statistically significant differences were determined 

considering an α of 95 % (p < 0.05). 

 

Results and discussion 

Carotenoids’ recovery and screening of solutions to elute chlorophyll  

The use of the commercial resin AmberLite™ HPR900 OH to purify carotenoids by the adsorption of the 

chlorophyll content is not new. In the published works, initial extracts were obtained using acetone as solvent, 

extracts that were later loaded in the resin.74,75 However, after the adsorption of chlorophylls and the recovery 

of the carotenoids, no procedure was found to elute the chlorophylls from the resin. The scope of the present 

work was to develop a protocol that allows to elute the chlorophyll derivatives from the resin, without affecting 

their chemical structures and biological activities, and in this way, to extend also the resin's lifetime. Under 

this context, three initial extracts were prepared from Isochrysis galbana using as solvents acetone, methanol, 

and ethanol. These solvents were chosen due to their ability to extract carotenoids and chlorophylls.74,89 

Extracts rich in these pigments were obtained for the three organic solvents. However, when loaded in the 

resin, the xanthophyll rich extract collected had the lowest chlorophyll contamination when the initial ethanolic 

extract was used (1.8 mgchl.L-1) followed by the acetone and methanol initial extracts (5.9 and 8.0 mgchl.L-1, 

respectively). Based on these results, and taking into account the carbon footprint and environmental impact 

of the screened solvents,90 ethanol was used to progress the study.  

The adsorption mechanism was first reported to be mediated by ion-ion interactions after the saponification of 

the chlorophyll and the release of phytol 75 and posteriorly to occur principally through hydrogen-bonds and 

dipole–dipole interactions between resin and chlorophylls polar units, leaving the carotenoid content in the 

ethanol.74 In this work, a carotenoid rich-extract of orange colour was obtained after 30 min of contact, while 

the resin acquired a green colour due to the adsorption of the chlorophyll pigments (see Figure A.2B in 

Appendix A).  

According to the data sheet of the resin,73 its regeneration should be done with an aqueous solution of NaOH 

(2–4 %) to re-establish the OH- groups of the resin. Several cycles of reuse of the resin with new batches of 
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initial extract were performed with and without a step of regeneration in order to evaluate the importance of 

this regeneration step (Figure 2.1.1). 

 

 

Figure 2.1.1. Percentage of the total chlorophyll present in the carotenoid extracts in several resin reuse cycles 

without and with NaOH treatment. Different capital letters represent statistically different values in the process 

without NaOH treatment (p < 0.05). Different lowercase letters represent statistically different values in the 

process using a NaOH treatment (p < 0.05). 

 

 

The results in Figure 2.1.1 show that the contamination of chlorophyll in the carotenoid extract increases in 

each cycle (p < 0.05), after addition of a new batch of ethanolic initial extract, when the NaOH regeneration 

solution was not previously used (9.1–34 %). In the other hand, the contamination of chlorophyll in the 

carotenoid extract is much lower and evolving towards an almost constant value (12–16 %) with the increase 

in the number of cycles of reuse, when the NaOH regeneration is carried (after cycle 4, there is no significant 

difference p > 0.05). This indicates the need of using NaOH to replace the OH- groups within the resin in a so-

called regeneration process, allowing a more efficient adsorption of the chlorophyll in the subsequent cycles. 

Although it was shown that the resin can be regenerated for several cycles with solutions of NaOH without 

compromising the quality of the carotenoid extract, this does not mean that the chlorophyll can be efficiently 

recovered from the resin. Given the chlorophyll market value, and to extend the lifetime of the resin, the 

recovery of the chlorophyll pigments adsorbed is essential. Therefore, the performance of different eluents for 

an efficient recovery of the chlorophyll pigments was studied being the main results shown in Figure 2.1.2. 
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Figure 2.1.2. Screening of different solutions used to elute the chlorophyll from the resin. Aqueous solutions 

of ILs were screened at 250 mM and aqueous solutions of NaOH at 4 % (w:v). 

 

 

Although solutions of NaOH were essential to regenerate the resin and restore the terminal OH- groups, they 

were not able to desorb chlorophylls from the resin. Several organic solvents that are used for chlorophyll 

extraction from biomass were tested, as well as mixtures of solvents used in the washing procedures of reverse-

phase columns. None of them were efficient in the removal of the chlorophyll content (< 2.5 %) from the resin 

as can be observed in Figure 2.1.2.  

More appealing results were achieved when aqueous solutions of various ILs (at 250 mM) were investigated 

as eluents (Figure 2.1.2, right-side). The screened solutions of ILs were used before with success in the 

extraction of chlorophyll and carotenoids from biomass.63,64 Unlike the other screened solutions, most of the 

aqueous solutions of ILs showed to be able to remove the adsorbed chlorophyll from the resin, namely the 

[N1,1,1,12]Br, [N1,1,1,14]Br and [P4,4,4,14]Cl. These aqueous solutions of ILs were previously identified as efficient 

solvents to extract pigments due to their ability to form micelles above a certain concentration (as it happens 

at 250 mM in all tested solvents, see Table A.1 in Appendix A) providing the perfect environment to 

hydrophobic molecules.63 However, an additional interaction is behind their good performance as eluents. 

These cationic ILs have the same positively charged head as the one present in the functional group of the resin 

(Figure A.3 in Appendix A). This said, the type of interaction between the chlorophyll derivatives and the 

functional group of the resin can be replaced by similar interactions but now involving the cationic IL. In this 

work, the [N1,1,1,12]Br and the [P4,4,4,14]Cl, were selected to further optimize the operational conditions. 

Successive elution’s of the resin, applying the same mass of resin and volume of eluent (fresh solutions of 

[P4,4,4,14]Cl), were applied to achieve the maximum chlorophyll recovery from the resin (Figure 2.1.3). As 

conclusion, chlorophyll is successively extracted during three elution steps. Given that, and to keep the elution 

in a single step, the volume of eluent used is always 3 times higher than the volume used in the adsorption step 

(with ethanolic initial extract) and in the regeneration step (with aqueous solution of NaOH), in the following 

proportion 1:3:1 (Vinitial extract:Veluent:VNaOH). This analysis was just performed considering the IL [P4,4,4,14]Cl, 
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since a similar response would be obtained with [N1,1,1,12]Br. After, a more detailed analysis on the SLR by the 

manipulation of the resin mass used, was done by applying a response surface methodology for both aqueous 

solutions of [N1,1,1,12]Br and [P4,4,4,14]Cl. 

 

 

Figure 2.1.3. Percentage of chlorophyll recovered in the carotenoid extract and in three successive elution’s 

of the resin, using [P4,4,4,14]Cl as eluent. 

 

 

Optimization of the process conditions by a response surface methodology 

For the central composite rotatable design (CCRD), three variables were studied to achieve a complete 

optimization of the best possible chlorophyll recovery (response), namely solid-liquid ratio (SLR in 

gresin.mLeluent
-1, X1), time of contact (t in min, X2), and concentration of IL in water (CIL in mM, X3). A total 

of 20 runs was performed, including the three common levels (-1, 0, +1), axial (-1.68, and +1.68 levels), and 

six central points (level 0). According to the CCRD experiment using aqueous solutions of [P4,4,4,14]Cl, the 

percentage of chlorophyll recovery from the resin varied from 26.8 % (assay 13) to 80.5 % (assay 14), both 

regarding the axial points from the variable CIL, which demonstrates its high influence on the response (Table 

A.2 in Appendix A). The predicted values were expressed by the model provided by Eq. 2.1.2.  

 

Chlorophyll recovery (%) = 15.13349 + 0.29636(X2) + 0.28748(X3) − 0.00042(X3)² (2.1.2) 

 

Using aqueous solutions of [P4,4,4,14]Cl, the main effects responsible for the recovery of chlorophylls from the 

resin are the time of contact and the concentration of [P4,4,4,14]Cl in aqueous solution with no interaction 

between them, as reported in Table A.3 in Appendix A. The variables were fitted to a first-order model and 

examined in terms of goodness of fit. The ANOVA was used to evaluate the adequacy of the fitted model 

considering a 95 % confidence level, with Fcalculated > Ftabulated, and R² = 0.72275. Additionally, the Pareto Chart 

and the graph of the predicted vs. observed values (Figure A.4 and A.5, respectively in Appendix A) show 

additional information regarding the influence of the independent variables in the predictive model, 
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demonstrating the high influence of the performance of the aqueous solution of [P4,4,4,14]Cl in the elution 

performance.   

The model expressed by Eq. 2.1.2 was used to draw the response surfaces shown in Figure 2.1.4. As described 

in Eq. 2.1.2, the SLR has no influence on the response. The time of contact was positively significant in the 

percentage of the chlorophyll recovered (p < 0.05), being 48.5 min chosen as the optimum value. Even if the 

time of contact is not fully optimized, this variable does not cause a significant environmental and economic 

impact, since the homogenization method used in this work is not as energy intensive as ultrasound- and 

microwave-assisted extractions. The concentration of IL was completely optimized, achieving an optimum 

value around 350–400 mM (Figure 2.1.4). Concentrations above 400 mM impair the performance of 

chlorophyll recovery, probably due a steric impediment for micelle formation, and consequently, chlorophyll 

recovery. Thus, the optimum operational conditions were set by using aqueous solutions of [P4,4,4,14]Cl at 

370 mM and 48.5 min of contact at room temperature.  

A model validation experiment using the optimized operational conditions was carried out in triplicate. The 

chlorophyll recovery from the resin obtained was around 80 ± 2 %, which corresponds to a relative deviation 

of 2.7 % (Table A.4 in Appendix A), a very good result that suggests the high confidence and accuracy of the 

predictive model designed by the CCRD (2³).  
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Figure 2.1.4. Response surface plots obtained for the CCRD (23) using an aqueous solution of [P4,4,4,14]Cl 

regarding: time of contact (t in min), IL concentration (CIL in mM), and solid-liquid ratio (SLR in gresin.mLeluent
-

1) in terms of percentage of the chlorophyll recovery from the resin. 

