INTRODUCTION

Placing dental implants in the posterior jaw is a challenge due to the presence of the maxillary sinus, especially when bone availability is limited. In 40% of these sites, the bone height is 4 mm or less and, in cases of extreme bone resorption, it can lead to cases of bone height apically to the maxillary sinus smaller than 1 mm. This two-way bone resorption that occurs in the posterior region of the maxilla is due to the centripetal loss of the alveolar bone and the pneumatization of the sinus, together with histophysiological bone characteristics, such as a very medullary and little cortical bone. One of the solutions is the regeneration of bone in the posterior maxilla through surgery using the lateral window of the maxillary sinus, the technique with the greatest scientific documentation. However, besides being a complex technique, its use requires a careful screening of patients and a previous risk-benefit analysis that considers the systemic pathologies and behavioural habits of the patient, such as smoking or oral hygiene. The alternatives to this sinus approach include short implants (if enough remaining bone) or zygomatic implants. Since zygomatic implants is a complex procedure, requiring hospitalisation in most cases, and short implants are not always possible, the sinus lift procedure is the main indication for most posterior maxillary rehabilitation cases with dental implants.

The purpose of this literature review is to describe the elevation of the maxillary sinus procedure using the lateral window technique, as well as to gather current data on its indications, limitations, success rates and post-intervention complications.
MATERIALS AND METHODS

The scientific articles used in this focus literature review were screened between October 2019 and December 2019 by two research (FC and RFA). The set of initial papers were collected from the electronic databases PubMed, ScienceDirect, LILACS, Web of Science, Scielo and Cochrane Library. Electronic search was limited to English, Portuguese, Spanish, Italian and French. The keywords and/or MeSH terms ‘sinus floor augmentation’, ‘sinus lift’ and ‘Sinus Floor Augmentation (Mesh) AND Humans (Mesh).’ lead to 5697 articles. After elimination of duplicates and title/abstract reading, the number of articles went down to 278 and, after full-text reading, 103 papers were selected to be included in this focus review. Papers targeting animal studies, case report and case series were excluded, whereas those aiming two-stage lateral window technique complications, contraindications, as well as different factors to take into account, such as the use of electric piezo, graft materials, membranes and the expected success rates were included in this review.

WINDOW TECHNIQUE

The lateral window technique or lateral osteotomy technique, also known as sinus lift or Caldwell-Luc technique, was first described and presented in an oral communication by Tatum H. Jr. in 1977 and only published by him in 1986,10 being first published by Boyne and James in 1980.11 It is presented as the technique for sinus elevation with greater scientific documentation1,5,6 and is a predictable, a safe procedure, with a low rate of complications and high rates of implant success, regardless of residual bone height.12

This technique that aims at placing the bone graft material involves a surgical approach through an osteotomy on the lateral wall of the maxillary sinus and a careful elevation of the Schneider membrane to create a defined space between it and the floor of the maxillary sinus.1,13–16 The technique can be described as follows:

Osteotomy just-antero-superior to the zygomatic abutment, followed by a spherical drill bit No. 6 or No. 8 at 16,000 rpm, or piezoelectric instrument. It is important to consider that the size of the lateral osteotomy varies according to the prosthetic area to be replaced, depending on the limiting anatomical factors and the initial surgical planning.

A window is made in which the ‘hinge’ is in a cranial position, ‘the window is opened’ into the sinus and, at the same time, it is possible with this maneuver to start lifting the Schneider membrane. Then, the space formed with the bone graft is filled, the opening is covered with a membrane and sutured. Figure 1 presents the different steps to perform this technique.

Different factors that need to be taken into account will be described in the next chapters of this paper, such as technique complications, contraindications, the use of electric piezo or rotating instruments, as well as the type of graft materials, the placement of a membrane on the lateral wall and the expected success rates.

