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resumo 
 

 

Modelar um determinado resultado é desafiante e recorre-se habitualmente à 
recolha de diversas variáveis. Contudo, desconhecem-se ainda os métodos 
estatísticos apropriados para a seleção de variáveis importantes e com 
significado, nomeadamente em dados longitudinais. 
Dados longitudinais podem ser agrupados e definem trajetórias alteráveis por 
inúmeros fatores, alguns deles inesperados. 
Identificar as trajetórias individuais de determinados resultados em fases 
iniciais de uma doença, bem como os potenciais fatores de risco, deveria ser 
prioritário uma vez que esse conhecimento pode conduzir ao desenvolvimento 
de tratamentos individualizados e resultar em intervenções efetivas. 
A doença pulmonar obstrutiva crónica é uma doença prevenível e progressiva 
e indivíduos com esta doença poderiam beneficiar com a identificação desses 
fatores de risco e do comportamento da doença ao longo do tempo. 
Esta dissertação teve como objetivos comparar diferentes métodos de seleção 
de variáveis, em dados longitudinais, baseados em algoritmos de regressão, 
nomeadamente, random forest, Boruta, extreme gradient boosting, estimação 
com penalização L-1 e eliminação automática. Também pretendemos 
descrever o efeito provocado pelo confinamento decorrente da pandemia de 
COVID-19 no teste de sentar e levantar em 1 minuto, na força de preensão 
manual e no teste de avaliação do impacto da doença pulmonar obstrutiva 
crónica. Finalmente, explorámos os fatores que influenciam o comportamento 
do teste de sentar e levantar em 1 minuto ao longo de seis meses em 
indivíduos com doença pulmonar obstrutiva crónica. 
O método de eliminação automática foi consistente na seleção de variáveis 
que produziram modelos lineares de efeitos mistos com menores valores de 
critério de informação de Akaike. O período de confinamento não teve efeito 
estatisticamente significativo no teste de sentar e levantar em 1 minuto nem na 
força de preensão manual. No entanto, foi observado um efeito negativo no 
impacto da doença. Foi também observada uma pior evolução dos resultados 
do teste de sentar e levantar em 1 minuto, ao longo do tempo, em indivíduos 
com doença pulmonar obstrutiva crónica mais velhos e com maior carga 
tabágica. 
 
 
 

 

  



 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

keywords 

 
Chronic obstructive pulmonary disease, COVID-19, feature selection, linear 
mixed-effects models, longitudinal data. 
 

abstract 
 

Modelling a certain outcome is challenging and it is common practice to collect 
several features in that attempt. Nevertheless, the appropriate statistical 
methods to select important and meaningful features are still unknown, namely 
under repeated measurements 
Longitudinal data can be grouped in forming trajectories that can be altered by 
countless factors, some of them unexpected. Identifying individuals’ outcome 
trajectories at early stage of illness, as well as potential risk factors should be of 
high priority since this knowledge can guide to the development of individually 
tailored treatment and result in effective interventions. Chronic obstructive 
pulmonary disease is a progressive and preventable disease and people with 
this disease could benefit from the identification of such risk factors and over 
time behaviour. 
In this dissertation we aimed to compare different feature selection methods 
based on regression algorithms, namely, random forest, Boruta, extreme 
gradient boosting, L-1 penalized estimation and automatic backward selection, 
adapted to longitudinal data. We also aimed to describe the effect of the 
Coronavirus disease 2019 lockdown on the one-minute sit-to-stand test, 
handgrip muscle strength and chronic obstructive pulmonary disease 
assessment test behaviour. We finally aimed to explore the factors influencing 
the behaviour of the one-minute sit-to-stand test over a six-month period in 
people with chronic obstructive pulmonary disease. 
We showed that the automatic backward elimination of features was consistent 
when it came to select statistically relevant features to be included in linear 
mixed-effects models with the lowest values of Akaike information criterion. The 
COVID-19 lockdown period seemed to have had no effect in the one-minute sit-
to-stand test and handgrip muscle strength behaviour but a negative effect in 
the impact of the disease was observed. Also, an increase of the smoking load 
or age seems to lead to a worse evolution in the one-minute sit-to-stand test 
results over time in people with chronic obstructive pulmonary disease. 
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1. INTRODUCTION 

 

It is not uncommon to collect many predictors to model a certain outcome, but it is of great 

interest to find important and significant features among that set of candidate variables. 

When that outcome is measured repeatedly through different time points, we are in the 

presence of longitudinal data. Longitudinal data require special statistical methods because 

observations from the same individual are not independent, and variables tend to be 

correlated. 

Despite many previous studies investigating how predictors affect an outcome, the question 

of choosing appropriate statistical methods to select important and meaningful predictors 

under repeated measurements is still not clearly answered (E. I. George, 2000). Some of 

the more common selection methods are time consuming and sometimes unreliable for 

marking inferences. 

One of the characteristics of longitudinal data is that it can be grouped in forming 

trajectories. Identifying individuals’ outcome trajectories at early stages of an illness and 

potential risk factors associated with a poor outcome trajectory are of high priority because 

this knowledge can guide the development of individually tailored treatments and effective 

interventions that potentially alter the course of the disease. (Hall et al., 2019) 

Chronic obstructive pulmonary disease (COPD) is a progressive and preventable disease 

(Global Initiative for Chronic Obstructive Lung Disease, 2021) associated with enormous 

burden not just for individuals but also for their families, society and economy. People with 

this disease could benefit from the identifications of such risk factors and over time 

behaviour to manage the disease early and optimise outcomes. 

In this dissertation we briefly introduce COPD, characterize longitudinal data and the 

methodology to analyse it, namely the linear mixed-effects models, and describe algorithms 

that enables us to select the variables to include in those models. We then present the 

dataset used to perform two studies, the main focus of this dissertation. The first study 

aimed to compare different feature selection methods and describe the effect of the COVID-

19 lockdown on the one-minute sit-to-stand test, handgrip muscle strength and COPD 

Assessment test behaviour in people with COPD. The second study aimed to describe the 

one-minute sit-to-stand behaviour over a six-month period and explore the factors 

influencing this behaviour in people with COPD. 
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2. CHRONIC OBSTRUCTIVE PULMONARY DISEASE 

 

Chronic obstructive pulmonary disease is a progressive, treatable and highly preventable 

disease. It was estimated that more than 12% of the general population of the world suffers 

from COPD. It kills more than 3 million people worldwide every year (Rabe & Watz, 2017; 

Varmaghani et al., 2019) and accounts for a substantial and increasing  individual, 

economic and societal burden (World Health Organization, 2008). COPD was projected to 

be the seventh leading cause of disability-adjusted life-years (DALYs) by 2030 (Mathers & 

Loncar, 2006) but in 2019 was already the sixth leading cause of DALYs of all ages, the 

fourth leading cause in the age group 50–74 years and the third in the age group 75 years 

and older (GBD 2019 Diseases and Injuries Collaborators et al., 2020). 

COPD is “characterized by persistent respiratory symptoms and airflow limitation that is due 

to airway and/or alveolar abnormalities usually caused by significant exposure to noxious 

particles or gases” (Global Initiative for Chronic Obstructive Lung Disease, 2021). The 

chronic airflow limitation that is characteristic of COPD is caused by a mixture of small 

airways disease and parenchymal destruction that may evolve at different rates over time 

(Global Initiative for Chronic Obstructive Lung Disease, 2021). 

Dyspnoea, also known as “shortness of breath”, is the subjective sensation of running out 

of air and of not being able to breathe fast enough (Hashmi et al., 2021). This sense of 

uncomfortable breathing, comprised of various sensations of varying intensity, is the most 

characteristic symptom of COPD (Global Initiative for Chronic Obstructive Lung Disease, 

2021). COPD diagnosis should be considered in any patient who has dyspnoea, chronic 

cough or sputum production, and/or a history of exposure to risk factors for the disease. 

Nevertheless, spirometry, a widely available and reproducible physiological test that 

measures the maximal volume of air that an individual can inspire and expire with maximal 

effort, is required to make the diagnosis in this clinical context. 

To date studies indicate that morbidity and prevalence due to COPD increases at steady 

rates with age (Jarad, 2011; Varmaghani et al., 2019). 

Although cigarette smoking is the leading and most well studied COPD environmental risk 

factor for COPD (GBD 2019 Diseases and Injuries Collaborators et al., 2020) it is not the 

only risk factor. For instance, sex, genetics and comorbidities playing an important role on 

the disease progression (Rennard & Drummond, 2015). Also, body mass index (BMI) is 

associated with the rate of lung function decline in COPD. Compared to normal BMI, low 

BMI is associated with faster, and high BMI is associated with slower, forced expiratory 
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volume in 1 second (FEV1) decline. Overweight or obese have a protective effect against 

mortality, sometimes called the “obesity paradox” (Cao et al., 2012; Sun et al., 2019). 

Physicians should refer COPD diagnosed patients to pulmonary rehabilitation (PR), an 

evidence-based, non-pharmacological multidisciplinary intervention, as patients with COPD 

remain symptomatic despite optimisation of pharmacological treatment. PR is defined as “a 

comprehensive intervention based on thorough patient assessment followed by patient-

tailored therapies that include, but are not limited to, exercise training, education, and 

behaviour change, designed to improve the physical and psychological condition of people 

with chronic respiratory disease and to promote the long-term adherence to health-

enhancing behaviours” (Spruit et al., 2013). 

Patient-centred outcomes have historically been used for patient assessment and 

measurement of change or impact of PR in chronic respiratory disease. The strongest 

evidence of impact from PR has been for improvement in symptoms, exercise performance/ 

functional activities and quality of life since they are highly meaningful to individuals with 

COPD (Souto-Miranda & Marques, 2018; Spruit et al., 2013). Also, studies have focused 

on accurately defining and describing relevant outcomes and their measurement and 

interpretation. Analyses of outcomes have included descriptions of relevant change, such 

as the minimal clinically important difference (MCID). The MCID has been defined as the 

smallest difference in a measurable clinical parameter that indicates a meaningful change 

in the condition for better or for worse, as perceived by the patient, clinician, or investigator 

(Kiley et al., 2005). 
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3. LONGITUDINAL DATA 
 

Measuring change over time is not possible with cross-sectional data (Willett, 1989). To be 

able to describe and interpret change, longitudinal data, also referred as panel data is 

mandatory. Longitudinal data can be defined as “measurements or observations taken from 

multiple subjects repeatedly over time” (Funatogawa & Funatogawa, 2018). 

To characterize changes in an outcome of interest over time, as well as the potential 

relationships between risk factors and the outcome, is of major importance that is the reason 

why longitudinal studies are a frequent practice. Although several benefits of longitudinal 

studies can be pointed out, such as the alleviation of the recall bias or the opportunity to 

observe patterns of change, they are not without a cost. There is, for instance, the risk of 

bias due to incomplete follow-up, or drop-out of study participants and the need to perform 

statistical analysis using methods that can account for the intra-subject correlation of 

measurements. From those methods, we will briefly describe the linear mixed-effects 

models (LMMs) (Laird & Ware, 1982). 

The term mixed model refers to the use of both fixed and random effects in the same 

analysis. Fixed effects have levels that are of primary interest and would be used again if 

the experiment was repeated. Random effects have levels that are not of primary interest 

but rather are a random selection from a larger set of levels (Mallinckrodt & Lipkovich, 2017). 

Let 𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑛𝑖
)

𝑇
be the vector of the response corresponding to the ith (𝑖 = 1, … , 𝑁) 

subject measured from 1 to 𝑛𝑖 occasions. 𝑌𝑖𝑗 is the jth measurement. Linear mixed-effects 

models are expressed by 

 

𝑌𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜀𝑖  ,    𝜀𝑖 = (𝜀𝑖1, 𝜀𝑖2, … , 𝜀𝑖𝑛𝑖
)

𝑇
 (3.1) 

 

where 𝛽 is a 𝑝 × 1 vector of unknown fixed effects parameters, 𝑋𝑖 is a known 𝑛𝑖 × 𝑝 design 

matrix for fixed effects, 𝑏𝑖 is a 𝑞 × 1 vector of unknown random effects parameters, 𝑍𝑖 is a 

known 𝑛𝑖 × 𝑞 design matrix for random effects, and 𝜀𝑖 is a 𝑛𝑖 × 1 vector of random errors. 

It is assumed that 𝑏𝑖 and 𝜀𝑖 are both independent across subjects and independently follow 

a multivariate normal distribution with the mean zero vector and variance covariance 

matrices G (𝑞 × 𝑞 square matrix) and 𝑅𝑖 (𝑛𝑖 × 𝑛𝑖 square matrix), respectively. Responses 

from different subjects are assumed to be independent. 
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Different LMMs can be defined. We can, for instance, consider those who include means at 

each time point with a random intercept or time trend models with a random intercept and 

a random slope (Funatogawa & Funatogawa, 2018). 
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4. FEATURE SELECTION 
 

4.1. MACHINE LEARNING 

 

The problem of automatically searching patterns in data using computer algorithms and, 

with the use of these regularities, to take actions is a fundamental one and has a long 

successful history (Bishop, 2006). Machine learning is the scientific discipline that focuses 

on how computers learn from data. It seeks to learn relationships from data, with emphasis 

on efficient computing algorithms. The types of learning methods used by computers are 

conveniently subclassified into categories such as supervised learning and unsupervised 

learning. Applications in which the training data comprises input characteristics (also 

designated as features, independent variables or predictors) along with their corresponding 

outcome (also designated as response, result or dependent variable) are known as 

supervised learning problems (Bishop, 2006). Cases in which the aim is to assign input 

features to one of a finite number of discrete categories, are called classification problems. 

If the desired outcome consists of one or more continuous variables, then the task is called 

regression. On the other hand, with unsupervised learning, there are input features, but no 

supervising outcome. Nevertheless, we can learn relationships and structure from such data 

(Gareth et al., 2013). 

 

4.2. REGRESSION 

 

The goal of regression is build models that can predict the value of one or more continuous 

outcomes given the value of a n-dimensional vector x of input features (Bishop, 2006).  

One of the most used supervised technique for relating a set of variables is the multiple 

linear regression model (Jobson, 1991) and we will use to establish some important 

definitions used throughout this thesis. 

It takes the form 

 

𝑌i = β0 + β1𝑥𝑖1 + β2𝑥𝑖2 + ⋯ + β𝑝𝑥𝑖𝑝 + ϵ𝑖 , ϵ𝑖 ~ 𝑁(0, 𝜎𝑖
2) (4.1) 

 

where 𝑌𝑖 represents a quantitative outcome, 𝑥𝑖 represents the ith predictor from the selected 

𝑝, β𝑖 quantifies the association between that feature and the outcome and ϵ𝑖 is a normally 



8 

 

distributed, mean-zero and constant variance (𝜎𝑖
2), random error term, independent of 𝑌𝑖. 