 

Along with the aqueous solutions of [P4,4,4,14]Cl, solutions of surface-active ammonium-based ILs also showed 

to be very promising to recover chlorophylls from the AmberLite™ HPR900 OH resin (69 % of chlorophyll 

recovery). Therefore, the process was also optimized using [N1,1,1,12]Br as previously done for [P4,4,4,14]Cl. The 

maximum chlorophyll recovery was obtained in the run 8 (93.3 %), using a SLR fixed at 0.070 gresin.mLeluent
-1, 

and a CIL of 370 mM, during 41 min of contact (see Table A.2 in Appendix A). The data obtained in the Box-

Behnken (Table A.5 in Appendix A) experiment was converted into a second-order polynomial equation with 

three independent variables (X1, X2, and X3), as described by Eq. 2.1.3.  

 

Chlorophyll recovery (%)
=  −15.30 + 322.06(X1) − 5751.61(X1)2 + 1.17(X2) − 0.02(X2)2

+ 0.30(X3) + 0.62(X1 × X3) 

(2.1.3) 

 

The Pareto Chart shows that the most significant independent variables influencing the chlorophyll recovery 

are the CIL, both linear and quadratic, but the other variables also present an important role in the optimization 
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process (Figure A.6 in Appendix A). The predicted and observed values were close to each other (Figure A.7 

in Appendix A), making the model adequate. By applying ANOVA, the regression model was considered 

significant (p < 0.05, Table A.5 in Appendix A), and thus useful in predicting the effects of the three different 

level factors in the recovery of chlorophylls. Interpreting together the response surfaces displayed in Figure 

2.1.5, it is possible to highlight an ideal recovery condition as SLR at 0.070 gresin.mLeluent
-1, CIL of 370 mM, and 

48.5 min of time of contact. This condition reflects in the prediction of almost 100 % of recovery from the 

chlorophylls fixed in the resin (predicted value, see Table A.6 in Appendix A). Although the observed recovery 

value under the optimum condition was 97.0 ± 0.9 %, this model is considered valid and accurate, since a small 

relative deviation was observed (3.0 %, Table A.6 in Appendix A). 

 

 

Figure 2.1.5. Response surface plots obtained for the CCRD (23) using an aqueous solution of [N1,1,1,12]Br 

regarding the time of contact (t in min), IL concentration (CIL in mM), and solid-liquid ratio (SLR in 

gresin.mLeluent
-1) in terms of chlorophyll recovery (in percentage) from the resin. 

 

Regarding the best conditions obtained for the aqueous solutions of the two ILs (summarized in Table A.7 in 

Appendix A), apart from the SLR, which has no significant value in the case of [P4,4,4,14]Cl, the best results in 

terms of chlorophyll recovery were found for the same concentration of IL and time of contact for both 
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approaches. Major differences come in what respects to the outputs. An increase in the chlorophyll recovery 

from 80 ± 2 to 97.0 ± 0.9 % was seen when an aqueous solution of [N1,1,1,12]Br was used as eluent instead of 

an aqueous solution of [P4,4,4,14]Cl.  

Although the results seem to suggest [N1,1,1,12]Br to be the best eluent, the aqueous solutions of both eluents 

were tested again, in the elution of chlorophyll, at their optimum conditions considering the reuse of the 

commercial resin up to five times (Figure 2.1.6), including three stages: (i) the loading of a new ethanolic 

extract, (ii) the elution with aqueous solutions of IL and (iii) the regeneration with NaOH. In each cycle, three 

fractions were collected: the carotenoid rich extract (in ethanol), the eluted solution (aqueous solution of IL) 

rich in chlorophylls, and the aqueous solution of NaOH used to regenerate the resin. The xanthophyll content 

was analyzed in terms of fucoxanthin content (Figure 2.1.6A). The concentration of fucoxanthin was kept 

constant from cycle 1 to cycle 5 (cycle 5 had the best performance), regardless the aqueous solution of IL used 

in the elution step, showing that the carotenoid fraction is not affected even considering five cycles reusing the 

resin. As depicted in Figure 2.1.6B, the three collected fractions were also analyzed in terms of chlorophyll 

when compared to the initial extract (before the solid-phase extraction). 
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Figure 2.1.6. Comparison of the process using aqueous solution of [N1,1,1,12]Br and [P4,4,4,14]Cl as eluents at the 

optimized conditions previously selected along five cycles of reuse of the resin, considering (A) fucoxanthin 

concentration in the carotenoid ethanolic extract (first fraction collected from the resin); and (B) chlorophyll 

recovery in the different fractions collected from the resin. Note that different initial values in (A) are due to 

the need of preparing new initial extracts at the beginning of each experiment. Capital letters represent 

statistically results in the process mediated by [P4,4,4,14]Cl (p < 0.05). Lowercase letters represent statistically 

results in the process mediated by [N1,1,1,12]Br (p < 0.05). 

 

It is important to note that values of chlorophyll recovery greater than 100 % in Figure 2.1.6B can be a result 

of the interference of slight amounts of the solvents from the previous steps present in the fraction being 

analyzed, due to some experimental difficulties to completely recover the liquid extracts from the resin leaving 

it dry for the next step, which may consequently change the behavior of the calibration curve. However, this 

only means that the recovery is complete, since the chlorophyll recoveries of the cycle 1 (for both ILs) are 
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lower compared to the other subsequent cycles (p < 0.05), i.e. the recycling approach guarantees better 

efficiency regarding the recovery of both classes of pigments under study. Regarding the carotenoid rich 

extract, from the second cycle onwards, if the [N1,1,1,12]Br aqueous solution is used as eluent, there is a slight 

increase in the content of chlorophylls in the extract of carotenoids. Additionally, for each IL individually, the 

behavior in each cycle (and each fraction) seems to be similar after the second cycle, leading to the idea that 

more cycles could be done using the same resin and procedure. The chlorophyll content in the NaOH fractions 

has no significant differences regardless the eluent used in the elution step, being very low in all cycles. 

Moreover, it can be observed that, in all cases, most of the chlorophyll is in the eluted solution, i.e. in aqueous 

solution of IL, for both ILs. Photographs of the resin along with the adsorption and elution of chlorophyll and 

regeneration of the resin can be seen in Figure A.2 in Appendix A and the UV-Vis spectra of the collected 

fractions in the first cycle for both ILs are depicted in Figure A.8 in Appendix A. In addition to the best elution 

performance of chlorophyll from the AmberLiteTM HPR900 OH, surface-active ammonium-based ILs are 

commonly used in the industry due to its low price,48 having lower associated environmental impacts when 

compared with other families of ILs.91  

In the end and, after a deep analysis of all parameters optimized and results obtained, it was concluded that the 

ammonium-based IL provided the best results in terms of elution performance when compared with the 

phosphonium-based ILs. After the selection of the best eluent, the composition of the extracts at the different 

stages of the process was checked by UHPLC-MS. For that purpose, the initial extract (obtained after the solid-

liquid extraction with ethanol from Isochrysis galbana), the carotenoid extract (obtained after passing the initial 

extract through the resin) and the chlorophyll extract (obtained after the use of [N1,1,1,12]Br aqueous solution as 

eluent and polishing of the IL) were analyzed, being the results obtained depicted in Table 2.1.3 (see also 

Figure A.3 in Appendix A). From the data collected using UHPLC-MS it was possible to confirm the presence 

of the chlorophyll derivatives (pheophorbide a and pheophytin a) in the initial extracts, and also the presence 

of the xanthophylls (fucoxanthin and diatoxanthin). Moreover, it was confirmed the ability of the resin to 

preferably adsorb the chlorophyll derivatives allowing their separation from the carotenoid extract and the 

efficiency of the ammonium-based aqueous solution to subsequently recover the adsorbed chlorophyll 

derivatives. Furthermore, the UHPLC-MS analysis confirmed minor structural alterations in fucoxanthin 

(hydrolysis of the ester group and dehydration) affording a fucoxanthin derivative with the protonated 

molecular ion at m/z = 599. Concerning the chlorophyll extract, the results suggest the hydrolysis of the methyl 

ester in pheophorbide a and addition of water affording a pheophorbide a derivative with m/z at 597. No 

structural alterations were detected in diatoxanthin and in pheophytin a. 

Based on these results we believe that the selective removal of chlorophylls during the strong basic resin 

treatment can be attributed to a compromise between interionic (an anion exchange mechanism) and 

intermolecular forces such as hydrogen bonding and dipole–dipole interactions between the polar moieties of 

the resin and the chlorophyll derivatives. Similar interactions are responsible for the removal of the chlorophyll 

derivatives from the resin with the cationic IL (see Figure A.3 in Appendix A). 
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Table 2.1.3. Composition of the initial extract (the one obtained after the solid-liquid extraction with ethanol 

from Isochrysis galbana), the carotenoid extract (obtained after passing the initial extract through the resin), 

and the chlorophyll extract (obtained after the use of [N1,1,1,12]Br aqueous solution as eluent and polishing of 

the IL) performed by UHPLC-MS. 

 

Continuous process in column  

To study the adsorption and elution of chlorophylls, and regeneration of the resin in a continuous mode, a solid-

phase extraction cartridge filled with the resin was used. The extract, eluent and regeneration solution used to 

perform the continuous studies were the same, although up-scaled five times, as in batch adsorption, elution, 

and regeneration process, with the flow kept constant at 45 µL.s-1. In each cycle, and as previously defined, the 

three fractions were collected, namely the carotenoid rich extract after passing through the column (in ethanol), 

the eluted solution (aqueous solution of IL) rich in chlorophylls, and the aqueous solution of NaOH used to 

regenerate the resin. All fractions were analyzed, being the results depicted in Figure 2.1.7. 