Indications

This technique is mainly indicated when the bone height below the maxillary sinus varies between 1 and 5 mm in height, for subsequent placement of standard-length dental implants, allowing a median implant survival rate of 95.5% (61.2%–100%).17 An initial height of 5 mm is considered the threshold for simultaneous placement of the implants together with the elevation of the maxillary sinus using the lateral technique.17 However, it is possible to place the implants simultaneously in ridges with an initial height ≥1 mm.1,18 The decision to perform a simultaneous (lateral osteotomy plus implant placement) or staggered (first lateral osteotomy surgery and a second implant

Figure 1 Illustration of the steps of the Lateral Window Technique. Legend: (1) initial photo; (2) incision; (3) osteotomy with a piezoelectric instrument; (4) osteotomy shape; (5) osteotome to help concluding the osteotomy; (6) Schneider membrane lift up; (7) graft material placed; (8) collagen membrane placed on the lateral wall; (9) suture of the flap.
placement surgery) should be based on an individual assessment of risk factors assessing whether it is possible to achieve primary implant stability, which is a sine qua non condition for success. For this assessment, it is crucial to evaluate also the quantity and quality of the implant, bone availability.1,18

Contraindications

The prior evaluation of the patients’ pathologies is extremely important, considering that it can interfere with the regenerative capacity and increase the rates of complications. A thick Schneider membrane or large mucous cysts can increase the risk or obstruction of the ostium or sinusitis after elevation of the maxillary sinus.19 Some authors13,14,20,21 consider as absolute contraindications to implant placement in the posterior maxilla: chemotherapy and radiotherapy to treat a recent or impending tumour, drug or alcohol dependence and blood dyscrasias that directly affect the bone metabolism, intravenous bisphosphates, tumoural pathologies of the maxillary sinuses and destructive sinus surgery. As relative contraindications can be considered: pathologies such as diabetes, osteoporosis or Crohn’s disease, behavioural habits such as smoking, poor oral hygiene and some types of systemic medication such as bisphosphonates.13,20–25

Preoperative

A preoperative clinical and radiographic screening using computed tomography (CT) or conical beam computed tomography (CBCT) of the maxillary sinus is mandatory to detect any pathologies, asymmetries, to know the anatomy including septa, to quantify the thickness of the lateral wall, the volume and the shape that needs regeneration.1,12,13,23–25 CT also allows to perform a virtual pre-surgical planning,26 as well as, to verify the location of the upper, anterior and posterior alveolar canals, including their anastomosis.27 Another important factor, that can be analysed, is the height at which the osteotomy should be performed, to achieve optimal maxillary sinus window.14

If there is evidence of acute or chronic sinusitis or other pathologies, the patient must be referred to an otorhinolaryngologist.1,21,28 Preoperative sinusitis is a positive predictive factor for the development of acute postoperative sinusitis.1

The use of chlorhexidine mouthwash prior to surgical interventions is a preventive measure to reduce the risk of infections ensuring the aseptic control of the surgical field.13,14,29 The additional use of antibiotics is also advisable in order to avoid infections and graft reductions due to the presence of undesired bacteria.20,27

Complications

In terms of complications, this technique has a low incidence compared to other bone regeneration techniques.17,23,24 The complications described in the literature are divided into intraoperative complications (such as perforation or haemorrhage of Schneider’s membrane) and postoperative complications (nosebleed, wound infection, sinusitis, exposure to the graft or barrier membrane, graft infection, cysts formation and dehiscence).1,12,13,15,22,30–42 The most frequent intraoperative complication is perforation of the Schneider membrane (0%–60%), which is well-tolerated, with normal recovery and regeneration of the membrane over the postoperative bone graft in most cases. If the sinus membrane is not repaired with a substitute membrane (e.g. non-reabsorbable collagen membrane) complications, including graft and dental implant loss, can happen to jeopardise the sinus surgery procedure.12,13,15,22,24,28,30–43 Due to its prevalence, we dedicate a section in this paper (3.4.1) to the causes, prevention and repair methodologies of Schneider’s membrane.

Anatomically, the main impacting factors for this technique are the septa, and the infra-orbital neuro-vascular structures.

