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Abstract

Although regulatory improvements for air quality in the European Union have been made,

air pollution is still a pressing problem and, its impact on health, both mortality and morbidity,

is a topic of intense research nowadays. The main goal of this work is to assess the impact

of the exposure to air pollutants on the number of daily hospital admissions due to respira-

tory causes in 58 spatial locations of Portugal mainland, during the period 2005-2017. To

this end, INteger Generalised AutoRegressive Conditional Heteroskedastic (INGARCH)-

based models are extensively used. This family of models has proven to be very useful in

the analysis of serially dependent count data. Such models include information on the past

history of the time series, as well as the effect of external covariates. In particular, daily hos-

pitalisation counts, air quality and temperature data are endowed within INGARCH models

of optimal orders, where the automatic inclusion of the most significant covariates is carried

out through a new block-forward procedure. The INGARCH approach is adequate to model

the outcome variable (respiratory hospital admissions) and the covariates, which advocates

for the use of count time series approaches in this setting. Results show that the past history

of the count process carries very relevant information and that temperature is the most

determinant covariate, among the analysed, for daily hospital respiratory admissions. It is

important to stress that, despite the small variability explained by air quality, all models

include on average, approximately two air pollutants covariates besides temperature. Fur-

ther analysis shows that the one-step-ahead forecasts distributions are well separated into

two clusters: one cluster includes locations exclusively in the Lisbon area (exhibiting higher

number of one-step-ahead hospital admissions forecasts), while the other contains the

remaining locations. This results highlights that special attention must be given to air quality

in Lisbon metropolitan area in order to decrease the number of hospital admissions.
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Introduction

Despite legal and regulatory improvements, particularly in European Union, air pollution

remains a pressing problem worldwide. Recent evidence shows that there is an annual excess

of nearly 800 thousand deaths due to air pollution in Europe alone [1]. Moreover, it is esti-

mated that air pollution reduces the mean life expectancy in Europe by about 2.2 years [1] on

average. A recent study on 652 cities [2] concluded that, on average, an increase of 10μg/m3 in

the 2-day moving average of PM10 (Particulate Matter with aerodynamic diameter less than or

equal to 10μm) concentration, is associated with an increase of 0.44% and 0.47% in all-cause

mortality and respiratory mortality, respectively. For PM2.5 (Particulate Matter that have aero-

dynamic diameter less than or equal to 2.5μm) the increase in mortality is 0.68% for all-cause

mortality and 0.74% for respiratory mortality.

The International Agency for Research on Cancer (IARC) classified air pollution and PM

mixture as carcinogenic, with evidence of increased risk of cancer even at levels below the cur-

rent World Health Organization (WHO) PM2.5 guideline [3, 4]. However, current legal limits

of this air pollutant in Europe are generally above the recommended by the WHO [5]. Hence,

it is of the utmost importance to assess the impact of the current levels of air pollution on pop-

ulations’ health. Yet, in some countries, including Portugal, research on the effect of air pollu-

tion on health, either on mortality or morbidity (i.e., hospital admissions), has been scarce [6–

10]. The few studies performed have found some associations between health outcomes and

air quality, even though, results are not consistent throughout studies. For instance, Alves et. al
(2010) did not find a significant association between PM10 and hospital admissions, whereas

Cruz et. al (2016) found a significant association between the pollutants PM10/PM2.5 and respi-

ratory diseases for ages below 15 years. The recent study by Franco et. al (2020), restricted to

the Lisbon metropolitan area, used ordinary least regression and found significant associations

between several air pollutants (PM10, NO2, NO, O3, CO) and respiratory hospital admissions

[10]. Notwithstanding, even tough these research studies are somewhat recent, the data used

are 15–20 years old and may not reflect the current impact of air pollution on health. Further-

more, the data is restricted to Lisbon area, which may not accurately represent the reality of

other country regions less urbanised and populated, and calls for a study nationwide study in

Portugal.

The assessment of the effect of air pollution on respiratory hospital admissions demands

the inclusion of the temperature effect, since its impact on health outcomes is well-known [11]

and temperature has been shown to be associated with some air pollutants [12–14], being their

interaction a possible mechanism to explain health outcomes [15]. Therefore, the overall goal

of this research work is to quantify the influence of air pollution on respiratory morbidity,

beyond the effect of temperature, in Portugal mainland, using as proxy respiratory hospital

admissions’. Moreover, for each location the one-step-ahead forecast distribution is estimated

and subsequently used in a cluster analysis, which attempts to establish spatial and temporal

hospital admission patterns across the country.

It is worth to mention that, arguably, the most common methodology used in the literature

to assess the effect of air pollution on health are Generalised Additive Models (GAM) [16]. In

GAMs, the response time series is modelled as a linear combination of smooth functions, in

general, cubic splines. The use of splines allows the modelling of long-term patterns and, can

also capture the seasonal pattern of the data [17]. However, splines have the inconvenient of

needing that the number of knots, which governs how many (cubic) curves will be used, are

previously established by the researcher [17]. Furthermore, in this particular context, their use

increases the mathematically complexity and reduces interpretability [17]. In contrast to the

well-established GAM framework, the interest in time series models to deal with discrete
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outcomes (i.e., counts) has being gaining attention recently [18]. One example of such models

are the INteger Generalised AutoRegressive Conditional Heteroskedastic (INGARCH) models

which exhibit an ARMA-like structure, although the data generating mechanism is analogous

to that of a GARCH model in the sense that, the conditional mean recursively depends on past

conditional means and on past observations [19, 20]. The INGARCH formulation incorpo-

rates link/transformation functions [21], to deal with negative serial correlation [22] and,

time-varying covariates [23, 24]. Moreover, the INGARCH class is able to capture seasonality

and serial dependence through the regression on past observations and the autoregression on

past conditional means. Hence, unlike GAMs, these models do not require the non-parametric

transformation of the predictor variables, resulting in simpler models. As a consequence,

model interpretability is straight-forward and comprehensible.

In this work, the INGARCH model with time-dependent covariates is considered for

modelling purposes. Note that, the construction of such models requires optimal criteria for

covariate selection. The importance of such criteria is obvious as model performance can be

improved by ignoring irrelevant covariates and incorporating only relevant covariates at dif-

ferent lags within models’ structure. Indeed, the need for a systematic approach to lag selection

has long been identified [25]. Such criteria should also address collinearity, as a strong associa-

tion among covariates may obscure their relationship with the response, and may lead to

computational instability in model estimation. Thus, this paper introduces a novel method for

optimal selection of time-varying covariates which will be referred to as block-forward (BF).

