
Introducing interval differential dynamic logic
Daniel Figueiredo

CIDMA – University of Aveiro, Portugal

Abstract Differential dynamic logic (dL) is a dynamic logic with first-order
features which allows us to describe and reason about hybrid systems. We have
already used this logic to reason about biological models. Here we explore some
variants of its semantics in order to obtain a simplified and more intuitive way
of describing errors/perturbations, unavoidable in real-case scenarios. More
specifically, we introduce interval differential dynamic logic which takes dL as
its base and adapts its semantics for the interval setting.

Keywords: Interval differential dynamic logic, Differential dynamic logic,
Interval arithmetics

1 Introduction
Differential dynamic logic (dL) is a very expressive language which is able to
describe properties of systems involving complex dynamics. Due to its spec-
ification of atomic programs, it is specially designed for hybrid systems, i.e.,
those which admit continuous evolutions along with discrete events (also called
discrete jump sets). A classic example of this is the bouncing ball (Example
1.2 from [1]) where the continuous evolution of the ball position and velocity is
interrupted by a discrete event that is the bounce in the ground. dL was intro-
duced by Platzer in [1], where a proof calculus was also proposed. The proof
calculus is sound but not complete, which means that not all valid formulas
admit a proof (a weaker version of completeness is proved in [1]); moreover the
first-order structure embedded in this logic turns it undecidable. It has been ap-
plied in diverse contexts from railway, plane and automotive traffic [2, 3, 4, 5, 6]
to autonomous robotics [7] and even surgical robots [8]. In all these works, the
dL proof calculus has shown to be a powerful tool for the verification of hybrid
systems correctness.

While dL is a really useful logic, we also look at some complementary ones.
Gao has developed a verification tool for hybrid systems – dReach [9] – based
on dReal [10], which evaluates δ-satisfiability for SMT formulas, i.e. checks
satisfiability of a formula under a bounded error δ. dReach embeds the ca-
pacity of handling a bounded error and is used for reachability problems. The
typical question that dReach can answer is: “Is it possible to move from an ini-
tial region to an unsafe region under a bounded error δ?”. When compared to
dL proof calculus, dReach has the advantage of being able to generally handle
complex differential equations described by SMT formulas (including polynomi-
als, trigonometric functions, exponential functions, Lipschitz-continuous ODEs,
etc.). This is because dReach admits a bounded perturbation δ and it can handle
numerical solutions for differential equations. However, this is also a drawback
because dReach needs to compute all combinations between continuous evolu-
tions and discrete reconfigurations, not being able to work symbolically. Since

1

this is impossible in practice, differential dynamic logic is more suited for safety
while dReach is preferred for reachability. This symbiosis has already been
proposed in [11].

In this paper we introduce the basic notions for an interval version of differ-
ential dynamic logic – interval differential dynamic logic (IdL). The syntax and
semantics of differential dynamic logic are adapted to interval paradigma and
used in problems where variables are associated to uncertainty. Moreover, in
previous works [12, 11], some examples of application of dL to microbiological
contexts were presented. Due to the small scale of the components involved
there is always some uncertainty involved and, therefore, the development of an
interval version of dL logic is welcome. Although it was conceptually different,
some related work can be found in [13, 14], where the interval paradigm was
applied to dynamic logic. We assume that the reader is familiarized with dL
notation and its basic properties.

Outline. Section 2 recalls interval arithmetics and introduces the interval
paradigm. In Section 3 we introduce IdL and illustrate the utility of this logic.
Finally, we discuss some future work.

2 Interval paradigm
In this section we present the basis for interval paradigm and motivate its in-
tegration in differential dynamic logic. During the 60’s, in his PhD thesis [15],
Ramon Moore introduced and studied arithmetic for intervals. For a general
function f : Rn → Rm where f(a1, ..., an) = (f1(a1, ..., an), ..., fm(a1, ..., an)),
we can obtain the function fI(R) : I(R)n → I(R)m as the function that, for
closed intervals A1, ..., An with A1 × ...× An being contained in the domain of
f ,

fI(R)(A1, ..., An) = (f
I(R)
1 (A1, ..., An), ..., f

I(R)
m (A1, ..., An)) and, ∀i ∈ 1, ...m

f
I(R)
i (A1, ..., An) = ([min

a1∈A1,...,an∈An

fi(a1, ..., an), max
a1∈A1,...,an∈An

fi(a1, ..., an)]

Note. In this context, we still consider a real number x as a degenerated
closed interval [x, x]. Indeed, this notation was introduced by Moore in [15] and
allows usual arithmetics to be embedded in interval arithmetics.