β0 is called the intercept term and βi is the slope associated to the ith predictor. 

The regression constant parameters or coefficients β0, β1, … , β𝑝 are unknown. Data must be 

used to produce estimates of them, β̂0, β̂1, … , β̂𝑝.  

Let 

 

(𝑥11, 𝑥12, … , 𝑥1𝑝, 𝑦1), (𝑥21, 𝑥22, … , 𝑥2𝑝, 𝑦2), … , (𝑥𝑛1, 𝑥𝑛2, … , 𝑥𝑛𝑝, 𝑦𝑛) (4.2) 

 

represent 𝑛 independent observation (p+1)-tuples. 

Let 

 

𝑦̂𝑖 = β̂0 + β̂1𝑥𝑖1 + β̂2𝑥𝑖2 + ⋯ + β̂𝑝𝑥𝑖𝑝 (4.3) 

 

be the prediction for 𝑦𝑖. Then 

 

𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 (4.4) 

 

represents the ith residual and we define the residual sum of squares (RSS) as 

 

𝑅𝑆𝑆 = ∑ 𝑒𝑖
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝑦̂𝑖  )2

𝑛

𝑖=1

= ∑(𝑦𝑖β̂0 − β̂1𝑥𝑖1 − β̂2𝑥𝑖2 − ⋯ − β̂𝑝𝑥𝑖𝑝)
2

𝑛

𝑖=1

 (4.5) 

 

Parameters are estimated to minimize the residual sum of squares. 

One of the most important assumptions of multiple linear regression state that the 

relationship between the predictors and response must be additive. This means that the 

effect of changes in a predictor 𝑥𝑖 on the response 𝑌𝑖 is independent of the values of the 

other predictors. In practice, this assumption is often violated, and alternative approaches 

are demanded. 

One common approach is the inclusion of more predictors, called interaction terms. These 

terms are constructed by computing the product of 𝑗 independent variables, with 𝑗 > 1. For 

a simpler understanding of what was stated, and without losing generality, let us consider 

model (4.1) with 𝑝 = 2, which will include 𝑥1 and 𝑥2 as main effects, and the interaction 

between 𝑥1 and 𝑥2. The multiple linear regression model would be defined by 
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𝑦𝑖 = β0 + β1𝑥𝑖1 + β2𝑥𝑖2 + β3𝑥𝑖1𝑥𝑖2 + ϵ𝑖  (4.6) 

 

with 𝑥1𝑥2 representing the interaction term (further also represented as 𝑥1 ∗ 𝑥2). 

After defining a regression model, it is important to quantify the extent to which the model 

fits the data and, generally, access the quality of the model. That is, we need to quantify the 

extent to which the predicted response value for a given observation is close to the true 

response value for that observation (Gareth et al., 2013). Three of the commonly used 

measures are the root mean squared error (RMSE), the coefficient of multiple determination 

(𝑅2) and the Akaike’s information criterion (AIC) (Akaike, 1973). 

Let us first define the mean squared error (MSE), which is given by the following expression 

 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑦̂𝑖  )2𝑛

𝑖=1

𝑛
 . (4.7) 

 

The RMSE can now be defined as 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖  )2𝑛

𝑖=1

𝑛
 . (4.8) 

 

For the same sample, a lower value for RMSE represents a better fit of the model. 

𝑅2 takes the form of a proportion, 

 

𝑅2 =
∑ (𝑦𝑖 − 𝑦̅ )2𝑛

𝑖=1 − ∑ (𝑦𝑖 − 𝑦̂𝑖  )2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅ )2𝑛
𝑖=1

 (4.9) 

  

where 

 

𝑦̅ =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
 . (4.10) 

 

𝑅2 assumes values from 0 to 1 with values closer to 1 indicating that a large proportion of 

the variability in the outcome was explained by the regression model. 

The AIC is defined by 

 

𝐴𝐼𝐶 = −2log (𝐿) + 2𝑝 (4.11) 
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where log (𝐿) is the log-likelihood function of the parameters in the model evaluated at 

maximum likelihood estimator and the term 2𝑝 is a penalty term for additional parameters 

in the model. 

As for the RMSE, a lower value indicates a better fit. 

Multiple linear regression models are challenging to build specially when massive datasets 

are used (Abu-Mostafa et al., 2012; Hastie et al., 2009), assuming massive datasets as the 

ones with a great number of features. It is possible that all of the features are associated 

with the response to be studied, but it is more often the case that the response is only 

related to a subset of the collected features (Gareth et al., 2013). Moreover, the criteria for 

considering one feature in a model may vary from one study to the other (Hosmer et al., 

2013) which is corroborated by Jobson (Jobson, 1991) when he affirms that there are three 

different purposes of a regression model, i.e. description, control or prediction, and the 

variables to include may not be the same according to each end. So, among the many 

decisions to be taken, the selection of the variables to include in the model, from now on 

called the feature selection, is one of the most important aspects of model building since it 

can help in obtaining predictive models with less correlated variables, biases, and unwanted 

noise. Yet, studies have shown that when using feature selection algorithms one can obtain 

models which use only non-informative features and are still 100% accurate on the training 

set (Ambroise & McLachlan, 2002). Clinically, such models are useless and are returning 

random answers on the test set. 

 

4.3. FEATURE SELECTION PROCEDURES 

 

In the following sub-chapters, we will briefly define some of the feature selection procedures 

used in our study. 

 

4.3.1. AUTOMATIC BACKWARD ELIMINATION 

 

The feature selection process assumes greater importance as the number of features in 

a dataset increases and, therefore, the ratio between them and the size of the dataset also 

increases. If we have p features, we can compute at least 2𝑝 models that contain subsets 

of those features. As p increases, trying out every possible subset of the features becomes 

not practical and, at some point, infeasible (Gareth et al., 2013; E. I. George, 2000). One of 

the classical approaches for this task is the automatic backward selection algorithm. This 
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algorithm starts with all p features in the regression model and remove the feature that is 

the least statistically significant one, for instance. The new (p − 1)-feature model is fit, and, 

once again, the least statistically significant feature is removed. This procedure continues 

until a stopping rule is reached. We may stop when all remaining variables have a p-value 

below a defined threshold, no significant improvement in a quality or performance 

parameter is achieved (tested for instance with a likelihood ratio test) or some other stopping 

rule. Some authors state that this process cannot be used if 𝑝 >  𝑛, with n representing the 

size of a random sample (Gareth et al., 2013). 

 

4.3.2. RANDOM FOREST 

 

Aside from the previously described multiple linear regression model, there are many other 

regression methods. For instance, the tree-based methods involve stratifying or segmenting 

the predictor space into a number of cuboid disjoint regions, whose edges are aligned with 

the axes, and then assign, for instance, a constant to each region (Bishop, 2006; Gareth et 

al., 2013). The less complex of these tree-based methods is the regression tree. It consists 

of a series of splitting rules, starting at the top of the tree. The predictor space regions are 

formed recursively using binary partitions according to whether 𝑥𝑗 ≤ 𝜃𝑘 or 𝑥𝑗 > 𝜃𝑘, were 𝜃𝑘 

is parameter of the model. The regions are recursively subdivided. This is a greedy process 

since a particular split or node of the predictor’s space is made to optimize that precise split, 

therefore not considering future splits. In fact, the objective is to define rectangular regions, 

𝑅𝑘, that minimize the RSS, given by 

 

∑ ∑ (𝑦𝑖 − 𝑦̂𝑅𝑘
)

2

𝑖∈𝑅𝑘

𝐾

𝑘=1

 . (4.12) 

 

After all the partitioning has been done, the model predicts the output based on the average 

response values for all observations that fall in that subgroup. Sometimes it is not practical 

to obtain many partitions of the space and the tree can be grown to a certain point only. It 

is possible to define a minimum node size (nodesize) which is the minimum cardinality of a 

region. 

This binary partitioning process, that can be put in terms of answering questions with a “yes” 

or a “no” is very popular in the health-related sciences since it is readily interpretable by 

humans but regression trees are very sensitive to details in the dataset, prone to high 

variance and may overfit the data, leading to poor test set performance (Bishop, 2006; 
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Gareth et al., 2013). One procedure to avoid this is to use an ensemble method called the 

Bootstrap aggregation, also known as bagging (Breiman, 1996). 

In the bagging procedure, 𝐵 regression trees are grown using 𝐵 bootstrapped training sets 

(Efron, 1982), and the resulting predictions are averaged. As it was said, each individual 

regression tree has high variance, but low bias, and by averaging these 𝐵 regression trees 

the variance is reduced. At least one improvement can be made to bagged regression trees 

to reduce the correlation between the trees obtained by this method. One can define how 

many predictors are available to create the splitting rule, here named mtry. Since a new 

sample of predictors is randomly chosen at each split, with a typical default value of mtry = 

p/3, randomness is added into the tree growing and gives an opportunity to moderately 

strong predictors. This process is called the Random forest method (RF) (Breiman, 2001). 

In each bootstrap training set, approximately one-third of the observations are left out and 

are called the out-of-bag (OOB) observations (Breiman, 2001; Gareth et al., 2013). Several 

authors (Breiman, 1996; Tibshirani, 1996a) proposed using OOB estimates as an estimate 

of generalization error. We can predict the outcome for an observation using each of the 

trees in which that observation was an OOB observation and average these predicted 

outcomes. An OOB prediction can be obtained in this way for each of the n observations, 

from which the overall OOB MSE (also referred as OOB error) can be computed. 

The bagging and RF processes seem to enhance prediction accuracy at the expense of 

interpretability (Breiman, 2001; Gareth et al., 2013). This difficulty was well put by Breiman 

(Breiman, 2001): “a forest of trees is impenetrable as far as simple interpretations of its 

mechanism go”.  

Despite this, it is possible to obtain information on the importance of each feature using that 

that purpose the total amount that the RSS (8.1) is decreased due to splits over a given 

feature, averaged over all 𝐵 regression trees. One other related approach is based on how 

much the accuracy decreases when a certain feature is excluded. A larger value indicates 

a more important predictor but, as far as we know, there are no reference values. 

 

4.3.3. BORUTA 

 

Wrapper methods use a subset of features and train a model using them. Based on it, 

features are kept or removed from the subset. The already mentioned Automatic Backward 

Elimination algorithm is an example. Boruta is also a wrapper algorithm that uses RF (M. 

Kursa et al., 2010). 
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At a first step, the Boruta algorithm adds randomness to a dataset by creating shuffled 

copies of all features. These copies are called shadow features. It then trains a RF model 

on the extended dataset and uses the mean decrease accuracy to evaluate the importance 

of each feature. At every iteration, it checks whether a real feature has a higher importance 

than the best of its shadow features and constantly removes features which are considered 

highly unimportant. This is done using Z-scores. Z-scores of the shuffled copies of the 

features and the original features are compared to see if the latter performed better than 

the former. If it does, the algorithm will mark the feature as confirmed. Finally, the algorithm 

stops either when all features get confirmed or rejected or it reaches a defined number of 

RF iterations. Features that are not confirmed nor rejected are called tentative features, 

also referred as unconfirmed features. They have an importance that is close to their best 

shadow features but that the algorithm is not able to decide with a certain confidence, in the 

chosen number of RF iterations. 

 

4.3.4. EXTREME GRADIENT BOOSTING 

 

Gradient descent is an optimization algorithm based on a convex function used to adjust 

the coefficients of a model that minimize a cost function to its local minimum, by iteratively 

moving in the direction of steepest descent as defined by the negative of the gradient. The 

goal is to move in the direction that decreases the cost of the coefficients. This process is 

taken iteratively until the bottom of the cost function is reached, where the values of the 

coefficients result in the minimum cost. An important parameter in Gradient descent is the 

learning rate eta, which specifies the size of the steps the algorithm takes toward the local 

minimum. A learning rate too big, means it is possible to change more the coefficients at 

each step, but there is the risk of overshooting the lowest point since the slope of the cost 

function is always changing. On the other hand, a learning rate too small is more precise, 

but it will take the algorithm a long time to converge. 

Gradient tree boosting algorithm is a gradient descent algorithm that create an ensemble of 

trees that, unlike bagging or RF, do not involve bootstrap sampling and are grown 

sequentially using information from the previously grown trees (Gareth et al., 2013). A 

shallow and weak tree is first trained and then the next tree is trained based on the errors 

of the first tree. The process continues with a new tree being sequentially added to the 

ensemble and the new successive tree improves on the errors of the ensemble of preceding 

trees. 
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Extreme gradient boosting (XGB) is an improvement of the Gradient tree boosting model, 

designed for speed and performance (Chen & Guestrin, 2016). 

The already mentioned learning rate is a hyperparameter for the XGB algorithm but there 

are others. We will only mention those we find the most important ones. For instance, the 

number of decision trees, also referred as iterations, used in the ensemble. Varying the 

maximum depth of each tree added to the ensemble is another important hyperparameter 

because it controls how specialized each tree is to the training dataset, that is to say, how 

general or overfit the model might be. The number of samples, also referred as 

subsampling, used to fit each tree can be adjusted. This means that each tree can be 

fitted on a randomly selected subset of the training dataset. Using fewer samples 

introduces more variance for each tree, although it can improve the overall performance 

of the model. Finally, the minimum number of instances needed in each node, also known 

as minimum child weight. The larger the weight, the more conservative the algorithm will 

be. 

Features’ importance can be compared using the gain. It implies the relative contribution of 

the corresponding feature to the model calculated by taking each feature's contribution for 

each tree in the model. A higher value of this metric when compared to another feature 

implies it is more important for generating a prediction but, as far as we know, there are no 

reference values. 

 

4.3.5. L1-PENALIZED ESTIMATION 

 

Embedded method are algorithms that have their own built-in feature selection procedures. 

The Least Absolute Shrinkage and Selection Operator (LASSO) method is an example of 

an embedded method because it simultaneously performs variables selection and 

shrinkage (Tibshirani, 1996b). 

It was originally a regularized estimation approach for regression models. Regularization is 

an important concept that is used to prevent overfitting when modelling. It can be 

implemented by adding a penalty term λ that reduces the magnitude of coefficients. This 

reduction is called shrinkage and, in the case of LASSO, is also called L1 penalty. As         

𝜆 → ∞, the impact of the shrinkage penalty grows, and the regression coefficient estimates 

will approach zero.  

The estimation of the LASSO coefficients is made to minimize 
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∑(𝑦𝑖β̂0 − β̂1𝑥i1 − β̂2𝑥𝑖2 − ⋯ − β̂𝑝𝑥𝑖𝑝)
2

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

 . (4.13) 

 

The penalty term must be chosen. One of the possible procedures is to choose the one that 

produces a model with the lowest AIC. 