 

 Compound 
Retention 

time (min) 

[M+H]+ 

(m/z) 

UV-Vis 

(nm) 

Compound 

abundance (%) 

Initial Extract 

Fucoxanthin 2.69 659 450 26.7 (450 nm) 

Pheophorbide a 4.01 593 
450, 470, 

655 

11.7 (450 nm) 

5.5 (470 nm) 

45.3 (655 nm) 

Diatoxanthin 5.55 567 450, 470 
51.7 (450 nm) 

75.7 (470 nm) 

Pheophytin a 23.24 871 
450, 470, 

655 

9.0 (450 nm) 

18.8 (470 nm) 

54.7 (655 nm) 

Carotenoid 

extract 

Fucoxanthin derivative 1.58 599 450 26.6 (450 nm) 

Diatoxanthin 5.97 567 450, 470 
73.4 (450 nm) 

> 90.0 (470 nm) 

Chlorophyll 

extract 

Pheophorbide a 

derivative 
2.49 597 655 43.6 (655 nm) 

Pheophytin a 17.27 871  655 56.4 (655 nm) 
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Figure 2.1.7. Comparison of the process using an aqueous solution of [N1,1,1,12]Br as eluent both in batch and 

in continuous regime along five cycles of reuse of the resin, considering (A) fucoxanthin concentration in the 

carotenoid ethanolic extract (first fraction collected from the resin); and (B) chlorophyll recovery in the 

different fractions collected from the resin. Results regarding the batch process are once more displayed to 

facilitate the comparison. Note that different initial values in (A) are due to the need of preparing new initial 

extracts in the beginning of each experiment. Capital letters represent statistically results in the process 

mediated by [N1,1,1,12]Br in batch (p < 0.05). Lowercase letters represent statistically results in the process 

mediated by [N1,1,1,12]Br in continuous (p < 0.05). 

 

 

As previously observed for the batch process, the concentration of fucoxanthin (Figure 2.1.7A) was kept 

constant from cycle 1 to cycle 5, with no loss in efficiency in the collection of fucoxanthin (cycle 5 had better 

or equivalent performance compared to the previous ones). It can also be observed (Figure 2.1.7B) that, from 
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the second cycle onwards, the amount of chlorophyll in the different fractions analyzed remains constant for 

the following adsorption, elution and regeneration cycles. Nevertheless, the chlorophyll content on the ethanol 

extract rich in xanthophylls after contact with the resin is higher than that observed at the batch process (26.0 % 

and 12.2 %, respectively, in the 2nd cycle). This decrease in the amount of chlorophyll adsorbed by the resin 

may be due to a low residence time of the adsorbate (chlorophyll) in the adsorbent (resin). Due to experimental 

constraints, the flow rate of 45 μL.s-1 was used since this was the minimum that could be achieved in the 

experimental setup. This flow seems to be somewhat high for this adsorption process, not allowing the time 

for the complete adsorption of the chlorophyll to the adsorbent. Since the residence time is a relevant parameter 

in the adsorption of chlorophylls by this resin (as well as in the elution of chlorophyll, as seen in the response 

surface methodology), the flow rate should be lower to achieve better results.  

 

Chlorophylls polishing and proposal of an integrated process 

At the end of the elution, an aqueous solution of [N1,1,1,12]Br with chlorophyll was collected. A process to 

achieve the polishing of chlorophyll was developed in order to have the chlorophyll free of IL to be used in 

any application and/or to allow the reuse of the IL in new cycles of elution. As explained in the methodology 

section, the water content was completely removed by freeze-drying. The resulting powder (a mixture of IL 

and chlorophylls) was dissolved in pure ethanol in the proportion of 10:3 (Vethanol:Vinitial aqueous solution). The liquid 

solution was stocked at -80 ᵒC during three days. As a result, a pellet at the bottom and a green liquid on the 

top of the flask were obtained corresponding to the IL and ethanolic fractions rich in chlorophylls, respectively. 

The 1H NMR spectrometry analysis, performed in pure IL and in the ethanolic fraction rich in chlorophylls 

using D2O as solvent, revealed the absence of IL (here seen as contamination) in the ethanolic fraction (see 

Figure A.9 in Appendix A), allowing the reuse of IL. An integrated process was thus designed considering not 

only the methodology developed in this work but also a proposal of operations for the entire process, as 

sketched in Figure 2.1.8. In short, a solid-liquid extraction of chlorophylls and carotenoids from Isochrysis 

galbana is done using pure ethanol as solvent. The obtained initial extract is passed throught the commercial 

resin AmberLiteTM HPR900 OH in a continuous process allowing a carotenoid rich-extract to be collected by 

the adsorption of the chlorophylls to the resin. The chlorophylls are then eluted using an aqueous solution of 

[N1,1,1,12]Br at 370 mM, being that same solution passed throught the column until it reaches saturation. Lastly, 

the resin is regenerated by the replacement of the OH- groups using a fresh solution of NaOH [4 % (w:v) in 

water]. The resin can be reused, with no loss in efficiency, for at least five cycles (number of complete cycles 

tested). The chlorophylls in the aqueous solution of IL are recovered using ethanol with the procedure 

previously described. The chlorophylls and carotenoids present in ethanolic extracts can then be recovered in 

dry form, if required by the final application, allowing the reuse of the ethanol, using a vacuum drying tecnique 

carried at low pressures and temperatures to avoid the degradation of the pigments. 
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Figure 2.1.8. Schematic representation of the final process proposed in this work, where i) represents the solid-

liquid extraction of pigments from the biomass; ii) the recovery of xanthophyll and chlorophyll through 

continuous process in column; and iii) the polishing of pigments and recovery of the solvents. Dashed lines 

were not experimentally tested, being just a proposal of what can be done. 
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Conclusions 

In this study, the fractionation of chlorophylls and carotenoids was successfully achieved. Aqueous solutions 

of surface-active ILs have been demonstrated to be effective solvents in the elution of chlorophylls from a 

commercial anion exchange resin. The operational conditions of this step were optimized, reaching 97.0 ± 

0.9 % of the initial chlorophyll loaded in the resin when [N1,1,1,12]Br was applied as a solvent in a concentration 

of 370 mM. Several cycles were tested to extend the lifetime of the resin AmberLite™ HPR900 OH, including 

a regeneration step with an aqueous solution of NaOH [4 % (w:v) in water]. As a result, the complete recovery 

of chlorophylls was achieved with no loss of efficiency after five cycles, suggesting the possibility of reusing 

the resin in more cycles. In order to evaluate the possibility to implement this process industrially, a test in 

continuous mode operation was performed. Some experimental limitations were found regarding the flow rate 

used in the continuous process, which turned out to be higher than necessary to accomplish complete 

chlorophyll adsorption and consequent recovery. 

Furthermore, a polishing step and an integrated process were developed to obtain two purified fractions of 

chlorophylls and xanthophylls, while allowing the solvent recycling. Similar approaches could be applied to 

other biomolecules and biomass matrices, taking into account the economic viability of the process and 

associated waste production. 
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2.2. Recovery of bacterioruberin and proteins using aqueous 

solutions of surface-active compounds 

This chapter is based on the manuscript: 

Bárbara M.C. Vaz, Mariam Kholany, Inês P.E. Macário, Telma Veloso, Tânia Caetano, Joana L. Pereira, 

João A.P. Coutinho, Sónia P.M. Ventura,* “Recovery of bacterioruberin and proteins using aqueous solutions 

of surface-active compounds”, to be published soon. 

*Contributions: Bárbara M.C. Vaz acquired the experimental data. Bárbara M.C. Vaz and M.K. performed the data 

analysis. I.P.E.M. and T.V. performed archaea cultivation. Bárbara M.C. Vaz wrote the manuscript with substantial 

contributions from the remaining authors. 

 

Abstract 

The development of new or adapted processes towards a more sustainable economy is a growing industrial 

demand. The use of marine resources as natural and renewable feedstocks can be a way forward in that 

direction. Haloarchaea microorganisms are less explored marine resources that can be a promising source of 

valuable compounds. Their growth in extreme conditions gives bacterioruberin (major carotenoid found 

responsible for the pink color of hypersaline environments) the ability to model membrane fluidity, while 

decreasing water permeability. Therefore, the extraction of bacterioruberin using water-based solvents remains 

a challenge. In this work, the performance of several aqueous solutions of ionic liquids and surfactants in the 

extraction yield of bacterioruberin was investigated and compared with ethanol. Despite ethanol’s better 

performance, the extraction of bacterioruberin with water-based solvents allowed the simultaneous release of 

proteins and thus, to envision a multi-product biorefinery, the non-ionic surfactants were chosen as the best. 

By a response surface methodology, the optimum operational conditions were achieved reaching a yield of 

extraction of 0.37 ± 0.01 mgbacterioruberin.gwet biomass
-1 and 352 ± 9 mgprotein.gwet biomass

-1 when applying an aqueous 

solution of Tween® 20 at 182.4 mM as extraction solvent. In addition, higher purities of bacterioruberin were 

obtained, after performing a simple induced precipitation using ethanol as anti solvent to recover the proteins 

present in the initial extract. Lastly, a step for the polishing of bacterioruberin was also addressed to recycle 

the solvents enhancing the process loop closure for its implementation in the industry. 

 

Keywords: Haloferax mediterranei ATCC 33500, bacterioruberin, solid-liquid extraction, surface-active 

compounds, induced precipitation, protein. 