To observe the path of the posterior alveolar superior artery and anastomosis in the extra-bony branches, a CT or CBCT are essential to analyse the height of the passage from the basal bone, the diameter and the course, avoiding haemorrhagic complications due to lacerations in the branches of the maxillary artery or intraosseous vascular channel, in the lateral antrum wall of the maxillary sinus, which can be found in more than 50% of cases.28,44 The performance of lateral osteotomy with piezoelectric instruments that selectively cut the bone without additional soft tissue injuries to the detriment of rotary drills, helps to reduce the risk.44

Another complication is the leakage of the graft material into the maxillary sinus or the movement of the membrane that causes an ostium obstruction, preventing the drainage of sinus mucus which increases the risk of infection.21 However, despite these potential complications, the risk of infection is low and less than 5%.21

Overfilling the sinus can also result in blockage of the ostium, especially if inflammation of the membrane or the presence of a thickened sinus mucosa exists. The elevated Schneiderian membrane increases in thickness after surgery, reaching more than 6 mm after 7 days, taking months until the membrane thickness returns to the initial thickness, and this recovery time is directly correlated with the extension of the maxillary sinus elevation.45

In case of an ostium block and consequently a postoperative infection without initial resolution, the re-entry and removal of a portion of the graft and the change in the antibiotic protocol may be appropriate.21

The use of filters to collect autografts translates into an increased risk of infection located in the maxillary sinus (13.0% vs. 4.0%).29 In the study by Barone et al. in 200641 a greater likelihood of maxillary sinus infections was also observed in smoking patients.

Sinus infections after a bone graft can cause serious complications due to the proximity of the maxillary sinus with various vital structures (example: brain, cavernous sinus),
and can cause sinusitis, orbital cellulitis, meningitis, osteomyelitis, thrombosis of the cavernous sinus, among others.13 Postoperative complications occur less frequently (3.6%), sinus infections can be avoided since they tend to occur mainly in previously unhealthy sinus, and should be detected in preoperative exams.5,24

Acute postoperative sinusitis occurs in approximately 3\%–20\% of sinus elevation procedures and represents the most common short-term complication.13,21,46 Usually, the infection starts more than a week after surgery and resolves with an antibiotic, the risk proportionally increases the amount of graft used.21,46,47

Suturing stripping with an incision opening is an uncommon postoperative risk, since the site of the lateral osteotomy is at least 5 mm from the bone crest.21 The consequences of opening the incision can be delayed healing, leakage of graft material into the oral cavity and increased risk of infection. If a portion of the non-resorbable membrane is exposed, the area must be cleaned at least twice a day with a mouthwash of chlorhexidine and, if it does not close after two months, a new surgery must be performed in order to remove the membrane and reconnect the tissues.21

Complications - perforations in the Schneider membrane

Regarding the intraoperative complications, the most common during maxillary sinus elevation surgery due to the lateral osteotomy is the tearing of the Schneider membrane. It can occur due to pre-existing perforation, during lateral osteotomy or when the membrane is detached and elevated, which is not influenced by age or gender.21,37 The maintenance of the Schneider membrane is desirable to guarantee better vascularisation, graft stability and environmental conditions for the maturation of the inserted bone graft materials.48 Perforation of the Schneiderian membrane is therefore a relevant complication considering that it leads to a decrease in apical bone regeneration and can lead to graft migration or failure, bacterial contamination of the graft and double the risk of infection, or of acute or chronic sinusitis, as well how to increase the need to use antibiotics.14,22,32,37–39,48–50

However, there are also studies in the literature that do not support the negative effects of membrane perforation, such as graft loss and compromised final result, increased postoperative complications, or even decreased implant survival rate.22,35,51

To prevent perforations of the Schneider membrane, a meticulous assessment of several aspects that increase the risk of perforation should be performed, namely anatomical variations, thickness of the lateral bone wall, residual crest, size and position of the septa, morphology of the nasal floor, membrane thickness, presence of pathologies of the maxillary sinus, surgery to previous sinusitis, possible orofacial communications, infections and experience of the surgeon.25,31,33,36,52–54

The width of the maxillary sinus is a relevant variable. The risk of perforation is higher (62.5\%) when the membrane is elevated in the anterior and narrow regions and where the lateral and median walls of the sinus have an angle of less than 30\°. This risk decreases to 28.6\% when it approaches the medial area (30\°–60\°) and becomes null when it reaches the posterior region (>60\°).31

The septa are the most common bone anatomical variant in the maxillary sinus and one of the biggest causes for perforation of the Schneider membrane, varying between 13\% and 59.7\%.21,33,52

Surgically, the approach may vary depending on the location, size and number of septa present. In the presence of a septum, the design of the lateral osteotomy window should be modified in order to provide better access to the surgical instruments and try to include them in order to minimise the risk of perforation and improve the view of the surgical site when the membrane is raised.14,21,28,31