Although Tibshirani (Tibshirani, 1996b) originally proposed quadratic programming to solve 

the optimization of the LASSO problem it were Groll and Tutz who developed a LASSO 

method applied to models that can predict repeated outcomes (Groll & Tutz, 2014). The 

method primarily reduces the dimensionality and then performs refitting by maximum 

likelihood estimation to get accurate parameter estimates. 
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5. DATASET 
 

5.1. RESPIRATORY RESEARCH AND REHABILITATION 

LABORATORY 

 

The Respiratory Research and Rehabilitation Laboratory (Lab-3R) was created in 2009 but 

moved to new infrastructures in September 2013. It is currently situated at School of Health 

Sciences (ESSUA) of the University of Aveiro and it works in close collaboration with health 

institutions (e.g., Centro Hospitalar do Baixo Vouga, Agrupamento dos Centros de Saúde 

do Baixo Vouga), city councils (e.g., Aveiro, Estarreja) and patients’ associations (e.g., 

RESPIRA). 

Lab3R aims to empower people with chronic respiratory diseases and their families to better 

adjust and manage the impact caused by the respiratory disease; and serve and empower 

the community on understanding these diseases. Lab-3R is also concerned in increasing 

scientific knowledge about the normal and pathological behaviour of clinical measures in 

the field of respiratory health and to do so it has built an extensive database. 

Among the several Lab3R research projects, two contributed the most to the dataset 

analysed in this dissertation. “GENetic and clinIcAL markers in COPD trajectory (GENIAL 

project)” which aimed to “establish the role of genetic mutations on the development and 

trajectory of COPD and identify clinical markers (e.g., dyspnoea; number of exacerbations 

per year; lung function; exercise capacity) to detect AECOPD episodes” (Lab 3R, 2018) and 

“Pulmonary Rehabilitation Innovation and Microbiota in Exacerbations of COPD (PRIME 

project)” which aimed “to determine the role of microbiome and clinical data on predicting 

acute exacerbations of COPD, and to contribute for the knowledge of pulmonary 

rehabilitation during acute exacerbations of COPD” (Lab 3R, 2018). 

 

5.2. STUDY DESIGN AND PARTICIPANTS 

 

Data collected in GENIAL (PTDC/DTP-PIC/2284/2014) and PRIME (PTDC/SAU-

SER/28806/2017) research projects were used in the following studies. Five independent 

Ethics Committees (Centro Hospitalar do Médio Ave ref. 09/2016 and 10/2018; Unidade 

Local de Saúde de Matosinhos ref. 10/CES/JAS 17/02/2017 and 73/CE/JAS 12/10/2018; 

Centro Hospitalar Baixo Vouga ref. 777638 and 086892; Hospital Distrital da Figueira da 

Foz ref. 1807/2017 and 27/05/2019; Administração Regional de Saúde do Centro ref. 
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64/2016 and 85/2018) approved the study. Written informed consent was obtained from all 

participants before data collection. Data protection was ensured by the National Committee 

for Data Protection (no. 7295/2016) and followed the General Data Protection Regulation. 

Individuals were eligible if diagnosed with COPD, according to the GOLD criteria (Global 

Initiative for Chronic Obstructive Lung Disease, 2021) (i.e. FEV1 / forced vital capacity (FVC) 

x 100 < 70). 

Inclusion criteria also stated that individuals should have been clinically stable over the 

previous month, i.e., no hospital admissions or exacerbations and not have had a change 

in medication for the cardiorespiratory system. Individuals with other respiratory diseases, 

signs of cognitive impairment (e.g., dementia) or presence of a significant or unstable 

cardiovascular (e.g., symptomatic ischaemic cardiac disease), neurological (e.g., 

neuromuscular dystrophy disease) or musculoskeletal disease (e.g., important 

kyphoscoliosis) or any other clinical condition that may affect data collection and 

interpretation were excluded. 

 

5.3. DATA COLLECTION 

 

Sociodemographic (age, sex, educational level, marital status and current occupation), 

anthropometric (height and weight to calculate BMI (body weight in kilograms divided by 

height in meters squared)) and clinical data (smoking status, smoking number of years, 

number of cigarettes’ packs smoked per day, use of long-term oxygen therapy (LTOT) and 

non-invasive ventilation (NIV), number of acute exacerbations in the previous year 

(AECOPD), number of respiratory related hospitalisations and emergencies in the previous 

year and comorbidities) were assessed with a structured questionnaire to characterise the 

sample. The pack-years were computed by multiplying the number of cigarettes’ packs 

smoked per day by the number of years the person has smoked. The severity of comorbid 

diseases was scored according to Charlson comorbidity index (CCI): i) scores of 1–2; ii) 

scores of 3–4; and iii) scores ≥5 (Charlson et al., 1994). Lung function, specifically the 

predicted percentage of FEV1 (FEV1 % of predicted) and the FEV1/FVC ratio, was then 

assessed with spirometry (MicroLab 3535, CareFusion, Kent, UK) as recommended by the 

American Thoracic Society and the European Respiratory Society (Graham et al., 2019).  

The severity of airway obstruction was classified using the FEV1 % of predicted according 

to the GOLD (Global Initiative for Chronic Obstructive Lung Disease, 2021). The modified 

British medical research council questionnaire (mMRC) was used to assess activity-related 

dyspnoea (Crisafulli & Clini, 2010). Scores range from 0 (no trouble with breathlessness) to 
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4 (too breathless to leave the house) (Bestall et al., 1999). The modified Borg scale is a 

categorical vertical scale with scores ranging from 0 to 10 with corresponding verbal 

expressions of perceived sensation intensity, where 0 corresponds to the sensation of 

normal breathing and 10 corresponds to the patients’ maximum possible sensation of 

dyspnoea (Borg, 1982; Mahler et al., 1987; Wilson & Jones, 1989). Self-reported physical 

activity was assessed with the brief physical activity assessment tool (BPAAT) (Marshall et 

al., 2005) which was found to be a valid tool to assess physical activity of people with COPD 

(Cruz et al., 2017). Scores range from 0 t0 8 being interpreted as 0-3 “insufficiently active” 

or ≥4 “sufficiently active”. 

The Saint George’s respiratory questionnaire (SGRQ) was used to measure health-related 

quality of life (P W Jones et al., 1991). Scores (per domain or total) range from 0 (no 

impairment) to 100 (worst possible health-related quality of life) units. 

Information on the effects of pulmonary rehabilitation throughout the follow-up period was 

also recorded as a dichotomous variable (i.e., yes - participants were under the effect of PR 

during the follow-up period or no – participants were not under this effect). The PR program 

consisted of supervised exercise training twice per week and education and psychosocial 

support every other week (World Health Organization, 2002). More detailed information on 

the PR programme is available elsewhere (Marques et al., 2019). 

Functional status was assessed using the one-minute sit-to-stand test (1minSTS). This test 

consists of sitting and standing from a 46-48 cm height chair as many times as possible for 

one minute (Ozalevli et al., 2007; Vaidya et al., 2017). A change of 3 repetitions between 

assessments is commonly used as MCID for 1minSTS (Vaidya et al., 2016). 

The COPD assessment test (CAT) is a disease-specific questionnaire consisting of eight 

items (i.e., cough, sputum, chest tightness, breathlessness going up hills/stairs, activity 

limitations at home, confidence leaving home, sleep, and energy) scored from 0 to 5 (P W 

Jones et al., 2009). Each item individual score is added to provide a total CAT score that 

can range from 0 to 40. Scores range from 0 to 40 and are interpreted as 10 low, 11-20 

medium, 21-30 high and 31-40 very high impact (Paul W Jones et al., 2011). It was used to 

evaluate the disease impact (F. George, 2013; P W Jones et al., 2009) and to classify 

participants according to the ABCD assessment tool, following the Global Initiative for 

Chronic Obstructive Lung Disease (GOLD) (Global Initiative for Chronic Obstructive Lung 

Disease, 2021). The MCID of the CAT was found to be a two-point decrease at both the 

individual and population level (Kon et al., 2014). 
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Handgrip muscle strength (HMS) was used as a marker of overall upper-limb muscle 

strength (Clegg et al., 2013). A systematic review concluded that changes of 5.0 to 6.5 kg 

may be reasonable estimates of meaningful changes in HMS (Bohannon, 2019). 

All data were collected cross-sectionally at baseline. Over the monthly follow-up 

assessments, 1minSTS, HMS and CAT were collected. 
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6. STUDY 1 – COVID-19 LOCKDOWN EFFECT IN COPD: 

A COMPARISON OF FIXED-EFFECTS SELECTION 

METHODS* 
 

* Some of the preliminary results from this study were submitted in the form of an abstract to 

the XXV Congress of the Portuguese Statistical Society, to be held at Évora between the 13th 

and the 16th of October 2021 (Appendix B). 

 

6.1. RATIONALE 

 

The 2020 imposed lockdown due to the recent the Coronavirus Disease 2019 (COVID-19) 

pandemic is likely to have influenced the functional status and the wellbeing and daily life 

of patients with COPD, but this is still unknown. Few feature selection algorithms are 

available for longitudinal data. We aimed to compare different feature selection methods 

and describe the effect of the COVID-19 lockdown on the 1minSTS, HMS and CAT 

behaviour in people with COPD. 

 

6.2. STATISTICAL METHODS 

 

An observational, prospective cohort study was conducted with data described in chapters 

5.2 and 5.3. Two groups were defined: participants with baseline date between the 1st of 

February 2019 and the 15th of March 2019 were classified as pre-lockdown; participants 

with baseline date between the 1st of February 2020 and the 15th of March 2020 were 

classified as lockdown. For the pre-lockdown group, the baseline assessment, and the 

assessments after one (A1) and five (A5) months were analysed, For the lockdown group, 

the baseline assessment, the assessment after one month (A1) and the assessment 

immediately after the period of lockdown (A5) were analysed, 

Descriptive analysis was performed by group. Quantitative variables were summarized 

using mean and standard deviation values if normally distributed or median values and 

interquartile ranges, otherwise. Categorical variables were summarized through count 

values and percentages. Shapiro-Wilk test was used to assess the assumption of normality. 

Welch t-tests and Mann-Whitney-Wilcoxon tests were used to compare, respectively, 

means and medians of baseline characteristics and outcome measures between groups. 
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Fisher’s exact test was used to compare proportions of baseline characteristics between 

groups. 

Three repeated outcome measures (dependent variables) were considered: 1minSTS, 

HMS and CAT. For each of the dependent variables, five feature selection algorithms were 

performed, RF, Boruta, XGB, L1 penalized estimation and automatic backward elimination. 

Due to the nature of the algorithms and the longitudinal characteristics of data, the three 

first algorithms used 21 standardized independent variables and the last two also included 

evaluation. For the same reason, the difference of the dependent variable between two 

consecutive assessments was determined and, for RF, Boruta and XGB two sets of features 

were obtained, one for the difference between A1 and baseline and another for the 

difference between A5 and A1. 

A preliminary tunning of RF parameters was performed with a grid of values for the number 

of features to consider at each split point (mtry) and the minimum number of observations 

in a terminal node (nodesize). The pair of values that produced the lowest OOB error was 

used in the algorithm with 1000 trees. The importance of each variable in the RF was based 

on how much the accuracy decreased when the variable was excluded. Two cut-off values 

were tested: 2% and 5%. 

For the Boruta algorithm, variables were classified as confirmed, unconfirmed and 

unimportant according with shadow features (M. Kursa et al., 2010). 

The XGB models were trained using a 4-fold cross-validation process with 750 iterations 

using the values of a grid containing all the possible combination of the following tuning 

parameters: learning rate (eta) = 0.010, 0.015, 0.020, 0.025; subsampling = 0.4, 0.5, 0.6; 

minimum child weight=1, 2, 3; maximum depth of a tree =5, 8, 10, 11, 12, 14, 17. The total 

grid size was 252. The remaining of the XGB parameters were set to the default values and 

we used a gbtree booster and an objective of reg:squarederror. Finally, we evaluated the 

prediction accuracy of the model based on the test RMSE at each of the 750 iterations. The 

best iteration was recorded, and the best combination of parameters was used. The 

importance of each variable was based on the fractional contribution of each feature to the 

model based on the total gain of this feature’s splits, with higher proportion meaning a more 

predictive feature (Chen et al., 2021). Two cut-off values were tested: 0.075 and 0.15. 

The penalty parameter  used in the L1 penalized estimation was determined from a grid 

of 1000 log10 values ranging from -1 to 4, equally spaced. The  value that produced the 

lowest AIC, here defined as the negative of twice the log-likelihood plus twice the 

corresponding degrees of freedom. These degrees of freedom are determined by the sum 



23 

 

of nonzero coefficients corresponding to fixed-effects plus the number of random effects 

covariance parameters that have to be estimated (Abugaber, 2020; Groll, 2017). 

The automatic backward elimination consisted firstly, of a single random-effect terms 

deletion and secondly, a backward elimination of single main fixed-effect terms in order to 

obtain a model with the lowest AIC (Zuur et al., 2009). 

Whenever possible, R2 values were determined to evaluate the quality of the predictive 

models. 

LMMs were applied to assess the mean change in dependent variables and to account for 

correlations in repeated measurements per participant using the features selected by the 

different algorithms. Evaluation, group and their interaction were always considered, 

independently of their previous selection/rejection. Random intercepts and slopes were 

used to incorporate individual response trajectories. The p-values were computed based on 

conditional F-tests with Kenward-Roger approximation for the degrees of freedom (Kenward 

& Roger, 1997). Marginal coefficient of determination (marginal R2) and conditional 

coefficient of determination (conditional R2) were determined for assessing the model’s 

quality and level of adjustment according to Nakagawa (Nakagawa et al., 2017). The 

models with the lowest AICs were kept. LMM assumptions were assessed by visual 

inspection of residuals’ boxplots, scatterplots, and Q-Q plots. Estimated marginal means 

(EMM) were averaged and weighted in proportion to the frequencies, in the original data, 

over the levels of categorical variables (Lenth, 2021) and the p-value was adjusted by the 

Tukey method. 

Two-sided P < 0.05 was considered statistically significant for all analyses. 