 

Introduction 

Our continued reliance on a petroleum-based economy to satisfy the needs of the population cannot be 

sustained anymore. Mitigating climate change through a substantial reduction in greenhouse gas emissions is 

of the utmost importance. This requires the development of sustainable technologies and practices for a gradual 

transition to a renewable plant (bio-based) economy.92 



CHAPTER 2. Recovery of pigments using alternative solvents 

 

32 

 

Marine resources, like algae and cyanobacteria, gained significant interest as renewable feedstock to not only 

generate biofuels and bioenergy, but also to integrate bioactive medicinal products, food and materials,8 being 

their sustainable use a significant part of The 2030 Agenda for Sustainable Development.2 In this way, cost 

effective integration technologies based on marine resources should be developed considering the biorefinery 

framework. It aims for a complete valorization of all biomass fractions,93 maximizing the value of raw 

materials. Besides increasing the economic viability of downstream processes for industrial implementation,93 

it avoids waste production following the circular economy principles.94 

Halophilic microorganisms from the archaea domain are marine resources spread around the globe in 

hypersaline environments with approximately 35 % more salt than seawater. Although less explored, these are 

valuable sources of high demand products like proteins, poly(3-hydroxybutyrate), polyhydroxyalkanoate and 

carotenoids.36 Proteins are complex molecules with an unique three dimensional structure composed of 

numerous combinations of the 20 different types of amino acids attached together to form long chains, where 

each sequence of amino acids determines the protein specific function.5 Due to their multiple biological roles 

as regulatory proteins, transport facilitators, antibodies, structural maintenance, storage, toxins and contractile 

proteins,95 their biotechnology interest is vast with applications in the textile, cosmetic, food and 

pharmaceutical industries,96 and thus their purification is duly important. However, in halophilic organisms 

their role goes further. Halophilic proteins help these organisms to adapt to the extreme saline conditions by 

modifying their structure. The presence of acidic amino acids on the protein surface makes its surface more 

hydrophilic and flexible, capable of increasing the hydration of the protein, which prevents its aggregation and 

keeps the proteins functionally stable.97 

On the other hand, carotenoids are natural pigments well known for their biotechnology applications and key 

properties in human health.37,98 Their antioxidant properties keep the cells protected from reactive radicals 

preventing humans from premature aging, certain cancers, cardiovascular diseases and arthritis.98,99 Besides, 

they can also be applied in the food industry as colorants and food supplements, and in the beauty industry as 

cosmetics.99,100 Between the carotenoids produced by the haloarchaea group, namely β-carotene, salinixanthin, 

lycopene, bacterioruberin and its precursors, and phytoene, bacterioruberin represents the major carotenoid 

found.36,37 Bacterioruberin can model the membrane fluidity acting as a water barrier and allowing the 

permeability of oxygen and other molecules needed for their survival in hypersaline environments, 

consequently increasing the membrane structure rigidity.36,38,101 Of greater relevance, this C50 isoprenoid, 

composed of 13 conjugated double bonds and 4 hydroxyl groups, has higher antioxidant activity compared to 

other molecules conferring protection against intensive light, gamma irradiation and DNA damaging agents 

such as radiography, UV-irradiation, and H2O2 exposure.36,38,101 These characteristics make bacterioruberin an 

appealing bio-active compound for its application in food and pharmaceutical industries.39 

Despite the potential of bacterioruberin and halophilic proteins, extraction and purification procedures are still 

poorly explored. Since the exploitation of these microorganisms is in its initial stage, most of the reported 

literature focuses on exploring protein structures and its adaptations to extreme environments,102–107 and on the 

optimization of bacterioruberin production and its possible applications, where in these studies bacterioruberin 

quantification is mostly accomplished after performing a solid-liquid extraction using volatile and toxic organic 

solvents.39,41,101,108,109 Regarding the purification step of bacterioruberin, some works were found using thin 
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layer chromatography, or organic solvents.39,110–115 However, despite thin layer chromatography being simple 

and efficient, industries require automated techniques. In this context, more efforts need to be made to develop 

efficient and sustainable approaches with scale-up potential.  

Aqueous solutions of surfactants or ionic liquids (ILs) arise as alternative solvents to replace the conventional 

organic solvents. Surfactants and tensioactive ILs are amphiphilic molecules composed of a long hydrocarbon 

tail and a polar head group.116 Due to their dual affinity they are able to self-organize and lower the surface 

tension between two immiscible phases,117,118 becoming effective solvents in the extraction of either more 

hydrophilic compounds like proteins,96,119–122 by interacting with phospholipids (present in the cell membrane) 

for the release of the intracellular content, and/or more hydrophobic molecules 63,64,122–124 such as 

bacterioruberin, by increasing their solubility in water. Furthermore, their use has several advantages, namely 

milder process conditions while using water as main solvent. It is not only a cheap solvent but it seems to be 

more adequate developing a facile cell disruption towards an halophyte microorganism, i.e. an archaea 

produced in saline media.63,64 After the extraction of multiple compounds, usually a purification step is needed 

to obtain the appropriate purity of each compound considering a specific application. In this work, and 

considering the type of compounds to separate, an induced protein precipitation was applied. In a typical 

induced protein precipitation, the addition of a precipitating agent lowers the solubility of the proteins in water 

causing them to precipitate.125 This allows for the separation of the solvent by concentrating the solute into a 

pellet in a more simple way. Behind its simplicity, it has industrial potential,126 being recognized as having low 

carbon footprint and economic impact.127,128  

In this work, an efficient process was developed to recover bacterioruberin and proteins from Haloferax 

mediterranei ATCC 33500. The process envisioned comprises three steps: (i) the cell disruption and 

consequent extraction of bacterioruberin and proteins using an aqueous solution of Tween 20, (ii) the recovery 

of proteins by induced precipitation with pure ethanol, and (iii) the polishing of bacterioruberin, allowing the 

solvent to be recycled. In the end, the final diagram of the process envisioning its industrial applicability is 

presented. 

 

Experimental section 

Archaea cultivation 

Haloferax mediterranei ATCC 33500 was produced under controlled conditions to maximize the 

bacterioruberin production. For the biomass production, a YPC (Yeast, peptone and casamino acids media) 

culture medium was prepared with the following composition: peptone 1.0 (g.L-1); casamino acids 1.0 (g.L-1); 

yeast extract 5.0 (g.L-1); NaCl 144 (g.L-1); MgSO4·7H2O 21.0 (g.L-1); MgCl2·6H2O 18.0 (g.L-1); KCl 4.2 (g.L-

1); Tris-HCl 12 mM (pH 7.5); KOH 1M, and 0.5 M CaCl2. The medium was sterilized at 121 °C prior to cell 

cultivation. A single colony was selected from the agar plate and inoculated into 25 mL culture medium in a 

100 mL Erlenmeyer flask and cultured at 37 °C, 180 rpm under continuous light (4000 lux) for 72 h. To increase 

the cell mass concentration, 20 mL of this pre-inoculum was resuspended in 400 mL of fresh medium in a 1L 

Erlenmeyer flask and incubated under the same conditions (i.e. 37 °C, 180 rpm, 4000 lux) for 96 h. Archaea 
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growth was monitored by optical density determined at 600 nm. After the batch cultivation period the biomass 

was centrifuged in a Thermo Scientific Heraeus Megafuge 16R centrifuge at 18894 g for 15 min at room 

temperature (20-25 ºC). The supernatant was discarded, and the pellet was stored in the dark at -20 ᵒC until 

usage. Some variability was found in the data due to the use of different cultivation batches. 

 

Chemicals 

The series of 1-alkyl-3-methylimidazolium chloride ILs [CnC1im]Cl, as 1-butyl-3-methylimidazolium chloride 

([C4C1im]Cl, 99 wt%, CAS 79917-90-1), 1-hexyl-3-methylimidazolium chloride ([C6C1im]Cl, 98 wt%, CAS 

171058-17-6), 1-methyl-3-octylimidazolium chloride ([C8C1im]Cl, 99 wt%, CAS 64697-40-1), 1-decyl-3-

methylimidazolium chloride ([C10C1im]Cl, 98 wt%, CAS 171058-18-7), 1-dodecyl-3-methylimidazolium 

chloride ([C12C1im]Cl, 98 wt%, CAS 114569-84-5), 1-methyl-3-tetradecylimidazolium chloride ([C14C1im]Cl, 

98 wt%, CAS 171058-21-2), 1-hexadecyl-3-methylimidazolium chloride ([C16C1im]Cl, >98 wt%, CAS 61546-

01-8) were purchased from IoLiTec. The ammonium-based ILs, namely tetrabutylammonium chloride 

([N4,4,4,4]Cl, 97 wt%, CAS 1112-67-0) and hexyltrimethylammonium bromide ([N1,1,1,6]Br, 98 wt%, CAS 

2650-53-5), were supplied by Sigma-Aldrich and Alfa Aesar,  respectively. The phosphonium-based ILs, such 

as tetrabutylphosphonium chloride ([P4,4,4,4]Cl, 95 wt%, CAS 2304-30-5), tributyltetradecylphosphonium 

chloride ([P4,4,4,14]Cl, 95 wt%, CAS 81741-28-8), and tetrabutylphosphonium bromide ([P4,4,4,4]Br, 95 wt%, 

CAS 3115-68-2), were provided by IoLiTec, and tetraoctylphosphonium bromide ([P8,8,8,8]Br, CAS 23906-97-

0) by Cytec. 1-methyl-1-propylpiperidinium chloride ([C3mpip]Cl, 99 wt%, CAS 1383436-85-8), 1-

butylpyridinium chloride ([C4py]Cl, 98 wt%, CAS 1124-64-7), and 1-butyl-1-methylpyrrolidinium chloride 

([C4mpyr]Cl, 99 wt%, CAS 479500-35-1) were supplied from IoLiTec. Cationic surfactants, such as 

decyltrimethylammonium bromide ([N1,1,1,10]Br, 99 wt%, CAS 2082-84-0) and hexadecyltrimethylammonium 

bromide ([N1,1,1,16]Br, 99 wt%, CAS 57-09-0) were acquired by Tokyo Chemical Industry and Merk, 

respectively, while dodecyltrimethylammonium bromide ([N1,1,1,12]Br, 99 wt%, CAS 1119-94-4) and 

tetradecyltrimethylammonium bromide ([N1,1,1,14]Br, 98 wt%, CAS 1119-97-7), were purchased by Alfa 

Aesar, and hexadecylpyridinium chloride monohydrate ([C16py]Cl.H2O, 99.0 % - 102.0 wt%, CAS 6004-24-

6), by Sigma-Aldrich. Anionic surfactants as sodium dodecylsulfate (SDS, pharma grade, CAS 151-21-3) was 

provided by Panreac, and sodium dodecyl-benzenesulfonate (SDBS, technical grade, CAS 25155-30-0), and 

dioctyl sulfosuccinate sodium salt (AOT, 96 wt%, CAS 577-11-7), were provided by Sigma-Aldrich. Non-

ionic surfactants like polyethylene glycol sorbitan monolaurate (Tween® 20, CAS 9005-64-5), and 

polyethylene glycol tert-octylphenyl ether (TritonTM X-114, lab grade, CAS 9036-19-5) were purchased from 