Example We present the generalization of some basic operations.
• [a, b] + [c, d] = [a+ c, b+ d]

• −[a, b] = [−b,−a]

• [a, b] · [c, d] = [min(P),max(P)] where P = {a · c, a · d, b · c, b · d}

• [a, b]−1 = [1
b ,

1
a] provided that 0 ∈]a, b[

The development of interval arithmetics generates some questions about how
to act on intervals. Hickey, Ju & Emden, in [16], propose some properties that
interval arithmetic implementations should verify. We are interested in two:

• Correctness: a1 ∈ A1, ..., an ∈ An =⇒ f(a1, ..., an) ∈ fI(R)(A1, ..., An);

2

• Optimality : a∈fI(R)(A1, ..., An) =⇒ ∃ a1∈A1, ..., an∈An, f(a1, ..., an) =
a.

Correctness guarantees that an interval fI(R)(A1, ..., An) contains all results
of pointwise evaluations of f based on point values that are elements of the
argument intervals and optimality assures that fI(R)(A1, ..., An) generates an
interval which is not wider than necessary.

Proposition If f is continuous, than the interval generalization fI(R) is
correct and optimal.

Proof. Since f is continuous, correctness and optimality can be trivially
obtained from the Weierstrass and Bolzano theorems, respectively. �

Example Consider a function f : R3 → R2 defined as f(x, y, z) = (x +
y,−xz). Considering I = {2}×[0, 1]×[1, 2], we can compute fI(R)(2, [0, 1], [1, 2])
as:

([min
(x,y,z)∈I

x+ y, max
(x,y,z)∈I

x+ y], [min
(x,y,z)∈I

−xz, max
(x,y,z)∈I

−xz]) = ([2, 3], [−4,−2])

In a similar way, given an n-ary propositions P over reals, we define P I(R), a
proposition over I(R) such that P I(R)(A1, ..., An) = true ⇔ ∀a1 ∈ A1, ..., an ∈
An, P (a1, ..., an) = true

Example A ≤I(R) B ⇔ ∀a ∈ A,∀b ∈ B, a ≤ b

3 Interval functions for dL
Although dL is able to reason about hybrid systems, in general, when one works
with differential equations, it is known that small changes in initial conditions
can lead to great changes in a continuous evolution. For instance, consider the
following differential equation and its analytic solution:

{
x′ = y2 − x
y′ = y

||

{
x(t) =

y20
3 (e2t − e−t) + x0.e

−t

y(t) = y0.e
t

(1)

For x = 0 and y close to 0, a small change of y makes a great difference in
the exact value of y because x = y = 0 is an unstable steady state and, for 6= 0,
the value of y will evolve either to large positive or large negative values.

This turns to be a great issue in real life systems since it is virtually impos-
sible to measure exact values for variables like distance and velocity. consider
that a state variable x belonging to an interval (x ∈ [a, b]) is, sometimes, more
useful than defining a exact value for x. For instance, piecewise-linear models
in biological regulatory networks consider the behavior of a variable for certain

3

intervals rather than the exact values of those variables [12]. To acommodate
this, we propose an interval version of dL. In our version, the variables are not
evaluated as real values, but as closed intervals, leading to a methodological rep-
resentation of uncertainty and experimental error. At this point, it is important
to mention that dL syntax is also able to specify the evaluation of variables as
intervals, namely x = [a, b] is equivalent to x ≥ a ∧ x ≤ b.

Interval differential dynamic logic. dL is a dynamic logic with a first-
order structure. The set of atomic programs is composed of two kinds of pro-
grams: discrete jump sets (discrete assignments) and continuous evolutions (di-
rected by differential equations). We can obtain hybrid behavior by combining
both kinds of atomic programs. The syntax of dL admits a set X of logical
variables (which can be quantified) and a signature containing function and re-
lation symbols as well as the set Σfl of state variables, which are variables whose
interpretation is not fixed (contrary to the other symbols in Σ).

The syntax of IdL are those of dL and the semantics are adapted. Real
numbers are considered as degenerated intervals of the form [a, a] for a ∈ R.
The semantics of IdL consider a “strict” interpretation over closed intervals,
i.e. a symbol like + ∈ Σ is interpreted as “interval sum”, for instance. Also,
logical and state variables are evaluated over I(R). Three functions are used
to interpret formulas: an interpretation I – for rigid symbols in Σ\Σfl; an
assignment η – for logical variables in X; and a state v – for state variables in Σfl.
A formula is said to be valid if it is true for every triple (I, η, v).The semantics
of dL can be seen as a particular case of the one of IdL since the interpretation
of its formulas is done over the reals (the set of degenerated intervals). The
semantics of dL (see [1]) is straightforwardly adapted to the interval version.
However, the main difference is observed in continuous evolutions (differential
equations constrained by a first-order formula χ). Given an initial state u,
a system of differential equations −→x ′ = (f1(−→x), ..., fn(−→x)) and a first-order
formula χ, the set of reachable states is obtained by computing the solution
F (t) = (F1(t), ..., Fn(t)) of the differential equation f whose initial conditions
are set by the state u. For each t̄ ∈ R+

0 we can define a reachable state v
according to F I(R)(t̄) and χ in such a way that b ∈ Rn ∈ F I(R)(t̄) if there is an
initial state a ∈ Rn such that F (t̄) = b and F (t) satisfies χ for every t ∈ [0, t̄].
This definition verifies correctness and optimality because of the continuity of
F .