Statistical analyses were performed using R packages randomForestSRC (Ishwaran & 

Kogalur, 2021), randomForest (Liaw & Wiener, 2002), Boruta (M. B. Kursa & Rudnicki, 

2010), xgboost (Chen et al., 2021), glmmLasso (Groll, 2017), lmer (Bates et al., 2015), 

lmerTest (Kuznetsova et al., 2017), emmeans (Lenth, 2021) and ggeffects (Lüdecke, 2018) 

in RStudio Version 1.4.1103 (RStudio Team, 2021) running R version 4.0.5 (R Core Team, 

2021). 
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6.3. RESULTS 

 

6.3.1. DESCRIPTIVE ANALYSIS 

 

A total of 59 participants with COPD were included, 34 (57.6%) of whom were assessed for 

baseline characteristics between the 1st of February 2019 and the 15th of March 2019 

(Figure 6.1).  

 

Figure 6.1 - Distribution of the participants’ assessments date. Abbreviations: A1, assessment 1 
month after baseline assessment; A5, assessment 5 months after baseline assessment. 

 

 

Participants mean age was 66.9 (standard deviation 8.0) years, most were men (83.1%), 

with a mean BMI of 27.4 kg/m2 (standard deviation 5.1) and presented 3 to 4 comorbidities 

(61.0%). Additionally, most participants were former smokers (83%), without non-invasive 

ventilation (86.4%) nor long-term oxygen therapy. Finally, the majority of participants did 

not have an AECOPD in the previous year (71.4%), had a median mMRC score of 1 (IQR 

[1;2]) and a SGRQ total score of 31.7 (IQR [23.0;48.3]) points. No statistically significant 

differences were found between the pre-lockdown and the lockdown groups. Detailed 

baseline characteristics are presented in Table 6.1. 
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Table 6.1 - Descriptive statistics of selected variables at baseline (n=59). 

Characteristics All (n=59) 

Group 

p-value 
Pre-

Lockdown 
(n=34) 

Lockdown 
(n=25) 

Age, years, mean (SD)  66.9 (8.0) 67.5 (7.9) 66 (8.3) 0.497T 

Sex Male 49 (83.1%) 28 (82.4%) 21 (84.0%) 1F 

BMI, kg/m2, mean (SD)  27.4 (5.1) 26.6 (5.2) 28.4 (4.8) 0.902T 

Smoking status Never 
Former 
Current 

5 (8.5%) 
49 (83.0%) 

5 (8.5%) 

4 (11.8%) 
26 (76.4%) 
4 (11.8%) 

1 (4.0%) 
23 (92.0%) 
1 (4.0%) 

0.329F 

Smoking no. of years, median 

[IQR] 

 38.0 

[30.0;45.0] 

36.5 

[30.0;43.0] 

40.0 

[32.0;45.0] 

0.271M 

Pack-years, median [IQR]  56.0 

[30.0;80.0] 

52.0 

[30.0;77.3] 

60.0 

[32.0;90.0] 

0.509M 

FEV1/FVC, %, median [IQR]  56.7 

[44.2;63.4] 

54.8 

[39.3;62.9] 

58.2 

[46.7;63.2] 

0.495M 

FEV1, % predicted, mean (SD)  61.4 (23.3) 58.6 (25.5) 65.2 (19.9) 0.269T 

mMRC, points, median [IQR]  1.0 [1.0;2.0] 1.0 [1.0;3.0] 1.0 [0.0;2.0] 0.312T 

SGRQ Total, median [IQR]  31.7 

[23.0;48.3] 

35.3 

[27.7;51.2] 

26.6 

[20.1;47.4] 

0.103M 

BPAAT Moderate, score 0 
1 
2 
4 

22 (37.3%) 
12 (20.3%) 
8 (13.6%) 

17 (28.8%) 

11 (32.4%) 
6 (17.6%) 
6 (17.6%) 
11 (32.4%) 

11 (44.0%) 
6 (24.0%) 
2 (8.0%) 
6 (24.0%) 

0.593F 

BPAAT Vigorous, score 0 
2 
4 

56 (94.9%) 
1 (1.7%) 
2 (3.4%) 

32 (94.2%) 
1 (2.9%) 
1 (2.9%) 

24 (96.0%) 
0 (0.0%) 
1 (4.0%) 

1F 

Modified BORG scale 

(Dyspnoea), median [IQR] 

 0.0 [0.0;1.0] 0.0 [0.0;0.9] 0.0 [0.0;2.0] 0.103M 

Modified BORG scale (Fatigue), 

median [IQR] 

 0.0 [0.0;2.0] 0.0 [0.0;1.0] 0.0 [0.0;2.0] 0.879M 

AECOPD, in the previous year                                    Yes 11 (18.6%) 6 (17.6%) 5 (20.0%) 1F 

Respiratory related 

emergencies, 

 in the previous year 

Yes 8 (13.6%) 4 (11.8%) 4 (16.0%) 0.711F 

Respiratory related 

hospitalizations, in the previous 

year 

Yes 4 (8.5%) 3 (8.8%) 2 (8.0%) 1F 

Long-term oxygen therapy Yes 8 (13.6%) 4 (11.8%) 4 (16.0%) 0.711F 
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Characteristics All (n=59) 

Group 

p-value 
Pre-

Lockdown 
(n=34) 

Lockdown 
(n=25) 

Non-invasive ventilation Yes 12 (20.3%) 6 (17.6%) 6 (24.0%) 0.745F 

CCI, score  1-2 

3-4 

>=5 

11 (18.7%) 

36 (61.0%) 

12 (20.3%) 

6 (17.6%) 

21 (61.8%) 

7 (20.6%) 

5 (20.0%) 

15 (60.0%) 

5 (20.0%) 

1F 

Note: Data presented as mean (standard deviation) or median [1st quartile;3rd quartile] for 
continuous variables and number (percentage) for categorical variables. T, Welch t-test; M, Mann-
Whitney-Wilcoxon test; F, Fischer’s exact test. 

Abbreviations: 1minSTS, one-minute sit-to-stand test; AECOPD, acute exacerbation of COPD; 
BMI, body mass index; BPAAT, brief physical activity assessment tool; CAT, COPD assessment 
test; CCI, Charlson comorbidity index; COPD, chronic obstructive pulmonary disease; FEV1, forced 
expiratory volume in 1 second; FVC, forced vital capacity;  GOLD, global initiative for chronic 
obstructive lung disease; IQR, interquartile range; mMRC, modified medical council dyspnoea scale; 
SD, standard deviation; SGRQ, St. George’s respiratory questionnaire. 

 

From the initial 59 individuals assessed at baseline, a decrease in number was registered 

in the first and last assessments to 52 and 46 participants, respectively. A total of 43 

individuals attended all 2 assessments (24 from the pre-lockdown group) while 14 

individuals (8 from the pre-lockdown group) attended only 1 assessment aside from the 

baseline one. The median time between baseline and last assessment was of 147 days 

(interquartile range [143.8;154.0]) and 146 days (interquartile range [132.0;154.8] in the 

pre-lockdown and lockdown groups, respectively. Figure 6.2 show the distribution of the 

time between assessments in both groups. 

 

Figure 6.2 – Distribution of the time, in days, between consecutive assessments by groups. 
Abbreviations: A1, assessment 1 month after baseline assessment; A5, assessment 5 months after 
baseline assessment. 
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At baseline, the pre-lockdown group registered a median of 26 repetitions in the 1minSTS 

which is statistically different from the 23 repetitions achieved in the lockdown group 

(p=0.033). No other statistically significant difference was found. Table 6.2 presents the 

detailed characteristics of all variables considered at baseline and at the 2 different 

assessments. 

 

 

Table 6.2 - Descriptive statistics of collected variables at baseline, assessment 1 and assessment 5 
(n=59). 

Variable 

Baseline (n=59) A1 (n=52) A5 (n=48) 

Pre-

lockdown 

(n=34) 

Lockdown 

(n=25) 

Pre- 

lockdown 

(n=32) 

Lockdown 

(n=20) 

Pre-

lockdown 

(n=24) 

Lockdown 

(n=24) 

1minSTS, 

median [IQR] 

26.0 

[23.0;31.0] 

23.0 

[18.0;27.0] 

29.0 

[24.5;32.0] (b) 

(a) 25.0 

[22.5;28.5] 

28.0 

[23.0;38.0] 

27.5 

[22.5;31.8] c) 

p = 0.033M p = 0.149M p = 0.253M 

HMS, kg, mean 

(SD) 

33.4 

 (10.5) 

34.4 

(8.4) 

34.2 

(10.8) 

36.9 

(7.5) (a) 

36.4 

(12.7) (d) 

37.0 

(8.8) (e) 

p = 0.710T p = 0.099T p = 0.839T 

CAT, median 

[IQR] 

11.5 

[6.0;15.8] 

9.0 

[8.0;15.0] 

9.5 

[5.8;14.3] 

9.0 

[6.5;10.0] (a) 

6.0 

[2.8;13.3] 

7.0 

[4.0;12.8] 

p = 0.461M p = 0.660M p = 0.469M 

(a) 19 participants; (b) 31 participants; (c) 20 participants; (d) 22 participants; (e) 21 participants. 
Note: Data presented as mean (standard deviation) or median [1st quartile;3rd quartile] for continuous 
variables and number (percentage) for categorical variables. T, Welch t-test; M, Mann-Whitney-
Wilcoxon test. Abbreviations: 1minSTS, one minute sit-to-stand Test; A1, assessment 1 month after 
baseline assessment; A5, assessment 5 months after baseline assessment; CAT, COPD assessment 
test; COPD, chronic obstructive pulmonary disease; HMS, handgrip muscle strength; IQR, 
interquartile range; SD, standard deviation. 

 

 

Individual longitudinal trajectories and global linear trajectories between assessments of 

each of the repeated outcome measures is shown in Figure 6.3. From visual inspection, 

differences between groups in the 4-month period separating A1 and A5 seem to exist. 
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Figure 6.3 - Individual values of the outcome measures over time. a) One-minute sit-to-stand test 
number of repetitions; b) Handgrip muscle strength; c) Chronic obstructive pulmonary disease 
assessment test score. The black line represents the global linear regression line between each 
assessment; The grey band represents the 95% confidence interval. Abbreviations: 1minSTS, one-
minute sit-to-stand test; B, baseline assessment; A1, assessment 1 month after baseline 
assessment; A5, assessment 5 months after baseline assessment; CAT, chronic obstructive 
pulmonary disease assessment test score; HMS, handgrip muscle strength. 

 

6.3.2. FEATURE SELECTION PROCEDURES 

 

In the following sub-chapters, we will be presenting the full results for all the feature 

selection algorithms considered for 1minSTS and only the summary tables for HMS and 

CAT. 

 

6.3.2.1. ONE-MINUTE SIT-TO-STAND 

 

Five feature selection algorithms were performed. For each of them, the main results are 

presented next. 

 

6.3.2.1.1. RANDOM FOREST 

 

RF was applied to a sample of 50 participants in order to predict the difference of the number 

of repetitions in the 1minSTS between A1 and Baseline assessment. The parameters’ 

tunning process returned the lowest OOB error of 0.991 for an mtry of 8 and a nodesize of 

6. The number of participants available for determining the difference in the number of 
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repetitions between A5 and A1 was only 39. For an mtry of 13 and a nodesize of 9 a value 

of 0.886 for the OOB error was obtained (Figure 6.4). 

 

 

  

 
Figure 6.4 - Random forest’s out-of-bag error for different values of mtry and nodesize. 
Abbreviations:  A1, assessment 1 month after baseline assessment; A5, assessment 5 months 
after baseline assessment; OOB, out-of-bag. 

 

 

Pack-years and FEV1 % of predicted features contributed with a percentage of increase of 

the RMSE greater than 5 in the RF model for the difference between A1 and baseline (9.4% 

and 9.1%, respectively). Four more features were retained when the cut-off value 

considered was 2%, namely, SGRQ (4.9%), smoking number of years (3.8%), respiratory 

hospitalizations in the previous year (3.0%) and smoking status (3.0%). In the RF model for 

the difference between the two last assessments only pack-years (12.7%) overcame the 

higher cut-off value and SGRQ (4.9%), sex (3.5%) and smoking status (2.5%) the lower 

one (Figure 6.5). 
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Figure 6.5 - Feature importance given by the random forest model for the difference between 
consecutive assessments in the number of repetitions obtained by the one-minute sit-to-stand test. 
Light grey corresponds to the 2% cut-off and dark grey corresponds to the 5% cut-off. 
Abbreviations: 1minSTS, one-minute sit-to-stand test; A1, assessment 1 month after baseline 
assessment; A5, assessment 5 months after baseline assessment; AECOPD, acute exacerbation of 
COPD; BPAAT, brief physical activity assessment tool; BMI, body mass index; CCI, Charlson 
comorbidity index; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 
1 second; FVC, forced vital capacity; LTOT, long-term oxygen therapy; MSE, mean squared error; 
mMRC, modified medical council dyspnoea scale; NIV, non-invasive ventilation; SGRQ, St. George’s 
respiratory questionnaire. 

 

An R2 of 0.77 was obtained for the RF model for the difference between the two first 

assessments while for the difference between the last two assessments the value was 0.74. 

Figure 6.6 shows the standardized predicted difference in the number of repetitions in the 

1minSTS against the observed one.  
 

 

Figure 6.6 - Standardized observed and predicted by the random forest algorithm difference of the 
number of repetitions of the one-minute sit-to-stand test between consecutive assessments. 
Abbreviations: 1minSTS, one-minute sit-to-stand test; A1, assessment 1 month after baseline 
assessment; A5, assessment 5 months after baseline assessment; R2, R-squared. 
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The LMMs with the features selected by the RF algorithm using the percentage of increase 

of MSE values of 2 and 5 as cut-off returned values of AIC of 942.052 and 960.919, 

respectively. 

 

6.3.2.1.2. BORUTA 

 

Boruta algorithm found two confirmed important features for the difference in the number of 

repetitions between A1 and baseline assessment. FEV1 % of predicted and SGRQ had a 

mean importance of 5.2 and 3.2, respectively. Pack-years was classified as unconfirmed 

with a mean importance of 2.7. When the last difference of the number of repetitions was 

analysed, pack-years (7.2) and SGRQ (4.8) were found important features while sex (3.4) 

was classified as unconfirmed (Figure 6.7).  

 

  

Figure 6.7 - Feature importance given by the Boruta algorithm for the difference in the number of 
repetitions obtained by the one-minute sit-to-stand test between consecutive assessments. Light 
grey corresponds to the confirmed features and dark grey corresponds to the unconfirmed features. 
Abbreviations: 1minSTS, one-minute sit-to-stand test; A1, assessment 1 month after baseline 
assessment; A5, assessment 5 months after baseline assessment; AECOPD, acute exacerbation of 
COPD; BPAAT, brief physical activity assessment tool; BMI, body mass index; CCI, Charlson 
comorbidity index; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 
1 second; FVC, forced vital capacity; LTOT, long-term oxygen therapy; mMRC, modified medical 
council dyspnoea scale; NIV, non-invasive ventilation; SGRQ, St. George’s respiratory 
questionnaire. 
 