Briefly, blocks of colinear covariates are considered in a hierarchical order (according to the

degree of evidence/impact on health of air pollutants) and, from each block, only the covariate

leading to the lowest Akaike Information Criteria (AIC) model is included. Also, such covari-

ate is introduced in the model if and only if all others remain significant. Having in mind that

different lagged versions of a single covariate can be thought as colinear covariates, the BF

method allows to systematically select the optimal lag for a given covariate. The advantage of

such approach relies on the fact that it enables to articulate the empirical knowledge of the

effect of air pollution on health as well as statistical criteria so that models can correspond to a

more accurate representation of reality.

Hence, the contribution of this work is two-fold; first, an exhaustive analysis of the impact

of air pollution on hospital admissions due to respiratory causes, beyond the effect of tempera-

ture, in Portugal mainland is performed along with a cluster analysis to identify patterns

within the data set. Secondly, a methodological contribution to deal with covariates selection

based on empirical knowledge and statistical criteria is introduced.

The rest of the article is unfolded as follows: Section 2 presents a detailed description of the

data set and of the methodology used to perform the statistical analysis. Results and discussion

are included in Section 3. Finally, Section 4 is devoted to conclusions.

Materials and methods

Exploring the data sets

Anonymised data from the Homogeneous Diagnostic Groups (HDG) containing data on hos-

pital admissions episodes between 2005 and 2017 was provided by Administração Central do

Sistema de Saúde (ACSS). For each spatial location, the time series of the daily number of hos-

pital admissions due to respiratory causes was recorded as the count of episodes resulting from

respiratory system diseases’ (ICD-9 codes 460–519 and ICD-10 codes J00-J99) on a daily basis.

Fig 1(a) shows the daily number of hospital admissions in Valongo (VALO), Porto District

(Portugal), which will be used for illustrative purposes throughout the article. Clearly, the time

series exhibits an annual seasonal pattern showing increasing counts from the late summer
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and during the colder months of the year (with a peak around February) followed by a down-

ward pattern until around August. The time series also displays a weekly periodic pattern as

highlighted in Fig 1(b), by the periodic sample ACF pattern with more pronounced values at

the multiple of 7-day-lags. Furthermore Fig 1(c), shows a downward trend in the counts from

Monday to Sunday. Weekend admissions also differ from weekdays, with the number of hos-

pital admissions being lower at weekends, as suggested by a recent systematic review based on

68 studies covering over 640 million worldwide hospital admissions [26].

The daily hospital admissions and air quality data were paired considering an influence cir-

cumference defined around each monitoring station, illustrated in Fig 2 for Valongo. The corre-

sponding time series of daily hospital admissions was produced as the daily number of episodes

associated with residents within the influence area. In this analysis, the radius of 20km was pre-

ferred over other radius (e.g. 10, 15, 25 km) by assuming that the air quality indicators measured

Fig 1. Number of daily hospital admissions at Valongo (VALO) from 2009 to 2015. (a) time series, (b) sample ACF and (c) distribution (box plots)

and averaged values (red color dots and line) per day of the week.

https://doi.org/10.1371/journal.pone.0253455.g001
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in each of the 58 monitoring locations are spatially representative for a circle within a 20km

radius. It is worthwhile to point out that 20km is much lower than the representative area set in

a radius of 100km, roughly corresponding to the life-time of NO2 and the formation of second-

ary particles [27, 28]. Moreover, 20km corresponds to the minimum radius allowing for a suffi-

cient number of counts (hospital admissions) for modelling purposes and thus, it constitutes a

fair choice to assess the association between the exposure and outcome.

Using ArcGis (version 10.3.1) the code for each parish within every influence area was

retrieved using the codes from the administrative division previous to 2013. It is worth to men-

tion that in 2013 the administrative divisions at parish level were re-organised, which lead to a

decrease of the number of parishes. New codes were added to the newly reformulated adminis-

trative division and a matching between ‘old’ and ‘new’ codes was performed to accommodate

all parishes from 2013 onward. Using the residence code associated to the data set provided by

ACSS it was possible to link to the administrative division. Therefore, it was possible to retrieve

all cases occurring within each influence area. Note that some parishes are on the limit of the

influence area so, to avoid including cases of underrepresented parishes, only those with an

area of at least 10% were included in the influence area. This decision does not considerably

change the number of cases. Cases were ordered according to date of occurrence and, events

Fig 2. Radius of influence with 20km radius and centered at Valongo (VALO) air quality monitoring station. The

polygons identify parishes.

https://doi.org/10.1371/journal.pone.0253455.g002
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happening on the same date were added to obtain the cumulative cases per day, resulting in

the daily hospital admissions time series at each influence area.

Air quality data in Portugal is publicly available at QualAr website (www.qualar.apambiente.

pt). Hourly data for air pollutants PM2.5, PM10, NOx, NO2, CO, O3 and SO2 were retrieved from

all available monitoring stations within the period 2005–2017. Aiming at the analysis of daily

hospital admissions, daily time series of air pollutants were computed from the (hourly) avail-

able air quality data. In accordance with governmental recommendations [29], maximum daily

values were computed by retrieving the maximum daily value when at least 75% of daily obser-

vations (i.e., 18 observations) were available at a given day, otherwise a missing value was

obtained. Whenever required, missing data is imputed using the k-nearest neighbours (k-NN)

method with k = 1. Specifically, missing data were replaced by the daily value of the nearest

neighbour, i.e. the time series exhibiting the most similar temporal behaviour according to the

Heterogeneous Euclidean-Overlap Metric (HEOM) [30], instead of the closest geographically

time series. This procedure allows to preserve the mean and standard deviation of the original

time series in the imputed data [31]. An air pollutant at a given spatial location was considered

in the subsequent analysis provided that the corresponding time series has at least 5-years of

consecutive data. In the 58 Portuguese monitoring stations, a total of 58 time series of NOx/

NO2, 54 of PM10, 45 of O3, 36 of SO2, 26 of CO and 18 time series of PM2.5 were considered in

the analysis. The characterisation of each monitoring station (geographical coordinates, type of

environment and influence) as well as the time period analysed is summarised in S1 Table.