We present two examples. One illustrating how continuous evolutions are
evaluated and another one evaluating a formula of IdL.

Example Let us consider a system whose dynamics is described by the
system of differential equations previously presented in Section 3. Also, for the
purpose of this example, we consider a first-order condition stating the positivity
of state variables χ ≡ x ≥ 0∧y ≥ 0. We obtain the following hybrid program to
describe the dynamics of this system: α ≡ (x′ = y2−x, y′ = y&x ≥ 0∧ y ≥ 0).

In this example, we desire to obtain the set ρI,η(α) – set of reachable states
from α (see [1]). Note that I and η are not relevant because only state variables

4

occur in α. Let us consider a state u such that u(x) = [0, 1] and u(y) = [0, 1]).
We describe the process to obtain the set of pairs (u, v) which are contained
in ρI,η(α). Firstly, we need to obtain the analytical solution of the system of
differential equations, which is shown in 1 with x0 = x(0) and y0 = y(0).

Let us denote min
(x0,y0)∈[0,1]2

x(t̄) by x(t̄), max
(x0,y0)∈[0,1]2

x(t̄) x(t̄), min
(x0,y0)∈[0,1]2

y(t̄) by

by y(t̄) and max
(x0,y0)∈[0,1]2

y(t̄) by y(t̄). For each non-negative value of t̄, we obtain

an attainable reachable state vt̄ = u[x → [x(t̄), x(t̄)]][y → [y(t̄), y(t̄)]] for every

t̄ satisfying valI,η(vt, χ) = true, for every 0 ≤ t ≤ t̄. For instance, if v = u[x→
[0, 5

3]][y → [0, 2]], then (u, v) ∈ ρI,η, and R = ln(2) is the witness.
We end this section with an academic example of the evaluation of a formula

of IdL.

Example
In this example, we will simply write a instead of [a, a]. Let us consider a

system like the one from Example 3 but where the initial value of x and y is
[0, 1] and the value of y resets to 0 whenever it reaches the value of 5.

This is described by the following hybrid program:

β ≡
((

?(y ≤ 5); (x′ = y2 − x, y′ = y & x ≥ 0 ∧ 0 ≤ y ≤ 5)
)
∪ (?y = 5; y := 0)

)∗
Note that the hybrid program checks y ≤ 5 before to proceed with the con-

tinuous evolution which never allows y to go above 5. When y = 5, the program
can check again if y = 5 (because of the ∗ and ∪ operators) and proceed with
the discrete jump set y := 0, setting y to [0, 0]. Then, the continuous evolution
can resume (again, due to the ∗ operator). Note that, since we are consider-
ing the interval paradigm, when we check y ≤ 5, we are checking if the upper
limit of the interval is less or equal to 5. Finally, we evaluate the formula:
ϕ ≡ (x ≤ [0, 1] ∧ y ≤ [0, 1]) → [β]x < 6. Note that the choice of I, η is not im-
portant, since only state variables occur in this formula: valI,η(u, ϕ) = true⇔
valI,η(u, x ≤ [0, 1]) = false or valI,η(u, y ≤ [0, 1]) = false or valI,η(u, [β]x <
6) = true.

If u(x)(≤)I(R)[0, 1] is false or u(y)(≤)I(R)[0, 1] is false, then the formula is
true. Otherwise, we are in the same conditions as in Example 3. From Example
3, we know that is possible to reach a state vR̃ with vR̃(y) = [0, 5] whenR = ln(5)
and, at the same state vR̃(x) = 77

15 . Furthermore, this is the maximum value it
takes for R ∈ [0, ln(5)] because the analytical solution for x(r) is monotonically
increasing. After the discrete jump set which sets y to [0, 0], the continuous
evolution can be run again. From the state vR̃, the continuous evolution will
permanently set y to [0, 0] while vR(X) = [0, 77

15 .e
−R], forR ≥ ln(5). Considering

that 77
15 .e

−R is a monotonically decreasing function, x will never take a value
above 6. Because of this, we can conclude that valI,η(u, ϕ) is true for every I, η
and u and thus it is valid.