 

The LMM with the features selected by the Boruta algorithm using both unconfirmed and 

confirmed features returned an AIC of 960.542. When considering only the confirmed 

features the AIC increased to 962.294. 
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6.3.2.1.3. EXTREME GRADIENT BOOSTING 

 

The hyperparameters’ tunning for the XGB algorithm predicting the difference in the number 

of repetitions obtained by the 1minSTS between the A1 and the baseline assessment 

returned a minimum RMSE of 0.906 in the cross-validation test set. That value was obtained 

for a learning rate eta of 0.025 and was achieved at the maximum number of training 

iterations. It was considered a 40% of data to grow each tree, at a maximum depth of 5 and 

a minimum sum of instance weight needed in a child of 3. For the model predicting the 

difference between the last two assessments, the lowest RMSE in the cross-validation test 

set was also obtained at the maximum number of training iterations but considering 60% of 

data to grow each tree. A learning rate eta of 0.020, with a maximum depth of trees of 5 

and a minimum sum of instance weight needed in a child of 3 were also registered (Table 

6.3). 

 

Table 6.3 – Results from the hyperparameters tunning for the extreme gradient boosting model for 
the difference in the number of repetitions in the one-minute sit-to-stand test between consecutive 
assessments. 

 

Eta 
Maximum 

tree depth 

Minimum 

child weight 

Subsample 

ratio 

Train set Test set 

Iteration 

number 

Minimum 

RMSE 

Iteration 

number 

Minimum 

RMSE 

A
1
 -

 B
a
s

e
li
n

e
 0.025 5 3 0.4 750 0.15907 197 0.90563 

0.025 8 3 0.4 750 0.15890 197 0.90563 

0.025 10 3 0.4 750 0.15890 197 0.90563 

0.025 11 3 0.4 750 0.15890 197 0.90563 

0.025 12 3 0.4 750 0.15890 197 0.90563 

A
5
 –

 A
1

 

0.020 5 3 0.6 750 0.06761 61 1.00457 

0.020 8 3 0.6 750 0.06763 61 1.00457 

0.020 10 3 0.6 750 0.06763 61 1.00457 

0.020 11 3 0.6 750 0.06763 61 1.00457 

0.020 12 3 0.6 750 0.06763 61 1.00457 

 Note: Results are ordered by increasing minimum RMSE obtained in the cross-validation test 

set. Only the top 5 from the 252 combinations are presented for each difference. 

Abbreviations: A1, assessment 1 month after baseline assessment; A5, assessment 5 

months after baseline assessment; Eta, learning rate; RMSE, root mean squared error 

 

Pack-years was the only feature with a gain superior to 0.15 in the XGB model for the 

difference between A1 and baseline. Five extra features were selected when the cut-off of 

0.075 was considered, namely, SGRQ (0.14), FEV1 % of predicted features (0.14), ratio 
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FEV/FVC (0.10), fatigue’s BORG scale (0.08) and age (0.08). In the XGB predictive model 

of the difference in repetitions between the two last assessments, pack-years (0.24) and 

SGRQ (0.15) overcame the higher cut-off value and FEV1 % of predicted (0.10) and BMI 

(0.09) the lower cut-off value (Figure 6.8). 

 

  

 
Figure 6.8 – Feature importance given by the extreme gradient boosting model for the difference 
between consecutive assessments in the number of repetitions obtained by the one-minute sit-to-
stand test. Light grey corresponds to the 0.075 cut-off and dark grey corresponds to the 0.15 cut-off. 
Abbreviations: 1minSTS, one-minute sit-to-stand test; A1, assessment 1 month after baseline 
assessment; A5, assessment 5 months after baseline assessment; AECOPD, acute exacerbation of 
COPD; BPAAT, brief physical activity assessment tool; BMI, body mass index; CCI, Charlson 
comorbidity index; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 
1 second; FVC, forced vital capacity; LTOT, long-term oxygen therapy; mMRC, modified medical 
council dyspnoea scale; NIV, non-invasive ventilation; SGRQ, St. George’s respiratory 
questionnaire; XGB; extreme gradient boosting. 

 

 

The R2 obtained by the XGB model for the difference between the two first assessments 

was greater than the one obtained for the difference between the last two assessments 

(0.90 and 0.45, respectively) (Figure 6.9).  
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Figure 6.9 – Standardized observed and predicted by the extreme gradient boosting algorithm 
difference of the number of repetitions of the one-minute sit-to-stand test between consecutive 
assessments. Abbreviations: 1minSTS, one-minute sit-to-stand test; A1, assessment 1 month after 
baseline assessment; A5, assessment 5 months after baseline assessment; R2, R-squared; XGB, 
extreme gradient boosting. 

 
The LMM with the features selected by the XGB algorithm using the lowest gain value 

returned a value of AIC higher than the model obtain with the highest gain value (966.053 

and 957.109, respectively). 

 

6.3.2.1.4. L1-PENALIZED ESTIMATION 

 

The optimal penalty parameter  obtained was 378.9, which returned the lowest value of 

AIC of -123175 (Figure 6.10). Sex and respiratory emergencies in the previous year were 

selected as the features with an estimate coefficient different from 0 (Table 6.5).  

 

 

Figure 6.10. Akaike information criterion (AIC) results for R glmmLasso as a function of the base 10 

logarithm of the penalty parameter . The optimal value of log10() is indicated by a vertical dashed 
line. 
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The LMM with the features selected by the L1-penalized estimation algorithm returned an 

AIC of 947.842. 

 

6.3.2.1.5. AUTOMATIC BACKWARD ELIMINATION 

 

The automatic backward elimination algorithm removed sequentially 17 features starting 

with age and ending with the FEV1/FVC ratio. Smoking status, pack-years, BPAAT 

moderate, group and evaluation were kept (Table 6.4). 

 

Table 6.4 – Order of the features’ elimination by the Automatic Backward Elimination algorithm for 
the one-minute sit-to-stand test. 

Feature 
Order of 

elimination 
F value p value 

Age 1 0.0001 0.991 
NIV 2 0.0007 0.979 

LTOT 3 0.0163 0.899 
BPAAT Vigorous 4 0.1322 0.718 

BORG Fatigue 5 0.2155 0.645 
mMRC 6 0.3241 0.573 

CCI 7 0.5273 0.594 
Respiratory hospitalizations 8 0.3551 0.554 

FEV1pp 9 0.3096 0.581 
Smoking no. of years 10 0.3303 0.568 

Sex 11 1.0757 0.265 
Respiratory emergencies 12 1.6204 0.210 

AECOPD 13 1.4279 0.250 
SGRQ 14 1.9985 0.164 

BMI 15 2.5788 0.115 
BORG Dyspnoea 16 1.5328 0.221 

FEV1/FVC 17 3.9201 0.053 

Smoking status kept 11.4625 <0.001 
Pack-years kept 7.7154 0.008 

BPAAT Moderate kept 5.6814 0.021 
Group kept 5.4846 0.023 

evaluation kept 12.8615 <0.001 

Abbreviations: AECOPD, acute exacerbation of COPD; BPAAT, brief physical activity 
assessment Tool; BMI, body mass index; CCI, Charlson comorbidity index; COPD, chronic 
obstructive pulmonary disease; FEV1, forced expiratory volume in 1 second; FVC, forced vital 
capacity; LTOT, long-term oxygen therapy; mMRC, modified medical council dyspnoea scale; NIV, 
non-invasive ventilation; SGRQ, St. George’s respiratory questionnaire. 

 

The LMM obtained with the selected features achieved an AIC of 931.793. 

 

6.3.2.1.6. SUMMARY 

 

The results obtained by the different feature selection algorithms used with the number of 

repetitions of the 1minSTS in patients with COPD, and described in the previous chapters, 

are summarized in Table 6.5. The LMM using as predictors the features selected by the 
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automatic backward elimination algorithm achieved the lowest AIC of 931.793 followed by 

the one which features were selected by the RF algorithm with a cut-off of 2%. 

 
 

Table 6.5 – Feature selection algorithms’ results for the one-minute sit-to-stand test 
 

Features 

Random 
Forest 

Boruta 
Extreme 
gradient 
boosting 

L1 
penalized 
estimation 

Automatic 
backward 
elimination 

A1-B A5-A1 A1-B A5-A1 A1-B A5-A1 

Sex         

Age         

BMI         

Smoking status         

Smoking no. of years         

Pack-years         

SGRQ         

BPAAT Moderate         

BORG Fatigue         

FEV1 % predicted         

FEV1/FVC         

Group         

Respiratory emergencies         

Respiratory hospitalizations         

Evaluation # # # # # #   

Group*evaluation # # # # # # # # 

Linear mixed-effects model 
AIC 

942.052 
960.919 

960.545 
962.294 

966.053 
957.109 

 
947.842 

 
931.793 

Note: Long-term oxygen therapy, non-invasive ventilation, CCI, mMRC, BPAAT vigorous, BORG 
dyspnoea and AECOPD were not included because no algorithm selected these features. Light grey 
corresponds to 2%, unconfirmed+confirmed and 0.075 cut-offs in the RF, Boruta and XGB 
algorithms, respectively. Dark grey corresponds to 5%, confirmed and 0.15 cut-offs in the RF, Boruta 
and XGB algorithms, respectively. 
Abbreviations: A1, assessment 1 month after baseline assessment; A5, assessment 5 months 
after baseline assessment; AECOPD, acute exacerbation of COPD; AIC, Akaike information 
criterion; B, baseline assessment; BPAAT, brief physical activity assessment tool; BMI, body mass 
index; CCI, Charlson comorbidity index; COPD, chronic obstructive pulmonary disease; FEV1, 
forced expiratory volume in 1 second; FVC, forced vital capacity; LTOT, long-term oxygen therapy; 
mMRC, modified medical council dyspnoea Scale; NIV, non-invasive ventilation; RF; random forest; 
SGRQ, St. George’s respiratory questionnaire; XGB; extreme gradient boosting. “#” not included as 

a feature in the algorithm but included in all linear mixed-effects models; “”, included as a feature 
in the algorithm and in all linear mixed-effects models; “*”, interaction. 

 

In all three algorithms where two cut-off values were considered, the lowest AICs were 

achieved when the features included in the LMM were selected using the less restrictive 

cut-off value. 
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6.3.2.2. HANDGRIP MUSCLE STRENGTH 

 

The LMM using as dependent variable the HMS and as predictors the features selected by 

the automatic backward elimination algorithm achieved the lowest AIC of 931.793 followed 

by the one which features were selected by the Random Forest algorithm with a cut-off of 

2% (Table 6.6). 

 

Table 6.6 – Feature selection algorithms’ results for the handgrip muscle strength 
 

Features 

Random 
Forest 

Boruta 
Extreme 
gradient 
boosting 

L1 
penalized 
estimation 

Automatic 
backward 
elimination 

A1-B A5-A1 A1-B A5-A1 A1-B A5-A1 

Sex         

Age         

BMI         

Smoking status         

Smoking no. of years         

Pack-years         

SGRQ         

BPAAT Moderate         

BORG Fatigue         

FEV1 % predicted         

FEV1/FVC         

AECOPD         

Group         

Respiratory emergencies         

Evaluation # # # # # #   

Group*evaluation # # # # # # # # 

Linear mixed-effects 
model AIC 

956.629 
 

 
976.651 

1004.284 
992.055 

 
961.453 

 
950.224 

Note: Long-term oxygen therapy, non-invasive ventilation, CCI, mMRC, respiratory 
hospitalizations, BPAAT vigorous and BORG dyspnoea were not included because no algorithm 
selected these features. Light grey corresponds to 2%, unconfirmed+confirmed and 0.075 cut-offs 
in the RF, Boruta and XGB algorithms, respectively. Dark grey corresponds to 5%, confirmed and 
0.15 cut-offs in the RF, Boruta and XGB algorithms, respectively. 
Abbreviations: A1, assessment 1 month after baseline assessment; A5, assessment 5 months 
after baseline assessment; AECOPD, acute exacerbation of COPD; AIC, Akaike information 
criterion; B, baseline assessment; BPAAT, brief physical activity assessment tool; BMI, body mass 
index; CCI, Charlson comorbidity index; COPD, chronic obstructive pulmonary disease; FEV1, 
forced expiratory volume in 1 second; FVC, forced vital capacity; LTOT, long-term oxygen therapy; 
mMRC, modified medical council dyspnoea Scale; NIV, non-invasive ventilation; RF; random 
forest; SGRQ, St. George’s respiratory questionnaire; XGB; extreme gradient boosting. “#” not 

included as a feature in the algorithm but included in all linear mixed-effects models; “”, included 
as a feature in the algorithm and in all linear mixed-effects models; “*”, interaction. 
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The RF algorithm returned no feature with a percentage of increase of mean square error 

greater than 5%. The same occurred for the Boruta algorithm, with no unconfirmed featured 

identified. The AIC obtained by the LMM that used the features generated by the XGB 

algorithm with the highest cut-off value was lesser than the one obtained with the other 

features. 
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6.3.2.3. COPD ASSESSMENT TEST 

 

The feature selection algorithms’ results for the CAT score are summarized in Table 6.7.  

 

Table 6.7 - Feature selection algorithms’ results for the COPD assessment test. 

 

Features 

Random 
Forest 

Boruta 
Extreme 
gradient 
boosting 

L1 
penalized 
estimation 

Automatic 
backward 
elimination 

A1-B A5-A1 A1-B A5-A1 A1-B A5-A1 

Sex         

Age         

BMI         

Smoking No years         

Pack-years         

LTOT         

CCI         

SGRQ         

mMRC         

BPAAT Moderate         

BORG Fatigue         

FEV1 % predicted         

FEV1/FVC         

Group         

Respiratory emergencies         

Respiratory hospitalizations         

Evaluation # # # # # #   

Group*evaluation # # # # # # # # 

Linear mixed-effects model 
AIC 

921.643 
945.063 

918.436 
945.063 

910.155 
957.898 

 
948.016 

 
814.885 

Note: Smoking status, non-invasive ventilation, BPAAT vigorous, AECOPD and BORG dyspnoea 
were not included because no algorithm selected these features. Light grey corresponds to 2%, 
unconfirmed+confirmed and 0.075 cut-offs in the RF, Boruta and XGB algorithms, respectively. 
Dark grey corresponds to 5%, confirmed and 0.15 cut-offs in the RF, Boruta and XGB algorithms, 
respectively. 
Abbreviations: A1, assessment 1 month after baseline assessment; A5, assessment 5 months 
after baseline assessment; AECOPD, acute exacerbation of COPD; AIC, Akaike information 
criterion; B, baseline assessment; BPAAT, brief physical activity assessment tool; BMI, body mass 
index; CCI, Charlson comorbidity index; COPD, chronic obstructive pulmonary disease; FEV1, 
forced expiratory volume in 1 second; FVC, forced vital capacity; LTOT, long-term oxygen therapy; 
mMRC, modified medical council dyspnoea Scale; NIV, non-invasive ventilation; RF; random 
forest; SGRQ, St. George’s respiratory questionnaire; XGB; extreme gradient boosting. “#” not 

included as a feature in the algorithm but included in all linear mixed-effects models; “”, included 
as a feature in the algorithm and in all linear mixed-effects models; “*”, interaction. 
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The LMM using as predictors the features selected by the automatic backward elimination 

algorithm achieved the lowest AIC of 814.885 followed by the one which features were 

selected by the XGB algorithm with a cut-off gain of 0.075. 