The thickness of Schneider's membrane is also one of the relevant variables for the probability of perforation and it tends, on average, to increase from the region of the first premolar until reaching its maximum thickness in the region of the second molar.32 The thickness of the Schneider membrane may be relevant to the risk of perforation. For example, the retrospective study by Lum et al.2017 reports a perforation rate of 28.1\% and found an association between membrane perforation and the presence of a thinner membrane, which is directly related to a lower height bone. On the other hand, Insua et al.53 describes that the thickness between 1 mm and 1.5 mm of the membrane presents the greatest tendency for perforation. The same authors suggest that the increased rate of perforation of the membrane may be more related to the changes induced by inflammatory conditions, which promote a change in thickness and epithelium in that membrane.53 A thicker membrane, but with epithelial damage and chronic inflammation, may be more prone to perforation than a thinner, but healthy membrane with an intact epithelial layer.53 Patients with periodontal disease and smoking patients are more likely to have a thicker membrane.51

The perforation of Schneider's membrane does not appear to be significant in the mean of vital bone and in the survival of implants. Froum et al.2013 registered 26.3\% ±6.3\% (mean ± standard deviation) in case of membrane perforation (and its repair) and 19.1\% ± 6.3\% when not perforated, not being these differences translated in a statistically significant way in the survival of the implants (95.5\% when perforated the membrane vs. 100\% when not perforated).

The treatment of a Schneider membrane perforation consists of providing a stable coverage of the perforated area to contain the graft material.31 The first step in treating a perforation is to raise the surrounding membrane to reduce the stress on the region and to prevent further perforation. Subsequently, the size and position of the area must be assessed.31 If the perforation is small, there is the hypothesis that it self-regenerates due to the formation of a clot or leaflet of the Schneider membrane.31 If the perforation is relevant
(>5 mm), it must be covered by a stable resorbable membrane that serves as a barrier between the sinus and the graft material.31 In case the perforation is extensive (>10 mm), it is recommended to use a large stabilised resorbable membrane that extends over the side wall.31 When using a resorbable membrane to seal the perforation, it must overlap the margins over 5 mm in diameter around the perforation.21 After sealing the perforation, the surgical procedure can be completed in the same way as in cases where a perforation has not occurred.21

The repetition of the surgical procedure can be considered, and the second procedure should be performed never before 6 to 8 weeks after the first surgical attempt.14

Piezo versus rotating instruments

The use of the piezoelectric instrument, in front of the rotary instruments to perform lateral osteotomy of access to the maxillary sinus, is justified by the fact that the possibility of accidental perforation of the Schneider membrane is lower, since the piezoelectric only cuts hard tissues. Another advantage is the reduction of trauma to adjacent tissues, the reduction of intraoperative haemorrhage, the reduction of the risk of vessel damage, as well as the improvement of intraoperative visibility and the reduction of pain and oedema.13,22,31,36,50,57–62 The biggest disadvantage of the piezoelectric is the delay in performing the osteotomy, which can lead to bone heating.22,57,58,63 This time difference is on average 2 minutes (3 minutes for rotary instruments vs. 5 minutes for piezoelectric).59 On the other hand, two studies62,64 found no statistically significant differences in terms of risks, traumas or perforations of the Schneider membrane. In the systematic review by Geminiani et al. 2017,63 intraoperative risks, including rupture of the membrane, are not reduced using piezoelectric surgery, sonic surgery, osteotome or trephine, when compared with the conventional surgical technique. The 2007 study by Wallace et al.60 reports a 27% reduction in the occurrence of Schneider membrane perforations when using piezoelectric compared to conventional rotary instruments.

Graft materials and growth factors

The graft materials used in the lateral maxillary sinus osteotomy technique described in the literature include particulate or block autograft, particulate lyophilized demineralised frozen allograft, xenografts, non-resorbable alloplastic hydroxyapatites and combination with BMP-2, among others.1,65

The first authors to describe the use of autograft and its application to the maxillary sinus were Wood and Moore66 in 1988. In terms of bone substitute, tricalcium phosphate was the first bone substitute to be used successfully in sinus elevation by Tatum67 in 1986. Currently, materials from non-autologous grafts or in combination with autografts are well documented in the literature, with no statistically significant differences in clinical results and implant survival rate compared to autografts.24,65,68