Finally, temperature (˚C) at 1.5 meters is collected by the Instituto Português do Mar e da

Atmosfera, IPMA (www.ipma.pt/pt/index.html), at over 100 locations across the territory.

Overall, 27 stations were selected based on their proximity to air quality stations and data avail-

ability from 2005 onward. Temperature was provided by IPMA as maximum daily time series.

Likewise, 1-NN was used for missing data imputation. It is worth to mention that the effect of

temperature on hospital admissions is well-established [32] and thus, temperature is expected

to be largely included in models. In this scenario, the models will allow to assess the impact of

air quality on respiratory hospital admissions beyond that of temperature. Descriptive statistics

of the time series included in this research work can be found in S2 and S3 Tables.

Fig 3(a) displays the geographical location of the 58 air quality stations according to their

type of environment: 35 urban, 10 suburban and 13 rural stations. Most of the urban stations

are located either in Lisbon or Porto district which are zoomed in, respectively, in the lower

and upper panels of Fig 3(a). In Lisbon, the largest metropolis in Portugal, all stations are

urban with the exception of one suburban. Outside Lisbon, there are just a few rural stations.

Porto district is the second largest metropolis, and it also holds a large proportion of urban sta-

tions. The countryside of Portugal has much less air quality monitoring stations, as the criteria

to build such stations is based on population density [29] and the population density is consid-

erably lower in the countryside. As illustrated in Fig 3(a) and 3(b), air quality and temperature

data are not collected at the same geographical locations and the corresponding time series

had to be paired based on their geographical proximity (euclidean distance between locations).

The geographical distance between each one of the 58 air quality and the closest temperature

station was, on average, of 8.5km, with a standard deviation of 6.9km. All distances vary

between 40 meters (Monte Chãos, CHAOS) and 27.7km (Chamusca, CHAM) with 75% of the

air quality stations exhibiting a distance to the paired temperature station lower than 14.3km.

Statistical analysis

A detailed description of the methods used to perform the statistical analysis is presented. To

this end, an overview of INGARCH models, their progressive development and the INGARCH
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model used in this work is initially presented. Then, the rational of the block-forward method

for covariate selection is explained in detail. The code to use such method is available on

GitHub as well as part on the (S1 File). Furthermore, we also make available a file with exam-

ples on how to use the block-forward method (S2 File). The usual tools for model assessment

are introduced afterwards. Finally, one-step-ahead forecasts probability density function clus-

tering is explained. The statistical analysis was conducted using R software version 3.6.2. Pack-

age tscount was used for modelling purposes and, cluster analysis was carried out using the

HistDAWass package.

INGARCH models. A common approach to handle time series of counts is to consider

INteger Generalized AutoRegressive Conditional Heteroscedastic (INGARCH) processes,

where the serial dependence structure is incorporated through regression on past observations

and past conditional means. The INGARCH process (Yt) of orders p; q 2 N was firstly intro-

duced by Heinen (2003) [19] and Ferland et al. (2006) [20] in which

YtjF t� 1 : PoissonðltÞ; wherelt ≔ EðYtjF t� 1Þ ¼ b0 þ
Xp

k¼1

bk Yt� k þ
Xq

‘¼1

a‘ lt� ‘; ð1Þ

being Yt, t 2 {1, . . ., n} the count time series, F t� 1 ≔ sðYs; s � t � 1Þ the history of the count

Fig 3. Portugal mainland maps and zooms over Lisbon and Porto districts. (a) air quality stations and (b) temperature monitoring stations. The grey

circles represent the 20km radius of influence centered at each air quality station. The Portuguese limits and borders were constructed using the

geographical information from the Carta Administrativa Oficial de Portugal 2017 (available for non commercial use at https://www.dgterritorio.gov.pt/

cartografia/cartografia-tematica/caop).

https://doi.org/10.1371/journal.pone.0253455.g003
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process up to time t − 1. In addition, β0 > 0, βk� 0, αℓ� 0, 8k,ℓ and
Pp

k¼1
bk þ

Pq
‘¼1
a‘ < 1,

the latter condition to ensure that the INGARCH process is strictly-stationary. Tjøstheim

(2012) further extended the above-model to incorporate link/transformation functions [21],

gðltÞ ¼ b0 þ
Xp

k¼1

bk ~gðYt� kÞ þ
Xq

‘¼1

a‘ gðlt� ‘Þ; ð2Þ

where g : Rþ ! R is a link function and ~g : N0 ! R is a transformation function. Such for-

mulation of the model allows to deal with negative serial correlation. Also, Fokianos (2011)

further considers the inclusion of a time-dependent covariate (Xt) [23],

gðltÞ ¼ b0 þ
Xp

k¼1

bk ~gðYt� kÞ þ
Xq

‘¼1

a‘ gðlt� ‘Þ þ c Xt; ð3Þ

where c is a real valued parameter. A recent work by Liboschik et al. (2017) expands this latter

formulation to a matrix of time-dependent covariates Xt, t 2 {1, . . ., n} [24],

gðltÞ ¼ b0 þ
Xp

k¼1

bk ~gðYt� kÞ þ
Xq

‘¼1

a‘ gðlt� ‘Þ þ ηT Xt; ð4Þ

where Xt = (Xt,1, . . ., Xt,r)
T is a time-varying r-dimensional covariate vector for each time t

and η≔ (η1, . . ., ηr)
T is parameter vector of the covariates effects. In this last formulation,

F t� 1 ≔ sðYs;Xsþ1; s � t � 1Þ is the joint history of the process and of the covariates up to and

including time t.
The recent implementation in R software [33] of the above-mentioned models allows the

use of the Poisson or Negative Binomial distribution along with the identity or the logarithmic

function [24]. The use of model (4) along with the Poisson distribution and the identity link

results in an INGARCH model, whilst the use of the logarithmic function results in its log-

linear extension. Due to its flexibility, in this work we restrict our attention to the Negative

Binomial distribution and the logarithmic link/transformation functions in order to easily

accommodate covariates into the model [24]. Therefore, the following representation of log(λt)
is used in the current analysis

logðltÞ ¼ b0 þ
Xp

k¼1

bk logðYt� k þ 1Þ þ
Xq

‘¼1

a‘ logðlt� ‘Þ þ ηT Xt; ð5Þ

to avoid zero values [24]. In this model, YtjF t� 1 � NegBinðlt; �Þ with ϕ 2 (0,1) represent-

ing the dispersion parameter. Note that EðYtjF t� 1Þ ¼ lt but the conditional variance is

VarðYtjF t� 1Þ ¼ lt þ l
2

t =�, where the limiting case ϕ!1 corresponds to the Poisson

distribution. In this work, the matrix of time dependent covariates is defined with structure

Xt ¼ ðXt� k1;1
; . . . ;Xt� kr ;r

Þ
T
, where each covariate can be considered in the model at a lag k

that is not necessarily zero.