Similarly to the 1minSTS, for CAT, the lowest AICs were achieved when the features 

included in the LMM were selected using the less restrictive cut-off value. 
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6.3.3. SELECTED LINEAR MIXED-EFFECTS MODELS 

 

We fitted three LMMs to predict each of the previously considered outcomes (Table 6.8).  
 

Table 6.8 – Features associated with the number of repetitions in the one-minute sit-to-stand test, 
the handgrip muscle strength and the COPD assessment test score in people with chronic 
obstructive pulmonary disease, over time. 

 

Features 

One-minute sit-to-
stand (n=59) 

Handgrip muscle 
strength(n=59) 

CAT (n=59) 

b1minSTS 
CI 

95% 
p bHMS 

CI 
95% 

p bCAT 
CI 

95% 
p 

(Intercept) 16.68 
[10.63; 
22.73] 

<0.001 57.08 
[41.28; 
72.88] 

<0.001 -13.22 
[-20.84; 
-5.60] 

0.001 

Smoking status 
[former] 

11.97 
[5.84; 
18.10] 

<0.001 
- - - - - - 

Smoking status 
[current] 

18.55 
[10.64; 
26.46] 

<0.001 
- - - - - - 

Pack-years -0.05 
[-0.08; 
-0.01] 

0.007 
- - - - - - 

BPAAT Moderate 1.18 
[0.19; 
2.17] 

0.020 
- - - 

-0.60 
[-1.07; 
 -0.13] 

0.013 

Sex [Male] - - - 15.86 
[10.93; 
20.79] 

<0.001 - - - 

Age - - - -0.54 
[-0.78; 
-0.31] 

<0.001 0.19 
[0.10; -
0.29] 

<0.001 

SGRQ - - - - - - 0.25 
[0.21; 
0.30] 

<0.001 

BORG Fatigue - - - - - - 1.00 
[0.44; 
1.55] 

0.001 

FEV1 % of predicted - - - - - - 0.05 
[0.01; 
0.08] 

0.012 

Respiratory 
hospitalizations [Yes] 

- - - - - - 4.58 
[1.60; 
7.56] 

0.003 

Group [Lockdown] -4.06 
[-7.56; 
-0.56] 

0.024 -0.11 
[-4.05; 
3.84] 

0.958 -0.04 
[-1.91; 
1.83] 

0.966 

Assessment [A1] 2.42 
[0.70; 
4.14] 

0.006 0.89 
[-0.82; 
2.60] 

0.306 -1.46 
[-2.77; 
-0.16] 

0.029 

Assessment [A5] 3.11 
[1.22; 
5.01] 

0.002 2.61 
[0.64; 
4.59] 

0.010 -3.47 
[-4.92; 
-2.02] 

<0.001 

Group [Lockdown] * 
Assessment [A1] 

0.83 
[-1.92; 
3.58] 

0.551 0.23 
[-2.53; 
2.98] 

0.871 -0.11 
[-2.20; 
1.97] 

0.915 

Group [Lockdown] * 
Assessment [A5] 

0.08 
[-2.75; 
2.91] 

0.955 0.07 
[-2.79; 
2.93] 

0.961 1.47 
[-0.63; 
3.57] 

0.169 

Random Effects   σ2 11.79 11.92 6.82 

τ00 30.49Participant 44.06 Participant 4.87Participant 

Marginal R2 / 
Conditional R2 

0.36 / 0.82 0.44 / 0.88 0.75 / 0.86 

Note: * indicates “interaction with”. 
Abbreviations: 1minSTS, one-minute sit-to-stand Test;  A1, assessment 1 month after baseline 
assessment; A5, assessment 5 months after baseline assessment; CI, confidence interval 
approximated by Kenward-Roger method; p, p value approximated by Kenward-Roger method; df, 
degrees of freedom approximated by Kenward-Roger method; BMI, body mass index; CCI, Charlson 
comorbidity index; mMRC, modified medical council dyspnoea scale; FEV1 % of predicted, 
percentage of the predicted forced expiratory volume in 1 second; σ2, residual variance; τ, random 
effect standard deviation; ρ, correlation between intercept and slope; R2, coefficient of determination. 
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The LMMs included the variable participant as random effects (lmer formula: ~1 | 

participant). The models’ total explanatory power was substantial (conditional R2 > 0.80) 

with the CAT’s LMM achieving the highest value (conditional R2 = 0.88). All the LMM 

assumptions were satisfied (Appendix A). 

The predicted number of repetitions at baseline was 28.0 (CI95% = [25.1;30.8]) for the pre-

lockdown group and 22.7 (CI95%=[19.4;25.9]) for the lockdown group (Table 6.9). A 

statistically significant increase of 2.3 repetitions was predicted after one month in the pre-

lockdown group and a clinical and statistically significant increase of 3 repetitions was 

predicted in the lockdown group. No difference was detected between assessment 1 and 

assessment 5 in either groups suggesting that the lockdown period had no effect in the 

1minSTS behaviour. 

 

Table 6.9 – Pairwise comparisons between assessments within each group and estimated marginal 
means of the number of repetitions in the one-minute sit-to-stand test for the different groups and 
assessments. 

 Pairwise comparisons Estimated marginal means 

contrast estimate SE p-value evaluation EMM SE 95% CI 

Pre-

lockdown 

B-A1 -2.342 0.867 0.022 B 28.0 1.16 [25.1; 30.8] 

B-A5 -3.004 0.956 0.006 A1 30.3 1.18 [27.4; 33.2] 

A1-A5 -0.662 0.970 0.774 A5 31.0 1.25 [27.9; 34.0] 

Lockdown 

B-A1 -3.074 1.084 0.015 B 22.7 1.35 [19.4; 25.9] 

B-A5 -3.072 1.064 0.013 A1 25.7 1.43 [22.2; 29.2] 

A1-A5 0.002 1.148 1.000 A5 25.7 1.41 [22.3; 29.2] 

Note: Results are averaged and weighted in proportion to the frequencies (in the original data) over 
the levels of sex, Charlson comorbidity index and respiratory emergencies in the previous year. 
Degrees-of-freedom method: kenward-roger; p-value adjustment: tukey method for comparing a 
family of 3 estimates. 
Abbreviations: A1, assessment 1 month after baseline assessment; A5, assessment 5 months after 
baseline assessment; B, baseline assessment; EMM, estimated marginal mean; SE, standard error; 
CI, confidence Interval. 

 

The baseline and the final assessment predicted an HMS of approximately 34 kg and 36.6 

kg respectively, in both groups (Table 6.10). The difference between the two assessments 

was statistically significant (p = 0.027 for the pre-lockdown and p = 0.031 for the lockdown 

group) but not clinically meaningful. No statistically significant difference was found between 

assessment 1 and assessment 5 in either groups suggesting that the lockdown period had 

no effect in the HMS behaviour. 
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Table 6.10 – Pairwise comparisons between assessments within each group and estimated marginal 
means of the handgrip muscle strength for the different groups and assessments. 

 
Pairwise comparisons Estimated marginal means 

contrast estimate SE p-value evaluation EMM SE 95% CI 

Pre-

lockdown 

B-A1 -0.886 0.861 0.560 B 34.0 1.29 [30.9; 37.2] 

B-A5 -2.615 0.993 0.027 A1 34.9 1.30 [31.7; 38.1] 

A1-A5 -1.729 0.995 0.197 A5 36.6 1.39 [33.2; 40.0] 

Lockdown 

B-A1 -1.111 1.086 0.564 B 33.9 1.50 [30.2; 37.6] 

B-A5 -2.686 1.045 0.031 A1 35.0 1.57 [31.2; 38.8] 

A1-A5 -1.575 1.145 0.358 A5 36.6 1.54 [32.8; 40.4] 

Note: Results are averaged and weighted in proportion to the frequencies (in the original data) over 
the levels of sex. Degrees-of-freedom method: kenward-roger; p-value adjustment: tukey method for 
comparing a family of 3 estimates. 
Abbreviations: A1, assessment 1 month after baseline assessment; A5, assessment 5 months after 
baseline assessment; B, baseline assessment; EMM, estimated marginal mean; SE, standard error; 
CI, confidence Interval. 

 

In both groups, the score predicted at baseline for CAT was 11.6 and the difference between 

the first and last assessments was statistically and clinically significant (p < 0.001 for the 

pre-lockdown and p = 0.028 for the lockdown group) (Table 6.11). No statistically significant 

difference was found between A1 and A5 in the lockdown group but in the pre-lockdown 

group. This suggests that the lockdown period had a negative effect in the CAT behaviour. 

 

Table 6.11 – Pairwise comparisons between assessments within each group and estimated marginal 
means of the COPD assessment test score for the different groups and assessments. 

 Pairwise comparisons Estimated marginal means 

contrast estimate SE p-value evaluation EMM SE 95% CI 

Pre-

lockdown 

B-A1 1.464 0.659 0.073 B 11.6 0.61 [10.1; 13.1] 

B-A5 3.470 0.732 <0.001 A1 10.1 0.62 [8.6; 11.6] 

A1-A5 2.006 0.736 0.021 A5 8.1 0.70 [6.5; 9.8] 

Lockdown 

B-A1 1.577 0.818 0.136 B 11.6 0.71 [9.9; 13.3] 

B-A5 2.003 0.765 0.028 A1 10.0 0.78 [8.1; 11.9] 

A1-A5 0.426 0.829 0.865 A5 9.6 0.72 [7.8; 11.3] 

Note: Results are averaged and weighted in proportion to the frequencies (in the original data) over 
the levels of respiratory hospitalizations in the previous year. Degrees-of-freedom method: kenward-
roger; p-value adjustment: tukey method for comparing a family of 3 estimates. 
Abbreviations: A1, assessment 1 month after baseline assessment; A5, assessment 5 months after 
baseline assessment; B, baseline assessment; EMM, estimated marginal mean; SE, standard error; 
CI, confidence Interval. 
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6.4. DISCUSSION 

 

Optimise the trade-off between the fit of a model and the model’s complexity is one of the 

objectives of feature selection. Automatic backward elimination algorithms have come 

under criticism since they can overestimate the effect size of significant predictors 

(Whittingham et al., 2006). Despite the doubts concerning this method, in our study, it 

showed to be able to select features that produced the lowest AICs in LMMs. 

The clinically significant differences found suggest that the lockdown period imposed by the 

COVID-19 pandemic had a negative impact in the wellbeing and daily life of patients with 

COPD, which was measured with CAT. The reason of this aggravation is beyond the scope 

of this study but should be given special attention in further studies so that, in future similar 

conditions, healthcare professionals can help improve the management of COPD and get 

the greatest benefit from treatment. 

The strengths of our study include the consistence of the results since three different 

independent variables were considered with the same result and the high explanatory 

power of the LMMs computed. Limitations of this study include the low number of features 

considered and the fact that RF, Boruta and XGB algorithm considered the behaviour of the 

outcomes by consecutive steps and not as a whole. 

Future studies should also explore these approaches but with a higher dimension of 

features to select from and include other pattern recognition and machine learning 

algorithms that take into account the longitudinal nature of data, for instance, the RF 

approach suggested by Capitaine (Capitaine et al., 2020) or the Gaussian Process Boosting 

(Sigrist, 2020). 

 

6.5. CONCLUSION 

 

Automatic backward elimination of features showed to be consistent when it came to select 

statistically relevant features that would compute LMMs with the lowest AIC. This study also 

showed that the COVID-19 lockdown period had no effect in the 1minSTS and HMS 

behaviour but a negative effect in the impact of the disease was observed in people with 

COPD. 
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7. STUDY 2 – BEHAVIOUR OF THE ONE-MINUTE SIT-

TO-STAND TEST DURING SIX MONTHS IN PEOPLE 

WITH COPD* 

 

* The results from this study were submitted in the form of an extended abstract to the 3rd 

Statistics on Health Decision Making: Public Health, to be held at the University of Aveiro on 

the 22nd of July 2021 (Appendix C). 

 

7.1. RATIONALE 

 

Functional status is highly meaningful to people with COPD although this outcome has been 

overlooked (Bui et al., 2017). Numerous field tests might be used to assess functional status 

(Vaidya et al., 2017), yet the 1minSTS has shown to be a simple test that mimics the 

common activity of sitting/standing from a chair which is essential to maintain independence 

among the elderly (Vaidya et al., 2016). Additionally, it is a valid and responsive measure 

that might be easily performed for follow-up assessment of people with COPD (Vaidya et 

al., 2017). In fact, regular assessment of people with COPD is essential (Global Initiative 

for Chronic Obstructive Lung Disease, 2021) and this study hypothesise that the 1minSTS 

might be an important indicator of functional status over time in people with COPD. 

Thus, this study aimed to describe the 1minSTS behaviour over a six-month period and 

explore the factors influencing this behaviour in people with COPD. 

 

7.2. STATISTICAL METHODS 

 

An observational, prospective cohort study was conducted with data described in chapters 

5.2 and 5.3. Quantitative variables were summarized using mean and standard deviation 

values if normally distributed or median values and interquartile ranges, otherwise. 

Categorical variables were summarized through count values and percentages. Shapiro-

Wilk test was used to assess the assumption of normality. 

LMMs were applied to assess the mean change in the dependent variable, 1minSTS, and 

to account for correlations in repeated measurements per participant. Random intercepts 

and slopes were used to incorporate individual response trajectories. Firstly, a backward 

elimination with single random-effect terms deletion was performed. Secondly, a model with 

the random effects kept was computed with backward elimination of single main fixed-effect 
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terms and their interaction with time (Zuur et al., 2009). Time, defined, in days, as a 

continuous variable starting at the date of the baseline assessment was kept in this process. 