However, the use of some bone regeneration materials can lead to inflammatory reactions or infections.43 For example, in the 2017 clinical trial by Kolerman et al.,59 in which the maxillary sinuses were grafted with an alloplastic graft (biphasic calcium phosphate), evidence of a mild and chronic inflammatory infiltration was observed, which mainly included lymphocytes and multinucleated giant cells. Biomaterials such as collagen xenograft of porcine origin the maxillary sinus have a lower risk of infection or inflammation.43,70

In histomorphometric analyses, defined as the gold-standard for estimating the amount of new bone formation in the grafted sites and verifying differences in the use of different biomaterials,31,71 there are large variations in the amount of vital bone (5% at 60%), according to the different types of graft, which histologically influences the quality of the bone obtained.1

The osteogenic properties of the autograft and the xenograft are different, allowing a reabsorption/apposition of new bone that tends to be greater in the xenograft.70,72 When bone substitutes are used, the growth of the newly formed bone is delayed by the absence of osteogenic cells and their osteogenic growth factors, which lead to the delay in placing the implants and loading them.14

The slow reabsorption when using bovine xenografts is its greatest disadvantage described in the literature, in many cases it is incomplete even after many years, which means that a considered graft volume is not replaced by new vital bone.73 For this reason, other types of xenografts that have a great capacity for resorption and deposition of new bone, such as collagen xenograft of porcine origin, may be part of the advancement in regenerative techniques of maxillary sinus elevation by lateral osteotomy.72 The ability to absorb and deposit new bone from collagen xenograft of porcine origin is a result of the influence of collagen on cellular and molecular activity, inducing the adhesion of osteoclasts to the surface of the biomaterial.72,74

Cordella et al. (2016)71 observed that the average amount of new bone formed, and residual bone graft was not significantly different for bovine xenograft and porcine xenograft, when compared with alloplastic biomaterials. In comparison, for the mixture of xenograft and autograft with the mixture of autograft and allograft, the latter shows a faster turnover and a faster decrease in biological action after 6 months.75

The use of autograft shows results similar to the use of other bone substitutes, but it has the great advantage of rapid bone maturation due to the presence of osteogenic cells and osteogenic growth factors,17,40,71 making it possible to perform the second early surgical phase.14

The autograft is almost completely absorbed within six months, as evidenced by Starch-Jensen et al.40 who found a significantly higher proportion of mineralised bone during the early healing phase, when the autograft was used as a
The differences in bone height gain with the use of bone graft mixed with some type of cell growth promoter are not clinically relevant. For example, the use of PRP did not positively influence the results in the 2016 Kiliç S and Güngör mü M randomised clinical trial when purchasing β-TCP +PRP and β-TCP.

Barrier membrane on the lateral wall

The placement of resorbable or non-resorbable barrier membranes on the lateral wall of the osteotomy at the end of the procedure for placing the graft material aims to help contain the graft, prevent soft tissue encapsulation, the invagination of connective tissue into the sinus jaw and increase the success rate of dental implants. The membrane also prevents the passage of epithelial cells into the grafted area. Finally, the amount of vital bone can influence implant survival.

This influence is evident in the 2013 Barone A. split-mouth clinical trial that compared the effect of placing a collagen membrane on the sidewall versus do not place, filling both maxillary sinuses with porcine xenograft. The author reported that in the group where a membrane was used on the side wall there was a mean percentage of smaller connective tissue (50.6% ± 18.7% vs. 59.3% ± 15.4%), a total percentage of larger bone (49.4% ± 18.7% vs. 40.7% ± 15.4%) and a percentage of residual graft also higher (18.4% ± 20.3% vs. 12, 6% ± 12.4%).

Implant success rates

The survival rates of the implants, in a first phase are closely linked to the realisation of a good surgical protocol and to a good primary stability when placing the implant. Over time, survival rates are mainly affected by smoking habits and pathologies that make patients immunocompromised (e.g. poorly controlled diabetes) and poor oral hygiene. For these reasons, control of risk factors and periodontal support treatment consultations are essential. Marginal bone loss is intrinsically related to the type of prosthetic connection (in external connections it is greater), smoking habits and history of periodontitis, these being factors that negatively influenced the maintenance of the peri-implant bone.