Acros Organics, polyethylene glycol sorbitan monooleate (Tween® 80, CAS 9005-65-6), Merpol® A (CAS 

37208-27-8), polyethylene glycol monoalkyl ether (Genapol® X-080, CAS 9043-30-5) and Genapol® C-100 

(CAS 61791-13-7) were purchased from Sigma-Aldrich. All molecular structures of the ILs and surfactants 

screened are depicted in Figure B.1 in Appendix B. Ethanol absolute (analytical reagent grade, CAS 64-17-5) 

used in solid-liquid extraction as control and in induced protein precipitation was supplied from Fisher 

Scientific. Sodium chloride (NaCl, 99.5 wt%, CAS 7647-14-5), potassium chloride (KCl, 99.5 wt%, CAS 

7447-40-7), di-sodium hydrogen phosphate anhydrous (Na2HPO4, 99 wt%, CAS 7558-79-4), and potassium 
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phosphate monobasic (KH2PO4, 99.5 - 100.5 wt%, CAS 7778-77-0), used to prepare phosphate buffered saline, 

were purchased from Fisher Scientific, Chem-Lab, Panreac and Honeywell, respectively. To prepare the 

loading buffer for SDS-PAGE analysis, glycerol (99.88 wt%, CAS 56-81-5) provided from Fisher Chemical, 

bromophenol blue sodium salt (CAS 34725-61-6) supplied from Merk, dithiothreitol (DTT, 98 wt%, CAS 

3483-12-3) purchased from NZYtech, and tris(hydroxymethyl)-aminomethane ((HOCH2)3CNH2, 99 wt%, 

CAS 77-86-1) acquired from Alfa Aesar, were used. RunBlue Teo 20x Teo Tricine SDS and RunBlue SDS gel 

4-12% 10cmx10cm were provided by Expedeon. BlueSafe used to stain the proteins and Full Range Rainbow 

Grisp were acquired by NZYtech and Cytiva. 

 

Cell disruption and solid-liquid extraction 

The cell disruption and solid-liquid extraction steps were performed simultaneously following an adapted 

protocol previously developed by us.123 Briefly, this step was carried out in a shaker IKA Trayster Digital at 

room temperature (20 - 25 ᵒC) under a constant vertical rotation of 50 rpm, for 45 min, protected from light 

exposure. Several solvents including aqueous solutions of ILs and surfactants (cationic, anionic, and non-ionic) 

were screened at 100 mM to assess their capacity to release bacterioruberin (target compound) from the 

biomass. A control extraction using pure ethanol was also performed.  

An additional screening of aqueous solutions of non-ionic surfactants at 250 mM was also carried out, being 

their critical micellar concentration (CMC) reported in Table B.1 in Appendix B. All tests were conducted at 

a fixed solid-liquid ratio (SLR) of 0.1 gwet biomass.mLsolvent
-1, i.e. 0.1 g of wet biomass and 1 mL of the respective 

solvent. Lastly, a centrifugation step was performed at 16200 g for 15 min in a VWR Microstar 17 centrifuge, 

at room temperature (20 - 25 ᵒC). The resulting supernatant was recovered, and the biomass debris was 

discarded. All the assays were done in duplicate.  

 

Optimization of the cell disruption/solid-liquid extraction step by a response surface methodology 

A response surface methodology (RSM) was applied to simultaneously study different variables and to identify 

the most significant parameters and their interaction, which could lead to an enhanced yield of bacterioruberin 

extraction. A central composite rotatable design (CCRD - 23) was applied to the best solvent of the cell 

disruption/solid-liquid extraction in a total of 18 assays with 4 central points and axial points. The independent 

variables studied were the SLR (gwet biomass.mLsolvent
-1), concentration of surfactant in water (CSurf, mM) and time 

of extraction (t, min), being the dependent variable the yield of extraction of bacterioruberin (Yield of 

extraction, mgbacterioruberin.gwet biomass
-1). The results were statistically analyzed using the software Statistica® 7 

and with a 95 % confidence level, following the theory proposed by Dean et al. (1999)82 and Rodrigues and 

Lemma (2014).83 The real values are presented in Table B.2 in Appendix B. Lastly, using the means of relative 

deviation (%) the optimum conditions determined were validated in triplicate. 

 

Bacterioruberin quantification 
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The quantification of bacterioruberin was determined using a UV-Vis microplate reader (Synergy HT 

microplate reader – BioTek). The absorption spectra of the analyzed extracts were measured between 350 and 

700 nm and the bacterioruberin content was determined by Eq. 2.2.1 using calibration curves previously 

obtained at 494 nm (R² = 0.9965) for ethanolic solutions and at 504 nm (R² = 0.9997) for aqueous solutions, 

Figure B.2A in Appendix B. 

                        

Yield of extraction (mgbacterioruberin. gwet biomass
−1) =

[Bacterioruberin]   ×  Volume 

Weight 
 (2.2.1) 

 

where “[Bacterioruberin]” corresponds to the concentration of bacterioruberin in the extract (mg.mL -1), 

“volume” is the volume of solvent (mL) and “weight” is the weight of the wet cells tested (g). 

 

Protein induced precipitation 

The protein precipitation was performed using ethanol as precipitating agent added to the initial extract (extract 

collected after solid-liquid extraction). Different operational conditions, namely temperature (°C), volume of 

ethanol added (mL) and time for precipitation (min), were evaluated in a range of -20 to 30 °C, 0.5 to 4 mL 

and 2 to 30 min, respectively. The samples were centrifuged, and two different fractions were obtained, a pellet 

and a supernatant, using a Thermo Scientific Heraeus Megafuge 16R centrifuge at 4700 g, for 15 min. The 

protein recovery results were analyzed in terms of remaining protein content in the supernatant fraction to the 

protein content in the initial extract (in percentage, %). The pellet fraction from the optimized precipitation 

was resuspended in 2 mL of phosphate buffered saline (PBS) (1X, pH 7.4) for further analysis. The yield of 

precipitation (mgprotein.gwet biomass
-1) was quantified using a calibration curve previously obtained with bovine 

serum albumin (BSA) as a standard protein at 280 nm (R² = 0.9976), Figure B.2B in Appendix B. Finally, the 

ethanol content of the supernatant fraction was evaporated to evaluate the bacterioruberin content after 

precipitation and to further pursue its polishing.  

 

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

The resulting protein extract (pellet fraction resuspended in PBS) was analyzed by SDS-PAGE following the 

procedure of Laemmli (1970).129 First, the sample was diluted (1:1) in loading buffer (4 % (w/v) of SDS, 20 % 

(w/v) of glycerol, 0.5 mM of Tris-HCl pH 6.8, 0.02 % (w/v) bromophenol blue, 3.1 % (w/v) of DTT) and 

incubated for 5 min at 95 ºC for denaturation to occur. Then, it was injected into the polyacrylamide gel along 

with the molecular weight marker (Full Range Rainbow Grisp) and left to run for 2 h at 110 V. Finally, to stain 

the proteins, an incubation with BlueSafe was carried out under mild agitation for 2 h. 

 

Bacterioruberin polishing 
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The bacterioruberin polishing procedure used was adapted from the Chapter 2.1. First, the water content of 

bacterioruberin extract was removed by freeze-drying the sample. Then, ethanol was added in the proportion 

of 1:20 (Vbacterioruberin extract:Vethanol) and the solution was kept for three days at -80 ºC to induce bacterioruberin 

release from the micellar complex present in Tween® 20. After such period two phases were formed, a viscous 

surfactant-rich phase formed at the bottom and an ethanol-rich top phase, to which the pigment migrated too. 

The bacterioruberin presence in the top phase was further evaluated by collecting a sample, removing the 

ethanol, and redissolving it in a controlled volume of 0.5 mL of ethanol. In addition, an 1H NMR analysis was 

also performed to assess Tween® 20 content in the top phase using a Bruker AC 30 spectrometer (250 MHz) 

at room temperature. Deuterium oxide was used as solvent. 

 

Results and discussion 

Screening of surfactants and ILs as solvents 

A large screening of aqueous solutions of surface-active compounds belonging to different classes (cationic, 

anionic, non-ionic) and other non-surfactant agents was performed at 100 mM to assess their ability to extract 

bacterioruberin (target compound), and these results compared with ethanol as control solvent. The surfactants 

tested were pre-selected considering works previously reported by us, where these were considered as the most 

efficient for carotenoids release.122,123,130 In Table B.3 of Appendix B is reported the list of the 31 solvents 

tested and their capacity to extract bacterioruberin. Figure 2.2.1 shows the yields of extraction 

(mgbacterioruberin.gwet biomass
-1) in terms of the surfactants/ILs ability to induce the release of the target compound. 

Photographs of the obtained extracts are reported in Figure B.3 in Appendix B. 

 

 

Figure 2.2.1. Yield of extraction of bacterioruberin using aqueous solutions of cationic, anionic, and non-ionic 

compounds at 100 mM with ethanol as control solvent at room temperature (20 - 25 ᵒC), under a constant 

vertical rotation of 50 rpm, for 45 min, protected from light exposure, and at a fixed SLR of 0.1 gwet 

biomass.mLsolvent
-1. 
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The results presented in Figure 2.2.1 show that ethanol displayed a better yield of extraction when compared 

to the water-based solvents, which was not a surprise. Indeed, ethanol is recognized by several works for its 

high performance in pigment extraction and membrane solubilization.63,131 Thus, and also due to the presence 

of bacterioruberin in the membrane cells, which confers a low water permeability,36 the ethanol performance 

for the bacterioruberin extraction is expected to be better.  