The p-values were computed based on conditional F-tests with Kenward-Roger 

approximation for the degrees of freedom (Kenward & Roger, 1997). Marginal coefficient of 

determination (marginal R2) and conditional coefficient of determination (conditional R2) 

were determined for assessing the model’s quality and level of adjustment according to 

Nakagawa (Nakagawa et al., 2017). LMM assumptions were assessed by visual inspection 

of residuals’ boxplots, scatterplots, and Q-Q plots. EMM were determined for the reference 

levels of categorical variables and mean values of quantitative variables (Lüdecke, 2018). 

Two-sided P < 0.05 was considered statistically significant for all analyses. 

Statistical analyses were performed using R lmer (Bates et al., 2015), lmerTest (Kuznetsova 

et al., 2017) and ggeffects (Lüdecke, 2018) in RStudio Version 1.4.1103 (RStudio Team, 

2021) running R version 4.0.5 (R Core Team, 2021). 

 

7.3. RESULTS 

 

A total of 149 participants with COPD were included. Participants mean age was 67.5 

(Standard deviation 9.0) years, most were men (83.9%), slightly overweight (BMI=26.8 

kg/m2), former smokers (73.8%), presented severe airway obstruction (49.0 [38.0;70.0]), 3 

to 4 comorbidities (53%) and were not under PR effect (72.5%). Additionally, most 

participants did not have an AECOPD in the previous year (71.1%), presented a GOLD 

grade 3 (39.6%) and a GOLD group B (48.3%) and had a median mMRC score of 2 [1;3], 

Further baseline characteristics are presented in Table 7.1. 

 

Table 7.1 – Baseline characteristics of participants (n=149). 

Characteristic Categories Measure 

Age, years, mean (SD)  67.5 (9.0) 
Sex Female 

Male 
24 (16.1) 
125 (83.9) 

Educational level Without formal education 
4th degree 
6th degree 
9th degree 
12th degree 
College/Higher education 

4 (2.7) 
66 (44.3) 
17 (11.4) 
19 (12.8) 
19 (12.8) 
24 (16.1) 

Marital status Single 
Common-law marriage 
Married 
Divorced 
Widowed 

7 (4.7) 
115 (77.2) 
16 (10.7) 

4 (2.7) 
7 (4.7) 

Current occupation Paid work 27 (18.1) 
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Characteristic Categories Measure 
Housework 
Unemployed (health reasons) 
Unemployed (other reasons) 
Retired 
Other 

1 (0.7) 
3 (2.0) 
8 (5.4) 

109 (73.2) 
1 (0.7) 

BMI, kg/m2, mean (SD)  26.8 (4.6) 
Smoking status Never 

Former 
Current 

20 (13.4) 
110 (73.8) 
19 (12.8) 

Smoking no. of years, median [IQR]  36.0 [20.0; 45.0] 
Pack-years, median [IQR]  42.0 [15.0; 75.0] 
Under PR effect during follow-up No 

Yes 
108 (72.5) 
41 (27.5) 

CCI, score 1-2 
3-4 
>=5 

31 (20.8) 
79 (53.0) 
39 (26.2) 

AECOPD, in the previous year 0 
1 
>1 

106 (71.1) 
19 (12.8) 
24 (16.1) 

FEV1, % predicted, median [IQR]  49.0 [38.0; 70.0] 
FEV1/FVC, %, median [IQR]  53.0 [40.0; 63.0] 
GOLD grades 1 

2 
3 
4 

25 (16.8) 
47 (31.5) 
59 (39.6) 
18 (12.1) 

CAT, points, median [IQR]  12.0 [8.0; 18.0] 
GOLD ABCD classification tool A 

B 
C 
D 

49 (32.9) 
72 (48.3) 

2 (1.3) 
26 (17.5) 

mMRC, points, median [IQR]  2 [1.0;3.0] 
SGRQ Total, median [IQR]  40.5 [26.6; 56.9] 
BPAAT Moderate, score 0 

1 
2 
4 

55 (39.9) 
27 (18.1) 
23 (15.4) 
44 (29.5) 

BPAAT Vigorous, score 0 
2 
4 

119 (79.9) 
24 (16.1) 

6 (4.0) 
Modified BORG scale (Dyspnoea), 
score 

0 
0.5 
1 
2 
3 
4 
5 
6 
7 

98 (65.8) 
2 (1.3) 

15 (10.1) 
13 (8.7) 
13 (8.7) 
3 (2.0) 
2 (1.3) 
2 /1.3) 
1 (0.7) 

Modified BORG scale (Fatigue), score 0 
0.5 
1 
2 
3 
4 
5 
6 
7 

89 (59.7) 
3 (2.0) 
11 (7.4) 
13 (8.7) 

21 (14.1) 
7 (4.7) 
2 (1.3) 
2 (1.3) 
1 (0.7) 
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Characteristic Categories Measure 
Long-term oxygen therapy No 

Yes 
123 (82.6) 
26 (17.4) 

Non-invasive ventilation No 
Yes 

124 (83.2) 
25 (16.8) 

Respiratory related hospitalizations, in 
the previous year 

0 
1 
2 

134 (89.9) 
13 (8.7) 
2 (1.4) 

Respiratory related emergencies, in the 
previous year 

0 
1 
2 
3 

122 (81.9) 
22 (14.7) 

3 (2.0) 
2 (1.4) 

Years’ quarter 1st  
2nd  
3rd  
4th  

87 (58.4) 
0 (0.0) 
0 (0.0) 

62 (41.6) 
HMS, kg  median [IQR]  35.0 [26.0; 41.0] 
1minSTS, repetitions, median [IQR]  26.0 [21.0; 30.0] 

Note: Data presented as n (%), unless otherwise stated. 
Abbreviations: 1minSTS, one-minute sit-to-stand test; AECOPD, acute exacerbation of COPD; 
BMI, body mass index; BPAAT, brief physical activity assessment tool; CAT, COPD assessment 
test; CCI, Charlson comorbidity index; COPD, chronic obstructive pulmonary disease; FEV1, 
forced expiratory volume in 1 second; FVC, forced vital capacity;  GOLD, global initiative for 
chronic obstructive lung disease; HMS, handgrip muscle strength; IQR, Interquartile range; 
mMRC, modified medical council dyspnoea scale; PR, pulmonary rehabilitation; SD, standard 
deviation; SGRQ, St. George’s respiratory questionnaire. 

 

Participants’ 1minSTS median number of repetitions at baseline was 26.0 [21.0;30.0] and 

a significant increase was observed reaching a median of 30.0 [24.0;37.5] repetitions at A5 

(p<0.001) (Figure 7.1). 

 

Figure 7.1 – Description of the number of repetitions in the one-minute sit-to-stand (1minSTS) over 
time of participants with chronic obstructive pulmonary disease (n=149). (a) In the left panels, time 
was considered as a categorical variable, corresponding to the number of assessments; black line 
represents the linear regression line of the median values. (b) In the right panel, time was defined as 
number of days between baseline and follow-up assessments; the black line represents the global 
linear regression line.  
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The 1minSTS model's total explanatory power was substantial (conditional R2 0.92). The 

effect of time was positive and statistically significant (b = 0.08618, p < 0.001). The 1minSTS 

LMM predicted an increase of 3.8 repetitions after 195 days of follow up (Figure 7.2). 

 

 

 
Figure 7.2 – Predicted number of repetitions of the one-minute sit-to-stand test (1minSTS) of 
participants with chronic obstructive pulmonary disease over time. Adjusted for participants’ mean 
characteristics values and reference categories. The linear mixed-effects model’s predicted values 
are represented by a black line, 95% confidence prediction intervals by a grey band and observed 
values by dots. 

 

 

Table 7.2 shows the results of the LMM including time (continuous) and participant as 

random effects. Older participants (b = -0.56, p < 0.001) and higher scores of mMRC (b = -

2.04, p = 0.001) were predicted with a statistically significant lower number of repetitions 

globally. Generally, participants with higher BMI and higher pack-years were expected to 

achieve a lower number of repetitions (b = -0.55, p < 0.001 and b = -0.03, p = 0.033, 

respectively). A difference of 1 repetition was predicted for a variation of 13.7% points in 

FEV1 % of predicted (b = 0.07, p = 0.021). Females were expected to obtain approximately 

less 5 repetitions when compared with males (b = -4.69, p = 0.009). 
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Table 7.2 – Factors associated with the number of repetitions of one-minute sit-to-stand test in 
people with chronic obstructive pulmonary disease, over time (n=149) 

 

The interaction effect of time on age and time on pack-years in the 1minSTS LMM was 

negative and statistically significant (b = -0.00086, p = 0.007 and b = -0.00017, p = 0.006, 

respectively). Thus, older participants or/and participants that were heavy smokers were 

expected to increase less, or eventually even decrease their number of repetitions when 

compared with younger participants or/and participants with low smoking load (Figure 7.3).  

 
1minSTS (n=149) 

Factors Estimate (b) 
 

CI 95% p df 

(Intercept) 77.56 [62.40; 92.71] <0.001 140.70 

Sex [Female] -4.69 [-8.20; -1.18] 0.009 140.59 

Age -0.56 [-0.77; -0.34] <0.001 141.39 

BMI -0.55 [-0.81; -0.28] <0.001 139.05 

Pack-years -0.03 [-0.06; -0.01] 0.033 142.38 

CCI [Moderate (3-4)] 4.80 [0.71; 8.89] 0.022 139.13 

CCI [Severe (>=5)] 3.57 [-2.15; 9.28] 0.219 140.26 

mMRC -2.04 [-3.25; -0.83] 0.001 140.34 

FEV1 % of predicted 0.07 [0.07; 0.14] 0.021 139.75 

Time 86.18 a [44.05; 128.31] a <0.001 132.41 

Age*Time -0.86a [-1.48; -0.24] a 0.007 134.32 

Pack-years*Time -0.17 a [-0.30; -0.05] a 0.006 133.37 

Random Effects 
    

σ2 0.08 

τ00 0.53Participant 

τ11  0.01Participant.Time 

ρ01 0.64Participant 

Observations 755 

Marginal R2/Conditional R2 0.41 / 0.92 

Abbreviations: 1minSTS, one-minute sit-to-stand test; CI, confidence interval approximated by 
Kenward-Roger method; p, p value approximated by Kenward-Roger method; df, degrees of 
freedom approximated by Kenward-Roger method; BMI, body mass index; CCI, Charlson 
comorbidity index; mMRC, modified medical council dyspnoea scale; FEV1 % of predicted, 
percentage of the predicted forced expiratory volume in 1 second; σ2, residual variance; τ, random 
effect standard deviation; ρ, correlation between intercept and slope; ICC, intraclass correlation 
coefficient; R2, coefficient of determination. * indicates “interaction with”. a multiplied by 10-3. 
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Figure 7.3 – Predicted values of the number of repetitions of the one-minute sit-to-stand test 
(1minSTS) of participants with chronic obstructive pulmonary disease, at different ages (years) and 
pack-years’ values over time, in days. Adjusted for male participants aged 67.5 years old, body mass 
index of 26.84, Charlson comorbidity index score of 1-2, forced expiratory volume in 1 second % of 
predicted of 53.31 and modified British medical research council questionnaire score of 2. 

 

For instance, a non-smoker male with 67.5 years is expected to increase of 5.5 repetitions 

whereas a 78.5-year-old male with a pack-years of 270 is expected to have an increase of 

only 0.67 repetitions over a period of 195 days (Table 7.3). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



52 

 

Table 7.3 – Predicted number of repetitions of the one-minute sit-to-stand test over time in people 
with chronic obstructive pulmonary disease according to the explanatory factors (age and pack-
years).  

Pack-years Time 

Age (years) 

40 (minimum) 

Estimate [95% CI] 

58.5 (mean–1SD) 

Estimate [95% CI] 

67.5 (mean) 

Estimate [95% CI] 

78.5 (mean+1SD) 

Estimate [95% CI] 

88 (maximum) 

Estimate [95% CI] 

0  

(minimum) 

0 
40.46 

[24.39; 56.53] 

30.19 

[14.52; 45.86] 

25.19 

[9.37; 41.01] 

20.19 

[4.00; 36.39] 

13.81 

[-3.17; 30.78] 

195 
50.56 

[34.02; 67.10] 

37.19 

[21.39; 53.00] 

30.69 

[14.77; 46.61] 

24.18 

[7.84; 40.52] 

15.87 

[-1.42; 33.16] 

Dif 10.10 7.00 5.50 3.99 2.06 

5.5  

(mean–1SD) 

0 
40.30 

[24.25; 56.35] 

30.02 

[14.37; 45.68] 

25.03 

[9.21; 40.84] 

20.03 

[3.84; 36.22] 

13.64 

[-3.33; 30.61] 

195 
50.21 

[33.70; 66.73] 

36.84 

[21.06; 52.63] 

30.34 

[14.44; 46.24] 

23.83 

[7.51; 40.16] 

15.52 

[-1.76; 32.80] 

Dif 9.92 6.82 5.31 3.80 1.88 

51.7  

(mean) 

0 
38.92 

[22.95; 54.89] 

28.65 

[13.03; 44.27] 

23.65 

[7.85; 39.45] 

18.66 

[2.45; 34.86] 

12.27 

[-4.74; 29.28] 

195 
47.28 

[30.86; 63.69] 

33.90 

[18.19; 49.61] 

27.40 

[11.55; 43.24] 

20.89 

[4.60; 37.18] 

12.58 

[-4.68; 29.84] 

Dif 8.35 5.25 3.75 2.24 0.31 

97.9  

(mean+1SD) 

0 
37.55 

[21.56; 53.54] 

27.28 

[11.59; 42.96] 

22.28 

[6.39; 38.17] 

17.28 

[0.97; 33.59] 

10.90 

[-6.24; 28.04] 

195 
44.34 

[27.85; 60.82] 

30.96 

[15.14; 46.79] 

24.46 

[8.48; 40.44] 

17.95 

[1.52; 34.39] 

9.64 

[-7.78; 27.06] 

Dif 6.79 3.69 2.18 0.67 -1.25 

270  

(maximum) 

0 
32.43 

[15.55; 49.32] 

22.16 

[5.39; 38.93] 

17.16 

[0.12; 34.20] 

12.17 

[-5.35; 29.68] 

5.78 

[-12.60; 24.16] 

195 
33.39 

[15.12; 51.66] 

20.02 

[2.22; 37.81] 

13.51 

[-4.48; 31.50] 

7.01 

[-11.45; 25.46] 

-1.30 

[-20.71; 18.10] 

Dif 0.96 -2.14 -3.65 -5.16 -7.08 

Notes: Adjusted for male participants aged 67.5, BMI of 26.84, Charlson comorbidity index score of 
1-2, forced expiratory volume in 1 second % of predicted of 53.31 and mMRC of 2. Bold represent 
differences equal or greater than the absolute value of the minimal clinical important difference (3 
repetitions). 
Abbreviations: SD, standard deviation; Dif, difference between the number of repetitions of the 
one-minute sit-to-stand test at time equals to 195 days and the number of repetitions at baseline; 
95% CI, 95% confidence prediction intervals. 
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7.4. DISCUSSION 

 

The clinically significant differences found in our study between the last assessment and 

the baseline suggest that monitoring patients with COPD monthly could benefit their 

functional status. Further studies with larger samples and control groups are needed to 

strengthen our findings.  