The model coefficients in (5) are estimated in a two step procedure as implemented in

tsglm function of the tscount R package [24]. First, the p + 1 + q + r model parameters β≔ (β0,

. . ., βp)
T, α≔ (α1, . . ., αq)

T and η are estimated by maximising the conditional quasi log-likeli-

hood function [24]. Second, given l̂t (i.e. the fitted values for λt obtained from β̂, α̂ and η̂),

the dispersion parameter ϕ is then estimated by solving the equation based on the Pearson’s
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X 2
–square statistic

Xn

t¼1

ðYt � l̂tÞ
2

l̂t þ l̂
2
t =�̂
¼ n � ðpþ 1þ qþ rÞ; ð6Þ

where n is the sample size. Note that this estimation procedure requires a fixed model order p
and q. Optimal (p, q) pairs were automatically chosen by minimising the Akaike information

criteria (AIC) for each of the 58 locations under analysis. Orders vary between 0 and 7 to

accommodate several INGARCH-like structures and include terms related with the presence

of weekly seasonality. With respect to the matrix of covariates, Xt is iteratively constructed fol-

lowing the block-forward method detailed below. Briefly, the BF procedure automatically

chooses each relevant covariate from the initial set of available covariates at the that lag maxi-

mises model performance.

The model in Eq (5) includes the information on both the history of the process

(INGARCH part) and the covariates, and will be referred to as full model (MF, in short)

throughout the text. Furthermore, two subfamilies of the MF model are also considered: the

pure INGARCH model (MI) by setting η ¼~0 and the reduced model (MR) by setting p =

q = 0. Note that the MI model ignores the covariates while the MR model ignores the

INGARCH component.

Block-forward method for covariate selection. This paper introduces a method for auto-

matic selection of the time-varying covariates in matrix Xt of the MF model (5). The method is

based on applying the forward approach to blocks of covariates, where at most one covariate

from each block enters the full model. The method demands the a priori definition of the list

of covariates, say L, that determines the composition and the order of the b sets of collinear

covariates (blocks): L[[i]][j] stores one covariate at the position j of the block i for i = 1, 2, . . .,

b and j = 1, 2, . . ., Ni where Ni is the number of covariates in the ith block. The covariates

included in one block are expected to be correlated at a large extent, thus showing a similar

(empirical) effect on Yt counts. The order of the blocks should reflect the (empirical) relevance

of the covariates in explaining the target count process Yt, thus, the covariates in the first

blocks are expected to be the most associated with the outcome.

It is known that the delayed/lag effect of a given air pollutant in daily hospital admissions

depends, e.g., on the pollutant itself and on the geographical location, showing lag values typi-

cally lower than 7 days [34]. Therefore, the effect of a given covariate on Yt was considered at

different time lags, by allowing the structure Xt = (Xt−k1, 1, . . ., Xt−kr, r)T for the matrix of

covariates in model (4) with kl� 7, l = 1, 2, . . ., r. Thus, while defining the list L, a covariate

and also their lagged versions (up to lag 7) were considered in the same block. In a given block,

either a covariate or one of their lagged versions is allowed to enter the model.

The algorithm is outlined in Fig 4. The algorithm starts by fitting the MI model with opti-

mal (p, q) orders to (Yt). At this stage, MI model does not include any covariates (or lagged ver-

sions) and will serve as the initial current model (null model) to decide the inclusion of a

covariate of the first block in the MF model. The following procedure is then performed to

each block i. For each covariate delayed at a given lag, the effect of adding such covariate into

the current model is quantified from the AIC of the candidate model (i.e. the current model

with the add-on covariate) and the p-value associated to the covariate coefficient. The signifi-

cant covariate (p-value <0.05) of the block leading to the candidate model with lowest AIC

value among all candidate models is selected to enter the current model, as long as the coeffi-

cients of the covariates from the previous blocks included in the model remain statistically sig-

nificant. The MF model is then updated by adding the selected covariate to the current model
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of the algorithm. The algorithm stops when all blocks are inspected. At the end, the updated Xt

matrix will include the selected r� b significant covariates.

The blocks in Fig 5 were defined to assess the effect of temperature and air pollutants on

respiratory hospital admissions. This structure corresponds to the definition of the list L fol-

lowing L[[1]][1] = TEMP(t), L[[1]][2] = TEMP(t − 1), . . ., L[[1]][8] = TEMP(t − 7), L[[2]][1]

= PM2.5(t), . . ., L[[2]][9] = PM10(t), . . ., L[[2]][16] = PM10(t − 7), L[[3]][1] = NOx(t) and so

on. Moreover, each block is composed by the covariates that are expected to be associated and

Fig 4. Algorithm outline for the block-forward approach.

https://doi.org/10.1371/journal.pone.0253455.g004
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to induce the same (empirical) effect on hospital admissions. Furthermore, the order of the

blocks reflects the current knowledge on the magnitude of the effect of temperature and air

pollutants on hospital admissions.

The first block solely includes temperature which is known to have an important effect on

mortality, although its impact on hospital admissions is much less understood [35]. Studies on

the association of both low and high temperatures, and respiratory hospital admissions have

found a positive association [35–38]. The Assessment and Prevention of Acute Health Effects

of Weather Conditions in Europe (PHEWE) project, which studied both the short-term effect

of cold and hot weather on respiratory hospital admissions in 12 European cities, reported a

significant effect of minimum temperatures observed for all ages in the North-Continental cit-

ies (-2.5%, 95%CI: -3.6, -1.3) and Mediterranean cities (-1.6%, 95%CI: -2.5, -0.6) [37]. The

project also report a positive association between respiratory admissions and the maximum

temperature: for an increase of 1˚C degree in maximum apparent temperature above a selected

threshold, respiratory admissions increased by +4.5% (95%CI: 1.9–7.3). When the overall

effect of mean temperature on hospital admissions is analysed (i.e., annual effect) a negative

association is reported [26].