Regarding the performance of the water-based solvents, depicted in Figure 2.2.1 and Table B.3 in Appendix 

B, almost none of the anionic nor the non-tensioactive compounds were able to efficiently extract 

bacterioruberin. The low performance of the anionic surfactants can be attributed to the fact that both these 

types of tensioactive compounds and the phospholipids (components of the cell membrane) are negatively 

charged, creating repulsive forces.122 On the other hand, the non-tensioactive ILs have low capability to disrupt 

the phospholipidic cell membranes due to their hydrophilic nature.123 Contrastingly, all cationic compounds 

were able to release the intracellular material. This can be explained owing to their ability to form micelles 

above a certain critical micellar concentration creating the perfect environment for the solubilization of more 

hydrophobic compounds through attractive electrostatic interactions between the IL cation and the negatively 

charged head of the phospholipids.124 Similar interactions can occur with the non-ionic surfactants,123 being 

these the most effective class of solvents found for the release of bacterioruberin. However, at the conditions 

tested with a surfactant concentration of 100 mM, a high viscosity was noticed on most solutions obtained after 

extraction (see Table B.3 in Appendix B), which may be justified by the presence of a viscous component 

extracted from the biomass (new experiments are under development to characterize this viscous product). 

However, this increase in the viscosity is imposing some experimental constraints. To overcome this issue and 

better assess the extracting capability of the most effective class of solvents (in this case the non-ionic 

surfactants), a second screening at 250 mM of surfactant followed. These results are illustrated in Figure 2.2.2. 

The UV-Vis spectra of the resulting extracts can be found in Figure B.4 in Appendix B. 

 

 

Figure 2.2.2. Yield of extraction of bacterioruberin using aqueous solutions of non-ionic compounds at 250 

mM with ethanol as control solvent at room temperature (20 - 25 ᵒC), under a constant vertical rotation of 50 

rpm, for 45 min, protected from light exposure, and at a fixed SLR of 0.1 gwet biomass.mLsolvent
-1. 
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Since the non-ionic surfactants tested are viscous liquids at room temperature, an increase in their concentration 

results in a more viscous aqueous solution. However, the viscosity of the final solutions (after bacterioruberin 

extraction) at 250 mM revealed to be substantially lower when compared to the same solutions at 100 mM. 

However, it must also be considered that a high concentration in the initial aqueous solution of surfactant also 

leads to viscosity issues. Therefore, a balance between these two extremes is a key factor in the success of this 

work. Taking this into account, from Figure 2.2.2 it is possible to reiterate that the highest performances were 

once again accomplished by Tween® 20 and ethanol. However, ethanol lacks the necessary capacity to 

simultaneously extract both the bacterioruberin (target compound) and the proteins (second valuable 

compound) present in the biomass envisioning a multi-product biorefinery (ethanol confers a protein yield of 

extraction of approximately 24 mgprotein.gwet biomass
-1, while Tween® 20 confers a protein yield of extraction of 

approximately 352 mgprotein.gwet biomass
-1). On the other hand, aqueous solutions of surfactants provide a milder 

environment that allows for the extraction of the different fractions of interest (proteins and pigments), both 

with applications related with food industry. As a result, the focus of the work was directed to the aqueous 

solutions of surface-active compounds, with Tween® 20 selected as the best solvent. 

 

Optimization of the solid-liquid extraction by a response surface methodology 

An optimization of the operational conditions was performed based on a central composite rotatable design 

(CCRD - 23) comprising three independent variables, namely SLR (in gwet biomass.mLsolvent
-1, X1), time of 

extraction (t in min, X2) and concentration of surfactant in water (CSurf in mM, X3). 18 assays with four central 

(level 0) and axial points (-1.68, and +1.68 levels) were studied in terms of bacterioruberin yield of extraction 

(in mgbacterioruberin.gwet biomass
-1) ranging from 0.111 mgbacterioruberin.gwet biomass

-1 (assay 5) to 0.331 mgbacterioruberin.gwet 

biomass
-1 (assay 9), Table B.2 in Appendix B. The fitted model expressed in Eq. 2.2.2, obtained using SS residual, 

by an analysis of variance (ANOVA), revealed a high predictability at a confidence level of 95 % with R2 = 

0.80912 and Fcalculated > Ftabulated. 

 

 

The response surfaces plotted in Figure 2.2.3 evidence a lack of influence by the extraction time. In this way, 

the minimum time tested was chosen to reduce the energy consumption of the process. On the other hand, 

Tween® 20 concentration seemed to display great influence in the extraction process, where an optimum value 

is reached at 182.4 mM, the minimum value tested for this variable. These results suggest that a higher yield 

of extraction could be achieved if the concentration of Tween® 20 was below 182.4 mM, however an increase 

in the tested range was unviable to perform due to the viscosity issues previously explained. Regarding the 

SLR, a positive influence in the predictive model is seen, being the best response obtained at 0.06224 gwet 

biomass.mLsolvent
-1. These results can be confirmed by the data in Table B.4 in Appendix B, the Pareto Chart 

(Figure B.5 in Appendix B) and the predicted vs. observed values graph (Figure B.6 in Appendix B), showing 

Yield of extraction (mgbacterioruberin. gwet biomass
−1)

= 0.147055 − 0.270072(X1) + 0.002002(X3) − 0.000005(X3)2 
(2.2.2) 
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that the solid-liquid ratio and the concentration of Tween® 20 in water were the effects that most influenced 

the model's response regarding the bacterioruberin yield of extraction. Therefore, after finding the optimal 

operational conditions (8.04 min, 182.4 mM and 0.06224 gwet biomass.mLsolvent
-1), a validation of the model was 

done. With a deviation of 11.6 %, a 0.37 ± 0.01 mgbacterioruberin.gwet biomass
-1 yield of extraction of bacterioruberin 

was obtained (Table B.5 in Appendix B). Furthermore, at these conditions, a protein yield of 352 ± 9 

mgprotein.gwet biomass
-1 was obtained. 

 

Figure 2.2.3. Response surface plots obtained for the CCRD (23) using an aqueous solution of Tween® 20 

regarding SLR (gwet biomass.mLsolvent
-1), concentration of surfactant in water (CSurf, mM) and time of extraction 

(t, min) in terms of bacterioruberin yield of extraction (Yield of extraction, mgbacterioruberin.gwet biomass
-1). 

 

Protein induced precipitation 

Ethanol is a common solvent used as a precipitating agent since it possesses a lower dielectric constant 

compared to water,132 which leads to an increase in the attraction forces between proteins, specifically at low 

temperatures.133–135 To achieve a minimum of protein in the supernatant fraction (SF), an evaluation of the 

process conditions, such as temperature, volume of ethanol added to the initial extract, and time of the 

precipitation, was performed between -20 to 30 °C, 0.5 to 4 mL and 2 to 30 min, respectively (Figure 2.2.4). 
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Figure 2.2.4. Protein content in the supernatant fraction (SF) after protein precipitation considering different 

temperatures (A), times of precipitation (B) and volumes of ethanol added to the initial extract (C). 

 

The influence of temperature in the precipitation was carried out at a fixed time of 20 min and volume of 

ethanol of 3 mL. The results depicted in Figure 2.2.4A suggest that lower temperatures, particularly 4 ºC, 

reduce the protein losses of the process. However, as the difference in protein content between 4 °C and 25 °C 

corresponds only to 3.9 %, a temperature of 25 ºC was seen as preferable, as it lowers the energetic burden of 

the overall process. Taking this into account, the precipitation time was evaluated at a fixed 25 ºC and 3 mL of 

ethanol. As seen in Figure 2.2.4B, the data obtained show an almost constant protein content with a minimum 

at 2 min, being this time chosen to proceed. Finally, the volume of ethanol was considered (Figure 2.2.4C) 

under fixed conditions of 25 ºC and 2 min. Here, it is possible to observe that the volume of ethanol is the 

variable that mostly influences the precipitation process, reducing the protein content with an increase in the 

ethanol volume added to the initial extract. In this case, a volume of 3 mL was selected as the difference 

between 3 mL and 4 mL corresponds only to 1.5 % of protein content. Thus, with a set of optimum conditions 

of 25 ºC, 2 min and 3 mL of ethanol, an yield of 234.5 ± 0.9 mgprotein.gwet biomass
-1 (quantified and calculated 

after protein redissolution in PBS) was obtained. 
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Moreover, further studies were conducted to understand the effect of consecutive precipitations (Figure B.7 in 

Appendix B). After the first precipitation, and consequent recovery of the pellet fraction, a second precipitation 

was carried out by adding another 3 mL to the supernatant fraction and repeating the procedure. Only a very 

small fraction with approximately 1.0 % of the total proteins present in the initial extract was obtained in the 

second precipitation corresponding to a yield of 2.7 ± 0.3 mgprotein.gwet biomass
-1 (quantified and calculated after 

protein redissolution in PBS), substantially lower when compared to the first, and thus the application of a 

second step of precipitation was disregarded. This further confirms that over 90 % of the protein fraction was 

recovered in a single step of precipitation, as also proved by the abundance of proteins presented in the SDS-

PAGE electrophoresis done to the precipitated proteins after dissolution in PBS (1X, pH 7.4), Figure B.8 in 

Appendix B. Lastly, bacterioruberin content was measured, after ethanol evaporation, to investigate 

bacterioruberin losses during induced precipitation, being noticed a loss of 12 %. 

 

Bacterioruberin polishing  

A bacterioruberin polishing step was accomplished to recycle Tween® 20 freeing the solvent for new cycles of 

extraction and to separate bacterioruberin from the solvent, thus facilitating its further application. Briefly, to 

perform this step, the water content was firstly removed from the bacterioruberin extract (extract obtained after 

induced precipitation and ethanol evaporation) by freeze-drying. Next, to induce the formation of two phases, 

ethanol was added to the sample [1:20 (Vbacterioruberin extract:Vethanol)] and the solution obtained was stored in the 

freezer at -80 ºC for three days. This way, bacterioruberin successfully migrated to the ethanol-rich (top) phase, 

while Tween® 20 remained in the bottom phase. At the end, the ethanol-rich phase was analyzed by 1H NMR 

spectrometry (Figure B.9 in Appendix B) to evaluate if Tween® 20 was fully separated, and no surfactant was 

detected. The presence of bacterioruberin in the top phase was confirmed through analysis of the collected 

sample by UV-Vis spectroscopy, Figure B.10 in Appendix B. 