Additionally, this study identified numerous explanatory factors of the 1minSTS behaviour. 

For instance, older participants or/and participants that were heavy smokers were expected 

to increase less, or eventually even decrease their number of repetitions when compared 

with younger participants or/and participants with low smoking load. This information is 

important to guide clinical decisions aiming to improve functional status of people with 

COPD.  Future studies should explore the added benefit of monitoring the disease 

progression with meaningful outcomes. 

The strengths of our study include the high explanatory power of the LMM computed. 

Limitations of this study include the absence of a control group. 

 

7.5. CONCLUSION 

 

This study showed the potential of the 1minSTS to assess functional status over time in 

people with COPD and clarified the individual related factors of the 1minSTS behaviour.  
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8. CONCLUSION 
 

From a methodological approach, this worked showed that the Automatic backward 

elimination of features was consistent when it came to select statistically relevant features 

to be included in linear mixed-effects models with the lowest values of AIC. 

From a clinical perspective, this work seems to indicate that smoking load and age, two 

well-known environmental risk factors for COPD, are statistically influent in the diverse 

behaviour of the number of repetitions obtained in the 1minSTS by COPD patients 

monitored during a 6-months period. An increase in any of them might lead to a worse 

evolution in the 1minSTS results over time. Nevertheless, our study suggests that 

monitoring patients with COPD in a monthly base could generally improve their functional 

status. Even with an interruption in these assessments, as the one caused by the COVID-

19 lockdown, the positive evolution seems to occur, which may suggest that the initial 

monitoring sessions are crucial, although further studies should be conducted to clarify this 

behaviour. On the contrary, the restrictions to circulation, the social distancing and isolation 

resulting from COVID-19 pandemic seem to have had a negative impact in the wellbeing 

and daily life of patients with COPD. Since situations like this one may be repeated in short 

or medium terms, it is important to identify strategies that healthcare professionals or 

patients can implement in order to improve the management of COPD and get the greatest 

benefit from treatment. 
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APPENDICES 

 
 

A.  RESIDUAL ANALYSIS TO TEST LINEAR MIXED-EFFECTS 
MODELS’ ASSUMPTIONS OF STUDY 1 

 
A.1  ONE-MINUTE SIT-TO-STAND TEST 
 
 
 

 

 

Figure A.1 – Residual analysis for the linear mixed-effects model using as dependent variable the 
number of repetitions in the one-minute sit-to-stand test and as independent variables the ones 
obtained by automatic backward elimination of features 
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A.2  HANDGRIP MUSCLE STRENGTH 
 

 

 

 

Figure A.2 – Residual analysis for the linear mixed-effects model using as dependent variable the 
handgrip muscle strength and as independent variables the ones obtained by automatic backward 
elimination of features 
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A.3 COPD ASSESSMENT TEST 
 
 
 

 
 

Figure A.3 – Residual analysis for the linear mixed-effects model using as dependent variable the 
COPD Assessment Test score and as independent variables the ones obtained by automatic 
backward elimination of features 
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Introduction: 

Chronic obstructive pulmonary disease (COPD) is a common, progressive and treatable 

disease that is characterized by persistent respiratory symptoms and airflow limitation [1]. 

One of the most frequent impacts of COPD on daily life is decreased functional status which 

includes struggling to perform basic, work and leisure activities [2]. Although, functional 

status is highly meaningful to people with COPD, this outcome has been overlooked [3]. 

Numerous field tests might be used to assess functional status [4], yet the one-minute sit-

to-stand test (1minSTS) has shown to be a simple test that mimics the common activity of 

sitting/standing from a chair which is essential to maintain independence among the elderly 

[5]. Additionally, it is a valid and responsive measure that might be easily performed for 

follow-up assessment of people with COPD [4]. In fact, regular assessment of people with 
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COPD is essential [1] and this study hypothesise that the 1minSTS might be an important 

indicator of functional status over time in people with COPD. 

Thus, this study aimed to describe the 1minSTS behaviour over a six-month period and 

explore the factors influencing this behaviour in people with COPD. 

 

Methods: 

Study design and participants 

Data from an observational study including people with stable COPD was retrospectively 

analysed. Individuals were eligible if diagnosed with COPD [1] and clinically stable over the 

previous month (no acute exacerbations). Individuals with other respiratory diseases, signs 

of cognitive impairment or presence of a significant or unstable cardiovascular, neurological 

or musculoskeletal disease were excluded. 

Data collection 

Sociodemographic, anthropometric and clinical data were first collected with a structured 

questionnaire to characterise the sample. Spirometry was used to assess lung function [6]. 

Severity of comorbid diseases was scored according to the Charlson Comorbidity Index 

(CCI) [7]. Activity-related dyspnoea was assessed with the modified British medical 

research council dyspnoea questionnaire (mMRC) [8,9] and the impact of the disease with 

the COPD Assessment Test (CAT) [10,11].  

Functional status was assessed with the 1minSTS which consists of sitting and standing 

from a 46-48 cm height chair as many times as possible for one minute [4,13]. A change of 

3 repetitions was used as minimum clinically important difference (MCID) [13]. All data were 

collected at baseline and 1minSTS was repeated monthly up to six months. 

Data analysis 

Variables were summarized according to their nature. Linear-mixed effect models (LMM) 

with random intercepts and slopes were applied to assess the mean change in the number 

of repetitions of the 1minSTS [14,15]. A backward elimination with single terms deletion and 

keeping time was performed [16]. P-values were computed based on conditional F-tests 

with Kenward-Roger approximation [17]. Two-sided P<0.05 was considered statistically 

significant. 

 

Results: 

A total of 149 participants with COPD were included. Participants mean age was 67.5 (±9.0) 

years, most were men (83.9%), slightly overweight (BMI=26.8 kg/m2), former smokers 

(73.8%), presented severe airflow obstruction (49.0 [38.0;70.0]), 3 to 4 comorbidities (53%), 
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were not under PR effect (72.5%) and the median of 1minSTS was 26 [21;30] repetitions. 

Further detailed baseline characteristics are presented in Table 1. 

An increase of the number of repetitions performed over time was observed reaching a 

median of 30.0 [24.0;37.5] repetitions at assessment 5 (A5) (Figure 1a). Specifically, an 

increase of 3.8 repetitions after 195 days was predicted (Figure 1b).  

Table 2 shows the results of the LMM including time and participant as random effects. The 

model's total explanatory power was substantial (conditional R2 = 0.92). The effect of time 

was positive and statistically significant [0.09 (0.04; 0.13)]. Females [-4.68 (-8.20; -1.18)], 

older participants [-0.55 (-0.77; -0.34)], with higher BMI [-0.55 (-0.81; -0.28)], higher pack-

years [-0.03 (-0.06; -0.00)], higher scores of mMRC [-2.04 (-3.25; -0.83)] and lower 

FEV1%predicted [0.07 (0.07; 0.13)] showed a lower number of repetitions globally. The 

interaction effect of time on age and on pack-years was negative and statistically significant 

[-8.60E-4 (-1.48E-3; -2.40E-4) and -1.70E-4 (-3.00E-4; -5.00E-5), respectively]. 

  

Discussion: 

The clinically significant differences found in our study between the last assessment and 

the baseline suggest that monitoring patients with COPD monthly could benefit their 

functional status. Further studies with larger samples and control groups are needed to 

strengthen our findings.  

Additionally, this study identified numerous explanatory factors of the 1minSTS behaviour. 

For instance, older participants or/and participants that were heavy smokers were expected 

to increase less, or eventually even decrease their number of repetitions when compared 

with younger participants or/and participants with low smoking load. This information is 

important to guide clinical decisions aiming to improve functional status of people with 

COPD.  Future studies should explore the added benefit of monitoring the disease 

progression with meaningful outcomes. 

The strengths of our study include the high explanatory power of the LMM computed. 

Limitations of this study include the absence of a control group. 

In sum, this study showed the potential of the 1minSTS to assess functional status over 

time in people with COPD and clarified the individual related factors of the 1minSTS 

behaviour. 
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Tables: 

 

 

Table 1. Baseline characteristics (n=149). 

Age, years, mean (SD)  67.5 (9.0) 
Sex Female 

Male 
24 (16.1) 
125 (83.9) 

BMI, kg/m2, mean (SD)  26.8 (4.6) 
Smoking Status Never 

Former 
Current 

20 (13.4) 
110 (73.8) 
19 (12.8) 

Pack-years, median [IQR]  42.0 [15.0;75.0] 
Under PR Effect during follow-up No 

Yes 
108 (72.5) 
41 (27.5) 

CCI, score 1-2 
3-4 
>=5 

31 (20.8) 
79 (53.0) 
39 (26.2) 

AECOPD, in the previous year 0 
1 
>1 

106 (71.1) 
19 (12.8) 
24 (16.1) 

mMRC, points, median [IQR]  2 [1.0,3.0] 
FEV1, % predicted, median [IQR]  49.0 [38.0;70.0] 
FEV1/FVC, %, median [IQR]  53.0 [40.0;63.0] 
GOLD grades 1 

2 
3 
4 

25 (16.8) 
47 (31.5) 
59 (39.6) 
18 (12.1) 

CAT, points, median [IQR]  12.0 [8.0,18.0] 
GOLD CAT, stage A 

B 
C 
D 

49 (32.9) 
72 (48.3) 
2 (1.3) 

26 (17.5) 
1minSTS, repetitions, median [IQR]  26.0 [21.0;30.0] 

Note: Data presented as n (%), unless otherwise stated. 

Abbreviations: COPD, Chronic Obstructive Pulmonary Disease; GOLD, Global Initiative 

for Chronic Obstructive Lung Disease; BMI, Body Mass Index; PR, Pulmonary 

Rehabilitation; CCI, Charlson Comorbidity Index; mMRC, Modified Medical Council 

Dyspnoea Scale; CAT, COPD Assessment Test; AECOPD, Acute Exacerbation of COPD; 

1minSTS, One-Minute Sit-To-Stand Test; FEV1, Forced Expiratory Volume in 1 Second; 

FVC, Forced Vital Capacity; SD, Standard deviation; IQR, Interquartile range. 
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Table 2. Factors associated with the number of repetitions of one-minute sit-to-stand test in people 
with COPD (n=149). 
 

  

 
1MinSTS (n=149) 

Factors Estimates CI 95% p df 

(Intercept) 77.56 [62.40; 92.71] <0.001 140.70 

Sex [Female] -4.69 [-8.20; -1.18] 0.009 140.59 

Age -0.56 [-0.77; -0.34] <0.001 141.39 

BMI -0.55 [-0.81; -0.28] <0.001 139.05 

Pack-years -0.03 [-0.06; -0.00] 0.033 142.38 

CCI [Moderate (3-4)] 4.80 [0.71; 8.89] 0.022 139.13 

CCI [Severe (>=5)] 3.57 [-2.15; 9.28] 0.219 140.26 

mMRC -2.04 [-3.25; -0.83] 0.001 140.34 

FEV1 % of predicted 0.07 [0.07; 0.14] 0.021 139.75 

Time 0.09 [0.04; 0.13] <0.001 132.41 

Age*Time -8.60E-4 [-1.48E-3; -2.40E-4] 0.007 134.32 

Pack-years*Time -1.70E-4 [-3.00E-4; -5.00E-5] 0.006 133.37 

Random Effects 
    

σ2 0.08 

τ00 0.53Participant 

τ11  0.01Participant.Time 

ρ01 0.64 Participant 

ICC 0.87 

Observations 755 

Marginal R2 / Conditional R2 0.408 / 0.922 

 
Abbreviations: 1minSTS, One-Minute Sit-To-Stand Test; CI, Confidence Interval approximated by 
Kenward-Roger method; p, p value approximated by Kenward-Roger method; df, degrees of 
freedom approximated by Kenward-Roger method; BMI, Body Mass Index; CCI, Charlson 
Comorbidity Index; mMRC, Modified Medical Council Dyspnoea Scale; FEV1 % of predicted, 
percentage of the predicted Forced Expiratory Volume in 1 Second; σ2, residual variance; τ, 
random effect standard deviation; ρ, correlation between intercept and slope; ICC, intraclass 
correlation coefficient; R2, coefficient of determination [18]. * indicates “interaction with”. 
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Figure’s captions/legends: 

 

    
Figure 1. Description of the number of repetitions performed in the one-minute sit-to-stand 
(1minSTS) over time by participants with chronic obstructive pulmonary disease (n=149). (a) In the 
left panel, time was considered as a categorical variable, corresponding to the number of 
assessments; (b) in the right panel, time was defined as the number of days between baseline and 
follow-up assessments, predicted values are represented by a black line, 95% confidence intervals 
by a grey band and observed values by dots. 
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Abstract: Chronic obstructive pulmonary disease (COPD) is common and progressive. 

One of its major impacts on daily life is decreased functional status which can be assessed 

by the one-minute sit-to-stand test (1minSTS). The 2020 imposed lockdown due to the 

recent pandemic (COVID 19) is likely to have influenced the functional status of this 

population but this is still unknown.  

Few feature selection algorithms are available for longitudinal data. We aimed to compare 

different feature selection methods and describe the effect of the COVID-19 lockdown on 

the 1minSTS behaviour in people with COPD. 

Data from 59 people with COPD were collected at baseline (B), 34 of whom belonging to 

the no-lockdown group. 1minSTS was repeated after one (A1) and five months (A5), which 

corresponded to the assessments prior and after the lockdown in the lockdown group. 

Fixed-effects were included in different linear mixed-effects models (LMMs) according to 

the importance given by Random Forests, Boruta, Extreme Gradient Boosting, automatic 

backward elimination and L1-penalized estimation algorithms. The LMM with the lowest 

Akaike’s information criterion (AIC) was chosen. 

The LMM obtained by automatic backward elimination achieved the lowest AIC (919.7) and 

was followed by the one using L1-penalized estimation algorithm (923.5) although this one 

produced a higher conditional R-squared. Boruta algorithm returned the highest AIC 

(964.2). Difference between B and A1 number of repetitions in 1minSTS was statistically 

significant in both COVID-19 groups. No difference was found between A1 and A5 in either 

group suggesting that the lockdown had no effect in the 1minSTS behaviour. 