Evaluating the literature data on the implant survival rate after maxillary sinus graft by lateral osteotomy, different systematic reviews report average rates above 90% and present results similar to implants placed in native bone. These results are not influenced by the timing of implant loading since placing dental implants simultaneously or in a second surgical phase, does not demonstrate to have significant impact on the survival rate of dental implants.

The graft material used does not appear to be a highly influential factor in the survival rate of dental implants, observing similar survival rates of the implants placed in the

Postoperative radiological assessment

The radiological study using CT and CBCT is crucial for the study and planning of clinical cases and allows to measure changes at the bone level over time and the behaviour of biomaterials, ensuring the predictability of maxillary sinus elevation. The use of 2D radiographs (orthopantomography and periapical radiographs) allows observing bone remineralisation. Comparing the radiological results with studies that used different grafts, different results are found in the literature in terms of vertical gains, between 5.8 and 18.3 mm. The average vertical gains observed in the 2016 Bayesian network study by Merli et al were 7.44 ± 1.95 mm. When interpreting these results, we infer that when using biomaterials, we are not dependent on the patient’s bone availability or the collection technique used.

Increases in bone height that exceed the length of the implant to be placed result in increases that will not be used and that tend, over time, to resorb regardless of the graft used.
maxillary sinus elevations that had been filled only with bone substitutes (96.1%) or when it was included autograft (95.8%).17 The same is observed when using PRP as a supporting material for implant failure or complications.105 When maxillary sinus elevations are performed with autologous iliac crest blocks, the survival rate is 83.5% and is reduced substantially to 78.7% when the implants are placed simultaneously.17 Considering only studies with five or more years of follow-up, there is a 97% survival rate for implants with autograft grafting, 95% with bovine xenograft.40

Considering the time window in which dental implant failure occurs, it is observed that more than 80% of cases occur during the first 6 months of loading, 97.1% in the first year and that the late loss of implants (up to 2 years from connection) is significantly affected by bone quality.102

Another important factor is the roughness of the implant surface and its influence on the biomechanical quality of the osteointegrated bone. Implants with a rough surface show greater integration and resistance of bone contact when compared to smooth surface implants, with lower rates of survival when smooth-surface implants are used.67,99

The use of a membrane to cover the lateral window increases the survival rate of the implants. This trend is observed in the 98% success rate variation vs. 92.7%, when a membrane is not used.17 It is important to note that the 2009 review by Jensen et al.17 indicates that if studies using implants with smooth surfaces were excluded, the survival rates with and without the use of a membrane were almost identical.

CONCLUSIONS

The technique of elevating the maxillary sinus through a lateral window is a safe and well-documented technique in the literature, with high rates of survival and success of dental implants in the long term. The commonest complication that occurs with this technique is the perforation of the Schneider membrane, which, depending on the extent of the rupture, can be repaired intrasurgically.

Simultaneous placement of dental implants should only be performed in cases where the bone height is greater than 5 mm, otherwise, a two-step technique should be chosen. The use of different graft materials is well documented in the literature, but it is essential to bear in mind that the non-use of autograft increases the time of bone maturation. On the other hand, placing a membrane on the side wall increases the amount of vital bone and special attention should be paid to the different pathologies that may contraindicate this technique when carrying out the clinical history.

SUPPORTING INFORMATION

This work was supported by Portuguese funds through the Portuguese Foundation for Science and Technology (FCT), within the IEETA/UA project (UIDB/00127/2020, www.ieeta.pt) and by Portugal 2020 under the Competitiveness and Internationalization Operational Program.

CONFLICT OF INTEREST

The authors declare no conflict of interest, either directly or indirectly, in any of the products listed in the manuscript.

ORCID

Francisco Correia \(\text{https://orcid.org/0000-0002-8215-4657}\)
Sónia Gouveia \(\text{https://orcid.org/0000-0002-3755-7610}\)
Daniel H. Pozza \(\text{https://orcid.org/0000-0002-2119-4479}\)
António Campos Felino \(\text{https://orcid.org/0000-0002-3429-062X}\)
Ricardo Faria-Almeida \(\text{https://orcid.org/0000-0001-9265-0913}\)

REFERENCES

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Correia F, Gouveia S, Pozza DH, Campos Felino A, Faria-Almeida R. Lateral window technique: A focus review. Oral Surg. 2021;00:1–10. https://doi.org/10.1111/ors.12649