 

Integrated process design 

A final diagram of the process developed in this work was proposed (Figure 2.2.5). Initially, a cell 

disruption/solid-liquid extraction of bacterioruberin and proteins from Haloferax mediterranei ATCC 33500 

is carried out using an aqueous solution of Tween® 20 at 182.4 mM. To purify the pigment from the collected 

initial extract and to value proteins as a second product, ethanol was added in the proportion of 1:3 (Vbacterioruberin 

extract:Vethanol), being the subproducts (in this case proteins) precipitated and then redissolved in PBS (1X, pH 

7.4) to be ready for the final application. Lastly, bacterioruberin is recovered from the Tween® 20 (aq) by 

inducing a liquid-liquid extraction as previously discussed. The pigment can be provided in ethanolic solution 

or in dry form, depending on the desired end application. Drying should be performed using a vacuum dryer at 

low temperature and pressure to prevent pigment degradation, this way making the recycling of the solvents, 

Tween® 20 and ethanol, possible to be accomplished. 
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Figure 2.2.5. Schematic diagram of the downstream process developed in this work, consisting of (i) cell 

disruption/solid-liquid extraction of bacterioruberin and proteins using Tween® 20 (aq) as solvent, (ii) protein 

induced precipitation with ethanol and redissolution of proteins in PBS, and (iii) bacterioruberin polishing and 

recycling of the solvents. Dashed lines are only a suggestion of how the process could be industrially 

implemented, not being experimentally performed in this work. 

 

Conclusions 

In this work, the recovery of bacterioruberin and proteins from Haloferax mediterranei ATCC 33500 was 

successfully achieved using tensioactive solvents. Between the aqueous solutions of surfactants and ILs 

studied, Tween® 20 distinguished itself as the best, being achieved, after an optimization of the operational 

conditions, a maximum yield of bacterioruberin extraction of 0.37 ± 0.01 mgbacterioruberin.gwet biomass
-1 and proteins 

of 352 ± 9 mgprotein.gwet biomass
-1. Furthermore, in a single protein precipitation step, over 90 % of the proteins 

were successfully separated from bacterioruberin. Lastly, it was possible to perform a polishing step of 

bacterioruberin and outline a proposal for the design of the final process to recycle the solvents and envisioning 

its industrial application. 
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The establishment of the Sustainable Development Goals was, definitely, a wakeup call for everyone to join 

forces towards a sustainable future. However, achieving them is not an easy task. It requires promising 

disruptive conversion technologies for the sustainable transformation of natural resources into value-added 

products, materials, and fuels, considering the biorefinery and circular economy concepts. 

In this thesis, two different procedures were developed to extract and purify xanthophylls, chlorophylls, and 

bacterioruberin from a microalga and a marine archaeon using alternative solvents. In the first work, it was 

found the remarkable performance of ammonium and phosphonium cations as a part of aqueous solutions of 

ILs to recover chlorophylls from AmberLite™ HPR900 OH, a step never achieved in literature before. This 

simple procedure allowed not only the fragmentation of chlorophylls and xanthophylls, but also the reuse and 

recycle of the resin in several cycles, which allowed its application in continuous mode. In addition, the 

addressed polishing step provided insights on how pigments could be isolated from the main solvent and the 

solvents recycled. In the second work, aqueous solutions of non-ionic surfactants revealed to efficiently extract 

bacterioruberin, a procedure usually performed using organic solvents. Furthermore, by a simple protein 

precipitation at room temperature bacterioruberin purification was attained allowing the recovery of proteins 

as a second valuable compound. In the end, the same polishing method of the previous work was successfully 

implemented showing its potential to be generalized for other pigments and solvents. 

Although an economic and environmental analysis were not accomplished, the studied approaches took several 

factors into account when designed. First, the simplicity of the processes was a crucial aspect to consider them 

with potential industrial application. Second, the choice of the solvent was always based on its cost and 

sustainability. Aqueous solvents were used whenever possible, since water is the cheapest and most sustainable 

solvent that exists, and in some cases ethanol, which is one of the least hazardous organic solvents with reduced 

environmental impact. Lastly, to minimize energy and solvents consumption and to reach higher yields, the 

operational conditions of both procedures were optimized and the recycle of the solvents addressed. Moreover, 

none of the procedures required the use of pressure or additional equipment’s, lowering their economic and 

environmental impacts. 

As future perspective, and to improve the industrial applicability of the developed works, kinetic and adsorption 

studies should be developed to understand when the saturation of the solvents/adsorbent material or the 

maximum recovery of the target compound from the biomass is reached. In this way, being possible to 

overcome the limitations of the response surface methodology used in both processes regarding the variables 

of time and solid-liquid ratio. In general, more work should be developed considering the valorization of all 

biomass fractions without compromising their quality and applications. Moreover, there are several other issues 

that need to be further explored in this thematic, which may be divided in (i) the development of simple but 

efficient polishing steps to allow the solvents’ reuse while allowing the biomolecules application in any field, 

(ii) the economic and environmental impacts of the process, and finally but also very important, the (iii) scale-

up and continuous studies needed to prove (or not!) the processes’ industrial applicability, an issue that is far 

from reality.  
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Appendix A 

 

Using aqueous solutions of ionic liquids as chlorophyll eluents in solid-phase 

extraction processes  

 

 

Figure A.1. Molecular structure and respective abbreviation of the ILs screened in this work. 

 

 

Figure A.2. Photographs of the resin AmberLite™ HPR900 OH: (A) resin before usage; (B) resin after 

chlorophyll adsorption and collection of the carotenoid extract; (C) resin after elution with aqueous solution of 

[N1,1,1,12]Br using the optimized conditions of elution by CCRD; and (D) resin after regeneration with solution 

of NaOH. These photographs are related to the assays performed in batch regime. 
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Figure A.3. Compounds, chemical structures, and proposed reactions between fucoxanthin (A) and 

pheophorbide (B) with the strong basic resin. 

 

 

Figure A.4. Pareto Chart of the CCRD (23) regarding the chlorophyll recovery from the resin (%) using 

aqueous solutions of [P4,4,4,14]Cl. 
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Figure A.5. Predicted vs. experimental values of the CCRD (23) regarding the chlorophyll elution from the 

resin (%) using aqueous solutions of [P4,4,4,14]Cl. 

 

 

Figure A.6. Pareto Chart of the CCRD (23) regarding the chlorophyll recovery from the resin (%) using 

aqueous solutions of [N1,1,1,12]Br. 
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Figure A.7. Predicted vs. experimental values of the CCRD regarding the chlorophyll recovery from the resin 

(%) using aqueous solutions of [N1,1,1,12]Br. 
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Figure A.8. UV-visible spectra of the collected fractions for batch studies in the first cycle, namely carotenoid 

extract, eluted solution and NaOH fraction using (A) an aqueous solution of [N1,1,1,12]Br; and (B) an aqueous 

solution of [P4,4,4,14]Cl.  
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Figure A.9. 1H NMR spectroscopy of (A) pure [N1,1,1,12]Br and (B) ethanolic fraction rich in chlorophylls (after 

the polishing step) dissolved in D2O. 

 

1 

 2 

B 

A 



Appendix 

 

 

69 

 

Table A.1. Critical Micellar Concentration (CMC) of surface-active ILs used to elute the chlorophylls. 

Surface-active compound CMC (mM) Reference 

[P4,4,4,14]Cl 4.69 136 

[N1,1,1,10]Br 25.20 136 

[N1,1,1,12]Br 15.6 137 

[N1,1,1,14]Br 3.8 137 

 

Table A.2. Real values used in the optimization process by CCRD (23) expressed by the chlorophyll recovery 

using aqueous solutions of [P4,4,4,14]Cl and [N1,1,1,12]Br. In the SLR study, the mass of resin was the variable 

changed, using always 5 mL of ethanolic initial solution in the adsorption step, 15 mL of the eluent, and 5 mL 

of the regeneration solution [NaOH, 4 % (w:v)]. 

Run 
SLR (gresin. 

mLeluent
-1) 

t 

(min) 

CIL 

(mM) 

Chlorophyll recovery 

(%) using [P4,4,4,14]Cl 

Chlorophyll recovery 

(%) using [N1,1,1,12]Br 

1 0.030 19.0 130.0 55.3 61.6 

2 0.070 19.0 130.0 54.6 65.1 

3 0.030 41.0 130.0 60.5 70.7 

4 0.070 41.0 130.0 62.4 75.1 

5 0.030 19.0 370.0 59.7 75.0 

6 0.070 19.0 370.0 69.5 88.1 

7 0.030 41.0 370.0 62.7 81.6 

8 0.070 41.0 370.0 77.3 93.3 

9 0.016 30.0 250.0 70.2 75.0 

10 0.084 30.0 250.0 73.4 89.4 

11 0.050 11.5 250.0 60.7 75.4 

12 0.050 48.5 250.0 73.0 89.6 

13 0.050 30.0 48.4 26.8 41.3 

14 0.050 30.0 451.6 80.5 91.9 

15 0.050 30.0 250.0 72.2 87.9 

16 0.050 30.0 250.0 67.6 86.4 

17 0.050 30.0 250.0 65.5 87.4 

18 0.050 30.0 250.0 69.1 87.9 

19 0.050 30.0 250.0 72.2 88.3 

20 0.050 30.0 250.0 76.5 87.0 
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Table A.3. Effect of the estimates for chlorophyll recovery optimized by the CCRD (23) using aqueous 

solutions of [P4,4,4,14]Cl. Significant factors at the 95 % confidence level. 

Factor Effect Standard error Calculated t * p-value 

Mean/Interaction 70.55 1.60 62.05 ≤ 0.001 

t (min) - (X2) 6.52 2.12 3.07 0.027 

CIL (mM) – (X3) 18.55 2.12 8.73 0.000 

CIL (mM) – (X3²) -12.33 2.07 -5.96 ≤ 0.001 

 *Degrees of freedom. 