The second block includes the particulate matter covariates: PM2.5 and PM10. These air pol-

lutants are linked to worse health outcomes due to their ability to get into the thoracic region

and by getting deposited in the smaller conducting airways and alveoli [27]. These air pollut-

ants are correlated since, by definition, PM10 can also include PM2.5. A recent systematic

review showed that PM (either PM2.5 or PM10) have higher influence on respiratory hospital

admission than the other air pollutants [39], which supports their place after temperature and

before the remaining air pollutants. Similarly to the PM, NO covariates were included in one

block. These covariates are expected to be correlated since NO2 is one of the main constituents

of NOx. Both nitrogen oxides are originated by the combustion processes in stationary sources

(heating, power generation) and in mobile sources (internal combustion engines in vehicles

and ships) and these might have effects on lung metabolism, structure, function, inflammation

and host defence against pulmonary infections [27]. Also, these pollutants had the second

highest correlation with hospital admissions [39]. Finally, the air pollutants O3, SO2 and CO

were considered in individuals blocks as their effect on hospital admission may be indepen-

dent, in the sense that they capture distinct information, unlike PM or NO covariates. O3, con-

trarily to the remaining air pollutants, is not directly emitted from primary sources. There is

evidence that this air pollutant affects inflammatory pathways, but the evidence of association

between O3 and respiratory hospital admissions is not consistent, although several studies sug-

gest a positive association [27]. Sulphur dioxide (SO2) results mainly from combustion. There

is considerable evidence suggesting acid aerosols derived from sulphur dioxide emissions, con-

tributes to exacerbation of asthma by worsening its symptoms and reducing lung function.

There are studies that show an association between SO2 and respiratory hospital admissions,

but there is uncertainty as to whether sulphur dioxide may work as surrogate for ultrafine par-

ticles, since they have common sources [27]. Hence, positioning SO2 after PM allows to miti-

gate this uncertainty. Finally, CO is considered in the last block, since a recent systematic

Fig 5. Blocks of covariates in the block-forward approach.

https://doi.org/10.1371/journal.pone.0253455.g005
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review showed that this pollutant was not associated with respiratory hospital admissions [39].

Nevertheless, as this pollutant has known toxicological characteristics on human health it was

considered in the analysis [27]. Note that whilst most studies consider the mean of air pollut-

ants and temperature, we consider the maximum daily value, which may allow to better iden-

tify the effect of these covariates on respiratory hospital admissions.

The MF model constructed for each spatial location is conditioned by the availability of a

given covariate at that location. For instance, PM2.5, SO2 and CO were not monitored at

Valongo location during the time period under analysis (see S4 Table). In the Valongo case,

L[[1]][2], L[[5]][1] and L[[6]][1] in Fig 4 are empty entries and, thus PM2.5, SO2 and CO could

not be considered to enter the MF model for that location.

Model assessment. Models’ adequacy was investigated through Pearson’s residuals

defined as

rt ¼
Yt � l̂tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l̂t þ l̂
2
t =�̂

q ; ð7Þ

where l̂t and �̂ correspond to the ML estimates of λt and ϕ, respectively. If the fitted model is

correctly specified, Pearson’s residuals should be uncorrelated and normally distributed with

zero-mean and unit-variance. Another useful tool to evaluate models’ adequacy, namely the

accordance between a probabilistic forecast and the observation, is the probability integral

transform (PIT) [40]. If the predictive distribution is correct, then the PIT representation

should follow a standard uniform distribution. For count data, a non-randomised PIT value

for Yt with predictive distribution Pt(Y) is defined as

FtðujYÞ ¼

0 if u � PtðYÞ

u � PtðY � 1Þ

PtðYÞ � PtðY � 1Þ
if PtðYÞ � PtðY � 1Þ < u < PtðYÞ;

1 if u � PtðYÞ

8
>>>>><

>>>>>:

ð8Þ

where u≔ PtðY � 1Þ þ v½PtðYÞ � PtðY � 1Þ� and v is the standard uniform. The mean PIT is

estimated by �FðuÞ ¼ 1

n

Xn

t¼1

FtðujYtÞ, 0� u� 1 and converted into the empirical PIT histogram

which simplifies the comparison with the standard uniform (i.e., a flat line) [40]. The histo-

gram is computed with J = 10 equally spaced bins with heights fj ¼ �Fðj=JÞ � �Fððj � 1Þ=JÞ for

j = 1, . . ., J. A U-shape indicates underdispersion of the predictive distribution, while an upside

down U-shape indicates overdispersion [24].

Forecasting and clustering. The probability density function (pdf) of the one-step-ahead

forecast for Yn+1 was estimated for each location. To this end, 10 000 sample paths of the MF

model fitted to each location were generated. For each path, the optimal forecast Ŷ nþ1, in

terms of the mean squared error, was obtained by computing the conditional mean l̂nþ1. The

evaluation of l̂nþ1 is straightforward from Eq (5) by plugging-in the history of the path, the val-

ues of the covariates and the ML estimates for the β1, . . ., βk and α1, . . ., αℓ model coefficients

and also the estimate of ϕ. The one-step-ahead forecasts obtained for all paths were then used

to estimate the pdf of the one-step-ahead forecast of that location. Next, the pairwise distance

between the pdfs estimated for the 58 locations is calculated through ℓ2-Wasserstein distance

[41]. The results of the clustering procedure are illustrated through a dendrogram based on

Ward’s agglomerative method for the grouping criterion, which corresponds to a sum-of-
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squares criterion that estimates groups that minimise the within-group dispersion at each

binary fusion [42]. The optimal number of clusters was evaluated from the Mojena’s upper tail

statistics [43], defined as

a�j ¼
aj � �aj� 1

sj� 1

; ð9Þ

where aj represents the linkage distance at level/class j and �aj� 1 and s�aj� 1
are the average and

standard deviation of the linkage distances at the j − 1 previous fusion levels. The existence of

an elbow on the (j, aj) plot at the value j = k suggests that k is the adequate number of clusters

to consider, whereas the absence of an elbow suggests that there is no relevant classification

[44].