5

4 Conclusions and future work

In this work we present an interval version of dL in order to make it more user-
friendly in contexts where the use of intervals is more appropriated. The proof
calculus of dL is compared to dReach, which is used to approach reachability
problems in hybrid systems and that already admits a notion of δ-perturbation.
Since dL is particularly designed for safety properties, we believe that IdL
can be an interesting complement to dReach, which is designed for reachability
properties.

Although we highlight the connection between dL and IdL, we are interested
in proving some properties relating both languages. Moreover, in the future, we
intend to adapt the proof calculus of dL to IdL. Furthermore, in order to make
IdL more appealing, an interval version of KeYmaera (a semi-automatic prover
for the dL proof calculus) could be developed to assist in the process of proving
a IdL formula.

Other interesting developments would be the inclusion of new interval oper-
ators and relations such as ∩ and ⊆; the development of a fuzzy and interval
logic; and study how the notion of differential equation in this paper relates
with the one in [17].

Acknowledgements. This work was supported by ERDF - The European
Regional Development Fund through the Operational Programme for Compet-
itiveness and Internationalisation - COMPETE 2020 Programme and by Na-
tional Funds through the Portuguese funding agency, FCT - Fundação para
a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-030947 and
project with reference UIDB/04106/2020 at CIDMA.

References

[1] André Platzer. Logical analysis of hybrid systems: proving theorems for
complex dynamics. Springer Science & Business Media, 2010.

[2] André Platzer and Jan-David Quesel. European train control system: A
case study in formal verification. In Formal Methods and Software Engi-
neering, pages 246–265. Springer, 2009.

[3] Stefan Mitsch, Sarah M. Loos, and André Platzer. Towards formal veri-
fication of freeway traffic control. In Chenyang Lu, editor, ICCPS, pages
171–180. IEEE, 2012.

[4] Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive cruise control:
Hybrid, distributed, and now formally verified. In Michael Butler and Wol-
fram Schulte, editors, FM, volume 6664 of LNCS, pages 42–56. Springer,
2011.

[5] André Platzer and Edmund M Clarke. Formal verification of curved flight
collision avoidance maneuvers: A case study. Springer, 2009.

6

[6] Jean-Baptiste Jeannin et al. A formally verified hybrid system for the next-
generation airborne collision avoidance system. In Christel Baier and Ce-
sare Tinelli, editors, TACAS, volume 9035 of LNCS, pages 21–36. Springer,
2015.

[7] Stefan Mitsch, Khalil Ghorbal, and André Platzer. On provably safe obsta-
cle avoidance for autonomous robotic ground vehicles. In Paul Newman,
Dieter Fox, and David Hsu, editors, Robotics: Science and Systems, 2013.

[8] Yanni Kouskoulas, David Renshaw, André Platzer, and Peter Kazanzides.
Certifying the safe design of a virtual fixture control algorithm for a sur-
gical robot. In Proceedings of the 16th international conference on Hybrid
systems: computation and control, pages 263–272. ACM, 2013.

[9] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. dReach: δ-
reachability analysis for hybrid systems. In Christel Baier and Cesare
Tinelli, editors, Tools and Algorithms for the Construction and Analysis
of Systems, volume 9035 of LNCS, pages 200–205. Springer, 2015.

[10] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver
for nonlinear theories over the reals. In Maria Paola Bonacina, editor,
Automated Deduction CADE-24, volume 7898 of LNCS, pages 208–214.
Springer, 2013.

[11] Daniel Figueiredo. Logic Foundations and Computational Tools for Syn-
thetic Biology. PhD thesis, Universities of Minho, Aveiro and Porto (joint
doctoral program), 2020.

[12] Daniel Figueiredo, Manuel A. Martins, and Madalena Chaves. Applying
differential dynamic logic to reconfigurable biological networks. Mathemat-
ical Biosciences, 291:10 – 20, 2017.

[13] Regivan Santiago, Benjamn Bedregal, Alexandre Madeira, and Manuel A.
Martins. On interval dynamic logic: Introducing quasi-action lattices. Sci-
ence of Computer Programming, 175:1 – 16, 2019.

[14] Regivan Santiago, Benjamı́n Bedregal, Alexandre Madeira, and Manuel A
Martins. On interval dynamic logic. In Lecture Notes in Computer Science,
vol 10090, pages 129–144. Springer, 2016.

[15] Ramon E. Moore. Interval Arithmetic and Automatic Error Analysis in
Digital Computing. PhD thesis, Stanford University, 1962.

[16] Timothy Hickey, Qun Ju, and Maarten H Van Emden. Interval arith-
metic: From principles to implementation. Journal of the ACM (JACM),
48(5):1038–1068, 2001.

[17] Mohadeseh Ramezanadeh, Mohammad Heidari, Omid S. Fard, and Ak-
bar H. Borzabadi. On the interval differential equation: novel solution
methodology. Advances in Difference Equations, 2015(1):338, 2015.

7