 

Table A.4. Predicted vs. experimental values (real) obtained by the fitted model and the respective relative 

deviation (%) from the independent variables fixed at the optimum operational conditions using aqueous 

solutions of [P4,4,4,14]Cl. V1, V2, and V3 represent the validation assays. 

Assay 
t (min) CIL (mM) 

Chlorophyll recovery (%) 

using [P4,4,4,14]Cl 
Relative 

deviation 

(%) 
Experimental values Predicted values 

X2 X3 Y Predicted Y 

V1 

48.48 370 

81.0 

78.4 

3.3 

V2 80.8 3.0 

V3 76.9 1.9 

Mean of deviation 2.7 

 

Table A.5. Effect of the estimates for chlorophyll recovery optimized by the CCRD using aqueous solutions 

of [N1,1,1,12]Br. Significant factors at the 95 % confidence level. 

Factor Effect Standard error Calculated t * p-value 

Mean/Interaction 87.47 0.27 319.75 0.000 

SLR - (X1) 8.33 0.36 23.04 0.000 

SLR – (X1²) -3.70 0.35 -10.67 0.000 

t (min) - (X2) 7.99 0.36 22.03 0.000 

t (min) - (X2²) -3.59 0.35 10.15 0.000 

CIL (mM) – (X3) 22.04 0.36 60.69 0.000 

CIL (mM) – (X3²) -14.88 0.35 -42.04 0.000 

X1 by X2 4.21 0.47 8.87 0.000 

X2 by X3 -1.86 0.47 -3.92 0.011 

 



Appendix 

 

 

71 

 

Table A.6. Predicted vs. experimental values (real) obtained by the fitted model and the respective relative 

deviation (%) from the independent variables fixed at the optimum operational conditions using aqueous 

solutions of [N1,1,1,12]Br. V1, V2, and V3 represent the validation assays. 

Assay 

SLR (gresin. 

mLeluent
-1) 

t 

(min) 

CIL 

(mM) 

Chlorophyll recovery (%) 

using [N1,1,1,12]Br Relative 

deviation 

(%) 

Experimental 

values 
Predicted values 

X1 X2 X3 Y Predicted Y 

V1 

0.070 48.5 370 

96.7 

100 

-3.3 

V2 98.1 -1.9 

V3 96.3 -3.7 

Mean of deviation -3.0 

 

Table A.7. Summary of the best conditions and results found in CCRD for both aqueous systems with 

[P4,4,4,14]Cl and [N1,1,1,12]Br as chlorophyll eluents. 

 [P4,4,4,14]Cl [N1,1,1,12]Br 

CIL (mM) 370 370 

SLR (gresin.mLeluent
 -1) 0.050 0.070 

t (min) 48.5 48.5 

Chlorophyll recovery (%) 80 ± 2 97.0 ± 0.9 
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Appendix B 

 

Recovery of bacterioruberin using aqueous solutions of surface-active compounds 
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Figure B.1. Molecular structures and abbreviation names of the cationic (A), anionic (B), non-ionic (C), and 

non-tensioactive (D) compounds screened in this work. 
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Figure B.2. Calibration curves experimentally determined and used to quantify bacterioruberin in organic 

solvents and aqueous solutions (A) and total proteins in aqueous solvents (B) using the Synergy HT microplate 

reader – BioTek. 
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Figure B.3. Photographs of the extracts obtained in the screening of solvents at 100 mM. 

 

 

Figure B.4. UV-Vis spectroscopy of the extracts obtained in the screening of the non-ionic compounds at 250 

mM. 
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Figure B.5. Pareto Chart of the CCRD (23) regarding bacterioruberin yield of extraction (mgbacterioruberin.gwet 

biomass
-1) using aqueous solutions of Tween® 20. 

 

 

Figure B.6. Predicted vs. experimental values of the CCRD (23) regarding bacterioruberin yield of extraction 

(mgbacterioruberin.gwet biomass
-1) using aqueous solutions of Tween® 20. 
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Figure B.7. Yield of precipitation (mgprotein.gwet biomass
-1) for two consecutive protein precipitations using the 

same operational conditions, measured after proteins redissolution in PBS. 

 

 

Figure B.8. SDS-PAGE of the recovered proteins redissolved in PBS after protein induced precipitation. 
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Figure B.9. 1H NMR spectroscopy of (A) pure Tween® 20 and (B) ethanolic fraction rich in bacterioruberin 

(after the polishing step) dissolved in D2O. 

 

 

Figure B.10. UV-Vis spectroscopy of the collected sample from ethanol-rich phase after the polishing step. 

 

Table B.1. Critical Micellar Concentration (CMC) of surface-active ILs used to elute the chlorophylls. 

Surface-active compound CMC (mM) Reference 

TritonTM X-114 0.29 138 

Tween® 20 0.078 139 
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Tween® 80 0.014 139 

Genapol® C-100 0.075 140* 

* Manufacturer data 

 

 

Table B.2. Real values used in the optimization process by CCRD (23) expressed by yield of extraction of 

bacterioruberin (mgbacterioruberin.gwet biomass
-1) using aqueous solutions of Tween® 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B.3. List of the surface-active compounds tested to recover bacterioruberin and their success in the 

extraction. 

 
Surface-active 

compound 
Success Observations 

C
at

io
n

ic
 [C8C1im]Cl х Formed 2 phases, inviable to read UV-Vis spectra 

[C10C1im]Cl ✓ 
White cloudy initial solution but viable to read UV-Vis 

spectra 

Run 
SLR (gwet biomass. 

mLsolvent
-1) 

t 

(min) 

CSurf 

(mM) 

Yield of extraction 

(mgbacterioruberin.gwet biomass
-1) 

1 0.118 23.0 230.0 0.330 

2 0.282 23.0 230.0 0.276 

3 0.118 67.0 230.0 0.283 

4 0.282 67.0 230.0 0.269 

5 0.118 23.0 370.0 0.111 

6 0.282 23.0 370.0 0.120 

7 0.118 67.0 370.0 0.213 

8 0.282 67.0 370.0 0.137 

9 0.0622 45.0 300.0 0.331 

10 0.338 45.0 300.0 0.231 

11 0.200 8.04 300.0 0.234 

12 0.200 82.0 300.0 0.272 

13 0.200 45.0 182.4 0.300 

14 0.200 45.0 417.6 0.128 

15 0.200 45.0 300.0 0.232 

16 0.200 45.0 300.0 0.298 

17 0.200 45.0 300.0 0.273 

18 0.200 45.0 300.0 0.275 
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[C12C1im]Cl ✓ - 

[C14C1im]Cl ✓ - 

[C16C1im]Cl ✓ 
White cloudy initial solution but viable to read UV-Vis 

spectra 

[N1,1,1,10]Br ✓ - 

[N1,1,1,12]Br ✓ - 

[N1,1,1,14]Br ✓ - 

[N1,1,1,16]Br ✓ - 

[C16py]Cl ✓ - 

[P8,8,8,8]Br х 
Biomass did not settle in centrifuge; white cloudy initial 

solution 

[P4,4,4,14]Cl ✓ - 

A
n

io
n

ic
 

SDBS х Biomass did not settle in centrifuge 

SDS ✓ Very slimy 

AOT х 
Formed 3 phases; white cloudy initial solution; very slimy 

inviable to separate mixture 

N
o

n
-i

o
n

ic
 

Tween® 20 ✓ Very slimy 

Tween® 80 ✓ Very slimy 

TritonTM X-114 ✓ 
Formed 2 phases; slimy solution but possible to separate from 

sample 

Merpol® A х 
Formed 2 phases; very slimy inviable to separate mixture 

from sample; white cloudy initial solution 

Genapol® X-080 х 
Biomass did not settle in centrifuge; white cloudy initial 

solution 

Genapol® C-100 ✓ - 

N
o

n
-t

en
si

o
ac

ti
v

e 

[C4C1im]Cl х Biomass did not settle in centrifuge 

[C6C1im]Cl х Biomass did not settle in centrifuge 

[P4,4,4,4]Cl х Biomass did not settle in centrifuge 

[P4,4,4,4]Br х Formed 2 phases, inviable to read UV-Vis spectra 

[N4,4,4,4]Cl х Biomass did not settle in centrifuge 

[N1,1,1,6]Br х Biomass did not settle in centrifuge 



Appendix 

 

 

82 

 

[C3mpip]Cl х Biomass did not settle in centrifuge 

[C4mpyr]Cl х Biomass did not settle in centrifuge 

[C4py]Cl х Biomass did not settle in centrifuge 

 

 

Table B.4. Effect of the estimates for bacterioruberin yield of extraction (mgbacterioruberin.gwet biomass
-1) using 

aqueous solutions of Tween® 20, optimized by the CCRD (23) with significant factors at 95 % confidence level.  

Factor Effect Standard error Calculated t * p-value 

Mean/Interaction 0.257 0.0107 24.1 0.000 

SLR (gwet 

biomass.mLsolvent
-1) – 

(X1) 

-0.0443 0.0185 -2.39 0.0312 

CSurf (mM) – (X3) -0.127 0.0185 -6.86 0.000 

CSurf (mM) – (X3²) -0.0475 0.0185 -2.56 0.0225 

 *Degrees of freedom. 

 

Table B.5. Predicted vs. experimental values (real) obtained by the fitted model and the respective relative 

deviation (%) from the independent variables fixed at the optimum conditions for bacterioruberin yield of 

extraction (mgbacterioruberin.gwet biomass
-1) using aqueous solutions of Tween® 20. V1, V2, and V3 represent the 

validation assays.  

Assay 

SLR (gwet biomass. 

mLsolvent
-1) 

CSurf (mM) 

Yield of extraction 

(mgbacterioruberin.gwet biomass
-1) 

Relative 

deviation (%) 
Experimental 

values 
Predicted values 

X1 X3 Y Predicted Y 

V1 

0.06224 182.4 

0.373 

0.329 

11.7 

V2 0.361 8.84 

V3 0.384 14.3 

Mean of deviation 11.6 

 