Results and discussion

A reduced MR and a full model MF were fitted to the data referring each of the 58 spatial loca-

tions. Fig 6 shows the number of MR and of MF models for which a given covariate was avail-

able and selected. Temperature, NOx and NO2 are available at all locations. Concerning the

PM covariates, the 18 locations with PM2.5 available also have PM10 data and, overall, PM

information is accessible at 93% (54/58) of the locations. The corresponding percentages for

O3, SO2 and CO are respectively 78% (45/58), 62% (36/58) and 45% (26/58), thus being the

covariates less available for model selection. From the comparison between the dark grey bars

in Fig 6(a) and 6(b) it stands out that covariates are more often selected in MR than in MF

models; this was expected as MR neglects the past information of the time series of hospital

admissions. Temperature is selected in all MR models and in 55/58 (95%) of the MF models.

With respect to PM, either PM2.5 or PM10 is selected in 96% (52/54) of MR and in 61% (33/54)

of MF models. Turning now to the NO covariates, either NOx or NO2 is selected in 97% (56/

58) and in 64% (37/58) of the MR and the MF models, respectively. The results for MF models

show no evident preference between NOx or NO2, in accordance with the fact that both covari-

ates hold similar information and that are expected to be highly correlated (e.g. correlation

between NOx and NO2 achieving 0.96 with data collected in Poland [45]). The remaining pol-

lutants O3, SO2 and CO are selected in 87% (39/45), 58% (21/36) and 81% (21/26) of the MR

Fig 6. Barplot with the number of models with significant covariates (dark grey) out of the number of models with

available covariates (light grey): (a) Reduced model MR and (b) Full model MF. The total number of spatial locations is

58.

https://doi.org/10.1371/journal.pone.0253455.g006
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models, respectively. The corresponding MF values are 44% (20/45), 25% (9/36) and 34% (9/

26). Despite being less available and less times selected, the effect of O3, SO2 and CO still

remain significant to explain the time series of hospital admissions beyond the effect of tem-

perature, PM and NO. In particular for Valongo (VALO) location, both MR and MF include

temperature as well as PM, NO and O3 covariates. This result clearly establishes that air quality

is associated with hospital admissions due to respiratory causes, even when the past history of

the count process is incorporated into the statistical model.

The number of available and selected covariates was also evaluated by taking into account

the type of environment (urban, suburban and rural) and the type of influence (background,

industrial and traffic) in each location. Table 1 shows that the number of covariates per block

from the MR to the MF model decreases, regardless of the type of environment or influence.

With respect to the MF model, temperature is equally selected in monitoring stations with dif-

ferent type of environments and influence, which supports that temperature is an important

covariate to model daily hospital admissions due to respiratory causes, beyond the effect of the

history of the process. On the contrary, CO is a covariate available and not selected to charac-

terise the daily hospital admissions due to respiratory causes at rural and, its expression is

residual at suburban locations (1/10). The results according to the type of influence, neither

suggest the predominance nor absence of a given air pollutant. However, PM2.5 is selected in

locations where it is predominately available, i.e. background influence stations (S4 Table).

Nevertheless, it is important to stress that the majority of MF models (55/58) select, at least,

one air quality covariate (S4 Table). This result reinforces that the effect of air pollutants is sig-

nificant and relevant to explain respiratory related daily hospital admissions, despite the type

of environment or influence considered. See S4 Table for the indication of available/selected

covariates for all MF models.

This study also explored the effect size of each covariate in daily hospital admissions. The

available literature has long demonstrated the effect of outdoor temperature on the outcome

where higher risk is associated with more extreme temperatures (see e.g. [32]). This is not the

case of the effect of air pollutants which have not been as extensively studied. Fig 7 displays the

distribution of the scaled coefficients estimated for each selected covariate (i.e., the coefficient

divided by its standard error), which are unit-free and, thus comparable in terms of magnitude

among all covariates. The effect of temperature as assessed from MR models is much larger

than that of the remaining covariates, which is consistent with the literature [39]. However,

when the history of the count process is fed to the model, the effect of temperature assessed

Table 1. Number of selected covariates in the MR and MF models stratified by type of environment and type of influence.

MR MF

Total Temp PM2.5 PM10 NOx NO2 O3 SO2 CO Temp PM2.5 PM10 NOx NO2 O3 SO2 CO

Environment

Urban 35 35 0 31 8 27 21 10 17 33 1 17 12 10 9 5 8

Suburban 10 10 0 9 4 6 8 5 4 10 1 6 4 2 6 0 1

Rural 13 13 6 6 5 6 10 6 0 12 3 5 5 4 5 4 0

Influence

Background 37 37 6 28 12 23 30 13 7 34 5 18 11 10 15 7 2

Industrial 7 7 0 5 2 5 6 4 4 7 0 3 2 2 4 1 2

Traffic 14 14 0 13 3 11 3 4 10 14 0 7 8 4 1 1 5

Total Selected 58 6 46 17 39 39 21 21 55 5 28 21 16 20 9 9

Total Available 58 18 54 58 58 45 36 26 58 18 54 58 58 45 36 26

https://doi.org/10.1371/journal.pone.0253455.t001

PLOS ONE Modelling counts time series of hospital admissions and associations with air quality

PLOS ONE | https://doi.org/10.1371/journal.pone.0253455 July 9, 2021 14 / 24

https://doi.org/10.1371/journal.pone.0253455.t001
https://doi.org/10.1371/journal.pone.0253455


from the MF models is closer to that of air pollutants, suggesting that, a considerable propor-

tion of its effect is retained in the history of the count process. In both models, the temperature

coefficient is negative indicating that the lower the temperature, the higher the logarithm of

the hospital admissions is. These models provide the (annual) average effect of a covariate;

hence, in Portugal, the effect of lower temperatures on respiratory hospital admissions is pre-

dominant on winter in contrast to those of higher temperatures during the summer. On the

contrary, PM and NO covariates have, in general, positive coefficients showing that an increase

in the concentration of these pollutants leads to an increase in hospital admissions. Ozone is

negatively correlated with hospital admissions i.e. lower levels of O3 are associated with

increasing hospital admissions. One reason for such negative association may be the conver-

sion reaction of O3 into NO2 [27]. With respect to SO2 and CO, although median associations

with hospital admissions are respectively negative and positive for the MR models, there is no

clear association pattern (either negative or positive) for the MF models, which might result

from the type of influence of each monitoring station and the low concentrations registered

over the last decades for both pollutants [46]. With regards to Valongo location (blue squares),

the coefficients present the expected direction of association. In accordance with the overall

results, the coefficients have higher absolute values for the MR model than for the MF model.

Fig 8 displays the distribution of sample ACF values across the 58 spatial locations. As pre-

sented in Fig 8(a), the time series of the number of daily hospital admissions exhibits consider-

able non-zero autocorrelation values. This representation also shows higher variability in the

sample ACF values by location for lags 1, 2, 6 and 7 when compared with the remaining lags.

The sole impact of the covariates in the daily admissions can be assessed by comparing Fig

8(a) and 8(b): the sample ACF values of the MR residuals are smaller than those of the original

time series of counts, thus suggesting that the covariates indeed explain part of the variability

of hospital admissions. Nevertheless, much of the data variability remains to be explained. The

impact of the history of the count process in the modelling is illustrated in Fig 8(c) and 8(d).

On one hand, the sample ACF of the MI residuals is remarkably lower than the sample ACF of

Fig 7. Distribution of the scaled coefficients according to each covariate. (a) MR and (b) MF models. Boxplots are presented when there are at least

15 locations otherwise each dot represents a location. The blue squares identify the coefficients estimated for Valongo (VALO) location.

https://doi.org/10.1371/journal.pone.0253455.g007
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the original data, thus showing that the history of the process itself explains a large part of the

information. On the other hand, the sample ACF values of the MI and MF residuals are fairly

similar, evidencing the small impact of the covariates in hospital admissions beyond that of the

history of the process. Despite having a small impact when compared with the history of the

count process it is worthwhile to note that the effect of the covariates is statistically significant.

Finally, the sample ACF values for Valongo location (represented by the blue squares) are con-

sistent with the overall results described. As illustrated in Fig 8(a) and 8(b), it is quite clear that

the sample ACF values of the MR residuals are substantially smaller than those of the original

Fig 8. Boxplot of sample ACF values calculated at each location. (a) the time series of counts with daily hospital admissions, (b) residuals of the MR

models, (c) residuals of the pure INGARCH MI models and (d) residuals of MF models. The blue squares identify the sample ACF values for Valongo

(VALO) location.

https://doi.org/10.1371/journal.pone.0253455.g008
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series, in particular between lags 2 and 6 days. Furthermore, the sample ACF values of the MF

residuals are quite close to zero, regardless of the lag.

The sample ACF of the residuals also allows the evaluation of the model adequacy to the

data. Overall Fig 8(d), shows that the MF residuals do not exhibit any relevant serial correlation

or seasonality which has not been taken into account by the MF models. This result also rein-

forces that both the history of the count process and the covariates are able to explain, at a

large extent, the temporal patterns in daily hospital admissions. Finally, the mean and the vari-

ance of the MF Pearson’s residuals were close to the target values zero and one, respectively,

showing the sample average ± standard deviation values of -0.005 ± 0.007 and 0.994 ± 0.002

across the 58 spatial locations.

The PIT histograms for the MF models are further used to investigate the adequacy of the

Negative Binomial distribution as being the predictive one. Fig 9(a) shows the PIT histogram

for Valongo suggesting that the probabilistic calibration of the Negative Binomial model is sat-

isfactory for this location. Fig 9(b) and 9(c) show the PIT histograms for the locations with PIT

closest/furthest to uniformity. These figures provide an insight of the range of the deviations

from the uniform distribution across locations.

After the validation of the MF model, the pdf of the one-step-ahead forecast was computed

for each location. The resulting cluster analysis of the 58 estimated pdfs considered 2 groups,

as suggested by the location of the elbow for the Mojena’s rule values represented in Fig 10. Fig

11 shows the corresponding dendrogram highlighting the two clusters, that exhibit small

within group dispersion (i.e. high similarity among pdfs in the same cluster) and large intra

group differences (i.e. low similarity among different clusters). The cophenetic correlation

coefficient of 0.90 indicates that the dendrogram’s represents rather well the matrix of pairwise

distances between estimated pdfs at different locations.

Fig 12 shows the estimated one-step-ahead forecast pdfs per identified cluster. Cluster 1

(blue) includes, exclusively, locations from the Lisbon metropolitan area, exhibiting higher

forecast values for the daily hospital admissions and larger variability than those from Clus-

ter 2 (green). It is worthwhile to notice, however, that there is one location (ALIB) that stands

out from all the pdfs in Cluster 1, exhibiting a quite smaller variability with respect to the

pdfs of the same cluster. On the contrary, Cluster 2 is characterised by locations exhibiting

Fig 9. PIT histograms for the MF model in 3 locations. (a) Valongo, (b) location with PIT closest to uniformity and (c) location with PIT furthest to

uniformity.

https://doi.org/10.1371/journal.pone.0253455.g009
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low (on average <10) daily hospital admissions and moderate one-step-ahead forecasts (on

average<40) daily hospital admissions with high probability. Within this cluster, these two

subgroups can be identified: the left subgroup corresponds to the low forecasts and, the right

subgroup corresponds to the moderate one-step-ahead forecast probabilities (Fig 12). The

subgroup with moderate one-step-ahead forecast probabilities contains urban and suburban

location, whereas the other group also contains rural locations. Therefore, the cluster analy-

sis shows that locations in Cluster 1 are more likely to have a higher number of daily hospital

admissions than those in Cluster 2. This is expected because the monitoring stations in Clus-

ter 1 are all urban and located in Lisbon metropolitan area, and thus their surrounding areas

exhibit much higher overall levels of air pollutants (S2 and S3 Tables) and much higher pop-

ulation density.

It is important to address some of the potential limitations of the present study. One of the

critical choices in this analysis concerns the 20km radius of the influence circumference

defined around each monitoring station, to produce the paired time series of the number of

daily hospital admissions. We pursued a sensitivity analysis on the MF models constructed

based on time series of counts produced for smaller and larger radius (namely 10km, 15km

and 25km). The models/results were found to be similar for the different radius not changing

the conclusions of this analysis. However, it is likely that the model obtained for one given

location could benefit from an location-adjusted radius, reflecting its real surrounding envi-

ronment and influence (e.g. traffic stations are expected to be better represent narrow radius).

Fig 10. Plot of the Mojena’s statistics as a function of the number of clusters.

https://doi.org/10.1371/journal.pone.0253455.g010
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Another important issue that deserves a remark is whether the influence areas with substantial

overlapping result in similar models (see e.g. zoom over Lisbon district in Fig 3). To pursuit

this issue it is important to realise that the availability of air pollutants changes from one influ-

ence area to another despite their proximity. Furthermore, the time span covered can also vary

Fig 11. Dendrogram of the estimated one-step-ahead forecast pdfs highlighting the identified clusters. (a) Cluster 1 (blue) and (b) Cluster 2

(green).

https://doi.org/10.1371/journal.pone.0253455.g011

Fig 12. Estimated one-step-ahead forecast pdfs stratified by identified clusters. (a) Cluster 1 (blue) and (b) Cluster 2 (green). The scale of the x-axis

decreases by a factor of 6 from one cluster to other.

https://doi.org/10.1371/journal.pone.0253455.g012
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between influence areas, which could result in different available air pollutants at different

temporal moments. Another factor influencing the set of covariates is the quality of the data

acquisition, as some air pollutants were excluded from this analysis due to their large periods

of missing data (most likely as a result of probes malfunctioning). As expected, MF models

were found to be similar when associated with relatively close (or overlapping) influence areas,

covering the same time span and with the same available covariates. Examples of such models

are those associated with Aveiro (AVEI) and with Ílhavo (ILHA) monitoring stations, 5km

apart from each other, where both models include temperature, PM10 and a NO covariate (see

S4 Table). ILHA additionally selects O3 and SO2 for the MF model, which are not available at

AVEI monitoring station, while AVEI selects CO, which is unavailable at ILHA. Therefore, it

is important to put emphasis on the fact that the models are build with the available covariates

at each geographical location which may lead to different model structures even for close/over-

lapping influence areas.

The impact of the Block-Forward procedure with 6 ordered blocks (see Fig 5) in building

MF models was assessed by comparing the AIC and the number of significant covariates

among models produced by different BF-based strategies (6 ordered blocks, 8 ordered blocks

and 6 non-ordered blocks). As shown in Table 2, the AIC values and the number of significant

covariates were similar for all approaches, over the 58 spatial locations. The similar AIC values

and number of covariates selected among the different BF based models clearly shows that the

6 ordered block strategy (imposing blocks of covariates and their order) does not lead to lower

performance of the models (which might restrict the data analysis) and constitutes a more

standardised framework to analyse the different spatial locations. The 6 ordered block models

were also compared to saturated models, which exhibit similar AIC values but have a higher

number of significant covariates. This result highlights the importance of using the BF with 6

ordered blocks as a covariate selection procedure in this applied setting, since the MF models

exhibit higher parsimony. As a final note, the results above support the inclusion of empirical

knowledge within the BF approach. The BF procedure allows for a more systematic model

construction by restricting the blocks’ order. Furthermore, the interpretation of PM and NO

covariates is clearer since they are considered in blocks, and only one enters the model. Hence,

the inclusion of empirical knowledge within the block-forward approach leads to a valid, com-

prehensible and systematic procedure for covariate selection.

Table 2. AIC and number of significant covariates (#) for the BF based and the saturated models over the 58 loca-

tions. The AIC is displayed with distributional quartiles Q1, Q2 (median) and Q3, and # is shown as mean ± standard

deviation.

Approach AIC

Q2 (Q1, Q3)

#

mean ± sd

MF models

BF 6 ordered blocks 16864 (13843, 19163) 2.81 ± 1.02

Other BF models

8 ordered blocks 16863 (13834, 19163) 3.09 ± 1.27

6 non-ordered blocks 16861 (13839, 19144) 2.74 ± 1.19

Saturated models 16852 (13863, 19153) 2.98 ± 1.08

MF models are constructed from BF with 6 ordered blocks (see Fig 5). BF with 8 ordered blocks results from splitting

blocks 2 and 3 into 4 blocks. In the BF with 6 non-ordered blocks, the significant covariate entering the model, at

each step, is that with minimum AIC on the current model. Saturated models include all covariates (regardless if

significant or not).

https://doi.org/10.1371/journal.pone.0253455.t002
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Conclusion

The overall goal of this work was to conduct a comprehensive study on the effect of air pollu-

tion, beyond the effect of temperature, on respiratory hospital admissions in Portugal main-

land. We found that models including only covariates are able to describe some variability on

daily respiratory hospital admissions. However, when models comprise the history of the hos-

pital admissions, they are able to explain a considerably larger amount of variability since

information on the dependence structure of the count time series itself is now included. From

all the covariates considered, temperature, as expected, is the most determinant covariate. Nev-

ertheless, after considering the past information of the process, air quality still adds important

information to the model. Hence, we conclude that there exists a significant association

between hospital admissions and air quality beyond the effect of count time series history

and temperature. None of the environmental covariates was found to be predominant in all

INGARCH models, even when analysing by type of environment and influence of the corre-

sponding monitoring station, suggesting that general actions to improve air quality are needed

across the country. Furthermore, the cluster analysis showed that higher counts of daily hospi-

tal admissions are more likely in the urban locations of the Lisbon metropolitan area. This

result highlights that special attention must be given to air quality in Lisbon metropolitan area

in order to achieve a relevant decrease in the number of hospital admissions. Finally, this work

also contributes to covariate selection strategies by successfully implementing the block-for-

ward strategy which can be used in multiple settings and has the following advantages: account

for collinearity, deal with missing covariates and consider current empirical knowledge.

Summing up, this work adds to the current body of knowledge of the effect of air quality

on respiratory hospital admissions by using INGARCH-type models. These models are not

broadly used in this setting although they can adequately model the outcome variable (respira-

tory hospital admissions). Hence, these results advocate for the use of a time series model

approach when analysing the effect of air quality on health in contrast with other approaches,

such as the commonly used GAM models.

Supporting information

S1 File. R code for block-forward method. This file provides the code for using the block-for-

ward method within the tscount package in R version 3.6.2.

(R)

S2 File. R code with an application example of the block-forward method. This file provides

examples on how to use the block-forward method.

(R)

S1 Table. Indication of the time period, location and type of environment (urban, subur-

ban and rural) and of influence (background, industrial and traffic).

(PDF)

S2 Table. Minimum and maximum values of the time series of hospital admissions, tem-

perature and air pollutants at each location [min, max].

(PDF)

S3 Table. Mean and standard deviation (sd) of the time series of hospital admissions, tem-

perature and air pollutants at each location (mean ± sd).

(PDF)

S4 Table. Indication of available/selected covariates, (p, q) model orders and cluster

belonging for MF models. Signage: covariate available and selected (✓), covariate available
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and not selected (X), covariate not available (empty cell).

(PDF)
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